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Abstract

Through time, we as a society have been tested with infectious disease outbreaks of different
magnitude, which often pose major public health challenges. To mitigate the challenges,
research endeavors have been focused on early detection mechanisms through identifying
potential data sources, mode of data collection and transmission, case and outbreak detection
methods, and further characterization techniques. Driven by the ubiquitous nature of
smartphones and wearables equipped with a variety of physiological sensors, the current
endeavor is targeted towards individualizing the surveillance effort, where case detection is
realized by exploiting self-collected physiological data from wearables and smartphones. A
personalized health model, which could be realized with the individual’s self-generated data,
plays a vital role in the feasibility of the individualized surveillance system. In this regard, the
quest is to devise a model that can continuously monitor and screen the individual’s health
status and be able to detect when the individual becomes ill. However, despite the research
effort and promises the data present, still there doesn’t exist any implemented system with such
capability.

This dissertation aims to demonstrate the concept of a personalized health model as a case
detector for outbreak detection purposes by utilizing self-recorded data from people with type
1 diabetes. To realize the stated goal, the dissertation starts by defining a framework for the
proposed personalized health model-based digital infectious disease detection system, i.e.
Electronic disease surveillance and monitoring network (EDMON). Then, assess the predictive
potential of different self-recorded parameters and optimal parameters indicative of infection
onset are identified. A personalized health model (case detector) is devised using the identified
optimal parameters and its detection capability is assessed. Finally, the dissertation closes by
assessing user concerns, expectations, and willingness towards sharing self-collected health-
related data to the proposed EDMON system.

The results have shown that infection onset triggers substantial deviations and results in
prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate
consumptions. Per the findings, key parameters such as blood glucose level, amount of insulin
injection, amount of carbohydrate consumption, and the ratio of insulin-to-carbohydrate are
found to carry high discriminative power. A personalized health model designed based on a
one-class classifier and unsupervised methods using some selected input parameters achieved
promising detection performance. Experimental results show the superior performance of the
one-class classifier and, particular models such as one-class support vector machine, k-nearest
neighbor, and, k-means achieved relatively better performance from their respective groups.
Besides, the result also revealed the effect of input parameters, data granularity, and sample
sizes on model detection performances. On the other hand, people with diabetes have shown
willingness to share most parameters, and, however, are reserved for certain parameters, i.e.
geographical location (GPS), and signs of infection. In return to data sharing, this patient group
expects some kind of incentives like tailored and personalized services, integrated view, and
feedback. Further, data sharing concerns include transparency, confidence related to data
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security and confidentiality (trust), ownership related to who owns the data, and storage related
to where the data is stored.

The results presented have practical significance for understanding the effect of infection
episodes amongst people with type 1 diabetes, and the nature of infection triggered deviations
incurred on blood glucose dynamics. Further, it also has practical significance for
understanding the potential of personalized health model in outbreak detection settings. The
added benefit of the personalized health model concept introduced in this dissertation lies in its
usefulness beyond the surveillance purpose. In this regard, for example, the presented
personalized health model can also be used for other purposes such as to devise decision support
tools and learning platforms for the patient to properly manage infection-induced crises.
Generally, developing a personalized health model-based digital infectious disease detection
system like EDMON, which aims for early detection, i.e. during the incubation period, requires
considering various aspects, and the results presented in this dissertation construct evidence
that supports the efforts towards building the next generation personalized health model-based-
digital infectious disease surveillance systems and provoke further thoughts in this challenging
field.
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1 Introduction

1.1 Background

Both in the past and present, we as a society have experienced infectious disease outbreaks of
different magnitude often resulting in mass fatalities and causalities. These incidences are either
naturally occurring or man-made, e.g. bio-weapons, phenomenon, and known to inflict major
public health challenges [52; 237]. In this regard, there have been continuous endeavors to
contain and reduce the burden through early and timely detection of the incidences and
implementing proper infection control measures to mitigate the infection rate [46]. These efforts
are mainly targeted in identifying potential data sources, mode of data collection and
transmission, case definitions and detection methods, outbreak detection methods, and other
outbreak characterization techniques [46; 52; 236; 237]. The transition from the traditional
surveillance system, which mainly exploits high diagnostic precision data from the laboratory,
to the state-of-the-art syndromic surveillance system, which relies on pre-diagnostic data has
created opportunities to improve the timeliness of detection [55; 102; 170]. The state-of-the-art
systems exploit data aggregated at the population level including clinical data, e.g. chief
compliant data [227], and other surrogate data such as different search engines, social media,
absenteeism, pharmacy drug sells, and other various internet sources [79; 138; 143; 166; 170].
Furthermore, its capability to collect and transmit data in near real-time coupled with the
availability of outbreak detection algorithms that can operate in real-time has further
strengthened its significance in this regard [46; 227; 262]. However, as compared to the
traditional surveillance system, outbreak characterization resulting from the syndromic
surveillance system remain a significant challenge since it mainly operates with low-diagnostic
precision (pre-diagnostic) data aggregated at the population level [236; 237]. In other words, a
syndromic surveillance system lacks a look-back capability, which is a vital mechanism to
trace-back to the sick individual for further clarification of the pathogens involved. Actually, it
Is worth mentioning that look-back capability is challenging by itself given the privacy and
confidentiality issues posed.

Currently, the endeavor is targeted towards individualizing the surveillance effort [194], where
the case detection is realized by exploiting self-collected physiological data from different
wearables and sensors [157; 181]. In this regard, the main drivers are the rapid progress in
information and communication technology, and the widespread availability of different
smartphones and wearables equipped with a variety of physiological sensors, which created a
suitable platform to easily self-track health data [106; 181; 185; 202; 205]. These technologies
are increasingly been integrated into our daily life for a variety of reasons ranging from fitness
tracking to managing diseases [20; 74; 85; 95; 106; 154; 203; 243]. As a result, a huge amount
of data are being recorded on a daily basis that grows at an unprecedented rate [71; 214; 231].
The existence of these data is the cornerstone in the individualization effort that created
unbounded possibilities for improving the state-of-the-art disease surveillance systems [44;
194]. Accordingly, the transition in granularity from population-level surveillance into
individualized surveillance are becoming feasible and converging at a faster rate. In this regard,
for instance, recent studies have shown the feasibility of smartwatches and wearable technology



in monitoring, detecting, and predicting illness [25; 157; 180; 181; 202; 223]. As compared to
the existing syndromic surveillance system, individualization of the surveillance has a double
benefit, it can be geared to monitor and notify changes in individual health status and
simultaneously monitor the status of infectious disease outbreaks among the public [181; 194].
This is a great leap forward because previous systems, e.g. Google Flu Trends [86; 138] and
HealthMap [45; 79], consider only detecting health threats at population levels and don’t
possess a mechanism to trace back to the sick individual. The potential and promises of the
individualization effort lie in the fact that it operates with a secondary source of information
mainly data generated for other purposes outside of the healthcare service settings. However,
as described earlier, it faces significant challenges concerning user privacy and confidentiality,
and ethical issues as it directly deal with individual health-related data [82; 128; 131; 157; 214].
Moreover, another prominent challenge in such a system is the availability of quality user-
generated health-related data, and how to motivate and buy user trust to get the required data is
a topic that needs to be carefully addressed [91; 126; 172].

A personalized health algorithm, which could be modeled with the individual’s self-generated
data, plays a vital role in the feasibility of the individualized surveillance system [157; 181]. In
this regard, the quest is to devise a model that can continuously monitor and screen the
individual’s health status and be able to detect when the individual becomes ill in either real-
time or near real-time using the individual’s self-generated data. After having a successful case
detector at an individual level, it becomes straightforward to realize a method for detecting a
cluster of infected individuals on a Spatio-temporal basis [181; 237; 262]. As described above,
apart from its use in detecting infectious disease outbreak, this type of early warning system
can also address the need of having real-time health status information for different groups in
the population, including chronic patients, aging populations, people using ambient assisted
living, and healthy individuals [5; 12; 13; 72; 94; 114; 155; 193; 196; 243; 268]. However,
despite the research effort and promise the data presents, still there doesn’t exist any
implemented system with such capability [181; 237]. This dissertation aims to demonstrate the
concept of a personalized health model as a case detector for outbreak detection purposes by
utilizing self-recorded data from people with type 1 diabetes. It further examines users’
concerns, expectations, and willingness towards sharing self-collected health-related data for
the proposed EDMON system. The dissertation starts by defining a framework for the proposed
personalized health model-based digital infectious disease detection system. Then, it quantifies
the extent of infection triggered deviations on the key parameters of blood glucose dynamics
amongst people with type 1 diabetes. Next, it explores the state-of-the-art approaches for
classifying blood glucose patterns and detecting anomalies in blood glucose dynamics amongst
people with type 1 diabetes giving due emphasis to the cause and effect relationship between
parameters used in modeling. Further, it devises a personalized health model (case detector) for
continuous monitoring of an individual’s health status and automatic detection of infection
onset. Finally, the dissertation closes by assessing user concerns, expectations, and willingness
towards sharing self-collected health-related data to the proposed system.



1.2 Motivation

The current tragic event due to the corona-virus (SARS-CoV-2) outbreak, also known as
COVID-19, has resulted in mass panic among the society and loss of many lives around the
globe [21; 186]. The incident has thought us that we as a society stand far from prepared for
such kinds of outbreaks. The first step to reducing the impact of any infectious disease
outbreaks is to devise an early detection system, which requires a well-equipped digital
infectious disease detection system. As has been tested frequently through time, the existing
disease surveillance systems have several shortcomings, which calls for revolutionizing the
system by integrating with novel data sources and aberration detection mechanism [54; 157;
170; 181; 199; 237]. The availability of different physiological sensors coupled with a huge
amount of data generated daily creates enormous opportunities to advance the state-of-the-art
system by driving a lot more research to be conducted to improve the time delay in the existing
systems, given the profound implication of time criticality for disease surveillance design. In
this regard, the timeliness requirement calls for the integration of new data sources, and novel
aberration detection methods with a system that can collect and analyses data in real-time or
near real-time [108; 237].

Self-recorded health-related data from people with type 1 diabetes could be one potential
choice, which is becoming rich in both quality and quantity as a result of advancement in
diabetes technologies [11; 19; 23]. Type 1 diabetes is a chronic disease that results in a lack of
blood glucose control as a result of insulin deficiency within the body [56; 64]. This group of
patients is expected to follow complex treatment regimens to control their blood glucose levels
within the recommended targets including tracking blood glucose levels throughout the day,
administrating balanced insulin while considering factors like blood glucose levels, meal
intake, physical activity, and other possible factors. This group of patients are estimated to
account for more than five percent of all the people diagnosed with diabetes and is expected to
grow [161]. Infection onset is known to induce hyperglycemia (elevated blood glucose levels)
among people with diabetes [38; 47; 62; 115; 133]. In this regard, there is previous evidence in
the literature that shed some light on the possibility of harnessing self-recorded data from
people with type 1 diabetes as a potential data source to detect infectious disease outbreaks [17;
30; 31; 34; 36; 38; 90].

In this dissertation, the predictive potential of different self-recorded parameters is investigated
and optimal parameters that are indicative of infection onset are identified. A personalized
health model is devised using the identified optimal parameters and its detection capability is
assessed. It is apparent that blood glucose dynamics are affected by various factors apart from
infection incidences, and hence, these optimal features are an important building block for
realizing a personalized health model with a minimum and acceptable false alarm rate. Based
on these findings, it remains straightforward to realize the proposed EDMON system for
assisting in detecting infectious disease outbreaks among the public. In this regard, the main
idea here is to exploit self-recorded health-related data from people with type 1 diabetes to
assist detection of infectious disease outbreaks among the public.



1.3 Research context

This dissertation is part of the “EDMON-Electronic Disease Surveillance and Monitoring
Network” project, which is a personalized health model-based-digital infectious disease
detection system. EDMON aims to exploit self-generated data from various population groups,
e.g. healthy and chronic patients, to assist in detecting infectious disease outbreaks among the
public. In this regard, this dissertation presents a case study using self-recorded data from
people with type 1 diabetes. The proposed EDMON system incorporates five units; patient unit,
data repository unit, infection detection unit, clustering unit (decision making), and information
dissemination unit (visualization), as shown in Figure 1. The patient unit includes a user mobile
devices terminal used for collecting and transmitting data to a central server. The data repository
unit stores the incoming user data. The infection detection unit tracks the individual health
status by analyzing the data in real-time based on a personalized health model. The clustering
unit identifies any possible cluster of infected individuals based on a Spatio-temporal analysis.
The information dissemination unit provides real-time information regarding the current status
of the area under surveillance for the concerned bodies, i.e. ordinary citizens, patients, and
public health officials. This dissertation focuses on topics related to the patient unit and
infections detection unit and investigates how to provide a solution for these topics.
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Figure 1: EDMON system overview, adapted from [259], Figure 14.

1.4 Research problem and questions

The main research problem the dissertation addresses is: MP - What is the effect of infection
incidence on key parameters of blood glucose dynamics amongst people with type 1 diabetes,
and how can self-recorded data from this patient group assist in detecting an infectious
disease outbreak? To effectively answer the main research problem, different sub-questions
were derived that address part of the main research problem as follows:



= Q1 - How is a personalized digital infectious disease detection system that collects
self-recorded data from participants, analyzes the data, detects deviations on an
individual basis, identifies a cluster of individuals, and notifies the status of an
outbreak to be designed and implemented?
Description: Pursue to develop a general framework for realizing a personalized health model-
based digital infectious disease detection system based on self-collected data from people with
type 1 diabetes. It gives an overview of the EDMON system components and the interaction
between them. Furthermore, the framework address factors and challengs that need to be
addressed during implementation both from the technology and user perspectives.

= Q2 - What is the effect of infection incidence on key parameters of blood glucose
dynamics among people with type 1 diabetes, and which parameters can effectively
be used for detecting infection incidences in people with type 1 diabetes?
Description: Pursue to uncover the effect of infection onset on key parameters of blood glucose
dynamics. Blood glucose dynamics are affected by numerous factors and it is very important
to identify if there exist any other possible confounding parameters, which could perhaps have
a similar effect as infection and thereby resulting in a false alarm. This helps me to pinpoint
and select potential event indicator parameters from the diabetes profile that can be effectively
used in detecting health changes or deviation from normality, i.e. infection onset while reducing
false alarms.

= Q3 —-What is the status regarding an infection detection system using self-recorded
data from people with type 1 diabetes and to what extent do the existing personalized
decision support systems, and blood glucose alarm events applications consider
infection incidence and its effect while developing blood glucose anomalies detection
algorithms?
Description: Pursue to identify if there is any previously developed and implemented infection
detection system using self-recorded data from people with type 1 diabetes and also to
understand the extent to which the existing literature incorporates the effect of infection
incidences in people with type 1 while modeling personalized blood glucose anomalies, i.e.
hyper/hypoglycemia and glycaemic variability, detection algorithms. Further, it is also used to
assess and analyses the success of machine learning models in these algorithms for achieving
the required task in a real-time, and free-living condition considering different types of input
variables, data collection procedures, and devices used. This helps me to figure out the direction
of the dissertation in terms of approaching the infection detection tasks.

= Q4 - How to design and develop a personalized health model that can continuously
monitor individual health status and automatically detect infection onset using self-
recorded data from people with type 1 diabetes?
Description: Pursue to develop a personalized health model to effectively monitor the
individual’s health status continually and automatically detect infection onset. The idea behind
this is to realize a model that is capable of detecting infection-triggered deviation while leaving
changes due to other confounding parameters undetected; thereby reducing false alarms. This



is central to the proposed EDMON system performing as a case detector to screen the
individual’s health.

= Q5 - What are the user concerns and expectations towards sharing self-collected
health-related data with the proposed system? and what type of data are they willing
to anonymously share?
Description: Pursue to assess and examine user concerns, expectations, and willingness
towards sharing self-collected health-related data to the proposed EDMON system. Different
factors could affect the user's willingness to share their health-related data unless they perceive
that the system could meet their expectations and also address their concerns. These findings
are expected to guide on factors that need to be addressed during the design and developments
of the patient unit as well as the proposed EDMON system in general.

1.5 Significance of the study

The dissertation is multidisciplinary in its nature and draws facts, concepts, tools, and methods
from different fields of study. A personalized health model that can effectively monitor the
individual’s health status and automatically detect infection onset among people with type 1
diabetes is developed, which can be geared towards both individual and public health benefits.
The concept behind the personalized approach can also be generalized towards infection
detection in other types of diabetes and also among different population groups. These findings
have practical significance in different fields; informatics, public health, medicine, and
healthcare.

Informatics

The significance of this dissertation to informatics is based on the models, data analysis and
knowledge produced. The approach can be easily extended to people with other types of
diabetes, not only type 1 diabetes.

Public health

The significance of this dissertation to public health is related to the approach presented, which
can be used to detect the incidence of infection at an individual level and thereby detecting
infectious disease outbreaks at the population level. The EDMON system presented in the
dissertation can be integrated with existing syndromic surveillance and assist in detecting
infectious disease outbreaks and thereby alarming possible outbreaks that could endanger
public health.

Healthcare

The significance of the dissertation to healthcare is related to the personalized health model
presented since it can be geared towards realizing an application for tailored personalized
decision support and learning platform. In this regard, the presented analysis and models can
be used to realize a tailored platform to educate individuals on how to respond to infection-
induced hyperglycemia.



Individuals

The findings, i.e. analysis and models, presented in this dissertation can also be informative to
an individual with type 1 diabetes. Among people with type 1 diabetes, infection occurrence is
known to induce significant challenge to self-manage their blood glucose levels. Therefore,
information regarding blood glucose evolution, and change in insulin resistance, i.e. insulin to
carbohydrate ratio, during infection incidences can be quite helpful for this group of patients.

1.6 Claimed contribution and included papers

1.6.1 Contribution of the dissertation
This dissertation mainly contributes towards the development of a personalized health model-
based - digital infectious disease detection system, also known as Electronic Disease
Surveillance and Monitoring Network (EDMON), that relied on the detection of infection onset
on an individual basis to predict infectious disease outbreaks on the population level using self-
recorded data from people with type 1 diabetes, which makes the system the first of its kind.
EDMON incorporates a patient unit, data repository unit, infection detection unit, clustering
unit, and information dissemination unit. This dissertation presents the following contributions:

1) A framework of personalized health model-based digital infectious disease detection
system, i.e. EDMON system, for realizing a system that can collect, analyze, detect, and
notify the concerned bodies about the ongoing outbreak (C1),

2) An infection detection unit that can effectively monitor the individual’s health status
continually and automatically detect infection onset (Cz, Cs, C4), and

e A proof of concept towards using key parameters of blood glucose dynamics for
detecting infection onset (Cz). This contribution characterizes the effect of infection
onset on key parameters of blood glucose dynamics and put forward optimal
parameters for realizing the proposed personalized health model.

e A personalized health model for detecting infection onset in people with type 1
diabetes using blood glucose, insulin, and carbohydrate information (Cs). These
models require all the three key parameters of blood glucose dynamics.

¢ An alternative personalized health model for detecting infection onset in people with
type 1 diabetes using only insulin and carbohydrate information (C4). The point is to
provide alternative models when there is a challenge in getting blood glucose
measurements for various reasons. In this regard, the underlying reason could be
linked to fear associated with information leakage or data usage by 3rd parties. For
example, blood glucose information containing experiences of repeated lows blood
glucose level (hypoglycemia), if discovered by a licensing authority, might end up
suspending one’s driving license.

3) Finally presents a list of factors related to user concerns, expectations, and willingness for
the successful mass sharing of self-collected health-related data to the proposed EDMON
system (Cs).



The presented system addresses the dissertation research problem and the stated contributions
along with the associated research questions are presented in Table 1. The third research
question (Q3) is linked with the background of the dissertation.

Table 1:Contributions and research questions addressed in the dissertation.
Contribution Description Publication

C1 Q1 A general framework of a personalized health model- Paper 1
based digital infectious disease detection system for
realizing a system that collects, analyses, detects, and
notifies the concerned bodies about ongoing outbreaks.

C, Q2 A proof of concept towards using key parameters of Paper 1
blood glucose dynamics for detecting infection onset.

BKGND Q3 Literature review of data-driven blood glucose pattern Paper 2
classification and anomaly detection mechanisms among
people with type 1 diabetes.

Cs Q4 A personalized health model for detecting infection onset Paper 3
in people with type 1 diabetes using blood glucose,
insulin, and carbohydrate information.

Ca Q4 An alternative personalized health model for detecting Paper 4
infection onset in people with type 1 diabetes using only
insulin and carbohydrate information.

Cs Q5 Assessments of user concerns, expectations, and Paper 5
willingness towards sharing self-collected health-related
data.

1.6.2 Other contributions
Apart from the main contributions, there are other relevant contributions I produced during the
work on my Ph.D. project, which is not included in the dissertations.

Paper 7 Coucheron, S., Woldaregay, A. Z., Arsand, E., Botsis, T., & Hartvigsen, G.
(2019). EDMON - A System Architecture for Real-Time Infection Monitoring and
Outbreak Detection Based on Self-Recorded Data from People with Type 1 Diabetes:
System Design and Prototype Implementation. Paper presented at the SHI 20109.
Proceedings of the 17th Scandinavian Conference on Health Informatics, November 12-
13, 2019, Oslo, Norway.



Paper 8 Woldaregay, A. Z., Issom, D., Henriksen, A., Marttila, H., Mikalsen, M., Pfuhl,
G., Sato, K., Lovis, C., & Hartvigsen, G. (2018). Motivational Factors for User
Engagement with mHealth Apps. Studies in Health Technology and Informatics, 249,
151.

Paper 9 Yeng, P. K., Woldaregay, A. Z., Solvoll, T., & Hartvigsen, G. (2020). Cluster
Detection Mechanisms for Syndromic Surveillance Systems: Systematic Review and
Framework Development. JMIR Public Health Surveill, 6(2), el1512.
d0i:10.2196/11512.

Paper 10 Woldaregay, A. Z., Arsand, E., Walderhaug, S., Albers, D., Mamykina, L.,
Botsis, T., & Hartvigsen, G. (2019). Data-driven modeling and prediction of blood
glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med,
98, 109-134. doi:10.1016/j.artmed.2019.07.007

Paper 11 Woldaregay, A. Z., Arsand, E., Botsis, T. & Hartvigsen, G. 2017. An Early
Infectious Disease Outbreak Detection Mechanism Based on Self-Recorded Data from
People with Diabetes. Studies in health technology and informatics, 245, 619-623.

Paper 12 Yeng, P. K., Woldaregay, A. Z., & Hartvigsen, G. (2019, November). K-
CUSUM: Cluster Detection Mechanism in EDMON. In SHI 2019. Proceedings of the
17th Scandinavian Conference on Health Informatics, November 12-13, 2019, Oslo,
Norway (No. 161, pp. 141-147). Linkdping University Electronic Press.

Paper 13 Tejedor, M., Woldaregay, A. Z., & Godtliebsen, F. (2020). Reinforcement
learning application in diabetes blood glucose control: A systematic review. Artificial
Intelligence in Medicine, 104, 101836.
doi:https://doi.org/10.1016/j.artmed.2020.101836.

Paper 14 Giordanengo, A., Arsand, E., Woldaregay, A. Z., Bradway, M., Grottland, A.,
Hartvigsen, G., Granja, C., Torsvik, T., & Hansen, A. H. (2019). Design and Prestudy
Assessment of a Dashboard for Presenting Self-Collected Health Data of Patients With
Diabetes to Clinicians: Iterative Approach and Qualitative Case Study. JMIR Diabetes,
4(3), €14002. doi:10.2196/14002.

1.6.3 Statements of originality
This section puts forward the statement of originality, by stating the relevance of each article
to the dissertation along with my contribution.

Paper 1 Woldaregay, A. Z., Launonen, I. K., Arsand, E., Albers, D., Holubova, A., &
Hartvigsen, G. (2020). Toward Detecting Infection Incidence in People With Type 1
Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized
Digital Infectious Disease Detection System. J Med Internet Res, 22(8), e18911.
doi:10.2196/18911



Relevance: The study provides the basis for the development of the proposed personalized
digital infectious disease detection system in general and the personalized health model in
particular. A proof of concept regarding infection onset and its degree of effect on key
parameters of blood glucose dynamics is presented. Thus, it provides information about optimal
parameters of blood glucose dynamics to effectively support the strategies need for designing
and developing the proposed personalized health model. Moreover, it presents a general
framework to effectively guide the development of the proposed personalized health model-
based digital infectious disease detection system, i.e. EDMON system. The framework provides
a detailed description of the EDMON system components and challenges that needs to be
addressed during system implementation. To the best of my knowledge, this is the first study
that empirically and numerically quantifies the effect of infection episodes on key parameters
of the blood glucose dynamics among people with type 1 diabetes exploiting self-recorded data.

My Contribution: | proposed the study, defined the problem, collected the data from the study
participants, designed and carried out the experiments, and wrote the manuscript. G.
Hartvigsen, 1. Launonen, E. Arsand, A. Holubova, and D. Albers provide successive expert
input to improve the study, presented some alternative approaches to shape the study, and
reviewed the manuscript.

Paper 2 Woldaregay, A. Z., Arsand, E., Botsis, T., Albers, D., Mamykina, L., &
Hartvigsen, G. (2019). Data-Driven Blood Glucose Pattern Classification and
Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. J Med
Internet Res, 21(5), e11030. doi:10.2196/11030

Relevance: The study presented an overview of the state-of-the-art approaches used for
classifying blood glucose patterns and detection of anomalies within the framework of
personalized decision support and alarm applications for blood glucose control. The review
sheds some light on the applicability of different models, challenges that need to be addressed,
success and limitations of different input features and diabetes self-management technologies,
cause-effect reasoning ability of the implemented system, and the extent of integrating
information regarding infection incidence within the implemented systems.

My Contribution: | conceived the idea, proposed the study, defined the problem, designed the
method, and carried out the search and analysis. G. Hartvigsen, E. Arsand, T. Botsis, D. Albers,
and L. Mamykina provide successive expert input in shaping the method design and analysis. |
wrote the manuscript based on successive reviews and discussions with co-authors.

Paper 3 Woldaregay, A. Z., Launonen, I. K., Albers, D., lgual, J., Arsand, E., &
Hartvigsen, G. (2020). A Novel Approach for Continuous Health Status Monitoring and
Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using
Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease
Detection Mechanism. J Med Internet Res, 22(8), e18912. doi:10.2196/18912

Relevance: The study provides an approach for detecting infection onset in an individual with
type 1 diabetes exploiting self-recorded blood glucose level, insulin, and carbohydrate
information. A personalized health model is presented, which can track an individual’s health
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status in a continuous manner and automatically detects infection onset. The aim of the study
was to thoroughly evaluate the performance, necessary sample sizes, and computational time
of different machine learning algorithms. To the best of my knowledge, this is the first attempt
towards realizing a personalized health model to capture infection episodes among people with
type 1 diabetes using self-recorded data.

My Contribution: | conceived the idea and proposed the study, designed and performed the
experiments. G. Hartvigsen, I. Launonen, E. Arsand, and D. Albers provides successive expert
input during the designing of the experiment and proposed some alternative solutions. | wrote
the manuscript based on a thorough discussion with co-authors. Further, the co-authors
reviewed the manuscript and provide successive comments and suggestions to improve the
manuscript.

Paper 4 Woldaregay, A. Z. Woldaregay, A. Z. Automatic Detection of Infection State in
Individuals with Type 1 Diabetes Under Free-Living Conditions Using Using Self-
Recorded Insulin and Carbohydrate Information (Part 3). EARLY DRAFT
MANUSCRIPT. This Manuscript contains overlapping texts and results from the
dissertation.

Relevance: As an alternative solution, this study presents a personalized health model that
exploits self-recorded insulin and carbohydrate information. This alternative provides a greater
advantage when there is a lack of information about blood glucose levels. Hence, the study
compares with the performance achieved in Paper 3. The result demonstrates the potential of
the proposed approach.

My Contribution: | conceived the study, designed and performed the experiments, and wrote
the manuscripts. In this study, the ideal was to further strengthen the result presented in Paper
3 and to provide alternative ways of achieving the same objective.

Paper 5 Woldaregay, A. Z., Henriksen, A., Issom, D. Z., Pfuhl, G., Sato, K., Richard,
A., Lovis, C., Arsand, E., Rochat, J., & Hartvigsen, G. (2020). User Expectations and
Willingness to Share Self-Collected Health Data. Stud Health Technol Inform, 270,
894-898. doi:10.3233/SHT1200290

Relevance: The study presented a list of findings related to user concerns, expectations, and
willingness towards sharing one’s self-collected health-related data to the proposed
personalized health model-based digital infectious disease detection system, i.e. EDMON
system. Given the sensitivity of health data, prior understanding of user concerns and
expectations are very important especially when it comes to the sharing of health-related data.
To facilitate mass data sharing, it is necessary to properly address user concerns and meet user
expectations throughout the EDNON system design and development. In this regard, the study
puts forward factors that need to be addressed during system design and implementation so as
to buy the user's willingness to engage in sharing data to the proposed system. A survey
questionnaire was developed based on the results from a qualitative interview [252] to further
understand factors related to user concerns, expectations, and willingness. A survey
questionnaire assessing different factors related to user concerns, willingness, and expectations
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was distributed to participants and the response was analyzed using statistical techniques. These
findings will act as guidelines during the realization of the proposed EDMON system.

My Contribution: 1, together with the co-authors, has conceived the idea, proposed the study
and formulated the problem. Further, contributed through the development of the survey
questioners, and posted the survey questionnaire related to diabetes in an appropriate channel
in collaboration with E. Arsand. G. Pfuhl conducted the statistical analysis. A. Henriksen and |
wrote the manuscript based on a thorough discussion with the co-authors.

1.6.4 Defining the red thread
This section describes each stage of the dissertation and the connection between them.

The Initial Phase (Q1) - Development of a general framework of a personalized health
model-based digital infectious disease detection system.

As an initial work, the general framework defines the main components of the proposed
personalized health model-based digital infectious disease detection system, i.e. EDMON
system, along with the challenge that needs to be addressed during system design and
implementation Paper 1 [259]. The presented framework shapes the dissertation by pinpointing
the crucial part of the EDMON system. All the rest of the dissertation topics emanates from the
proposed framework.

The First Phase (Q2) — Nature, extent, and degree of effect of infection incidences on key
parameters of blood glucose dynamics amongst people with type 1 diabetes.

There is evidence in the literature describing the effect of infection incidences in people with
type 1 diabetes. Some literature clearly described the potential of blood glucose levels and other
diabetes profile parameters as an indicator of infection onset in this patient group. However,
there is a knowledge gap when it comes to empirical and numerical evidence depicting the
degree of deviation as a result of infection with respect to each diabetes profile. This work
uncovers the nature and extent of infection-induced deviations on each key parameter of blood
glucose dynamics and puts forward optimal parameters for realizing a personalized health
model Paper 1 [259]. As a result, this piece of work layout the foundation for the development
of a personalized health model for detecting infection incidences.

The Second Phase (Q3) — Personalized decision support systems, blood glucose alarm events
applications, and anomalies detection algorithms.

As a roadmap to the development of a personalized health model, the systematic review is
aimed at assessing and analyzing the state-of-the-art approaches used for classifying blood
glucose patterns and detecting anomalies within the framework of personalized decision
support and alarm applications for blood glucose control. It also tries to assess and understand
if there is any literature, which incorporates information related to infection onset and how these
algorithms tried to include such information in their process Paper 2 [253]. This wide piece of
work helps me to choose the right modeling approach towards realizing the proposed
personalized health model for detecting infection incidences on an individual basis.
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The Third Phase (Q4) — Modelling a personalized infection detection algorithm.

After understanding the state-of-the-art approaches and the associated knowledge gap, this
work realizes a personalized health model that can monitor the individual health status in a
continuous manner and automatically detects infection onset using the individual’s diabetes
profile. This piece of work is the core for realizing the proposed personalized health model-
based digital infectious disease detection system, i.e. EDMON system.

To begin with, modeling of a personalized health model was carried out using blood glucose
levels, insulin, and carbohydrate information as input features to the algorithm Paper 3 [258].
Furthermore, the possibility of using insulin and carbohydrate information as input features for
realizing a personalized health model was explored in Paper 4.

The Fourth Phase (Q5) — Assessments of user concerns, expectations, and willingness
towards sharing self-collected health-related data.

As the last stage, this piece of work tries to pinpoint user concerns, expectations, and
willingness towards sharing self-collected health-related data to the proposed EDMON system.
A system that relies on self-collected data typically requires the timely sharing of these data for
further processing to produce precise results. Fulfilling patient expectations, and properly
addressing their concerns has a great impact on the successful mass sharing of health-related
data to the proposed EDMON system Paper 5 [257].

1.7 Organization of the dissertation

The entire dissertation is organized as follows; Chapter two provides the background of the
dissertation; Chapter three presents the methods and materials used in the studies; Chapter four
introduces the proposed framework of the personalized health model-based digital infectious
disease detection system along with the associated challenge that needs to be addressed during
system design and implementation; Chapter five gives a detailed analysis depicting the nature
and extent of infection-induced deviations on each key parameter of blood glucose dynamics
among people with type 1 diabetes; Chapter six presents solutions for a personalized health
model that can monitor the individual’s health status in a continuous manner and automatically
detect infection onset in people with type 1 diabetes; Chapter seven puts forward list of findings
related to user concerns, expectations, and willingness for long-term and successful sharing of
self-collected health-related data. The final chapter, Chapter Eight, gives a concluding remark
of the dissertation and future works.

This dissertation has a content reuse, and specifically from Paper 1, 2, 3, and 5 and are allowed
by the publishers under the Creative Commons Attribution license. In this regard, given the
absence of written guidelines from UiT — The Arctic University of Norway, a guideline from

the Technical University of Denmark are used, and can be found from https://www.dtu.dk/english/-
/media/DTUdk/Uddannelse/PhD-Udannelse/Dokumenter/DTU-Guidelines-for-avoiding-plagiarism-and-self-plagiarism-

in-PhD-thesis-writing.ashx?la=da&hash=3D7503AB200968C246A901BDIOCAEOCIA04E3940. Based on this, a
description is provided in the introduction section of each chapters indicating the source

paper.
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2 Theoretical Background

Synopsis: This chapter puts forward detailed descriptions of the theoretical background of
the dissertation. Even if each article has a detailed and broader background section, this part
will complement and highlight some theoretical background necessary to understand the work
presented in this dissertation. The first half of the chapter provides insight into blood glucose
homeostasis and infection incidences, and then proceed to describe existing literature
suggesting diabetes profile parameters as infection indicator.

2.1 Blood glucose dynamics

Blood glucose homeostasis is the process by which the body maintains normal blood glucose
levels [184]. The pancreas' alpha and beta cells play a vital role in blood glucose homeostasis
by secreting insulin and glucagon, which are necessary to regulate blood glucose levels. As
shown in Figure 2 [190], the occurrence of either elevated or lowered blood glucose
concentration stimulates the pancreas beta and alpha cells to release insulin and glucagon
respectively. For instance, let us consider that there is elevated blood glucose concentration
after a meal, and this scenario directly stimulates pancreatic beta cells to release insulin, thereby
activating the liver to take up glucose, convert and store it as glycogen through a process known
as glycogenesis. In addition, at the same time, the body will be activated to take up and use
more glucose. As a result, glucose concentration in the blood lowers to the normal range, and
stimulus for insulin release also diminishes, as shown in Figure 2. By the same token, let us
assume that an individual has skipped a meal and his/her blood glucose levels begin to drop
below a certain threshold, and this scenario stimulates pancreatic alpha cells to release glucagon
into the blood. Hence, glucagon activates the liver to break down glycogen into glucose through
the process called glycogenolysis and release it into the blood. As a result, blood glucose levels
rise to the normal range and thereby diminishing the stimulus for glucagon production, as
shown in Figure 2.

Regarding people with type 1 diabetes, there is a lack of insulin secretion from pancreatic beta
cells. This patient group needs to inject a proper amount of exogenous insulin as medication to
compensate for the lack of insulin secretion. Mostly, the key diabetes parameter such as the
current blood glucose levels, amount of carbohydrate consumption, and physical activity
session or exercise load are taken into account to determine the necessary amount of insulin
injection. Insulin injection is administered based on either multiple daily injections, which
involves several small injections at different times of the day, or continuous subcutaneous
insulin infusion, which relies on insulin pump therapy. People with type 1 diabetes usually rely
on carbohydrate counting, which involves estimating insulin-to-carbohydrate ratios [210], to
accurately determine the necessary amount of insulin during mealtime [84; 167; 210; 228]. The
estimated insulin-to-carbohydrate ratio is a function of an individual’s insulin sensitivity and
factors that affect insulin sensitivity directly or indirectly also affect the ratio. These factors
include the time of the day [167], weight, age, menstruation, physical activity, stress, illness,
infection, and so many others [48]. During normal situations, the estimated value of the insulin-
to-carbohydrate ratio in most cases is normally distributed within the usual range of 0.02,
equivalent to 1 unit of insulin to every 50 grams of carbohydrate, to 0.2, equivalent to 1 unit of
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insulin to every 5 grams of carbohydrate [158; 167]. However, it should be noted that this
normal value, for some individuals could be higher based on their health conditions.

Beta cells of Pancreas Liver takes up glucose Body cells take up
are stimulated to release and stores it as glycogen_ more glUCOSE

insulin into the blood.

STIMULUS:
Rising blood glucose level (e.g.
after meal consumption)

Blood glucose level declines to
normal value; stimulus for insulin
release diminishes.

Homeostasis:
Blood glucose level
(About 90-100 mg/ml)

Blood glucose level rises to
normal value; stimulus for
glucagon release diminishes.

STIMULUS:
Droping blood glucose level (e.g.
skiping meals)

Liver breaks down Alpha cells of Pancreas
glycogen and releases are stimulated to release
glucose into blood. glucagon into the blood.

Figure 2: Blood glucose homeostasis (regulation) [10; 208], source Campbell, Figure 25.10.

Blood glucose concentration is affected by different factors, which are often designated as
common, individual, and unpredictable factors [22; 76], as shown in Figure 3, [22].
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42 Factors That Affect Blood Glucose Levels

Biological

A 4 1. Carbohydrate quantity
=) 4 2. Carbohydrate type
3 4 3.Fat
- 4 4. Protein
< /M 5. Caffeine
< 4 6. Alcohol
& P 7. Meal timing
#» 8. Dehydration
? 9. Personal microbiome

<> 10. Medication dose

P 11. Medication timing

P 12. Medication interactions

A 13, Steroid administration
14, Niacin (Vitamin B3)

Activity

A 20. Insufficient sleep
A 21. Stress & illness
J» 22. Recent hypoglycemia
<» 4 23. During-sleep blood sugar
4 24. Dawn phenomena
4 25. Infusion set issues
/™ 26. Scar tissue & lipodystrophy
b ¥ 27. Intramuscular insulin delivery
A 28. Allergies
A 29. A higher glucose level
/I 30. Menstruation
A 1 31. Puberty
¥ 32. Celiac disease

4 33. Smoking

A 34. Expired insulin

4 35. Inaccurate BG reading
J»  36. Outside temperature

/A 37. Sunbum

? 38. Altitude

Behavioral & Decision
Making

¥ 39. Frequency of glucose checks
b4 40. Default options & choices
J 41. Decision-making biases
A 42, Family relationships & social

pressures

- J15. Light exercise
JM16. High & moderate

> d17. Level of fitness

J» M8 Time of day

M 9. Food & insulin timing

a) Some list of factors that affect blood glucose levels, source — diaTribe! [43].

Factors affecting blood glucose dynamics

Common factors Individual factors

Unpredictable factors
Diet, alcohol, insulin, other ‘ |
drug and vitamins intake, Dawn-phenomena, stress, diseases and

physical activity/exercise, pregnancy and menstruation infections
smoking, and others |

| &
y "y

Physical and emotional

b) Grouping of factors affecting blood glucose levels [22].

Figure 3: Factors affecting blood glucose dynamics. Figure (a) depicts some of the factors that

affect blood glucose levels and Figure (b) depicts a grouping of these factors amongst the
individuals.

1 https://diatribe.org/42factors
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These factors are also grouped into either patient controllable or patient uncontrollable
parameters depending on the degree of direct control the patient has to limit the effect of these
factors on blood glucose dynamics [253]. From the patient perspective, the patient controllable
parameter is known to induce reasonable deviation on blood glucose dynamics. For instance,
blood glucose deviation due to meal intake can be approximated and known in advance.
However, the effect of patient uncontrollable parameters is difficult to estimate in advance and
known to induce unreasonable deviations that usually differs from the typical norm of blood
glucose dynamics. For example, blood glucose deviations as a result of infection onset are
difficult to manage and often could end up in prolonged hyperglycemia. However, from a blood
glucose fluctuations perspective, any incurring blood glucose deviations can be defined as
either normal or special cause variations [253]. In this regard, normal cause variations are those
induced by common and individual factors. Yet, special cause variations are those induced by
unpredictable factors, and patients usually struggle to manage and understand the underlying
cause during the incidences. A particular example of special cause variation is depicted during
an infection episode, where the individual patient struggles to control the blood glucose levels
through frequent administration of insulin [37].

2.2 Infections incidences in people with diabetes

2.2.1 Acute illness and glucose metabolism
During infection episodes, several hormonal changes occur within the body often known as
counter-regulatory, which affects blood glucose metabolism. The counter-regulatory hormones,
e.g. epinephrine and cortisol, mainly stimulate the production of hepatic glucose, glucose
utilization, and lipolysis and thereby elevating the plasma blood glucose concentrations
(hyperglycemia) [133; 147; 264].

2.2.2 Blood glucose control during infection incidences

During infection incidences, self-management of diabetes can become very problematic, given
the interference of the counter-regulatory hormones, which affects the individual’s blood
glucose levels and insulin sensitivity. Excess glucose productions and the influence of insulin
resistance (less insulin sensitivity) on the blood glucose dynamics are believed to be responsible
for creating a shift in the operating point mainly in terms of the insulin-to-carbohydrate ratio
[30; 38; 141; 142; 158; 179; 248; 264]. As a result, it is common to observe an abnormal rise
in blood glucose levels and different reactions to insulin injection and meal intake. Managing
hyperglycemia is critical during infections, where poor self-management can lead to
complications including diabetic ketoacidosis and other similar incidences [145]. Generally, it
is recommended to frequently measure blood glucose levels, and inject more insulin despite
experiencing a feeding problem (loss of appetite) [121; 142; 144; 145]. The optimal
management of hyperglycemia episodes during infection incidences needs to balance the
amount of insulin and carbohydrate intake, considering a 10 - 40 % raise in the total daily
insulin and reduction in the amount of carbohydrate consumption (light foods are
recommended) [121; 141; 142; 144; 145]. A typical example of patients discussing the
challenges related to infection is illustrated in Figures 4 below:
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Type 2 - Well-Known
Member

Messages: 3E5
Likes Recefved: 27549
Trophy Poines: 158

Type 2 (in remission!) -

Moderator

Staff Member
Messages: 11,246
Likes Received: 14,400
Trophy Poines: 2%8

My BG is between 5-7 normally, when | have any sort of infection my BG runs into double figures 9-13 last
week it fruswrating but realistically there nothing that | can de, | chatted to my GP last week, it maybe thatas a
coping strategy | take Glimepiride when i have a infection or virus to bring down the number, | ditched my

diabetic meds back in Movember in favour of a LCHF diet, which has been great, my only problem seems to be
raized BG in time of illness,
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| have had a really sore throat for the last two days and now my nose is startng to run just tested my BG and it
is 8.3 usually | am in the 5/8's so yes it does go up when you are unwell

Type 2 - Well-Known

Member

Messages: 2912 o Agreex2

Likes Received: 1,948

Trophy Poines: 158 Ay 44w ago #17

a) People with type 2 diabetes discussing the effect of infection on blood glucose
dynamics.

Whenever | have flu my bloody sugar levels go through the roof instanty and | find it very hard wo bring them
down. Recently though I've been throwing up quite a lot which | put down to just a bug as when | did check my
blood sugars they were at 5.3 and rarely changed when | kept checking them every two hours

Type 1 - Active Member

Mezszages: 40 @ Likex4

Likes Received: 33

Trophy Paings: = Ay 44w ago #19
Flu and high BS
Discussion in 'Ask A Question’ started by K- Mar 2, 2018.

Hi,

I'm a type 1 diabetic and have been diabetic for over 30 years; but thankfully am rarely ill! But I've managed to
pick up one of the flu viruses this week. My blood sugars are usually reasonable; | test a lot and also carb count
and adjust dosage. But I'm really struggling to bring down the BS; its sitting at between 13-16 and whenever |
do a bolus to adjust it barely moves. This means I'm now not actually eating very much as am not finding a
window when the levels are sufficienty low. | have increased by lantus (twice daily) by about 20% but little
seems to be helping. | understand this is because cortisol released to help recovery also makes the body mare
insulin resistant. | also know that it will pass. But what | den't know is when | should seek external help; I'm not
Type 1 - Member vomiting or showing any of the other ketoacidosis symptoms but at what point do | worry? How resilient is the
body? With all the posts on here saying people are constantly at 5 or 6 I'm feeling like a naughty diabetic.

Messages: "
K

Likes Received:
Trophy Poines: 43

n

&H ugx2
2y 42w ago #1
As you say, with a high BG, your body is likely to be insulin resistant.
Have you tried taking a higher correction bolus?
If my BG is that high, | need twice as much insulin to correct.

| also find, when | amill, | may need 30 or 40% extra basal.

| don't think you are a naughty diabetic and whilst ever high increases your risk of complications, long term
high usually refers to weeks rather than a few hours or day.

- Guest Focus on getting better. Drink plenty of fluids, rest, test, correct.

@ Likex1

2y 42w ago #2
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3

Showing the net basal adjustments made on day 2 of my norovirus — the dotted line is what

my basals usually are, so anything higher than that dotted line is a “high” temp and anything

lower is a “low” temp of various sorts.

e When I first started throwing up over the first 8 hours, as is
pretty normal for norovirus, I first worried about going low,
because obviously my stomach was empty.

Nope. I never went lower than about 85 mg/dl. Even when I didn’t
eat at all for > 24 hours and very little over the course of 5 days.

b) People with type 1 diabetes discussing the effect of infection episode on blood glucose
dynamics.
Figure 4: Depicts what patients discuss on online forums about infection and blood glucose
levels, source [78; 141; 142]. Figure (a) depicts type 2 diabetes and Figure (b) depicts type 1
diabetes. User's identifiers are removed for privacy purposes.

2.2.3 The literature on using diabetes profile for infection detection
As a roadmap to better understand the project, | tried to pinpoint the state-of-the-art studies. In
this regard, using parameters from diabetes profile as an indicator of infection incidences have
been studied in the literature, as shown in Table 2 below. The literature ranges from proof of
concept study to system description. From the diabetes profile, almost all of the literature
considers blood glucose levels as indicators of infection episodes. Some other studies also
suggested hbalc and white blood cell count as an alternative indicator of infection episodes,
but these parameters have significant availability and feasibility issues given the fact that these
parameters are difficult to get the records on a daily basis with the least possible cost. As
described above, there are already efforts to prove the relationship between elevated blood
glucose levels and infection episodes. However, there is a lack of empirical and numerical
evidence describing the nature, extent, and duration of infection-induced deviations on each
individual’s diabetes profile such as blood glucose levels, insulin intake, and diet consumptions.
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Table 2: Using diabetes profile for detecting infection incidences among people with diabetes.

Reference

[29; 38]

[31; 33; 34;
36]

[17]
[90]
[135]

[30]

Type

Proof of concept

Analysis and system
specification

System description
System prototype

System description

System Specification

Data Type

Infection evidence and daily
glycemic control data of 248
type-2 diabetics.
Diabetes Control and
Complications Trial (type-1
diabetes)
Informatics for Diabetes
Education and Telemedicine
(type-2 diabetes).

User 1D, blood glucose level,
and geographical location
Blood glucose level

Blood glucose levels, illness,
and symptom report
Blood glucose, white blood
cell count, and other sources

2.3 Chapter summary
This chapter put forward and discussed four important topics; blood glucose homeostasis, the
effect of infection on blood glucose dynamics, blood glucose control during infection
incidences, and available evidence suggesting the feasibility of using blood glucose levels and
other diabetes profiles as an indicator of infection episode. The connection between prolonged
elevated blood glucose levels (hyperglycemia) and infection episode has been known for a long
time, however, there are few previous proofs of concept studies that verify the potential of
diabetes profile for detecting infection episode. Moreover, there is little effort to capitalize this
information towards detecting infection incidences on an individual basis; thereby detecting
infectious disease outbreaks on a large scale.
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Method
Logistic
regression
analysis

t-test
statistics

Findings
Elevated blood glucose
levels during the
infection episodes

After infection, HBAlc
values were elevated
despite tight blood
glucose control



3 Materials and Methods

Synopsis: This chapter puts forward detailed descriptions of the materials and methods used
in different sub-phases of the dissertation. It describes the type of data source exploited,
approaches used to exploit and clean the dataset, methods used to analyze the effect of infection
episode on blood glucose dynamics, approaches used to design a personalized health model,
and finally approaches used to identify major factors that can enhance user motivation towards
successful engagement and sharing of health-related data. Finer elements of the methodology
are also presented in each associated chapters.

3.1 A general overview of research approaches

This dissertation is multidisciplinary in nature and draws diverse concepts, tools, and methods
from various disciplines including informatics, public health, and medical research. A
multidisciplinary approach has been proved to be effective in addressing complex topics [65;
162; 191; 195]. In this regard, the dissertation uses concepts, tools, and methods from the
aforementioned disciplines to develop new methods and approaches that account for a better
understanding of infection incidences and their effect on blood glucose levels amongst people
with type 1 diabetes and also for realizing a novel personalized health model-based digital
infectious disease detection system, which could provide benefits to both individual and the
general population.

3.1.1 Overview of approaches used in different phases of the study
In this dissertation, four different methods were used, which are in agreement with the standard
scientific practice of attaining new knowledge.

a) Systematic Review

b) Retrospective, Numerical and Empirical Data Analysis

¢) Controlled Experiments

d) Qualitative interview, Quantitative Survey, and Statistical Analysis

The first method, systematic review, is very essential to identify the existing body of knowledge
and associated knowledge gaps in the existing literature. The second method, numerical and
empirical data analysis, is extremely valuable to assess, analyze, and interpret information from
real-world data to draw a valid conclusion. The third method, controlled experiment, is useful
to design experiments for the development of machine learning models. The fourth method,
qualitative interview, and quantitative survey is used to study and assess factors related to user
concerns, expectations, and willingness towards sharing self-collected health-related data to the
proposed EDNON system and further explain it through collection and analysis of data.

3.2 Overview of the dissertation stage
This dissertation, as shown in Figure 5, is consisted of five sub-phases each dealing with a
specific sub-question of the original research problem. It should be noted that each sub-phase
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is a continuation of the previous sub-phase, and however, some of these sub-phases were
conducted in a concurrent manner.

[ i — e — e — e — e — —

Initial Phase -
A general framework of a personalized health model-based digital infectious
disease detection system

Paper 1- Framework Development

| The First Phase —
I Extent and degree of effect of infection incidences in people with type 1 diabetes_

Paper 1- Empirical Data Analysis

e e e e e e e e e e e e e =T = o
1
| The Second Phase — ;
Personalized decision support systems, BG alarm applications, and anomalies |
i detection algorithms 1
] Paper 2 - Review !
. . _._.J
] 1
1
| The Third Phase —
' Modelling a personalized infection detection algorithm |
I 1
| Paper 3 - Bivariate Personalized Paper 4 - Univariate Personalized |
| Health Model Health Model !
T |
. - - - - - - -/ "7 "1
I The Fourth Phase — !
Assessments of user concerns, expectations, and willingness towards sharing |
| self-collected health-related data. 1
| Paper 5 |
1
| Interview Survey 1
IS U P VNV S DI SV POR. |

Figure 5: Progressive stage of the dissertation.

The Initial Phase (Q1) - Development of a general framework of a personalized health
model-based digital infectious disease detection system

Attached with Paper 1
As an initial phase, the formulation of a general framework was carried out to identify and
pinpoint the main components of the proposed personalized health model-based digital

infectious disease detection system, i.e. EDMON system. The framework presents and
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describes the system architecture, requirements, necessary equipment, communication
platform, and other various system components along with the challenge that needs to be
addressed during system design and implementation. The proposed framework plays a crucial
role as a roadmap to shape the dissertation by pinpointing the crucial part of the system. All the
rest of the dissertation topics emanates from the proposed framework.

The First Phase (Q2) — Nature, extent, and degree of effect of infection incidences on key
parameters of blood glucose dynamics amongst people with type 1 diabetes

Attached with Paper 1

After formulating the general framework, the first phase of the dissertation tries to uncover the
degree of effect of infection episode on blood glucose dynamics amongst people with type 1
diabetes. Among other things, the study also identifies optimal key parameters of blood glucose
dynamics that can successfully be used as input features for the realization of the proposed
personalized health model. The study retrospectively analyzed empirical data, i.e. self-collected
health data, containing self-reported states of infection episodes. As a result, this piece of work
layout the foundation for the development of a personalized health model for detecting infection
onset.

The Second Phase (Q3) — Personalized decision support systems, BG alarm applications,
and anomalies detection algorithms

Attached with Paper 2

As a roadmap to the development of a personalized health model, the second phases of the
dissertation involves performing a systematic review to assess and analyses the state-of-the-art
methods and approaches that focused on realizing an algorithm that performs classification of
blood glucose pattern and detection of anomalies within the framework of personalized decision
support systems, and blood glucose alarm applications. Among other things, the review also
looked at two things; 1) do there exist any previously developed infection detection systems for
people with type 1 diabetes? and 2) to what extent do the existing prediction and anomalies
detection algorithm incorporates information on infection episode as one of their input
parameters? This wide piece of work provides an overview to carefully select the right
modeling approach towards realizing the proposed personalized health model.

The Third Phase (Q4) — Modeling a personalized infection detection algorithm

Attached with Paper 3 & 4

After understanding the state-of-the-art approaches and the associated knowledge gap, the third
phase of the dissertation realizes a personalized health model using an individual’s self-
recorded data (diabetes profile). The model is capable of monitoring an individual’s health
status in a continuous manner and also can detect infection episodes (health deviation)
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automatically. This piece of work is the core for realizing the proposed personalized health
model-based digital infectious disease detection system, i.e. EDMON system.

There are two associated papers with this phase; Paper 3 and Paper 4. Paper 3 presents a
personalized health model using bivariate input - blood glucose levels, and the ratio of insulin
-carbohydrate information as input features to the machine learning algorithm. Paper 4
provides an alternative implementation but using only one input (univariate) — the ratio of
insulin to carbohydrate information as an input feature to the algorithm.

The Fourth Phase (Q5) — Assessments of user concerns, expectations, and willingness
towards sharing self-collected health-related data.

Attached with Paper 5

As the last stage, this piece of work tries to pinpoint user concerns, expectations, and
willingness towards sharing self-collected health-related data to the proposed EDMON system.
A real-time system like EDMON that relies on self-collected data typically requires the timely
sharing of these data for further processing to produce precise results. In this regard, the study
assesses and identifies a list of factors related to user concerns, expectations, and willingness
that could impact successful mass sharing of self-collected health-related data to the proposed
EDMON system. It is obvious that people face challenges to join a new system for various
reasons including individual views and attitudes towards data sharing and perceived benefits,
and risks of data sharing, trust issues, fear of privacy, and data breaches, motivations, and a lot
of other factors. Hence, fulfilling users' expectations, and properly addressing their concerns
can have a great impact on the successful mass sharing of health-related data to the EDMON
system.

3.3 Empirical data analysis and modeling

The objective of the empirical data analysis was to study and uncover the effect of infection
triggered deviations on the individual’s blood glucose dynamics, and, in particular, to identify
and select optimal parameters indicative of infection onset to be used for the design and
development of the proposed personalized health model. The objective of the modeling part is
to devise a personalized computational health model using those previously identified optimal
parameters for tracking the individual’s health status and automatically detect when the
individual becomes sick.

3.3.1 Definition of key terms
The description of terms used throughout the empirical data analysis and modeling are given in
Table 3. These terms are crucial in understanding the whole design and development of the
personalized health model. These terms are described in detail in the theoretical background
chapter and presented again here in a more compact and understandable way.
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Table 3: Key terms used in empirical data analysis and modeling.

Key term Definition
Describes the complex relationship depicting the effect of patient controllable and

Blood glucose dynamics
uncontrollable parameters on blood glucose levels.

Describes the category of parameters that incorporates factors on which the patient

Patient controllable has direct control and can roughly understand their immediate effect on the BG
parameters dynamics. For example, diet and physical activity sessions are categorized under
this.

Describes the category of parameters that incorporates factors on which the patient

Patient uncontrollable doesn’t have direct control and face challenge to understand their immediate effect

parameters on the blood glucose levels. For instance, parameters such as emotional stress and
iliness are categorized under this.

Deviation incurred due to patient controllable factors such as meal-induced

Normal cause deviation .
hyperglycemia.

Special cause deviation | Deviation incurred due to patient uncontrollable factors including infection episode.

Operating point of blood = Describes the state of blood glucose level at any time t in response to patient
glucose dynamics controllable and uncontrollable parameters.

3.3.2 Datasets and data sources

The empirical data analysis and modeling were carried out using self-collected health-related
data from people with type 1 diabetes. These phases of the dissertation typically require an
accurate, rich, and large dataset to validate the concept and further develop the proposed
personalized health model. However, getting such kind of dataset poses significant challenges
especially when it comes to obtaining data from a large number of participants due to a variety
of reasons, i.e. expensive and time-consuming. The dataset used in this dissertation was
contributed by three individuals (2 males and 1 female) and incorporates highly precise
longitudinal records of 10 patient-years. These participants were proven individuals with high
knowledge of their conditions and different diabetes technologies. As shown in Tables 4 & 6,
the dataset consists of blood glucose reading, insulin injection, ingested carbohydrate, and
episodes of acute infection reported by the individuals. Throughout the data collection period,
the participants have indicated that they were free of illness or other health complications except
for the reported date of infections. As shown in Table 4, various diabetes technologies and self-
management devices were used throughout the data collection period, such as Dexcom
continuous glucose monitor (CGM), Diabetes Diary [16], the xDrip with an app, the Spike app
[212], insulin pens, and pumps. From the ten patient-years, the first five patient-years were
reported to be regular years and the rest five patient-years were reported to contain at least one
or more episodes of acute infections. The reported infection episodes were influenza (flu), mild
and light common cold without fever. The study protocol has been reviewed by the Norwegian
Regional Committees for Medical Health Research Ethics Northern Norway (REK) (Reference
number: 108435). Written consents have been obtained and the participants have donated the
datasets. All the data from the participants were anonymized.
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Table 4: Type of datasets and diabetes technologies used for self-management, source [259],
Table 1.
Self-Management

Patient BG Insulin administration Diet

Self-monitoring blood
glucose (SMBG) - Finger

Subject 1 | pricks recorded in Diabetes

Insulin Pen ( Multiple boluses
(NovoRapid) and one time basal Carbohydrate in grams recorded

) ) (Lantus) before bed) recorded in in Diabetes Diary mobile app
Diary mobile app and

Diabetes Diary mobile app
Dexcom CGM

) ) Insulin Pen ( Multiple boluses
SMBG - Finger pricks

Subject 2 recorded in Spike mobile
app and Dexcom G4 CGM

(Humalog) and one-time basal Carbohydrate in grams recorded
(Toujeo) before bed) recorded in in Spike mobile app

Spike mobile app

. . Medtronic MinMed G640 insulin .
_ Enlite (Medtronic) CGM ) ) Carbohydrate in grams recorded
Subject 3 pump (Basal rates profile (Fiasp) ) ) )
and Dexcom G4 CGM . . in pump information
and multiple boluses (Fiasp))

During data collection, for trustworthiness, specific and strict inclusion criteria were used to
select the dataset included in the study to make valid conclusions. The criteria used in data
selection include data reliability, accuracy, completeness, and longer period, i.e. at least more
than 3 months. It is obvious that a study that completely relies on user collected data requires a
dataset, which is reliable, complete, accurate, and collected over a longer period to produce
credible evidence. In this regard, | only include data collected from highly proven and
motivated individuals who have advanced knowledge and understanding of the disease
condition and its self-management practices including several diabetes-related technologies.
For instance, one of the most important issues is carbohydrate counting, which is prone to errors
in most cases. In this regard, | make sure that the included participants have long experiences
and advanced knowledge of carbohydrate counting, which is referred to as level 3 (advanced)
[84]. Table 5 below provides the detailed characteristics of the participants.
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Table 5: Detailed description of participant characteristics, source [259], Table 2.

Variables

Gender 2 males and 1 female

Age 34 + 13.2 years

Bodyweight Subject 1 (83 kg), Subject 2 (77kg), Subject 3 (70kg)
HbAlc Subject 1 (6.0%), Subject 2 (7.3%), Subject 3 (6.2%)

Carbohydrate counting Level 3 (advanced)

3.3.3 Datare-sampling, imputation and preprocessing
As shown in Table 6, the self-collected dataset utilized in this dissertation incorporates key
parameters of blood glucose dynamics and represented as follows; continuous glucose reading
(U9), blood glucose reading (U9), injected bolus insulin ([U]’c), injected basal insulin (U%), and

ingested carbohydrate (U®). Re-sampling of the raw data was carried out at a uniform rate by
assigning the individual measurement to its nearest time-bin [69]. For instance, assume a time-
bin T, which represent a time interval between 2:00pm-3:00pm of a particular day. Hence, any
measurements registered between 2:00pm and 3:00pm are assigned to T;. In some cases, the
total number of measurements in a specific time-bin could be more than one element and in
these cases, either the sum or average of the elements are computed to combine the elements
into a single element. In this regard, for a particular time-bin, elements of blood glucose
measurements, i.e. SMBG and CGM, are averaged into a single element. However, the sum of
elements is used to combine insulin and carbohydrate measurements into a single element in
their respective time-bin, as shown in Table 7. Within each time-bin, the average blood glucose
response to the total amount of carbohydrate consumption and insulin administration is
considered.

Generally, data smoothing was performed using a moving average filter after the data is re-
sampled as described above. The idea behind the smoothing was to capture only the essential
features-long term variations and eliminate features with fast-time scale and short term
variations. Selecting the optimal or appropriate window size is very challenging given the
complementary issues of better smoothing and the cost associated with a significant delay (shift
introduced) [18; 182]. Generally, selecting the proper window size is application dependent. In
this regard, for an application that sought after early detection of infection incidences, it is more
important to give more emphasis to reducing the inherent delay while selecting the optimal
window size.

As shown in Table 7, to compute the required insulin-to-carbohydrate ratio, it is necessary to
compute the values of the total insulin and carbohydrate for each respective time-bin, and then
for each time-bin, divide the computed insulin values with carbohydrate values. In this
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dissertation, two time-bins of different lengths were considered; hourly and daily, which defines
the scope of the data granularity investigated. For instance, an hourly time-bin signifies that a
change in blood glucose dynamics will be tracked at the end of each hour throughout the day.
It is obvious that increasing the granularity of the data, i.e. reducing the time-bin to an hourly
level, can provide detailed information and helps to look at the data with finer detail. However,
it gets tricky and challenging to compute the ratio for narrower time-bin, i.e. hourly resampling,
due to frequent zeros and missing values. In this regard, the challenge was mitigated by
smoothing the data before computing the ratio and using cubic spline interpolation to estimate
the missing blood glucose values.

Table 6: Description of self-collected user data, source [259], Table 3.
Subject’s Record Variables

Variable Name Description Units
[0R5 Continuous Glucose Reading mg/dl
U9 Blood Glucose Reading mg/dl
IUjr Injected Insulin (Bolus) units
u! Injected Insulin (Basal) units
U Ingested Carbohydrate grams
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Table 7: Re-sampled, imputed, and pre-processed data, source [259], Table 4.
Preprocessed Variables

Variable Name Description Units
Uil ae, g Mean Continuous Glucose Reading mg/dI
U“E]t—m, ] Mean Blood Glucose Reading mg/d|

t
Z Uy Sum Injected Insulin (Bolus) units
t—-At
t
Z Ul Sum Injected Insulin (Basal) units
t—At
t
2 uc Sum Ingested Carbohydrate grams
t—-At
e [U} / Ratio of Insulin (Bolus) to Carbohydrate units/grams
Yi-arUC
Ratio of Insulin (Basal) to Carbohydrate units/grams

bt
Zt—At [U(C

3.3.4 Empirical data analysis

The empirical data analysis aimed to answer two principal questions related to the effect of
infection episode on blood glucose dynamics; 1) To what degree does infection affect key blood
glucose parameters, and 2) Which parameters can be regarded as optimal parameters, and can
be used for developing the proposed personalized health model with a minimum false alarm
rate as possible. Pre-selected parameters from the individual’s diabetes profile were analyzed
including blood glucose levels, carbohydrate, insulin, and insulin to carbohydrate ratio. The
investigation was carried out based on a dataset that incorporates infection and non-infection
(regular) patient-years, and the non-infection patient-years were used as a baseline to compare
and validate the effect of all patient controllable and uncontrollable parameters against the self-
reported period of acute infection. To better capture the difference, the data were analyzed at
three levels of data granularity (timeframes), i.e. weekly, daily, and hourly. Within these
timeframes, the probability distribution and temporal evolution of the pre-selected parameters
were analyzed.

During the weekly analysis, a raw dataset was used, and the comparison looks into the pre-
infection, infection, and post-infection week’s values only. The comparison takes into account
the week’s daily mean blood glucose values and the sum of carbohydrate and insulin
information along with the standard deviation between the days. The comparison was
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interpreted based on both the inter and intra-deviations between these groups. For instance,
inter-deviation implies the deviation of the infection week blood glucose level as compared to
the pre-infection and post-infection week blood glucose values, while the intra-deviation
signifies to what extent do the infection week blood glucose level deviates considering the
infection week insulin injections and carbohydrate consumptions. The comparative results
between the group were depicted using a statistical boxplot.

During the daily and hourly analysis, a smoothed dataset was used, and the comparison looks
into the entire patient-years including the period of infection episode. Throughout the patient-
year, the mean blood glucose response was analyzed in each time-bin taking into account the
total insulin and carbohydrate values along with insulin-to-carbohydrate ratio within the
respective time-bin. As described earlier, validation of the infection-induced change was
performed by comparing with the non-infection patient-years. Besides, the change in data
distribution was analyzed using a kernel density estimator [88; 89; 101]. To this end, a Gaussian
adaptive bivariate and univariate kernel density estimator were used, and the procedure is given
in Tables 8 & 9. To compute the optimal bandwidth, bandwidth selection approaches proposed
by Botev et. al. [28] and Bowman et. al. [40; 187] were used for the univariate and bivariate
estimators respectively [263].

Table 8: Approaches used in estimating the distribution of insulin-to-carbohydrate ratio,
source [259], Textbox 1.
Approach: - One-dimensional adaptive kernel density estimation

1: Given: Time series datasets of univariate diabetes profile parameter X € ®, and Adaptive Kernel
density estimator M — one dimensional,

2: Remove the reported days of infection from the time series datasets ®, and form a new dataset
X €,

3: Compute the one-dimensional density based on the kernel density estimator M using ® and Q;

4: Compare the distribution from M;
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Table 9: Approaches used in estimating the distribution of blood glucose levels and insulin-
to-carbohydrate ratio, source [259], Textbox 2.
Approach: - Two-dimensional adaptive kernel density estimation

1: Given: Time series datasets of bivariate diabetes profile parameters X, Y € D, and Adaptive
Kernel density estimator N — two — dimensional,

2: Remove the reported days of infection from the time series datasets ®, and form a new dataset

X, Y e,
3: Compute the two-dimensional density based on the kernel density estimator N using D and Q;

4: Compare the distribution from N;

3.3.5 Modeling approaches

This section aims to realize a personalized health model, which relies on health-related data
recorded by the individual with type 1 diabetes and can monitor and screen the individual’s
health status in a continuous manner and detect automatically when the individual becomes
sick. The input features to the model were selected based on the empirical data analysis
described above. The models implemented in this dissertation were MATLAB toolboxes, and
include ddtools, prtools, and anomaly detection toolbox [66; 68; 218]. Two categories of
approaches were evaluated and compared; one-class classifier [57; 122; 123; 164; 217] and
unsupervised method [42; 87; 215]. The models were evaluated based on two attributes; data
granularity (daily and hourly), and data nature (raw and smoothed data). In all evaluation
scenarios, the frequency of detection is defined by setting the levels of data granularities; hourly
and daily analysis.

The dataset was labeled as a set of target and non-target data. All the patient’s data, which are
a regular period of the year was set as a target. The period containing the self-reported infection
episode was set as a non-target. The one-class classifier models were trained on the target and
tested using a dataset containing both the target and non-target data. N times k-fold stratified
cross-validation was used to evaluate the performance of the one-class classifier. To a certain
extent, wherever necessary class mitigation procedure was also considered [146]. Regarding
the unsupervised method, no data labeling is required, and hence the entire patient-year was
presented at once [87; 183].

For performance comparison, three performance metrics were used; area under the ROC curve

(AUC), specificity, and F1-Score [96; 97; 168; 224]. Average (standard deviation) of AUC,

specificity, and F1-Score were reported. These metrics are widely used in assessing model
performance for one-class and two-class tasks.

e The area under the ROC curve (AUC) is the integration of the ROC curve over a range

of different thresholds or summing over different misclassification costs. AUC is

insensitive to data imbalance and is useful to compare classifiers, however, it is
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independent of a single threshold and this poses a challenge to use AUC in a real-world
implementation [97].

Specificity can be defined as the ratio of correctly classified non-target sample objects
to the total number of non-target sample objects [192]. Hence, it represents the
percentage of correctly classified infection state (non-target sample) to the total number
of infection days. In my context, it is only used to illustrate the screening power of each
model, i.e. accurately classifying the infection days (illness days) as such from the entire
infection period.

F1-Score is the harmonic mean of precision and recall, with a value ranging from 0 to
1. A model with a high (1.0) F1-Score indicates high detection performance, i.e. high
recall and precision [224]. F1-Score is considered suitable for assessing model
performance towards one target class and also when there are unbalanced datasets [96;
97; 124; 168; 192]. This metric is found valuable especially for an application that
requires considering both the false positive rate and false-negative rate.

In addition to the performance assessment with the above-mentioned attributes, the models

were also compared based on the required sample size to generate acceptable performance, the
model computational time, performance associated with dimensions of input features, and
performance associated with different degree of deviations in the input features, which could
aid towards model selection considering real-world settings.

The sample size attributes describe the minimum set of training sample objects needed
for a model to produce an acceptable description. Considering a system that relies on
self-recorded data, this attribute sets the lower limit for an individual to join such a
system just by fulfilling the minimum data size requirement. This is important mainly
because it might be difficult for an individual to accumulate a large set of datasets
initially.

The computation time attribute describes how long does a model take to learn and
classify sample objects. Considering a system that handles lots of participants with a
large dataset, the model’s response time is vital in selecting the best model for the task.
The model performance associated with input dimensionality compares the performance
gained from using a small number of inputs as possible without affecting the model's
performances. This is very important in certain cases where there is a challenge of
acquiring all the necessary records.

Performance associated with different degrees of simulated deviations was also used to
assess the model’s detection performance in response to changes that range from small
to large deviations in the input feature. This attribute is essential for choosing the
optimal model that can detect deviations that range from small to large values
considering the fact that different pathogens could induce different deviations in the
blood glucose dynamics.

3.4 Assessment of concerns, expectations, and willingness
This section aims to identify a set of factors that need to be addressed during system design and
implementation, the EDMON system in general and the patient unit in particular. These factors
are very essential for the successful development of the patient unit in terms of long-term patient
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engagement, and the successful sharing of the self-collected data to the proposed EDMON
system. A system like EDMON that relies on self-collected data typically requires a timely
transfer of these data for further processing to produce precise results. As a requirement, the
patient is expected to register accurate and precise data and be able to transfer it promptly. In
this regard, fulfilling patient expectations and addressing their concerns could have a great
impact on the successful mass sharing of health-related data to the proposed EDMON system

An exploratory sequential method [75; 171; 239] was used, where we primarily designed a
qualitative interview guide incorporating five separate themes and performed data collection
and analysis, and then used the findings from the qualitative study to further inform and rectify
the design of the quantitative survey questioners and data collection.

e Goals, attitude, and expectations

e Wearables and sensors usage

e Data integration

e Data sharing

e Social media and entertainment factors
In this regard, initially, a qualitative exploration, i.e. face-to-face interview, was conducted
based on a detailed concept and application scenarios of the proposed EDMON system in
general, and the patient unit, i.e. mHealth app, in particular. Then, the findings from the
qualitative interviews were used in refining the quantitative survey questionnaires. As an effort
to pinpoint factors that standout only for people with type 1 diabetes, a comparative analysis
with other groups of people was carried out including other chronic patients and healthy
individuals. Generally, this phase of the dissertation aims at providing design strategies to
develop a system that will be acceptable by the participants.

As described above, among other things, the quantitative survey aimed to focus on the data
sharing theme explored in the qualitative study. In this regard, the survey explored user
concerns, expectations, and willingness towards sharing self-collected health-related data to the
proposed EDMON system. The survey questionnaire was distributed to various internet users
and diabetes groups, i.e. Swiss English-speaking cohort of healthy people and both English and
Norwegian speaking online diabetes groups. The data were collected between November 2018
and August 2019. Further detailed information about the questionnaire can be found at
DataverseNO [105]. Descriptive statistics of various parameters that relate to data sharing while
using different wearables and mHealth apps are reported. The study protocol has been reviewed
by the Norwegian Regional Committees for Medical Health Research Ethics Northern Norway
(REK) (reference number = 2017/562/REK nord) and Norwegian centre for research data
(NSD) (reference number = 54558 / 3/ LB). All the participants were asked to consents during
the survey and the participants response were anonymized.

3.5 Methodology critique

3.5.1 Empirical data analysis and modeling
Based on the existing body of knowledge, deviation from a normal state into an abnormal state
can be detected via developing either a predictive or novelty detection model. In this regard,
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this dissertation looks into the possibility of implementing a model for the proposed
personalized health model. Regarding the prediction model-based approaches, the literature
suggests a shortcoming of the existing state-of-the-art blood glucose prediction models, which
often fail to accurately predict above a 30-minute prediction horizon [173; 256]. For this reason,
this dissertation focuses on developing a personalized health model relying on novelty detection
strategies. The number of subjects and events of infection included in the empirical data
analysis and modeling can be another limitation. However, it should be noted that | was able to
communicate with a lot of individuals, universities, and an online community such as do it
yourself (DIY) community, for a possible donation of a dataset but | didn’t receive much
positive response. Further, the special requirements that oblige to include a dataset that is
reliable, accurate, rich, and long enough have contributed to the failure to collect more dataset,
I.e. incorporate at least the three key diabetes parameters (blood glucose level, insulin, and diet),
one infection episode, and is longer than three months. For instance, given the strict inclusion
criteria, 1 was forced to reject the dataset received from Ohio University for its inaccuracy
containing two separate meal registrations entry. | was able to contact the university for
clarification on the spotted errors and per the description provided by the university, the error
was inherent and the mistake had occurred due to the problem associated with the data
collection tools, which allows the participants to record meals registrations in two different
places. On top of that, the error was not only having two records of meal registrations at the
same time of the day, but these two records also have different values of carbohydrate
registrations. It is very challenging to get an accurate, rich, and longer dataset from a large
number of participants. It is worth mentioning that different types of infection (pathogens)
could have a different effect on blood glucose dynamics but | studied using mainly influenza
(Flu) and common cold data and this might be another limitation.

The dataset used in empirical data analysis and modeling didn’t include physical activity data
and this might also be another limitation. Physical activity could have a significant effect on
blood glucose dynamics and its inclusion during modeling could bring a positive effect on the
accuracy of the infection detection model.

3.5.2 Assessment of concerns, expectations, and willingness

This sub-study could be benefited more if the number of participants is large enough in all three
groups to further strengthen the conclusion, and this could be a limitation. However, it should
be noted that for instance the survey questionnaire was distributed in various diabetes forums
and online groups and was up for almost ten months. The other possible limitation could be
linked with the unbalanced number of participants among the group used during the
comparison. However, it should be noted that the comparison was only used to spot outstanding
factors for people with type 1 diabetes.

3.6 Hardware and software tools
The dissertation makes uses of different hardware and software tools at various phases of the
sub-studies. The following hardware tools were used during data collection, empirical data
analysis, and modeling sub-phases. During the data collection phase, participants have used
various diabetes management technologies including smartphones, CGM, finger prickers, and
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test strips, glucose meters, insulin injection (pens, and pumps). The empirical data analysis and
modeling phase of the dissertation were carried out on a Lenovo laptop.

e Lenovo laptop (Intel(R) Core(TM) i7-6600U@2.81GHz, RAM 16 GB,
Windows 10 64bits)

e Smartphones

e Finger prickers (lancet) and test strips

e Insulin pens and pumps

e CGM and glucose meters

The following software tools were used during data collection, empirical data analysis,
modeling, and quantitative survey sub-phases. During the data collection phase, participants
have used various diabetes-related technologies including mobile apps (Diabetes Diary, and
Spike apps), and the xDrip with an app. Data extraction tool such as sqlitestudio was used to
extract data. The empirical data analysis and modeling phase of the dissertation were carried
out using MATLAB. MATLAB toolbox, Prtools, Ddtools, and Anomaly detection toolbox
were used during the development of the personalized health model. SPSS statistical software
used for the quantitative survey study.

e MATLAB® 2018 a & b (Mathworks, Inc, Natwick, MA).

e SPSS Statistical Software.

e Prtools isa MATLAB toolbox for pattern recognition [68].

e Ddtools isa MATLAB toolbox for data description, outlier, and novelty detection [218].

e Anomaly detection toolbox is a MATLAB toolbox that provides different unsupervised
anomaly detection models [66].

e Mobile apps for data collection (Diabetes Diary, and Spike apps) [16; 212].

e Data extraction tools including sqlitestudio-3.1.1.

e Dexcom studio 12.0.4.6.

e EdrawMax is used for drawing figures and flow charts.

3.7 Chapter summary

This chapter presented and discussed an overview of the materials used and the methodology
followed in various sub-phases of the dissertation. To answer each research question as part of
the main research problem, various sub-phases with distinct approaches were carried out.
Moreover, presented a detailed description of key concepts and methodology behind
developing the personalized health model along with the approach used to select optimal
parameters of blood glucose dynamics indicative of infection onset amongst people with type
1 diabetes. It further presented the approaches used in assessing user concerns, expectations,
and willingness for successful sharing of self-collected health-related data to the proposed
EDMON system. Finally, it presented the critics of the methodology followed at each sub-
phases of the dissertation, and the hardware and software tools used.
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4 EDMON - A Personalized Health Model-based Digital
Infectious Disease Detection System: Framework

and Challenges

Synopsis: This chapter puts forward the proposed framework for a personalized health
model-based digital infectious disease detection system that harness health-related data from
people with type 1 diabetes collected on a daily basis to detect infection onset, and thereby
utilizing this information to detecting infectious disease outbreak based on a Spatio-temporal
cluster detection technique. The framework presents the main components of the proposed
EDMON system along with challenges that need to be addressed during system design and
implementation. The first half of the chapter presents the components and the latter half
discusses the challenges. This chapter provides answers to the first research question (Q1).

4.1 Introduction

Digital infectious disease detection system exploits digital health-related data and technology
for the purpose of detecting infectious disease outbreaks [44; 170; 181]. Most of the existing
digital infectious disease detection system relies on population-level data and doesn’t possess
a mechanism to trace back to the individuals who are sick [44; 181; 237]. In this regard, the
proposed personalized health model-based digital infectious disease detection system is a
pioneer in the field utilizing self-collected health-related data to monitor and screen the
individual’s health status in a continuous manner and detect infection onset and use this
information to detect infectious disease outbreak among the public in a specified region of
interest. Hence, this framework introduces a personalized health model concept to perform the
task of individual health monitoring and detection. There are very few previous studies that
attempt to describe system architecture for detecting infection incidences in people with
diabetes [17; 30; 135]. However, these studies provide a system overview considering very
limited data types, i.e. blood glucose levels and white blood cell counts.

The most interesting characteristic of the proposed EDMON system, i.e. a personalized health
model-based digital infectious disease detection system, is that it can alert individuals about
any potential health changes besides the outbreak detection. In other words, a personalized
health model designed for outbreak detection can also serve the individuals by providing
information that is relevant for decision support during crises. Considering the nature and the
way the surveillance data is generated, the digital infectious disease detection system can be
grouped as either indicator or event-based system [49; 170; 260]. In this regard, the proposed
EDMON system can be regarded as an event-based digital infectious disease detection system.
The events in the proposed framework are micro-event and macro-event, where micro-events
depict the detection of infection at individual levels and macro-events represent outbreaks at
the population level. The framework presented in this chapter is part of the findings presented
in Paper 1 [259].
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4.2 The proposed framework

The availability of self-recorded health-related data from individuals with type 1 diabetes
provides a fertile ground for the proposed EDMON system. In this regard, the proposed
framework relies on user collected data and incorporates a patient unit, data repository unit,
infection detection unit, clustering unit, and information dissemination unit, as shown in Figure
6. The patient unit is a user mobile devices terminal with a disease surveillance functionality
and is used for collecting and transmitting data to a central server. The data repository unit
stores the incoming user data. The infection detection unit tracks, monitor, and screen the
individual’s health status and detect infection onset by analyzing the data in real-time or near
real-time based on a personalized health model (a case detector). The presence of outbreaks at
any time under the region of interest is detected by the clustering unit, which uses the result
from the case detectors as input and identifies any possible cluster of infected individuals based
on a Spatio-temporal analysis. The information dissemination unit uses the result from the case
detector and clustering unit to provide real-time or near real-time health status information for
the individual participants as well as information regarding the current status of the area under
surveillance for the concerned bodies, i.e. ordinary citizens, patients, and public health officials.
The rest of the dissertation chapters focus on topics related to the patient unit and infections
detection unit and investigates how to provide a solution for these topics.

Data Collection Data Processing, Infection and Outbreak Detection Visualization
Participants
. . Feature
'.‘ Extraction
Data Individual Infection  Spatio-temporal
Detection Algorithm Cluster Analysis
. Preprocessing
Sample Devices Mobile Computing
—)
.
=
@ —
Create user profile and Stores Data
Patient Unit Computing Unit (Server) End User Unit

Figure 6: The proposed framework of EDMON - a personalized health model-based digital
infectious disease detection system, adapted from [58; 255; 259], Figure 14.

4.2.1 The Patient unit
The patient unit, as shown in Figure 6, is consisting of sensors and data, and a mobile health
application (mHealth app), where the sensors reading and data are integrated and stored in the
mHealth app before being transmitted to the central server.
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4211 Sensors and data

As part of self-management, people with type 1 diabetes collect different parameters that affect
blood glucose dynamics and this group of the patient often record the key parameters; blood
glucose levels, insulin administration (bolus and basal), carbohydrate ingestion given in grams,
and could also record other optional parameters such as physical activity session or exercise
load, heart rate, stress, sleep quality, and others [3; 148].

4.2.1.1.1 Compulsory data and equipment

The proposed EDMON system requires compulsory data and their associated pieces of
equipment to perform the day to day operation; these compulsory data include blood glucose
level, insulin, carbohydrate, and user’s location information and pieces of equipment needed to
continuously record these pieces of information.

Blood glucose levels can be measured using either finger pricks based self-monitoring blood
glucose (SMBG) or continuous glucose monitoring (CGM). Finger pricks based glucose
monitoring requires a lancet (finger pricker), test strips, and glucose meter [127], and various
brands on the market can automatically transfer the result into a smartphone app. CGM
measures the individual’s blood glucose levels in real-time, e.g. every 5 minutes, and
continuously throughout the day and 24/7. There are various brands of CGM devices available
on the market including Dexcom?, FreeStyle®, Guardian®, Eversense®, and others [129]. CGM
devices incorporate a sensor, and a transmitter, which estimates the blood glucose values and
transmits the result into a receiver, which is usually a smartphone app, pump, or other receivers.

Insulin administration is crucial in diabetes self-management to regulate blood glucose levels.
There are different types of insulin based on how quickly they act to lowering blood glucose
levels; administered insulin can be fast-acting (bolus), intermediate-acting or, slow-acting
(basal) [240; 241]. Insulin administration is carried out based on either multiple daily injections
(MDI), or continuous subcutaneous insulin infusion (CSII) [63; 125; 241]. MDI is mostly
carried out using insulin pens to inject insulin and there are different brands of insulin pens on
the market including Owen Mumford Autopen®, Humalog Kwikpen’, Novo Nordisk NovoPen
48, and, others. CSII is usually carried out using insulin pumps and there are different brands of
insulin pumps on the market including Medtronic®, Omnipod, Accu-Chek!®, Tandem Diabetes
Care?, and others [139].

Carbohydrate counting is necessary to estimate the amount of insulin intake during mealtime
and further action to correct blood glucose levels [84]. Carbohydrate amount measured in grams
is estimated for a given meal, which usually depends on the individual patient's expertise related

2https://www.dexcom.com/home

3https://www.diabetescare.abbott/products.html
*https://www.medtronicdiabetes.com/products/guardian-connect-continuous-glucose-monitoring-system
Shttps://www.eversensediabetes.com/

Shttps://www.owenmumford.com/en/patients-product/autopen/
"https://https://www.humalog.com/taking-humalog/using-u100-u200-kwikpen
Shttps://www.novonordisk.com/

Shttps://www.medtronicdiabetes.com/home

Onttps://www.accu-chek.co.uk/insulin-pumps

Hhttps://www.tandemdiabetes.com/home
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to counting carbohydrate contents of each food type and drink. Ideally, this patient group is
expected to rely on an advanced (Level 3) [84] carbohydrate counting, which uses the
individualized insulin-to-carbohydrate ratios [63; 167; 210; 228] to estimate the insulin amount
at a time. The level of knowledge towards carbohydrate counting varies from individual to
individual, which determines the quality and accuracy of the registered values. Most
importantly, since carbohydrate is registered manually, it is most likely prone to errors.

Apart from these key parameters of the blood glucose dynamic, the proposed EDMON system
requires the individual’s user location for the purpose of locating a cluster of sick individuals.
The user location information can be recorded as either a static or dynamic address and can be
in the form of longitude and latitude, postal codes, or any other reference coordinates. The
ethical challenges raised by using the individual’s health-related data and location information
are discussed in the next section.

4.2.1.1.2 Optional data and equipment

Physical activity sessions, heart rate, stress, sleep quality, and other certain physiological
parameters are also important parameters where people with type 1 diabetes could record for
the purpose of self-managing their blood glucose levels. These optional datasets can be used to
further improve the system detection accuracy if properly recorded on a timely basis.
Registration of physical activity sessions or exercise load information is very important along
with carbohydrate registration to decide the right amount of insulin intake. Physical activity
sessions or exercise load could enhance insulin sensitivity thereby reducing the amount of
insulin requirements [27]. There are various wearable sensors that estimate and measure
physical activity sessions on the market including Polar*?, Garmin'3, Apple Watch'#, Fitbit®®,
Samsung Watch'®, and others [73; 103; 104; 213]. Most of the existing wearables also have the
capability to record other parameters such as heart rate. In this regard, for example, the
following brands incorporate heart rate sensors; Polar, Samsung Watch, Garmin, Scosche
Rhythm, Wahoo Tickr Fit, and others. Moreover, there are also wearable that monitor sleep
quality including Polar, Fitbit Versa, Oura Ring'’, Withings Move!®, and others. There are also
wearables that estimate stress levels based on the individual heart rate variability including
Garmin, Samsung smartwatches, Apple Watch, Fitbit, Google Wear OS smartwatches?®, and
others.

4.21.2 Mobile health (mHealth) app

The purpose of the mobile health (mHealth) app is to integrate sensor readings and data from
various diabetes-related technologies and wearables devices. Automatic data collection features
are favored by people with diabetes and whenever possible, the app should support automatic
data registrations capability and provide only manual registrations if it is a must [252]. Different

https://www.polar.com/en
Bnttps://www.garmin.com/en-US/
“nttps://www.apple.com/watch/
Bhttps://www.fitbit.com/global/no/home
Bhttps://www.samsung.com/us/watches/
https://ouraring.com/
Bnttps://www.withings.com/us/en/withings-move
https://wearos.google.com/#hands-free-help
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sensors reading from blood glucose reading devices, insulin pens and pumps, physical activity
and exercise sessions, heart rate, sleep quality, stress and other physiological parameters such
as blood pressure, body temperature, and others along with diet and geographical location
information should be integrated to the app [58; 255]. There exist a variety of self-management
mHealth apps in Google Play and AppStore including the most well-known apps such as
Diabetes Diary?°, Spike App?, and mySugr??. Hence, the proposed app exhibit similar
functionality with these well-known apps and further add surveillance functionality required by
the proposed EDMON system. In this regard, the main requirements and functionality of the
proposed mHealth app include:

e Automatically record blood glucose levels, both SMBG and CGM.

e Automatically record insulin units, both bolus and basal insulin in a separate record.

e Automatically record physical activities and exercise sessions.

e Automatically record heart rate, emotional stress, and sleep quality in a separate record.

e Enable manual recording of certain parameters, especially for diet information, other
medications, and illness status.

e Automatically record user geographical location. For example, a user location can be
estimated based on the Global Positioning System (GPS) from the phone upon data
registration (Coucheron et al., 2019). User location can be in terms of longitude and
latitude [85], postal code address [86], or any other local reference coordinates.

e A timestamp for each data registration.

e Transmit the data to a central server upon each registration. The data packet could include
all the above compulsory parameters and the optional parameters if available along with
the geographical location and time of registration tagged on it.

4.21.3 Communication architecture and protocols

The proposed personalized health model-based digital infectious disease detection system, as
shown in Figure 6, is a three-tier architecture that contains three different tiers performing
different tasks. In this configuration, the personalized health model can be placed either in the
patient unit or remote computing unit. Placing the personalized algorithm in the remote
computing server requires all the required user data to be transmitted to the server and this
configuration could be prone to degraded accuracy as a result of remote site computations
emanating from data transmission requirements [58]. Moreover, it brings challenges in terms
of user data security, privacy, and confidentiality issues as a result of migrating the user data
from the smartphone to the central server. However, instead of moving the user data to the
central server, it is possible to place the personalized health algorithm within the user
smartphone app, where only the health status of the individual (as normal, suspicious, and
infected) is transmitted to a centralized server for further clustering computation. However,
unlike the remote computing unit, placing the personalized health algorithm in the user’s
smartphone app (patient unit) needs a feasibility study given the fact that the algorithm needs

https://play.google.com/store/apps/details?id=no.telemed.diabetesdiary&hl=en&gl=US
2https://spike-app.com/
Zhttps://www.mysugr.com/en/
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to run frequently to identify and detect deviations from normality; thereby could require high
power consumption and memory spaces that could affect the user’s smartphone.

Most of the existing diabetes equipment and technologies have some form of access to the data.
Integrating the data to the mHealth app, transmitting the data to the computing server, and
storing the data requires to ensure complete data security, protection of user privacy, and
confidentiality throughout the system’s data flow [107]. In this regard, it is necessary to use
state-of-the-art communication protocols that ensure security, robustness, and privacy and
strictly follow compliance with international regulations.

4.21.4 Challenges

The proposed personalized health model-based digital infectious disease detection system
highly depends on the accuracy of the data, and entirely on its collection procedure. As
described above, one of the main challenges regarding data collection and transmission is
related to data accuracy, reliability, data security, privacy and confidentiality, and user
acceptance and willingness to share data.

Data quality is the most critical factor that needs to be addressed since accurate analysis in the
proposed EDMON system assumes high precision sets of data. An inaccurate dataset could
hamper system accuracy and result in unpredictable performance degradation. Data accuracy
challenges could emanate during manual data registration into the mHealth app, data integration
into the mHealth app, and data transmissions to a remote server. Manual data registration to the
mHealth app is prone to errors. For instance, a user can incorrectly record carbohydrate amounts
upon registration, which could greatly hamper the accuracy of the personalized health model.
Therefore, it is necessary to look for a mechanism that can cross-check values by requesting
the user to validate the input especially when an out-of-range input value is recorded. In the
same fashion, the necessity of integrating sensors reading into the mHealth app requires dealing
with heterogeneous data formats due to multiple vendor involvements. The main challenge in
this regard is standardization and interoperability issues that need to be addressed. Apart from
these challenges, transmitting the data to a remote server could result in missing, corrupted, and
delayed data that could affect the system's accuracy. In this regard, it is necessary to look for a
method that ensures the quality of information through an advanced pre-processing and data
quality control algorithm [58; 255; 259].

The sensitivity of user-health data is another challenge that needs to be carefully addressed
through the entire system’s data flow. In this regard, one of the possible approaches could be
to de-identify and anonymize the data following international regulating body guidelines such
as General Data Protection Regulation (GDPR) and Health Insurance Portability and
Accountability Act (HIPPA) [83; 107]. Apart from this, it is also necessary to follow the state-
of-the-art privacy-preserving and secure data communication protocols to ensure that data
security, privacy, and confidentiality are respected throughout the data collection and
transmission phase. It is necessary to understand that the successful design and acceptability of
the proposed EDMON system relies on fulfilling those requirements. Moreover, as described
above, it is necessary to tag each user data with the user's geographical location to successfully
locate a cluster of infected individuals on a Spatio-temporal basis. In this regard, in addition to
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the de-identification procedure, it is necessary to look for a robust approach that can strictly
hide user identity upon transmission in case if the data is compromised during data
transmission.

Finally, a new mHealth app usually faces acceptance challenges by the intended users for a
variety of reasons [252]. These factors range from user perception of the app, lack of motivation
and trust issues related to using the apps and sharing of the data to the proposed EDMON
system, and ease of use associated with the app complexity. Therefore, it is necessary to
persuade and motivate the user to continuously engage with the app by buying user trust and
answering all their concerns, and addressing ethical and motivational challenges.

4.2.2 Computing unit
As shown in Figure 6, the proposed computing unit performs three important tasks; storing the
data, tracking the individual health status, and detecting a cluster of infected individuals based
on a Spatio-temporal basis.

4221 Data repository (database) unit

The data repository stores the individual’s data transmitted from the mHealth app. The database
should store each data in a structured format containing user key ID, geographical location,
time of data registration, and a record containing all the compulsory and optional datasets. The
individual’s geographical location could be either static or dynamic address depending on the
necessity [58; 259]. The static address can be a home or work address and recorded during user
creation and upon individual registration to the system. On the other hand, the dynamic address
Is updated in real-time during each new data registrations. This type of address is very useful
to trace back contacts upon infectious disease outbreaks.

4.2.2.2 The Infection detection unit —individual level

The proposed personalized health model monitors the individual’s health status and detect when
the indivdual become sick, which is designated as mirco-events. This requires to tracking the
individual’s health status through developing a personalized health model that learn from the
historical diabetes profile and judge the current information. The modeling can be realized
through either prediction model [173; 256] or novelty detection methods [51; 70; 153; 178], as
shown in Figure 7. The prediction model can be implemented as either a residual [99; 100;
254; 266] or conformal approach [112; 136; 137; 204; 211; 233-235]. Similarly, novelty
detection can be realized through a supervised, semi-supervised, or unsupervised approaches
[51; 70; 153; 253]. In literature, different categories of novelty detection methods have been
reported including classification or domain-based [110; 116; 124; 150; 198; 217; 221; 242;
253], statistical techniques based [178], clustering-based [6; 217], distance-based [51; 87],
ensemble-based approaches [6; 51; 87; 136; 153; 169; 178; 206; 242; 265; 267], prediction-
based, and density-based [42; 169; 215; 267].
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Figure 7: Alternative methods for realizing the proposed personalized health model, source
[259], Figure 15.

The alarm management (decision making) unit processes the output from the personalized
health model and assign a status to the individual’s health. Hence, the individual’s health status
at any time could be among these three states; normal (0), suspicious (-1), and infected (1)
[259]. The normal state depicts when the current readings conform to past knowledge. A
suspicious state depicts when the current readings begin deviating but not enough to be
designated either as a normal or infected state. An infected state depicts when the current
reading deviates completely from past knowledge. The unit also needs to compute and inform
the individual about the degree of deviation when detected as being sick. The output from this
unit will notify the individuals and also be used as input to the cluster detection analysis.

4.2.2.3 The Clustering unit — population level

The clustering unit accepts outputs from each individual’s alarm management unit and counts
the number of individuals who are reported to be in an infected state. This count data can be
used as either a standalone or in conjunction with other data sources, other similar disease
surveillance system, to aid in outbreak detection. The following discussion assumes the
standalone context and outlines challenges the way forward. In this regard, the proposed cluster
detection analysis accepts the individual’s health status, location, and the time of micro-events
detection [255] and performs a computation to detect any unexpected rise in either count or rate
of infected individuals within a pre-specified region of interest, also known as macro-events
[259]. As described above, the individual user’s location can be recorded as a static address
such as home and postal code address [92] or a dynamic address like longitude and latitude
coordinates [67] that can be estimated from the mobile phone’s GPS information upon data
registration. The frequency of computation determines the time-step required to repeat the
scanning procedures and can be fixed to anything between 1 hour to 24 hrs depending on the
system design requirement [259].

Detection of outbreaks can be realized as either spatial, temporal, or Spatio-temporal methods
depending on the type of information utilized [261; 262]. According to the literature, the state-
of-the-art outbreak detection methods require a certain size of surveillance data from a large
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population to draw a statistically valid conclusion [236; 237]. However, certain cases like
biological terrorism affect a particular region and relatively small population and outbreak
detection methods devised to detect such an incidence requires answering practical challenges
related to data sparsity [237]. Data sparsity often arises in a system that tracks a small number
of the population. Tracking surveillance data from a small population within a certain period
often results in small event counts, which pose a challenge to draw a statistically valid
conclusion in practical settings. Furthermore, implementing global detection, which considers
the entire region as one, could end up masking local outbreaks affecting a small proportion of
the region. By the same token, partitioning the entire region of interest into small equivalent
areas could also end up in multiple testing problems [170; 199; 236]. In the same manner, an
outbreak detection mechanism that exploits data from personalized surveillance of people with
type 1 diabetes faces similar challenges, i.e. relatively small and scattered population. In this
case, it is necessary to devise outbreak detection mechanisms, which are less sensitive to
geography and sparse data from a small population. The output from this unit is used to notify
the responsible individuals through the information dissemination unit.

4.2.3 The Information dissemination (visualization) unit

As shown in Figure 6, the information dissemination unit processes the output from the cluster
detection analysis and displays real-time information in an interactive way with the appropriate
format to be easily understandable by the end-users. Various data presentation formats such as
tables, graphs, and maps can be used for depicting the outbreak information [259; 262]. An
example depicting a detected hypothetical outbreak on an interactive map is given in Figure 8.
The real-time information can be viewed through a dedicated website or app [255]. In this
regard, the end-users are consumers of the real-time information for quicker public health
actions and individual participant, who wants to know his/her health status along with a degree
of deviation from the normal process.
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Figure 8: Example depicting mapping of a detected cluster in a hypothetical outbreak.

4.3 Motivational and ethical challenges

The proposed personalized health model-based digital infectious disease detection system
completely relies on user-generated data mainly collected for other purposes and typically
requires accurate, reliable, and precise data in a continuous fashion [259]. Getting such kind of
data requires motivated users who engage with the patient unit for a longer period of time, and
also willing to share the data with the proposed EDMON system. However, it is easier said than
done and this requires considering various factors that could enhance user motivation during
system design and implementation and also address user's concerns and expectations towards
the system [252]. As described above, generally, a new system usually faces acceptance
challenges by the intended users for a variety of reasons. These factors range from user
perception of the system, lack of motivation especially related to using the mHealth apps and
sharing of the data to the system, lack of trust related to data security, privacy, and
confidentiality issues, and ease of use associated with system complexity [2; 7; 85; 120; 252].
Therefore, it is necessary to persuade and motivate the user to continuously engage with the
system by buying user trust by answering all concerns, ethical, motivational, and other security-
related challenges.

4.4 Knowledge summary
In the context of the original research question, the added knowledge is presented within the
scope of the proposed framework of a personalized health model-based digital infectious
disease detection system.
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What do we know about the topic already?

e Various systems that collect several diabetes-related health data to a remote server for
remote diabetes management, monitoring and follow-up systems, data analysis for
personalized feedback, and decision making have increasingly been studied and
presented in the literature [5; 149; 163]. However, none of these consider detecting
infection onset at an individual level.

e Various digital infection detection systems have been studied and presented in literature
utilizing various digital data ranging from a query search engine, work and school
absenteeism, over the counter pharmacy drug sales, and other sources [44; 170; 232].
However, none of these utilizes a personalized health model to detect infectious disease
outbreaks at the population level.

e There are very few previous studies that attempt to describe system architecture for
detecting infection incidences in people with diabetes [17; 30; 135]. However, these
studies provide the system overview considering very limited data types, i.e. blood
glucose levels and white blood cell counts.

What does this chapter add to our knowledge?

e Presented a framework that combines self-management practices in people with type 1
diabetes and a disease surveillance system concept to fills the gaps in the existing digital
infectious disease detection system via utilizing a personalized health model to detect
infection onset at the individual level and thereby utilizing this information to detecting
outbreaks at the population level.

e The presented framework incorporates different units performing a series of tasks;
patient unit, data repository (database) unit, infection detection unit, clustering unit,
information visualization unit, and a wireless communication platform.

¢ Highlights the main challenges in relation to system design and implementation along
with ethical, motivational, and data sharing challenges within the scope of the proposed
EDMON system.

4.5 Chapter summary
This chapter presents and discussed the framework of the proposed personalized health model-
based digital infectious disease detection system. The realized framework identifies five
important constituents of the proposed EDMON system, relationships, and task requirements
of the components; a patient unit, data repository unit, infection detection unit, clustering unit,
and information visualization unit. The patient unit is a standalone smartphone app (mHealth
app) that integrates and stores different sensor readings, which could be through either manual
or automatic recordings. The individual’s data-structure should contain two types of data;
compulsory and optional data types, where the compulsory data includes blood glucose levels,
insulin and carbohydrate registration, geographical location, and time of registration. Currently,
most diabetes technologies enable Bluetooth connections to foster the integration of sensor
readings. The data stored in the mobile app needs to be transmitted to a database server, where
it is stored for further processing. However, given the sensitivity of health data, high emphasis
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needs to be given to data security, privacy, and confidentiality. In this regard, the transmission
and storage of data in a server need to strictly follow major international guidelines, e.g. HIPPA
compliance. The infection detection unit access the individual’s records from the database and
execute the personalized health model, which is trained on the individual’s historical data, to
look for any abnormal deviations promptly. In this regard, the personalized health model can
be formulated as blood glucose prediction or novelty detection. At any given time, the output
from the personalized health model is the individual’s health status coded as normal (0),
suspicious (-1), and infected (1). The clustering unit accepts the timely health status from each
individual participant along with their respective geographical location and time of data
registration to perform a Spatio-temporal analysis to detect a group of infected individuals
under a region of surveillance. The status of the region or city under surveillance is visualized
based on either a standalone smartphone app (mHealth app) or a web-based or both. Besides,
this chapter also presents various challenges from both users and technological perspectives for
the successful acceptance of the proposed EDMON system; 1) data accuracy related to manual
data registration into the mHealth app, data integration into the mHealth app, and data
transmissions to a remote server, 2) motivation related to user engagement to the patient unit
for a longer period 3), willingness related to user perception concerning data sharing and
willingness to share 4) data sparsity related to the statistical significance of outbreak detection
alarms derived from a small and sparse population under surveillance.
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5 Infection Characterization and Parameter Selection

Synopsis: This chapter puts forward the empirical data analysis conducted to study the effect
of infection on key parameters of blood glucose dynamics amongst people with type 1 diabetes.
The idea was to investigate, characterize and select optimal parameters for developing the
proposed personalized health model. The analysis focuses on the trend and the probability
distribution of the key parameters. Different data granularity was considered during the
analysis; weekly, daily and hourly timeframes. The first half of the chapter provides an
overview of the dataset and proceeds to the trend analysis and probability distribution
comparison. Finally, it provides a concluding remark. This chapter provides answers to the
second research question (Q2).

5.1 Introduction

As described in the background chapter, several factors disturb blood glucose dynamics [22].
Most of these factors induce predictable disturbances except factors such as physical and
emotional stress, diseases, acute illness, severe wounds, infections, and others [253; 256]. In
this regard, it is quite necessary to conduct empirical data analysis to understand the
confounding nature of the other unpredictable factors along with the predictable ones on the
path towards detecting infection onset and also to assess and numerically estimate the impact
of infection on the key parameters of blood glucose dynamics. To the best of my knowledge,
this is the first study that empirically and numerically quantifies the effect of infection episodes
on key parameters of the blood glucose dynamics among people with type 1 diabetes exploiting
self-recorded data. To this end, this chapter focus on characterizing the disturbance infection
onset creates on the blood glucose dynamics amongst people with type 1 diabetes and thereby
choosing optimal parameters for developing the proposed personalized health model. The
association between infection and hyperglycemia has been reported in the literature [41; 47;
152; 160]. However, the idea of using self-recorded data for the purpose of detecting outbreaks
is a novel and recent phenomenon. In this regard, there are few literature that investigate the
potential of using these data sources for disease surveillance purposes [17; 29-36; 38; 90; 98;
134; 135; 209; 255]. For instance, Botsis et.al. [29; 31; 34; 38] reported elevated blood glucose
levels and hemoglobin Alc (HbALc) for the duration of infection as compared to the normal
period. Generally, these studies reported the association and suggested the possibility of
detecting infection in this patient group by exploiting self-recorded data. Despite these findings,
none of this literature investigated the nature and degree of abnormalities triggered by infection
onset through systematic analysis of each parameter of blood glucose dynamics. The results
presented in this chapter are part of the findings presented in Paper 1 [259].

5.2 Raw dataset

As described in the method chapter, the raw dataset used in the empirical data analysis
comprised of self-recorded data containing blood glucose levels, amount of insulin injection,
amount of carbohydrate in the diet (grams), and infection episodes. In total, the length of the
data is ten patient-years, among which the first half (five years) is regular years with no
infection episodes, and the latter half (five years) contains a minimum of one infection episodes
per individuals. An exemplar raw data containing influenza (flu) infections are given in Figures
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9-10. The figures illustrate two patient-year containing the three key parameters of blood

glucose dynamics.
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Figure 9: Illustrates a particular patient-year with influenza (flu) infections in the first week of

December.
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5.3 Data preparation and comparative analysis

As described in the method chapter, the raw dataset was first smoothed by a moving average
filter. Different length of window sizes was tested to choose the optimal value, and a value of
1, 2, 3, and 4 days was evaluated. Hence, a window size of 2 days (48 hours) was chosen and
the choice was much constrained to avoid substantial delays that could arise from using a larger
window size. The comparative analysis considers three data granularity (timeframes); hourly,
daily, and weekly. Comparison of the first two timeframes uses the smoothed dataset, however,
the weekly comparison uses the raw dataset and applies only to the dataset containing infection
episodes. Within each timeframe, the comparative analysis investigates the change in average
blood glucose levels taking into account the impact of total carbohydrate consumption and
insulin intake. It is better to note that, the regular patient-years were aimed at establishing a
reference (baseline) knowledge of the individuals under normal period. The trend and
distribution of the data were investigated to pinpoint uncharacteristic deviations as a result of
the infection episode.

5.3.1 Datatrend

5.3.1.1 Regular patient-years

The analysis of the regular patient-years with the two timeframes; daily and hourly, exhibit the
normal process of blood glucose dynamics, as can be seen from Figure 11-12, and more figures
can be found in Appendix 2 of Paper 1 [259]. Insulin is administered in pre, during, and post-
meal scenarios taking into account the amount of carbohydrate consumption. Occasionally,
correction insulin is also injected depending on the resultant blood glucose levels [26; 175].
The nature of this self-management practice is mainly manifested through the evolution of the
insulin-to-carbohydrate ratio [63; 132]. As can be seen from the figures, values of the insulin-
to-carbohydrate ratio are relatively stable depicting the normal process of the individual’s blood
glucose dynamics, where blood glucose regulation is mainly maintained with a balanced
consumption of carbohydrates and insulin requirements. As per the findings, the values of the
ratio oscillate between 0.05 and 0.2 throughout the entire patient-years. This dynamic but stable
characteristic of the ratio signifies the impact of patient-controllable and uncontrollable
parameters apart from infection [259].
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a) A daily plot of the patient-year, source [259] Appendix 2, Figure 1.
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Figure 11: A specific regular patient-year depicting blood glucose levels, amount of
carbohydrate consumption and insulin injections, and fluctuations of the insulin-to-
carbohydrate ratio. Figure (a) illustrates fluctuations within the daily timeframe. Figure (b)
illustrates fluctuations within the hourly timeframe.
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Figure 12: A specific regular patient-year depicting blood glucose levels, amount of
carbohydrate consumption and insulin injections, and fluctuations of the insulin-to-
carbohydrate ratio. Figure (a) illustrates fluctuations within the daily timeframe. Figure (b)
illustrates fluctuations within the hourly timeframe.

5.3.1.2 Patient-years with Infection events
As described above, in the patient-years with infection episodes, apart from the trend, the
distribution of data was also compared on a daily and hourly basis. Furthermore, a pre-infection
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week, infection week, and post-infection week comparison of parameters were carried to
characterize and single out the impact of the infection episode effectively.

5.3.1.2.1 Daily and Hourly Analysis

The analysis of the two timeframes; daily and hourly, reveals the infection-triggered deviations
from the normal process of blood glucose dynamics, as can be seen from Figure 13-14 and
more figures can be found in Appendix 3 of Paper 1 [259]. During normal circumstances,
insulin is administered on pre, during, and post-meal scenarios following the amount of
carbohydrate consumed and in certain cases, correction insulin is also administered depending
on the resultant blood glucose levels. However, this normal process is violated and seems no
longer valid throughout the infection episodes [259]. This infection triggered deviation is
typically manifested in the values of the insulin-to-carbohydrate ratio. As can be seen from the
figures, the values of the ratio are sky-rocketed depicting the abnormal infection triggered
situation, where the patient is forced to inject much higher insulin irrespective of consuming
carbohydrates. In this situation, much of the insulin intake is correction insulin that is directed
towards regulating blood glucose levels, which are disturbed due to infection incidences. As
per the findings, the values of the ratio were elevated above the normal values (0.05-0.2), and
reach between 0.25 and 0.5 depending on the individual. These findings demonstrate the
substantial impact of infection episodes on blood glucose dynamics as compared to the other
patient controllable and uncontrollable parameters. The analysis also reveals that other infection
episodes such as fever-free mild and light cold as reported by the individual patients have a
minor impact on the blood glucose dynamics, particularly the light cold.
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a) A daily plot of the patient-year, source [259], Figure 6.
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Figure 13: A particular patient-year with influenza (flu) incidence within the first week of
December, and depicts blood glucose levels, amount of carbohydrate consumption and insulin
injections, and fluctuations of the insulin-to-carbohydrate ratio. Figure (a) illustrates
fluctuations within the daily timeframe. Figure (b) illustrates fluctuations within the hourly
timeframe.

Daily Average BG

Average BG (mg/dL)
a S
S 5
%
| |

Bolus
N
s 8
g
| | L

| | | | | | |
10
0 50 100 150 200 250 300 350 400
Daily Total Carbs
¢ T T T T T T T
w 300 — -
2
=
o
O 200 |
100 = | | | | 1 | | |
0 50 100 150 200 250 300 350 400
09 Ratio of Daily Total Insulin Vs. Total Carbs
. N . | I I I I I I
LTEICHE I bl Light cold without fever
o 020 \ Flu N -
©
2 04 -
0 | | | | | | |
0 50 100 150 200 250 300 350 400

Number of Days

a) A daily plot of the patient-year, source [259], Figure 10.

57



Hourly Average BG
I T

100 | | | I | | ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Hourly Total Insulin

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Hourly Total Carbs
I T

Carbs
>
|

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

e Ratio of Hourly Total Insulin Vs. Total Carbs
. I I I I [ I I

Mild Cold without fever <— Flu Light Cold without fever

Ratio

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Hours

b) An hourly plot of the patient-year, source [259] Appendix 3, Figure 4.

Figure 14: A particular patient-year with fever-free mild and light cold in the first week of
August and mid-February respectively, and influenza (flu) incidence in mid-August. The
figures depict blood glucose levels, amount of carbohydrate consumption and insulin injections,
and fluctuations of the insulin-to-carbohydrate ratio. Figure (a) illustrates fluctuations within
the daily timeframe. Figure (b) illustrates fluctuations within the hourly timeframe.

5.3.1.2.2 Comparison of Pre, Infection, and Post-infection Weeks

Each week's daily average blood glucose values, the sum of insulin injection, and the sum of
carbohydrate consumption were compared within the timespan of the pre-infection week,
infection week, and, post-infection weeks. The overall comparison of the infection triggered
deviations from the pre-infection and post-infection weeks were depicted with a statistical
boxplot incorporating the key parameters. The analysis among other things aims to quantify the
infection-triggered deviations compared to the normal pre-infection and post-infection weeks.
As per the findings, it can be seen in Table 10 and Figures 15-17, the infection week’s blood
glucose levels remain elevated even if the individual keeps injecting much more insulin with a
smaller amount of carbohydrate consumption. These phenomena violated the normal process
of blood glucose dynamics and illustrate the influence of infection (flu) on blood glucose
dynamics, which could be associated with the result of the action of infection-triggered glucose
production and insulin resistance that develops within the body [152; 159; 259]. Under normal
circumstances, when the patient injects much higher insulin and consumes much-reduced
carbohydrate, these phenomena push the state of the blood glucose dynamics into the
hypoglycemia region. However, this doesn’t happen after infection onset, and this could be
mainly due to the added effect of infection triggered glucose production and insulin resistance
that occurred within the body [259].
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Table 10: Average and standard deviation of blood glucose levels, the sum of insulin doses
(bolus), and the sum of carbohydrates intake within pre-infection, infection, and post-infection
weeks, source [259], Table 5.

|| Influenza (flu) incidence in the first patient-year ||

Parameter Pre-infection week Infection week Post-infection week
(Mean (SD)) (Mean (SD)) (Mean (SD))
BG (mg/dL) 130.74 (16.89) 141.95 (14.37) 119.16 (7.39)
Total insulin (bolus) 23.39 (4.91) 35.30 (6.11) 21.32 (4.61)
Carbohydrate (grams) 241.11 (57.27) 178.80 (65.69) 241.18 (37.63)

|| Influenza (flu) incidence in the second patient-year ||
BG (mg/dL) 143.01 (19.53) 155.36 (21.99) 126.17 (11.70)
Total insulin (bolus) 28.07 ( 8.85) 41.07 (9.44) 25.36 (6.93)
Carbohydrate (grams)  190.14 (43.93) 161.14 (58.43) 214.57 (34.66)

I Influenza (flu) incidence in the third patient-year ||
BG (mg/dL) 136.93 (18.58) 144.12 (20.30) 134.18 (11.96)
Total insulin (bolus) 20.08 (5.44) 31.50 (10.84) 22.83 (3.86)
Carbohydrate (grams) 178.0 (45.87) 144.83 (37.63) 195.83 (42.59)

|| Influenza (flu) incidence in the fourth patient-year ||
BG (mg/dL) 157.74 (31.12) 161.34 (19.88) 138.57 (19.83)
Total insulin (bolus) 24.43 (5.26) 32.14 (7.01) 29.29 (5.22)
Carbohydrate (grams)  199.06 (53.45) 167.04 (44.94) 226.07 (18.23)

| Influenza (flu) incidence in the fifth patient-year ||
BG (mg/dL) 135.21 (14.58) 139.88 (15.54) 122.87 (14.49)
Insulin (bolus) 32.80 (4.59) 40.37 (8.31) 33.36 (7.94)
Insulin (basal) 19.20 (1.21) 20.42 (2.06) 18.68 (1.56)
Total Insulin 52.33 (5.14) 61.21 (8.26) 52.46 (8.47)

5.3.1.2.2.1 Blood glucose levels

Blood glucose levels were higher for a longer period throughout the infection period in all the
infection weeks. As described earlier, this phenomenon could be linked with the production of
excess glucose from the liver as a result of the infection episode [152]. In this regard, the
infection week’s average blood glucose levels were higher as compared to the pre-infection and
post-infection weeks’ average blood glucose levels. Numerically, as shown in Figures 15 and
Table 10, the average blood glucose levels were higher in all the infection weeks with a
percentage of 8.57% and 19.12%, 8.63% and 23.13%, 7.26% and 7.41%, 2.28 and 16.43%,
3.45% and 13.84% as compared to the pre-infection and post-infection weeks’ average blood
glucose values respectively. More figures can be found in Appendix 1 of Paper 1 [259].
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a) Box-plot of a particular patient-year, source [259], Figure 3.

b) Box-plot of a particular patient-year, source [259] Appendix 1, Figure 2.

Figure 15: Comparison of blood glucose levels during pre-infection week, infection week, and
post-infection week. As can be seen, the blood glucose is elevated during the infection week as
compared to the pre and post-infection weeks.

5.3.1.2.2.2 Insulin intake

Insulin (bolus) administered during the infection weeks was much higher as compared to the
pre and post-infection weeks. As described earlier, the enhanced insulin intake could be directly

60



associated with the insulin resistance that develops within the body following infection onset
mainly due to the action of the counter-regulatory hormones [152; 159]. In this regard, the
infection weeks’ insulin injections were much higher as compared to the pre-infection and post-
infection weeks’ insulin injections. Numerically, as shown in Figures 16 and Table 10, the
overall insulin injections were significantly higher in all the infection weeks with a percentage
of 50.93% and 65.59%, 46.31% and 61.94%, 56.87% and 37.98%, 31.56% and 9.7%, 23.08%
and 21.01% as compared to the pre-infection and post-infection week’s overall insulin
injections respectively. More figures can be found in Appendix 1 of Paper 1 [259].
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a) Box-plot of a particular patient-year, source [259], Figure 4.
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Figure 16: Comparison of insulin (bolus) injections during the pre-infection week, infection
week, and post-infection week. As can be seen, the amount of insulin (bolus)intake is elevated
during the infection week as compared to the pre and post-infection weeks.

5.3.1.2.2.3 Carbohydrate consumption

Carbohydrate (grams) consumed during the infection weeks were much lower as compared to
the pre-infection and post-infection weeks’ consumption. This phenomenon could be linked
either with the patient action to avoid a further crisis of hyperglycemia or lack of appetite as a
result of the infection [152; 259]. In this regard, the infection weeks’ overall carbohydrate
consumptions were much lower as compared to the pre-infection and post-infection weeks’
overall carbohydrate consumptions. Numerically, as shown in Figures 17 and Table 10, the
overall carbohydrate consumptions were significantly lower in all the infection weeks with a
percentage of 25.84% and 25.87%, 15.25% and 24.90%, 18.63% and 26.04%, 16.09% and
35.34% as compared to the pre-infection and post-infection week’s overall carbohydrate
consumptions respectively. More figures can be found in Appendix 1 of Paper 1 [259].
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Figure 17: Comparison of carbohydrate consumptions (grams) during the pre-infection week,
infection week, and post-infection week. As can be seen, the amount of Carbohydrate (grams)
intake is significantly lower during the infection week as compared to the pre and post-infection
weeks.

5.3.1.2.2.4 Insulin-to-carbohydrate ratio

The ratio of the insulin-to-carbohydrate reflects the combined phenomena of insulin injections
and carbohydrate consumptions. On an individual basis, it depicts the required insulin intake to
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offset the action of a single gram of carbohydrate consumed. As described above, the dramatic
shift in insulin injections and carbohydrate consumptions following infection episodes is also
reflected in the required values of the ratio. During normal circumstances, the value usually
fluctuates between 0.05 and 0.2, see Figure 11-12. However, as clearly demonstrated in Figure
13-14, the values of the insulin-to-carbohydrate ratio significantly raised to a higher value to
accompany the individual’s requirements following infection onset [259]. In this regard, the
infection weeks’ values of insulin-to-carbohydrate ratio were much higher as compared to the
pre-infection and post-infection weeks’ values of the ratio. Numerically, as shown in Table 10,
the values of insulin-to-carbohydrate ratio were significantly higher in all the infection weeks
with a percentage of 125.84%, 144.43%, 93.75%, 70.84% as compared to the pre-infection and
post-infection week’s normal values. More figures can be found in Appendix 1 of Paper 1 [259].

5.3.2 Data Distribution

The individual self-management practice is usually related to the individual’s diet habits,
physical activity or exercise sessions, medication intake, and others. To study the influence of
infection on blood glucose dynamics along with the nature and shape of the anomalies
generated, the individual’s data distribution was estimated using a kernel density estimator and
compared with the distribution of the same data after removing the reported infection days. The
distribution estimation was conducted for each patient-years with infection episode considering
univariate (insulin-to-carbohydrate ratio) and bivariate (insulin-to-carbohydrate ratio versus
blood glucose levels) variables. As can be seen from Figures 18, data distribution of the
infection period generates a longer tail and sparse density, and more figures can be found in
Appendix 1 of Paper 1 [259]. These deviations could correlate with the strength of the
individual’s immunity, type of infection, and severity (pathogens), and hormones involved
[152; 259].

Distribution of Insulin-to-Carbs Ratio

Short and Light Tail
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a) Kernel density estimation of daily total insulin (bolus)-to-carbohydrate ratio, source
[259] Appendix 1, Figure 12 (a).
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b) Kernel density estimation of daily average blood glucose levels and total insulin (bolus)-
to-carbohydrate ratio, source [259] Appendix 1, Figure 13 (a).

Figure 18: Kernel density estimation of a particular patient-year. Figure (a) depicts the
univariate kernel estimation. Figure (b) depicts the bivariate kernel estimation.

5.4 Characterizing the observed phenomenon

This section characterizes the observed phenomenon, describes the optimal predictive
parameters, and further tries to generalize the findings beyond people with type 1 diabetes into
other types of diabetes. As per the findings, infection often triggers a series of shifts in the blood
glucose dynamics and mainly with respect to blood glucose levels, insulin and carbohydrate
intake, and the ratio of insulin-to-carbohydrate [259]. However, the literature suggests that the
extent and degree of abnormalities associated with these infection triggered phenomena often
correlate with the strength of the individual’s immunity, the category of the pathogens, and the
type of hormones [238]. The underlying cause of the hyperglycemia crises upon infection onset
is the added effect of patient uncontrollable parameters in addition to the regular patient
controllable parameters [152], as given in Equation 1 below. The effect of the patient's
uncontrollable parameter, i.e. counter-regulatory hormone, triggered by infection as a result of
stress, is inhibiting insulin production and stimulating glucose production, which is the body
mechanism to cope up with infection [159]. Hence, this patient group usually struggles to
maintain euglycemia. However, during the regular days, hyperglycemia is mostly triggered by
a patient controllable parameter (diet) and usually managed by controlling the key patient
controllable parameters, e.g. limiting the amount of carbohydrate intake, injecting proper
amount of insulin, and doing adjusted physical activity or exercise session [259]. Generally,
this infection triggered phenomena can be characterized by an equation representing the
relationship between blood glucose levels and other key parameters that disturb the dynamics
along with the added effect of infection onset;
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BGt = C]H[t + (CR]HLL— - (pHNt - ]P)A,t—, (1)

Where the factor ¢ depicts the body’s level of insulin sensitivity, BG is the average blood
glucose values, CH is the sum of carbohydrate intake in grams, IN is the sum of insulin dose,
PA is the aggregate level of physical activity or exercises load, and CRH is the amount of extra
glucose generated as a result of the effect of counter-regulatory hormones, i.e. adrenalin and
cortisol [259]. As depicted in the equation, infection triggers CRH induced glucose and
diminishes the body’s level of insulin sensitivity (¢), thereby resulting in hyperglycemia
despite consuming regular diets and requiring more insulin doses to compensate for the
reduction in body’s level of sensitivity. Further, to compensate for the effect of CRHs, a
reduction in the amount of carbohydrate consumption is expected [259]. These phenomena are
manifested in the analysis of all the individual infection episodes. Hence, the event marker for
infection episode can be designated as the occurrence of a dynamic shift from the typical
operating point of blood glucose dynamics as manifested by the shift sustained on the ratio of
the insulin-to-carbohydrate. Considering the nature of blood glucose metabolism and infection
along with the body’s physiological reactions, these phenomena can be expected in other types
of diabetes, however, the degrees of abnormalities can be varied in between. Based on the
evidence presented, infection triggered deviations are manifested on the key parameters, and
blood glucose levels, insulin doses, carbohydrate intake, and the ratio of insulin-to-
carbohydrate can be taken into account as input features for realizing a personalized health
model to detect infection episode in an individual with type 1 diabetes [259]. Generally, the
result proved the potential of the presented data to develop the proposed personalized health
model-based digital infectious disease detection system. In this regard, the analysis among other
things demonstrated the informational value and discriminative power of the data, which
obviously can reduce false alarms that could emanate from confounding parameters such as
emotional stress.

5.5 Limitation
Considering the complexity of blood glucose dynamics, it is obvious that this study could

benefit from a larger sample size and could further strengthen the conclusion. However, due to
the difficulty of getting accurate and rich datasets containing infection episodes, the study was
carried out on the presented datasets. Actually, the inclusion criteria were stiff given the fact
that the study expects rich datasets that are accurate enough as well as are required at least to
contain one event of infection, which makes the challenge far more difficult. Moreover, the
study could also be far more beneficial if the dataset contains physical activity data to further
strengthen the conclusion. However, taking into account the nature of blood glucose
metabolism, which has more or less common dynamics among each individual, the presented
results can conform and be generalized among these patient groups.

5.6 Knowledge Summary
In the context of the original research question, the following section presents the added
knowledge within the scope of the presented results.

What do we know about the topic already?
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e The association between infection onset and hyperglycemia episode has long been
known.

e Previously, the idea of using blood glucose levels to detect outbreaks and surveillance
purposes has been suggested and presented in the literature.

e However, none of these studies characterized and numerically quantifies the impact of
infection on the key parameters of blood glucose dynamics and pinpoint optimal
parameters with high accuracy.

What does this chapter add to our knowledge?

e To the best of my knowledge, this is the first study that empirically analyzes self-
recorded data and numerically quantifies the effect of infection episodes on key
parameters of blood glucose dynamics among people with type 1 diabetes.

e Infection significantly alters the operating point of the individual’s blood glucose
dynamics.

e Infection onset triggers elevated blood glucose levels regardless of higher insulin doses
and lesser carbohydrate consumptions. This event marker designates the occurrence of
a dynamic shift from the typical operating point of blood glucose dynamics as
manifested by the shift sustained on the ratio of the insulin-to-carbohydrate following
infection onset.

e Discovered and presented a unique parameter, i.e. the ratio of insulin-to-carbohydrate,
with excellent informational value and discriminative power to minimize the false
alarm.

e Characterization of the blood glucose dynamics reveals optimal parameters for realizing
a personalized health model to detect infection onset in an individual with type 1
diabetes.

5.7 Chapter Summary
This chapter presented and discussed results related to the characterization of the impact of
infection onset on the individual’s blood glucose dynamics. Infection onset brought a
substantial shift in the typical operating point of the individual’s blood glucose dynamics. As
per the findings, infection onset triggers elevated blood glucose levels for a prolonged duration
regardless of the individual actions accompanied by higher insulin doses and lesser
carbohydrate consumptions to regulate and control the hyperglycemia crisis triggered by the
incident. The event marker designates the occurrence of a dynamic shift from the typical
operating point of blood glucose dynamics as manifested by the shift sustained on the ratio of
the insulin-to-carbohydrate following the infection onset. Hence, this characterization reveals
the potential of the key parameters of blood glucose dynamics such as blood glucose level,
carbohydrate, insulin, and the ratio of insulin-to-carbohydrate information for realizing the
proposed personalized health model towards detecting infection onset in an individual with type
1 diabetes. In this regard, a personalized health model that utilizes these input features can be
developed based on either a prediction model or an anomaly and novelty detection methods. As
far as my knowledge is concerned, this is the first study that empirically analyses self-recorded
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data and numerically quantifies the effect of infection episodes on the key parameters of blood
glucose dynamics among people with type 1 diabetes. In conclusion, these findings provide
optimal parameters of blood glucose dynamics to support the effort towards realizing a
personalized health model, and however, additional large-scale studies might be needed to
further strengthen the conclusion.
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6 Designing a Personalized Health Model

Synopsis: This chapter puts forward a solution for realizing the proposed personalized health
model, which can describe the individual ’s blood glucose dynamics from the self-recorded data.
The aim was to devise a model for tracking the individual’s health status and automatic
detection of health changes. The first half of the chapter provides an overview of the input
features used in modeling, and the subsequent section provides the model's performance
derived from using a bivariate input feature and an alternative solution using a univariate input
feature. Finally, it provides a comparative analysis and concluding remark. This chapter
provides answers to the third research question (Q3).

6.1 Introduction

This chapter focuses on the approaches devised to realize the proposed personalized health
model for effective tracking of the individual’s health status and automatic detection of
infection onset among people with type 1 diabetes. To the best of my knowledge, this is the
first attempt towards realizing a personalized health model to capture infection episodes among
people with type 1 diabetes using self-recorded data. Apart from this, it is better to note that
there was a single previous attempt to capture the stress state among type 1 diabetes under
ambulatory settings [76]. The proposed model utilizes those optimal features suggested in
chapter five, specifically blood glucose levels and the ratio of insulin-to-carbohydrate. As
demonstrated in chapter five, those input features were selected based on their informational
values and discriminative power compared to the baseline normal data [259]. As discussed in
chapter four, the realization of the proposed personalized health model can be approached
either using a predictive model of blood glucose dynamics or anomaly (novelty) detection
methods [259]. In the literature, the state-of-the-art blood glucose prediction models are often
described to be accurate in a limited setting and prediction horizon [173; 256]. The prediction
performance of those models often degrades beyond a 30-minute prediction horizon, which
becomes a bottleneck to effectively be used in the proposed settings, i.e. changes within hours
and days [165; 256]. An ideal blood glucose predictor requires to incorporate a vast majority
of input features that affect blood glucose dynamics, which is difficult to achieve in a practical
setting [256]. In this regard, the requirement calls for a personalized health model that can
capture the dynamics and be able to detect abnormalities within the context of limited data
settings. Consequently, as an option to these drawbacks of prediction models, an anomaly
(novelty) detection method was devised to realize the proposed personalized health model. This
option can be formulated as supervised, i.e. multi-class classification, semi-supervised, i.e. one-
class classification, or unsupervised method [4; 51; 183]. Implementing the proposed model as
supervised can be challenging and impractical given the effort required to acquire and labeling
the normal and anomaly class [124; 217]. Practically there are several issues involved with the
characterization and demarcation of the infection triggered anomaly class boundaries in
comparison to the normal class [51; 258]:

e Characterizing the effect of different pathogens: Demarcating pathogen-specific class
boundary requires understanding the effect of each pathogen on blood glucose
dynamics, and this calls for gathering pathogen-specific data from a large group of
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participants. Such data collection is expensive and time-consuming if not impossible
[258].

e Effect of the same pathogens among different individuals: Apart from the inter-
pathogen class boundaries, there still exists variations among the intra-pathogen class
boundary that emanates from the difference in individuals' infection resistance. This
poses a serious challenge and further complicates the demarcation task [258].

e Lack of available data source: Even if the above demarcation tasks are accomplished,
there still exist challenges related to an imbalanced class problem. Gathering a balanced
dataset containing both the normal and abnormal class from the individual participant
require waiting for the individual to get infected on multiple occasions and this further
poses an implementation challenge [258].

Considering these stated challenges, the other design option is to use a semi-supervised method,
I.e. one-class classifier, that relies on learning the regular situations and able to detecting
nonconformities with the reference description [51; 113; 217; 219]. This strategy alleviates the
above-stated challenges related to characterization and lack of dataset. Apart from this, another
design option to the stated challenges could be an unsupervised method that relies on the entire
dataset to define and find anomalies within the data [51]. In this regard, this chapter presents
the performance of semi-supervised (one-class classifier) and unsupervised methods for the
proposed personalized health model. These models utilize univariate (insulin-to-carbohydrate
ratio) and bivariate (blood glucose levels versus insulin-to-carbohydrate ratio) as input features.
The performance achieved from these models and input features is compared along with the
model's computational time and necessary sample size to generate acceptable performance. The
first half of the results presented in this chapter, i.e. bivariate inputs, are part of the findings
presented in Paper 3 [258].

6.2 Input features

To better understand the input features, it is necessary to comprehend the characteristics of
blood glucose dynamics depending on the three key parameters; insulin, carbohydrate, and
physical activity or exercise load, that disturb blood glucose levels. Depending on these
parameters, the state of wellness of blood glucose dynamics among an individual with type 1
diabetes can be grouped into any of the four quadrants; carbohydrate action as quadrant 1,
physical activity action as quadrant 2, insulin action as quadrant 3, and metabolic change due
to infection onset as quadrant 4.

Carbohydrate action as quadrant 1: As shown in Figure 19, this quadrant covers the normal
region of the blood glucose dynamics, where the patient consumes more carbohydrate without
taking required actions, i.e. administering insulin and performing balanced physical activity or
exercise sessions, to control or regulate the blood glucose levels. Particular examples of such a
situation is a holiday effect, where individuals ingest too much carbohydrate during the holiday
seasons. Datasets that lie within this region are sparser and less dense.

Physical activity action as quadrant 2: As shown in Figure 19, this quadrant covers the normal
region of the blood glucose dynamics, where the patient ingests more carbohydrates but favors
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performing physical activity or exercise sessions than administering insulin to control the blood
glucose levels. It is evident that though the patient ingests more carbohydrates, rigorous
physical activity or exercise load could induce hypoglycemia. The sparsity of any particular
points that fall within this region is dependent on the extent to which physical activity is used
to replace the insulin needs. This sparsity happens since replacing insulin needs with physical
activity or exercises session could create a very small value of insulin-to-carbohydrate ratio that
fall outside the typical range of 0.05 to 0.2.

Insulin action as quadrant 3: As shown in Figure 19, this quadrant also covers a normal region
of the blood glucose dynamics, where the patient ingests less carbohydrate and administer more
insulin to regulate the blood glucose levels. This is a very dangerous region of the dynamics,
since taking more insulin without taking a proper meal could drive the blood glucose dynamics
into a dangerous hypoglycemia state that could make the individuals end up being unconscious
and sometimes death depending on the degree. The sparsity of the points that fall in this region
is dependent on the degree of difference between carbohydrate intake and how much insulin is
delivered for such an amount.

Metabolic change due to infection onset as quadrant 4: As shown in Figure 19, this quadrant
covers the abnormal region of the blood glucose dynamics, where the blood glucose levels
remain elevated though the patient administers more insulin and ingests lower carbohydrate to
control blood glucose levels. This is abnormal given the fact that these states of inputs should
always be expected to put the individuals in quadrant 3 under normal circumstances, which is
a dangerous hypoglycemia state. Yet, excessive production of glucose and insulin resistance as
a result of infection prevented the blood glucose levels from going into a hypoglycemia state
and, therefore, the individual’s blood glucose levels remain high. This region only contains
sparse data points that reflect the abnormal state of blood glucose dynamics as a result of health
changes.
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Figure 19: Quadrants of wellness in an individual with type 1 diabetes, source [258], Figure
1.

6.2.1 Description of input features

This section describes the characteristics of the input features as per the results presented in
chapter five. As described above, the models’ input features were univariate input, the ratio of
insulin-to-carbohydrate, and bivariate input, blood glucose levels vs. the ratio of insulin to
carbohydrate. The models' performance was compared based on data type - raw and smoothed
data, data granularities - hourly and daily timeframes, and data sample sizes - one, two, three,
and four months. The input features were smoothed via a moving average filter of 2 days (48
hours) window.

6.2.1.1 Input features - Regular patient-years versus patient-years with infection

The patient years exhibit different characteristics depending on the presence or absence of
infection as per the result presented in chapter five. Throughout the regular patient-years, the
data happens to be bounded but containing a high-density region and some sparse regions with
low density, as shown in Figures 20-21, and more figures can be found in Appendix 2 of Paper
3[258]. In all the figures, the x-axis representing the ratio happens to be bounded between 0.05
and 0.2 depicting the typical behavior of the insulin-to-carbohydrate ratio during the normal
operations, as demonstrated in chapter five. In regard to the patient-years with infection, the
data exhibits similar characteristics compared to the regular patient-years, except that in this
data infection days happen to be outside of the typical range of the boundary, as shown in
Figure 22-23, and more figures can be found in Appendix 2 of Paper 3 [258]. In this regard,
the task of modeling requires to describe those regular days and capture those novel or
anomalous days with a minimum false alarm rate.
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a) A daily plot of typical regular patient-year, source [258], Figure 1.
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b) An hourly plot of typical regular patient-year, source [258], Figure 2.

Figure 20: A daily and hourly plot of typical smoothed regular patient-year depicting the scatter
plot of average blood glucose levels vs. the ratio of insulin to carbohydrate.
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a) A daily plot of typical regular patient-year, source [258] Appendix 2, Figure 4.
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b) An hourly plot of typical regular patient-year, source [258] Appendix 2, Figure 4.

Figure 21: A daily and hourly plot of typical smoothed regular patient-year depicting the scatter
plot of average blood glucose levels vs. the ratio of insulin to carbohydrate.
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a) A daily plot of typical patient-year with an event of infection influenza (flu), source
[258], Figure 3.
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b) An hourly plot of typical patient-year with an event of infection influenza (flu), source
[258], Figure 4.

Figure 22: A daily and hourly plot of typical smoothed patient-year with an event of infection
influenza (flu), and depicting the scatter plot of average blood glucose levels vs. the ratio of
insulin to carbohydrate.
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Daily Average Blood Glucose Levels (mg/dL)

a) A daily plot of typical patient-year with an event of infection influenza (flu), source
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Hourly Average Blood Glucose Levels (mg/dL)

b) An hourly plot of typical patient-year with an event of infection influenza (flu) source
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Figure 23: A daily and hourly plot of typical smoothed patient-year with an event of infection
influenza (flu), and depicting the scatter plot of average blood glucose levels vs. the ratio of

insulin to carbohydrate.
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6.2.1.2 Data containing simulated events of infections

The degree of infection triggered deviations on blood glucose dynamics depends on several
factors and is mainly related to the type of pathogens involved and the individual immunity
[259]. Per the findings and description provided in chapter five, and considering pathogen-
specific deviations, infection states of different sizes and shapes were simulated and injected
into the daily regular patient-years. The simulated infection states were for a duration of two-
weeks and incorporate 10%, 20%, 30%, and 40% of simultaneous deviation, i.e. higher insulin
and lower carbohydrate by the same factor, from the aggregated insulin and carbohydrate
profile of an individual, as shown in Figure 24. Those deviations were added to the five regular
patient-years. The simulated infection states were used to assess and evaluate the model’s
performance in response to the different degrees of infection-induced changes from small to
large changes in the individual blood glucose dynamics. This directly corresponds to the fact
that different pathogens trigger a different degree of deviation in blood glucose dynamics.
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Figure 24: Characteristics of the input feature, i.e. insulin to carbohydrate ratio, with simulated
infection states of varying degree and shape (a = 0%, 10%, 20%, 30%, and 40%).

6.3 Practical experiments and results
Two categories of approaches were evaluated and compared; one-class classifiers and
unsupervised methods. A detailed description of the models given in Table 11 can be found in
Appendix 1 of Paper 3 [258]. For the one-class classifiers, during training, the regular period
of the patient year was designated as a target class, and the period incorporating the infection
episode as a non-target class. The exact location of the anomalies (novel) days was determined
based on the individual’s self-reported time-window of the infection episode and through the
analysis conducted in chapter five. As demonstrated and presented in chapter five, the number
of days with abnormal values of the insulin-to-carbohydrate ratio is regarded as non-target
(anomalies) days. The one-class classifiers were trained using the target sample objects and
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tested with a dataset containing both target and non-target sample objects. The unsupervised
models were evaluated by presenting the entire dataset at once. The computational time
required to execute each model was also estimated. The classifiers were compared based on
their performance, required sample size to produce an acceptable description of the data, and
computational time. Furthermore, the performance of those classifiers was compared with the
unsupervised models.

Table 11: Models tested for the proposed personalized health model. BD = boundary and
domain-based, DN= density-based, RE = reconstruction-based methods.

Models One-class classifier | Unsupervised
Support vector data description (SVDD) [217; 218; 221] N BD X
Incremental SVDD (IncSVDD) [218] N BD X
One-class support vector machine (V-SVM) [198] N BD X
Nearest neighbor (NN) [183; 216; 217; 220] N BD e
Minimum spanning tree (MST) [116] N BD X
Gaussian [183; 216; 218; 219] N DN X
Minimum covariance Gaussian (MCG) [188; 216] N DN X
Mixture of Gaussian (MOG) [216; 218] N DN X
Parzen [174; 183; 216; 219] N DN ye
Naive Parzen [216; 218] N DN X
k-nearest neighbor (KNN) [183; 216; 219] N DN X
Local outlier factor (LOF) [42; 218] v DN N
Principal component analysis (PCA) [216-218] N RE e
K-means [218] N RE X
Self-organizing map (SOM) [217; 218] N\ RE X
Auto-encoder network (AE) [216; 217] N RE X
Connectivity-based outlier factor (COF) [215] X N

6.3.1 Model evaluation

The model evaluation was conducted based on data type - raw and smoothed data, data
granularities - hourly and daily timeframes, and data sample sizes - one, two, three, and four
months. For each data granularity, the ratio of total insulin to total carbohydrate was computed
and used as either a univariate input or used along with average blood glucose levels as bivariate
input. For the daily case, the models were evaluated based on raw data and its smoothed version
with a two-days moving average filter. The model’s performance was evaluated for each
individual’s dataset and reported using three performance metrics; m runs average and standard
deviation of the area under the receiver operating characteristic (AUC), specificity, and F1-
score. Comparison of the overall models' performance among all the individual's dataset was
carried based on these metrics, however, for the sake of clarity, the findings are depicted in
terms of F1-score, given its practical implication, and the rest of the metrics values are given
in Appendix B of this dissertation and Appendix 4 of Paper 3 [258].
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6.3.1.1 One-class classifiers

The hyper-parameters of most of the one-class classifier models, i.e. complexity parameter v,
were optimized based on the consistency approach [222] except for Parzen, and NN, which was
optimized by using the leave-one-out error. Min-max was used for normalizing the dataset
[118]. For MST, the complete MST is selected. For PCA, the fraction of variance retained from
the training dataset was determined based on repeated experiments and set to be 0.6. Twenty
times 5-fold & ten times 3-fold stratified cross-validation was used to evaluate the performance
of the bivariate and univariate one-class classifiers respectively. In all the cases, a pre-specified
threshold of outlier fraction in the training dataset was set to be e! = 0.01, where one percent of
the most dissimilar target data could be excluded from generating the data description. As
described earlier in this chapter, the models were evaluated based on three important data
features; granularity (hourly and daily), data nature (raw and smoothed data), and sample
object size (1, 2, 3, and 4 months).

6.3.1.2 Unsupervised method

For comparison purposes, two unsupervised models; local outlier factor (LOF) and connectivity
based outlier factor (COF), were also evaluated based on two important data features;
granularity (hourly and daily), and data nature (raw and smoothed data). The whole patient-
year, i.e., a sample size of 365 days for the daily case and 365*24 hours for the hourly case was
used during evaluation. The model’s performance was measured based on the average of twenty
runs. Both LOF and COF require a user-supplied parameter, i.e. number of neighbors (k). In
this dissertation, the value was determined based on a set of repeated experiments, and an
optimal value with superior performance was selected. In this regard, k was set to be 30 days
and 240 hrs for the daily and hourly scenario respectively. Performance evaluation was carried
out by setting a detection threshold, and an optimal threshold was determined through repeated
evaluation of different values.

6.3.2 One-class classifier performance

This section presents the comparison of the models' performance with respect to the type of
input features; data nature (raw and smoothed), data granularity (daily and hourly), and
training sample sizes (1,2,3,4 months). The median and average performance of each model
was computed from their respective performance on the individual’s infection states in relation
to different sample sizes, data granularity, and nature of data, which can be seen in Appendix B
of this dissertation and Appendix 4 of Paper 3 [258]. Whenever necessary, the overall standard
deviation of each model was computed as a pooled standard deviation. Generally, the
evaluations demonstrated that the models' performance improved with increasing sample size,
and smoothing the data enabled the models to generate better descriptions with smaller sample
sizes. Despite the stated improvement, one of the drawbacks of smoothing is related to the delay
incurred, which could result in late detection.

6.3.2.1 Bivariate input feature - Contextual anomalies

The bivariate input describes the use of both blood glucose levels and the ratio of insulin-to-
carbohydrate as input parameters in modeling the detection algorithm. As a contextual
anomaly, the blood glucose level is regarded as a behavior, which is evaluated by considering
within the context of the insulin-to-carbohydrate ratio. Regarding the training sample size, the
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models generate different descriptions, which mainly depend on the data nature and
granularity, as shown in Figure 25-27. As a rule of thumb, a sample size of 3 months for the
daily raw data, 1 month for the daily smoothed data, and 2 months for the hourly data could be
sufficient to start with when the individual participants join the system. However, it is better to
note that through time there will exist more data, and further model improvement (re-training)
can be carried out. As expected, in contrast to the raw data, the smoothed version achieved
excellent description. Among the three categories, the boundary and domain-based method
produced a better performance with a 1-month sample size in both data granularities,
specifically v-SVM. For a higher sample size, the density-based method generated a better
description with the raw daily data, the boundary and domain-based method are better with the
smoothed daily data, and the density and reconstruction-based methods are better with the
hourly data. In particular, on average, v-SVM, K-means, and K-NN are the three top-
performing models from their respective category demonstrating superior performance
(excellent descriptions) as compared to the rest of the models. The performance (score) plot of
the models can be found in Appendix 3 of Paper 3 [258], depicting the capability of each model
in detecting the infection episode from the regular period. These models were trained on a
random block of 120 regular days (4 months) of the patient year and tested on the entire patient-
year.

6.3.2.1.1 Daily raw dataset

The raw data is pre-processed data without further smoothing and can contain short-term and
fast-scale features that could affect the model's generalization. As expected, as shown in Figure
25, the models suffer in performance degradations, where the models’ performance exhibits
wider variations. Increasing the sample size has shown little improvement on the models’
descriptions, specifically after the three-month sample size. As compared to the other methods,
the boundary and domain-based method, specifically v-SVM, performed better with a 1-month
sample size. With a two-month sample size, all the three methods improved, and density-based
method, particularly K-NN, and reconstruction based method, particularly K-means, performed
better. For higher sample sizes (three and four-month), generally, the density-based method
outperforms the other methods. In this regard, the boundary and domain-based method (i.e.
SVDD and v-SVM), density-based method (i.e. K-NN, Parzen, and Naive Parzen), and
reconstruction-based method (i.e. K-means and SOM) demonstrated better performance.
Overall, a model such as v-SVM performed better with the 1-month sample size, and SVDD,
K-NN, Naive Parzen, and K-means performed better with higher sample sizes.
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A) One-Month Daily Raw Dataset B) Two-Month Daily Raw Dataset

AN

50

100

90

50

mmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmm
3 £ 2 2 2 8 £ 2 ¢ &8 2 9 ¢ ¥ g & 3 £ 2 2 2 8 2 2 & 2 2 8 8 ¥ 8 &

-3 N @ ®
© o o
T T T T T T
D
vdd
M e ———
 ——C—
e ———
e ——
e ———
e ———
e ———
N o —C—
F e ———
A >
o
M <
eans o -
L L L L L
-3 3
=3 =

=== Density-Based Methods
Reconstruction-Based Methods
¢ Mean

C) Three-Month Daily Raw Dataset D) Four-Month Daily Raw Dataset
al ] 100 F
90 - A—¥
90 - ul ! ¢
Lo v 1 O ¢
70 - i | 70 - 4
60 - 1 60 - 1

50— = 5 50

s £ £ 2 =2 &8 2 = & 2 2 S & 2 9 % » £ £ 2 2 & 2 =2 & 2 2 S & < o %

Figure 25: Bivariate input feature - The models’ median and average F1-score over the daily
raw datasets, source partially from [258], Figure 8.

6.3.2.1.2 Daily smoothed dataset
The smoothed dataset is a filtered version with fewer short-term and fast-scale features, and in

this version, the models are generally expected to improve. As shown in Figure 26, as expected
the models achieved significant improvements over the raw version of the data. Increasing the
sample size has drastically improved the models’ description attaining enhanced performance,
specifically can be seen from the two-month sample size and onwards. As compared to the
other methods, the boundary and domain-based method, particularly v-SVM, achieved
excellent descriptions with a 1-month sample size. With a two-month sample size, all the three
methods improved, and boundary and domain-based method, particularly v-SVM, density-
based method, particularly K-NN, and reconstruction based method, particularly K-means,
performed better. For higher sample sizes (three and four-month), all the methods achieved
comparable descriptions. Overall, v-SVM is the best model, which generates excellent
descriptions in all sample sizes. From each respective method, on average, models such as v-
SVM, K-NN, and K-means achieved superior descriptions for all the higher sample sizes and
the worst-performing models being NN and PCA.
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Figure 26: Bivariate input feature - The models’ median and average F1-score over the daily
smoothed datasets, source partially from [258], Figure 8.

6.3.2.1.3 Hourly smoothed dataset

The hourly dataset depicts the average change in blood glucose levels in relation to the ratio of
insulin-to-carbohydrate within each hour of the day. Unlike the daily scenario, the hourly
dataset incorporates more training examples per day (24 sample objects). Increasing the data
granularity could provide finer details and early detection, however, at the cost of unwanted
features, which might become very significant as the level gets higher. As can be seen in Figure
27, despite smoothing the models still exhibit wider performance variations as compared to the
daily smoothed dataset. As per the previous findings, generally, increasing the sample size and
smoothing the data should enable the models to generalize well with little variations, however,
the presence of unwanted features within the hourly data hampers the models’ generalization
ability. In this dataset, in a comparison between methods, the boundary and domain-based
method, particularly v-SVM, achieved better descriptions with a 1-month sample size. With a
two-month sample size, all the three methods improved, and boundary and domain-based
method (i.e. v-SVM), density-based method (i.e. Gaussian families and K-NN), and
reconstruction based method (i.e. K-means) performed better. For higher sample sizes (three
and four-month), generally, the density-based method is better. Overall, a model such as v-
SVM performed better with the 1-month sample size, and Gaussian, MCD Gaussian, KNN, and
K-means performed better with higher sample sizes and the worst-performing models being
NN, Parzen, MST, and PCA.
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Figure 27: Bivariate input feature - The models’ median and average F1-score over the hourly
smoothed datasets, source partially from [258], Figure 8.

6.3.2.2 Univariate input feature - Point anomalies

The univariate input describes the use of the ratio of insulin-to-carbohydrate as the sole input
parameters in modeling the detection algorithms. Per the findings presented in chapter five, the
ratio of insulin-to-carbohydrate is demonstrated to be highly informative containing high
discriminative power compared to the other key parameters of blood glucose dynamics. In this
regard, this input feature is expected to generate improved performance compared to the
bivariate input feature. This alternative approach presents an advantage when there is a lack of
access to blood glucose measurements. As a point anomaly, each point in the time-series of the
ratio is evaluated against a reference description generated by the models to determine its
degree of normality. As per the findings, generally, the models exhibit performance variations
with different sample sizes, as shown in Figure 28-30, and the degree of these variations is
mainly dependent on the data nature and granularity. Regarding the optimal sample size, there
is no much difference with the bivariate input feature. As a rule of thumb, a sample size of 2
months for the daily raw data, 1 month for the daily smoothed data, and 2 months for the hourly
data could be sufficient to start with when the individual participants join the system. However,
through time there will exist more data, and further model improvement can be carried out after
the individual participants join the proposed system. Similar to the bivariate feature, smoothing
allows the models to generate excellent description compared to the raw dataset. In general,
among the three methods, the boundary and domain-based method produced a better
performance with a 1-month sample size in both data granularities. For a higher sample size,
all the three methods achieved comparable description with the raw and smoothed daily data,
and the density and reconstruction-based methods are better with the hourly data. In particular,
on average, v-SVM produced a better performance from 1-month sample size and all the models
achieved comparable performance for the higher sample size except NN. The performance
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(score) plot of the models can be found in Appendix A of this dissertation, which depicts the
capability of each model in detecting the infection episode from the regular period. These
models were trained on a random block of 120 regular days (4 months) of the patient year and
tested on the entire patient-year.

6.3.2.2.1 Daily raw dataset

As described earlier in this chapter, this input dataset is without smoothing and can contain
short and fast-scale features, which could affect the models' generalization. As compared to the
bivariate feature, the models demonstrated better performance with the univariate input feature
with smaller sample sizes, i.e. one and two months, and comparable performance with higher
sample sizes (three and four months), as shown in Figure 28. Increasing the sample size has a
better effect in improving the model's performance as compared to the bivariate input case. The
performance improvement is mainly related to the characteristic of the insulin-to-carbohydrate
ratio, which exhibit similar patterns of values during the regular days of the year. As compared
to the other methods, the boundary and domain-based method, specifically v-SVM, performed
better with 1-month sample size. With a two-month sample size, all the three methods
demonstrated significant improvement, and all the models except NN generated comparable
description. For higher sample sizes (three and four-month), there is no difference among all
the three methods, and the worst model being NN. Overall, a model such as v-SVM performed
better with the 1-month sample size, and except NN, all the other models achieved comparable
performance. As the sample size increase, all the models except NN improved and produced
comparable performances.
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Figure 28: Univariate input feature - The models’ median and average F1-score over the daily
raw datasets.
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6.3.2.2.2 Daily smoothed dataset

As described earlier in this chapter, this input dataset is a filtered (smoothed) version of the raw
dataset, and generally, the models are expected to generate improved description compared to
the raw version. As compared to the raw dataset, as expected, the models have achieved
significant performance improvement, as shown in Figure 29. Further comparison with the
bivariate input demonstrated the advantage of the univariate input, which enabled the models
to achieve better description in all the sample sizes. In this specific dataset, increasing the
sample size has little effect on performance improvement as the models have already achieved
better description with lower sample sizes. As compared to the other methods, the boundary
and domain-based method, specifically v-SVM, performed better with a 1-month sample size.
With a two-month sample size, all the three methods improved, and boundary and domain-
based method (i.e. v-SVM and MST), density-based method (i.e. Gaussian families, LOF and
K-NN), and reconstruction based method (i.e. K-means) performed better. For higher sample
sizes (three and four-month), all three methods generate comparable performances, and all the
models produced similar descriptions except NN, which produces the worst description.
Overall, on average, models such as v-SVM and MST achieved relatively greater performance
in all the sample sizes, while all the other models except NN achieved a comparable description
with two and more sample sizes. Generally, as the sample size increases, all the models except
NN achieved comparable performance.
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Figure 29: Univariate input feature - The models’ median and average F1-score over the daily
smoothed datasets.

6.3.2.2.3 Hourly smoothed dataset

As described earlier, the hourly dataset is a filtered version depicting the relationship between
the average blood glucose levels and the ratio. However, in the univariate sense, only the user’s
estimated carb consumption and insulin requirements within each hour of the day are
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considered. As described earlier, increasing the data granularity could improve the possibility
of detecting the anomalies state at an earlier stage, however, at the cost of accuracy. Therefore,
as expected, despite presenting a large sample size and smoothing the data, as can be seen from
Figure 30, the models exhibit high variance as compared to the daily smoothed dataset. Further
comparison with the bivariate input demonstrated the advantage of the univariate input only
with smaller sample sizes, and with higher sample sizes both the input produced comparable
descriptions. As compared to the other methods, the boundary and domain-based method,
specifically v-SVM, performed better with 1-month sample size. With a two-month sample
size, all the three methods improved, and boundary and domain-based method (i.e. v-SVM, and
SVDD), density-based method (i.e. Gaussian families, LOF, Parzen, Naive Parzen, and K-NN),
and reconstruction based method (i.e. SOM and, K-means) performed better. For higher sample
sizes (three and four-month), all three methods generate comparable performances, and the
models achieved somewhat comparable descriptions except NN, which generated the worst
description in all the sample sizes. Generally, increasing the sample size has helped the models
to capture the data distribution better. Overall, models such as v-SVM achieved relatively
greater performance with a 1-month sample size, while models such as Gaussian families and
K-means achieved better descriptions with higher sample sizes.
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Figure 30: Univariate input feature - The models’ median and average F1-score over the hourly
smoothed datasets.

6.3.2.2.4 Models performance with a different level of deviations

This section presents evaluations of the model’s performance with data containing simulated
deviations of different degrees. As described earlier in this chapter, a two-week-long simulated
infection triggered deviations was injected into the five regular patient-years. Simultaneous
deviations of a = 10%, 20%, 30%, and 40% were added to the daily aggregated insulin and
carbohydrate values. Univariate input was used and the models were trained with 4-month

86



sample size, and their performance was evaluated and compared on the raw and smoothed
version of each patient-years. As shown in Figure 31, with increasing deviation a, the model’s
detection performance improves. In a comparison of the data types, the models achieved better
detection performance with the smoothed dataset. Detecting infection states that induce very
small deviations, i.e. a < 10% change, requires training the models with a suitable threshold
that could reject outliers in the training dataset that exceeds the induced deviations (i.e. a <
10%). However, this could in turn increases the false alarm rate and make the model less
sensitive flagging regular days as an infection state. In this regard, for an application that
involves detecting an infection state, it is necessary to favor the inclusion of some of the less
significant outliers in the data description to avoid frequent false alarm, however, at the expense
of missing infection state that induces small deviations (i.e. o < 10%) on the blood glucose
dynamics. Per the findings, with a = 10%, the density-based method performed a better
detection task, and specifically, MOG achieved better description. In this regard, generally, the
Gaussian family achieved better performance with the raw dataset, however, all the models
achieved comparable descriptions except NN with the smoothed dataset. It is better to note that,
despite the small deviation (o = 10%), smoothing the data has helped the models to achieve
good descriptions. For a = 20%, among the three methods, the density-based method (i.e.
Gaussian families, Parzen and naive Parzen) and reconstruction-based method (i.e. SOM and
K-means) achieved better description with the raw data, and regarding the smoothed data, the
boundary and domain-based method (i.e. SVDD, and v-SVM), density-based method (i.e.
Gaussian families, and K-NN) and reconstruction based method (i.e. SOM, and K-means)
achieved relatively better and comparable performance. For a. = 30%, the density-based method
performed better, and specifically, Parzen and naive Parzen achieved slightly better
performance with the raw data, and almost all the models except the nearest neighbor achieved
comparable performance with the smoothed dataset. For o = 40%, all the three methods
achieved comparable performance, and all the models except NN achieved comparable
performances.
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Figure 31: Univariate input feature - median and average performance (F1-score) of the models
over the five patient years injected with different degree of deviations.

6.3.3 Comparison of input features
The performance of any model can be greatly affected by the input features selected for
modeling [226]. In this regard, this section presents the comparative analysis of the performance
achieved with a univariate input, i.e. insulin to carbohydrate ratio, and a bivariate input, i.e.
blood glucose levels and insulin to carbohydrate ratio. As shown in Figure 32-34, except under
certain circumstances, where both achieved comparable performance, the univariate models
display superior performances. However, despite the improved performance one of the
drawbacks of the univariate input-based models emanates from the fact that these models
cannot differentiate points that lie within quadrants 1 and 2 or quadrants 3 and 4, as shown in
Figure 19 [258]. In this regard, theoretically, a very large ratio that resides in quadrant 3 is
considered as normal value as long as the individual blood glucose levels go to the
hypoglycemia state responding to the high insulin injection and low carbohydrate intake [197;
258], and however, the univariate models consider such a situation as abnormal by just looking
upon the ratio values as outliers. However, it should be noted that in practical settings such
incidence might be fatal for the individuals and might end up being unconscious and sometimes
dead [61; 151], and therefore, such ratio values might be almost non-existent in a practical
sense. Therefore, it can be concluded that the univariate models could do the same task as the
bivariate models when it comes to detecting infection incidences, i.e. large ratio values,
despiting lacking the capability to differentiate between quadrant 3 and 4. However, as
compared to the bivariate model, the univariate model might sometimes generate a false alarm
in rare situations that are very sparse, i.e. too small values not included in training the models.
This rare situation is manifested in the individual’s blood glucose management practice, for
instance, if the patient on random days prefers to replace insulin requirement with physical
exercise/activity sessions, this instance could end up with very small insulin to carbohydrate
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ratio and be flagged as a false alarm. In these circumstances, without the blood glucose level
feature, it will remain difficult for these models to differentiate between the normality or
abnormality of a small value of insulin to carbohydrate ratio. Hence, having blood glucose
levels as an additional input feature could minimize such unnecessary alarms.

A) One-Month Daily Raw Dataset B) Two-Month Daily Raw Dataset

0 0
SVDD vSVM NN MST Gauss MoG MCD Parzen NP kNN LOF AE SOM Kmean SVDD vSVM NN MST Gauss MoG MCD Parzen NP kNN LOF AE SOM Kmean

C) Three-Month Daily Raw Dataset D) Four-Month Daily Raw Dataset

0 0
SVDD vSVM NN MST Gauss MoG MCD Parzen NP kNN LOF AE SOM Kmean SVDD vSVM NN MST Gauss MoG MCD Parzen NP kNN LOF AE SOM Kmean

Figure 32: Daily raw dataset - performance comparison (F1-score) of models using bivariate
input, i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input feature,
I.e. insulin to carbohydrate ratio, based on the daily raw dataset. The error bars are given in
terms of the overall mean and standard deviation of each model across all the patient-years and
infection states.
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A) One-Month Daily Smoothed Dataset B) Two-Month Daily Smoothed Dataset
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Figure 33: Daily smoothed dataset - performance comparison (F1-score) of models using
bivariate input, i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input
feature, i.e. insulin to carbohydrate ratio, based on the daily smoothed dataset. The error bars
are given in terms of the overall mean and standard deviation of each model across all the
patient-years and infection states.

A) One-Month Hourly Smoothed Dataset
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Figure 34: Hourly smoothed dataset - performance comparison (F1-score) of models using
bivariate input, i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input
feature, i.e. insulin to carbohydrate ratio, based on the hourly smoothed dataset. The error bars
are given in terms of the overall mean and standard deviation of each model across all the
patient-years and infection states.

90



6.3.4 Unsupervised method performance

For comparison purposes, this section presents the performance of two density-based
unsupervised models, LOF and COF, as given in Figure 35-37. The performance of these
models was compared based on the type of input features, data nature (raw and smoothed), and
data granularity (daily and hourly). The average performance of each model was computed
using their respective performance on the individual infection states in relation to different data
granularity, and the nature of data can be seen in Appendix B of this dissertation and Appendix
4 of Paper 3 [258]. The optimal threshold and number of neighbors were selected after
performing repeated evaluations for different combinations of values. Generally, LOF has a
slight edge over the COF in all the infection states, and this could be linked with the nature of
the data distribution that agrees with the LOF assumption of spherical neighbor’s distribution
[42].

6.3.4.1 Bivariate input feature - Contextual anomalies

The performance of the unsupervised models, LOF and COF, using a bivariate input, i.e. blood
glucose levels and the insulin-to-carbohydrate ratio is given in Figure 35. The optimal
threshold values used in the model evaluation are given in Table 12. As can be seen from the
figure, smoothing the data enabled the models to generate better performance, and as a result,
both the models were able to yield excellent performance with the daily dataset [258]. However,
this is not the case for the hourly dataset, mainly related to the presence of highly detailed
information containing unwanted short-term and fast-scale features. In general, both the models
were able to produce a comparable performance in all the datasets, however, LOF has displayed
better performance. The performance (score) plot of the models can be found in Appendix 3 of
Paper 3 [258], depicting the capability of each model in detecting the infection episode from
the regular period. These models were tested on the entire patient-year.
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A) Daily Raw Dataset B) Daily Smoothed Dataset
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Figure 35: Bivariate input features - performance comparison (F1-score) of the unsupervised
models using bivariate input, i.e. blood glucose levels and insulin to carbohydrate ratio, source
[258], Table 8.

Table 12: Bivariate input features - optimal values of thresholds used in performance
evaluation. The values given as Tn are the optimal threshold values used for each patient-year,
h depicting that particular year, source [258], Table 8.

Granularity Pre-pro. Model (Thresholdpatient-year)
LOF (T1=2.4,T2=1.2, T3=1.45, T4=1.8)
COF (T1=1.4,T2=1.3, T3=1.4, T4=1.4))
LOF (T1=1.7, T2=1.6, T3=1.95, T4=2.2))
COF (T1=1.3, T2=1.3, T3=1.8, T4=1.8))
LOF (T1=1.4, T2=1.3, T3=1.35, T4=1.5))
COF (T1=1.2, T2=1.1, T3=, T4=1.1))

Without filter
Daily
With filter

Hourly With filter

6.3.4.2 Univariate input feature - Point anomalies

The performance of the unsupervised models, LOF and COF, using a univariate input, i.e. the
insulin-to-carbohydrate ratio is given in Figure 36. The optimal threshold values used in the
model evaluation are given in Table 13. As can be seen from the figure, like the bivariate case,
smoothing the daily dataset significantly improved the models’ performance. As described
above, similar to the bivariate case, smoothing the hourly dataset yields inferior performance
to the daily scenario, due to the presence of unwanted short-term and fast-scale features as a
result of higher data granularity. In general, both these models achieved comparable
performance in all the infection states. Regarding the raw dataset, LOF showed a slight edge
over the COF. For the hourly and daily smoothed dataset, both the models achieved comparable
performance. The performance (score) plot of the models can be found in Appendix A of this
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dissertation, depicting the capability of each model in detecting the infection state from the
regular period. These models were tested on the entire patient-year.
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Figure 36: Univariate input features - performance comparison (F1-score) of the unsupervised
models using univariate input, i.e. insulin to carbohydrate ratio.

Table 13: Univariate input features - optimal values of thresholds used in performance
evaluation. The values given as Tn are the optimal threshold values used for each patient-year,
h depicting that particular year.

Granularity Pre-pro. Model (Thresholdpatient-year)
 LOF (T1=27, T2=15, T3=2.95, T4=2.2)
ol Without filter o 1121 4, To=1.1, T3=2.3, T4=18))
. With filer | LOF (T1=18, T2=19, T3=2.8, T4=2.8))
COF (T1=16, T2=15, T3=2.8, T4=3.1))
Hourly | Withfiter | LOF (T=19, T2=16, T3=12, T4=1.7))

COF (T1=1.6, T2=1.3, T3=1.2, T4=1.3))

6.3.4.3 Comparison of input features

This section presents the comparison of the average performance that can be gained by utilizing
either of the bivariate or univariate input features. To this end, the performance of the
unsupervised models, LOF and COF, using blood glucose levels and insulin-to-carbohydrate
ratio versus the single insulin-to-carbohydrate ratio, is given in Figure 37. Per the findings, the
models with a univariate input feature have achieved improved performance compared to the
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bivariate input. This improvement could be linked with the discriminative power of the ratio
compared to blood glucose levels.
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Figure 37: Performance comparison (F1-score) of the unsupervised models using a bivariate
input, i.e. blood glucose levels and insulin to carbohydrate ratio versus a univariate input, i.e.
insulin to carbohydrate ratio, source partially from [258], Table 8.

6.3.5 Comparison of unsupervised versus one-class classifier
This section presents the comparative performance of the one-class classifier and the
unsupervised method. In this regard, as per the findings, compared to the semi-supervised
method, i.e. one-class classifier, the unsupervised method fails to achieve comparable
performance, especially with the bivariate input feature. One of the drawbacks of the
unsupervised method is related to the fact that they require a fairly large sample size to at least
produce comparable performance with the one-class classifiers [87]. This characteristic can be
easily observed by looking at the performance of the unsupervised method based on the whole
patient-year and the one-class classifier trained only with four months of the patient-year. To
further illustrate the difference in performance, the comparison of the best performing
unsupervised model, LOF, to its one-class classifier version, is given in Figure 38. As can be
seen from the figure, under almost all the circumstances the one-class classifier model achieved
superior performance. The characteristic of the data distribution, which contains a high and
sparse density pattern, could be the reason behind the performance degradation of the
unsupervised method [176] since these models require perfect demarcation between normal and
abnormal values. As described in the input features, the state of blood glucose dynamics
contains very rare events that contribute to the existence of sparse regions within the four
quadrants. In this regard, a typical example could be a holiday season, where an individual
happens to consume too many carbohydrates. Furthermore, the individual decision to switch to
physical activity or exercise sessions to compensate for insulin requirements could result in a

94



similar pattern. These sparse data or rare events are a normal portion of the data, which needs
to be treated as such by the detection methods. However, in these typical scenarios, the
unsupervised method could end up considering these situations as abnormal resulting in a false
alarm. In this regard, one of the main drawbacks of the unsupervised method is related to the
fact that they determine anomalies from the data themselves and, there is no mechanism to let
the model learn and accept certain sparse regions just like the one-class classifiers. Thus, the
atypical nature of the underlying data distribution affects the performance of an unsupervised
method. Yet, the one-class classifier method can handle such kind of situation if properly
introduced with such an example during the learning phase [258].
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Figure 38: Performance comparison (F1-score) of unsupervised and one-class classifier version
of the local outlier factor (LOF) model using both a bivariate input, i.e. blood glucose levels
and insulin to carbohydrate ratio, and a univariate input, i.e. insulin to carbohydrate ratio.

6.3.6 Computational Time
Models computational (running) time depicts the necessary time required by a model to learn
and classify given sample objects [217; 258]. In real-world applications, it can become a
bottleneck for a large scale implementation, i.e. real-time mass outbreak detection. In a certain
application, however, the learning time can be compromised considering that the model can be
trained offline [258]. However, the testing time is very crucial in almost all applications and is
one of the determinants of the model's success in achieving the proposed real-time task. To this
end, the model's average running time (learning and testing time) is estimated and compared.
To quantify and compare the required computational time by each model, different sample sizes
of bivariate training and testing data were used, i.e. 240, 480, 720, 960, 1200, 1440, 1680,
1920, 2160, 2400, 2640, 2880 objects. The resulting rough (average) computational time
requirements of the models is given in Figure 39 (a & b). Per the finding, generally, models

95



that took a significant amount of training time include NN, SVDD, and SOM. During the
detection phase, almost all the models took considerably less time except certain models such
as LOF and Incsvdd [258].
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a) The computational time for the training phase, source [258], Figure 5.
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b) The computational time for the detection phase, source [258], Figure 6.

Figure 39: Average running time required for the training and detection phase. Figure (a)
depicts the models’ time requirement during the training phase. Figure (b) depicts the models’
time requirement during the detection phase. The labels in X-axis stands for a quotient of the
sample size divided by twenty-four, i.e.10 (10*24), 20 (20*24), 30 (30*24), 40 (40*24), 50
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(50*24), 60 (60*24), 70 (70*24), 80 (80*24), 90 (90*24), 100 (100*24), 110 (110*24), 120
(120*24) sample objects. The models’ average computational time requirement is depicted on
the Y-axis.

6.3.7 Practical significance
The practical significance of the presented personalized health model can be viewed within the
scope of infectious disease outbreak detection, as demonstrated in this dissertation, and
assisting the individuals during infection episodes, i.e. decision support and learning platform
[258]. In this regard, the ability to detecting infection onset in real-time and under free-living
conditions can be devised to provide crucial and supportive information for decision making
[258; 259]. The following information can be vital to manage the crises;

e As discussed in chapter five, infection episodes induce elevated blood glucose levels
despite administering proper insulin and consuming less carbohydrate [259]. In this
regard, having real-time health status information can assist to provide information on
blood glucose evolution during the course of infection, such as time in-range blood
glucose levels [80], and glucose variability [50; 207; 251]. Such information coupled
with insulin sensitivity change could be very important to the individual. This is mainly
important in short term to mitigate the crises and also in the long term to learn how to
cope with a similar situation in the future.

e The other big challenge for the individuals during infection onset is setting right the
ratio of insulin to carbohydrate while taking a closer look at the blood glucose levels.
As discussed in chapter five, the reason is the presence of insulin resistance and glucose
production as the body’s response mechanism to the infection-causing pathogens [259].
Thus providing information regarding the evolution of the ratio during the crises can
help the individuals to estimate and set right the ratio during the crises. Further, this
kind of information can enable the individual to be aware of the degree of insulin
sensitivity change during infection episodes to better cope in the future.

Apart from this, the other important area could be a learning platform that can be used for
educational purposes. In this regard, it could be essential to educating individuals about the
effect of different infection pathogens and their associated deviations triggered on the key
parameters of blood glucose dynamics [259]. However, to use such a service in practice require
to analyze data containing different kind of pathogens and a large population to estimate the
degree of deviations associated with each pathogen among different individuals. The idea here
is to devise a simulation model, where a user can enter his body mass index, age, infection type,
days since infection begins, and other similar information to see his/her estimated range of
blood glucose levels, and change in the ratio (insulin sensitivity). In this regard, educating
individuals with such simulated information about what to anticipate at each phase of the
disease progression could be very essential [258; 259].
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6.4 Limitation

Taking into account the complexity of blood glucose dynamics, the development of the
proposed personalized health model requires considering a dataset from a large number of
participants and incorporating all the key parameters of the blood glucose dynamics. In this
regard, this study could be benefited from incorporating physical activity data and other
information. Furthermore, utilizing data from a large number of participants could further
validate the conclusion. However, it was very challenging and difficult for me to get a rich and
precise dataset to further strengthen the conclusion. Actually, my inclusion criteria were stiff
given the fact that I only considered datasets that are complete, accurate, and long enough (more
than 3 months) as well as are required to contain at least one infection episode, which makes
the data collection challenge far more difficult.

6.5 Knowledge Summary

In the context of the original research question, the following section presents the added
knowledge within the scope of the presented results.

What do we know about the topic already?

e Semi-supervised (one-class classifier) and unsupervised methods have been used in
various medical applications such as diagnosis and monitoring [57; 110; 164; 230].

e There is literature that exploits data from different sources such as google search,
school, and works absenteeism, wearables data such as resting heart rate and sleep
quality, pharmacy drug sales, and others to forecast infectious disease outbreaks [181;
194; 227]. However, none of this literature has used a personalized health model to
screen the health status of an individual in near real-time and under free-living
conditions based on their self-recorded health-related digital data for infectious disease
outbreak detection purposes.

What does this chapter add to our knowledge?

e To the best of my knowledge, this is the first attempt towards realizing a personalized
health model to screen health status and capture infection episodes among people with
type 1 diabetes using self-recorded data.

e Approaches and design alternatives for realizing a personalized health model is
presented. This model is the core and building block of the proposed personalized digital
infectious disease detection system.

e A personalized health model for health status monitoring and detection of infection
episodes among people with type 1 diabetes is realized. The experimental result
indicates the success of the proposed approach achieving excellent performance in
monitoring health status and detecting the infection episodes.

e Models with two alternative input features were evaluated and reported; bivariate input,
i.e. blood glucose levels and insulin-to-carbohydrate ratio, and univariate input, i.e.
insulin-to-carbohydrate ratio. The point is to consider the univariate input as an
alternative when there is a challenge in getting blood glucose measurements. The
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experimental result demonstrated the potential of these input features in the proposed
tasks. Among these two input alternatives, the univariate input feature achieved slightly
better performance.

Two approaches for setting the frequency of monitoring are evaluated and reported. In
this regard, the models were tested in two different data granularities, i.e. hourly and
daily. The experimental results demonstrated the capability of these approaches
achieving excellent performance in both data granularities. This capability allows the
proposed system to be developed considering both frequencies of monitoring, where the
personalized health model can run and perform computation either every hour or every
day, or both.

Within the scope of the realized personalized health model, the initial data requirement
from an individual to join the proposed system is evaluated and reported. The
assessment mainly considers the required sample size to generate acceptable model
performance in real-world settings. In this regard, the experimental result indicates that
every new participant joining such a system is required to fulfill minimum pre-collected
data requirement, and per the findings, a sample size of three-month training sample
size for the daily raw dataset (60 sample objects), a one-month (30 sample objects)
training sample size for the daily smoothed dataset, and a two-month training sample
sizes for the hourly dataset (60*24 objects) can be regarded as a rule of thumb data size,
to begin with. Of course, the presence of more data at the beginning will be favored,
however, this is not the case in practical settings. The point here was to establish a rule
of thumb data size for everybody to join the proposed system without compromising
the system’s accuracy.

Among the models tested, on average, models such as v-SVM, K-NN, and K-means
achieved relatively better performance with all evaluation criteria. The unsupervised
models underperformed compared to the one-class classifiers, and mainly due to the
nature of the data distribution.

The degree and severity of infection episodes dictate its detectability through the
developed personalized health models. In this regard, the experimental result
demonstrated that infection episodes, which trigger large and medium deviations are
captured with greater accuracy by the models. As per the findings, influenza (flu)
episodes were detected with superior accuracy, and infection such as mild common cold
without fever was also detected. However, infection such as light cold without fever
was not detected.

6.6 Chapter summary
This chapter presented and discussed results related to the development of a personalized health
model for detecting infection episodes among people with type 1 diabetes. A group of one-class
classifiers and unsupervised methods were tested, evaluated and performance assessed. The
one-class classifier models were evaluated in terms of input features, i.e. bivariate and
univariate, data granularity, i.e. daily and hourly, and required sample sizes, i.e. one, two, three,
and four months. The unsupervised models were evaluated with all these criteria but the sample
size. Generally, the experimental results demonstrated the potential of the proposed approaches
in achieving the intended task. In this regard, the proposed methods especially the one-class
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classifiers have demonstrated superior performance in detecting deviations from the norm due
to infection onset. In comparison to each particular one-class classifier model from their
respective groups, v-SVM, KNN, and, K-means achieved relatively better performance on
average with all the evaluation criteria. From the unsupervised models, LOF has demonstrated
a slight edge over COF with all the evaluation criteria. Comparing the one-class classifier with
the unsupervised method, the experimental result demonstrated the potential of the former to
the latter in these typical datasets. As far as my knowledge is concerned, this is the first study
that targeted a personalized health model to detect infection episodes among people with type
1 diabetes exploiting self-recorded data. In conclusion, these findings provide a novel approach
to support the ongoing surveillance efforts, and however, additional large-scale studies might
be needed to further strengthen the conclusion.
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7 Concerns, Expectations, and Willingness Towards
Sharing Self-Collected Health-Related Data

Synopsis: This chapter puts forward findings related to user concerns, expectations, and
willingness for long-term and successful sharing of self-collected health-related data. The
objective was to identify factors that enhance users' participation in the sharing of self-recorded
health-related data to the proposed system. The chapter presents results from a quantitative
survey conducted to identify these factors and closes with a concluding remark. This chapter
provides answers to the fourth research question (Q4).

7.1 Introduction
As presented and discussed in chapter four, the fundamental requirements in the proposed
EDMON system, are the availability of continuous, accurate, and precise self-recorded data
from the individual participants, and the willingness to share these data with the center for
further processing [259]. In fact, the individual participant usually self-records various
parameters of the blood glucose dynamics as part of his/her self-management practice. In this
regard, the idea behind the EDMON system is to use these data for secondary purposes, i.e.
infectious disease outbreak detection. This objective especially calls for a user, who is
motivated to continuously record accurate and precise health data and also willing to share the
data with the intended system. However, from a practical perspective, peoples motivation to
self-record accurate and precise data and willingness to share them vary considerably, and there
are several factors, concerns, and barriers to realizing these requirements in practical settings
[9; 24; 53; 60; 83; 93; 126; 189; 200; 201; 244; 245; 247; 249; 250; 252]. Data sharing concerns,
barriers, and willingness could vary under different circumstances, however, factors such as
lack of trust, incentives, and reciprocity, and concerns such as data ownership, access controls,
and confidentiality are among those depicted in the literature [177; 229; 246; 247]. To be
successful, a system like EDNON needs to consider different factors, concerns, barriers, and
enablers during system design and implementation. Therefore, this chapter focus on assessing
factors related to user concerns, expectations, and willingness for long-term and successful
mass sharing of self-collected health-related data. Moreover, it also assesses the user mHealth
apps feature preference and experience with health tracking technologies during data collection.
The study was carried out in two steps using exploratory sequential method [75; 171; 239],
where we primarily designed a qualitative interview guide incorporating five separate themes
and performed data collection and analysis, and then used the findings from the qualitative
study to further inform and rectify design of the quantitative survey questioners [105] and data
collection. The qualitative study was developed based on a detailed concept and application
scenarios of the proposed EDMON system, in general, and the patient unit, i.e. mHealth app,
in particular [7; 130]. The initial qualitative exploration assesses factors within the scope of
four main themes; sensors and wearables, data sharing, data integration, and social media and
entertainment. Within these themes, face-to-face interviews were conducted assessing user
knowledge, experience, and expectation [252]. The results from this qualitative exploration
were used to develop the quantitative survey questionnaire [105]. To pinpoint factors that stand
out for people with diabetes, the study performed a comparative analysis against other chronic
patients, and healthy individuals [257]. In total 430 participants responded to the survey, of
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which 61 individuals with diabetes, 82 individuals with other chronic diseases, and 285 healthy
individuals. The respondents were from Norway (59), Switzerland (187), Germany (13),
US/UK/Australia/Canada (77), France (26), and the other 46 respondents were from 35
different countries over the globe [257]. As can be seen from Table 14, there doesn’t exist an
age difference (p=.083) or gender difference (p=.133) among the study groups. The results
presented in this chapter are part of the findings presented in Paper 5 [257].

Table 14: Participants demographics, familiarity with wearable technologies, and data sharing
experiences. Na depicts the number of respondents who declined to answer, source [257], Table
1.

Variable Diabetes Other chronic Healthy individual

Age: <30y; 30-50y; >50y 15; 17; 27 (Na: 2) | 9; 32; 40 (Na: 1) 34; 96; 146 (Na: 6)

Gender: female; male; other |35;25;1 59; 20; 3 177; 99; 3

Wearable device: yes; no 59; 2 44; 36 143; 137

Sharing experience: yes; no | 24; 27 (Na: 10) | 22; 45 (Na: 14) 47, 160; (Na: 11)

7.2 Datarecording related experiences and preference

As described in chapter four, the proposed EDMON system considers mHealth app as a patient
unit, which is expected to integrate readings from various diabetes-related sensors and other
wearables technologies [259]. In this regard, this section explores the participant's experience
and regular usage of health-tracking technologies and further spotted features of mHealth apps
that the respondents rated important. For the EDMON system to be successful, it is crucial to
take into account the users' preferences and experiences while designing and developing the
patient unit [2; 77; 140; 252].

7.2.1 Experience and usage of health-tracking technologies
This section presents and discusses the result related to the participant’s experience and regular
usage of health tracking technologies. The respondents were presented with two questions
assessing the individual's experiences and regular usage of health tracking technologies. The
first question asked the respondents if they have experience with any wearable devices
(Yes/No) and the second question presented the following options; sensors integrated into the
smartphone, physical activity tracker, mobile health (mHealth) apps, health-specific
measurements, and none [105], and asked if they regularly use any of these health-tracking
technologies. As per the findings, as can be seen in Table 14 above, many people with diabetes,
close to 97%, in one way or another have used wearable device for self-management purposes
through collecting physical activity and other health-related data, as compared to people with
other chronic diseases (55%), and healthy individuals (51%), x?(423) =44.04, p=.001 [257].
Furthermore, as shown in Figure 40, people with diabetes tend to often regularly use health-
specific measurement devices and physical activity as compared to the other study groups. In
this regard, the result demonstrated that most people with diabetes (87%) regularly use health-
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specific devices in combination with a physical activity tracker, and only 3% reports no use of
sensor or wearable devices [257]. Among the other study groups including people with other
chronic diseases and healthy individuals, smartphones integrated with sensors and mobile
health apps are popular.

Health tracking technology
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Figure 40: Health-tracking technologies usage and experience among the three groups, source
[257], Figure 2 (b).

7.2.2 mHealth apps and features preference
This section presents and discusses the results related to the participant’s preferences for
mHealth app features. As described in chapter four, the proposed EDMON system relies on a
mHealth app for collecting the necessary data from the individual subject [259], and, in this
regard, it is crucial to understand what kind of features this group of patients prefer. Existing
literature outlined the importance of mHealth app features and functionalities for its rating
among the users, and are determinant factors that could have a positive impact on the user's
long term engagement [111; 156; 252]. Taking this into account, the respondents were asked to
rate these features; automatic setup and easy to understand/use, customizable feedback,
automatic data collection, non-disturbing, and tailored data analysis (1=not important to 4=very
important) [105]. The respondent's feature preferences are given in Figure 41. As per the
findings, non-disturbing features that require fewer interactions and features that allow
automatic setup, and are easy to understand (use) is rated as very important by most
respondents, i.e. main effect of feature, F(3.83,1163.75)=3.389, p=.01, n?=.011 [257].
Generally, people with chronic disease rated all the features as equally important, F
(2,304)=12.09, p<.001, n?>=.074. When it comes to people with diabetes, features that enable
automatic data collection is rated as the most crucial feature, yielding a significant interaction
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effect, F(7.66,1163.75)=2.104, p=.035, n?=.014. In this regard, the most probable reason is that
manual registration of data is more time consuming, and full of hassle. To this end, one
respondent said, "What is missing in most of the diabetes app is an automatic integration of
sensors that automatically collect data and different types of wearables for automatic collection
of data. In the short term manual input is not a big problem but in the long term, it would be a
lot of hassle to do that. Take a lot of time. Simple is a lot better "' [252]. Furthermore, automatic
setup and understandability, customized feedback, non-disturbing, and tailored analysis and
functionalities were also favored by people with diabetes [257].

Importance of health app features
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Figure 41: Preference of mobile health (mHealth) app features, source [257], Figure 1 (b).

7.3 Data sharing

As discussed in chapter four, the proposed EDMON system expects the individual participant
to continuously record accurate, and precise data and share these data with the center for further
processing [259]. Taking into account the sensitivity of health-related data, sharing of such data
faces significant challenges for several reasons [81; 117; 119; 126; 131; 225; 229]. To be
successful, it is necessary to involve all the stakeholders throughout system design and
implementation. In this regard, this section explores the participant's concerns, expectations,
and willingness towards mass sharing of self-recorded health-related data to the intended
system. Among the three groups, many people with diabetes reported data sharing experience
(47%), as shown in Table 14 above, compared to people with other chronic diseases (33%),
and healthy individuals (23%), ¥*=19.6, p<.001 [257].

104



7.3.1 Data sharing concerns and expectations
This section presents and discusses results related to the participant’s concerns and expectations
towards sharing data for the intended system. Understanding participant's concerns and
expectations towards sharing self-collected health data are important steps for successful
system design and development [15; 81; 117; 225; 257]. Taking this into account, the
respondents were asked about their degree of concerns and what do they expect in return for
sharing a given health data.

Several concerns could arise during data sharing [15; 117; 225], and in this regard, the
respondents were asked to rate different concerns, which are expected to arise during data
sharing, based on a 1 to 4 scale; trust-related issues (e.g. privacy/confidentiality/ security), data
ownership - who owns the data, data storage - where is the data stored/service availability, and
transparency of health data usage by 3" parties [105]. As per the findings, as shown in Figure
42, for people with diabetes, transparency is the highly-rated concerns, followed by confidence
related to data security and confidentiality (trust), ownership related to who owns the data
irrespective of storage location, and storage related to where the data is stored. As can be seen
from the figure, the group of healthy individuals is the least concerned with any of those stated
issues, and this could be related to the type of data these groups usually collect, which is less
health-specific [257]. All the respondents reported transparency as the most crucial concern and
storage location as the last issue of concern.

Concernment about sharing
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Figure 42: Participants’ concerns towards sharing health data, source [257], Figure 1 (a).

Understanding what kind of services the users might expect, i.e. incentives, in return for sharing
data and addressing those expectations during system design and implementation could have a
positive impact on a long-lasting engagement with the proposed EDMON system [225; 257].
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To this end, the users' expectations were assessed by asking the respondents to rate the
following features based on a 1 to 4 scale; personalized feedback and notification, integrated
view (including data analysis, aggregated results, and trends), decision support, comparing
status with others, and don’t expect anything [105]. Per the findings, as shown in Figure 43,
generally, 60% of the respondents (256 out of 429) rated personalized feedback as the most
important feature, 53% of the respondents (233 out of 429) rated integrated view, 36% of the
respondents (154 out of 429) rated decision support, and least rated feature was a status
comparison, and only 16% of the respondents (68 out of 429) expected it in return [257].
Expectations among the three groups didn’t differ, smallest p >.74. In this regard, providing
such features as personalized feedback, integrated view, decision support, and comparing status
with peer groups for people with diabetes could motivate this group for successful sharing of
self-collected health data to the proposed EDMON system. Interestingly, a high number of
people with diabetes also reported that they don’t expect anything in return for sharing data
(29%).

Expecting in return for sharing
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Figure 43: Participants' expectations in response to data sharing, source [257], Figure 2 (a).

7.3.2 Willingness towards anonymous sharing of data
This section presents and discusses results related to the participant’s willingness to
anonymously share different types of health-related data to the proposed EDMON system.
User’s willingness to share his/her health data depends on various factors such as the
sensitiveness of the data type to be shared, views and attitude towards data sharing, perceived
benefits and risks of data sharing, trust issues, fear of privacy, and data breaches, and a lot of
other factors [117; 120; 257]. As described in chapter four, the proposed EDMON system,
requires the individual participants to share mandatory data types (such as blood glucose levels,
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insulin, diet, medication, and geographical location) and optional data types (such as physical
activity, other physiological parameters, and others) [259]. Hence, the point was to assess the
users' willingness to anonymously share these and other data types to the proposed EDMON
system. To this end, the respondents were asked about their willingness to anonymously share
health-related data to a central server. The following options were presented based on a
multiple-choice format; lifestyle and dietary intake, medication intake and treatment,
physiological indicators, physical activity and exercises data, geographical location (GPS),
signs of infection, daily mood and feelings, weight, sleep duration, social environment (e.g.
risks of infection), and none of these [105]. Per the findings, as shown in Table 15, generally,
people with diabetes happen to be willing to share most parameters [257]. However, they are
reserved for certain parameters such as geographical location (GPS), and signs of infection. In
comparison between groups (corrected for multiple comparisons), generally, the respondents
don’t differ towards the sharing of certain parameters such as lifestyle and dietary intake, daily
mood and feelings, sleep duration, geographical location, and social environment. In general,
the respondents happen to be least willing (restrictive) towards sharing information about their
geographical location (GPS). As described above, geographical location information is one of
the mandatory data types that need to be shared with the proposed EDMON system for
performing a clustering and outbreak detection analysis. In an ideal scenario, having fine-
grained information such as where the individual work, live, school, and recently been can
assist in tracing back contacts if an infectious outbreak is detected [170; 199; 259; 261]. In this
regard, the practical implication is that the proposed EDMON system needs to put a substantial
effort to provide a proper privacy-preserving mechanism that can persuade the users or use
simply use a high levels address such as postal code and avoid the individual’s location [39;
259; 262].

Table 15: Participants' willingness towards sharing specific health-related data, source [257],
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Other chronic 44 45 45 40 46 54 16 50 49 35 16
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p-value <.001 .011 .074 <.001 .057 .012 .031 .016 <.001 .238 .023
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7.4 Practical Implication
As presented and discussed in chapter four, the proposed EDMON system requires a
continuous recording of accurate and precise data and sharing of these data to the system.
However, in practical settings, there are a number of challenges that arise during system design
and implementation and require proper mitigations options to properly address them. As per
the findings, the challenge can arise from 1) lack of motivation to stick to the EDMON app for
continuous, accurate, and precise data recording, 2) failure to address users concerns that arise
in response to data sharing 3) failure to fulfill user expectations out of the system, and others
[252; 257]. In this regard, Table 16 provides the main findings in this regard and puts forward
mitigation options for the challenges, and also highlights promising findings that foster the
system implementation.

Table 16: Topics and findings related to data recording and sharing, requirements of the
proposed EDMON system, and mitigation options for challenges that arise.

Wearable
device usage
experience

Regular
usage

Data recording

mHealth App
feature
preferences

Experience

Data sharing

Concerns

Most people with diabetes, close to
97%, have reported experience with
wearable devices and sensors.

Most people with diabetes (87%)
regularly use health-specific devices
and activity tracker, and only 3%
reports no use of sensor or wearable
devices.

Most people with diabetes prefer
automatic data collection, automatic
setup, understandability, customized
feedback, non-disturbing, and tailored
analysis.

Almost half of the people with diabetes
reported data sharing experience
(47%).

People with diabetes raised concerns
including transparency, data security,
confidentiality (trust), data ownership,
and data storage location.
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Accurate and precise
data recording in
continuous manners

Continuous (real-time)
sharing of recorded data

This is very relevant to accomplish the
stated requirements; accurate and precise
data recordings. Having well-experienced
users is an asset.

This is a great advantage and to some
extent can guarantee the continuity of the
data to the proposed EDMON system.
Regular usage and active engagement is a
requirement.

Designing and developing a usable
mHealth app for long term engagement
requires involving the users in the process
and incorporating users' preferences. In
this regard, adding these features to the
EDMON patient unit app can facilitate
long-lasting engagements.

This is a promising level of experience
that can be further nurtured through
properly addressing concerns,
expectations, and also carefully looking at
willingness and conditions for willingness
to certain types of data.

Failure to resolve users' concerns in regard
to data sharing could have a great impact
on hampering their motivations to engage
with the system. Hence, it is crucial to
address these users' concerns.



Expectation

Willingness

Personalized feedback, integrated
view, decision  support, status
comparison.

People with diabetes happen to be
willing to share most parameters but
geographical location.

Providing some kind of incentives to
better help manage their condition in
return to data sharing could motivate the
individuals to better stick to the system for
a long time. Hence, it is necessary to
include these functionalities in the
proposed EDMON system.

Regarding the geographical location, users
are clearly against it. Hence, a substantial
effort is needed to persuade the users by
providing strong privacy, security, and
confidentiality measures or simply rely on
higher-level address such as postal code,

which is less sensitive.

7.5 Limitation

One of the main limitations of the study could be the number of participants. The study could
be benefited more if the number of participants is large enough to further strengthen the
conclusion. The other possible limitation could be linked with the unbalanced number of
participants among the group used during the comparison. However, it should be noted that the
survey was distributed in different social media and forms for longer periods, and the
questionaries were also developed in three different languages to reach broader audiences.

7.6 Knowledge summary
In the context of the original research question, the following section presents the added
knowledge within the scope of the presented results.

What do we know about the topic already?

There are rapid advancements in health tracking technology, and these technologies are
being integrated into our daily life, and consequently, a large amount of data are being
generated each day.

Continuous collection of quality health data (active and long term engagement) and
willingness to share these data are mainly hampered by various factors.

Several pieces of literature have previously addressed the issue under different contexts
and objectives.

Data sharing in particular are affected by the underlying objective. For instance, most
people could refrain from sharing if there is an underlying commercial objective rather
than public or patient benefits.

What does this chapter add to our knowledge?

The result identified that the rate of adoption of health tracking devices is increasing,
for instance, among the diabetes participants, almost 87% of the respondents reported
regular use of health-specific devices and activity tracker, and only 3% reports no use
of such devices. Furthermore, 97% of the respondents reported experience with some
type of wearable devices and sensors. Besides, features such as automatic data
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collection, easier interface, e.g. voice command, tailored and personalized feedback are
reported to enhance usage time and long-term engagement.

e The result indicates that user's willingness to share health-related data mainly depends
on the type of data under consideration and related concerns such as privacy, security,
confidentiality, transparency, and ownership. For people with diabetes, transparency
and confidentiality of the data are found to be very critical when sharing self-
management data. The underlying reason can be linked to fear associated with
information leakage or data usage by 3™ parties. In this regard, for example, blood
glucose information containing experiences of repeated lows blood glucose level
(hypoglycemia), if discovered by a licensing authority, might end up suspending one’s
driving license.

e Fulfillment of user's expectations and resolving individual concerns could highly
facilitate sharing health-related data to a central repository. In this regard, the result
indicates that participants expect some kind of immediate benefits or incentives from
sharing, and this includes tailored and personalized data analysis, integrated view,
customized feedback, and others. However, comparison of status among peers in the
society is found to be less relevant. The respondents also highlight benefits to the
general public health as an additional facilitator.

e The result identified that despite anonymization, respondents still refrain from sharing
some kind of data. The respondent's willingness to share anonymous health-related data
does differ for different data types. For example, most of the participants don’t want to
share their geographical location for various reasons. However, on the other hand,
participants are willing to share health-related data including medication, physiological
parameters, weight, and others.

7.7 Chapter summary
This chapter presented and discussed the individual’s concerns, expectations, and willingness
towards successful sharing of self-collected data to the proposed EDMON system along with
mHealth features that could enhance active usage time and engagement. The study relies on an
exploratory sequential method, where the findings from a qualitative interview were used to
further inform and rectify the design of the quantitative survey questioners and data collection.
The qualitative interview guide was developed based on a detailed concept and application
scenarios of the proposed EDMON system in general and the patient unit, i.e. mHealth app, in
particular. The result identified that among people with diabetes, the rate of adoption of health
tracking and fitness devices is higher. Besides, factors such as automatic data collection, easier
interface, e.g. voice command, tailored and personalized feedback are reported to enhance
usage time and long-term engagement. When it comes to sharing self-collected health-related
data, the findings demonstrated that people with diabetes are willing to share certain parameters
such as medication intake and treatments, physiological indicators, lifestyle and dietary intake,
physical activity data, sleep duration, and weight. However, they are reserved for certain
parameters such as geographical location (GPS), and signs of infection. In return to data
sharing, people with diabetes expects some kinds of benefits or incentives such as tailored and
personalized data analysis, integrated view, customized feedback, and others. There are various
concerns people with diabetes have regarding data sharing, including transparency, confidence
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related to data security and confidentiality (trust), ownership related to who owns the data, and
storage related to where the data is stored. Generally, the findings presented in this chapter can
support the effort towards enhancing user engagement and facilitate successful data sharing,
however, further large scale study might be needed to further strengthen the conclusion.
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8 Conclusion and Future Works

Generally, there has been a consensus about the effect of infection onset in people with type 1
diabetes, and it has been known for a long time, however, there has been little to no attempt
towards exploiting self-recorded data from these patient group to detect infection onset on an
individual basis; thereby assisting the effort towards detecting infectious disease outbreaks.
Moreover, in the bodies of literature, little to no studies have previously considered infection
onset as a major parameter while designing and modeling either prediction or anomaly detection
services for this group of patients. These knowledge gaps have stimulated towards defining the
main research problem (MP) as follows: What is the effect of infection incidence on key
parameters of blood glucose dynamics amongst people with type 1 diabetes, and how can self-
recorded data from this patient group assist in detecting an infectious disease outbreak?

8.1 Contribution
This section will highlight and discuss the main contributions within the scope of the original
research problem and the objective of the dissertation.

Contribution 1 (C1) - Paper 1 related to Q1. A general framework of a personalized health
model-based digital infectious disease detection system for realizing a system that can collect,
analyze, detect, and notify the concerned bodies about the ongoing outbreak.

This contribution is linked to the first research question (Q1) and aims to provide a general
framework for the proposed personalized health model-based-digital infection detection
system, i.e. EDMON system. In literature, there are various implemented systems designed for
diabetes-related service, i.e. remote monitoring [14; 109; 185; 193; 268], and disease
surveillance purposes [8; 54; 55; 91; 227]. Therefore, the point was to integrate concepts from
those systems and come up with a novel framework that utilizes self-recorded data from people
with type 1 diabetes, and assist in detecting infectious disease outbreaks. The framework is one
of a kind introducing the individualization concept for surveillance purposes in practical
settings. In this regard, the framework put forward a personalized health model-based-digital
infectious disease detection system that detects infection onset at an individual level and uses
such information for detecting infectious disease outbreaks among the public by identifying a
cluster of infected individuals based on time and geographical locations. Moreover, it also
highlights challenges that could emanate from practical implementation. Therefore, the
contribution is the framework itself, from where the actual system can be implemented.

The entire work related to this contribution is presented and discussed in Chapter 4.

Contribution 2 (C2) - Paper 1 related to Q2. A proof of concept towards using key
parameters of blood glucose dynamics for infection detection.

This contribution is linked to the second research question (Q2) and aims to provide a
characterization of the effect of infection episodes on key parameters of blood glucose
dynamics amongst people with type 1 diabetes. Among other things, the characterization
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identifies optimal parameters for infection detection by quantifying the nature and degree of
infection triggered deviations. The point was to select optimal parameters from the group of
key parameters of blood glucose dynamics to realize the proposed personalized health model
with a minimum false alarm rate as possible. In this regard, some studies in the literature have
investigated the possibility of using self-recorded data from this patient group for outbreak
detection and surveillance purposes, see chapter five. However, none of these studies
investigated and characterized the effect of infection episodes on each key parameter of the
blood glucose dynamics and pinpoint optimal parameters with high accuracy. To the best of my
knowledge, this is the first study that empirically and numerically quantifies the effect of
infection episodes on each key parameter of the blood glucose dynamics among people with
type 1 diabetes exploiting self-recorded data. The study carried out a trend analysis and data
distribution estimation to pinpoint the optimal parameters relying on a real dataset of ten
patient-years. Therefore, the contribution is the characterization of the effect of infection
episodes, and identification of optimal parameters for developing the proposed personalized
health model.

The entire work related to this contribution is presented and discussed in Chapter 5.

Contribution 3 (C3) - Paper 3 related Q4. A personalized health model for detecting
infection incidences in people with type 1 diabetes using blood glucose, insulin, and
carbohydrate information.

This contribution is linked to the fourth research question (Q4) and aims to provide a
personalized health model that is capable of monitoring the individual’s health status in free-
living conditions. To the best of my knowledge, this is the first attempt towards realizing a
personalized health model to capture infection episodes among people with type 1 diabetes
using self-recorded data. The model accepts the user's self-recorded data continuously and
automatically detects when the individual becomes sick. The realized model is a type of
contextual anomaly detector exploiting blood glucose levels and insulin-to-carbohydrate ratio,
where blood glucose is the behavior to be observed and the ratio of insulin-to-carbohydrate is
the context. A group of one-class classifiers and unsupervised models were tested and
evaluated. Therefore, the contribution is the personalized health model.

The entire work related to this contribution is presented and discussed in the first half of
Chapter 6.

Contribution 4 (C4) - Paper 4 related Q4. An alternative personalized health model for
detecting infection incidences in people with type 1 diabetes using only insulin and
carbohydrate information.

This contribution is linked to the fourth research question (Q4) and aims to provide an
alternative approach towards realizing a personalized health model for monitoring the
individual’s health status in free-living conditions, and automatic detection of infection onset.
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The point was to realize a model with less number of input parameters, i.e. using only insulin-
to-carbohydrate ratio, and provide an alternative model. The realized model is a type of point
anomaly detector exploiting the insulin-to-carbohydrate ratio, where each point of the time-
series is observed. Almost the same group of one-class classifiers and unsupervised models
were tested and evaluated. Therefore, the contribution is the alternative personalized health
model.

The entire work related to this contribution is presented and discussed in the second half of
Chapter 6.

Contribution 5 (C5) - Paper 5 related to Q5. Assessments of user concerns, expectations,
and willingness towards sharing self-collected health-related data.

This contribution is linked to the fifth research question (Q5) and aims to provide a list of user
concerns, expectations, and willingness for long-term engagement and successful sharing of
health-related data to the proposed EDMON system. An exploratory sequential method was
used, where we primarily designed a qualitative interview guide incorporating five separate
themes and performed data collection and analysis, and then used the findings from the
qualitative study to further inform and rectify the design of the quantitative survey questioners
and data collection. In this regard, initially, a qualitative exploration, i.e. face-to-face interview,
was conducted based on a detailed concept and application scenarios of the proposed EDMON
system in general, and the patient unit, i.e. mHealth app, in particular. Then, the findings from
the qualitative interviews were used as input to inform, rectify, and refine the quantitative
survey questionnaires. The contribution is a list of user concerns, expectations, and willingness
for long-term engagement and successful sharing of self-collected health-related data to the
proposed EDMON system. These factors are essential and need to be taken into account during
the design and implementation of the proposed EDMON system.

The entire work related to this contribution is presented and discussed in Chapter 7.

8.2 Main Conclusion
To effectively answer the main research problem, it is necessary to briefly address the different
sub-questions as they were derived to address part of the main research problem.

Question 1 (Q1). How is a personalized health model-based digital infectious disease
detection system that collects self-recorded data from participants, analyses the data, detect
deviations on an individual basis, identify a cluster of individual, and notify the status of an
outbreak to be designed and implemented?

To answer this in a commendable way, it was quite necessary to identify and address different
sub-components of the proposed EDMON system and realize a framework that depicts the
relationship and task requirements of the components. In this regard, the realized framework
contains different units performing a series of tasks; patient unit, data repository (database) unit,
infection detection unit, clustering unit, information visualization unit, and a wireless
communication platform. The patient unit is a standalone smartphone app (mHealth app) that
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integrates and stores different sensor readings, which could be through either manual or
automatic recordings. The individual’s data-structure should at least contain information on
blood glucose levels, insulin and carbohydrate registration, geographical location, and time of
registration. Currently, most diabetes technologies enable Bluetooth connections to foster the
integration of sensor readings. The data stored in the mobile app needs to be transmitted to a
database server, where it is stored for further processing. However, given the sensitivity of
health data, high emphasis needs to be given to data security, privacy, and confidentiality. In
this regard, the transmission and storage of data in a server need to strictly follow major
international guidelines, e.g. HIPPA compliance. The infection detection unit should have
access to the individual’s records from the database and execute the personalized health model,
which is trained on the individual’s historical data, to look for any abnormal deviations
promptly. At any given time, the output from the personalized health model is the individual’s
health status coded as normal (0), suspicious (-1), and infected (1). The clustering unit should
accept the timely health status from each individual participant along with their respective
geographical location and time of data registration to perform a Spatio-temporal analysis to
detect a group of infected individuals under a region of surveillance. The status of the region or
city under surveillance can be visualized based on either a standalone smartphone app (mHealth
app) or a web-based or both. The information can be useful for the patient himself/herself,
relatives, societies, healthcare, and public health officials.

Question 2 (Q2). What is the effect of infection incidence on key parameters of blood glucose
dynamics among people with type 1 diabetes, and which parameters can effectively be used
for detecting infection incidences in people with type 1 diabetes?

To answer this question, background work was conducted assessing previous similar works and
existing knowledge about the effect of infection onset amongst people with type 1 diabetes. In
this regard, particular emphasis was given to empirical studies that numerically assess the
nature, and degree of infection triggered deviations on different parameters of the individual’s
blood glucose dynamics as compared to the regular period. A knowledge gap was identified
and empirical data analysis was conducted using data containing real infection episodes [253,;
259]. The empirical analysis demonstrated that compared to the regular period, infection onset
triggers significant deviations from the typical norm of blood glucose dynamics. Per the
findings, during the entire course of infection, blood glucose levels remain elevated regardless
of higher insulin injections and consumption of lesser carbohydrates. This event marks the onset
of infection in people with type 1 diabetes. During the regular period, blood glucose usually
drops to the hypoglycemia region with higher insulin injections and lesser carbohydrate
consumption. Hence, the individual diabetes profiles including blood glucose level, insulin
injection, carbohydrate ingestion, and insulin-to-carbohydrate ratio are significantly affected
by infection episode and can be successfully be used for developing a personalized infection
detection model. Among these parameters, blood glucose level and the ratio of insulin-to-
carbohydrate happen to be more informative of infection onset.

116



Question 3 (Q3). What is the status regarding an infection detection system using self-
recorded data from people with type 1 diabetes and to what extent do the existing personalized
decision support systems, and blood glucose alarm events applications consider infection
incidence and its effect while developing blood glucose anomalies detection algorithms?

As a roadmap to the realization of a personalized health model for detecting infection onset, it
was necessary to perform a review that assesses the existence of any previously developed and
implemented infection detection system exploiting self-recorded data from people with type 1
diabetes, and also other existing systems such as personalized decision support system and
blood glucose alarm event applications. The point here was to look after similar systems and
also to evaluate how and to what extent do the existing blood glucose anomaly detection
algorithm uses information related to infection. In this regard, there are few attempts to realize
an infection detection system, see chapter two. However, it turns out that there doesn’t exist
any developed and implemented infection detection system and almost all the studies don’t
consider information related to infection episode as a parameter while developing anomalies
detection and prediction model [253]. For instance, an anomalies detection algorithm designed
to detect hyperglycemia episodes (high blood glucose levels) in people with type 1 diabetes
consider only detecting the presence or absence of hyperglycemia and ignores the underlying
cause, which in some cases might be infection onset.

Question 4 (Q4). How to design and develop a personalized health model that can
continuously monitor individual health status and automatically detect infection onset using
self-recorded data from people with type 1 diabetes?

To answer this question, it was necessary to look for a model that can continuously monitor the
individual’s health status and automatically detect infection onset in this patient group while
reducing false alarms. This can be achieved via either a blood glucose prediction approach or
an anomaly detection approach, see chapter four. However, the choice is quite dependent on
the state-of-the-art performance of these approaches under free-living conditions. In this regard,
given the state-of-the-art performance of blood glucose prediction models, which rapidly
degrades after 30 min prediction horizon, it is natural to look for other possible approaches that
can operate in hourly and daily timeframes (data granularity). The optimal approach, in this
case, will be to rely on semi-supervised (one-class classifiers) and unsupervised anomaly
detection strategies. One-class classifier requires to learn the domain knowledge (reference
description) that accurately describes what is normal to detect deviations from normality.
However, the unsupervised approach doesn’t require training and detect deviation from
normality based on the entire dataset presented during testing.
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Question 5 (Q5). What are the user concerns and expectations towards sharing self-collected
health-related data with the proposed system? and what type of data are they willing to
anonymously share?

To answer this in acommendable way, it was necessary to perform either a qualitative interview
or quantitative survey, or both to identify a list of factors based on either a prototype system or
a detailed concept and application scenarios of the proposed EDMON system. In this regard,
an exploratory sequential method was used, where findings from a qualitative face-to-face
interview were used to further inform, rectify, and refine the quantitative survey questionaries.
Per the findings, factors such as automatic data collection, easier interface, e.g. voice command,
tailored and personalized feedback were reported to enhance usage time and long-term
engagement. People with diabetes are found to be willing to anonymously share most of the
parameters including medication intake and treatments, physiological indicators, lifestyle and
dietary intake, physical activity data, sleep duration, and weight. However, they are reserved
for certain parameters such as geographical location (GPS), and signs of infection. In return to
data sharing, people with diabetes expects tailored and personalized data analysis, integrated
view, feedback, and others. There are various concerns people with diabetes have in relation to
data sharing including transparency, confidence related to data security and confidentiality
(trust), ownership related to who owns the data, and storage related to where the data is stored.

8.2.1 Main Research Problem — MP

MP: What is the effect of infection incidence on key parameters of blood glucose dynamics
amongst people with type 1 diabetes, and how can self-recorded data from this patient group
assist in detecting an infectious disease outbreak?

Blood glucose dynamics are affected by numerous factors and infection onset is one of them.
This dissertation has shown that infection onset amongst people with type 1 diabetes triggers a
substantial shift in the operating point of the blood glucose dynamics, which results in
prolonged hyperglycemia regardless of higher insulin injection and fewer carbohydrate
consumptions, which contradicts the typical norm of blood glucose dynamics. It is important
to note that these circumstances during the regular day usually result in severe hypoglycemia.
Generally, per the findings, infection episode triggers substantial deviations on the key
parameters of blood glucose dynamics; and blood glucose level, amount of insulin injection,
amount of carbohydrate consumption, and the ratio of insulin-to-carbohydrate and can be
regarded as optimal parameters for infection detections. In this regard, the results demonstrated
the potential of the individual’s diabetes profile containing these self-recorded data for realizing
a personalized health model for continuous monitoring of an individual’s health status, and
automatic detection of infection onset in free-living conditions; thereby using such information
for detecting infectious disease outbreaks by identifying a cluster of infected individuals based
on time and geographical locations. In regard to the personalized health model, the experimental
results demonstrated the potential of the models designed with bivariate input (blood glucose
levels and insulin-to-carbohydrate ratio), and univariate input (insulin-to-carbohydrate ratio).
The proposed personalized health model with a one-class classifier and unsupervised methods
have shown significant detection capability.
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The results presented have practical significance for understanding the effect of infection
episodes amongst people with type 1 diabetes, and the nature of infection triggered deviations
incurred on blood glucose dynamics. Given the criticality of detection time in infectious disease
surveillance, recent efforts have been focused on analyzing different data sources, which are
mainly aggregated data at population levels. In this regard, little to no efforts have been made
to realize individualized surveillance based on a personalized health model exploiting self-
recorded data. In this regard, the result presented in this dissertation has practical significance
for understanding the potential of personalized health model in outbreak detection settings.
Actually, the advantage behind the personalized health model concept introduced in this
dissertation lies in its usefulness beyond the surveillance purpose. In this regard, the presented
personalized health model can also be used for other purposes such as to devise decision support
tools and learning platforms for the patient to properly manage infection-induced crises.
Generally, developing a personalized health model-based digital infectious disease detection
system like EDMON, which aims for early detection, i.e. during the incubation period, requires
considering various aspects, and the results presented in this dissertation construct evidence
that supports the efforts towards building the next generation personalized health model-based-
digital infectious disease surveillance systems and provoke further thoughts in this challenging
field.

8.3 Future Works
This dissertation produced several topics that need to be realized in long term for the proposed
EDMON system, along with other important additional topics to be considered for further
improvement.

Prototype development: This dissertation has presented and discussed the required framework
along with user concerns, expectations, and willingness for data sharing, and the necessary
personalized health model to realize the prototype system. During the Ph.D. period, an initial
prototype for the backend server, and mHealth app has been developed [58]. These components
need further improvements and currently, the integration of different sensors into the mHealth
app is underway. Therefore, the effort to realize the prototype system is still ongoing. During
the entire system design and development, it is necessary to involve all the stakeholders.

Effect of different pathogens: This dissertation has presented findings from a real incidence of
influenza and common cold without fever and demonstrated its effect on key parameters of
blood glucose dynamics. However, a large scale study is required to further validate the findings
with a large number of participants. Moreover, it is necessary to perform analysis and identify
the effect of other different pathogens on blood glucose dynamics.

Blood glucose prediction model: This dissertation has developed the infection detection unit
with an anomaly detection method and demonstrated its applicability to the task. The choice
was made based on the state-of-the-art performance of these two methods. However, it is
necessary to test the prediction based method and compare the performance with the anomaly
detection method presented.
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Physical activity data: The models and empirical analysis presented in this dissertation exploits
the three key parameters of blood glucose dynamics: blood glucose levels, insulin,
carbohydrate, and insulin-to-carbohydrate ratio, and the findings demonstrated the potential of
these parameters. However, it is necessary to investigate the added benefit of utilizing physical
activity or exercise sessions data.

Disease Characterization: After detection of an infectious disease outbreak comes disease
characterization, which is an integral part of outbreak reporting. Disease characterization is a
process by which the type of causative agent or pathogens is determined [237]. In the existing
disease surveillance systems, characterization is often carried out mainly by investigating the
pathogen's mode of transmission, epidemics curve (incubation period), and its symptoms
manifestations [1; 59; 237]. However, in the context of people with type 1 diabetes, it might be
possible to characterize the pathogens through the individual's self-recorded data. In this regard,
there are studies that report the associations between the degree of infection-triggered
deviations on blood glucose dynamics and the type of pathogens involved, and hence,
thoroughly analyzing large-scale datasets incorporating a different type of infections or
pathogens could characterize them via quantifying the deviations each pathogen induces on
blood glucose dynamics.

Detection time: Early detection is a crucial characteristic of any infectious disease surveillance
system. In this regard, a surveillance system capable of detecting infectious disease outbreaks
during the incubation period is highly sought. To this end, there is evidence suggesting that
people with type 1 diabetes sometimes experience elevated blood glucose levels before
symptom onset. Therefore, it might be possible to detect infection onset in this patient group
before the individual experiences symptoms. In this regard, it is necessary to investigate and
analyze CGM features within the context of other parameters of blood glucose dynamics, and
along with different physiological parameters such as heart rate, body temperature, and other
vital signs.

Harnessing data from wearables: The ubiquitous nature of smartphones and wearables
equipped with a variety of physiological sensors have presented a huge potential and unbounded
possibility to realize a personalized health model-based digital infectious disease detection
system [181; 194]. A huge amount of data is being generated each day that can be geared toward
detecting infectious disease outbreaks. As demonstrated in this dissertation, apart from its use
in detecting infectious disease outbreaks, this type of early warning system can also address the
need of having real-time health status information for different groups in the population,
including chronic patients, aging populations, people using ambient assisted living, and healthy
individuals. In literature, there is evidence suggesting the predictive potential of different
physiological parameters in response to infection onset including heart rate, sleep quality, body
temperature, and other similar variables [181]. Therefore, it might be possible to realize a
personalized health model after performing a large scale study to further assess the predictive
potential of these and other similar physiological parameters. The advantage of this approach
lies in the fact that it can incorporate almost every individual in the population that uses
wearable devices for their own purposes. From a surveillance perspective, having a large
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population under surveillance is an advantage to produce statistically significant outbreak
detection results.
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10 Appendix A - Score plot of the models using the
univariate input feature: Ratio of Insulin to
Carbohydrate

The following appendix presents the performance score of the different models evaluated in the
dissertation using univariate input — insulin-to-carbohydrate ratio. Both the one-class classifiers
and unsupervised models were tested. For the one-class classifier models, a random block of a
4-month sample size from each patient-year was used to train the models and evaluated with
the whole patient-year — containing both the regular and infection days. Unsupervised models
were tested with the whole patient-year. The smoothed version of the dataset is used and the
models were tested with both the hourly and daily datasets. The score plot of the models is
given below, and, as can be seen from the figures, each model generated different scores and
rejected varying portions of the infection episodes.

10.1. One-class classifier Method

10.1.1. Daily

10.1.1.1. The First Infection Episode (Flu)

Boundary and Domain based Methods

Figure 1: Boundary and domain-based method.

135



Figure 2: Density-based method.

Figure 3: Reconstruction-based method.
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10.1.1.2. The Second Infection Episode (Flu)

A\
M

Figure 4: Boundary and domain-based method.
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Figure 5: Density-based method.
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Figure 6: Reconstruction-based method.

10.1.1.3. The Third Infection Episode (Flu)
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Figure 7: Boundary and domain-based method.
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Figure 9: The score of the reconstruction-based method on the whole patient-year.
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10.1.1.4. The Fourth Infection Episode (Flu)
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Figure 11: Density-based method.
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Figure 12: Reconstruction-based method.

10.1.2. Hourly

10.1.2.1. The First Infection Episode (Flu)

Figure 13: Boundary and domain-based method.
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Density based methods
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Figure 14: Density-based method.
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Figure 15: Reconstruction-based method.
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10.1.2.2. The Second Infection Episode (Flu)

Boundary and Domain based Methods
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Figure 16: Boundary and domain-based.
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Figure 17: Density-based method.
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Figure 18: Reconstruction-based method.

10.1.2.3. The Third Infection Episode (Flu)

Figure 19: Boundary and domain-based method.
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Density based methods

 Insulin to Carbs Ratia

Ratio

1 f
hoa A I /
L»MN"\J“-\n/““f“.”“‘w"“"*“"’“*\,«_,-"w'""wwu“"\ﬂw”\,lw‘\f"“” WAL A AN A AP it Ay

000 5000 00 8000

Mormal Gaussian
o

T v | ) T Lol “’—"—‘

1080 2000 3000 w00 5000 w000 00 8000 0

Figure 20: Density-based method.
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Figure 21: Reconstruction-based method.
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10.1.2.4. The Fourth Infection Episode (Flu)

Boundary and Domain based Methods
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Figure 22: Boundary and domain-based method.

Density based methods
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Figure 23: Density-based method.
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Figure 24: Reconstruction-based method.
10.2. Unsupervised method

10.2.1. Daily

10.2.1.1. The First Infection Episode (Flu)

Figure 25: LOF and COF (k = 30 data points).
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10.2.1.2. The Second Infection Episode (Flu)

Figure 26: LOF and COF (k = 30 data points).

10.2.1.3. The Third Infection Episode (Flu)

Figure 27: LOF and COF (k = 30 data points).
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10.2.1.4. The Fourth Infection Episode (Flu)
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Figure 28: LOF and COF (k = 30 data points).

10.2.2. Hourly

10.2.2.1. The First Infection Episode (Flu)
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Figure 29: LOF and COF (k = 240 data points).
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10.2.2.2. The Second Infection Episode (Flu)
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Figure 30: LOF and COF(k = 240 data points).

9.2.2.3. The Third Infection Episode (Flu)
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Figure 31: LOF and COF(k = 240 data points).
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10.2.2.4. The Fourth Infection Episode (Flu)
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Figure 32: LOF and COF(k = 240 data points).
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11 Appendix B — Models performance using the
univariate input feature: Ratio of Insulin-to-

Carbohydrate

This appendix presents the evaluation of the models in each patient-year. The performance is
depicted in terms of the area under the ROC curve (AUC), specificity, and F1-score. The table
depicts the performance of each model in regard to different evaluation criteria; 1) model
performance across each infection episode and thereby depicting performance variations among
individuals, 2) sample sizes depicts model performance with limited data sample sizes, 3) data
granularity, i.e. daily and hourly, depicts the model's performance in response to variations in
detail within the data, 4) data nature, i.e. raw and smoothed data (moving average window size
= 2 days or 48 hrs), depicts the model performance improvement gained by removing short
term and fast scale features from the data.

11.1. One-class classifier Method

11.1.1. Daily

11.1.1.1. The 1% Infection Episode (Flu)

Table 1: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Models

SVDD
u-SVM
Nearest Neighbor

MST

Gaussian OC
MoG
MCD Gaussian

Parzen

Naive Parzen
k-NN
LOF

Auto — encoder
SOM

K-means

AuC
86.4(6.2)
86.9(4.7)
84.6(6.8)
90.3(3.2)

89.0(6.4)
89.0(6.4)
91.1(5.1)
91.8(5.4)
91.8(5.4)

89.0(5.3)
85.6(3.7)

88.1(10)
94.7(5.9)
89.0(6.4)

1 Month
Specificity
83.3(0.0)
83.3(0.0)
31.7 (13.9)
50.0 (0.0)

83.3(0.0)
83.3(0.0)
83.3(0.0)

73.3(8.2)
73.3(8.2)

83.3(0.0)
83.3(0.0)

68.4(17.7)
77.6(11.8)
83.3(0.0)

1
82.7(6.3)
88.4(3.6)
59.1(4.1)
66.0 (2.0)

82.7(6.3)
82.7(6.3)
84.1(5.9)
78.2 (4.9)
78.2 (4.9)

84.6(3.2)
84.1(5.9)

73.6(11)
77.1(10)
82.7(6.3)

AUC
88.4(4.1)
90.9(3.4)
93.8(5.7)
90.9(1.8)

90.8(3.5)
90.8(3.5)
94.6(2.7)
94.1(3.3)
94.1(3.3)

93.7(3.0)
94.6(2.7)

92,5(7.0)
97.3(2.9)
90.8(3.5)

Boundary and Domain-Based Method

2 Months 3 Months
Specificity F1 AuC Specificity
83.3(0.0) 90.8(3.2) 92.6(22)  88.9(0.0)
83.3(0.0) 91.4(2.8) 96.1(1.6)  88.9(0.0)
433(82)  76.6(2.9) 89.9(19)  66.7(0.0)
65.0(5.0) B84.6(23) 942(05)  78.9(33)
Density-Based Method

833(0.0) 90.6(3.7) 956(2.1)  88.9(0.0)
833(0.0) 90.6(3.7) 956(2.1)  88.9(0.0)
833(0.0) 906(3.7) 96.4(15)  88.9(0.0)

83.3(0.0) 90.8(3.2) 97.2(1.5) 88.9(0.0)
83.3(0.0) 90.8(3.2) 97.2(1.5) 88.9(0.0)

83.3(0.0) 91.5(2.8) 97.1(14) 88.9(0.0)
81.7(5.0) 90.9(3.2) 96.8(15) 87.8(3.3)

Reconstruction-Based Method

76.2(14)  87.1(67) 94.8(48) 827(9.7)
830(2.9) 889(6.0) 957(2.2)  88.9(0.0)
83.3(0.0) 90.6(3.7) 956(2.1)  88.9(0.0)
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F1
92.3(5.0)
94.1(22)
85.3(18)
90.0(05)

935(3.7)
935(3.7)
93.5(3.7)

93.5(3.7)
935(3.7)

935(3.7)
93.1(39)

89.8(6.0)
93.5(2.6)
935(3.7)

AUC
88.5(3.1)
93.6(2.7)
92,9(5.5)
91.5(0.4)

93.0(3.3)
93.0(3.3)
94,5 (2.6)

95.7 (2.7)
95.7 (2.7)

95.7(2.7)
94.4(3.7)

92.4(7.2)
94.8(2.1)
93.0(3.3)

4 Months
Specificity
83.3(0.0)
83.3(0.0)
48.3(5.0)
68.3 (5.0)

83.3(0.0)
83.3(0.0)
83.3(0.0)

83.3(0.0)
83.3(0.0)

83.3(0.0)
63.3(14.6)

75.5(11.1)
83.3(0.0)
83.3(0.0)

F1
91.0(2.9)
91.8(1.4)
79.2 (1.6)
86.5(2.0)

91.9(1.3)
91.9(1.3)
91.9(1.3)

91.0(2.9)
91.0(2.9)

91.9(1.3)
84.0(6.7)

87.7(5.4)
90.6(3.0)
91.9(1.3)



Table 2: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

11.1.1.2. The 2" Infection Episode (Flu)

Table 3: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction = 0.01

153



Table 4: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01

11.1.1.3. The 3" Infection Episode (Flu)

Table 5: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction = 0.01
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Table 6: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01

11.1.1.4. The 4" Infection Episode (Flu)

Table 7: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction =0.01
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Table 8: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01

11.1.2. Hourly
11.1.2.1. The 1%t Infection Episode (Flu)

Table 9: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01
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11.1.2.2. The 2" Infection Episode (Flu)

Table 10: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01

11.1.2.3. The 3" Infection Episode (Flu)

Table 11: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01
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11.1.2.4.The 4th Infection Episode (Flu)

Table 12: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction =0.01

11.2. Unsupervised Method

Table 13: Univariate Input Raw and Smoothed Data for both the daily and hourly data
granularity - Average and standard deviation (F1-score, AUC, specificity). The parameters Kqd
and kn represent the optimal number of nearest neighbors for the daily and hourly cases
respectively.

Density-Based Methods
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Abstract

Background: Type 1 diabetesisa chronic condition of blood glucose metabolic disorder caused by alack of insulin secretion
from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that
patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on
key parameters of blood glucose dynamics to support the effort toward developing adigital infectious disease detection system.

Objective: The study aims to retrospectively analyze the effect of infection incidence and pinpoint optimal parameters that can
effectively be used asinput variablesfor devel oping an infection detection algorithm and to provide ageneral framework regarding
how adigital infectious disease detection system can be designed and devel oped using self-recorded data from people with type
1 diabetes as a secondary source of information.

Methods: We retrospectively analyzed high precision self-recorded data of 10 patient-years captured within the longitudinal
records of three people with type 1 diabetes. Obtaining such a rich and large data set from a large number of participants is
extremely expensive and difficult to acquire, if not impossible. The data set incorporates blood glucose, insulin, carbohydrate,
and self-reported events of infections. We investigated the temporal evolution and probability distribution of the key blood glucose
parameters within a specified timeframe (weekly, daily, and hourly).

Results: Our analysisdemonstrated that upon infection incidence, thereisadramatic shift in the operating point of theindividual
blood glucose dynamicsin al the timeframes (weekly, daily, and hourly), which clearly violates the usual norm of blood glucose
dynamics. During regular or normal situations, higher insulin and reduced carbohydrate intake usually results in lower blood
glucose levels. However, in all infection cases as opposed to the regular or normal days, blood glucose levels were elevated for
a prolonged period despite higher insulin and reduced carbohydrates intake. For instance, compared with the preinfection and
postinfection weeks, on average, blood glucose levels were elevated by 6.1% and 16%, insulin (bolus) was increased by 42%
and 39.3%, and carbohydrate consumption was reduced by 19% and 28.1%, respectively.

Conclusions: We presented the effect of infection incidence on key parameters of blood glucose dynamics along with the
necessary framework to exploit theinformation for realizing adigital infectious disease detection system. The results demonstrated
that compared with regular or normal days, infection incidence substantially alters the norm of blood glucose dynamics, which
are quite significant changes that could possibly be detected through personalized modeling, for example, prediction models and

https://www.jmir.org/2020/8/e18911 JMed Internet Res 2020 | vol. 22 | iss. 818911 | p. 1
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anomaly detection algorithms. Generally, we foresee that these findings can benefit the efforts toward building next generation
digital infectious disease detection systems and provoke further thoughts in this challenging field.

(J Med Internet Res 2020;22(8):€18911) doi: 10.2196/18911

KEYWORDS

type 1 diabetes; self-recorded health data; infection incidence; decision making; infectious disease outbreaks; public health

surveillance

Introduction

The incidence of infectious disease outbreaks can create panic
in society and is a threat to local and globa health security.
Such outbreaks require immediate detection and appropriate
response during the initial phase of the incidence to reduce
fatality and savelives[1]. The timeliness of outbreak detection
definesthe success of the appropriate response by the concerned
bodies. The state-of-the-art syndromic surveillance systems
have been improved compared with the traditional surveillance
system, whichisgenerally passive and dependent on |aboratory
confirmation [2]. Syndromic surveillance makes use of features
that come before diagnosis, including different activities
triggered by the onset of symptoms, such as Google search,
Twitter, school and work absenteeism, pharmacy drug sells,
and other sources as a signal of change in individual and
population health [2]. These signals are mainly acquired from
the secondary source of information, typically built for other
purposes. However, to keep up the pace with the rapidly
changing social and biological dynamics, novel outbreak
detection mechanisms are highly sought [2].

The advancement and omnipresence of smartphones, Internet
of Things (10T) devices, wearables, and sensors have enabled
individuals to easily self-record health-related events often for
self-tracking or self-managing their disease [3,4]. The recent
movement known as quantified self and lifelogging isthe result
of such technological advancement, where people collect various
kinds of health-related events and datafor personal informatics
purposes, that is, self-surveillance and self-management [5-8].
To this end, people with diabetes are not an exception, where
they self-record detailed information as part of their
self-management, including blood glucose levels, diet and
insulin intake, physical activity, medication, and other
information [4,9,10]. Conseguently, a huge amount of
self-recorded, persona hedlth-related data is generated each
day that have great potential to be used as a secondary source
of information for other purposes such as digital epidemiology
[11,12]. According to recent reports, personal health data or
self-collected health-related data have provided an enormous
opportunity to enhance the possibility of detecting infection
incidence during the presymptomatic stage (improved sensitivity
and timeliness), specifically during theincubation period, where
most of the existing systems neglect from their process [13].

Type 1 diabetes is a chronic condition of blood glucose
metabolic disorder caused by lack of insulin secretion from
pancreas cells [14]. These patient groups are recommended to
maintain their blood glucose levels within a specified range
through self-management practice[14,15]. Blood glucoselevels
are controlled by balancing insulin and meal intake along with

https://www.jmir.org/2020/8/e18911

other contexts such as physical activity, medications, and others.
Blood glucose dynamics are affected by variousfactorsthat can
be categorized ascommon, individual, and unpredictable factors
[16]. These factors could be further categorized as
patient-controllable and patient-uncontrollable parameters[17].
Patient-controllable parameters incorporate factors on which
the patient has direct control and can roughly understand their
immediate effect on blood glucose dynamics. However,
patient-uncontrollable parameters include factors in which the
patient does not have direct control and faces a challenge to
understand their immediate effect on blood glucose levels. From
the patient perspective, usually patient-controllable parameters
induce reasonable deviations on blood glucose levels; however,
patient-uncontrollable parameters induce unreasonable blood
glucose deviations and usually differ from the usual norm of
blood glucose dynamics[18]. Thetotal number of peopleliving
with diabetes is increasing worldwide. According to recent
reports [14], there were 415 million people between the ages
of 20 and 79 years in 2015, and this value is projected to
increase by 54% in 2040. From this figure, 5% are believed to
havetype 1 diabetes. In these patient groups, infection incidence
often results in complications and difficulties in controlling
blood glucose levels within the recommended range [19-21].
Asaresult, early detection of infection incidence among these
patient groups could provide away to assist the individual and
at the same time can be used to redlize a digital infectious
disease detection system.

Currently, with the advancement of technology, the need to
have a system that is able to detect infection incidence at the
presymptomatic stageis highly sought [13]. In thisregard, there
are some previous investigations that have showcased the use
of self-recorded data from people with diabetes as surveillance
events (indicators) by uncovering the effect of infection
incidence on blood glucose levels and glycemic control in
real-life settings [18,22-36]. These studies reported the presence
of prolonged hyperglycemia episodes as a result of infection
incidence, thereby revealing the potential of self-recorded data
as a secondary source of information for realizing a digital
infectious disease detection system. For instance, Botsis et al
[22] conducted a proof-of-concept study based on daily glycemic
control data of 248 people with type 2 diabetes and concluded
that blood glucose levels, insulin dosage, diet (carbohydrate
consumption), physical activity, and other physiological
parameters could be used as potential event indicators of
infection incidence but calls for further investigations.
Furthermore, Botsis et al [18] also reported elevated glycated
hemoglobin (HbA,.) levels after infections regardless of tight
blood glucose controal, which only settled down to normal levels
after the patient recovered. Moreover, other studies conducted
in hospital settings also reported similar resultsin thisdirection
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[37,38]. Despite reporting the potential of using self-recorded
data as a surveillance event indicator, none of these studies
demonstrated the extent to which each parameter is affected at
anindividual level asaresult of infection incidence. Therefore,
the purpose of this study was to retrospectively analyze the
effect of infection incidence at an individual level and pinpoint
optimal parametersthat can effectively be used asinput variables
for developing an infection detection algorithm, thereby
illustrating how these patient groups can assist in detecting
infectious disease outbreaks. Moreover, this study provides a
general framework regarding how a digital infectious disease
detection system can be designed using self-recorded datafrom
people with type 1 diabetes as a secondary source of
information. Furthermore, this sheds light on the possibility of
assisting the individual during such an incident. To this end,
we analyzed temporal trends and probability distributions of
different diabetes profile parameters (ie, blood glucose, insulin,
carbohydrate, and others) to uncover the effect of infection
incidence on the blood glucose dynamics, thereby identifying
parameters that can effectively be used as potential events
(indicators) of infection incidence. In addition, aframework is
presented depicting the necessary structure to properly exploit
self-recorded data from these patient groupsto redizearea-time
digital infectious disease detection system. This paper is
structured as follows: the Methods section describes the
materials and methods used to analyze the data sets. The Results
section presents the results depicting the effect of acuteinfection
incidence in comparison with regular or normal situations. The
Discussion section presents the overall findings and proposes
a framework for designing and developing a real-time digital
infectious disease detection system using self-recorded data

Table 1. Equipment used in diabetes self-management.

Woldaregay et a

from these patient groups. The final section of Discussion
presents our concluding remarks.

Methods

Materials

High precision self-recorded data of 10 patient years collected
from 3real subjects (2 malesand 1 female) with type 1 diabetes
were used. The patients were free from any other chronic or
other form of disease, except the self-reported acute infection
incidence throughout the entire data collection period. The data
sets consisted of blood glucose measurements (self-monitoring
of blood glucose [SMBG] and continuous glucose monitoring
[CGMY])), injected insulin (basal and bolus), diet (carbohydrate
in grams), and self-reported events of acute infection. The
patients used different diabetes self-management technol ogies
throughout the data collection period to gather these data sets
including the Diabetes Diary app (Norwegian Centre for
E-health Research) [39], the Spike app [40], thexDrip with app,
Dexcom CGM, insulin pens, and insulin pumps, as shown in
Table 1. The data sets consist of both normal years, without any
significant acute infection incidence, and yearswith at least one
or more acute infection incidence. The norma (without
infection) patient years were used as a baseline to compare the
effect of al patient-controllable parameters and
patient-uncontrollable parameters against the self-reported
incidence of acute infection. The self-reported incidences of
acuteinfectionswere acase of influenza (flu) and mild and light
common cold without fever. All the experiments and analyses
were conducted using MATLAB version 2018a (Mathworks).

Patients Self-management
BG? Insulin administration Diet

Subject 1 SMBGP—i nger pricks recorded in the Insulin pen (multiple bolusand one-time basal inthe  Carbohydrate in grams recorded in
Diabetes Diary mobile app and Dexcom ~ Morning) recorded in the Diabetes Diary mobileapp - the Diabetes Diary mobile app
cGM®

Subject 2 SMBG—finger pricks recorded in the Insulin pen (multiple bolus[Humalog] and one-time  Carbohydrate in grams recorded in
Spike mobile app and Dexcom G4 CGM  basal [Toujeo] before bed) recorded in the Spike the Spike mobile app

mobile app
Subject 3 Enlite (Medtronic) CGM and Dexcom G4  Medtronic MinMed G640 insulin pump (basal rates Carbohydrate in grams recorded in

CGM

profile [Fiasp] and multiple bolus [Fiasp])

pump information

3BG: blood glucose.
PSMBG: self-monitori ng of blood glucose.
SCGM: continuous glucose monitoring.

Patient Characteristics

The participants were highly motivated individuals with type
1 diabetes who had advanced knowledge and understanding of
severa diabetes-related technologies. Hence, the self-recorded

https://www.jmir.org/2020/8/e18911

data can be regarded as highly precise and accurate. All the
participants had advanced knowledge of carbohydrate counting,
which can be considered as level 3 (advanced) [41]. The
long-term average HbA ;. and characteristics of the participants

aregivenin Table 2.
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Table 2. Participants characteristics.
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Variables Values
Gender, n
Male 2
Female 1
Age (years), mean (SD) 34(13.2)
Body weight (kg)
Subject 1 83
Subject 2 77
Subject 3 70
HbA1.%(%)
Subject 1 6.0
Subject 2 7.3
Subject 3 6.2

Carbohydrate counting

Level 3 (advanced)

8HbA ¢ glycated hemoglobin.

Data Collection and Ethics

The study protocol has been submitted to the Norwegian
Regional Committees for Medical Health Research Ethics
Northern Norway (REK) for evaluation and wasfound exempted
from regiona ethics review because it resides outside of the
scope of medical research (reference number: 108435). Written
consent was obtai ned and the participants donated the data sets.
All data from the participants were anonymized.

Approaches
We retrospectively assessed and analyzed the diabetes profile
(blood glucose, insulin, carbohydrate, and

insulin-to-carbohydrate ratio) to uncover the nature, size, and
shape of the infection-induced shift in the operating region of
the blood glucose dynamics. A data size of 10 patient years
incorporating blood glucose levels (SMBG and CGM), insulin
(bolusand basal), diet (carbohydratein grams), and self-reported
events of acuteinfection was used. The analysiswas performed
based on specified timeframes (weekly, daily, and hourly) to
reveal the effect of acute infection development on blood
glucose dynamics. The data set incorporates 5 normal patient
years without any infection incidence and 5 patient years each
with at least one case of self-reported incidence of acute
infection. Normal patient years were used as a baseline for
comparison purposes. We analyzed the temporal evolution and
probability distribution of blood glucoselevels, injected insulin,
carbohydrate intake (grams), and insulin-to-carbohydrate ratio
within the stated timeframe. For the daily and hourly timeframes,
a moving-average filter and nonparametric density estimation
techniques, the kernel density estimator, were used to analyze
the trend and data distribution before, during, and after the
infection incidence. A moving-average filter with a window
size of 2 days was employed to remove fast timescale features
through smoothing. Thewindow sizeincludes N-1 observations
from the previous data points and the current data point, where
N is the window size. Generaly, the window size of a

https://www.jmir.org/2020/8/e18911

moving-average filter is determined based on complementary
issues of better smoothing and the cost of significant delay
(shift) incurred [42,43]. A small window size often generates
less delay (shift) but at the cost of more short-term features and
having alarger window size will smoothen the data in a better
manner but at the cost of significant delay in the timeliness of
detecting the infection incidence. Therefore, the window size
was determined based on these complementary issues, and more
importance was given to minimize the inherent delay (shift)
incurred due to the window size. To this end, window sizes of
1, 2, 3, and 4 days were applied and tested to choose the optimal
size of the window, and as a result, a window size of 2 days
was found to be satisfactory. The preinfection, infection, and
postinfection week analyses were carried out on the raw data
set based on the week’s daily average and SD of blood glucose
levels and daily sum and SD of insulin and carbohydrate. A
statistical boxplot was used to depict the comparison during
preinfection, infection, and postinfection weeks.

Data Resampling, | mputation, and Preprocessing

The features of the self-collected data from individuals with
type 1 diabetes are shown in Table 3. The raw data were
resampled at a uniform rate by assigning each measurement
into the nearest time-bin based on its time stamp. Generally,
whenever there is more than one measurement within each
time-bin, the measurements are combined into a single
measurement by either summing or averaging the elements. For
blood glucoselevels (both CGM and SMBG), the measurements
were averaged into their respective sampling time-bins.
However, regarding carbohydrate consumption and insulin
injections, the sum of the elementsin their respective sampling
time-bin was computed, as shown in Table 4. In each time-bin,
the effect of total insulin and total carbohydrate on the average
blood glucose level was considered. The resampled data were
further preprocessed using amoving-averagefilter with a2-day
(48-hour) window size to capture only the important
patterns—long-term variation, while filtering and smoothing
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local and short-term variations. Moreover, for narrower time-bin
resampling, for example, an hour, there are more frequent zeros
of measurement, especially for carbohydrate and insulin
measurements, which poses a significant challenge to compute
the insulin-to-carbohydrate ratio as the ratio goes to infinity
given that the carbohydrate amount is zero. Therefore, in such

Table 3. Self-collected user data.

Woldaregay et a

cases of anarrower time-bin, the ratio was computed only after
computing themoving-average value of insulin and carbohydrate
based on a window size of 48 hours. Regarding the missing
blood glucose values during the hourly computations, a cubic
spline interpolation was used to estimate the missing values.

Variable names Subject’s record variables
Description Units
ues Continuous glucose reading mo/dL
U9 Self-management blood glucose reading mg/dL
u} Injected insulin (bolus) Units
ul Injected insulin (basal) Units
uc Ingested carbohydrate Grams
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Table 4. Data preprocessing.

Woldaregay et a

Variable name Preprocessed variables
Description Units
Average continuous glucose reading mg/dL
(05
[t—At, t]
Average self-management blood glucose reading mg/dL
[Ug
[t—At, t]
" Sum injected insulin (bolus) Units
2. Y
t=At
: Sum injected insulin (basal) Units
t—At
" Sum ingested carbohydrate Grams
t-At
I Ratio of insulin (bolus) to carbohydrate Units/grams
t
t-at Ur /
t (o
Zt—At U
! Ratio of insulin (basal) to carbohydrate Units/grams
t
Zt—At [Us " C
z:t—ﬂ.t U

Kernel Density Estimation

Nonparametric density estimation is an aternative to the
parametric approach, which involves specifying amodel using
a number of parameters that can be estimated through the
likelihood principle[44,45]. In this study, we used kerndl density
estimation techniques [46-48] to estimate the probability
distribution of the diabetes profile key parameters to uncover
the deviation incurred by the acute infection incidence. In this
regard, both univariate and bivariate kernel density estimators
are used to assess and analyze theinsulin-to-carbohydrate ratio

Textbox 1. One-dimensional adaptive kernel density estimation.

(univariate) and blood glucose levels along with the
insulin-to-carbohydrate ratio (bivariate), respectively. An
adaptive kernel density estimator with a Gaussian kernel was
used in both cases. For the univariate kernel density estimator
[49], bandwidth selection isbased on the suggestion from Botev
et a [44], which isadata-driven and plug-in bandwidth selector
that does not use normal reference rules. For the bivariate
estimator, a rule-of-thumb bandwidth selection suggested by
Bowman et a [50,51] was used to determine the appropriate
bandwidth [52]. These computations are carried out based on
the procedures given in Textboxes 1 and 2.

Approach: one-dimensional adaptive kernel density estimation

«  Compare the distribution from M

«  Given: time series data sets of the insulin-to-carbohydrate ratio X € D and an adaptive kernel density estimator M — one — dimensional
«  Remove the reported days of infection from the time series data sets D and form anew dataset X € Q
«  Compute the one dimensional density based on the kernel density estimator M using D and Q
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Textbox 2. Two-dimensiona adaptive kernel density estimation.

Woldaregay et a

Approach: two-dimensional adaptive kernel density estimation

«  Given: time series data sets of blood glucose level and the insulin-to-carbohydrate ratio X, Y € D and an adaptive kernel density estimator N —

two - dimensional

«  Remove the reported days of infection from the time series data sets D and form anew dataset X, Y& Q

«  Compute the two-dimensional density based on the kernel density estimator N using D and Q

«  Comparethedistribution from N

Results

Overview

The analysis was conducted based on an hourly, daily, and
weekly basis to revea the deviations incurred due to the
infection incidence. A total of 10 patient years were analyzed,
and 5 of these yearswerefound to include at least oneincidence
of acute infection lasting around 1-2 weeks. The proposed
approach is designed to smooth out short-duration variations
and include the 2 major patient-controllablefactors, insulinand
diet intake. Normal patient years were used to compare the
effect of al patient-controllable parameters and
patient-uncontrollable parameters against the self-reported
incidence of acute infection. The trend analysis for both the
normal patient years and patient years with acute infections
using the proposed approach is presented bel ow along with the
nonparametric probability distribution. The weekly mean
deviations of key diabetes parameters (blood glucose, insulin,
and diet) during the preinfection, infection, and postinfection
weeks are given in Multimedia Appendix 1.

Trend Analysis

Trend Comparison for Normal Patient Years

During normal years when patients do not have any significant
illness or infections (Multimedia Appendix 2), the
insulin-to-carbohydrate ratio follows a similar trend in all the
subjects, where the insulin-to-carbohydrate ratio lies between
0.05 and 0.2. An elaborate analytical plot of atypical patient
year without infection incidence showing the phenomena is
depicted in Figures 1 and 2. A detailed analytical plot of the 5
patient years depicting the same phenomena can be found in
Multimedia Appendix 2. The insulin-to-carbohydrate ratio
conveysinteresting information about the usual operating point
of the patient, depicting the necessary amount of insulin (bolus)
required for every gram of carbohydrate consumed to maintain
the blood glucose levels within a healthy range (typically
recommended to be between 70 and 180 mg/dL). As can be
seen from the yearlong trend analysis of the regular or normal
patient years (M ultimedia Appendix 2), despite the presence of
various factors that are known to disturb blood glucose
dynamics, both patient-controllable parameters and
patient-uncontrollable parameters except infection incidence,
theinsulin-to-carbohydrate ratio remainsto berelatively stable.

Figure 1. Thefirst patient year, where there is no incidence of acute infections. The figure depicts the daily variation of average blood glucose levels,
total insulin (bolus), total carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio

through these regular or normal days is between 0.05-0.2.
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Figure 2. Thefirst patient year, where there is no incidence of acute infections. The figure depicts variation of average blood glucose levels, total
insulin (bolus), total carbohydrate, and total insulin-to-carbohydrate ratio during each hours of the day. The operating point of the patient’s
insulin-to-carbohydrate ratio through these regular or normal hours is between 0.05-0.2.

- Hourly average biood glucose levels

3000 4000 5000 6000

Hourly total insulin (bolus)

] j\
0\

\
| Mo I \ \I |
U Wy g \M\,.‘[Jvm"m

[ 1000 2000

05

Carbehydrate

o 1000 2000

b

1|
oMo i M P SR L Y| TS
.UN I\."‘”\,-/\/I\l\‘f“llll'-f \ J‘\,\),V\/\/,\ \r\.‘”V' V\/\#'J\w'{\ IIM"VHIV’L'\Q_J"“\_,-’F‘M V“’PJ “l‘JIﬁI‘LIIP‘\‘I I\J\’I‘ \f|'||f~ v A/

Average blood glucose (maidL)
=R
H
-. % =
H
2
B
z
H

i p\ U'“ “WW" \f’

'ﬁ f"\fﬂm ,J‘,J m‘“\ﬁ'

3000 4000 5000 6000

Hourly total carbohydrate

A
W fl 1
Lana oy A J'\ur"w LA ||I «,‘ W
\ ‘.\f‘\-"fu \f \l"v" VY
/
v

3000 4000 5000 6000

Hourly ratio of total insulin versus total carbohydrate

i | A Al

fl A N AoAL A

| Wi Aar AL A A AT

\ NAYAAY AW AN MAVAY) UU‘.I AN
av WA

4000 5000 600D

Number of hours

Trend Comparison of Patient YearsWith Acutel nfection

Thetrend analysis of the key diabetes parameters, blood glucose,
insulin, and carbohydrate, during acute infection suggests that
there is a dramatic shift in the evolution of blood glucose,
insulin, and carbohydrate (for detailed information, see
Multimedia Appendices 1 and 3). Infection incidence brought
about adramatic increasein blood glucose levels, insulinintake,
and reduction in carbohydrate consumption. The detailed
analysis and the shift incurred on a weekly, daily, and hourly
basis are presented in the following section.

Weekly Analysis

The weekly analysis of the patient years was conducted by
analyzing the deviation incurred on the key parameters of the
blood glucose dynamics during the infection week in comparison
with before and after theinfection incidence. Theraw datawere
used to estimate the deviations incurred due to infection
incidence. The mean and SD of blood glucose levels, total

insulin (bolus), and total carbohydrate were computed and used
for comparison of the infection-induced deviations. As shown

https://www.jmir.org/2020/8/e18911

inFigures 3-5 and Table 5, in al theinfection cases, the weekly
analysis demonstrated that blood glucose levels were elevated
despite higher insulin injection and reduced carbohydrate
consumption. In all of these cases, it is clear that the incidence
of infection has brought unreasonable deviation, with respect
to the patient-controllable parameters, in the operation of the
overal blood glucose dynamics as compared with the usual
norm of the blood glucose dynamics. The presence of elevated
blood glucose levels in the infection week, regardless of the
high amount of insulin injections and lower carbohydrate
consumption, clearly violated the norm of the blood glucose
dynamics, where during normal situations the blood glucose
levels are expected to drop with high insulin and reduced
carbohydrate consumption. The fact that the blood glucose
remains elevated during the infection incidence despite higher
insulin injections and low carbohydrate consumption is highly
associated with the infection phenomenon, which enhancesthe
production of glucose and increased insulin resistance within
the body to deliver more energy for the body to fight the
pathogens. A more detailed description of the weekly analysis
can be found in Multimedia Appendix 1.
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Figure 3. Analysis of blood glucose levels during the preinfection week, infection week, and postinfection week based on the first case of infection
(flu). The asterisk shows the mean value, and the red line depicts the median value for the week.

Figure4. Analysis of total insulin (bolus) intake during preinfection week, infection week, and postinfection week based on the first case of infection
(flu). The asterisk shows the mean value, and the red line depicts the median value for the week.
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Figure 5. Analysis of total carbohydrate (grams) intake during preinfection week, infection week, and postinfection week based on the first case of

infection (flu). The asterisk shows the mean value, and the red line depicts the median value for the week.

Carbohydrate (grams)

Preinfection week

Infection week

Postinfection week

Table 5. Mean and standard deviation of blood glucose levels, tota insulin (bolus), and total carbohydrate during the preinfection week, infection

week, and postinfection week.

Parameters

Preinfection week, mean (SD)

Infection week, mean (SD)

Postinfection week, mean (SD)

Thefirst case of infection (flu)
BG? (mg/dL)
Total insulin (bolus)
Carbohydrate (grams)
The second case of infection (flu)
BG (mg/dL)
Total insulin (bolus)
Carbohydrate (grams)
Thethird case of infection (flu)
BG (mg/dL)
Total insulin (bolus)
Carbohydrate (grams)
Thefourth case of infection (flu)
BG (mg/dL)
Total insulin (bolus)
Carbohydrate (grams)
Thefifth case of infection (flu)
BG (mg/dL)
Insulin (bolus)
Insulin (basal)

Total insulin

130.74 (16.89)

23.39 (4.91)
241.11 (57.27)

143.01 (19.53)
28.07 (8.85)
190.14 (43.93)

136.93 (18.58)
20.08 (5.44)
178.0 (45.87)

157.74 (31.12)
24.43 (5.26)
199.06 (53.45)

135.21 (14.58)
32.80 (4.59)
19.20 (1.21)
52.33 (5.14)

141.95 (14.37)

35.30 (6.11)
178.80 (65.69)

155.36 (21.99)
41.07 (9.44)
161.14 (58.43)

144.12 (20.30)
31.50 (10.84)
144.83 (37.63)

161.34 (19.88)
32.14 (7.01)
167.04 (44.94)

139.88 (15.54)
40.37 (8.31)
20.42 (2.06)
61.21 (8.26)

119.16 (7.39)

21.32 (4.61)
241.18 (37.63)

126.17 (11.70)
25.36 (6.93)
214,57 (34.66)

134.18 (11.96)
22.83 (3.86)
195.83 (42.59)

138.57 (19.83)
29.29 (5.22)
226.07 (18.23)

122.87 (14.49)
33.36 (7.94)
18.68 (1.56)
52.46 (8.47)

3BG: blood glucose.
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Blood Glucose Levels

In al these infection incidences, the individual blood glucose
levels remain elevated for a prolonged period of time despite
low carbohydrate consumption and increased insulin injections
as compared with the regular or normal days. Blood glucose
levels were elevated during the infection week as compared
with the preinfection and postinfection weeks.

« During the first case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 8.57% over the preinfection week and 19.12%
over the postinfection week, as shown in Table 5.

« During the second case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 8.63% over the preinfection week and 23.13%
over the postinfection week, as shown in Table 5.

« During the third case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 7.26% over the preinfection week and 7.41%
over the postinfection week, as shown in Table 5.

« During the fourth case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 2.28% over the preinfection week and 16.43%
over the postinfection week, as shown in Table 5.

« During the fifth case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 3.45% over the preinfection week and 13.84%
over the postinfection week, as shown in Table 5.

Insulin Intake

The comparison of infection week insulin injections with
preinfection and postinfection weeks revealed that there was a
dramatic increase in the amount of insulin intake during the
infection period.

- During the first case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 50.93% over the preinfection week and
65.59% over the postinfection week, as shown in Table 5.

- During the second case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 46.31% over the preinfection week and
61.94% over the postinfection week, as shown in Table 5.

« During the third case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 56.87% over the preinfection week and
37.98% over the postinfection week, as shown in Table 5.

« During the fourth case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 31.56% over the preinfection week and 9.7%
over the postinfection week, as shown in Table 5.

- During the fifth case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 23.08% over the preinfection week and
21.01% over the postinfection week, as shown in Table 5.

Carbohydrate Consumption

Comparison of the amount of carbohydrate consumption during
theinfection week with the preinfection and postinfection weeks

https://www.jmir.org/2020/8/e18911
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revedled that there was a significant reduction during the
infection period.

- During the first case of infection, the overall mean
percentage reduction in the infection week’s carbohydrate
consumption was 25.84% bel ow the preinfection week and
25.87% below the postinfection week, as shown in Table
5.

- During the second case of infection, the overall mean
percentage reduction in the infection week’s carbohydrate
consumption was 15.25% bel ow the preinfection week and
24.90% below the postinfection week, as shown in Table
5.

« During the third case of infection, the overall mean
percentage increase in the infection week’s carbohydrate
consumption was 18.63% bel ow the preinfection week and
26.04% below the postinfection week, as shown in Table
5.

« During the fourth case of infection, the overall mean
percentage increase in the infection week’s carbohydrate
consumption was 16.09% bel ow the preinfection week and
35.34% below the postinfection week, as shown in Table
5.

Insulin-to-Car bohydrate Ratio

Theinsulin-to-carbohydrate ratio defines the amount of insulin
a patient needs to take for every gram of carbohydrate
consumed. Thevalue of theinsulin-to-carbohydrate ratio usualy
lies between 0.05 and 0.2 on normal occasions. However, it has
dramatically increased upon the incidence of infection.

« During the first case of infection, the overall mean
percentage increase in  the infection week's
insulin-to-carbohydrate ratio was around 125.84% above
the normal operating point of the patient, asshownin Table
5.

« During the second case of infection, the overall mean
percentage increase in the infection week's
insulin-to-carbohydrate ratio was approximately 144.43%
above the normal operating point of the patient, as shown
in Table 5.

« During the first case of infection, the overall mean
percentage increase in  the infection week's
insulin-to-carbohydrate ratio was around 93.75% above the
normal operating point of the patient, as shown in Table 5.

« During the fourth case of infection, the overall mean
percentage increase in the infection week's
insulin-to-carbohydrate ratio was approximately 70.84%
above the normal operating point of the patient, as shown
in Table 5.

Daily and Hourly Analysis

Hourly and daily analyses were conducted by analyzing the
deviations incurred on the key diabetes parameters, blood
glucose levels, insulin, carbohydrate, and the
insulin-to-carbohydrate ratio as a result of infection incidence
in contrast to thewhol e patient year. The comparison was carried
out based on the smoothed version of the data, that is, 2 days
window moving-average filter. Similar to the weekly analysis,
the infection-induced shift of the blood glucose dynamics, that
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is, higher glucose production and increased insulin resistance,
is clearly shown in both the daily and hourly analyses. As can
be seen in Figures 6-11, the insulin-to-carbohydrate ratio of the
patient has drastically shifted to a higher value to account for
the effect of increased glucose production and insulin resistance
(see Multimedia Appendix 3 for a detailed plot of the hourly

Woldaregay et a

analysis in al the infection cases). In al of these cases, the
insulin-to-carbohydrate ratio increases from the usual values of
0.05 to 0.2 during the normal period to higher values reaching
0.6, depending on the degree of severity of the infection
incidence, type of pathogens involved, and the individual
immunity.

Figure 6. Daily analysis of the first infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach atop around 0.5 upon midinfection week.
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Figure 7. Hourly analysis of the first infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach atop around 0.5 upon midinfection week.
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Figure 8. Dally analysis of the second infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach atop around 0.45 upon midinfection week.

Figure 9. Daily analysis of the third infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and topped around 0.4 upon midinfection week.
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Figure 10. Daily analysis of the fourth infection case (mild common cold without fever, light common cold without fever, and flu). The figure depicts
variation of average blood glucose levels, total insulin (bolus), total carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of
the patient’s insulin-to-carbohydrate ratio had dramatically shifted and raised above the regular or normal days and reach a top around 0.28 upon
midinfection week. A light common cold without fever seems to not significantly affect the operating point.
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glucose levels was carried out on the yearlong data, as shown
in Figures 12 and 13 (a detailed plot for all the infection cases,
both hourly and daily, can be found in Multimedia Appendix

Kernel Density Estimation—Probability Distribution
Kernel density was estimated to study and characterize the

nature, shape, and degree of severity of the deviationsincurred
due to infection incidence by analyzing the probability
distribution of the individual key parameters of the blood
glucose dynamics. A univariate and bivariate kernel density
estimation based on theinsulin-to-carbohydrate ratio and blood
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1). Ascan be seen from the figures, the infection incidence has
brought a significant change in the probability distribution.
However, the nature, shape, and degree of outlierness depend
on the type of pathogen involved, severity of infection, and
individual immunity.
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Figure 12. Univariate kernel density estimation of a patient year using the daily insulin-to-carbohydrate ratio. As can be seen from the tail of the
distribution, during regular or normal days (the green shaded region), the yearly distribution of the patient’s insulin-to-carbohydrate ratio lies within
the values of 0.005 and 0.2. However, during infection incidence (the red shaded region), thereis a clear deviation in the tail of the distribution, where

the values reaches around 0.58.
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Figure 13. Bivariate kernel density estimation of a patient year using both the daily average blood glucose levels and insulin-to-carbohydrate ratio. As
can be seen from the bivariate distribution, during regular or normal days (the top light green figure), the distributions are concentrated around the high
density regions. However, during infection incidence (the lower figure), there is a clear bump far from the high density regions.
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Discussion

Principal Findings

Presently, in relation to people’s mobility and travel, thereisa
growing concern regarding an infectious disease outbreak. Such
anincident can beamenaceto our global health security, which
callsfor early detection and immediate response. Thus, thereis
agrowing need for new approaches and technol ogiesto upgrade
the existing surveillance system for early detection of emerging
infectious diseases [1]. Existing disease surveillance systems
detect the incidence of outbreakslong after theincidence of the
first symptoms. Therefore, the purpose of this study was to
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demonstrate how people with type 1 diabetes can assist in
outbreak detection and further to shed light upon the possibility
of assisting the individual during such an incident.

The advancement and omnipresence of smartphones, 10T
devices, wearables, and sensors have enabled individuals to
easily self-record health-related events often for self-tracking
or self-managing their disease [5,6,53]. People with diabetes
self-record detail ed information including blood glucose levels,
diet and insulin intake, physical activity, medication, and other
parameters. The presence of such large self-recorded health data
presents an opportunity to be used as a secondary source of
information for other purposes such as digital epidemiology
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and decision support applications. According to recent reports,
the use of personal health information or self-collected data
could mitigate the possibility of detecting infection incidence
during the presymptomatic stage (improved sensitivity and
timeliness), specifically during the incubation period, of which
most of the current systems neglect from their process[13]. Our
findings demonstrated that upon infection incidence, thereisa
dramatic shift in the operating point of the individual’s blood
glucose dynamics, which clearly violates the usual norm of
blood glucose dynamics. During regular or normal days, blood
glucose levels usually decrease when there is a significant
increase in insulin injection and reduction in carbohydrate
consumption. However, in all of theinfection caseswe analyzed,
compared with the preinfection and postinfection weeks, the
following were noticed:

- Blood glucose levels were elevated by an average of 6.1%
and 16% over the preinfection and postinfection weeks,
respectively.

« Insulininjection (bolus) increased by 42% and 39.3% over
preinfection and postinfection weeks, respectively.

«  Carbohydrate consumption was reduced by 19% and 28.1%
compared with preinfection and postinfection weeks,
respectively.

- Theinsulin-to-carbohydrate ratio increased by 108.7% on
averagein all cases.

In general, al of these findings confirm that during infection
incidence, blood glucose levels are elevated despite injecting
higher amounts of insulin and reduced carbohydrate
consumption. The identified changes are quite significant
anomalies compared with the regular or normal days and could
potentially be detected with a dedicated personalized
(individualized) computational health model. Various algorithms
that span from prediction models to anomaly detection
algorithms can be investigated to detect such infection-induced
changes in blood glucose dynamics. Apart from the potential
use of these findings in personalized digital infectious disease
detection systems, it could also be used for decision support in
self-management during infection and illness. As presented
earlier, during the course of infection, individual swith diabetes
usualy struggle with severe hyperglycemia. Managing blood
glucose levels during infection incidence is not an easy task,
given the fact that it is caused by a mixed effect of both
patient-controll able and patient-uncontrollable parameters. The
patient can only estimate the disturbance caused by the amount
of carbohydrate consumption, insulin injection, and physical
activity load, which is not the case during infection incidence.
Apart from these known magor factors, that s,
patient-controllable parameters, there is an underlying and
unknown disturbance caused by the patient’s uncontrollable
parameters, such as counterregulatory hormones (CRHSs), as a
result of infection incidence. Thisunknown disturbance mainly
increases glucose production from the liver and reducesinsulin
sensitivity. To this end, people with type 1 diabetes face avery
difficult challenge to estimate the necessary amount of insulin
for agiven amount of carbohydrate consumption. Inthisregard,
providing real-time decision support could reduce the burden
during such a crisis. One possible approach could be
characterizing the effect of different pathogens on blood glucose
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dynamics, mainly oninsulin resistance and its sensitivity change
over the course of infection. However, a large set of
infection-related self-recorded data need to be analyzed for
investigating how each pathogen affects the key parameters of
blood glucose dynamics during the entire course of infection.
This requires collecting and analyzing infection-related data,
and estimating the overall changes each pathogen could bring
oninsulin sengitivity during the course of infection. To thisend,
the presented result reflects apromising result that can be geared
toward decision support during infection or ilIness. For example,
the change in insulin—to-carbohydrate ratio can be used to
provide general information related to each pathogen on what
to expect, such as the percentage of insulin resistance during
thefirst days, inthemiddle, and at the final days of theinfection.

I nfection-Induced Shift of Operating Point in Blood
Glucose Dynamics

During infectionincidence, people with diabetesusualy struggle
with severe hyperglycemia and critical hypoglycemia if not
properly managed. However, during regular or normal days,
the patient can manage the incidence of hyperglycemia, which
is mostly diet-induced, by properly controlling the
patient-controllable parameters, for example, amount of
carbohydrate consumption, insulin injection, and performing
balanced physical activity or exercise. Yet, during infection
incidence, it turns out to be very difficult to manage the
hyperglycemia incidence due to the fact that it is caused by a
mixed effect of both patient-controllable  and
patient-uncontrollable parameters. The patient’s uncontrollable
parameters define the action of hormonal effects such as CRH
induced by either physiological stress or emotional stress. The
hormonal effect is two-sided, which is a higher glucose
production from the liver and inhibiting insulin production and
reducing sensitivity [54,55]. A detailed study conducted by
Waldhaud et a [56] demonstrated the significant effect of stress
hormones on the production of glucose and insulin resistance.
The study was conducted by infusing different stress hormones
toinvestigate the effect of exposure to these hormones on blood
glucose response [55]. The extent and degree of hyperglycemia
eventsand insulin resistance during infection incidence directly
correlate with the type of pathogen, the type of hormone
involved and the severity of theinfection [37,38,55]. Generally,
the phenomenal effect of infection incidence on blood glucose
dynamicsin peoplewith diabetes can be simply described using
the following relationships:

Where @isaninsulin sensitivity factor, BG isthe blood glucose
level, CH isthe amount of carbohydrate consumption, IN isthe
amount of insulininjection, PA isthe amount of physical activity
session or exercise load, and CRH is the effect of CRHs. The
equation depicts the phenomena that occur during infection
incidence, where blood glucose levels are raised by the action
of both patient-controllable parameters (CH) and
patient-uncontrollable parameters (CRHs, such as cortisol and
adrenalin). Thus, consumption of any regular diet in an
individual can induce severe hyperglycemia due to the added
effect of glucose production from the liver as a result of the
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CRH effect [55]. For this reason, the patient is expected to
reduce the amount of carbohydrate intake to a certain extent to
optimally manage the hyperglycemia crises and at the same
time avoiding any critical hypoglycemia incidences (for more
information, see Multimedia Appendix 1). By the same token,
blood glucose levels can be lowered to euglycemia by the
patient-controllable parameters (insulin [IN] and physical
activity session or exercise load [PA]). However, due to the
change in insulin sensitivity, the action of insulin is reduced (¢
is affected by infection incidence), and the patient is expected
to deliver more insulin injections to counterbalance the effect
of insulin resistance [57]. According to our results, all these
scenariosarereflected in theindividual’ s blood glucose dynamic
infected with flu (influenza), where a dynamic shift occurred
from the usual operating point of the blood glucose dynamics.
There are elevated blood glucose levels, despite injecting a
higher amount of insulin and consuming less carbohydrate than
the regular or normal days. These characteristics are clearly
demonstrated on the shift incurred on the individual’s
insulin—to-carbohydrate ratio as compared with the regular or
normal days. Therefore, blood glucose, amount of injected
insulin, diet intake, and insulin-to-carbohydrate ratio and other
supporting physiological parameters such as body temperature
and blood pressure can be exploited to develop a personalized
health model for detecting infection incidence among people
with type 1 diabetes. Given the similarity, this result can also
betrandlated to other types of diabetes, such as peoplewith type
2 diabetes. It is worth mentioning that apart from infection
incidence, other factors such as emotional stress could also
result in similar variable episodes of elevated blood glucose
levels[17]. Thiscan obvioudly impact the detection performance
of the model. However, our results based on yearlong patients
data demonstrated that the use of carbohydrate consumption,
insulin injections, and insulin-to-carbohydrate ratio along with
the blood glucose could solve this confounding nature.
Moreover, acute emotional stress, other than the chronic ones,
might have lessinfluence on one'smeal appetite compared with
infection incidence to skew the insulin-to-carbohydrate ratio

[17].
Relevance of the Data

The informational values of the data, availability of the data,
and cost of the data are the 3 key metrics necessary to evaluate
the relevance of new surveillance data for a digital infectious
disease detection system [58]. The informational value of the
data assesses how informative the data are to facilitate the
detection or characterization of infectious disease outbreaks. In
this regard, the surveillance data must clearly indicate the
absence or presence of infections either on an individual or
population level or both in atimely manner. Furthermore, the
rate of false alarms derived from the datais an important factor
that dictates the acceptability of the surveillance data, which is
inturn governed by the signal-to-noiseratio defining thesigna’s
strength depi cting theinfection period as compared to the regular
or normal period (baseline data) [58]. In thisregard, our results
demonstrated that the infection-induced signal exhibits high
discriminative power from the baseline (normal or regular)
patterns. The availability of surveillance datais another crucial
indicator for screening potential types of data, which needs to

https://www.jmir.org/2020/8/e18911

Woldaregay et a

be addressed [58]. In this regard, given the widespread and
ubiquitous nature of mobile apps, and different sensors, people
with type 1 diabetes collect far more data than ever. For
example, many people with type 1 diabetes use continuous
glucose monitors and insulin pumps, which are predicted to
grow further in terms of both quality and quantity of datain the
coming years. The most crucial challenge in this direction
includes issues related to security, privacy, and confidentiality
of user data if there is a necessity to collect user data into a
central server than deploying the detection algorithm on the
user’s own mobile device. The cost of data delineates the
associated cost in relation to acquiring the data in question,
including the cost incurred for realizing the data collection
system [58]. In this regard, the individual’s self-recorded data
are solely collected for their own use and used as a secondary
source of information for disease surveillance purposes.
Providing tailored and valuable feedback to the individual
patient might further motivate them to participate on a large
scale (for further details, see the section Ethical and Motivational
Challenges).

Framework of a Per sonalized Digital | nfectious Disease
Detection System

Epidemic intelligence encompasses activities directed toward
early detections, verification, and assessment of potential public
health threats to notify and recommend necessary measures for
the concerned bodies regarding the ongoing situation [56]. Early
detection systems such as Google Flu Trends and other existing
systems have certain limitations because they do not have the
mechanisms to identify or track individual cases through
diagnosis or screening based on a personalized health model.
Thislimitation hasamajor impact and certainly introducesbias
in disease outbreak prediction. Currently, apersonalized health
model, which resemblestheway clinicians and epidemiologists
classify an individual as normal, suspected, or confirmed case,
for screening and case detection doesn’t exist [58]. Having a
personalized health model can provide information for both
individual health-related decision support purposes and at the
sametime can be used for tracking infectious disease outbreaks
among the public. The results of this study demonstrated that
commencement of infection in people with type 1 diabetes
significantly alterstheindividual blood glucose dynamics, and
such a change can potentially be detected through modeling of
theindividua blood glucose dynamics. Moreover, incorporating
various physiological parameters, for example, heart rate and
body temperature, to a personalized health model will further
enable the capture of infection incidence as early as possible,
that is, incubation period. Therefore, the development of a
personalized health model—based digital infectious disease
detection systemisvital for the success of next-generation public
health surveillance systems. The data sources and signal
exploited, outbreak detection algorithms employed, clustering
approaches, and visualization techniques used to play a central
role in any digital infectious disease detection systems by
determining its accuracy (sensitivity) and timeliness (lead time)
[56]. On the basis of the kind of data sources and signals
exploited, infectious disease surveillance systems can be
generally grouped into an indicator-based and event-based
system [56,59,60]. Event-based systems mainly rely on
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unstructured data collected through formal or informal sources
and is characterized by quick detection, reporting, and
assessments of public health events, including clusters of disease
[56,60]. On the other hand, indicator-based systems mainly use
structured data, which are collected following a standard case
definition and is characterized by routine reporting of disease
cases[56,60]. The proposed system [26,61], asshown in Figure
14, is categorized under event-based digital infectious disease
detection systems, where the events are grouped under

Figure 14. The Proposed System Architecture.
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microevents and macroevents[56]. Under the umbrellaof these
events and the proposed system in general, a framework of
several components such asinfection detection al gorithms (how
to develop an algorithm to detect infection incidence at the
individual level); clustering agorithms (how to group the
infected individualsto form acluster); visualization techniques
(how to report and display the detected outbreak incidence) and
further ethical and motivation challenges are briefly discussed
below.

Data visualization

)

Spatio-tem poral
cluster detection

Patient Unit

Microevent: I ndividual-Level Detection of | nfection
Incidence

The detection of microevents as the name suggests is carried
out at an individua level by tracking the individual’s diabetes
profile including blood glucose levels, amount of insulin
injections, carbohydrate consumption, physical activity or
exercise sessions, and others. The presence of elevated blood
glucose levels despite injecting higher amounts of insulin and
consumption of less carbohydrates is regarded as a marker of
an event of infection incidence and hence can be defined as a
microevent for the event-based digital infectious disease
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detection system. Detecting the incidence of these kinds of
deviation from the usual norm of blood glucose dynamics
requires a proper personalized health model, which can learn
from past history of the patient and judge whether the
information conformswith the usual trend. Hence, the proposed
personalized health model for detecting these types of
microevents incorporates 3 components. a data source,
personalized infection detection algorithm, and aarm
management module, as shown in Figure 15. As can be seen
from the figure, the personalized infection detection algorithm
can be modeled using either a prediction model—based approach
or anovelty or anomaly detection—based approach.
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Figure 15. The proposed personalized infection detection algorithmsfor detecting microevents (incidences of infections) in peoplewith type 1 diabetes.
These approaches are alternative means of achieving the same objective, which is detecting infection incidences.
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Data Sources and Input

The patient unit is a mobile health app, as shown in Figure 14,
which integrates data from different sensors and wearabl es that
record key diabetes parameters, such as blood glucose levels,
insulin dosage, diet, physical activity, and other optional
physiological parameters including body temperature, heart
rate, blood pressure, and others[26,61]. The app isalso expected
to record the geographical location of theindividual along with
thetime of dataregistration. For example, oneway of estimating
user location can be carried out based on global positioning
system (GPS) information from the mobile phone during data
registration [61]. The geographical location of the user can be
the geographical coordinates of longitude and latitude [62],
postal code address [63], or any local reference coordinates.

Per sonalized I nfection Detection Algorithm

Detection of microevents can be carried out using individual
self-recorded historical data based on a personalized health
model, that is, either a prediction model [64,65] or novelty
detection algorithms [66-68], as shown in Figure 15. The
prediction model-based algorithm requires learning the
individual blood glucose dynamicsfor accurate prediction, and
for the purpose of detecting the microevents, it can be
implemented as either aresidual-based [69-72] or a conformal
predi ction—based approach [ 73-80]. In asimilar fashion, novelty
detection—based algorithms can be other alternatives for
detecting novel microevents relying on either supervised,
semisupervised, and unsupervised approaches [4,66,67,81].
Different categories of novelty detection approaches could be
exploited for detecting infection-induced deviations in blood
glucose dynamics, including approaches based on statistical
techniques [68], prediction, density [82-85], distance [67,86],
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classification or domain [4,62,63,87-92], clustering [62,93],
and ensemble [67,68,80-82,85,86,92-95].

Alarm Management (Decision Making)

The alarm management modul e accepts the score computed by
the personalized infection detection algorithm as input and
evaluates the degree of severity of the infection incidence. The
severity is evaluated based on the degree of abnormalities of
the anomalies score, and a label could be assigned to the
individual patient status as normal (0), suspicious (-1), and
infected (1). For example, a rule-based fuzzy logic with
membership functions of infected, normal, and suspicious can
be used to assign thelabel indicating the severity of theinfection
incidence using the anomaly score. The output from the alarm
management will bedirectly fed to the cluster detection analysis,
which isused to detect agroup of patients based on geography
(space) andtime so asto revel if thereisany ongoing infectious
disease outbresk.

Macroevents: Population-Level | nfectious Disease
Outbreak Detection

Cluster Detection M echanism

Cluster detection isdefined asthe process of identifying agroup
of infected individuals with similar spatial, temporal, or
spatio-temporal attributes [96]. A spatia cluster analysis only
considers a patient's geographical location, and a temporal
cluster analysis considers only the time aspect of the events.
However, a spatio-temporal cluster analysis is conducted to
look for aberrant patterns and detect acluster of infected people
within a specified geographical region and predefined timeframe
[96,97]. The analysis of spacetime clustersis carried out based
on a couple of steps. geocoding and identification, which
transforms the patient address into meaningful coordinates and
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detecting the clusters based on the transformed location and
time. A spacetime cluster analysisisthe most favored approach
when it comes to early detection of an infectious disease
outbreak. A space time cluster analysis can be designed by
performing a spatial analysis first and then superimposing the
temporal aspect [97]. Regarding the proposed system, theinput
to the space time cluster detection analysis consists of the
individua patient statusfrom alarm management, user location,
and time of data registration [26]. The status of the individual
patient at any time can be normal (0), infected (1), or suspicious
(1), which comes from alarm management. The user's
geographical location can be geographical coordinates of
longitude and latitude [98], postal code address [99], or any
local reference coordinates. Estimation of user location can be
carried out using GPSinformation from the user’s mobile phone,
which can be accessed during each data registration. The time
aspects depend on the requirement of detection frequency and
can be set to either an hourly or daily window. One optimal
approach could be tracking the individual during each hour of
theday for any statistically significant deviations and performing
aconcluding analysis at the end of each day based on the daily
analysis. Various algorithms have been implemented in the
literature, including the density-based clustering agorithm,
Bayesian spatial scan statistics, K-NN with Haversian distance
(K-nearness), cumul ative summation, space time scan statistics,
space time permutation scan statistic, and space scan statistics
[96,97,100], which can be further tested and adopted. The most
important challenge is the sparsity of the data set considering
the small proportion of people with type 1 diabetes that can be
under surveillance over alargeregion. Therefore, it isnecessary
to adopt these cluster detection techniques to overcome data
gparsity and produce acceptable detection accuracy. In the
proposed system, the detected clusters, if there is any, can be
displayed and viewed based on real-time and interactive data
visualization tools.

Data Visualization

Data visualization is a mechanism by which detected clusters
of disease outbreaks, if there is any, are presented to the
responsible bodies for quicker public health actions and
responses. Generally, such a visualization tool could report
outbreaks of epidemic cases for investigation and follow-up,
and it could also report the duration of the epidemic (timing),
degree of severity of the epidemic, and the region under threat.
In the literature, there are various implemented visualization
tools and visua displays with regard to disease outbreak
detection systems, including ArcGI S, Google map API, Twilnfo,
OpenStreetMap, and JFreeChart, and display mechanismssuch
as maps, time series, graphs, and color indicators [96]. These
visualization tools and display mechanismscan befurther tested
and adopted in the proposed system. Therea -time health status
of anindividual from the ongoing tracking could be accessible
to the end user and can be displayed in a stand-alone software
app based on smartphones, tablets, and computersor adedicated
website [26]. Generally, both the data providers (participants)
and the general population could benefit from the system in the
sense that they can take actions needed to avoid being infected.
Moreover, theindividual patient could al so receive analysisand
feedback from the system to learn the situation, such as the

https://www.jmir.org/2020/8/e18911

Woldaregay et a

degree and severity of deviation of different parameters,
including blood glucose, insulin, diet, and
insulin-to-carbohydrate ratio, al ong with their trend as compared
with the noninfection period.

Ethical and Mativational Challenges

The implementation of a digital infectious disease detection
system based on self-recorded data poses serious challenges
that require special attention, such as user privacy and security,
data confidentiality, user acceptance, and motivations[26,101],
especialy during data collection, transmission, and data storage
[102,103]. Persona health—related data are sensitive, and the
data collection, transmission, and data storage procedure need
to follow the standards and regulations provided by the major
governing bodies, such as General Data Protection Regulation
(GDPR) and Health Insurance Portability and Accountability
Act (HIPAA) [104,105]. This includes privacy-preserving
mechanisms such as pseudonymization and anonymization to
meet the necessary data compliance requirement along with
user informed consent [102,103]. According to GDPR, the
deidentification procedure is one of the recommended
anonymization standards to preserve data confidentiality
[104,105]. Moreover, from the technology perspective, it is
necessary to look for a robust mechanism to ensure that user
privacy and security are respected during data collection,
transmission, and storage, asthisishighly critical for successful
acceptance of the proposed system [26,106]. One such
aternativeisto look for the possibility of deploying theinfection
detection algorithm (app logic) on the user (client) mobile device
terminal to avoid transmission of patient datato acentral server,
where only the timely computed infection status of the patient
will be sent to the central server for further cluster detection
processing. However, this choice requires further feasibility
studies to determine the cost, especialy in terms of power
constraints related to the mobile device terminal, since the
detection al gorithms need to continuously runin the background
to compute the individual’s infection status, at the most each
hour of the day [26]. In addition, users might also lack
willingness to adopt a new technology or system for various
reasons ranging from lack of trust, lack of motivation, lack of
perceived usefulness, and ease of use[26,101]. However, these
challenges can be mitigated by properly buying user trust by
developing state-of-the-art technology for preserving privacy,
security, and confidentiality of the user and addressing factors
that enhance user motivation, including usability knowledge,
simplicity and ease of use, reduced time and frequency of
interaction with the system, incentives, and others [101].

Conclusions

Therelationship between infection incidents and el evated blood
glucose levels has been known for along time. People with type
1 diabetes often experience prolonged episodes of elevated
blood glucose levels as aresult of infection incidence. Despite
thefact that patientsincreasingly gather data about themselves,
there are no solid findings on how to use such self-recorded
data as a secondary source of information for other purposes,
such as self-management—related decision support during
infection incidence and digital infectious disease detection
systems. We presented the effect of infection incidence on key
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parameters of the blood glucose dynamics along with the
necessary framework to exploit the information for realizing a
digital infectious disease detection system and further shed light
onthe possihility of assisting individualsduring infection-related
blood glucose management crises. The results demonstrated
that despite tight blood glucose control, blood glucose level is
still elevated during infection incidence. The analysis shows
that infection incidences have a significant impact on blood
glucose dynamics as compared with the other
patient-uncontrollable factors. All of these findings indicate
that blood glucose level swere elevated despite a higher amount
of insulin injection and reduced carbohydrate consumption,
which are quite significant changes that could possibly be
detected through personalized modeling that spans from
prediction models to anomaly detection algorithms. However,
further large-scale studies are required to strengthen thefindings.
Moreover, future research should investigate the possibility of
improving detection time and disease characterization. Early
detection, that is, during the incubation period, is a critical
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component of any outbreak detection system and therefore needs
to beimproved by analyzing how various features of CGM can
be used in context with other parameters, such as diet, insulin,
and physical activity data. For instance, different individuals
with type 1 diabetes often reported the experiences of an
elevated episode of blood glucose levels before the onset of the
first symptoms. Disease characterization involves determining
thetype and nature of pathogensthat cause theinfection, which
is an important component of outbreak reporting. The extent
and degree of theimpact of infection incidence on blood glucose
dynamics are highly correlated with the disease pathogens
involved. In this regard, carefully analyzing a large-scale
self-recorded data set containing severa infection incidences
(different pathogens) could characterize them based on their
effect on blood glucose dynamics. Generally, we foresee that
these findings can benefit the efforts toward building
next-generation digital infectious disease surveillance systems
and provoke further thoughts in this challenging field.
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Appendix 1: Comparative Analysis of Parameters of Blood Glucose
Dynamics with and without Infection Incidences

l.  Pre-Infection, Infection, and Post-Infection Week Analysis

The analysis is done based on the daily average blood glucose levels, total insulin including both bolus and basal
whenever possible and total carbohydrate consumptions. As shown in the Table 1 and Figure 1-5, the analysis has
demonstrated that during all the infection incidences,

- Blood glucose is too resistant to drop and remains elevated in all the cases.

- There is high injection of insulin compared to the pre and post infection week.

- Carbohydrate is significantly reduced as compared to the pre and post infection week.

Detailed demonstration is presented in the following section.

Table 1: Mean and standard deviation of BG levels, total insulin (bolus), and total carbohydrate during the pre-

infection week, infection week and post-infection week.

The first case of infection (flu)

Parameter Pre-infection week Infection week Post-infection week
( Mean (SD)) ( Mean (SD)) ( Mean (SD))
Daily
Blood Glucose (mg/dl) 130.74 (16.89) 141.95 (14.37) 119.16 (7.39)
Total insulin (bolus) 23.39 (4.91) 35.30 (6.11) 21.32 (4.61)

Carbohydrate (grams)

241.11 (57.27)

178.80 (65.69)

241.18 (37.63)

Hourly
Blood Glucose (mg/dl) 134.24 (32.67) 147.38 (36.89) 129.77 (39.13)
Total insulin (bolus) 0.99 (1.87) 1.51 (2.32) 0.89 (1.77)
Carbohydrate (grams) 10.16 (16.50) 7.32 (13.76) 10.20 (15.84)

The second case of infection (flu)

Daily
Blood Glucose (mg/dl) 143.01 (19.53) 155.36 (21.99) 126.17 (11.70)
Total insulin (bolus) 28.07 (8.85) 41.07 (9.44) 25.36 (6.93)
Carbohydrate (grams) 190.14 (43.93) 161.14 (58.43) 214.57 (34.66)
Hourly
Blood Glucose (mg/dl) 147.51 (40.75) 162.32 (39.49) 130.85 (36.49)
Total insulin (bolus) 1.14 (1.92) 1.68 (2.48) 0.98 (1.94)
Carbohydrate (grams) 8.3517 (14.68) 6.88 (14.25) 8.39 (14.56)

The third case of infection (flu)

Daily
Blood Glucose (mg/dl) 136.93 (18.58) 144.12 (20.30) 134.18 (11.96)
Total insulin (bolus) 20.08 (5.44) 31.50 (10.84) 22.83 (3.86)




Carbohydrate (grams)

178.0 (45.87)

144.83 (37.63)

195.83 (42.59)

Hourly
Blood Glucose (mg/d) 143.30 (40.51) 149.84 (32.90) 139.77 (39.61)
Total insulin (bolus) 1.00 (1.77) 1.50 (2.17) 0.93 (1.62)
Carbohydrate (grams) 7.71 (14.31) 6.48 (12.82) 7.28 (13.42)

The fourth case of infection (flu)

Daily
Blood Glucose (mg/dl) 157.74 (31.12) 161.34 (19.88) 138.57 (19.83)
Total insulin (bolus) 24.43 (5.26) 32.14 (7.01) 29.29 (5.22)
Carbohydrate (grams) 199.06 (53.45) 167.04 (44.94) 226.07 (18.23)

Hourly
Blood Glucose (mg/dl) 151.57 (51.15) 157.68 (52.43) 142.16 (47.79)
Total insulin (bolus) 0.96 (2.60) 139 (2.97) 1.19 (3.24)
Carbohydrate (grams) 8.38 (20.25) 6.78 (18.52) 9.78 (22.57)

The fifth case of infection (flu)

Daily
Blood Glucose (mg/dl) 135.21 (14.58) 139.88 (15.54) 122.87 (14.49)
Insulin (bolus) 32.80 (4.59) 40.37 (8.31) 33.36 (7.94)
Insulin (basal) 19.20 (1.21) 20.42 (2.06) 18.68 (1.56)
Total Insulin 52.33 (5.14) 61.21 (8.26) 52.46 (8.47)
Hourly
Blood Glucose (mg/dl) 134.23 (34.16) 144.09 (44.25) 122.12 (35.99)
Tnsulin (bolus) 1.36 (2.58) 1.76 (2.82) 1.45 (2.63)

1. The First Case of infection (flu)
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a) Comparison of Blood Glucose levels during pre-infection week, infection week and post-infection week. As can be seen,

the blood glucose is elevated during the infection week as compared to the pre and post-infection week.

b) Comparison of Insulin (bolus) intake during pre-infection week, infection week and post-infection week. As can be seen,
the amount of insulin (bolus) intake is elevated during the infection week as compared to the pre and post-infection

week.

¢)  Comparison of Carbohydrate (grams) intake during pre-infection week, infection week and post-infection week. As can

be seen, the amount of Carbohydrate (grams) intake is significantly reduced during the infection week as compared to
the pre and post-infection week.
d) Table 2: Mean Percentage Change between pre-infection week versus infection week and post-infection week and

infection week. For further reference, see Table 1 Above.
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Parameters Pre-infection Vs. Infection week Post-infection week Vs. Infection week

Blood Glucose 8.57% 19.12%
Insulin (bolus) 50.93% 65.59%
Carbohydrate -25.84% -25.87%
Hourly

Blood Glucose 9.79% 13.57%
Insulin (bolus) 52.53% 70.00%
Carbohydrate -27.95% -28.24%

Figure 1: Analysis of pre-infection week, infection week, and post-infection week based on the first patient year.
Figure (a) depicts the blood glucose levels during these weeks. Figure (b) depicts the amount of insulin (bolus) injected
during these weeks. Figure (c) depicts the amount of carbohydrate consumed in grams during these weeks. Table 2
shows the mean percentage change between these weeks. In all the figures, the asterisk shows the mean value and the

red line depicts the median value for the week.

2. The Second Case of Infection (flu)
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a) Comparison of Blood Glucose levels during pre-infection week, infection week and post-infection week. As can be seen,

the blood glucose is elevated during the infection week as compared to the pre and post-infection week.
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b) Comparison of Insulin (bolus) intake during pre-infection week, infection week and post-infection week. As can be seen,

the amount of insulin (bolus)intake is elevated during the infection week as compared to the pre and post-infection week.
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¢) Comparison of Carbohydrate (grams) intake during pre-infection week, infection week and post-infection week. As can

be seen, the amount of Carbohydrate (grams) intake is significantly reduced during the infection week as compared to

the pre and post-infection week.

e) Table 3: Mean Percentage Change between pre-infection week versus infection week and post-infection week and

infection week. For further reference, see Table 1 Above.

Post-infection week Vs. Infection week

Parameters Pre-infection Vs. Infection week
Blood Glucose (mg/dl) 8.63% 23.13%
Insulin (bolus) 46.31% 61.94%




Carbohydrate (grams) -15.25% -24.90%
Hourly

Blood Glucose (mg/dl) 10.04% 24.05%
Insulin (bolus) 47.13% 70.87%
Carbohydrate (grams) -17.59% -18.0%

Figure 2: Analysis of pre-infection week, infection week, and post-infection week based on the second patient year.
Figure (a) depicts the blood glucose levels during these weeks. Figure (b) depicts the amount of insulin (bolus) injected
during these weeks. Figure (c) depicts the amount of carbohydrate consumed in grams during these weeks. Table 3
shows the mean percentage change between these weeks. In all the figures, the asterisk shows the mean value and the

red line depicts the median value for the week.

3. The Third Case of Infection (flu)
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a) Comparison of Blood Glucose levels during pre-infection week, infection week and post-infection week. As can be seen,

the blood glucose is elevated during the infection week as compared to the pre and post-infection week.
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b) Comparison of Insulin (bolus) intake during pre-infection week, infection week and post-infection week. As can be seen,

the amount of insulin (bolus)intake is elevated during the infection week as compared to the pre and post-infection week.
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¢) Comparison of Carbohydrate (grams) intake during pre-infection week, infection week and post-infection week. As can

be seen, the amount of Carbohydrate (grams) intake is significantly reduced during the infection week as compared to

the pre and post-infection week.

f)  Table 4: Mean Percentage Change between pre-infection week versus infection week and post-infection week and

infection week. For further reference, see Table 1 Above.

Post-infection week Vs. Infection week

Parameters Pre-infection Vs. Infection week
Blood Glucose (mg/dl) 7.26% 7.41%
Insulin (bolus) 56.87% 37.98%




Carbohydrate (grams) -18.63% -26.04%
Hourly

Blood Glucose (mg/dl) 4.56% 7.21%
Insulin (bolus) 50.0% 61.29%
Carbohydrate (grams) -15.95% -10.99%

Figure 3: Analysis of pre-infection week, infection week, and post-infection week based on the third patient year.
Figure (a) depicts the blood glucose levels during these weeks. Figure (b) depicts the amount of insulin (bolus)injected
during these weeks. Figure (c) depicts the amount of carbohydrate consumed in grams during these weeks. Table 4
shows the mean percentage change between these weeks. In all the figures, the asterisk shows the mean value and the

red line depicts the median value for the week.

4. The Fourth Case of Infection (flu)
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a) Comparison of Blood Glucose levels during pre-infection week, infection week and post-infection week. As can be seen,

the blood glucose is elevated during the infection week as compared to the pre and post-infection week.
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b) Comparison of Insulin (bolus) intake during pre-infection week, infection week and post-infection week. As can be seen,

the amount of insulin (bolus)intake is elevated during the infection week as compared to the pre and post-infection week.
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¢) Comparison of Carbohydrate (grams) intake during pre-infection week, infection week and post-infection week. As can

be seen, the amount of Carbohydrate (grams) intake is significantly reduced during the infection week as compared to

the pre and post-infection week.

g) Table 5: Mean Percentage Change between pre-infection week versus infection week and post-infection week and

infection week. For further reference, see Table 1 Above.

Post-infection week Vs. Infection week

Parameters Pre-infection Vs. Infection week
Blood Glucose (mg/dl) 2.28% 16.43%
Insulin (bolus) 31.56% 9.73%




Carbohydrate (grams) -16.09% -35.34%
Hourly

Blood Glucose (mg/dl) 4.03% 10.92%
Insulin (bolus) 44.79% 16.81%
Carbohydrate (grams) -19.09% -30.68%

Figure 4: Analysis of pre-infection week, infection week, and post-infection week based on the fourth patient year.
Figure (a) depicts the blood glucose levels during these weeks. Figure (b) depicts the amount of insulin (bolus) injected
during these weeks. Figure (c) depicts the amount of carbohydrate consumed in grams during these weeks. Table 5
shows the mean percentage change between these weeks. In all the figures, the asterisk shows the mean value and the

red line depicts the median value for the week.

5. The Fifth Case of Infection (flu)
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a)  Comparison of Blood Glucose levels during pre-infection week, infection week and post-infection week. As can be seen,

the blood glucose is elevated during the infection week as compared to the pre and post-infection week.
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b) Comparison of Insulin (bolus) intake during pre-infection week, infection week and post-infection week. As can be seen,
the amount of insulin (bolus) intake is elevated during the infection week as compared to the pre and post-infection

week.

¢) Comparison of total Insulin (bolus and basal) intake during pre-infection week, infection week and post-infection week.

As can be seen, the amount of total insulin intake is elevated during the infection week as compared to the pre and post-

infection week.
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d) Comparison of Insulin (basal) intake during pre-infection week, infection week and post-infection week. As can be seen,
the amount of insulin (basal) intake is elevated during the infection week as compared to the pre and post-infection week.
h) Table 6: Mean Percentage Change between pre-infection week versus infection week and post-infection week and

infection week. For further reference, see Table 1 Above.

Parameters Pre-infection Vs. Infection week Post-infection week Vs. Infection week
Blood Glucose (mg/dl) 3.45% 13.84%

Insulin (bolus) 23.08% 21.01%

Insulin (basal) 6.35% 9.32%

Total Insulin 16.97% 16.68%

Hourly

Blood Glucose (mg/dl) 7.346% 17.99%

Insulin (bolus) 29.42% 21.38%

Figure 5: Analysis of pre-infection week, infection week, and post-infection week based on the fifth patient year.
Figure (a) depicts the blood glucose levels during these weeks. Figure (b) depicts the amount of insulin (bolus) injected
during these weeks. Figure (c) depicts the amount of total insulin (bolus + basal) injected during these weeks. Figure
(d) depicts the amount of insulin (basal) injected during these weeks. Table 6 shows the mean percentage change
between these weeks. In all the figures, the asterisk shows the mean value and the red line depicts the median value

for the week.

Il.  Kernel Density Estimation

The kernel density was estimated relying on two procedures; by removing the infection period from the yearly data

and computing the distribution and computing the kernel density for the whole year including the infection period.
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This is carried out so as to identify the effect of the infection period on the distribution of the data (please see the

manuscript for further explanation).

1. The First Case of infection (flu)

Distribution of Insulin to Carb Ratio

Kernel Density Plot without Infection Days Included
I I

Density

Short Tail

0.15 025 03 035 0.4
Random Variable - Ratio

Kernel Density Plot with Infection Days Included
T T

Long Tail

I I/ S —

02 0.4
Random Variable - Ratio

a) Kernel density estimation of daily total insulin (bolus) to carbohydrate ratio.
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b) Kernel density estimation of hourly total insulin (bolus) to carbohydrate ratio.

Figure 6: Univariate kernel density estimation of a patient year using the daily insulin (bolus) to carbohydrate
ratio. Figure (a) depicts the univariate kernel estimation of the daily total insulin (bolus) to carbohydrate ratio.
Figure (b) depicts the univariate kernel estimation of the hourly total insulin (bolus) to carb ratio. As can be seen
from the tail of the distribution, during normal days (the green shaded region) almost most of the yearly

distribution of the patient insulin (bolus) to carbohydrate ratio lies within the values of 0.005 and 0.2. However,
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during infection incidence (the red shaded region) there is a clear deviation in the tail of the distribution, where

the values reaches around 0.58.
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a) Kernel density estimation of daily average blood glucose levels vs. total insulin (bolus) to carbohydrate ratio.
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b) Kernel density estimation of hourly average blood glucose levels vs. total insulin (bolus) to carbohydrate

ratio.

Figure 7: Bivariate Kernel Density estimation of a patient year using both the average BG levels and insulin
(bolus) to carbohydrate ratio. Figure (a) depicts the bivariate kernel estimation of the daily average BG vs. total
insulin (bolus) to carbohydrate ratio. Figure (b) depicts the bivariate kernel estimation of the hourly average BG

vs. total insulin (bolus) to carbohydrate ratio. As can be seen from the bivariate distribution, during regular/normal
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days (the top light green figure), the distributions are concentrated around the high density regions. However,

during infection incidence (the lower figure), there is a clear bump far from the high density regions.

2. The Second Case of infection (flu)
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a) Kernel density estimation of daily total insulin (bolus) to carbohydrate ratio.
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b) Kernel density estimation of hourly total insulin to carbohydrate ratio.
Figure 8: Univariate Kernel Density estimation of a patient year using the daily insulin (bolus) to carbohydrate
ratio. Figure (a) depicts the univariate kernel estimation of the daily total insulin (bolus) to carbohydrate ratio.
Figure (b) depicts the univariate kernel estimation of the hourly total insulin (bolus) to carb ratio. As can be seen
from the tail of the distribution, during regular/normal days (the green shaded region) almost most of the yearly

distribution of the patient insulin to carbohydrate ratio lies within the values of 0.005 and 0.25. However, during
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infection incidence (the red shaded region) there is a clear deviation in the tail of the distribution, where the values

reaches around 0.7.
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a) Kernel density estimation of daily average blood glucose levels and total insulin (bolus) to carbohydrate

ratio.

b) Kernel density estimation of hourly average blood glucose levels and total insulin (bolus) to carbohydrate

ratio.
Figure 9: Bivariate Kernel Density estimation of a patient year using both the average blood glucose levels and

insulin (bolus) to carbohydrate ratio. Figure (a) depicts the bivariate kernel estimation of the daily average BG vs.
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total insulin (bolus) to carbohydrate ratio. Figure (b) depicts the bivariate kernel estimation of the hourly average
BG vs. total insulin (bolus) to carbohydrate ratio. As can be seen from the bivariate distribution, during
regular/normal days (the top light green figure), the distributions are concentrated around the high density
regions. However, during infection incidence (the lower figure), there is a clear bump far from the high density

regions.

The Third Case of infection (flu)
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a) Kernel density estimation of daily total insulin (bolus) to carbohydrate ratio.
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b) Kernel density estimation of hourly total insulin (bolus) to carbohydrate ratio.
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Figure 10: Univariate Kernel Density estimation of a patient year using the daily insulin (bolus) to carbohydrate
ratio. Figure (a) depicts the univariate kernel estimation of the daily total insulin (bolus) to carbohydrate ratio.
Figure (b) depicts the univariate kernel estimation of the hourly total insulin (bolus) to carb ratio. As can be seen
from the tail of the distribution, during regular/normal days (the green shaded region) almost most of the yearly
distribution of the patient insulin (bolus) to carbohydrate ratio lies within the values of 0.005 and 0.26. However,
during infection incidence (the red shaded region) there is a clear deviation in the tail of the distribution, where

the values reaches around 0.5.

a) Kernel density estimation of daily average blood glucose levels and total insulin (bolus) to carbohydrate

ratio.
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b) Kernel density estimation of hourly average blood glucose levels and total insulin (bolus) to carbohydrate
ratio.
Figure 11: Bivariate Kernel Density estimation of a patient year using both the average blood glucose levels and
insulin (bolus) to carbohydrate ratio. Figure (a) depicts the bivariate kernel estimation of the daily average BG vs.
total insulin (bolus) to carbohydrate ratio. Figure (b) depicts the bivariate kernel estimation of the hourly average
BG wvs. total insulin (bolus) to carbohydrate ratio. As can be seen from the bivariate distribution, during
regular/normal days (the top light green figure), the distributions are concentrated around the high density

regions. However, during infection incidence (the lower figure), there is a clear bump far from the high density

regions.

The Fourth Case of infection (flu)
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a) Kernel density estimation of daily total insulin (bolus) to carbohydrate ratio.
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b) Kernel density estimation of hourly total insulin (bolus) to carbohydrate ratio.

Figure 12: Univariate Kernel Density estimation of a patient year using the daily insulin (bolus) to carbohydrate
ratio. Figure (a) depicts the univariate kernel estimation of the daily total insulin (bolus) to carbohydrate ratio.
Figure (b) depicts the univariate kernel estimation of the hourly total insulin (bolus) to carb ratio. As can be seen
from the tail of the distribution, during regular/normal days (the green shaded region) almost most of the yearly
distribution of the patient insulin to carbohydrate ratio lies within the values of 0.005 and 0.2. However, during

infection incidence (the red shaded region) there is a clear deviation in the tail of the distribution, where the values

reaches around 0.45.
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a) Kernel density estimation of daily average blood glucose levels and total insulin (bolus) to carbohydrate

ratio.
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b) Kernel density estimation of hourly average blood glucose levels and total insulin (bolus) to carbohydrate
ratio.
Figure 13: Bivariate Kernel Density estimation of a patient year using both the average blood glucose levels and
insulin (bolus) to carbohydrate ratio. Figure (a) depicts the bivariate kernel estimation of the daily average BG vs.
total insulin (bolus) to carbohydrate ratio. Figure (b) depicts the bivariate kernel estimation of the hourly average
BG vs. total insulin (bolus) to carbohydrate ratio. As can be seen from the bivariate distribution, during
regular/normal days (the top light green figure), the distributions are concentrated around the high density
regions. However, during infection incidence (the lower figure), there is a clear bump far from the high density

regions.
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Appendix 2: Analytical plot of the Normal/Regular Patient Years

The normal/regular patient year depicts the absence of significant infection incidences on the individual
patient. These data are used to validate the change associated with presence of infections in an individual.
The data were analyzed after computing the daily or hourly average BG, total insulin and carbohydrate
consumption and smoothing with a 2-days window size moving average filter. The data was filtered to

remove short term noise. The analytical plot as shown in the figure below demonstrated that under normal

conditions the insulin to carbohydrate ratio remains between 0.05 and 0.2 in all the normal patient years.

1. The First Patient Year

a) Daily average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.




b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.

Figure 1: The first patient year, where there is no incidence of acute infections. Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of the same
variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate ratio through these
normal days is between 0.05 to 0.2.

2. The Second Patient Year

a) Daily average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.

b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.



Figure 2: The second patient year, where there is no incidence of acute infections. Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of the same
variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate ratio through these
normal days is between 0.05 to 0.2.

3. The Third Patient Year

a) Daily average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.

b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.



Figure 3: The third patient year, where there is no incidence of acute infections. Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of the same
variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate ratio through these

normal days is between 0.05 to 0.2.

4. The Fourth Patient Year

a) Daily average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.




b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.

Figure 4: The fourth patient year, where there is no incidence of acute infections. Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of the same
variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate ratio through these
normal days is between 0.05 to 0.21.

5. The Fifth Patient Year

a) Daily average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.



b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio.

Figure 5: The fifth patient year, where there is no incidence of acute infections. Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of the same
variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate ratio through these
normal days is between 0.05 to 0.22.



Appendix 3: Analytical plot of the Patient Years with acute
infection

The patient year with acute infection depicts a patient year containing at least with one or more infection
incidences. These data are used to compare and evaluate the effect of infection incidences on the key
parameters of the BG dynamics on an individual basis including BG levels, insulin intake, carbohydrate
consumption, and ratio of insulin to carbohydrate. The data were analyzed after computing the daily or
hourly average BG, total insulin and carbohydrate consumption and smoothing with a 2-days window size
moving average filter. The data was filtered to remove short term noise. The analytical plot as shown in the
figure below demonstrated that during infection incidences the key parameters of the BG dynamics are
highly affected. The patient experiences elevated BG levels while the insulin to carbohydrate ratio is
dramatically shifted to a higher value depicting higher insulin intake with low carbohydrate ingestions.

During normal conditions the insulin to carbohydrate ratio remains between 0.05 and 0.2.

1. The first case of infection (Flu)
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Figure 1: The sixth patient year, where the patient was infected with influenza (flu) starting from the first

week of December. Figure (a) depicts the daily variation of BG, total insulin (bolus), carbohydrate, and

insulin to carbohydrate ratio. Figure (b) depicts variation of the same variable during each hours of the day.

The operating point of the patient’s insulin to carbohydrate ratio had dramatically shifted and raised above

the regular/normal days and reach a top around 0.5 upon mid infection week.

2. The second case of infection (Flu)
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based on a window size of two days.
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b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio
based on a window size of 48 hours.

Figure 2: The seventh patient year, where the patient was infected with influenza (flu) starting from the

first week of April. Figure (a) depicts the daily variation of BG, total insulin (bolus), carbohydrate, and

insulin to carbohydrate ratio. Figure (b) depicts variation of the same variable during each hours of the day.

The operating point of the patient’s insulin to carbohydrate ratio had dramatically shifted and raised above

the regular/normal days and reach a top around 0.45 upon mid infection week.

3. The third case of infection (Flu)
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based on a window size of two days.



b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio
based on a window size of 48 hours.

Figure 3: The eighth patient year, where the patient was infected with influenza (flu) starting from the last

week of November. Figure (a) depicts the daily variation of BG, total insulin (bolus), carbohydrate, and

insulin to carbohydrate ratio. Figure (b) depicts variation of the same variable during each hours of the day.

The operating point of the patient’s insulin to carbohydrate ratio had dramatically shifted and raised above

the normal days and topped around 0.4 upon mid infection week.

4. The fourth case of infection (Flu)




a) Daily average BG levels, total insulin (bolus), total carbohydrate, and ratio of insulin to

carbohydrate based on a window size of two days.
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b) Hourly average BG levels, total insulin (bolus), total carbohydrate, and insulin to carbohydrate ratio
based on a window size of 48 hours.

Figure 4: The ninth patient year, where the patient was infected with three series of acute infection (mild
common cold without fever starting on the first week of august and light common cold without fever
starting of mid-February, influenza (flu) starting from mid-August). Figure (a) depicts the daily variation
of BG, total insulin (bolus), carbohydrate, and insulin to carbohydrate ratio. Figure (b) depicts variation of
the same variable during each hours of the day. The operating point of the patient’s insulin to carbohydrate
ratio had dramatically shifted and raised above the normal days and reach a top around 0.28 upon mid

infection week. A light common cold without fever seems to not significantly affect the operating point.



5. The fifth case of infection (Flu)
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a) Daily average BG levels, total insulin including both bolus and basal insulin, daily average rate of
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window size of two days.
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b) Hourly average BG levels, total insulin (bolus), hourly average rate of change of CGM (computed
based on CGM direction from the pump information) based on a window size of 48 hours.
Figure 5: The tenth patient year, where the patient was infected with influenza (flu) starting from mid-

January. The first Figure (a) depicts the daily variation and Figure (b) depicts variation during each hours



of the day. As can be seen, there is clear and dramatic rise in insulin amount, while the BG levels remain

elevated due to the ongoing infection incidence.
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Abstract

Background: Diabetes mellitusis a chronic metabolic disorder that results in abnormal blood glucose (BG) regulations. The
BG level is preferably maintained close to normality through self-management practices, which involves actively tracking BG
level sand taking proper actionsincluding adjusting diet and insulin medications. BG anomalies could be defined as any undesirable
reading because of either a precisely known reason (normal cause variation) or an unknown reason (special cause variation) to
the patient. Recently, machine-learning applications have been widely introduced within diabetes research in general and BG
anomaly detection in particular. However, irrespective of their expanding and increasing popularity, there is alack of up-to-date
reviews that materialize the current trends in modeling options and strategies for BG anomaly classification and detection in
people with diabetes.

Objective: Thisreview aimed to identify, assess, and analyze the state-of-the-art machine-learning strategies and their hybrid
systemsfocusing on BG anomaly classification and detection including glycemic variability (GV), hyperglycemia, and hypoglycemia
in type 1 diabetes within the context of personalized decision support systems and BG alarm events applications, which are
important constituents for optimal diabetes self-management.

Methods: A rigorousliterature search was conducted between September 1 and October 1, 2017, and October 15 and November
5, 2018, through various Web-based databases. Peer-reviewed journal s and articleswere considered. | nformation from the sel ected
literature was extracted based on predefined categories, which were based on previous research and further elaborated through
brainstorming.

Results: The initial results were vetted using the title, abstract, and keywords and retrieved 496 papers. After a thorough
assessment and screening, 47 articles remained, which were critically analyzed. The interrater agreement was measured using a
Cohen kappa test, and disagreements were resolved through discussion. The state-of-the-art classes of machine learning have
been developed and tested up to the task and achieved promising performance including artificial neural network, support vector
machine, decision tree, genetic algorithm, Gaussian process regression, Bayesian neural network, deep belief network, and others.

Conclusions: Despite the complexity of BG dynamics, there are many attempts to capture hypoglycemia and hyperglycemia
incidences and the extent of an individual’s GV using different approaches. Recently, the advancement of diabetes technol ogies
and continuous accumulation of self-collected health data have paved the way for popularity of machine learning in these tasks.
According to the review, most of the identified studies used a theoretical threshold, which suffers from inter- and intrapatient
variation. Therefore, future studies should consider the difference among patients and al so track its temporal change over time.
Moreover, studies should also give more emphasis on the types of inputs used and their associated time lag. Generally, we foresee
that these devel opments might encourage researchers to further devel op and test these systems on alarge-scale basis.
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Introduction

Background

Diabetes mellitusis achronic metabolic disorder that resultsin
abnormal blood glucose (BG) regulation. The BG leve is
maintained close to normality through self-management
practices, which involves actively tracking BG levelsand taking
proper actions including diet and insulin medications. The
estimated number of people with diabetes aged between 20 and
79 yearswas 415 million (uncertainty interval: 340-536 million)
in 2015 and is expected to reach 642 million (uncertainty
interval: 521-829 million) by 2040 [1]. The globa economic
burden of diabetesin adults aged between 20 and 79 yearswas
estimated to be US $1.31 trillion (95% CI 1.28-1.36) in 2015
[2]. Thetotal number of deaths attributed to diabetesis estimated
to be 5 million in people with diabetes aged between 20 and 79
years [1]. People with diabetes have a higher risk of getting
infections as compared with the normal population, which
potentialy increases their morbidity and mortality [3]. The
greater and frequent risk of infectionsis mainly correlated with
a hyperglycemia environment [3,4]. Moreover, studies suggest
ahypoglycemia episode could result in a higher hospitalization
and mortality rate [5].

The individual’s BG dynamic is affected by various factors,
which are mainly categorized as common, individua, and
unpredictable factors [6]. The common factors include amount
of food intake, insulin intake, previouslevel of BG, pregnancy,
drug and vitamin intake, smoking, and alcohol intake. The
individual factors include dawn phenomena, physical exercise
load, and menstruation. The unpredictable factorsinclude stress,
concomitant diseases, and infections [6]. Swings in BG
dynamics, that is, hypoglycemia and hyperglycemia, could be
generaly categorized under anormal cause variation and special
cause variation. The normal cause variation is regarded as
caused by those common and individual factors, whereas the
special cause variationis caused by those unpredictablefactors.
The underlying reason of the special cause variationsisdifficult
to understand and remains achallenge for the patient during the
incidences. For instance, during stress and infections, the patient
usually struggleswith hyperglycemiaand injectsfrequent insulin
to lower hisor her BG levels.

BG anomalies could be defined as any undesirable reading
because of either a precisely known reason (normal cause
variation) or an unknown reason (specia cause variation) to the
patient [7]. Even if the advancement in self-management
applications and diabetes monitoring technologies has made
things easier, the challenge of BG anomalies remains to be
managed by the patient themselves. There are some
technological developments in the direction of personalized
decision systems and BG event alarms to provide an alert and
decision support to the patient in the time of these challenges.
Techniques such as classification and detection of glycemic
variability (GV), hypoglycemia, and hyperglycemia, in

https://www.jmir.org/2019/5/€11030/

particular, and BG anomalies, in general, are central to the
development of these diabetes technologies. The ubiquitous
nature and widespread use of mobile health (mHealth) apps,
sensors and wearables, and other point-of-care (POC) devices
for self-monitoring and management purposes have made
possible the generation of automated and continuous
diabetes-related data, which brought an opportunity for the
introduction of machine learning and its application for
intelligent and improved systems, which is capable of solving
complex tasks within a dynamic knowledge and dynamic
environment. In this regard, there are some reviews conducted
toward the applications of artificia intelligence in
diabetes-rel ated tasks. For instance, Contreraset al [8] conducted
literature reviews on the applications of artificial intelligence
in the context of critical diabetes management issues such as
BG prediction and strategies for BG control, adverse glycemic
events detection, bolus cal culators and advisory system, patient
personalization (tailored features), and others [8]. Moreover,
Rigla et a [9] also conducted a review to provide a general
overview and popularity of artificial intelligence applications
to diabetes problems. Generally, both Contreras et a [8] and
Rigla et a [9] tried to demonstrate the potential of artificial
intelligence with regard to all groups of people with diabetes
focusing on general self-management issues. As far as our
knowledgeisconcerned, there are almost no reviews conducted
toward techniques of BG anomaly classification and detection
focusing on various approaches, in general, and
machine-learning applications, in particular. However, there
were some reviews conducted to evaluate the significant effect
of pattern management based on self-monitoring BG (SMBG)
with regard to clinical practices[10]. Therefore, we suggest that
thereisalack of reviewsfocusing on BG anomaly classification
and detection. The objective of this review was to identify,
assess, and andyze the state-of-the-art machine-learning
strategiesin BG anomaly classification and detection including
GV, hyperglycemia, and hypoglycemia in people with type 1
diabetes. Moreover, it has presented the current modeling
options of machine-learning applications and their hybrid
systems. The review covers machine-learning approaches
pertinent to personalized decision support systemsand BG alarm
events applicationsin type 1 diabetes.

Machine Learning Tasksin Type 1 Diabetes

M achine-learning approaches (tasks) are generally categorized
asregression, prediction, classification, detection, and clustering,
which are grouped either in supervised, semisupervised,
unsupervised, or reinforcement learning based on the type of
learning employed. Generally, reinforcement learning is out of
the scope of this review, where we mainly focus on the other 3
categories. Machinelearning—based data mining tasks could be
categorized as descriptive or unsupervised (ie, clustering,
association, and summarization), semisupervised (ie,
classification and detection), and predictive or supervised
learning (ie, classification and regression) [11]. In this regard,
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the most widely used machinelearning—based data mining tasks
in the literature are BG anomalies detection, BG prediction,
modeling of BG dynamics, and decision making or education,
asshownin Figure 1. Inthisreview, wewill focuson thetypical
applications of classification and detection tasks in diabetes
research, specifically in BG anomaly detection within the
context of apersonalized decision support system and BG alarm
events applications. The review considers various classes of
machine learning algorithms: artificial neural network (ANN),
decision trees (DTs), support vector machine (SVM),
evolutionary algorithms (EAS), and others.

An ANN is a biologically inspired computational model
consisting of a set of interconnected neurons and a scaled
connection between them that is called weights [12]. On the
basis of network topology, an ANN is mainly categorized as a
feedforward ANN (single-layer perceptron (SLP), multi-layer
perceptron (MLP), and radial basis function [RBF]) and
feedback ANN (recurrent neural network [RNN], EIman net,
Kohonen's self-organizing map (SOM), and Hopfield networks)
[12]. The SVYM works based on the theory of structural risk

Woldaregay et a

minimization principle [13]. Learning in the SYM occurs
through finding an optimal hyperplane that can maximize the
margin between the classes. The SVM hasbeen widely exploited
in numerous applications such as regression and prediction,
pattern identification and recognition, categorization, and
classification [13]. An EA is abiologically inspired approach
to problem solving [14]. The 2 most used variants of EA are
genetic programming (GP) and genetic algorithm (GA). Random
forest (RF) or DTs are a kind of an ensemble approach of
learning for different classification and regression applications,
which mainly learns by constructing a multitude of DTs
generating the mode of the class or mean of prediction. The
hidden Markov model (HMM) is a variant of the statistical
Markov model, where the system being modeled is assumed to
follow a Markov property with unobserved states [15]. There
are various versions of HMMs; however, in this review, we
considered only those trained with aframework closeto machine
learning families. Hybridization is the process of combining 2
or more different approachesin parallel or serious connection,
either at the preprocessing stage, feature extraction, or learning
stage, when looking for an improved performance [16].

Figure 1. Most widely used machine learning—based data mining tasks based on self-recorded datain people with type 1 diabetes. The yellow shaded

ellipse depicts the scope of this review.
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Hawkins defined anomalies as*“ observations that deviate much
from the other observations so as to arouse suspicions that it
could be generated by adifferent process’ [7,17,18]. There are
termsthat are often used interchangeably with anomalies, such
as outliers, deviations, exceptions, rare instances, and
irregularities. The problem of identifying and capturing
anomalies in data can be supervised, semisupervised, and
unsupervised tasks [19,20]. These strategies can roughly be
categorized as classifier- or model-based (detection) approach.
The semisupervised is better when anomal ousinstances are not
easily available, whereas supervised techniques are more
suitable when there are sufficient labeled instances of both
normal and anomalous instances. The unsupervised approach
does not require any reference data labels, where normal
behaviors haveto be determined dynamically, and the detections
are mainly performed with regard to the entire datasets. The
model-based strategies can be considered as a diagnosis of the
system’s behavior during abnormal situationsthrough modeling
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Blood Glucose Dynamics
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and adequately characterizing the system'’s behavior during
normal situations [19,21]. It uses a system’s model to either
estimate or predict the underlying system (process) dynamics
to capture anomalies in the data. The most important design
requirement in using a model includes discovering and
characterizing what is to be considered a normal pattern of
behaviors [22]. Unlike the classifier-based strategies, the
model-based strategies do not require rigorous knowledge of
the underlying expected anomalies, that is, to fully understand
and characterize the shape and nature of the expected anomalies
[22]. By simply defining what is the expected normal pattern
the system should exhibit, the model-based anomaly detection
is capable of detecting abnormal behavior, which is not
considered as the normal behavior of the system. Defining and
discovering what is normal is a challenging task especially for
dynamic and complex systems, for example, BG dynamics.
However, thisis often tackled in adynamic and complex system
by relying on either amachinelearning model trained on alarge
enough dataset or using an explicit mathematical model, for
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example, physiological model of BG dynamics, of the system
if it exists already.

BG readings are time series data, and anomalies in BG levels
could be regarded as any undesirable readings, as shown in
Figure 1, because of either a predictable cause (normal cause
variation) or an unpredictable cause (special cause variation).
A normal cause variation could be defined as any hypoglycemia
or hyperglycemiaincidences with the underlying cause known
to the patient herself or himself and al so referred as predictable
(patient controllable) factors such as insulin injection, diet
intake, physical activity, and others. However, special cause
variation refers to any hypoglycemia or hyperglycemia
incidences with the underlying cause unknown to the patient
and also called unpredictable (patient uncontrollable) factors
such as stress, infections, insulin set failure, and others. The
classifier, semisupervised (model)— and unsupervised-based
approach could be used to solve the challenge of capturing BG
anomalies caused by both the predictable factors (normal cause
variation) and unpredictable cause (special cause variation).
However, regarding the unpredictable factors (special cause
variation), the classifier-based approach remains to be very
challenging with limited feasibility as the classifier-based
strategies require athorough understanding and characterization
of the nature, size, and shape of the anomalies, along with its
inter- and intravariability among the patients. With the same
token, the unsupervised approach could face the same challenge
as it does not have any mechanisms for differentiating the one
with special cause from the normal cause variations. However,
the model-based (semi supervised) approach happensto be more
appropriate given that it only requires to characterize what is
considered to be normal so as to detect what is believed to be
abnormal. For example, infection (stress)—elated hyperglycemia
and a diet-induced hyperglycemia are treated differently
according to the model-based (semisupervised) anomaly
detection strategies. In thisregard, diet-induced hyperglycemia
istreated asnormal, asthe model could describe the underlying
cause (certain meal), but infection-related hyperglycemia is
considered as an anomaly because the model cannot describe
the underlying cause based on patient controllable variables
(eg, meals and insulin).

GV measures the degree or the rate at which the patient’'s BG
fluctuates between high and low levels [23]. GV is useful to
provide all-inclusive information on one's self-management
practices concerning postprandial spikes in BG, as well as
episodes of hypoglycemic and hyperglycemic events [23,24],
which are the main factors that contribute for a higher risk of
cardiovascular events in people with diabetes. The evaluation
of GV helpsto comprehend and assessthe effect of the patient’s
timely actions on the hypoglycemia and hyperglycemia
incidence by associating out-of-target BG levels with
patient-specific factors, such asinsulin dosage, other medication,
meals, activity, stress, and illness [23]. However, there is no
gold standard approach for assessing GV, and despite its
importance, it remains to be challenging.

Blood Glucose Prediction

BG prediction is about forecasting an individual’s future BG
levels using current and past information and is aso an
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important constituent of BG anomaly classification and detection
approaches. It mainly aimsto provide crucia alarmsfor patients
in advance with sufficient lead time so as to avoid further
complicationsfrom hypoglycemiaor hyperglycemiaincidences.
According to Oviedo et a [25], BG prediction models could be
categorized into 3 main groups. physiologica models,
data-driven models, and hybrid models [25]. These categories
are solely demarcated based on the necessity of extensive
knowledge of the underlying BG dynamics: black box approach
(data-driven model), intermediate knowledge (hybrid model),
and extensive knowledge (physiological model). The data-driven
model, which is mainly referred to as black box model, uses
the patient’s continuous glucose monitoring (CGM), insulin,
dietary, and other relevant information to develop a prediction
model, for example, machine learning and time series
approaches. There areavariety of data-driven models devel oped
and tested in the literature including machine learning (neural
network, support vector regression, jump neural network, RNN,
and others) and time series models (autoregressive [AR] with
exogenous input, AR moving average with exogenous input,
AR moving average, and others) [25]. Hybrid models make use
of the advantages from the data-driven and physiological models
[25]. Most of the hybrid modelsrely on the physiological model
to compute meal and insulin information as input for the
data-driven models [25]. Physiological models mainly rely on
3 sets of mathematical (differential) equations to describe the
underlying dynamics; BG dynamics, insulin dynamics, and mesal
absorption dynamics. Physiological modelsare roughly grouped
into lumped and comprehensive models based on the way the
model treats each organ and tissue so as to develop the
differential equations[26]. There are avariety of physiological
models developed in the literature such as Berger, Hovorka,
Cobelli, Lenmann and Deutsch model, and others [26].
Generally, there are plenty of models implemented in the
literature on the prediction of BG levels[25,26]. However, BG
prediction is not under the scope of this review, and we mainly
focus on the data-driven BG pattern classification and anomaly
detection approaches under the umbrella of machine learning.

Methods

Search Strategy

The objective of thisreview wasto identify, assess, and analyze
the state-of-the-art machine learning strategies and their hybrid
system focusing on BG anomaly classification and detection
including GV, hyperglycemia, and hypoglycemiain peoplewith
type 1 diabetes. The review covers machinelearning approaches
pertinent to personalized decision support systemsand BG alarm
events applications. Therefore, for the purpose of the study, a
rigorous literature search was conducted between September 1
and October 1, 2017, through various Web-based databases
including Google scholar, IEEE Xplore, DBLP Computer
Science Bibliography, ScienceDirect, PubMed or Medline,
Journal of Diabetes Science and Technology, and Diabetes
Technology & Therapeutics. Additional search was aso
conducted between October 15 and November 5, 2018, onthose
databases to refine and update the records. Furthermore, the
reference list of the selected articles was used to extract
additional articles to get a complete overview of the field.
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Peer-reviewed journals and articles published between 2000
and 2018 were considered. Theinclusion and exclusion criteria
were setup through rigorous discussion and brainstorming
among the authors. Different combinations of terms such as
diabetes, intelligent system, hybrid system, machine learning,
BG event indicators (hypo- and hyperglycemia prediction), BG
event alarm, BG personalized decision system, clinical,
closed-loop system, hyperglycemia, hypoglycemia, GV, and
personalized profile were used during the search. The terms
were combined using AND/OR for a better search strategy.
Relevant articles were first identified by reviewing the title,
keywords, and abstracts for a preliminary filter with our
selection criteria, and then we reviewed full text articles that
seemed relevant. Information from the selected literature was
extracted based on some predefined categories, which were
based on previous research, and further elaborated through
brainstorming.

Inclusion and Exclusion Criteria

To beincluded in the review, the studies should have devel oped,
implemented, tested, and discussed machine learning and any
of its hybrid approaches in type 1 diabetes focusing on one or
more of the following application areas:

« BGanomaly detection

«  Hypoglycemia prediction, classification, or detection
«  Hyperglycemia prediction, classification, or detection
«  Glycemic or BG variahility classification or detection

Therefore, the studies that reside outside of these stated scopes
were excluded from the review including all articles written in
other languages but English.

Data Categorization and Data Collection

Information was extracted from the selected studies based on
predefined parameters (variables) and categories. The categories
were defined based on rigorous brainstorming and discussion
among the authors. These categories were demarcated solely to
collect the relevant dataand to assess, analyze, and evaluate the
model’s characteristics and its experimental setup.

Application Scenario

Thiscategory definesthetype of applicationswherethe machine
learning algorithm is being exploited. It can be hypoglycemia
and hyperglycemia prediction, classification and detection, or
GV classification and detection.

Type of Input

This category was defined to assess, analyze, and evaluate the
type of inputs used to devel op the algorithm. This includes the
key diabetes parameters and other physiological parameters
relevant for BG anomaly classification and detections. BG,
heart rate variability, and others.

Data Format, Type, Size, and Data Source

This category was defined to assess, analyze, and evaluate the
type of dataformat used asinput to the algorithm. This depends
on the basis of the type of diabetes technologies, mobile apps,
and POC devices used for data collection and algorithm
development. It includes different data formats such as from

https://www.jmir.org/2019/5/€11030/

Woldaregay et a

CGM devices, mHealth apps (ie, diabetes diary), heart rate
monitoring devices, and others.

I nput Preprocessing
This category defines the kind of preprocessing algorithm the

system implements so asto avoid missing, sparse, and corrupted
input data.

Class of Machine Learning

This category defines the class of machine learning algorithm
used to train and test the BG anomaly classification and
detection algorithm. It includes different classes of machine
learning algorithm: ANN, SVM, Bayesian network, DT, and
others.

Training or Learning Method and Algorithm

This category defines the class of learning agorithms used to
train the model. It includes different training algorithms such
as the backpropagation algorithm, kernel, optimization
techniques, and others.

Performance Metrics or Evaluation Criteria

This category defines the type of evaluation metrics used to
assess the accuracy of the classification and detection algorithm
implemented. It includes different performance metrics such as
specificity, sensitivity, receiver operating characteristic (ROC)
curves, and others.

Literature Evaluation

The included literature was analyzed and evaluated based on
the above defined categories and variables to uncover the
state-of -the-art machine learning applicationsin hyperglycemia
or hypoglycemia prediction, classification and detection, and
GV classification and detection. It also tries to pinpoint their
characteristics along with the experimental setup used to
implement and test the algorithms. The first evaluation and
analysis was carried out based on the type of input used to
develop the agorithms to uncover the state-of-the-art inputs
used in these circumstances. The second evaluation and analysis
was carried out based on the various classes of machinelearning
used to devel op these algorithmsto uncover the rate of adoption
and their suitability to thetask. Thethird evaluation and analysis
was carried out based on the performance metrics used to
evaluate the performance of these algorithms.

Results

Relevant Literature

Theinitial hit was vetted using thetitle, abstract, and keywords
and retrieved a total of 496 papers (DBLP Computer Science
(20), Diabetes Technology & Therapeutics (23), Google Scholar
(160), |IEEE (215), Journal of Diabetes Science and Technology
(22), PubMed Medlin (27), and ScienceDirect (29); see Figure
2). After removing duplicates from the list, 410 records
remained. Then, we did an independent assessment of the
articles and screening based on the inclusion and exclusion
criteria, which eliminated another 215 papers, leaving 195
relevant papers. After a full-text assessment, 47 articles were
left (hyperglycemia=5, glycemic variabilities=3, and
hypoglycemia=39), which were critically analyzed as shownin
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Figures 2 and 3. The interrater agreement was measured using  discussion.

a Cohen kappa test, and disagreements were resolved through

Figure 2. Flow diagram of the review process.
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Evaluation and Analysis of the Literature

Theliterature, as described previously, was eval uated based on
the type of machine learning used to devel op the algorithm, the
type of input used to train the system, and the performance
metrics used to evaluate the algorithm performance based on
the tablesin Multimedia Appendices 1 and 2.

Data Characteristics and | nput Parameters

Input Parameters

Selecting the proper types of input parameters is one of the
crucial design strategies for successful classification and

https://www.jmir.org/2019/5/€11030/
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detection algorithm devel opment. In thisregard, the outer bigger
ring, the middlering, and theinner ring in MultimediaAppendix
1 depict thetypesof input used in hypoglycemia, hyperglycemia,
and GV classification and detection algorithm, respectively.
According to hypoglycemia classification and detection
algorithm, BG, heart rate, and QT interval are the most used
types of input parameters (25/39, 64%). BG aoneisthe second
most used type of input parameter (4/39, 10%). BG and insulin
are the third most used types of input parameters along with
BG, insulin, diet, physical activity, and others (3/39, 8%). BG
and diet alone, along with BG, insulin, and diet, and BG, heart
rate, skin impedance, and BG, insulin, diet, heart rate, galvanic
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response, skin impedance are the fifth most used types of input
parameters (1/39, 3%). According to hyperglycemia
classification and detection agorithm, BG alone, and BG and
insulin represent the most used types of input parameters (2/5,
40%). BG, heart rate, and QT interval represent the second most

Woldaregay et a

used types of input parameters (1/5, 20%). According to GV
classification and detection algorithm, BG alone (3/6, 50%),
and BG and insulin (3/6, 50%) are equally ranked as the most
used types of input parameters, as shown in Figure 4.

Figure 4. Reported input features, machine learning class, and accuracy. ANN: artificial neural network; BBNN: block-based neural network; BG:
blood glucose; BNN: Bayesian Neural Network; DBN: deep belief network; DT: decision tree; ELM: extremelearning machine; GA: genetic algorithm;
GP: genetic programming; HMM: hidden Markov model; NAR: nonlinear autoregressive network; NARX: nonlinear autoregressive network with
exogenous inputs; NBC: Naive Bayes classifier; RNN: recurrent neural network; SVM: support vector machine; VTWNN: variable trand ation wavel et

neural network.
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Data Characteristics

Data Sources

Different kinds of data sources ranging from BG monitors,
physical activity, electrocardiogram (ECG), and heart rate
sensors have been used in the reviewed articles for
hyperglycemia, hypoglycemia, and GV classification and
detection algorithms. The reviewed articles relied on different

Table 1. Types of dataformats used in the studies (N=49).

Woldaregay et a

kinds of data formats including SMBG (finger sticks), CGM,
and ECG signals, as shown in Table 1. Generaly, ECG signal
isthe most used type of data format (51%), followed by CGM
(39%) and SMBG (10%). Specificaly, hypoglycemia
classification and detection involve (CGM (n=11), ECG (n=24),
and SMBG (n=5)). Regarding, hyperglycemia classification
and detection (CGM (n=5) and ECG (n=1)) and GV
classification and detection (CGM (n=3)).

Data type/format

Count, n (%)

Continuous glucose monitoring
Self-monitoring blood glucose

Electrocardiogram signal

19 (39)
5 (10)
25 (51)

With regard to BG monitoring, different devices and brands
have been exploited for developing hypo-/hyperglycemia and
GV classification and detection algorithms, as shown in Table
2. Generally, Yellow Spring Instrumentsisthe most used device
(50%) followed by Guardian Real Time (MinMed CGM; 28%).
GlycoMark (7%) is the third most used device followed by
HemoCue Glucose 201 (5%) and Self-Monitored BG (5%).
Specifically, the most used devices for hypoglycemia
classification and detection are Guardian Real Time (MinMed,
CGM; n=7), Yellow Spring Instruments (n=21), HemoCue

Glucose 201 (n=2), Dexcom CGM system (n=1), Self-Monitored
BG (SMBG; n=2), Medtronic Enlite CGM sensors (n=1),
Medtronic insulin pump (n=4), SensorWear armband (physical
activity; n=2), and Basis Peak fithess band (n=1). and Basis
Peak fitness band (n=1). As for hyperglycemia classification
and detection, Guardian Real Time (MinMed CGM; n=2) and
Medtronic insulin pump (n=3) had been used. With regard to
GV classification and detection, GlycoMark (n=3), Guardian
Real Time (MinMed CGM; n=3), and Medtronic insulin pump
(n=3) had been used.

Table 2. Types of devices used for the monitoring of blood glucose levels (N=42).

Devices

Count, n (%)

Guardian Real Time (MinMed, CGM?)
HemoCue Glucose 201 (HemoCug)
Yellow Spring Instruments

Dexcom CGM system

Medtronic Enlite CGM sensors
GlycoMark

Self-Monitored Blood Glucose-unknown device

12 (28)
2(5)
21 (50)
1(3)
1(3)
3(7)
2(5)

3CGM: continuous glucose monitoring.

Various brands of physiological monitoring (heart rate and ECG
signals) devices have been exploited in the reviewed articles.
Generally, as shown in Table 3, Compumedics system is the
most used system (52%) followed by a customized device such
as a battery-powered chest belt—-worn device (22%). HypoMon
is the third most used device (13%) followed by Basis Peak
fitness band (9%) and a self-designed portabl e apparatus (4%).
Specifically, for hypoglycemia classification and detection

https://www.jmir.org/2019/5/€11030/

purposes, various devices have been used such as HypoMon
(n=3), Basis Peak (n=2), Compumedics system (n=11), a
battery-powered chest belt-worn (n=5), and self-designed
portable apparatus (n=1). With regard to hyperglycemia
classification and detection, only 1 article has used the
Compumedics system (n=1), which indicatesthat heart rate and
ECG signals have alimited use in this case.
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Table 3. Types of devices used for the monitoring of physiological parameters (heart rate and electrocardiogram signals; N=23).

Devices Count, n (%)
HypoMon 3(13)

Basis peak fitness band 2(9)
Compumedics system 12 (52)

A battery-powered chest belt—worn (customized) 5(22)
Self-designed portable apparatus (customized) 1(4)

Data Preprocessing

Data preprocessing is an important stage of any machine
learning strategy. In this regard, there were various kinds of
data preprocessing strategies used in the reviewed articles. The
reviewed articles had relied on both BG and other physiological
(heart rate, ECG, skin impedance, and others) data, which of
course involves different preprocessing strategies depending
on the data type under consideration. Regarding the BG data,
various preprocessing approaches had been used including
differencing (derivative) BG values [27,28], CGM data
reconstruction, or smoothing using different methods such as
spline interpolation [29-33], a rough feature elimination, such
as fast separability and correlation analysis algorithm [28,29],
representing BG temporal change information [34], feature
selection and feature ranking [35], filtering using Pearson’s
correlation coefficient (PCC) and the t test, and the wrapper
approach using greedy backward elimination [33]. The other
physiological parameters (heart rate, ECG, skin impedance, and
others) had been preprocessed using different methods such as
normalization [36-38], feature extraction and selection [39,40],
feature extraction using fast Fourier transform (FFT) [41],
unsupervised restricted Boltzmann machine-based feature
representation [42], filtering techniques such as I nfiniteimpulse
response high pass filter [41,43], correlation analysis [44-46],
and transformation of frequency domain into time domain (FFT)

[47].
Class of Machine Learning

Hypoglycemia Classification and Detection

Different classes of machine learning techniques have been
adopted in hypoglycemiaprediction, classification, and detection
algorithms to predict, classify, and detect the incoming
hypoglycemiaincident in peoplewith type 1 diabetes, as shown
inFigure 4. Conventional feedforward ANN isthe most adopted
class of machine learning, which is used in 26% (17/65) of the
studies, as shown in MultimediaAppendix 1. Hybridization of
machine learning techniqueswith other approaches such astime
series, fuzzy logic, and others are the second most adopted
approach (12/65, 18%). The SVM ranked the third most adopted
class of machine learning (9/65, 14%). DT ranked the fourth
most adopted technique (4/65, 6%). GA, time delay ANN and
time sensitive ANN, block-based neural network (BBNN), and
adaptive neural fuzzy inference system (ANFIS) are the fifth
most used classes of machine learning (3/65, 5%). Nonlinear
autoregressive network with exogenous inputs (NARX) and
nonlinear autoregressive network (NAR) along with Gaussian
process regression, combinational neural logic network , and
Bayesian neural network (BNN) ranked as the sixth most used

https://www.jmir.org/2019/5/€11030/

classes of machine learning (2/65, 3%). Deep belief network
(DBN), radia basis function neural network (RBFNN), and
variable trandation wavelet neural network (VTWNN) are the
seventh most used classes of machine learning (1/65, 2%).

Hyperglycemia Classification and Detection

Hyperglycemiaclassification, prediction, and detection has been
practiced lesswhen compared with hypoglycemia, which might
be linked because of its|ess severe short-term complications as
opposed to hypoglycemiaincidences. However, irrespective of
this limitation, different types of machine learning techniques
have been adopted, as shown in Figure 4. For example, ANN
is the most used machine learning technique in 34% (3/9) of
the studies (feedforward (1/9) and feedback RNN (2/9)), as
shown in Multimedia Appendix 1 along with EA (3/9,34%)
(GA (1/9) and GP (2/9)). The HMM (2/9, 22%) isthe third most
used followed by a hybrid approach (1/9, 11%).

Glycemic Variability Classification and Detection

GV detection is a recent development, which has great
importance in quantifying factors associated with
hypo-/hyperglycemia incidence. In this regard, there is some
research and development involving machine learning
techniques, as shown in Figure 4. For example, feedforward
ANN isthe most used class of machine learning (3/8, 37%), as
shownin MultimediaAppendix 1. Naive Bayesclassifier (NBC)
and SVM are the second most adopted techniques of machine
learning (2/8, 25%). DT isthethird most used class of machine
learning (1/8, 13%).

Performance Metrics

The performance metrics used in the evauation of
hypoglycemia, hyperglycemia, and GV classification and
detection algorithms are depicted in the outer ring, the middle
ring, and inner ring, respectively, as shown in Multimedia
Appendix 1. According to hypoglycemia classification and
detection, sensitivity, and specificity are the most used
performance metrics (37/58, 64%). Accuracy and precision are
the second most used performance metrics (9/58, 15%). Root
mean square error and mean sgquare error are thethird most used
performance metrics (4/58, 7%). Geometric mean is the fourth
most used performance metric (3/58, 5%). Correlation
coefficient isthefifth most used performance metric (2/58, 3%).
Time lag (TL), recall, and ROC curve are the sixth most used
performance metrics (1/58, 2%). According to hyperglycemia
classification and detection, accuracy and precision, root mean
sguare error and mean square error, time lag (TL), correlation
coefficient, recall, and false positive rate are the most used
performance metrics (2/15, 13%). ROC curve, geometric mean,
sensitivity, and specificity are the third most used performance
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metrics (1/15, 7%). According to GV classification and
detection, accuracy, and precision arethe most used performance
metrics (3/5, 60%). Sensitivity and specificity are the second
most used performance metrics (2/5, 40%).

Discussion

Principal Findings

The objective of thisreview wasto identify, assess, and analyze
the state-of-the-art machine applications in BG pattern
classifications and anomaly detection: hyperglycemia,
hypoglycemia, and GV classification and detection. According
to the reviewed literature, the anomaly classification and
detection approach could be roughly categorized as either a
classifier-based or a model-based approach [19,21]. The
classifier-based approach mainly relies on using either a
specified threshold or some kinds of rules to classify the BG
levelsaseither normal or abnormal. The differenceisthat unlike
the model-based approach, the classifier-based approach requires
rigorous and deeper knowledge regarding the nature, size, and
shape of the underlying anomalies under consideration so asto
develop the necessary threshold or rule to capture them.
However, the model -based approach only requiresto demarcate
the boundary of what is known to be normal so as to capture
what isbelieved to be abnormal [21]. The model-based approach
does not require rigorous knowledge of the underlying expected
anomalies, that is, to fully understand and characterize the shape
and nature of the expected anomalies [22]. By simply defining
what is the expected normal pattern that the system should
exhibit, a model-based approach is capable of detecting
abnormal behavior, which is not considered as the normal
behavior of the system. Defining and discovering what is normal
is a challenging task especially for dynamic and complex
systems, for example, BG dynamics. However, this is often
tackled in a dynamic and complex system by either relying on
amachine learning model trained on large enough datasets or
using an explicit mathematical model of the system such as a
physiological or compartmental BG dynamics model [21].

Various classes of machine learning agorithms have been
adopted for the task. Regarding hypoglycemia classification
and detection, feedforward ANN, hybrid systems, SVM, DT,
GA,ANFIS, NARX, NAR, Gaussian processregression, DBN,
and BNN have been developed and tested. These techniques
have explored various kinds of input parameters notably BG,
heart rate, QT interval, insulin, diet, physical activity, galvanic
response, and skin impedance. Concerning hyperglycemia
classification and detection, RNN, GP, HMM, feedforward
ANN, GA, and hybrid systems have been devel oped and tested,
exploring various types of input parameters including BG,
insulin, heart rate, and QT interval. GV detection is a recent
development, which has great importance in quantifying factors
associated with hypoglycemia and hyperglycemia incidence.
Inthisregard, thereis some research and development involving
machine learning techniques. For example, feedforward ANN,
NBC, SVM, and DT have been tested up to the task using BG
and insulin delivery profiles.

Generally, al of the studies have relied on either indirect
indicator variables such as heart rate, QT interval, and others
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or a subset of input parameters that affects BG dynamics. The
patient’s contextual information, for example, meals, physical
activity, insulin, and sleep, have a significant effect on BG
dynamics, and a proper anomaly classification and detection
algorithm should consider the effects of these parameters. In
thisregard, however, theindividual patient isexpected to record
meal, insulin, and physical activity data. One of the main
limitations is meal modeling, where most of the algorithm
depends on the individual estimation of carbohydrate, whichis
prone to errors and further aggravates the degradation to
detection performance. With regard to physical activity, there
are various wearables and sensors that can record the
individual's physical activity load and durations. However,
there isthe lack of a uniform approach among the studies with
certain limitations on the way these signals are employed in the
classification and detection algorithms. For example, there are
some studies that consider levels of activity as low, moderate,
and high and others consider descriptive features by
summarizing the number, intensity, steps, exercise durations,
and others to better quantify the effect of physical activities.
Moreover, recording insulin dosage hasitsinherent limitations,
which might affect the detection performance. For example,
blockage of insulin flow from the insulin pump because of the
infusion set failure and error incurred during manual
registrations might pose a significant chalenge in the
performance of the detection system. Furthermore, CGM is
becoming one of the most important components in these
classification and detection algorithms. However, even if CGM
advancement has enabled patientsto have continuous estimation
of their subcutaneous glucose levels, it has limitations when
used in a personalized detection system (an alarm). In this
regard, recent studies have showed that autocorrelation of the
CGM reading vanishes after 30 min, making the detection
performance to degrade afterward. These findings suggest that
any classification and detection algorithms aiming for a better
lead time should consider other patient’s contextual information
and various features of the CGM itself. There are some studies
that develop amodel by ng several features of the CGM
signal so asto compensate for itsinaccuracy. Moreover, CGM
is found to be inaccurate during hypoglycemia episodes, that
is, insulin-induced hypoglycemia versus spontaneous
hypoglycemia. In thisregard, insulin-induced hypoglycemiais
found to be difficult to detect as compared with spontaneous
hypoglycemia. Fast occurring hypoglycemiaisdifficult to detect
because of the blood-interstitial delay, which makes them
important featuresto be detected by agiven model. Furthermore,
CGM cdlibration frequency and timing also affects the
performance of the classification and detection algorithm.

The reviewed studies are limited to and could be roughly
categorized by age groups (children, young, adult, and old),
time of theday (diurnal vsnocturnal) and configurations (online
vsoffline). For example, most of the studies consider nocturnal
hypoglycemia detection, considering the fact that most of
hypoglycemia crises occurred during nighttime and also the
crises during this time have a bad consequence as compared
with the diurnal period. Moreover, it is a fact that nocturnal
detection is simpler as compared with the diurnal considering
the dynamics of the patients. However, irrespective of these
challenges, there are al so studiesthat consider the diurnal period.
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However, there are limited studies that attempt to develop an
algorithm that could detect anomaliesin both of those contexts.
With regard to the age group, most surveys reported that age
group has a great effect on BG dynamics, which is typically
related with the dynamics and active lifestyle adopted by each
group. Therefore, it isdeemed anecessary approach to consider
apersonalized algorithm for each age group. With regard to the
configuration, there are fewer attempts of online (real-time)
algorithms, where almost all of the algorithms were tested and
implemented in the offline mode. In thisregard, the most crucial
issues concerning machine learning strategies could be the
necessity of frequent retraining when subjected to a rea-time
and dynamic task.

In addition, the most important component in classification and
detection algorithms is the threshold used to differentiate the
normal from the abnormal. In this regard, amost most of the
studies have used a static threshold based on suggestions either
from the literature or physicians and other concerned bodies
such as the American Diabetes Association. However, the
critical issuesin this approach are that the threshold might vary
from patient to patient and also some patients might not feel
any symptoms at the specified threshold (when using indirect
indicatorssuch as heart rate, QT interval, and others). However,
there are some studies that employed a fuzzy logic—based
approach by having a continuous decision space.

In principle, any future BG anomaly classification and detection
algorithm should be expected to detect any upcoming anomalies
as soon as possible (lead time—giving more response time),
avoid any false alarm at any cost, perform in real-time (in an
online fashion), adapt with the dynamics of BG evolution (learn
continuously), automatically tune its parameters without user
intervention, be able to perform throughout the day in a free
living condition (diurnal and nocturna periods), and incorporate
as many input variables to better capture the dynamics. In this
regard, for example, the most crucial issues concerning a
real-time (online) machine learning algorithm could be the
necessity of frequent retraining when subject to areal-time and
dynamic task. Moreover, developing a model that considers a
real-time and adaption-to-free-living condition needs to
incorporate awide range of parametersthat affect BG dynamics.
Furthermore, it should properly consider and address the
inherent technological limitation that affects the performance
of the detection agorithm. Almost all of the studies need a
proper clinical validation to be integrated into a smartphone
and CGM for a real-time application. This can be better
described by looking at the number of samples used and their
validation strategies (see Multimedia Appendix 2). Therefore,
future studies should give more emphasis on clinical validation
by taking a sufficient number of subjects in the development
and testing phase so as to better quantify the inter- and
intravariability among patients. In addition, the most crucial
concept of justifying and reporting the underlying cause, as
because of either patient controllable or patient uncontrollable
parameters, for the detected anomalies is not addressed in any
of the reviewed literature. For example, the underlying cause
of hyperglycemia incidences could be patient controllable
parameters such as diet or patient uncontrollable parameters
such as stress and infections. Therefore, in thisregard, a proper
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hyperglycemia classification and detection system might be
expected to be able to identify and report the underlying cause,
which has agreater significanceto the patient especially during
infection crises.

Summary of Existing Efforts: Machine Learning
Techniques

Artificial Neural Network

There are various types of ANNs used in solving BG
classification and anomaly detection tasks. hypoglycemia,
hyperglycemia, and GV classification and detection. Regarding
hypoglycemia classification and detection, for instance, Eljil et
al [48], had proposed a special type of ANN known as the
time-sensitive ANN and compared the result with atime delay
neural network, NARX, distributed time delay neural network,
and NAR. San et al [37,49] proposed an evolvable BBNN and
compared the result with feedforward ANNs and multiple
regression. Moreover, San et a [42] proposed a DBN and
compared the result with a wavelet neural network, a
feedforward ANN, and multiple regression models. Some of
the studies have also investigated the advantage of having a
separate feature extraction and classification unit. In thisregard,
for example, both Laione et a [47] and Nguyen et al [41,50]
have proposed an ANN using FFT for data extraction. Nguyen
et al [41] have further trained the network through a 2-step
process that combines the advantage of GA and the Levenberg
Marquardt algorithm. Chan et a and Yan et a [51,52] also
proposed a neural network—based rule discovery system that
consisted of a neural network—based classification unit and
rule-based extraction unit. There are some studiesthat optimized
the ANN parameters through a particle swarm optimization
technique. For example, Ling et a [53], Phyo et al [36,54,55],
and San et a [56] proposed anew hybrid rough neural network,
aVTWNN, anormalized RBFNN, and a combinational neural
logic network with the neural logic AND, OR, and NOT gates,
respectively, where the design parameters of the network were
optimized through a hybrid particle swarm optimization with
wavelet mutation operation. Moreover, Nguyen et a [43,57]
also proposed an ANN that is optimized through a standard
particle swarm optimization strategy. Furthermore, some studies
have investigated extreme learning machines (ELMs). For
instance, Ling et a [58] and San et a [59] proposed a
feedforward ANN trained through an ELM and compared the
result with a feedforward ANN optimized through particle
swarm optimization, multiple regression—based fuzzy inference
system, fuzzy inference system, and linear multiple regression.
Mo et a [60] have also used ELMs and regularized the ELMs
on CGM data. In addition, Nguyen et a [61-63] and Ngo et al
[64] had proposed an optimal BNN algorithm using feedforward
ANN architecture. There are some studiesthat tried to integrate
a physiological model with ANN. For instance, Bertachi et al
[65] integrated the physiological model of anindividual diabetes
patient with an ANN to predict nocturnal hypoglycemiaevents.
Regarding, hyperglycemia classification and detection, thereis
only 1 study by Nguyen et a [38] that uses a feedforward
multilayer ANN trained using different training algorithms, that
is, gradient descent, gradient descent with momentum, scaled
conjugate gradient, and resilient back propagation. Regarding
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GV classification and detection, the reviewed studies had been
performed either for detection purposes or for automated metrics
purposes. For the detection purpose, for example, Wiley et al
[33] proposed Naive Bayes (NB), multilayer perceptron (MLP)
ANN, and SVM models to detect excessive GV on CGM data
and compared the accuracy of the result with the other 2 diabetes
experts. Concerning the automated metrics, Marling et a [66]
had devel oped an NBC (probabilistic reasoning), an MLPANN,
and a logistic model tree (DT built using logistic regression),
which could be used to monitor CGM data. Moreover, Marling
et a [32] also proposed an MLP ANN and support vector
regression to develop a consensus perceived GV metric.

Support Vector Machines, Kernel Function, and
Gaussian Process Regression

SVM, kernd function (KF), and Gaussian process regression
have been exploited for hypoglycemia classification and
detection purposes in the reviewed literature. For example,
Georga et a [67] developed a support vector regression for
hypoglycemia prediction and compared the performance with
a feedforward MLP ANN and Gaussian process regression.
Georga et al [68] also proposed support vector regression and
Gaussian processregression for BG prediction so asto indicate
the daily incidences of hyperglycemiaand hypoglycemiato the
patients as well as provision of decision support to physicians
in making the decision about treatment and risk of
complications. Moreover, Jensen et al [29,30] developed an
automatic pattern recognition system so as to detect
hypoglycemia incidences retrospectively using CGM data and
thereby to foster a thorough evaluation of past events and
discussion with their caregivers. Jensen et al [28,69] aso
proposed a real-time pattern classification model by using
several features from the CGM data so as to detect
hypoglycemiaincidencesin real-time. Furthermore, Marling et
a [70] proposed a hypoglycemia detection agorithm that
incorporates noninvasive sensor data from fitness bands and
also compared different kernels for the task: linear, Gaussian,
and quadratic kernels. Nuryani et a [71] also proposed a
swarm-based SVM algorithm using the repolarization
variabilities asinput so as to detect hypoglycemiaincidences.

Genetic Programming and Genetic Algorithm

Thereislittle visibility of GP and GA usage in their nonhybrid
form for BG classification and anomaly detection tasks:
hypoglycemia, hyperglycemia, and GV classification and
detection. However, there are some studies that use these
techniques in their hybrid form. For example, Ling et a
[44,72,73] developed ahypoglycemiadetection algorithm using
a GA-based multiple regression coupled with afuzzy inference
system. The study exploited the GA so asto optimize the fuzzy
rules, membership function of the fuzzy inference system, and
also model parameters of the regression.

Random Forest

RF and DT have been mostly used in the context of
hypoglycemia classification and detection tasks. For example,
Eljil et a [27] proposed DTsusing different techniques, namely,
C4.5, 4.8, REPTree, bagging, and the cost-sensitive version
of J4.8. Jung et a [74] aso proposed DTs using new predictor
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variables using CGM data. Moreover, Jung et al [34] proposed
aDT- and SVM-based prediction model using self-monitored
BG. Zhang et al [35] aso proposed a new approach using the
classification tree to predict the occurrences of acute
hypoglycemia during intravenous insulin infusion before the
actual hypoglycemic events take place.

Hidden Markov Model

Generally, HMM is used to model an environment that could
better describe the evolution of theindividual BG dynamics. In
this regard, there are some studies that use HMM to develop
model-based BG anomaly classification and detection
algorithms. For example, Zhu et a [15,75] studied an approach
for automatic detection of anomalies in individual BG data,
using a mode trained with historical data containing daily
norma measurements. The trained Markovian world tries to
analyze theincoming BG dataand flagsif it deviatesfrom what
is known by the model.

Hybrid and Ensemble Models

Hybridization approaches have been extensively used when
looking for performance improvement by exploiting the
advantage from 2 or more different approaches [16]. In this
regard, there are some attempts in the reviewed articles which
tried merging different approaches for enhanced performance
in hypoglycemia classification and detection. For example,
hybridization of an ANN with other techniquesis demonstrated
in some of these studies. Chan et al [76] developed a hybrid
system that consisted of an ANN and a GA and also compared
the performance with MLP ANN and classical statistical
algorithms. Ghevondian et a [77] proposed a novel hybrid
system of afuzzy neural network ANN estimator to predict the
BG profile and hypoglycemia incidences. San et a [78]
proposed a hybrid system using an ANFIS and compared the
performance with the wavelet neural network, feedforward
ANN, and multipleregression. Thereisa so someliteraturethat
triesto hybridize the SVM with other techniques. For example,
Nuryani et a [39,79] proposed a hybrid fuzzy SVM and
investigated the applicability of 3 KFs: radial basis, exponential
radial basis, and polynomial function for the task. Moreover,
Nuryani et al [40,80] also further developed a novel strategy
using a hybrid particle swarm-based fuzzy SVM technique.
Fuzzy reasoning models are also tested in some of the studies.
For example, Ling et a [81] developed a hybrid particle
swarm-optimization—based fuzzy reasoning model, where the
fuzzy rules and the fuzzy-membership functions are optimized
through a hybrid particle swarm optimization with wavelet
mutation. The model is also compared with feedforward ANN
and multiple-regression models. Mathews et al [46] developed
a hybrid model using a fuzzy inference system with multiple
regression, where the fuzzy rules are optimized through a GA.
The study also compares the performance of the developed
system with an ANN whose parameters are optimized through
particle swarm optimization. In addition, San et al [82] proposed
a hybrid system based on rough sets concepts and neural
computing. The study has compared various hybrid approaches
trained through hybrid particle swarm optimization with wavel et
mutation including therough BBNN, BBNN, rough feedforward
ANN, wavelet neural network, SVM with an RBF, and
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conventional feedforward ANN. Ling et al [45] also proposed
an alarm system based on the hybrid neural logic network with
multiple regression. Lai et al [83] developed afuzzy inference
system for hypoglycemiadetection, wherethe system parameters
are optimized through an intelligent optimizer.

Owing to the complexity of BG dynamics, it remains difficult
to achieve an accurate result in every circumstance. One model
can have better accuracy in some circumstances and the other
model can achieve better accuracy where the first model fails
to achieve a comparable result. Therefore, it is natural to look
for possibilities to exploit the strengths from these different
model sto achieve better accuracy in most of the circumstances,
which lead to ensembl e approaches[16]. An ensemble approach
is generally favored when one isinterested to merge 2 or more
different modelsfor improved performance. In thisregard, there
are some studiesthat try to combine 2 different modelslooking
for performance improvement in the overall system. In this
regard, Daskalaki et al [84] proposed an early warning system,
for both hyperglycemiaand hypoglycemia, using RNN and AR
with output correction module models. Moreover, the study
investigated the performance improvement from the combined
use of both RNN and AR with an output correction module.
Moreover, Botwey et a [31] proposed combining an AR model
with output correction and an RNN based on different data
fusion schemesincluding the Dempster-Shafer evidential theory,
GAs, and GP.

Conclusions

Despite the complexity of BG dynamics, there are many
attemptsto capture hypoglycemiaand hyperglycemiaincidences
and the extent of an individual GV using different approaches.
Recently, because of the ubiquitous nature of self-management
mHealth apps, sensors and wearables have paved the way for
the continuous accumulation of self-collected health data, which
in turn contributed for the widespread research of machine
learning applications in these tasks. In the reviewed articles,
generaly, the anomaly classification and detection approaches
could be categorized as either model (process)—based or
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classifier (rule)—based approaches. Hypoglycemiaclassification
and detection has been given more attention than hyperglycemia
and GV detection, which might be because of its serious
complication and the comparable complexity involved. The
state-of -the-art indicates that various classes of machinelearning
have been developed and tested in these tasks. Regarding
hypoglycemia classification and detection, feedforward ANNS,
hybrid systems, SVM, DT, GA, adaptive neural fuzzy inference
system, NARX, and NAR, Gaussian process regression, DBN,
and BNN have been developed and tested. These techniques
have explored various kinds of input parameters, notably BG,
heart rate, QT interval, insulin, diet, physical activity, galvanic
response, and skin impedance. Concerning hyperglycemia
classification and detection, RNN, GP, HMM, feedforward
ANN, GA, and hybrid systems have been devel oped and tested,
exploring various types of input parameters including BG,
insulin, heart rate, and QT interval. GV detection is a recent
devel opment, which has great importancein quantifying factors
associated with hypoglycemia and hyperglycemia incidence.
Inthisregard, thereis some research and devel opment involving
machine learning techniques, for example, the feedforward
ANN, NBC, and SVM.

Most of these studies have used atheoretical threshold suggested
either by the literature or physicians and various concerned
bodies such as the American Diabetes Association. However,
the problem hereis that some patients might feel no symptoms
at the specified threshold, and it may vary from patient to
patient. Therefore, a model should consider such differences
among the patients (intra- and intervariability) and also track
its temporal change over time. Moreover, the studies should
give more emphasison the TL and varioustypes of inputs used.
Furthermore, researchers should give proper emphasis to
develop anomaly classification and detection models, which
are capabl e of justifying and reporting the underlying cause, as
either due to patient controllable or patient uncontrollable
parameters. Generally, we foresee that these devel opments might
encourage researchersto further devel op and test these systems
on alarge-scale basis.
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Multimedia Appendix 1: Analysis of reported parameters, data characteristics, machine

learning class, and performance metrics

Table 1: Reported input features, machine learning class and accuracy.

Features Type of Machine Learning Performance
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Data Characteristics and Input Parameters

Input Parameters

= BG 2.5%

» BG, diet

= BG, insulin

BG, insulin, diet

2.5%
m BG, insulin, diet, physical activity & others
= BG, heart rate, QT interval

m BG, heart rate,skin Impedance

m BG, insulin, diet, heart rate, galvanic response

m Mean amplitude glycemic execursion, excersion
frquency, distance traveled

Figure 5: Types of input variables used in the studies. The outer ring, middle ring and inner rings depicts the type of
input variables used in hypoglycaemia, hyperglycaemia and glycaemic variability classification and detection

algorithms.



Class of machine learning

Hypoglycemia classification & detection

= Conventional ANN

1.33%

.y

= Genetic algorithm

= Hybrid

= Decision trees

= Time delay and time sensitive ANN

= NARX & NAR

= SVR

m Gaussian process regression

= Combinational neural logic network
= Bayesian neural network (BNN)

m Radial basis function neural network
m Variable translation wavelet neural network

= Block based neural network (BBNN)

= Adaptive neural fuzzy inference system (ANFIS)

= Deep belief network (DBN)

Figure 6: Classes of machine learning used in hypoglycaemia classification and detection.
Hyperglycemia classification & detection

= Artificial neural network
= Evolutionary algorithm

= Hybrid 11.11% '
» Hidden Markov model

Figure 7: Classes of machine learning used in hyperglycaemias classification and detection.




Glycemic variability classification & detection

= Naive Bayes classifier
= Feed forward ANN

= Decision tree

= SVM

Figure 8: Classes of machine learning used in glycaemic variability classification and detection.

Performance metrics

2%
2% \‘
= Sensitivity and specificity “'l

= RMSE & MSE

= Time lag (TL)

m Correlation coefficient (CC) .
= Recall

= ROC curve

m Geometric mean

= Accuracy & precision

= False positive rate

Figure 9: Depicts the type of performance metrics used in the studies. The outer ring, middle ring and inner rings
depicts the type of performance metrics used in hypoglycaemia, hyperglycaemias and glycaemic variability

classification and detection algorithms.



Multimedia Appendix 2: Detail on reported accuracy, inputs and

performance metrics used, and machine learning categorization.
Table 1: Data extracted from the literatures included in the study.

Ref. Subject Type of input Data Format/Data source Input Pre- Class of Machine Learning Performance

processing Metrics

[1] 16 Real (14.6+1.5 years BG, rate of change of heart rate, Corrected QT Department of Health, Government of Western Hybrid-(feed-forward neural —network and  genetic Sensitivity and specificity
of age) interval of electrocardiogram signal, Rate of change Australia, Yellow Spring Instrument for BG N/A algorithm)

of corrected QT interval

[2] & 16 Real (14.6+1.5 years BG, rate of change of heart rate, Corrected QT HypoMon (Hypoglycemia Monitor from AIMedics Pty, Hybrid-(feed-forward neural network, rule discovery, and Sensitivity and specificity

3] of age) interval of electrocardiogram signal, Rate of change Ltd.) to measure the required physiological parameters, N/A genetic algorithm)
of corrected QT interval Yellow Spring Instrument to measure BG.

[4] {0 Real (2 male & 8 BG (past and present), Rate of change of BG American Hospital in Dubai-Medtronic CGM & Differencing BG Values Decision trees Accuracy, sensitivity and

female, 11-70 years of Insuli specificity
nsulin Pump
age)

[5] Artificial Neural Networks (ANN), Time- Sensitive ANN
1.0 Real (2 male & 8 Subcutaneous glucose measurements, insulin, and American Hospital in Dubai-Medtronic CGM & (TS-,/,\NN)’ Time Delay Neural Network (TDNN), Root mean squared' error,
female, 11-70 years of carbohydrate intake Insulin Pum; N/A Autor Network with inputs sensitivity,  specificity,
age) Y ; P (NARX), Distributed Time Delay Neural Network and Accuracy

(DTDNN), and Nonlinear A ive Network (NAR).)

[6] 15 Real (3 women and Glucose profile, meals, insulin intake, and physical Guardian Real-time CGM system (Medtronic N/A Support vector for regression (SVR), feed-forward Sensitivity, precision, and
12 men whose ages activities (exercise), sleep Minimed Inc., Northridge, CA), SenseWear armband multilayer perceptron (MLP) and Gaussian processes (GP) time lag
ranged from 19 to 65 (BodyMedia Inc., Pittsburgh, PA) physical activity regression
years (average, 40.3 monitor
13.5 years))

71 15 Real Glucose, rate of meal glucose appearance, plasma Guardian Real-time CGM system (Medtronic N/A Support vector regression (SVR) or Gaussian processes Standard deviation of the
insulin concentration, meal-derived glucose inserted Minimed Inc., Northridge, CA), SenseWear armband (GP) regression RMSE and correlation
in plasma, energy expenditure, hour of day (BodyMedia Inc., Pittsburgh, PA) physical activity coefficient, sensitivity

monitor

[8] 12 real (6 normal & 6 Measured BGLs, skin impedances, heart rates N/A Normalization A novel fuzzy neural network estimator algorithm (FNNE)- Mean  square  error,
TIDM)-6 males & 6 a parallel combination of fuzzy inference mechanism (FIM) correlation coefficient
females aged 26 + 3 and a multi-layered neural network
years)

9] & 10 Real (all male, age Current CGM reading, first derivative of the current CGM device (Guardian RT®, Minimed Inc., USA), Reconstruction of CGM data Support vector machine Sensitivity, and

[10] 44 + 15 years) CGM reading and the reading before, Time since last emoCue Glucose 201+ glucose analyzer (HemoCue®, using spline interpolation and specificity
insulin injection, Linear regression, Skewness, /\ngleholm, Sweden) a rough feature elimination,

Kurtosis of the CGM readings in multiple intervals, using fast SEPCOR algorithm.

[11] & 10 Real (all male, age Current CGM reading, first derivative of the current CGM device (Guardian RT®, Minimed Inc., USA), Reconstruction of CGM data Support vector machine Sensitivity, and

[12] 44 + 15 years) CGM reading and the reading before, Time since last emoCue Glucose 201+ glucose analyzer (HemoCue®, using spline interpolation and specificity
insulin injection, Linear regression, Skewness, /\ngleholm, Sweden) a rough feature elimination,

Kurtosis of the CGM readings in multiple intervals, using fast SEPCOR algorithm.

[13] 21 Real BG, Meal, Rate of decrease from a peak and absolute Diagnostic (professional) CGM devices NA Decision trees Accuracy, sensitivity, and
level of the BG at the decision point specificity

[14] 1 Real (Male) Glucose levels right before meals (G1), Glucose Self-Monitored Blood Glucose (SMBG) Extraction and representing Decision tree and SVM Accuracy
levels after more than 5 hours (G2), Time interval (T), temporal change information,

Average Fasting glucose level (AG1), The rate of
decrease in [Glu], Ratio of current level to average

[15] 8 Real (five male, three ECG Signal information Portable apparatus was developed to record the EEG- Amplitude Normalization and Artificial neural networks (MLP-ANNs) Accuracy, sensitivity, and
female aged 35 +_ 13.5 To record the EEG signal, a digitalization module was Transformation (FFT). specificity
years (mean +-SD)) developed that was linked to a palmtop PC,

[16] & 16 Real (children- BG, heart rate (HR), corrected QT interval of the skin surface bi des for the oo . Genetic algorithm (GA)-based multiple regression with Sensitivity and specificity

[17] & 14.6£1.5 years) ECG signal, change of HR, and the change of of physiological parameters, Yellow Spring Instruments Nunna!lzauon and linear fuzzy inference system (FIS)

[18] corrected QT interval (YSI) used for collection of reference BG correction analysis..

[19] 16 Real (children- BG, heart rate and the corrected QT interval of the skin surface bi des for the Hybrid particle-swarm-optimization-based fuzzy-reasoning Sensitivity and specificity
14.6+1.5 years) electrocardiogram (ECG) signal of physiological parameters, Yellow Spring Instruments Normalization model, Feed-Forward Neural Network (FFNN)

(YSI) used for collection of reference BG
[20] 15 Real (children- BG, heart rate and the corrected QT interval of the skin surface bi des for the N - Hybrid rough set based neural network (RNN) Sensitivity and specificity
. . . S N ormalization and
14.6+1.5 years) electrocardiogram (ECG) signal of physiological parameters, Yellow Spring Instruments Partitioni £ the input
(YSI) used for collection of reference BG artitioning of the input.

[21] 15 Real (child BG, i signal (heart rate (HR) & skin surface bi des for the Correlation analysis Multiple regression (MR)-based combinational neural logic Sensitivity and specificity

14.6+1.5 years) corrected QT interval (QTc), change of heart rate ( of physiological parameters, Yellow Spring Instruments approach - Combinational neural logic network (NLN-
HR) and corrected QT interval ( QTc)) (YSI) used for collection of reference BG feedforward neural network (FFNN) & rule based logic)

[22] 16  Real (children- BG, heartrate (HR), corrected QT interval of ECG skin surface bi des for the Normal ingle-hidden Layer Feedforward neural Network (SLFN) Sensitivity and specificity
14.6+1.5 years) (QTc),change of heartrate (AHR), and change of of physiological parameters, Yellow Spring Instruments with L hidden nodes (Extreme learning machine(ELM)-

corrected QT interval of ECG(AQTec), (YSI) used for collection of reference BG based neural network)

[23] 1 Real (middle-aged BG, Insulin, meals, heart rate (HR), galvanic skin Medtronic insulin pump & Dexcom CGM system, Support vector machines (SVM) Sensitivity,  specificity,
male) response (GSR), and skin and air temperatures (ST smart phone (reported meals, sleep & exercise), Fitness Feature extraction and precision and recall

and AT). band, Basis Peak (heart rate (HR), galvanic skin selection- using greedy feature
response (GSR), & skin and air temperatures (ST & selection
AT)
[24] 5 real BG, heart rate(HR),corrected QT interval, change of Multiple regression with fuzzy inference system(FIS), Sensitivity and specificity
HR and change of corrected QT interval N/A Linear correction analysis Neural network. Parameters optimized through genetic
algorithm (GA), particle-swarm optimization respectively.
[25] N/A Blood Glucose (CGM) Single-hidden Layer Feedforward neural Network (SLFN) Root mean square error
N/A N/A with L hidden nodes (extreme learning machines (ELM) and (RMSE), sensitivity,
regularized ELM (RELM)) specificity, ROC

[26] 21 Real (children, BG, heart rate, corrected QT interval of the HypoMon, blood glucose (BG) levels were collected as Normalization Feedforward multi-layer neural network Sensitivity and ‘ficit
14.4+1.6 years) ECG signal and skin impedance reference using Yellow Spring Instruments ensitivity and speciicity

[27] & 16 Real (children, BG, heart rate, corrected QT interval of the Normalization Feed-forward multi-layer neural network (Bayesian neural Sensitivity and specificity

[28] & 14.4+1.6 years) ECG signal and skin impedance HypoMon, acln.xal blood glucose (BG) le‘vels were network-Bayesian learning)

129] collected as reference using Yellow Spring Instruments

[30] & 5 real (adolescent BG, EEG responses-the centroid theta freq and p dics system, am (EMG) signals, Filtering (IIR highpass filter Feed-forward multi-layer neural network (standard particle Sensitivity and

[31] patients  between  the the centroid alpha frequency from each channel electrooculogram (EOG) signals, BGLs were acquired and A notch filter at 50Hz) swarm optimization strategy is applied to optimize the specificity, ROC Curve
ages of 12 and 18 year using Yellow Spring Instruments parameters)
old)

[32] 5 real (adolescent BG, EEG responses-the centroid theta freq and p system, am (EMG) signals, Filtering (IR highpass filter), Feed-forward multi-layer neural network (genetic algorithm Sensitivity and
patients  between the the centroid alpha frequency from each channel electrooculogram (EOG) signals, BGLs were acquired Feaf\re extrafugr; iFasl g and Levenberg Marquardt algorithm) specificity, ROC Curve
ages of 12 and 18 year using Yellow Spring Instruments N >
old) Fourier Transform (FFT))

[33] 5 real BG, Repolarization variabilities- QTeVI, TpTeVI, Compumedics system, BGLs were acquired using Swarm-based Support vector machine (SVM) (Radial basis Sensitivity,  specificity,

ToTeVI and RTpVI Yellow Spring Instruments N/A function (RBF)-standard particle swarm optimization and geometric mean
strategy is applied to optimize the )

[34] & 5 real (with age of BG, heart rate, corrected QT (QT c) interval and Compumedics system, BGLs were acquired using Feature extraction Fuzzy Support Vector Machine - kernel functions (radial Sensitivity,  specificity

[35] 1640.7 years) corrected TpTe (TpTec) interval Yellow Spring Instruments basis function (RBF), exponential radial basis function and accuracy

(ERBF) and polynomial function)
[36] & 5 real BG, HR, RTpc, QTc, TpTec, ToTec and QTpc Princess Margaret Hospital in Perth, Australia, with Normalization and feature Hybrid particle swarm - based fuzzy support vector machine Sensitivity,  specificity
[37] approval from Women'’s and Children’s Health Service, extraction (SFisSvm) technique- kernel functions (radial basis function and geometric mean




Department
Australia

Government  of Western

(RBF), exponential radial basis function (ERBF) and
polynomial function)-hybrid particle swarm optimization

[38] 15 Real (children) BG, heart rate (HR), corrected QT (QTc), change in Compumedics system, BGLs were acquired using Hybrid particle swarm optimization based normalized radial Sensitivity and specificity
the heart rate (AHR) and change in the QTc¢ interval Yellow Spring Instruments Normalization basis function neural network (NRBFNN)- hybrid particle
(AQTc) swarm optimization with wavelet mutation (HPSOWM)
[39] & 15 Real (children) BG, heart rate (HR) and corrected QT interval (QTc) Compumedics system, BGLs were acquired using Normalization Variable translation wavelet neural network (VTWNN)- Sensitivity and specificity
[40] Yellow Spring Instruments hybrid particle swarm optimization with wavelet mutation
(HPSOWM)
[41] & 15 Real (children) BG, heart rate (HR) and the corrected QT interval Compumedics system, BGLs were acquired using Normalization Evolvable block based neural network (BBNN)- hybrid Sensitivity, specificity,
[42] (QTc) Yellow Spring Instruments particle swarm optimization with wavelet mutation ROC Curve, and
(HPSOWM) cometric mean value
[43] 15 Real (children) BG, heart rate (HR) and corrected QT (QTc) Compumedics system, BGLs were acquired using Adaptive neural fuzzy inference system (ANFIS)- hybrid Sensitivity and specificity
Yellow Spring Instruments N/A particle swarm optimization with wavelet mutation
(HPSOWM)
[44] 15 Real (children with BG, heart rate (HR) and the corrected QT NA Combinational neural logic network (NLN) - hybrid particle Sensitivity and specificity
ages 14.6 + 1.5 years) interval (QTc) swarm optimization with wavelet mutation (HPSOWM)
[45] 15 Real (children with BG, HR, QTc, change in HR and change in QTc Compumedics system, BGLs were acquired using Rough Set based Pre- Hybrid rough-block-based neural network (R-BBNN)- Sensitivity and specificity
ages 14.6 + 1.5 years Yellow Spring Instruments processing hybrid particle swarm optimization with wavelet mutation
(HPSOWM)
[46] 15 Real (children with BG, heart rate (HR) and corrected QT (QTc) Compumedics system, BGLs were acquired using Feature representation using Deep belief network (DBN) block based neural network Sensitivity and specificity
ages 14.6 + 1.5 years Yellow Spring Instruments unsupervised restricted (BBNN)- greedy  layer-wise =~ manner training-
Bol hines (RBM) backpro ion of error derivatives.
471 16 Real (children with BG, HR, QT¢, Change in HR and Change in QTc ELM trained feed-forward neural network (ELM-FFNN)-
ages 14.6 + 1.5 years N/A single hidden layer feedforward neural network (FFNN)- Sensitivity and specificity
Extreme Learning Machine (ELM)
[48] N/A BG levels, Slope of changes in BG levels, dose MIMIC II (Multiparameter Intelligent Monitoring in Decision tress (Classification tree-C5.0) Sensitivity and specificity
response to IV insulin, Insulin titration promptness, Intensive Care database II) from the ICUs at Beth Israel Feature selection and ranking
C lated, admi ed insulin Deaconess Medical Center, Boston, MA.
[49] 16 Real (children with BG, heartrate (HR), corrected QT interval of the Princess Hospital for Children in Perth, Western Fuzzy inference system (FIS)- multi-objective optimization Sensitivity and specificity
ages 14.6 + 1.5 years electrocardiogram (ECG) signal (QTc), change of Australia, Australia. The actual BG levels were N/A approach- wavelet mutated differential evolution optimizers
HR, and change of QTc collected as reference using the Yellow Spring
Instruments
[50] 23 real (17 to 70 years Glucose and insulin Medtronic insulin pumps (Medtronic MiniMed Inc., Adaptive data-driven models (autoregressive with output RMSE, time lag (TL),
of age) Northridge, CA, USA) combined with a real-time CGM correction — cARX, & a recurrent neural network — RNN)- correlation  coefficient,
system under normal daily living conditions Smoothening and Filterin, Data fusion techniques (Dempster-Shafer Evidential Theory and receiver operating
g 2 (DST),Genetic Algorithms (GA), & Genetic Programming characteristic (ROC)
(GP)-  teacher-forced, real-time, recurrent learning curve
algorithm
[51] 23 real (17 to 70 years Glucose and insulin Medtronic insulin pumps (Medtronic MiniMed Inc., Hybrid-autoregressive ~ with an  output  correction Root mean square error,
of age) Northridge, CA, USA) combined with a real-time CGM module/recurrent neural network (cARN)-based EWS, TL, and correlation
system under normal daily living conditions N/A recurrent neural network (RNN)- teacher-forced, real-time, coefficient
recurrent learning algorithm
[52] BG Hidden Markov model (HMM)- Baum-Welch algorithm Precision, false positives
N/A N/A that belongs to the family of Expectation Maximization rates, Recall
algorithms, Forward-Backward algorithm
[53] 10 real (adolescent) BG, HR, PR, QTC, RTC, TPTEC, time domain During study period, ECG signals were Normalization & interpolation Multilayer feed-forward neural network- Levenberg- Sensitivity & specificity,
(Mean RR interval (MeanRR), standard deviation of continuously recorded by a medical device called Marquardt (LM) algorithm-error back propagation learning geometric mean.
the RR interval index (SDNN), root mean square of Compumedics with the sampling rate of 512 Hz, while method
successive RR interval differences(RMSSD), actual blood glucose was collected as reference using
Percentage of consecutive RR intervals that differ by Yellow Springs Instruments. Kubios HRV Analysis
more than 50 ms (pNN50), HRV triangular index Software package
(HRVi), Baseline width of the RR interval histogram
evaluated through triangular interpolation (TINN)) &
frequency domain, Total spectral power (TotalPw),
Ratio between LF and HF (LF/HF))
[54] BG Hidden Markov model (HMM)- Baum-Welch algorithm Precision, false positives
N/A N/A that belongs to the family of Expectation Maximization rates, recall
algorithms, Forward-Backward algorithm
[55] 11 patients (9 female Mean amplitude of glycemic excursion (MAGE), i) Medtronic Paradigm® insulin pumps with Real-Time Naive Bayes classifier (p ilistic ing), a ilay Accuracy (classifier vs.
and 2 male patients excursion frequency. ,ii) distance traveled and along continuous glucose monitors. GlycoMark™. The CGM N/A perceptron (ANN), and a logistic model tree (decision tree physician glycemic
ranged in age from 26 with physicians” variability classification for that day data were extracted from the Medtronic CareLink® built using logistic regression) variability classifications
to 67 years) database into clinical diabetes research database. of daily CGM charts)
[56] 19 patients (14 female MAGE, Excursion Frequency (EF), Distance Medtronic Paradigm® insulin pumps with Real-Time Smoothing  and  feature Multilayer perceptrons (MPs) and support vector machines Accuracy, sensitivity, and
and 5 male patients, Traveled (DT), SD, Area Under the Curve, Central continuous glucose monitors. GlycoMark™. The CGM selection (greedy forward for regression (SVR)- Gaussian kernel, Back propagation specificity
ranging in age from 17 Image Moments, Eccentricity, Discrete Fourier data were extracted from the Medtronic CareLink® selection and greedy backward
to 71 (mean 47) years) Transform, Roundness Ratio, Bending Energy, database into our clinical diabetes research database. elimination)
Direction Codes, Maximum Slope
[57] 11 patients (9 female Minimum  Input-Direction ~ Codes, — Excursion Medtronic Paradigm® insulin pumps with Real-Time Smoothing using cubic splines Naive Bayes (NB), Multilayer Perceptron (MP), and
and 2 male patients Frequency, Standard Deviation, and Distance continuous glucose monitors. GlycoMark™. The CGM & feature selection (Pearson’s Support Vector Machine (SVM)- Gaussian kernel, Back Accuracy. s L
) D ‘ UM ) " ‘ YY) ceuracy, sensitivity, and
ranged in age from 26 Traveled data were extracted from the Medtronic CareLink® Correlation Coefficient & t- propagation, grid search optimization sccificit
to 67 years) database into clinical diabetes research database. test, wrapper approach using P Y
reedy backward el ion)
[58] 6 real patients (Two SMBG (finger sticks), CGM, Insulin, Physical OhioTIDM Dataset (Medtronic 530G insulin
male, and four female) activity, Diet, illness and other life events pumps, Medtronic Enlite CGM sensors, Reported life- N/A Artificial Neural Network (ANN) Accuracy, sensitivity, and
event data via a custom smartphone app and provided specificity
physiological data from a Basis Peak fitness band.)
[59] 8 real patients (12 and lfrequency features of occipital lobe (Centroid Yellow Spring Instruments for BG and Compumedics Fast Fourier Transform Bayesian regularized neural network Sensitivity and specificity
18 years age) frequency and spectral entropy) System for EEG
Table 2: Reported accuracy from the literatures.
Reported System performance
Ref. Comment

(Accuracy, Sensitivity, Specificity & Time horizon)

[1]

Neural network trained with Genetic algorithm (NN-GA) (Sensitivity (75.57%),
Specificity (57.68%))

Compared with Neural network trained with a Levenberg Marquardt (LM) algorithm, Statistical
Regression (SR), Fuzzy Regression (FR), Genetic Programming (GP), and Genetic Programming based
Fuzzy Regression (GP-FR) for detecting hypoglycemia incidences.

2]&
[3]

GA-NN based Rule discovery ( Specificity (79.11%) and Sensitivity (52.01%))

Compared with Fuzzy regression (FR), Genetic programming (GP), fuzzy regression based Genetic
programming (FR-GP), neural network trained with back propagation ( NN-BP) and Neural network
trained genetic algorithm (NN-GA) for hypoglycemia detection.

[4]

Decision tree - 30 min Hypoglycemia prediction-(Sensitivity (86.47%), Specificity
(96.22), Accuracy (95.97%))

Compared various decision tree approach J4.8, REPTree, Bagging, J4.8 and cost sensitive version of
J4.8 using CGM data.

[3]

Time-Sensitive ANN (TS-ANN) - 30 min hypoglycemia prediction-(average
specificity (98.2%), average accuracy (97.6%) and average sensitivity (80.19%) with a
maximum value reaching 93%).

Hypoglycemia were detected by BG prediction using neural network NARX (Nonlinear Autoregressive
network with Exogenous Inputs) trained with Bayesian Regularization back propagation training
Algorithm.

[6]

Support vector for regression - Free-living conditions (Nocturnal hypoglycemic —
Sensitivity (30-min - 94% & 60-min - 94%) with time lags of 5.43 min and 4.57 min,
respectively. Diurnal — without physical activities sensitivity (30-min - 92% and 60-min

Compared Support vector for regression, Multilayer perceptron, and Gaussian processes for prediction
of nocturnal and diurnal hypoglycemic events. The study also investigated the effect of Physical
activity information.




-96%), with both time lags being less than 5 min. Diurnal — with physical activities
decreases the sensitivity by 8% and 3%, respectively. Both nocturnal and diurnal
predictions show a high (> 90%) precision.

[7] SVR - (30min- Average prediction Accuracy Hypo (87%) & Hyper (96%), 60min- Compared support vector regression (SVR) and Gaussian process (GP).
Hypo (83%) & Hyper (94%)). GP (30min- Average prediction Accuracy Hypo (88%)
& Hyper (95%), 60min- Hypo (85%) & Hyper (88%))
[8] Fuzzy neural network estimator algorithm (FNNE) predicted the onset of The FNNE algorithm was developed as a parallel combination of fuzzy inference mechanism (FIM)
hypoglycemia episodes with a mean error of 0.071 (p <0.03) and a multi-layered neural network architecture.
[9] & Support vector regression (SVR) - with an event-based sensitivity of 100%, the Developed an android based system to detect hypoglycemia incidence using CGM and other
[10] algorithm produced only one false hypoglycemia detection. The sample-based information.
sensitivity and specificity levels were 78% and 96%, respectively
[11]& SVR with CGM- sample based Sensitivity 81%, and Specificity 93% Compared CGM with and without SVR algorithm for hypoglycemia detection.
[12]
[13] Classification and Regression Tree (CART) - Average accuracy (79.8%), average Investigated Classification and Regression Tree (CART) for hypoglycemia detection.
sensitivity (80.05%), overall specificity (79.9%)- The model was able to detect almost
80% of hypoglycemic events 15 min in advance
[14] Decision tree (Accuracy (65.2%)) & Linear SVM (Accuracy (68.4%)) Investigated DT and SVM for hypoglycemia prediction.
[15] ANN real time - Accuracy (85.2%), sensitivity (60%) and specificity (100%) Invested real time and offline hypoglycemia detection using ECG signal.
[16] & Genetic algorithm based multiple regression with fuzzy inference - Sensitivity (75%) Genetic algorithm is used to optimize regression and fuzzy rules. Compared various order multiple
[17] & and specificity (over 50%) Regression Fuzzy Inference System and Linear multiple regression with various number of inputs.
[18]
[19] Hybrid particle-swarm-optimization-based fuzzy-reasoning - Advanced hypoglycemic | Investigated the applicability of PSO to optimize fuzzy rules and membership function of FRM.
episodes (sensitivity (85.71%) & specificity (79.84%)) and hypoglycemic episodes | Compared with neural network and a regression method.
(sensitivity (80.00%) & specificity (55.14%))
[20] Hybrid rough set based neural network (RNN) - sensitivity (76.74%) and specificity Hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used to optimize RNN.
(52.73%) whereas conventional FWNN with no rough approximation gives sensitivity Compared the result with a feedforward neural network (FWNN).
(69.77%) and specificity (49.09%)
[21] Combinational neural logic network with multiple regression - Sensitivity (79.07%) Hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used to optimize the model
and Specificity (53.64%) parameters. Compared the result with neural logic network (NLN), wavelet neural network (WNN),
feedforward neural network (FFNN), and multiple regression (MR)
[22] Extreme learning machine (ELM)-based neural network -Sensitivity (78.00%) and | Compared the result with Particle swarm optimization based neural network (PSO-NN), Second order
Specificity (60.00%) multiple regression fuzzy inference system (MR- FIS), Fuzzy inference system (FIS) and Linear
multiple regression (LMR).
[24] Fuzzy inference system with multiple regression - Sensitivity (80%) and Specificity The fuzzy membership functions and rules are optimized using genetic algorithm. Compared the result
(72.5%) with particle swarm optimization neural network.
[25] Extreme learning machines (ELM)-the mean Specificity (95.4%) and the standard Proposed and compared extreme learning machines (ELM) and regularized ELM (RELM) to predict
deviation (1.13) hypoglycemia incidences using CGM readings.
[26] Feedforward multi-layer neural network - Sensitivity (95.16%) and specificity Proposed a neural network based hypoglycemia detection algorithm using ECG signal and skin
(41.42%) impedance.
[27] & Bayesian neural network - Sensitivity (83.46%) and specificity (63.88%) Investigated the applicability of Bayesian neural network to detect hypoglycemia from real time
[28] & physiological parameters.
[29]
[30] & Particle Swarm Optimization-based Neural Network - Sensitivity (82%) and Neural network parameters are optimized through PSO.
(31] Specificity (63%)
[32] Neural network - Sensitivity (75%) and specificity (60%) Investigated the possibility of combining Genetic Algorithm and Levenberg-Marquardt for neural
network training in hypoglycemia detection algorithm.
[33] Swarm-based support vector machine (SVM) - Sensitivity (82.14% ) and Specificity Investigated SVM-RBF for hypoglycemia detections and optimized the parameters through PSO.
(60.19%)
[34] & Fuzzy Support Vector Machine (FSVM-RBF) - (Sensitivity (74.19%), Specificity | Compared FSVM and SVM along with three different kernel functions (radial basis function (RBF),
[35] (58.54%), Accuracy (63.20%)) exponential radial basis function (ERBF) and polynomial function) for the classification purpose.
[36] & Hybrid particle swarm - based fuzzy support vector machine (SFisSvm) - Sensitivity | The FIS and SVM parameters are optimized using a hybrid particle swarm optimization with wavelet
[37] (75.19%), Specificity (83.71%) and Geometric mean (79.33%) mutation algorithm. The swarm based SVM uses RBF kernel (SSvmR), sigmoid kernel (SSvmS) and
linear kernel function (SSvmL).
[38] Normalized radial basis function neural network (NRBFNN) - Sensitivity (76.74% ) The parameters of NRBFNN are optimized through hybrid particle swarm optimization with wavelet
and Specificity (51.82%) mutation (HPSOWM). Compared the result with radial basis function network, feedforward neural
network, and multi regression.
[39] & Optimized variable translation wavelet neural network (VTWNN) - Sensitivity (79.07 The parameters of VTWNN are optimized using a hybrid particle swarm optimization with wavelet
[40] %) and Specificity (50.00 %) mutation. Compared the result with wavelet neural network (WNN), feedforward neural
network(FWNN2) and multi regression(MR)
[41] & Block Based Neural Network (BBNN) - Sensitivity (76.74%) and specificity (50.91%) | The BBNN parameters are optimized through a hybrid particle swarm optimization with wavelet
[42] mutation. Compared the result with feedforward neural networks and multiple regression.
[43] Adaptive neural fuzzy inference system (ANFIS) — Sensitivity (79.09%) and specificity | The membership function and network parameters are optimized using swarm optimization with
(51.82%) wavelet mutation (HPSOWM). Compared the result with fuzzy inference system (FIS), wavelet neural
network (WNN), feedforward neural network (FWNN) and multiple regression (MR)
[44] Combinational neural logic network (NLN) - Sensitivity (76.74%) and specificity The NLN parameters are trained by hybrid particle swarm optimization with wavelet mutation
(54.55%) (HPSOWM). Compared the result with neural logic network (NLN), wavelet neural network (WNN),
feedforward neural network (FFNN) and multi regression (MR).
[45] Hybrid rough-block-based neural network (R-BBNN) - Sensitivity (83.72%) and The R-BBNN parameters are optimized through a hybrid particle swarm optimization with wavelet
specificity (51.91%) mutation. Compared the result with BBNN, rough feedforward neural network (R-FWNN), wavelet
neural network (WNN), SVM with a radial basis function and conventional feedforward neural network
(FWNN).
[46] Deep belief network (DBN) — Sensitivity (80.00%) and specificity (50.00%) Compared the result with Block based neural network (BBNN), wavelet neural network (WNN),
feedforward neural network (FFNN), and multiple regression (MR) models.
[47] Extreme learning machine based feed-forward neural network (ELM-FFNN) - Compared the result with multiple regression fuzzy inference system (MRFIS), Feed-forward neural

Sensitivity (78%) and specificity (60%)

network trained with particle swarm optimization (FFNN-PSO), Fuzzy inference system, and Linear
multiple regression.




[48] Classification tree - Predicted 82.12% of acute hypoglycemic events (specificity: | Investigated towards predicting hypoglycemia incidence during intravenous (IV) insulin infusion for
89.87%; positive predictive value: 88.72%; accuracy: 86.00%) and 76.99% of severe | ICU patients.
acute hypoglycemic events (80.53%, 74.31%, and 78.76% respectively).

[49] Fuzzy inference system (FIS) - Sensitivity (75%) and Specificity (55%) FIS parameters are tuned by an intelligent optimizer with two wavelet-mutated differential evolutions
(WM-DE) engines. Compared the result with Neural network based rule discovery, linear multiple
regression, evolved multiple regressions, feed-forward neural network (FFNN), and evolved fuzzy
inference system.

[50] Hypoglycemia (EWS (correct alarms=100%, detection time=16.7min, daily false | Investigated into advanced data fusion schemes for merging output of different hypo/hyperglycemia
alarms=0.08), EWS-DST (CA=100,DT=18.4min, DFA=1.0), EWS- | predictors such as Dempster-Schafer Evidential Theory and Evolutionary Methods (Genetic
GA(CA=100,DT=13min, DFA=0.17), EWS-GP(CA=100,DT=12.3min,DFA=0.17)), | Algorithms, Genetic Programming). Compared the results with cARX and RNN models, and a linear
Hyperglycemia (EWS (CA=100,DT=14.7,DFA=0.8), EWS-DST | fusion of the two.

(CA=100,DT=11.6min,DFA=0.73), EWS-GA (CA=100,DT=12.1min,DFA=0.73),
EWS-GP(CA=100,DT=12min, DFA=0.33))

[51] ARX-based system - hypoglycemic (hyperglycemic) event prediction (accuracy of
100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5)). Investigated the performance improvement using a hybrid autoregressive with an output correction
cARX-based system - Accuracy 100.0% (100.0%), DT 17.5 (14.8) min, & DFA 1.5 (1.3)
and, RNN-based system Accuracy 100.0% (92.0%), DT 8.4 (7.0) min, and DFA 0.1 module/recurrent neural network (¢CARN). Compared performance of ARX, cARX, and RNN models.
(0.2). The hybrid cARN-based EWS - 100.0% (100.0%) prediction accuracy, detection
16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms.

[53] Feed forward multi-layer neural network - Sensitivity (70.59%), specificity (65.38%) Compared the ANN model with Linear Discriminant Analysis (LDA) and K-Nearest Neighbors (KNN)
and geometric mean (67.94%) on hyperglycemia detection.

[52, 54] Hidden Markov model (HMM) - The simulation result show that the proposed model is | Investigated the applicability of Hidden Markov model (HMM) in anomalies detection from the change
capable of detecting anomalies (i.e., no false positives) from the CGM readings based | in the patient’s daily lifestyle.
on historical data (in the presence of reasonable changes in the patient’s daily routine).

[55] Naive Bayes classifier - matched the physicians’ classifications 85% of the time that they | Investigated into the applicability of characterizing blood glucose variability using new metrics with
were internally consistent and in agreement with each other. CGM data using Naive Bayes classifier.

[56] SVR models - When applied to 262 different CGM plots as a screen for excessive GV | Investigated the applicability of developing a perceived glycemic variability metric using SVM model.
(accuracy (90.1%), sensitivity (97.0%), and specificity (74.1%). Compared the result with mean amplitude of glycemic excursion, standard deviation, distance travelled,

and excursion frequency.

[57] Multilayer Perceptron (MP)- (Accuracy 93.8%, Sensitivity 86.6%, Specificity 96.6%), | Investigated on an automatic glycemic variability detection and compared Naive Bayes (NB),
Support Vector Machine (SVM)- (Accuracy 91.4%, Sensitivity 80.0%, Specificity | Multilayer Perceptron (MP), and Support Vector Machine (SVM) models using CGM data.

96.0%), Naive Bayes (NB) - (Accuracy 91.9%, Sensitivity 88.3%, Specificity 93.3%).

[58] Artificial Neural network — Average Accuracy (90%), Average sensitivity (72.23%) and | Developed Artificial Neural Network integrated with physiological model for both blood glucose
Average specificity (92%) prediction and classification of hypoglycemia and further compared the result with existing models.

[59] Bayesian regularized neural network - Sensitivity (73%) and specificity (60%) Investigated and tested a feed-forward neural network trained with Bayesian regularization algorithm.
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Abstract

Background: Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to
detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their
suitability for applications where there is a lack of a sufficient data set for the other classes. Infection incidence often brings
prolonged hyperglycemiaand frequent insulin injectionsin people with type 1 diabetes, which are significant anomalies. Despite
these potentials, there have been very few studiesthat focused on detecting infection incidencesin individualswith type 1 diabetes
using a dedicated personalized health model.

Objective: This study aims to develop a personalized health model that can automatically detect the incidence of infection in
peoplewith type 1 diabetes using blood glucose level s and insulin-to-carbohydrate ratio asinput variables. The model is expected
to detect deviations from the norm because of infection incidences considering elevated blood glucose level s coupled with unusual
changes in the insulin-to-carbohydrate ratio.

Methods: Three groups of one-class classifiers were trained on target data sets (regular days) and tested on adata set containing
both the target and the nontarget (infection days). For comparison, two unsupervised models were also tested. The data set consists
of high-precision self-recorded data collected from three real subjects with type 1 diabetes incorporating blood glucose, insulin,
diet, and events of infection. The models were evaluated on two groups of data: raw and filtered data and compared based on
their performance, computational time, and number of samples required.

Results: The one-class classifiers achieved excellent performance. In comparison, the unsupervised models suffered from
performance degradation mainly because of the atypical nature of the data. Among the one-class classifiers, the boundary and
domain-based method produced a better description of the data. Regarding the computational time, nearest neighbor, support
vector data description, and self-organizing map took considerable training time, which typically increased as the sample size
increased, and only local outlier factor and connectivity-based outlier factor took considerable testing time.

Conclusions: We demonstrated the applicability of one-class classifiers and unsupervised models for the detection of infection
incidence in people with type 1 diabetes. In this patient group, detecting infection can provide an opportunity to devise tailored
services and also to detect potential public health threats. The proposed approaches achieved excellent performance; in particular,

https://www.jmir.org/2020/8/e18912 JMed Internet Res 2020 | vol. 22 | iss. 818912 | p. 1
(page number not for citation purposes)


mailto:ashenafi.z.woldaregay@uit.no
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Woldaregay et a

the boundary and domain-based method performed better. Among the respective groups, particular models such as one-class
support vector machine, K-nearest neighbor, and K-means achieved excellent performance in all the sample sizes and infection
cases. Overall, we foresee that the results could encourage researchers to examine beyond the presented features into other
additional features of the self-recorded data, for example, continuous glucose monitoring features and physical activity data, on

alarge scale.

(J Med Internet Res 2020;22(8):€18912) doi: 10.2196/18912

KEYWORDS

type 1 diabetes; self-recorded health data; infection detection; decision support techniques; outbreak detection system; syndromic

surveillance

Introduction

Anomaly or novelty detection problem involvesidentifying the
anomalous or novel instances, which exhibit different
characteristics, from therest of the data set and has been widely
used in various applicationsincluding machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnosticsand monitoring, cyber-intrusion
detection, and others [1-7]. The term anomaly was precisely
coined by Hawkins[8] as* observationsthat deviate much from
the other observations so as to arouse suspicions that it could
be generated by adifferent process” Anomalousnessis usually
described as point, contextual, and collective, depending on
how the degree of anomaly is computed [1,7,9]. On the basis
of the necessity of having labeled data instances for the
respective class, the anomaly detection problem can be
approached as supervised, semisupervised, and unsupervised
[3,7,9-11]. Supervised anomaly detection, for example,
multiclass classification, requires|abeled datainstancesfor both
the target and the nontarget (anomaly) classes. This
characteristic makes it impractical for tasks where there is
difficulty in either finding enough samples for the anomaly
class, that is, poorly sampled and unbalanced data, or
demarcating boundaries of the anomaly class [7,10,12].
Moreover, anomalies could also evolve over time, and what is
known today might not be valid through time, making the
characterization of anomalies class more challenging. In this
case, semisupervised anomaly detection, that is, one-class
classification, is preferred given that it only requires
characterizing what is believed to be normal (target data
instances) to detect the abnormal (nontarget datainstances) [7].
Under certain circumstances, for example, medical domain,
obtaining and demarcating the anomalous (nontarget) data
instances can become very difficult, expensive, and time
consuming, if not impossible [7,13]. For instance, assume a
health diagnostic and monitoring system that detects health
changes in an individual by tracking the individua’s
physiological parameters, where the current health status is
examined based on a set of parameters, and raisesanotification
alarm when the individual health deteriorates [12]. In such a
system, it becomes feasible to rely on a method that can be
trained using only the regular or norma day measurements
(target days) so as to detect deviation from normality [12,14].
This is because demarcating the exact boundaries between
normal and abnormal health conditionsisvery challenging given
that each pathogen has a different effect on the individual
physiology. The one-class classifiers-based anomaly detection

https://www.jmir.org/2020/8/€18912

methods can be roughly grouped into 3 main groups: boundary
and domain-based, density-based, and reconstruction-based
methods based on how their internal function is defined and the
approach used for minimization [3,10,12,13,15,16]. These
models take into account different characteristics of the data
set, and depending on the data set under consideration, these
models could achieve different generalization performance,
overfitting, and bias[12]. Unlike supervised and semisupervised
anomaly detection methods, unsupervised methods do not
require labeled instances to detect the anomaly (nontarget)
instances because they rely on the entire data set to determine
the anomalies and can be another possible alternative to
semisupervised anomaly detection methods [7,10,12]. One of
the drawbacks of unsupervised methods is that they require
significant amount of data to achieve comparable performance.
Both semisupervised and unsupervised methods have been used
in various applicationsto detect anomalousinstances[1,7,10,16].
In particular, these methods have been popular in the medical
domain owing to their suitability for such applications, where
thereislack of a sufficient data set for the other classes [13].
Accordingly, considering the difficulty and expense of obtaining
enough sample data setsfor theinfection daysfrom peoplewith
type 1 diabetes, a one-class classifier and unsupervised models
are proposed for detecting infection incidence in people with
type 1 diabetes.

Type 1 diabetes, also known as insulin-dependent diabetes, is
achronic disease of blood glucose regulation (hemostasis), and
is caused by the lack of insulin secretion from pancreatic cells
[17,18]. In peoplewith type 1 diabetes, theincidence of infection
often results in hyperglycemia and frequent insulin injection
[19-26]. Infection-induced anomalies are characterized by
violation of the norm of blood glucose dynamics, where blood
glucose remains elevated despite taking a higher amount of
insulin injection with less carbohydrate consumption [19].
Despite these potentials, there have been very few studies that
focused on detecting infection incidence in individuals with
type 1 diabetes using a dedicated personalized health model.
Therefore, the objective of this study was to develop an
algorithm, that is, a personalized health model that can
automatically detect the incidence of infection in people with
type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. For this, a
one-classclassifier and unsupervised modelsare proposed. The
model is expected to detect any deviations from the norm
because of infection incidences considering elevated blood
glucoselevel (hyperglycemiaincidences) coupled with unusual
changes in the insulin-to-carbohydrate ratio, that is, frequent
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insulin injections and unusual reduction in the amount of
carbohydrate intake [19]. Three groups of one-class classifiers
and two unsupervised density-based models were explored. A
detailed theoretical description of the proposed modelsisgiven
in Multimedia Appendix 1 [1,7-16,27-37]. The anomaly
detection problem studied in this paper can be regarded as a
contextual anomaly, where the ratio of insulin-to-carbohydrate
is the context and the average blood glucose level is the
behavioral attribute. This is mainly because of the fact that
elevated blood glucose levels do not always signify being
anomalies without looking at the context of the ratio of
insulin-to-carbohydrate in this case. Throughout the paper, the
term object is used to describe a feature vector incorporating
the number of parameters under consideration. For example, an
object X can define a specific event of an individual blood
glucose dynamics at aspecified timeindex k and is represented
by afeature vector X, =(x, 1, X 2), Wherex, | representstheratio
of total insulin-to-total carbohydrate and x, , represents the
average blood glucose level in a specific time-bin (interval)
around k.

Methods

A group of one-class classifiers and unsupervised models were
tested and compared. The one-class classifier incorporates 3
groups. boundary and domain-based, density-based, and
reconstruction-based methods. The boundary and domain-based
method contains support vector data description (SVDD) [27],
one-class support vector machine (V-SVM) [28], incremental
support vector machine [29], nearest neighbor (NN) [12], and
minimum spanning tree (MST) [15]. Density-based method
includes normal Gaussian [32], minimum covariance Gaussian
[38], mixture of Gaussian (MOG) [32], Parzen [39], naive
Parzen [32], K-nearest neighbor (KNN) [12,30], and local outlier
factor (LOF) [31]. The reconstruction-based method includes
principal component analysis (PCA) [12,32], K-means [32],
self-organizing maps (SOM) [12,32], and auto-encoder networks
[12]. In addition, the unsupervised models were also tested,
including the LOF [31,33] and the connectivity-based outlier
factor (COF) [33,34]. Theinput variables, average blood glucose
levels and ratio of total insulin (bolus) to total carbohydrate,
used in training and testing of the models were selected in
accordance with the description provided by Woldaregay et al
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[19], and the ratio was calculated by dividing the total insulin
with thetotal carbohydrate within aspecified time-bin. The data
set consists of high-precision self-recorded data collected from
3real subjects (2 malesand 1 female; average age 34 [SD 13.2]
years) with type 1 diabetes. It incorporates blood glucose levels,
insulin, carbohydrate information, and self-reported infections
cases of influenza (flu) and, mild and light common cold without
fever, asshownin Table 1. Exemplar datadepicting the model’s
input features for 2 specific patient years with and without
infection are shown in Figures 1-4, and a more detailed
description of the input features for 10-patient years with and
without infection incidences can be found in Multimedia
Appendix 2 [12,19]. The data were resampled and imputed in
accordance with the description provided by Woldaregay et al
[19], and the preprocessed data were smoothed using amoving
average filter of 2 days (48 hours) window size to remove
short-term and small-scale features [19,40,41]. Feature scaling
was carried out using min-max scaling [42] to normalize the
data between 0 and 1, which isimportant to ensure that larger
parameters do not dominate the smaller ones. The data sets are
labeled as target and nontarget data sets, where the target data
setsinclude al the self-recorded normal period of the year and
the nontarget data set includes only the self-reported infection
periodswhen theindividua wassick. Accordingly, the one-class
classifiersweretrained using only thetarget data sets containing
the regular or normal period of the year and tested using both
the target and the nontarget (infection period) data sets. For the
unsupervised models, all the data sets containing both the target
and the nontarget data sets were presented during testing. The
hyperparameters of most of the one-class classifiers were
optimized using a consistency approach [43]. Models such as
naive Parzen and Parzen were optimized using the leave-one-out
method. For MST, the entire MST was used. For PCA, the
fraction of variance retained from the training data set was set
to be 0.67. The models were evaluated based on different
characteristics including data nature (with and without filter),
data granularity (hourly and daily), data sample size, and
required computational time. All the experiments were
conducted using MATLAB 2018b (Mathworks, Inc). Most of
the models were implemented using ddtools, prtools, and
anomaly detection toolbox, which are MATLAB toolboxes
[32,33,35].
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Table 1. Equipments used in the self-management of diabetes.

Woldaregay et a

Patients Self-management
BG? Insulin administration Diet Body weight (kg) HbA1¢° (%)
Subject 1 Finger pricksrecordedin  Insulin Pen (multiple bolus and 1- Carbohydrate in gramsrecord- 83 6.0
the Diabetes Diary mobile time basal in the morning) recorded  edinthe Diabetes Diary mobile
app and Dexcom CGM® in the Diabetes Diary mobile app app; level 3 (advanced carb
counting)
Subject 2 Finger pricksrecordedin  Insulin Pen (multiple bolus[Huma-  Carbohydrate in gramsrecord- 77 7.3
the Spike mobile app and  log] and 1-timebasal [Toujeo] before ed in the Spike mobile app;
Dexcom G4 CGM® bed) recorded in the Spike mobileapp level 3 (advanced carb count-
ing)
Subject 3 Enlite (Medtronic) cGMS  Medtronic MinMed G640 insulin Carbohydratein gramsrecord- 70 6.2

pump (basal rates profile [Fiasp] and
multiple bolus [Fiasp])

and Dexcom G4

ed in pump information; level
3 (advanced carb counting)

3BG: blood glucose.
PHbA ¢ hemoglobin A .
€CGM: continuous glucose monitoring.

Figurel. Daily scatter plot of average blood glucose levelsversustotal insulin (bolus) to total carbohydrate ratio for a specific regular or normal patient

year without any infection incidences.
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Figure 2. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific regular or normal

patient year without any infection incidences.
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Figure 4. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific patient year with an

infection incidence (flu).
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M odel Evaluation

The performance of the one-class classifierswas evaluated using
20 times 5-fold stratified cross-validation. For both daily and
hourly cases, the user-specified outlier fraction threshold Rwas
set to 0.01 such that 1% of the training target data are allowed
to be classified as outlier or get rejected [12]. Class imbalance
was mitigated by oversampling of the nontarget data setsthrough
random sampling [44)]. Performance was measured using the
area under the receiver operating characteristic (ROC) curve
(AUC), specificity, and F1-score [45-48]. The AUC, specificity,
and F1-score were reported asthe average (SD) of twenty times
five-fold stratified cross-validation rounds. AUC is the result
of integration (summation) of the ROC curve over a range of
possible classification thresholds [49]. It is regarded as robust
(insensitive) when it comes to the presence of dataimbalance;
however, itisimpractical for real-world implementation because
it isindependent of asinglethreshold [48]. Specificity measures
the ratio of correctly classified negative samples from the total
number of available negative samples[50]. Thus, it depictsthe
proportion of infection days (nontarget samples) that are
correctly classified as such to the total number of infection days
(period). It isonly used to examine how the model performsin
regard to the nontarget class (infection days). F1-score is the
harmonic mean of precision and recall, where the value ranges
from 0 to 1, and high F1 scores depict high classification
performance [45]. Fl-score is considered appropriate when
evaluating model performance with regard to one target class
and in the presence of unbalanced data sets [10,46-48]. The
models were further compared based on various criteria, which
can contribute to the implementation of the modelsin real-world
settings, including computation time, sample size, number of
user-defined parameters, and sengitivity to outliersinthetraining
data sets:

« Computation time: this characteristic defines the amount
of timetaken to train and test the model . Regarding personal
use, response timeis crucia for acceptance of the services

https://www.jmir.org/2020/8/€18912

by awide range of users. Furthermore, with regard to the
outbreak detection settings, thisis an important parameter
given that a system that uses data from many participants
needs to have an acceptable response time. However, in
real-world applications, thetraining phase can be performed
in an offline mode, which makes the testing response time
very crucial.

+ Sample size: this characteristic specifies the minimum
amount of training data required to generate an acceptable
performance. This is an important factor given that the
system relies on self-recorded data; it is difficult to
accumulate a large set of datafor anindividua initially.

+  Number of user-defined parameters; this characteristic
defines the complexity of the model. It is simpler and less
dataare required to estimate amodel with fewer parameters.
This is an important factor because it is easier for an
individual to implement the smple model compared with
the complex model.

« Sensitivity to outliers in the training data sets. this
characteristic defines how the model estimation is affected
by outliersin thetraining set. Thisisacrucial characteristic
because the modédl training depends on self-reported data,
which are highly dependent on the accuracy of the user data
registration. It is possible that the user might forget to report
some infection incidence and hence might be considered
as target data sets and be used as a training data set.
Furthermore, errorsincurred during manual registration of
data can also affect model generalization.

Data Collection and Ethical Declaration

The study protocol has been submitted to the Norwegian
Regional Committees for Medical Health Research Ethics
Northern Norway for evaluation and was found exempted from
regional ethicsreview becauseit isoutside the scope of medical
research (reference number: 108435). Written consent was
obtained, and the participants donated the data sets. All data
from the participants were anonymized.
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Results

The models were evaluated based on two different versions of
the same data set: raw and filtered. The input variables to the
models were the average blood glucose levels and the ratio of
total insulin (bolus)-to-total carbohydrate. The necessary
computational time for both training and testing of the models
was also estimated. A comparison of the classifierswas carried
out taking into account their performance, necessary sample
size for producing acceptable performance, and computational
time. These models were further compared based on their
theoretical guarantee provided for robustness to outliersin the
target data set and based on their complexity. In addition, these
classifiers were compared with the unsupervised version of
some selected models.

M odel Evaluation

Model training and eval uations were carried out on an individual
basis taking into account different characteristics of the data,
specified time window or resolution (hourly and daily), and
nature of the data (raw dataand its smoothed version). For daily
evaluation, we compared the performance of the modelson raw
data and its smoothed version with a 2-day moving average
filter. For hourly evaluation, we compared the performance of
the model on a smoothed version of the data set. The purpose
of the comparison was to study the performance gain achieved
by removing short-time noises from the data set through
smoothing. The average and SD of AUC, specificity, and
F1-score are computed and reported for each model. The top
performing modelsfrom each category are highlightedinitalics
within each tables.

Semisupervised Models

Theregular or normal dayswere labeled asthetarget class data
set and the infection period asthe nontarget class data set. Three
groups of one-class classifiers were trained on the target class
and tested on a data set containing both the target and the
nontarget classes. In addition to the data characteristics stated
above, resolution and data nature, the one-class classifier
performance was al so assessed taking into account the required
sample aobject size to produce acceptable data description. In
thisdirection, we consider four groups of samplesize: 1 month,
2 months, 3 months, and 4 months data sets. In the model
evaluation, the data set containing the infection period was
presented during testing. The evaluation was carried out based
on 20 times 5-fold stratified cross-validation. The performance
of the model was reported as the average and SD of AUC,
specificity, and F1-score of the rounds. A score plot of each
model for both the hourly and the daily scenarios using the
smoothed version of the data can be found in Multimedia
Appendix 3, where the models were trained on random 120
regular or normal days of the patient year and tested over the
whole year.

https://www.jmir.org/2020/8/€18912
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Daily

As can be seen in Tables 2 and 3 below (see also Multimedia
Appendix 4), the performance of the models generally improves
asthe size of the sampleincreases. The models performed well
with respect to the raw data sets; however, the performance
significantly improved with the smoothed version of the data.
Theresultsindicate that the sample size greatly affectsthe model
performance and that there is alarger variation in performance
when the training data set is small. Generally, it can be seen
that the models generalize well with the 3-month data set (90
sampl e objects) and further improve after 3 months. In general,
on average, with both the raw and smoothed data sets, the
boundary and domain-based method performed better with a
small sample size. As the sample size increased, al the three
groups produced comparable descriptions of the data. From
each respective category, models such as V-SVM, K-NN, and
K-means performed well across all the sample sizes.

First Case of Infection (Flu)

The boundary and domain-based method achieved a better
description of the datawith asmall sample sizewhen compared
with the other two groups. However, as the sample size
increased, all the three groups achieved relatively comparable
descriptions of the data. Specific modelssuch asV-SVM, K-NN,
and K-means performed better from their respective group.
Regarding the raw data, asseenin Table 2, all the modelsfailed
to generalize from the 1-month data set as compared with the
large sample objects, that is, 3 months, which was expected:

1. From the boundary and domain-based method, V-SVM
performed better in al the sample sizes and achieved
comparabl e performance even with 60 objects and improved
significantly afterward. SVDD produced a comparable
description with higher sample sizes, that is, 3 months and
later.

2. From the density-based method, K-NN performed better
in al the sample sizes and achieved better performance
even with 60 objects. Naive Parzen produced comparable
performance with higher sample sizes, that is, 3 months
and later.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data, as shown in Table 3, improved the model
performance even with 30 sample objects:

1. From the boundary and domain-based method, V-SVM
achieved better performancein all sample sizes.

2. From the density-based method, K-NN achieved better
performance for al sample sizes, minimum covariance
determinant (MCD) Gaussian produced a comparable
description with 30 and 60 sample objects, and naive Parzen
achieved comparable description of the data with 4-month
sample objects.

3. Regarding the reconstruction-based method, PCA achieved
good performance with 30 and 60 sample objects, whereas
K-means performed better with larger sample objects.
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Table 2. Average (SD) of area under the receiver operating characteristic curve, specificity, F1-score for the raw data set (without smoothing), and
different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months

AUC3 Specifici- F1, AUC, Specifici- F1, AUC, Specifici- F1, AUC, Specifici- F1,
mean ty, mean mean mean ty, mean mean mean ty, mean mean mean ty, mean mean
(SD) (SD) (SD)  (SD) (SD) (SD)  (SD) (SD) (SD)  (SD) (SD) (SD)

Boundary and domain—based method
svDDP 90.7(8.8) 71.7(7.7) 736 934(6.2) 8L7(5.00 874 96.4(29 87.8(33) 913 946(3.7) 8L7(5.00 900

(5.5) (8.1) (6.0) (4.6)
IncSvDDS 904(8.9) 66.7(7.5) 727  91.8(59) 66.7(7.5 844 958(29) 700(7.1) 854 937(36) 55(10.7) 8LO
(4.9) (32 (12 (2.7
v.symd  931(60) 63(106) 789 965(23) 8L9(47) 907 97.9(15) 889(0.0) 941 96.2(23) 83.3(0.0) 917
6.2 ¢ (34) (2.0) (1.4)
NN 742(9.3) 383(7.7) 610 895(9.3) 200(67) 700 90.1(6.6) 11.1(18) 692 928(33) 33.3(0.0) 75.1
4.7 (4.6) (3.8) (0.4)
MSTY 89.4(81) 50.0(0.0) 627 954(56) 61.7(7.7) 823 96.6(27) 689(45 836 941(28) 550(7.7) 80.6
(6.6) (5.9) (4.7) (2.3)

Density-based method
Gaussian  90.6(7.1) 60.0(82) 688 954(4.6) 70.0(6.7) 853 97.3(25) 80.0(45) 892 955(3.2) 66.7(0.0) 845

(8.4) (4.6) (3.3 (2.6)
mogh 88.1(9.9) 80.1 67.8 93.1(7.1) 75.8 825 95.6(3.4) 80.2(7.5) 86.0 93.7(3.9) 68.7 84.2
(17.3) (16.4) (14.8) (10.1) (6.7) (11.6) (5.7)
MCD' 89.0(8.5) 55.0(7.7) 66.4 94.0(4.6) 68.3(5.0) 84.6 97.0(2.7) 80.0(4.5) 89.9 945(3.2) 65.0(5.00 84.0
Gaussian (9.0) (6.3) (2.4 3.2
Parzen 89.0(9.2) 70.0(6.7) 70.7 94.6(4.9) 83.3(0.0) 87.9 97.2(2.4) 88.9(0.0) 90.5 95.2(2.9) 83.3(0.0) 889
(5.9) (6.3) (5.9 (3.3
Naive 90.1(7.6) 55(10.7) 65.0 95.7(39) 76.7(8.2) 87.2 98.3(1.4) 88.9(0.0) 93.6 96.8(2.1) 83.3(0.0) 90.7
Parzen (5.0) (3.5) 2.9 (2.0)
K-NNJ 91.8(6.9) 50.0(0.0) 66.0 95.6(3.1) 81.7(5.0) 90.9 97.9(1.6) 889(0.0) 935 97.0(2.2) 83.3(0.00 92.0
(2.0) 3.2 3.7 (2.0)
LOFX 885(6.1) 66.7(7.5) 727 97.0(1.9 717(7.7) 86.1 96.8(2.8) 78.9(3.3) 88.7 92.6(4.8) 50.0(0.0) 79.3
(4.9) (2.4) (2.8) (2.6)

Reconstruction-based method
pca! 87.8 50.0(7.5) 624 935(6.2) 51.7(5.0) 78.2 93.6(4.7) 60(10.2) 818 91.3(5.2) 46.7(6.7) 78.7
(11.9) (8.5) (4.1) (4.9 (2.3)
Auto-en- 822 57.9 647 88.2(95) 616 814 934(57) 744(11) 864 88.4(88) 613 82.7
coder (12.0) (15.3) (12.0) (14.0) (7.1) (5.9 (14.3) (5.7)
som™ 86.9(9.4) 783 66.7 92.8(7.3) 64.2 80.9 95.8(3.7) 80.1(6.3) 86.9 92.2(4.1) 76.5(9.0) 875
(13.3) (16.9) (12.4) (7.0) (5.5 (4.5)
K-means 91.8(6.9) 65.0(9.0) 718 96.0(24) 83.3(0.0) 915 97.6(1.6) 88.9(0.0) 935 96.2(2.2) 83.3(0.0) 915
(5.1) (2.8) 3.7 (1.6)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.
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IPca: principal component analysis.
MSOM: self-organizing maps.
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Table 3. Average of area under the receiver operating characteristic curve, specificity, and F1-score for smoothed version of the data with a 2-day
moving average filter and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, SpeCIfICI- F1 AUCa, SpeCIfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpeCIfICI- F1
mean ty mean ty mean ty mean ty
(SD) (SD) (SD) (SD)

Boundary and domain—based method
svDDpP 99.6(1.3) 100(0.0) 936 100(0.0) 100(0.0) 948 100(0.0) 100(0.0) 97.0 100(0.0) 100(0.0) 96.9

(15.2) (10.2) (4.1 (4.0)

IncSvDDS 996(1.3) 100(0.0) 936  100(0.0) 100(0.0) 971 100(0.0) 100(0.0) 976 100(0.0) 100(0.0) 983
(15.2) (6.3) (4.1 (2.8)

v.symd 100(0.0) 995(29) 989 100(00) 100(0.0) 991  100(0.0) 100(0.0) 994  100(0.0) 100(0.0) 99.6
(32)° (26) ) 12

NN 98.1(3.9) 583 723 86.9 16.7 705 881(6.5) 54.4 800 924(5.3) 83(17.1) 69.0
(154) (99 (125  (224) (53 (225)  (86) (4.8)

MSTd  985(24) 850(50) 855 99.7(0.8) 100(00) 97.1 99.9(04) 97.8(45) 972 99.7(0.8) 100(0.0) 97.0
2.1) (6.3) (4.0) (7.9)

Density-based method
Gaussian 100(0.0) 98.3(5.0) 921  100(0.0) 100(0.0) 971  99.8(0.7) 100(0.0) 976  99.4(1.7) 100(0.0) 97.0

(15.2) (6.3) (4.1) (7.9)

mogh 98.6(3.2) 99.8(1.7) 885 99.6(1.2) 100(0.0) 92.2 99.7(0.7) 99.8(14) 9% 99.3(20) 99.9(1.2) 944
(16.8) (11.1) (10.3) (11.8)

MCD' 98.9(22) 91.7(8.4) 90.9 100(0.0) 100(0.0) 98.0 995(1.1) 96.7(5.1) 96.6 99.4(1.7) 88.3(7.7) 920

Gaussian (7.7) (6.0) (5.9 (6.8)

Parzen 99.6(1.3) 100(0.0) 87.7 100(0.0) 100(0.0) 95.1 100(0.0) 100(0.0) 94.6 99.9(0.4) 100(0.0) 94.6
(17.0) (8.0 (9.8) (12.3)

Naive 99.2(25) 100(0.0) 94.7 100(0.0) 100(0.0) 93.8 99.6(1.1) 100(0.0) 97.5 100 (0.0) 100(0.0) 98.7

Parzen (11.2) (11.0) (5.0) 2.7

K-NNJ 98.1(3.9) 68.3(5.0) 75.2 100(0.0) 100(0.0) 98.0 100(0.0) 100(0.0) 98.8 100 (0.0) 100(0.0) 97.7

(4.3) (6.0 (3.8) 4.7

LOFX 98.6(29) 75.0 80.2 100(0.0) 100(0.0) 98.0 100(0.0) 100(0.0) 96.9 99.7(0.8) 100(0.0) 97.4

(13.5) (20.8) (6.0 (5.0) (7.9)

Reconstruction-based method

pca! 98.9(2.2) 85.0(5.0) 855 99.2(1.3) 85.0(5.00 914 98.6(1.9) 88.9(0.0) 92.2 97.8(2.2) 83.3(0.0) 89.1

(2.1) 2.7 (6.0) 9.7)

Auto-en- 97.4(6.0) 89.1 86.0 985(3.2) 94.5(9.6) 918 99.2(2.4) 937 93.7 98.6(3.8) 94.4(9.5) 937

coder (13.0 (14.2) (9.4 (10.2) (8.3) 9.7)

som™ 99.3(1.9) 99.9(1.2) 84.7 99.8(0.7) 100(0.0) 914 99.9(0.3) 100(0.0) 95.2 99.6(1.3) 100(0.0) 934
(19.8) (9.6) (7.9) (12.1)

K-means 99.2(25) 85.0 87.0 100(0.0) 100(0.0) 97.1 100(0.0) 100(0.0) 98.8 100 (0.0) 100(0.0) 99.2

(11.7) (10.4) (6.3) (3.8) (2.5)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.

https://www.jmir.org/2020/8/e18912 JMed Internet Res 2020 | vol. 22 | iss. 8 | 18912 | p. 10
(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

IPca: principal component analysis.
MSOM: self-organizing maps.

Second Case of I nfection (Flu)

The boundary and domain-based method achieved better
performance with asmall sample size compared with the density
and reconstruction-based methods. However, asthe samplesize
increased, al the three groups achieved comparable
performance. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, K-NN, and K-means performed better from their
respective group. Regarding the raw data, al the models failed
to generalize from the 1-month data set as compared with the
higher sample objects, that is, 3 months (M ultimedia A ppendix
4):

1. From the boundary and domain-based method, SVDD,
MST, and incremental support vector data description
(incSVDD) performed better with a larger sample object,
and V-SVM achieved better description with 30 sample
objects.

2. From the density-based method, all the models exhibited
similar performance. Naive Parzen and K-NN, with only
60 sampl e objects, achieved comparabl e performance with
the higher sample objects.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data significantly improved the performance of
the model even with 30 objects, compared with the raw data
(Multimedia Appendix 4):

1. Fromthe boundary and domain-based method, the V-SVM
achieved higher performance in all the sample sizes.

2. From the density-based method, LOF achieved better
description with small sample objects, and K-NN produced
better description with al the sample sizes. Gaussian
families achieved improved and comparable performance
with increased sample objects. Among them, K-NN with
only 60 objects achieved comparable performance with
larger sample objects.

3. Regarding the reconstruction-based method, K-means and
SOM achieved better performance, whereas K-means
performed better in al the sample sizes.

Third Case of Infection (Flu)

The boundary and domain-based method achieved better
performancewith asmall sample size compared with the density
and reconstruction-based methods. However, asthe sample size
increased, al the three groups produced comparable
descriptions. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, MST, LOF, and PCA performed better from their
respective group. Regarding the raw data, surprisingly, in
contrast to the previous two infection cases, al the models
achieved higher generalization from the 1-month data set
(Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, MST, and incSVDD performed better in all the
cases, with MST achieving better performance.
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2. Fromthe density-based method, normal and MCD Gaussian
achieved better description of the datawith 1-month sample
objects. K-NN and L OF performed better with sample sizes
larger than 1-month sampl e objects, and L OF outperformed
all sample sizes. The LOF with only 60 objects achieved
comparable performance with the higher sample objects.

3. From the reconstruction-based method, PCA produced
better description for al sample sizes, whereas K-means
and SOM achieved comparable performance with sample
size larger than 1-month sample objects.

Smoothing the data allowed the models to generalize well and
significantly improved the performance of the model even with
30 objects, compared with the raw data (M ultimedia Appendix
4):

1. Fromthe boundary and domain-based method, the V-SVM
and MST achieved higher performance in all the sample
sizes, whereas V-SVM outperformed all the models.

2. From the density-based method, the Gaussian families,
L OF, and K-NN achieved better performance, whereas L OF
achieved better performance in all sample sizes.

3. Regarding the reconstruction-based method, K-means and
PCA achieved better performance, whereas PCA performed
better in al the sample sizes.

Fourth Case of Infection (Flu)

The boundary and domain-based method achieved better
performance with small sample sizes compared with the density
and reconstruction-based methods. All the three groups
improved with increasing sample size. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific modelssuch asV-SVM, LOF, and K-means performed
better from their respective group. Regarding the raw data,
surprisingly, in contrast to all the previousthreeinfection cases,
all the model s achieved higher generalization from the 1-month
data set (Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, and incSV DD performed better for all the sample
sizes.

2. Fromthedensity-based method, MCD Gaussian performed
better with a 1-month sample size, and al the models
produced comparable descriptions as the sample size
increased, whereas the LOF performed better for all the
sample sizes.

3. From the reconstruction-based method, PCA performed
relatively better for all the sample sizes, and K-means and
SOM achieved comparable performance with a larger
sample size.

Smoothing the data significantly improved the model
performance even with 30 objects compared with the raw data
(Multimedia Appendix 4):

1. Fromthe boundary and domain-based method, the V-SVM
achieved higher performancein all the sample sizes. Asthe
sample size increased, the incSYDD and MST achieved
comparable performance.
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2. From the density-based method, K-NN and L OF produced
better descriptions with a 1-month sample size. K-NN
performed better in amost al sample sizes.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Hourly

As can be seen in Table 4 (see also Multimedia Appendix 4),
the performance of the model generally improved as more
training sample data were presented. The models produced
comparable performance even with the 1-month data set
compared with the daily scenario. Thisismainly because of the
presence of more samples per day (24 samples per day), which
enables the models to reach a better generalization. Generally,
the results indicate that the models generalize well after 2
months. Both the boundary and domain-based method and
reconstruction-based method achieved better performance even
with a 1-month sample size. However, the density-based method
suffers from large variation with 1-month training samples. In
general, the boundary and domain-based method performed
better in al the infection cases compared with the other two
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methods. In addition, specific models such as V-SVM, K-NN,
and K-means performed well from their respective groups.

First Case of Infection (Flu)

The boundary and domain-based method achieved better
performance  compared with the density and
reconstruction-based methods. As can be seen in Table 4, the
boundary and domain-based method achieved better
generalization from the 1-month data set. Specific models such
as V-SVM, K-NN, and K-means performed better from their
respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description in all sample sizes, whereas
SVvDD, incSVDD, and V-SVM achieved comparable
performance with alarger sample size.

2. From the density-based method, Gaussian families and
naive Parzen performed better at large sample sizes, whereas
K-NN and LOF achieved better performance in al the
sample sizes. K-NN outperformed all the models.

3. Fromthereconstruction-based method, K-means performed
better in all the sample sizes, and al the other models
performed better with larger sample sizes.
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Table4. Average (SD) of areaunder the receiver operating characteristic curve, specificity, F1-score for the smoothed version of the datawith a48-hour
moving average filter and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, SpG)IfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpECIfICI- F1 AUCa, SpeCIfICI- F1
mean (SD) mean ty mean ty mean (SD)
(SD) (SD)

Boundary and domain—based method
svDDP 97.6(19) 832(34) 858 97.8(1.2) 857(5.00 905 97.7(12) 90.4(51) 942 981(09) 91.0(3.7) 96.8

1.7) (9.6) 2.9) (0.9)
IncSvDD® 97.4(19) 845(28) 868 97.7(L2) 867(20) 939 97.5(12) 835(L5) 9.0 97.9(0.9) 889(12) 97.1
(1.9) (1.0) (1.1) 0.7)
v.symd  981(21) 845(L1) 905 990(L1) 926(0.0) 961 995(06) 938(0.5 969 994(04) 942(0.0) 97.1
(11)® (1.3) (1.4) (1.3)
NN 84.8(60) 759(45) 748 893(22) 765(41) 871 89.0(40) 77.5(39) 89.3 90.2(47) 77.5(38) 914
(6.0) (3.3) (4.4) (6.4)
MST9 905(3.1) 854(39) 676 944(20) 857(40) 851 94.7(24) 888(35) 878 958(22) 88.8(3.0) 90.9
(14.5) (7.0) (8.5) (5.9)

Density—based method
Gaussian  98.1(22) 79.8(49 839 995(0.9) 90.1(1.7) 952 99.6(0.7) 929(1.3) 97.1 995(05) 922(1.0) 97.7

2.7 (1.8) (2.5) 1.1
mogh 95.8(3.6) 82.7(4.3) 837 98.3(1.5) 86.2(27) 923 98.7(1.4) 88.7(4.6) 94.7 98.6(1.6) 88.2(3.1) 953
(5.0 2.7) (3.5) 3.2
MCD' 98.6(21) 75.3(6.9) 813 99.6(0.9) 89.6(1.9) 95.0 99.6(0.7) 925(1.8) 97.0 99.6(0.4) 92.0(L2) 977
Gaussian (2.5 (1.8) (2.3) 1.1
Parzen 91.9(29) 93.6(2.0) 634 96.2(2.3) 94.4(2.0) 81.6 96.6(2.6) 94.8(1.7) 842 974(22) 956(1.2) 879
(16.5) (10.2) (9.5) (7.1)
Naive 94.8(3.7) 76.4(5.6) 77.6 98.7(1.2) 85.2(3.3) 91.8 99.1(1.1) 89.1(3.8) 94.8 989(0.9) 89.7(24) 96.2
Parzen (7.9 (2.9) (2.5) (1.6)
K-NNJ 97.1(34) 78.8(20) 842 99.1(1.0) 929(0.7) 96.0 99.6(0.4) 93.8(0.7) 97.3 99.5(0.3) 94.0(0.6) 982
(2.1) (1.8) (2.9 (0.9
LOFX 96.9(3.5) 78.3(3.0) 84.2 99.2(1.1) 91.9(0.9) 96.0 99.6(0.5) 93.7(0.8) 97.3 995(0.4) 93.1(04) 97.8
(2.9 (1.8) (2.1) 1.2
Reconstruction—-based method
pca! 97.1(34) 639(88) 754 994(12) 76.4(66) 902 99.1(13) 75.1(6.8) 924 989(12 69.1(41) 93.1
0.3 (1.1) (1.1) (0.8)
Auto-en- 92.0(4.8) 79.5(7.6) 78.9 96.2(2.6) 83.1(7.2) 91.1 96.3(3.2) 84.3(7.7) 927 96.7(3.0) 84.0(8.0) 946
coder (8.3 (3.9 (5.0) (4.9
som™ 94.1(23) 822(3.3) 826 95.6(1.1) 829(3.1) 916 94.8(2.3) 83.4(58) 923 955(1.9) 84.1(3.8) 943
4.9 (1.9 (4.1) (3.8
K-means 97.3(3.2) 80.9(25) 855 989(1.1) 92.6(0.7) 95.8 99.3(0.6) 929(0.7) 97.3 99.4(04) 94.1(0.2) 981
(2.5 (1.8) (1.4) 1.1

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.

https://www.jmir.org/2020/8/e18912 JMed Internet Res 2020 | vol. 22 | iss. 8 | 18912 | p. 13
(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

IPca: principal component analysis.
MSOM: self-organizing maps.

Second Case of I nfection (Flu)

The boundary and domain-based method and
reconstruction-based method achieved better performance for
all sample sizes compared with the density-based method.
Specifically, the boundary and domain-based method achieved
better generalization from the 1-month data set. The detailed
numerical values of comparison are given in Multimedia
Appendix 4. Specific models such as V-SVM, K-NN, and
K-means performed better from their respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description for all the sample sizes, and
SVDD, NN, and incSVDD improved with larger training
samplesize; however, V-SVM outperformed all themodels
for al the sample sizes.

2. Fromthe density-based method, normal and MCD Gaussian
performed better with the 1- and 2-month sample sizes, and
models such as K-NN performed better on all the sample
sizes, whereas naive Parzen outperformed al the models
with the 3- and 4-month data sets.

3. Fromthereconstruction-based method, K-means produced
better description for all the sample sizes and the
auto-encoder and SOM performed better with larger sample
sizes.

Third Case of Infection (Flu)

Generally, in comparison, al the groups performed better at
large training sample sizes, however, the boundary and
domain-based method achieved better performance with small
training sample sizes. It achieved comparable generalization
from the 1-month data set. The detailed numerical values of
comparison are given in Multimedia Appendix 4. Specific
models such as V-SVM, families that utilize nearest neighbor
distance (K-NN and LOF), and PCA performed better from
their respective group:

1. Fromthe boundary and domain-based method, SV DD, NN,
MST, incSVDD, and V-SVM achieved better performance
at larger training sample sizes, whereas V-SVM
outperformed all the models for all the sample sizes.

2. From the density-based method, the Gaussian families,
K-NN, LOF, and naive Parzen achieved better performance
at larger training sample sizes, whereas K-NN and LOF
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, PCA,
auto-encoder, and SOM achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.
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Fourth Case of Infection (Flu)

Generaly, in comparison, all the group performed better at large
training sample size; however, the boundary and domain-based
method achieved better performance with small training sample
sizes, for example, 1-month data set. It achieved comparable
generalization from the 1-month data set. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific models such as V-SVM, Gaussian families (Gaussian,
MOG, and MCD Gaussian), and PCA performed better from
their respective groups:

1 From the boundary and domain-based method, NN,
incSVDD, and V-SVM achieved better performance at
larger training sample sizes, whereas V-SVM outperformed
all the modelsfor all the sample sizes.

2. From the density-based method, Gaussian families, K-NN,
LOF, and naive Parzen achieved better performance at
larger training sample sizes, whereas Gaussian families
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, SOM,
auto-encoder, and PCA achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.

Aver age Performance Across all the I nfection Cases

The average performances of the modelsacrossall theinfection
cases for different sample sizes, levels of data granularity
(hourly and daily), and nature of data (raw and smoothed) are
shownin Tables5-7. In general, the boundary and domain-based
method performed better than the other two groupsin both daily
and hourly smoothed data sets; however, all the groups achieved
comparable performance with respect to the daily raw data set.
Specific models such as V-SVM, K-NN, and K-means
performed better in all these circumstances.

Daily Raw Data Set

Regarding the daily raw data set, as shown in Table 5, specific
models such as V-SVM, MCD Gaussian, K-NN, and K-means
produced relatively better descriptions of the 1-month data. For
the 2-month sample size, models such as incSVDD, K-NN,
LOF, and K-means achieved better performance. For the
3-month sample size, SYDD, incSVDD, V-SVM, Gaussian,
MCD Gaussian, K-NN, LOF, and K-means produced
comparable descriptions. As expected, SVDD and most of the
density-based method improved with larger training sizes. For
the 4-month sample size, almost all the model s produced much
improved performance. In the group comparison, al three
groups produced comparable descriptionsin al the sample sizes.
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Table 5. Average performance of each model across all the infection cases for the daily raw data set (without smoothing) and different sample sizes.

Fraction=0.01.
Models 1 month 2 months 3 months 4 months
AUCa, SpG)IfICI- F1 AUCa, SpG)IfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpeCIfICI- F1
mean (SD) mean (SD) & mean (SD) ¥ mean ty
(SD)
Boundary and domain-based method
svDDP 87.1(11) 66.0 74.8 91.7(7.3) 617 84.1 933(46) 673 86.2 91.4(4.3) 617 85.7
(13.5) (9.5 (10.6) (5.5) (20.5) (4.4) (10.6) 4.1
Cc
Incsvppd 852(11) 63.0(46) 747 90.5(85) 579(11) 838 928(51 628 849 90.8(4.4) 550 835
(10.4) (3.6) (10.9) 3.2 (11.7) 3.7
V-SVME 91.5(8.0) 55.7(7.0) 774 922(5.1) 60.6(5.0)0 828 94.2(38) 66.9(6.1) 866 938(41 631 84.5
(6.4) (4.5) (3.5) (11.9 (5.1
NNF 734(12) 31.3(6.5) 650 72.1(119) 25.0(9.6) 757 70.8(11.2) 86(17.6) 720 70.0(9.0) 16.0 75.7
(5.9 (3.7) 4.7) (14.4) (3.4
MSsT? 824(8.7) 521(0.0) 712 826(9.1) 504(9.00 820 84.0(63) 56.2(9.3) 829 842(6.6) 50.0 82.6
(6.1) (5.1) (3.5) (11.4) 2.7
Density-based method
Gaussian  91.5(9.9) 56.9(7.7) 729 93.6(6.1) 588 840 951(43) 653 86.3 95.0(35) 579 84.6
(7.8) (10.9) (4.0 (10.6) 3.2 (10.3) 3.2
Mogh 89.9(12) 69.2 713 91.7(6.1) 641 838 94.0(44) 670 85.0 945(3.7) 616 84.9
(11.9) (14.3) (14.0) (6.8 (11.4) (5.6) (12.6) (5.1
McD! 90.8(9.1) 54.0(55) 720 93.1(6.00 58.0(81) 841 953(42 653 86.4 94.8(3.5) 579 84.9
Gaussian (6.8 4.3 (20.6) (3.0 (10.6) (3.0
Parzen 89.7(10) 59.6(8.3) 70.6 91.7(6.5) 621 839 939(50 687 85.6 94.3(3.8) 66.1 86.1
(9.9 (10.3) (5.3) (11.2) (5.4) (12.7) (3.8
Naive 88.1(8.7) 54.2(6.5) 69.1 90.2(7.1) 604 837 919(55 665 86.6 92.8(4.7) 64.6 86.9
Parzen (9.6) (11.2) (4.9) (12.8) (4.4) (10.0) (3.4
K-NNJ 91.1(7.8) 529(51) 716 91.6(5.00 611 859 94.8(48 66.9 87.1 95.0(3.8) 621 86.5
(7.9 (11.3) (3.1) (11.2) 3.2 (10.3) (33
)
LOFX 89.2(8.9) 56.3(3.9) 730 92.4(6.0) 59.2 849 94.0(48 644 86.2 93.7(4.3) 538 83.8
(8.6) (11.2) (2.8 (11.4) (2.8) (10.3) (2.5)
Reconstruction-based method
pca! 87.6(8.8) 58.8(4.6) 737 90.2(6.4) 55.0(6.8) 827 914(49 59.7(6.2) 841 905(45) 53.8(7.2) 83.6
(8.3 (4.5) 3.2 (2.9
Auto-en- 836(14) 583 710 84.6(125) 531 821 88.4(10.0) 57.7 83.3 885 52.3 83.2
coder 7.7) (12.5) (20.0) (7.0) (21.5) (6.8) (10.6) (21.0) (5.8
som™ 85.6(12) 634 727 876(7.2) 571 816 935(54) 644(85 848 947(40) 59.0(5.8) 85.0
(10.3) (11.7) (10.2) (5.8) (4.0) (3.1
K-means 94.2(7.6) 57.2(76) 731 937(6.2) 622 854 96.0(44) 676 87.4 958(3.9) 621 86.5
(7.1 (10.5) (4.2) (10.3) 3.1) (10.3) (2.9

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

Cltalicized values indicates the top performing models.
dincSvDD: incremental support vector data description.
&/-SVM: one-class support vector machine.

NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.
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KLOF: local outlier factor.
Ipca: principa component analysis.
MSOM: self-organizing maps.

Daily Smoothed Data Set

Regarding the daily smoothed data set, as shown in Table 6,
almost all models achieved excellent performance and much
improved data description compared with the daily raw data
set. As shown in Table 6, specific models such as V-SVM,
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K-NN, and K-means produced excellent descriptions of the data
for al the sample sizes;, however, V-SVM achieved superior
performance compared with these models. In the group
comparison, the boundary and domain-based method produced
excellent description of the data for all sample sizes.
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Table 6. Average performance of each model across all the infection cases for the daily smoothed data set (with filter) and different sample size.

Fraction=0.01.
Models 1 month 2 months 3 months 4 months
AUCa, Specm ci- F1 AUCa, Specm ci- F1 AUCa, SpeCIfICI - R AUCa, Speufl ci- F1
mean y mean ty mean ty mean ty
(SD) (SD) (SD) (SD)
Boundary and domain-based method
svDDP 99.9 100 (0.0) 94.1 100 100 (0.0) 96.1 100 100 (0.0) 96.5 100 100 (0.0) 97.9
(0.7) (14.2) (0.0) (7.6) (0.0) (6.5) (0.0) (3.9)
IncSvDDE  99.9 100 (0.0) 94.1 100 100 (0.0) 96.9 100 100 (0.0) 97.3 100 100 (0.0) 98.6
(0.7) (14.2) (0.0) (6.5) (0.0) (5.9) (0.0) (2.9)
V-svmd 100 100 (0.0) 99.1 100 100 (0.0) 99.1 100 100 (0.0) 99.4 100 100 (0.0) 99.5
(0.0) (32)¢ (0.0) (2.9) (0.0) (2.9 (0.0) (1.5)
NNf 90.1 40.0 69.5 88.9 33.1 78.4 89.2 33.6 7.7 90.5 235 77.1
(14.5) (30.5) (13.2) (9.9 (22.6) (6.8) (7.9 (14.6) (5.3 (6.8) (18.6) (5.7)
MSTY 98.9 85(6.1) 86.7 99.8 96.7(3.4) 95.1 99.9 98.9(4.1) 98.0 99.9 100(0.0) 98.0
(3.6) (9.4) (0.7) (6.2) 0.2 (35 (0.5 (5.4)

Density-based method
Gaussian 99.2 92.6(9.0) 87.2 99.5 96.7(7.5) 94.8 99.9 100 (0.0) 981 99.8 100 (0.0) 98.3

(5.1) (15.2) (2.5) (16.4) (0.4) (4.9 (0.8 (5.9)
mogh 98.8 929(8.6) 85.2 99.4 97.0(5.4) 921 99.9 99.9(0.7) 954 99.8 99.9(0.6) 96.4
(5.4) (17.1) (2.6) (11.6) (0.4) (7.8) (1.0 (7.7)
MCD' Gaus- 984 86.6(8.8) 86.6 99.3 90.0(8.7) 934 99.8 99.2(2.6) 98.0 99.8 97.1(39 970
san (5.6) (11.9) 2.7) (8.1) (0.5 (5.3 0.9 (5.5)
Parzen 99.2 100(0.0) 90.8 99.9 100 (0.0) 937 100 100(0.0) 93.6 99.9 100(0.0) 95.8
(3.5) (16.4) (0.4) (9.8) (0.0 (8.9 0.3 (8.2
Naive 99.8 100(0.0) 944 100 100 (0.0) 96.1 99.9 100(0.0) 974 100 100(0.0) 98.2
Parzen (1.2 (14.6) (0.0) (7.9 (0.5 (5.6) (0.0 4.2
K-NNJ 99.5 91.6(3.6) 90.7 99.9 100 (0.0) 98.3 100 100(0.0) 984 100 100(0.0) 98.8
(2.0) (9.6) (0.4) (4.9 (0.0 (5.1 (0.0 (3.6)
LOFX 99.6 93.3(7.3) 924 99.9 99.2(34) 97.1 99.9 98.6(2.8) 974 99.9 100(0.0) 98.2
(1.5) (10.6) (0.5) (7.3) 0.2 (4.5 0.9 (5.9)
Reconstruction-based method
pca! 93.8 82.0(7.3) 838 91.3 779(7.3) 89.3 88.7 76.3(8.6) 89.5 90.7 76.2(8.6) 89.0
(6.7) (10.4) (4.3) (8.7) (5.9 (5.3 (3.6) (6.9)
Auto-en- 97.0 91.6 87.7 98.1 92.6 92.0 98.6 92.8 94.0 98.7 92.7 94.9
coder (8.1) (14.6) (16.0) (5.4) (15.3) (10.7) (4.6) (14.8) (8.3 (4.0 (15.8) (7.7)
som™ 99.1 99.9(0.6) 85.2 99.8 100(0.0) 88.9 99.9 100(0.0) 94.6 99.8 100(0.0) 95.9
(3.2 (20.5) (0.7) (16.1) (0.2 (8.0 (0.6) (8.1)
K-means 99.8 96.2(6.0) 93.2 100 100(0.0) 97.8 100 100(0.0) 98.0 100 100(0.0) 99.0
(1.2 12.7) (0.0) (5.6) (0.0 (5.6) (0.0 (2.9)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.
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IPca: principal component analysis.
MSOM: self-organizing maps.

Hourly Smoothed Data Set

Regarding the hourly smoothed data set, as shown in Table 7,
amost all the models failled to produce acceptable data
description from the 1-month sample size except V-SVM, which
achieved the best description. The high variability between the
performance of the models with the 1-month hourly data set
could be associated with the high data granularity, and, in fact,
the model s require more data setsto capture the high variability

https://www.jmir.org/2020/8/€18912
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among the data objects. Models such as V-SVM, MCD
Gaussian, and K-means achieved superior performance from
their respective groups. In general, V-SVM outperformed in all
the sample sizes. The density and reconstruction-based models
improved with larger sample size. In the group comparison, the
boundary and domain-based method produced better description
in all the sample sizes, and the density and reconstruction-based
method achieved equivalent performance with larger sample
sizes.
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Table7. Average performance of each model acrossall theinfection casesfor the hourly data set with smoothing and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, Specifici- F1 AUCa, Specifici- F1 AUCa, Specifici- F1 AUCa, Specifici- F1
mean ty mean ty mean ty mean ty
(SD) (SD) (SD) (SD)

Boundary and domain-based method
svDDP 974 89.0(34) 894 97.4 86.7(44) 915 97.2 80.1(5.5) 935 97.6 81.8(5.3) 94.6

(2.9) (71  (18) (109 (26 (B4 @7 (6.0)
InesvDD® 971  877(27) 895 972  864(28) 936 970  762(63) 932 974  790(48) 954
(2.9) (59 (18 @8 (27 26 (@17 (191
V.SyMe 981  855(06) 923 989  898(02) 954 987  864(04) 944 990  89.2(03) 954
(2.0) 13 (14) 16)  (L4) (20) (09 2.2)
NN 932  920(24) 839 944  884(34) 909 933  830(37) 920 940  829(36) 940
(7.9) (120) (25 (53 (28 42 (28 (4.0)
MSTY 9.1  944(22) 729 973  942(21) 8.1 9.1  935(19 902 970  936(L7) 926
(2.6) (185)  (L1.4) 1100 (21 (73 (14 (5.0)

Density-based method
Gaussian  98.4 91.2(2.6) 89.6 99.3 92.3(17) 95.7 98.8 88.1(4.0) 95.9 99.2 89.8(31) 97.2

(2.6) (12.5) (0.9 (4.9 1.3 2.7) (0.7) (1.8)
Mogh 975 91.7(32) 878 98.9 90.9(27) 94.0 98.2 85.4(6.6) 94.2 98.5 88.0(4.9) 96.0
(3.0 (13.3) 1.2 (6.3 (2.0 4.1 (1.5) 3.1)
McD! 98.5 89.9(37) 89.1 99.5 92.2 95.8 98.9 87.9(3.3) 96.0 99.2 90.4(3.4) 974
Gaussan (1.5 (11.8) (0.9 (92.2) (4.5 (1.1 (2.5) (0.7) 2.7)
Parzen 96.4 97.8(1.1) 59.9 98.0 97.7(1.1) 795 97.2 96.4(1.2) 851 98.1 96.7(1.1) 886
(2.6) (18.9) (1.6) (14.5) (2.3 (10) (1.6) (7.1)
Naive 96.4 875(35 85.1 98.7 89.2(2.8) 928 96.0 90.8(2.6) 95.0 98.2 90.0(1.8) 96.2
Parzen (3.0 (10.9) (1.5 (7.5) (2.3 (4.1) (1.6) (2.8)
K-NNJ 97.6 91.1(1.6) 876 99.0 924(24) 945 98.4 92.6(1.4) 957 98.7 93.3(1.3) 97.3
(2.9) (13.6) 1.4 (6.6) 1.4 (4.8) (1.1) (2.8)
LOFX 96.9 91.2(1.6) 86.2 97.4 89.8(4.8) 93.1 95.0 85.2(4.6) 929 95.8 85.3(4.7) 94.7
(2.9) (13.0 (1.8) (4.9 (3.0 (4.8) 1.7) 3.2
Reconstruction-based method
pcal 97.4 782(6.1) 825 94.8 77.6(4.5) 90.9 92.6 72.4(3.8) 925 934 71.1(25) 939
3.2 (20.9) (3.8 (3.6) 4.2 (1.9 3.2 (1.3)
Auto-en- 95.4 88.7(9.5 86.1 96.9 87.1(9.90 928 95.0 79.3 93.1 95.9 80.3 95.0
coder (5.3) (13.1) 32 (6.4) (5.3 (14.5) (4.8) (4.3) (14.4) (3.6)
soM™ 95.9 91.6(26) 86.1 95.7 87.6(4.1) 927 93.9 79.1 92.3 96.0 87.5(7.0) 96.1
(2.9) (144 @7 (5.7) (35) (10.9) (45) (25) 32
K-means  97.1 89.7(6.7) 88.7 98.6 91.1(4.2) 95.2 98.5 92.3(29) 96.9 98.9 93.9(1.3) 97.9
(3.9 (121 (@7 (4.4 (1.5) (33) (1.0 (2.2

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

IncSVDD: incremental support vector data description.
Yitalicized valuesindicates the top performing models.
&/-SVM: one-class support vector machine.

NN: nearest nei ghbor.

9MST: minimum spanning tree.

PMOG: mixture of Gaussian.

'MCD: minimum covariance determinart.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.

IPCA: principal component analysis.
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MSOM: self-organizing maps.

Unsupervised M ethods

Two density-based unsupervised models were tested and
evauated on the same set of data as used in the one-class
classifiers: LOF and COF. The average AUC, specificity, and
F1-score were computed after 20 runs. The best performing
thresholds for al the infection cases along with the optimal
value of k (number of neighbors) are given in Table 8. As can
be seen from the table, both the LOF and the COF achieved
better performance on the smoothed data set as compared with
itsraw version. In all theinfection cases, L OF performed better
than COF. Thisis mainly because of the characteristics of the
datasets, which fulfill the LOF spherical assumption of neighbor
distribution. Considering the average F1-score across al the
infection cases, LOF achieved 74.7% on the raw daily data,
91.1% on the smoothed daily data, and 72.7% on the hourly

https://www.jmir.org/2020/8/€18912
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data, whereas COF achieved 71.9% on theraw daily data, 85.8%
on the smoothed daily data, and 68.9% on the hourly data.
However, compared with the one-class classifier, it suffersfrom
performance degradation mainly because the data are not
distributed uniformly, where some regions may contain high
density and others might be sparse. However, the region of
sparse density does not always signify anomalies (infection
incidence). For example, an individual patient on certain days
might prefer to take little insulin compared with most of the
daysand perform heavy physical activity to replacetheir insulin
needs. This scenario could generate an outlier, a small ratio of
insulin-to-carbohydrate, which will be considered and detected
as outliers by unsupervised models. A detailed score plot of
each model for the different infection cases can be found in
Multimedia Appendix 3.
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Table 8. Average area under the receiver operating characteristic curve, specificity, and F1-score for both with and without smoothed versions of the
data. The parameters kd and kh represent the optimal number of nearest neighbors for the daily and hourly cases, respectively.

Frequencies, density-based methods

Models
(threshold)

Pre-pro

k;=240) kn=240)

AUC? AUC?

Specific F1

1st case of infection (kg=30, 2nd case of infection (kq=30, 3rd case of infection (k4q=30,

Specific F1

4th case of infection

kn=240) (kg=30, ky=240)

AUC?*  Specific F1 AUC?  Specific F1

Daily

Without | opb 750 500 856 900 100

filter (T1=2.4,
To=1.2,
T3=1.45,
T,=1.8)°

821 66.7 72.6 97.4 100

cord

(T=14,
T,=13,
Ta=14,
T,=1.4)

Withfil-
ter

99.0 100 99.2 100

LOF?
(T1=17,
T,=16,
T4=1.95,
T4=2.2)

coFd =13,
T,=13,
T4=18,
T,=18)

97.6 100 76.6 97.9 100

Hourly

980 86.0 74.6 95.5 100

LOF?
(T=14,
T,=13,
T4=1.35,
T4=15)

924 884 74.6 77.0 66.0

cor
(T1:1.2,
Tzzl.l, T3=,
T,=11)

67.4 921 66.7 70.1 98.2 100 75.8

75.8 75.2 66.7 67.6 96.7 100 71.8

85.4 100 100 100 99.9 100 94.7

77.6 99.5 100 88.8 100 100 100

70.2 91.4 75.0 85.2 72.6 711

62.5 90.3 82.7 74.6 826 822 63.7

8AUC: area under the receiver operating characteristic curve.
BLOF: local outlier factor.
T\: threshold for the kth month.

dcor: connectivity-based outlier factor.

Computational Time

Computational time is the amount of time a particular model
needs to learn and execute a given task [12]. It can be regarded
asone of the best performanceindicatorsfor real-time systems.
For a real-time application, an optimal model is the one that
achieves superior detection performance with small training
and testing time. Depending on the application, sometimes
models can be trained offline, which makes the training time
less important [12]. In this regard, the computational times of
all the models were estimated and compared with each other.
The computational timewas measured for different sample sizes
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of the training and testing data sets. The sample size of the
training and testing data includes 240, 480, 720, 960, 1200,
1440, 1680, 1920, 2160, 2400, 2640, and 2880 sample objects
(data points) each. The required computational time for both
training and testing each model is depicted in Figures 5 and 6.
Thefigures demonstrate arough estimation of the computational
time, where each model learns the data set and classifies the
sample objects. During the training phase, NN, SVDD, and
SOM took considerabletime. For atraining sample size of 2880
objects, NN requires 296 times, SVDD requires 206 times, and
SOM requires 42 times the time taken by K-NN on the same
sample size. Generaly, as the number of sample objects
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increased. During the testing phase, only the LOF took

increases, these models require much more time. However,
considerable time compared with the other models, as can be

K-means, Gaussian families, LOF, MST, K-NN, V-SVM, PCA,
auto-encoder, and incSVDD took lesstime. These modelstook  seenin Figure 6.

amost constant time even when the number of samples

Figure5. Plot of models’ average computational time for the training phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss: Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of Gaussian; MST: minimum
spanning tree; NN: nearest neighbor; NParzen: naive Parzen; PCA: principal component analysis, SOM: self-organizing maps, SVDD: support vector

data description; V-SVM: one-class support vector machine.
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Figure 6. Plot of models’ average computational time for the testing phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss. Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD Gauss. Gaussian: SOM: self-organizing maps, MOG: mixture of Gaussian;
MST: minimum spanning tree; NN: nearest neighbor; NParzen: naive Parzen; PCA: principal component analysis; SVDD: support vector datadescription;

V-SVM: one-class support vector machine.
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failure detection, prevention of credit card or identity fraud,

Discussion health and medical diagnosticsand monitoring, cyber-intrusion
Co P detection, and others[1-3]. In applicationsrelated to health and
Principal Findings
P g medical diagnostics and monitoring, the anomaly detection

Anomaly or novelty detection problem has been widely used - 5hem has been used to detect and identify the abnormal health

in various applications including machine fault and sensor

https://www.jmir.org/2020/8/e18912 JMed Internet Res 2020 | vol. 22 | iss. 8 | 18912 | p. 22
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

state of an individual, for example, detecting abnormal patterns
of heartbeat recorded using an electrocardiogram [1,51-54]. The
omnipresence of various physiological sensors has facilitated
circumstancesfor individual sto easily self-record health-related
events and data for the purpose of sdf-informatics and
management [55]. Currently, people are generating huge
amounts of data on a daily basis that can contribute to both
individual and public health purposes [54]. To this end, people
with diabetes are not an exception, generating rich datain both
quality and quantity, which is expected to further improve with
advances in diabetes technologies. These data can provide
valuable information if processed with the right tools and
methodology, and in this regard, particular instance includes
detecting novel or anomalous data points for various purposes.
Theavailability of 1abeled data constrainsthe choice of methods
inthe anomaly detection problem [3,9-11]. Supervised anomaly
detection methods are impractical for applications such as
detecting infection incidences in people with type 1 diabetes
for a number of reasons [10,12]. Blood glucose dynamics are
affected by various other factors apart from infection incidences
[19,56,57], and characterization of infection-induced anomalies
(abnormal class) from the normal class [13] is a challenging
task because of the following reasons:

1 There are no well-defined boundaries regarding how
different pathogens affect various key parameters of blood
glucose dynamics, including blood glucose levels, insulin
injections, carbohydrate ingestions, physical activity or
exercise load, and others. This results in poor boundary
demarcation between the normal and abnormal classes.

2. Class boundaries defined for a single pathogen might not
work for the other pathogens because the effect of different
pathogens on the blood glucose dynamics could be different.

3. It is expensive and time consuming to collect
infection-related data to explore and characterize
pathogen-specific class boundaries. This results in
ill-defined class boundaries even for an infection related to
asingle pathogen.

4. The degree of effect of the same pathogens on the blood
glucose dynamics could differ between different individuals
because of the difference in individual immunity, which
further complicates the characterization task.

5. Lack of sufficient sample size for both the abnormal and
the normal classes resultsin poor training and testing data
sample size or imbalanced class problems.

Given these challenges, the best possible approach isto identify
methods that can learn from the normal health state of an
individual and classify abnormalitiesrelying on the boundaries
learnt from the normal health state, which is a one-class
classifier approach. This definitely reduces the challenge
becauseit only requiresthe characterization of what isbelieved
to be a normal health state. For instance, assume a health
diagnostic and monitoring system that detects health changes
in an individual by tracking the individual’s physiological
parameters, where the current health status is examined based
on set of parameters, and raises a notification alarm when the
individual health deteriorates[12]. In such asystem, it becomes
feasible to rely on a method that can be trained using only the
regular or normal day measurements (target days) so asto detect
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deviation from normality [12,14]. Another possible aternative
approach is to identify a method that does not require any
characterization and labeling of classes, which is unsupervised
methods[7]. Accordingly, considering the previously mentioned
challenges, one-class classifiers and unsupervised modelswere
proposed for detecting infection incidence in people with type
1 diabetes. The objective was to develop a personalized health
model that can automatically detect the incidence of infection
in people with type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. The model is
expected to detect any deviations from the norm as a result of
infection incidences considering blood glucose level
(hyperglycemia incidences) coupled with unusual changes in
the insulin-to-carbohydrate ratio, that is, frequent insulin
injections and unusual reduction in the amount of carbohydrate
intake [19]. A personalized health model based on one-class
classifiers and unsupervised methods was tested using blood
glucoselevelsand theinsulin-to-carbohydrateratio asabivariate
input. The result demonstrated the potential of the proposed
approach, which achieved excellent performance in describing
the data set, that is, detecting infection days from the regular or
normal days, and, in particular, the boundary and domain-based
method performed better. Among the respective group, particular
modelssuch asV-SVM, K-NN, and K-means achieved excellent
performance in al the sample sizes and infection cases.
However, the unsupervised approaches suffer performance
degradation compared with the one-class classifier mainly
because of the atypica nature of the data, which are not
distributed uniformly, where some regions may contain high
density and others might be sparse (Multimedia Appendix 2).
Therearerare events (sparse region) of blood glucose dynamics
that are anormal response; however, the unsupervised methods
can till detect and flag false alarms including the following:

1. Carbohydrate action: a situation in which the ratio of
insulin-to-carbohydrateis small and the blood glucose levels
are high (hyperglycemia), Carb Action-Quadrant 1 in
Figure 7. This is a normal response to blood glucose
dynamics as consumption of more carbohydrates and less
insulin intake can derive blood glucose dynamics into the
hyperglycemia region (high blood glucose levels) if there
is no physical activity session. A typical example of this
particular situation is holiday seasons, where people
consume too many carbohydrates.

2. Physical activity action: despite a smal ratio of
insulin-to-carbohydrate, the blood glucose levels still drop
to low levels (hypoglycemia), PA Action-Quadrant 2 in
Figure 7. Normally, asmall ratio of insulin-to-carbohydrate
signifiesthat the patient consumed more carbohydrates and
injected less insulin, which normally derives the blood
glucose dynamicsinto the hyperglycemiaregion. However,
despite taking more carbohydrates and less insulin, a
rigorous physical exercise can till derive the blood glucose
dynamics into the hypoglycemiaregion. Therefore, thisis
anormal response of blood glucose dynamics asthe action
of physical activity or exercise can derive the patient into
hypoglycemic regions even if the patient consumes more
carbohydrates. For example, anindividual patient on certain
days might prefer to take little insulin as compared with
most of the days and perform heavy physical activity to
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replace their insulin needs. This scenario could generate an
outlier, asmall ratio of insulin-to-carbohydrate, which will
be considered and detected as anomalies by the
unsupervised models. However, this could be mitigated by
incorporating physical activity data as an input variable.

3. Insulin action: theratio of insulin-to-carbohydrate islarge,
that is, high insulin intake and low carbohydrate

Woldaregay et a

consumption, and blood glucose levels are low
(hypoglycemia), Insulin Action-Quadrant 3 in Figure 7.
This is a normal response to blood glucose dynamics as
administration of high insulin with little carbohydrate
consumption can derive the blood glucose dynamics into
the hypoglycemic region.

Figure7. Quadrantsof wellnessin people with type 1 diabetes. The figure depicts the 4 possible scenarios of different parameters. carbohydrate action,
insulin action, physical activity action, and abnormality because of metabolic change such as infection and stress. BG: blood glucose; PA: physical

activity.
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Thedrawback of unsupervised methodsisthat they do not have
any mechanism to handle rare events even if the events are
normal. This is mainly because unsupervised methods define
an anomaly on the basis of the entire data set. However, the
one-class classifier can learn and handle such scenarios
appropriately if presented during the training phase. This is
mainly because one-class classifiers produce a reference
description based on the available normal (target) data set,
including therare events. With regard to the one-class classifiers,
the boundary and domain-based method achieved a better
description of the data set compared with the density and
reconstruction-based methods, mainly because of the ability of
such models to handle the atypical nature of the data [12].
Detectability of theinfection incidenceisdirectly related to the
extent and degree of the effect it induces on the blood glucose
dynamics. The type of pathogen, individual’s immunity, and
hormonesinvolved could play arolein determining the degree
of severity in thisregard [19,24,58-62]. To this end, the results
demonstrated that the models were capable of detecting al the
infection incidencesthat can significantly alter the blood glucose
dynamics, such asinfluenza. Moreover, infection incidence that
had a moderate effect on the blood glucose dynamics, such as
mild common cold without fever, was also detected. However,
as expected, infection incidences that had almost little effect on
the blood glucose dynamics, such aslight common cold without
fever, asreported by the individual patient, were not detected.
Regarding the computational time, NN, SVDD, and SOM took
considerable training time, which typically increased as the
number of sample objectsincreased. Moreover, compared with

https://www.jmir.org/2020/8/€18912

“Ratio Average” 0.25 03

the other models, only LOF and COF took considerable testing
time.

Comparative Analysis of the Methods

Selecting the proper model for implementation in a real-world
setting requires considering different characteristics of the
model. This includes typical model characteristics such as
performance in limited training sample size, robustness to
outliersin the training data, required training and testing time,
and complexity of the model (in terms of the number of model
parameters).

Performance and Sample Size

Thesamplesize, N, isthe number of sample objects used during
the training phase and highly affects the generalization power
of the model [12,13]. Models trained with small sample sizes
oftenfail to produce satisfactory descriptions mainly associated
with the presence of large variance in the sample objects
[3,12,13,63]. To this end, the results indicate that most of the
models fail to make good descriptions with a 1-month (30
objects) data set, mainly with the daily raw data set, as shown
in Figure 8. Thefigure depictsthe average performance of each
model across all the infection cases over the 1- and 4-month
sample sizes. Specifically, MST, Gaussian families, SOM, and
auto-encoders require aconsiderable amount of training sample
objectsto better describe the data. There is some exception, for
instance V-SVM, which produces a satisfactory description of
the 1-month data sets in al the infection cases and data
granularity. Models such as NN and PCA produced the worst
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description in most cases. As the number of training sample
objects increased, all the models improved and produced a
comparable description of the data. Asarule of thumb, for the
daily scenario, a 3-month training sample (90 sample objects)
produces agood description of the data, which can be considered
for rea-world applications. Moreover, if smoothing is

Woldaregay et a

considered, a 1-month sample size produces better description
than the 4-month sample size without smoothing, as shown in
Figure 8. However, for the hourly scenario, a 1-month training
sample object produces a comparable description and anything
more than this size will be enough.

Figure 8. Average performance (F1-score) of each model across al the infection cases. AE: auto-encoder; Gauss: Gaussian; IncSVDD: incremental
support vector data description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of
Gaussian; MST: minimum spanning tree; NN: nearest neighbor; NP: naive Parzen; PCA: principal component analysis, SOM: self-organizing maps;
SVDD: support vector data description; V-SVM: one-class support vector machine.
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Computational Time

For real-time applications, the time a model takesto learn and
classify the sample object is essential in model selection. Table
9 depicts the rough estimation of average training and testing
time required by different classifiers, both the one-class
classifiersand the unsupervised model s, based on 2880 training
and testing sampl e objects each. Most of the models, as shown
in Figures 5 and 6 and Table 9, require reasonable training and
testing time, except NN, SVDD, and SOM, which took a
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considerably longer time. However, it is possible that in some
cases models can be trained offline, which makes the training
timelessimportant. With regard to the testing time, most of the
models executed the classification task in a reasonable time
except COF and one class classifier version of LOF, which
consume considerable time to classify the 2880 objects. The
computational time in these particular models grows
exponentially as the sample size increases, which makes them
resource demanding in a big data setting.
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Table 9. Rough estimation of average training and testing time required by the different classifiers.

Methods

Training time, mean (SD)

Testing time, mean (SD)

One-classclassifiers

SVDD? 105.2 (2.03)
IncSvDDP 0.05 (0.16)
K-means 0.0047 (0.0014)
Gaussian 0.0055 (0.0032)
MOGE 0.076 (0.018)
McDY Gaussian 0.27 (0.075)
SoMm® 21.62 (5.91)
K-NN' 0,51 (0.11)
Parzen 2.02(0.41)
Naive Parzen 4,02 (0.82)
LOEY 1.15 (0.28)
NNP 151.34 (22.52)
msT' 2.39(0.31)
PCA 0.046 (0.20)
Auto-encoder 0.65 (0.094)
v-svmK 0.32 (0.024)
Unsupervised
LOF N/AT
COF" N/A

0.008 (0.002)
2.41(0.83)

0.0032 (0.0010)
0.0032 (0.0012)
0.0036 (0.0011)

0.0034 (0.0015)
0.0033 (0.00087)
0.52(0.12)

0.21 (0.052)
0.40 (0.10)
1198.05 (323.07)

0.18 (0.024)
1.24.(0.19)
0.0031 (0.00086)

0.017 (0.0034)
0.035 (0.0066)

0.2 (0.0)

82.8 (1.5)

83V DD: support vector data description.
BIncSVDD: incremental support vector data description.
°MOG: mixture of Gaussian.

dMCD: minimum covariance determinant.
€SOM: self-organizing maps.

K-NN: K-nearest neighbor.

91 OF: local outlier factor.

PNN: nearest neighbor.

IMST: minimum spanning tree.

IpcA: principal component analysis.
KV-SVM: one-class support vector machine.
ILOF: local outlier factor.

MN/A: not applicable.

NCOF: connectivity-based outlier factor.

Robustnessto Outliersin the Training Data Set

The presence of outliers in the training data set could
significantly affect the model’s generalization ability. Outlier
objects are samples that exhibit different characteristics
compared with the rest of the objectsin the data set [8,63]. For
instance, anindividual might forget apreviousinfection incident
and could label these days asaregular or normal period during
self-reporting, which could end up being used astarget data sets
for training. Another important example could be error recorded

https://www.jmir.org/2020/8/€18912

RenderX

during data registration, that is, carbohydrate, blood glucose
levels, and insulin registration. Such errors could occur during
the manual registration of carbohydrates, associated with
infusion set failures and other similar situations. In this scenario,
an individual could record lower or higher values incorrectly
affecting the input features, for example, ratio of
insulin-to-carbohydrate and blood glucose levels, resulting in
an outlier that could greatly affect the model’s generalization
ability. In thistype of situation, amodel’s sensitivity to outliers
in the training data is crucial to curb the influence of outliers
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on the accuracy of the description generated. To some extent,
a user-specified empirical rejection rate is incorporated in the
models to reduce the effect of outliers in the training data by
rejecting the most dissimilar objects from the description
generated. For example, argection rate of 1% on training data
sets implies that 1% of outliers in the training data set are
rejected. Nevertheless, the sensitivity of models to outliersin
the training data sets differs greatly between models. Among
the models, NN is regarded as the most sensitive model to
outliersin thetraining data set [12]. The presence of outliersin
the training data changes the shape of the description generated
by the model, forcing alarger portion of the feature spaceto be
accepted as the target class [10,12]. Furthermore, models that
rely on an estimation of the covariance matrix, for example,
Gaussian families, also suffer from the presence of outliersin
the training data sets [12,36]. However, when equipped with
regularization, Gaussian models can withstand such outliers.
Local density estimators such as Parzen can withstand outliers,
considering the fact that only the local density is affected [12].
Models that rely on prototype estimation, such as SOM and
K-means, are highly affected by the presence of outliersin the
training data set, which could force the estimated prototype to
be placed near or at the nontarget data set [2,12,13].
Nevertheless, boundary and domain-based method such as
SVDD and V-SVM and reconstruction-based method such as
auto-encoders are more or less insensitive to outliers and can
generate acceptable solutions [3,12,64].

Model Parameters and Associated Complexity

The parameters of a model can be either free or user defined.
These two parameters, free and user defined, provide insight
into how flexible the model is, how sensitive the model is to
overtraining, and how easy the modéd isto configure (ssimplicity)
[12,16]. Considering the number of these parameters, there exist
large variations among the models. For instance, NN does not
possess any free parameters; therefore, its performance
completely relies on the training data set [12]. This constraint
has limitations, mainly becausetraining datathat contain outliers
could ruin the model’s performance [12,15,16]. A model that
possess |arge number of free and user defined parametersistoo
flexible and complex [12]. Regarding the user-defined
parameters, al so known as hyper-parameters, amodel equipped
with small number of parameters and preferably with intuitive
meaning are easy to configure. Setting up the user defined
parameters incorrectly can degrade the model’s performance
and selecting the proper val ues (optimization) becomes complex
and vague asthe number of model parametersbecometoo large.
One of the simplest models is Parzen density and NN, which
do not require the user to specify any parameters [3,12,13].
Some models, such as support vector families, require the user
to specify parameters that have intuitive meaning, for example,
the ratio of training objects to be rejected by the description
[12,65]. There are also models that are complex enough given
that the user is expected to specify many parameters, which are
not intuitive and require careful choice. Examples of such
models include SOM and auto-encoders, where the user is
expected to supply the number of neuron, hidden units, and
learning rate [10,12,37,66].
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Practical Illustration and Area of Applications

For areal-world application, apart from the performance of the
model, it isimportant to consider two important aspects of the
data set, the time window of detection (data granularity) and
the required sample size. The time window or data granularity,
that is, hourly and daily, defines the frequency (continuity) of
computation one needs to conduct throughout the day to screen
the health status of the individual with type 1 diabetes. In an
hourly time window, one is expected to carry out the
computation at the end of each hour throughout the day.
However, in the daily time window, one needs to carry out one
aggregate computation at the end of the day. Decreasing the
time window (increasing the granularity of the data) enhances
early detections; however, at the coast of accuracy, for example,
more unwanted features (noise) in the data. The results
demonstrated that amost al the models produced fairly
comparable detection performances in both time windows.
Moreover, the required sample size determines the necessary
amount of data an individual with type 1 diabetes needs to
collect in advance before joining such an infection detection
system. Models that could generalize well with small sample
sizes could be preferred in a real-world application to enable
more people to join the system with ease. Generally, the results
demonstrated that the models require at least a sample size of
3-month data for the daily case and 2-month data for hourly
case to perform better. Automating the detection of infection
incidences among people with type 1 diabetes can deliver a
means to provide personalized decision support and learning
platformsfor theindividuals and, at the same time, can be used
to detect infectious disease outbreaks on alarge scale through
spatio-temporal  cluster detection [19,67,68]. Detailed
descriptions of these instances are given below:

1. A personalized decision support system and learning
platform relies on an individual’s self-recorded data to
providerelevant information in relation to decision making
toassist theindividuals during crises[19,67,68]. Moreover,
it can aso provide alearning platform concerning the extent
to which infection incidence affects the key parameters of
the blood glucose dynamics. Information regarding what
to expect at each stage of the course of infection could be
very important to the individuals [19]. During infection
incidences, various kinds of information could be vital for
an individual to properly manage blood glucose levels,
including time in range (blood glucose), to what extent is
the evolution of blood glucose affected during the course
of infection, to what extent doesinsulin sensitivity change,
and how much does theinsulin-to-carbohydrate ratio shift,
that is, changes in insulin requirements for each gram of
carbohydrate intake.

2. A population-based early outbreak detection system relies
on self-recorded information from an individual with type
1 diabetesto detect individuals' infection casesand, thereby,
detect agroup of infected individuals on a spatio-temporal
basis. Such asystem should collect individuals' self-recoded
datato acentra server, anayzeindividuals dataon atimely
basis, identify and locate acluster of people based on space
and time, and notify the responsible bodies if there is an
ongoing outbreak [19,67-71].
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Conclusions

Anomaly or novelty detection problem has been widely used
in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnosticsand monitoring, cyber-intrusion
detection, and others. In this study, we demonstrated the
applicability of one-class classifiersand unsupervised anomaly
detection methods for the purpose of detecting infection
incidences in people with type 1 diabetes. In general, the
proposed methods produced excellent performancein describing
the data set, and particularly the boundary and domain-based
method performed better. In contrast to the specific models,
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V-SVM, K-NN, and K-means achieved better generalizationin
describing the data set in al infection cases. Detecting the
incidence of infection in peoplewith type 1 diabetes can provide
an opportunity to devise tailored services, that is, personalized
decision support and a learning platform for the individuals,
and can simultaneously be used for detecting potential public
health threats, that is, infectious disease outbreaks, on a
large-scale basis through a spatio-temporal cluster detection.
Generaly, weforeseethat the results presented could encourage
researchersto further examine the presented features along with
other additional features of self-recorded data, for example,
various CGM featuresand physical activity data, onalarge-scale
basis.
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Appendix 1: Theoretical Background of the Methods

Background

1.1.1.  Notion of Object
An object is described with a feature vector encompassing the number of parameters under consideration. For example,
an object £ can define a specific event of an individual BG dynamics at a specified time index %, and is represented by
a feature vector X, = (xm, x1,2), where x; ;1 represent the insulin to carb ratio at the time index 4 and x, , represent

the average BG level in the specified time bin around 4.

1.1.2. One-class Classifier

One-class classification problem can be regarded as a special type of two-class classification problem incorporating a
target and non-target class [7, 9]. The target class is where a model is trained on, and is expected to incorporate well
sampled representative object of the target that reflect the region of the data in the feature space. The non-target
(outlier) class is sparsely represented and sometimes can be totally absent. The task of one-classification is governed
mainly by distinct two elements; function (model) and threshold. Function (model) measures the resemblance of an
object x depending on the distance & (x) or probability P (x) to the target class described by the training dataset X.
A threshold (B) is used to decide the belongingness of a test object x to either of the classes, i.e. non-target or the
target class, depending on the definition of the function’s internal structure. For example, test objects are rejected

when computed distance by the function (model) is greater than some specified threshold B,

_( target I(d(x) < B)
V) = { non — target  I(d(x) > B) 1)
Or when computed resemblance by the function (model) is less than some specified threshold S,
_( target [(P(x) = B)
V) = {non —target I(P(x) <p) @)

Where () is the class label and I is an indicator function.

Depending on the type of internal function (model) used, one-class classifier can be broadly categorized into three
main groups; boundary and domain-based, density-based, and reconstruction-based method [5, 7, 10-12]. The main
difference between these methods is the way they define of the function (model), and minimization approaches,

thereby achieving different generalization, bias and overfitting as they consider different data characteristics [7].

1.1.2.1. Boundary and Domain-Based Method
Boundary-based method estimate a boundary, e.g. hyperplane/hypersphere, around majority of the training (target)

dataset, where a predefined small percentage (fraction) of the target data are allowed to lie outside the specified
boundary [11, 12]. A test object is regarded as outlier if it falls outside of the defined boundary. The resemblance of

the test object is determined by computing the distance from the test object to the boundary estimated around the



training objects. The distance computation is conducted by taking into account both I) the inter-distance between the
new object and the training datasets and II) intra-distance between the objects in the training datasets. Different
boundary and domain-based method exist including support vector data description (SVDD), one-class support vector
machine (v-SVM), incremental support vector machine, nearest neighbors (NN), and minimum spanning tree (MST)

[7,10, 11].

Support Vector, and Incremental Support Vector Data Description Vs. One-class Support Vector Classifier: These
methods describe the target class by fitting the training (target) dataset into either a hypersphere or a hyperplane
respectively [7, 12, 13]. SVDD defines a hypersphere that encompass the entire target dataset with a volume as
minimum as possible [14, 15]. SVDD carries out the minimization task through quadratic programming problem [9].
The incremental version is applicable to a problem that involves online and sequential data [16]. During the training

phase, the parameter a; are estimated by minimizing
L =éegpp =i a;(x1. %)) = X j oy (x;.x;) 3)

Subject to the constraints )}; @; = 1 and 0 < @; < ¢, where ¢ specifies the number of vectors that will not be covered
by the description. The minimization is solved via quadratic programing problem by relying on kernel function, e.g.
Gaussian, to replace the inner product so as to transform the vectors into a higher dimensional feature space for a
more accurate description. A new test object x is evaluated by computing its distance to the hypersphere’s center and
comparing against the hypersphere’s radius:

target, if |lx —al|? < R?
non — target, otherwise

v = @

Where, a is the hypersphere’s center, and is computed as };; a;X;. The hypersphere’s radius is calculated as:
R = (. 2x,) — 2% a; (x5 x5) + Xy j i a; (% x7) (5)
Where x; are the vectors, which have a; < C.

The one-class support vector machine, i.e. v-SVM, considers a hyperplane that separate the target datasets from the
origin with a maximum margin [13]. The following minimization problem is carried out to reach at a solution for the
parameter a;:

min 1

a . 5 i K (x;, %)) (6)

i,j
. 1
Subjectto 0 < a; < N_V;Ziai =1,

Where v is similar to € in SVDD, and plays the role of regularization term. A new test object x is evaluated by

calculating the distance from the test object to the origin as follows:

target, if YiaiK(x;,x)—7=0,
non — target, otherwise

v = )



is computed as Y. ; @;(X;, X; ), where X; is an object vector, for which «; is not at the lower or upper bound.
P JAACS IR V) i ] i PP

Nearest-Nearest Neighbor Data Description: Uses the distances to the first nearest neighbor to approximate the local

density of the target class [7, 17, 18]. A new test object X; is evaluated by measuring the distance to the first nearest
neighbor, NN(x), in the target dataset. The estimated distance is then normalized by its nearest neighbor distance

as given below:

||x—NN"(x)|| (8)
|INNET () - NN (NNET (x)|

puv(x) =

Where, NN (x) is the nearest neighbor of object x. The classifier is defined based on a threshold f as:

w(x) = { target lf pNN(x) < .8 (9)
non — target if pyn(x)>p

Minimum Spanning Tree Data Description: Exploits the structure of minimum spanning tree to describe the target

class [10]. A new test object is evaluated by calculating the distance from the object to the closest edge of the tree [9,

10]. The classifier is defined based on a specified threshold as given in equation 9.

1.1.2.2. Density-Based Method
Density-based method estimate the probability density distribution of the target object, where a test object that lies

in the high density region is regarded as normal and anomaly if it lies in a low density region [6, 11]. Different variants
of density-based methods exist such as Gaussian, minimum covariance Gaussian, mixture of Gaussian, Parzen, Naive

Parzen, local outlier factor, and k-nearest neighbor [7].

Gaussian, Minimum Covariance Gaussian, and Mixture of Gaussian Data Description: Gaussian data descriptions
describe the target data by assuming that the data is either normally distributed or mixture of a number of normal
distributions [6, 7, 9, 12]. Gaussian and MCD Gaussian data description models uses Mahanalobis distance estimate
as resemblance measure instead of density estimate [9]. Normal Gaussian data description defines the Mahanalobis
distance from a new test object x to the training set X based on the mean and covariance matrix of the training set

[6, 91:
pMaha(x) = (X - /Jtr)TZ_l(x - /“ltr)‘

where ut" is training sample mean

1
2 = o Bake x (6 — ) (6 — '), (10)

where |X| is the number of objects in the training dataset.

The classifier is defined as:

_ target if Py <B
v {non — target i]lcw ;Maha(x) > B (1)



The threshold f is estimated by taking the user specified target error into consideration.

Minimum Covariance Gaussian data description is similar to Gaussian data description, except that the mean and
covariance matrix is estimated using only a fraction of the target datasets that minimize the determinant of the
covariance matrix [9, 19]. Mixture of Gaussian data description model define the target class using a linear

combination of k Gaussian [9, 11, 20]. A new test object x is evaluated as follows:
Pmoc(x) = XISy Prexp(—(x — ) E7 (x — 1)) (12)

P; and X; are optimized using expectation minimization (EM) algorithm. The classifier is defined based on a specified
threshold B as:

B(x) = { target if Pyoc®) =B (13)
non — target if Proc®) <pB
Parzen and Naive Parzen Data Description: These models are non-parametric density estimators, which don’t take
into account any assumption about the underlying data distribution [7, 11]. The density is directly estimated from the
training datasets using a mixture of kernels, most often a Gaussian kernel, centered on each individual training dataset,
with diagonal covariance matrix X; = hl. The smoothing parameter h characterizes the density estimate, where large
values results in overestimate and small values results in noisy estimation. The optimal value of the smoothing
parameter is computed based on the maximum likelihood on the training data using leave-one-out approach [6, 7,

12]. A new test object is evaluated as follows:
Pparzen (X) = ?Izl exp(_(x - xi)Th_Z(x - xi)) (14)

The classifier is defined as given in equation 13.

K-Nearest Neighbor Data Description: KNN describes the target class by approximating the local density of the
training (target) datasets [12]. The distance to the dataset can be computed based on the distance to the k™ nearest
neighbor, distance to the average of the k-nn’s, or average squared distance to the k-nn’s [9]. For example, considering
the distance to the k™ nearest neighbor, an object is evaluated as a function of the score, which is the ratio of the
distance from the object to its k™ nearest neighbors and the distance between the k™ nearest neighbor and its k™ nearest

neighbors [12].
d(x;,NN(x;))
d( NN (x;)), NN (NN (x)))

Prnn (X, K) = (15)

The classifier is defined based on a specified threshold as given in equation 9.

Local Outlier Factor Data Description: Like KNN, LOF considers the local density of an object to its respective

neighbors, however, the distance is replaced by reachability distance [21, 22].
reach — dist,(x; — x;) = max {d (xj,NNk(xj)) , d(xi,xj)} (16)



For an object x;, the local reachability density is computed by taking the inverse average reachability distance from the

set of x;s neighbors, which are located within the k-nearest neighbor distance around x;:
1
X]'EkNN(xL-) reach—distk(xihxj)
IkNN(x£)|

Ird, =5 (17)
For an object x;, the degree of outlierness score, called LOF score, is evaluated by comparing its reachability density
(Ird) with its neighbors:

Irdj(x;)

L jekNN X)Trdy (x )

LOF,(x;) = — 2 (18)

[KNN (x)]

The classifier is defined based on a specified threshold as given in equation 9.

1.1.2.3. Reconstruction-Based Method
Reconstruction-based method make assumptions about the underlying data characteristics, which involves modelling

of the data generating process by estimating the parameters during the training phase using the target objects [6, 17].
It is characterized by a set of prototypes/subspaces with minimal reconstruction errors. A test object is determined as
either normal or anomaly based on the reconstruction error, which indicates how the test object fits to the model.
Normal test objects usually generate minimum reconstruction error (closer fit) and anomalies generate high
reconstruction errors. Reconstruction-based method includes different models; principal component analysis (PCA),
self-organizing map (SOM), auto-encoder, and K-means, which mainly differ in their prototype/subspace definition,

optimization principle, and the way the reconstruction error is used [7].

Principal Component Analysis Data Description (PCA): Computes the internal variance and external covariance
structures of the target data in terms of set of principal components, which are a linear combinations of the original
variables, to describe the data on a linear subspace [7, 9, 12]. The eigenvectors of the data covariance matrix X are used
to define the corresponding subspace. Different PCA optimization techniques exist and yet eigenvalue decomposition
is the simplest procedure to compute the eigenvectors of the target covariance matrix, X [7]. The number of basis
vectors are computed depending on the fraction of variance the user intends to retain in the description. The projection
is carried out as:

Xprojected = W(WTW)_lex: (19)

where Xpojected> and X are the new projected data and the original data respectively. Whereas W is a d x k matrix
containing k eigenvectors, and d represent the original feature space dimensionality. A new test object is evaluated

based on the reconstruction error, which is the difference between the original test object x and its projection onto the
space, Xyrojected [7].

Ereconstruction — ”x - xprojected”2 (20)

The classifier is defined based on a threshold f as:



w(x) = { target lf Ereconstruction = ,8 (21)
non — target if  &reconstruction > B

Auto-Encoder Data Description: Neural network contains of a series of interconnected neurons at one or several

layers, where training updates the weights connecting each respective neuron [12]. Neural network is capable of

learning a complex functional mapping between the input and output features. Auto-encoder is a special type of neural

network that learns the internal structure of the data to reconstruct the input features at the output [12]. Therefore,

in one-class classification, the difference between the input and output features is taken into consideration to

characterized the target class [7]. The reconstruction error is computed as:

Ereconstruction — ”x - fauto (x)HZ (22)

The classifier is similar to equation 21.

K-Means and Self-Organizing Maps (SOM) Data Description: Both are type of clustering methods, which relies on
the assumption that the data can be clustered and described by a set of prototypes or codebook vectors p; [6, 7, 12].
Often the nearest prototypes, measured in terms of Euclidian distance, are used to represent the target object. K-
means data description describes the training (target) data by k number of clusters, where the average distance to the
cluster center is minimized [6, 7]. The standard k-means clustering procedure is used to place the center of the clusters

(u;) as follows:
Eim = Lre(mingllx,e — l1?) (23)

Self-organizing map (SOM) is an unsupervised clustering method, where objects in the feature space are mapped into
a space while retaining their distance and neighborhood relationships [7]. SOM performs a competitive learning so
as to locate the position of the prototype vectors [12]. An update is carried out not only on the nearest prototype but
also prototypes in the neighborhoods of the nearest prototype, which is specified by a predefined topology. However,
the magnitude of update decreases as the distance increases and distant porotypes get smaller updates. A new test
object is evaluated based on a reconstruction error, which is the difference between the test object and its closest cluster

center (neuron) in either the K-means or SOM [7, 12]:
Ereconstruction = mini”x - #i”z (24)
The classifier is similar to equation 21.

1.1.3.  Unsupervised approach

Unsupervised approaches take unlabeled datasets as input and determine whether each objects in the datasets are
normal or abnormal with respect to the entire dataset [21, 23]. There exist variety of unsupervised approaches in
literatures, which can be categorized into statistical, nearest-neighbor based techniques, and cluster based approaches
[21, 23]. In this paper, we have tested two nearest-neighbor based techniques (local density based methods), local
outlier factor (LOF) and connectivity based outlier factor (COF), which compare the density of an object with its

neighbors than the entire dataset [24]. The connectivity-based outlier factor and local outlier factor only differ in the



way the density is estimated for a given object [23, 25]. LOF exploits the Euclidian distance measure to select the k-

nearest neighbors, which is valid only if the data is distributed spherically around the object. This method often fails

in some condition, for example, when objects in the dataset have a direct linear correlation. In this regard, COF

improves this drawback by computing the local density of the neighborhood based on shortest-path approach, also

known as chaining distance, which is the minimum of the sum of all distances connecting all k-neighbors and the

object [23, 25].
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Appendix 2 - Detailed Description of the Models Input Features

1.1.  Quadrants of wellness in people with type 1 diabetes
The four quadrants of wellness in people with type 1 diabetes, as shown in the Figure 1, tries to defines the

state of BG dynamics (blood glucose levels) at any time t using carbohydrate, insulin and physical activity
parameters. The first quadrant is called carbohydrate action, where the ratio of insulin to carbohydrate is
small and the blood glucose levels are elevated (hyperglycemia). This is a normal response of blood glucose
dynamics, since consumption of more carbohydrate can elevate blood glucose levels. The second quadrant
is called physical activity action, where the ratio of insulin to carbohydrate is small but blood glucose levels
drops (hypoglycemia). This is a normal response of blood glucose dynamics, since the action of physical
activity can derive the patient into hypoglycemia regions even if the patient consumes. The third quadrant
is called insulin action, where the ratio of insulin to carbohydrate is large (high insulin and low carbohydrate
consumption and blood glucose levels drops (hypoglycemia). This is a normal response of blood glucose
dynamics, since administration of high insulin with little carbohydrate consumption can derive the patient
into hypoglycemia region. The fourth quadrant is called effect of metabolic change, where the ratio of insulin
to carbohydrate is large (high insulin and low carbohydrate consumption but blood glucose levels are
elevated (hyperglycemia). The patient experiences hyperglycemia despite injecting higher amount of insulin
and consuming less carbohydrate. This quadrant is an abnormal response due to the effect of metabolic

change incurred due to the incidence of infection and stress.

Quadrants of wellness in Type 1 Diabetes
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Figure 1: Quadrants of wellness in people with type 1 diabetes. The figure depicts the four possible scenarios of



different parameters: -carbohydrate action, insulin action, physical activity action, and abnormality due to metabolic

change such as infection and stress.

1.2. Atypical Data
Atypical data signify when the data is not uniformly distributed and some region contain high density and

other region contain sparse density '. In this kind of data, only the boundary between the target and outlier
data is the same. However, the exact target density within the boundary could differ. As shown in the
Figure 2-11 below, the scatter plot of the input features, i.e. blood glucose levels vs. insulin to carbohydrate
ratio, depicts similar characteristics to the nature of atypical dataset. In this kind of datasets, boundary and
domain based method are more preferable than the others. Typically, density methods such as parzen

density could suffer in performance degradation to this kind of dataset.

1.3. Description of Input Features

The input features, i.e. average blood glucose levels vs. insulin (bolus) to carbohydrate ratio, used for model
training and testing are selected in accordance with the description provided in Woldaregay et al.’. The
Figures 2-11 depicts the scatter plot of the input features. The data are smoothed using a moving average
filter to remove short term noises. For both daily and hourly analysis a moving average filter window size
of two days or forty-eight hours were used respectively. Understanding of the data characteristics is essential
to select the optimal anomaly detection model to better capture the data distribution during normal
situations. The scatter plots of the input features presented in this section incorporates the data of ten
different patient years under free living conditions. Five patient years depicting regular years without any

significant infection incidences and five patient years with at least one or more incidences of infections'.

1.3.1. Description of Input Features During the Normal Patient Years
During the normal patients, the input features are characterized to be bounded with similar values of insulin

to carbohydrate ratio'. However, from the scatter plot it appears to be a typical in distribution containing
regions with high density and low density. The challenge with such kind of data is varying density and rare

events that are still normal.

e The First Patient Year (Normal year)

Y Tax, D.M.]., One-class classification: Concept learning in the absence of counter-examples, in Technische Universiteit Delft. 2002.

2 Woldaregay, A.Z., Arsand, E., Albers, D., Launonen, 1., Holubov4, A., and Hartvigsen, G., Towards Detecting Infection Incidences in People with
Type 1 Diabetes Using Self-Recorded Data: A Novel Framework for a Digital Infectious Disease Detection Mechanism. JMIR Preprints, 2020.
26/03/2020:18911.



Daily Average Blood Glucose Vs. Daily Ratio
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b) Hourly average blood glucose levels vs. total insulin (bolus) to carbohydrate ratio.

Figure 2: The first patient year, where there is no incidence of acute infections. Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

e The Second Patient Year (Normal year)
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Figure 3: The second patient year, where there is no incidence of acute infections. Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

e The Third Patient Year (Normal year)
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b) Hourly average blood glucose levels vs. total insulin (bolus) to carbohydrate ratio.

Figure 4: The third patient year, where there is no incidence of acute infections. Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

e The Fourth Patient Year (Normal year)
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Figure 5: The fourth patient year, where there is no incidence of acute infections. Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

e The Fifth Patient Year (Normal year)
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Figure 6: The fifth patient year, where there is no incidence of acute infections. Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

1.1.1. Description of Input Features During the Patient Years with Infection incidences

As can be seen from the scatter plot of the input features, the anomalies from the patient years are visible
in both the daily and hourly cases. As described for the normal patient years above, the challenge is mostly
modelling the normal portion of the data while minimizing false alarms. There are rare events that are
normal response of the blood glucose dynamics and the optimal model is the one that captures those rare

events along with the entire normal days.



e The Six Patient Year (flu)
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Figure 7: The six patient year, where the patient was infected with influenza (flu). Figure (a & b) depicts the daily and

hourly scatter plot of the input features.

e The Seventh Patient Year (flu)
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Figure 8: The seventh patient year, where the patient was infected with influenza (flu). Figure (a & b) depicts the

daily and hourly scatter plot of the input features.

e The Eighth Patient Year (flu)
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Figure 9: The eighth patient year, where the patient was infected with influenza (flu). Figure (a & b) depicts the daily

and hourly scatter plot of the input features.

e The Ninth Patient Year (flu)
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Figure 10: The ninth patient year, where the patient was infected with influenza (flu) and light and mild common

cold without fever. Figure (a & b) depicts the daily and hourly scatter plot of the input features.

e The Tenth Patient Year (Flu)
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a) Daily average blood glucose levels vs. total insulin (bolus).

b) Hourly average blood glucose levels vs. total insulin (bolus).

Figure 11: The tenth patient year, where the patient was infected with influenza (flu). Figure (a & b) depicts the daily

and hourly scatter plot of average blood glucose levels vs. total insulin (bolus).
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Appendix 3-Score Plot of the Models for Each Patient Year

The evaluations of the models were carried out based on each patient year depending on two specified time-window;
hourly and daily. The data were smoothed using a moving average with a window size of two days (forty-eight hours).
The models were trained using a target dataset (regular/normal days) and tested on the whole patient year containing
both the target (regular/normal days) and non-target (infection period). A training sample size of 120 days, which are
randomly selected from the patient year excluding the infection period, were used train the models and the score of
each models for the whole patient year were plotted. Regarding the unsupervised methods, the whole patient year was

presented during testing. The portion rejected by the models in all the figures represent the infection period.

A. Semi-supervised (One-class classifiers)
1. Daily
1.1. The First Case of Infection (flu)
1.1.1. Boundary and Domain-Based Method

Boundary and Domain based Methods
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Figure 1: The score of the boundary and domain-based method on the whole patient year.



1.1.2. Density-Based Method
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Figure 2: The score of the density-based method on the on the whole patient year.

1.1.3. Reconstruction-Based Method

Figure 3: The score of the reconstruction-based method on the whole patient year.



1.2. The Second Case of Infection (flu)
1.2.1. Boundary and Domain-Based Method
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Figure 4: The score of the boundary and domain-based method on the whole patient year.

1.2.2. Density-Based Method
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Figure 5: The score of the density-based method on the on the whole patient year.



1.2.3. Reconstruction-Based Method

Figure 6: The score of the reconstruction-based method on the whole patient year.

1.3. The Third Case of Infection (flu)
1.3.1. Boundary and Domain-Based Method

Figure 7: The score of the boundary and domain-based method on the whole patient year.



1.3.2. Density-Based Method
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Figure 8: The score of the density-based method on the whole patient year.

1.3.3. Reconstruction-Based Method

Figure 9: The score of the reconstruction-based method on the whole patient year.



1.4. The Fourth Case of Infection (flu)
1.4.1. Boundary and Domain-Based Method

Figure 10: The score of the boundary and domain-based method on the whole patient year.
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Figure 11: The score of the density-based method on the whole patient year.



1.4.3. Reconstruction-Based Method

Figure 12: The score of the reconstruction-based method on the whole patient year.

2. Hourly
2.1. The First Case of Infection (flu)
2.1.1. Boundary and Domain-Based Method
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Figure 13: The score of the boundary and domain-based method on the whole patient year.



2.1.2. Density-Based Method
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Figure 14: The score of the density-based method on the whole patient year.

2.1.3. Reconstruction-Based Method

Reconstruction based methods
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Figure 15: The score of the reconstruction-based method on the whole patient year.



2.2.The Second Case of Infection (flu)
2.2.1. Boundary and Domain-Based Method
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Figure 16: The score of the boundary and domain-based method on the whole patient year.

2.2.2. Density-Based Method
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Figure 17: The score of the density-based method on the whole patient year.



2.2.3. Reconstruction-Based Method

Reconstruction based methods
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Figure 18: The score of the reconstruction-based method on the whole patient year.

2.3.The Third Case of Infection (flu)
2.3.1. Boundary and Domain-Based Method
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Figure 19: The score of the boundary and domain-based method on the whole patient year.
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Figure 20: The score of the density-based method on the whole patient year.

Reconstruction-Based Method

Reconstruction based methods.
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Figure 21: The score of the reconstruction-based method on the whole patient year.
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2.4. The Fourth Case of Infection (flu)

2.4.1.

Boundary and Domain-Based Method
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Figure 22: The score of the boundary and domain-based method on the whole patient year.

2.4.2.

Density-Based Method
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Figure 23: The score of the density-based method on the whole patient year.
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2.4.3. Reconstruction-Based Method

Figure 24: The score of the reconstruction-based method on the whole patient year.

B. Unsupervised Approach
1. Daily
1.1. The First Case of Infection (flu)

Figure 25: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be

30 data points.
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1.2. The Second Case of Infection (flu)
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Figure 26: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be

30 data points.

1.3. The Third Case of Infection (flu)
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Figure 27: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be

30 data points.
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1.4. The Fourth Case of Infection (flu)
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Figure 28: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to
be 30 data points.

2. Hourly
2.1. The First Case of Infection (flu)
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Figure 29: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be
240 data points.

15



2.2. The Second Case of Infection (flu)
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Figure 30: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be
240 data points.

2.3. The Third Case of Infection (flu)
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Figure 31: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be
240 data points.
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2.4. The Fourth Case of Infection (flu)
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Figure 32: The score of unsupervised methods, LOF and COF, on the whole patient year. The value of k is set to be

240 data points.
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Appendix 4 - Model Evaluations — Performance of the Models for
Each Patient Year

The one-class classifier models presented in this section consists of three categories; boundary and domain
based, density based, and reconstruction based. The model evaluation is carried on a dataset that represent
a daily and hourly scope. The models were evaluated using twenty times fivefold stratified cross-validation.
During training phase, only the regular/normal day measurements were used to train the models. During
testing phase, a dataset containing both regular/normal and infection day measurements were used. The
performances are reported as average and standard deviation of the twenty rounds. Performance metrics
like area under the ROC curve (AUC), specificity, and Fl-score were used to evaluate the model
performances. Two version of the same data was used to assess the performance; raw data and smoothed
data. The smoothed data is the filtered version of the raw data using a moving average filter of 2-days
window size. The models were compared considering required sample sizes to obtain satisfactory

performance. The performance of the models is given in the Table 1-7 below for different individuals and

infection years.

. Daily

1. The First Case of Infection (Flu)

Table 1 (a): Average and standard deviation of AUC, specificity, F1-score for the raw dataset (without

smoothing) and different sample size.

Fraction = 0.01

Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 907 (88) | 717(77) | 73.6(.5) | 934(62) | 81.7(50) | 874(81) | 96429 | 87833 | 913(6.0) | 946(3.7) | 81.7(50) | 90.0 #.6)
incsvdd 904 (89) | 667(75) | 72739 | 91.8(5.9) | 667(75 | 844(32) | 95829 | 700071 | 85402 | 93736 | 55007 | 81027
v-SVM 931(60) | 63(10.6) | 789(6.2) | 965(23) | 81.9(47) | 90.7(34) | 979(15) | 889(0.0) | 94.1(2.0) | 96.2(23) | 833 (0.0) | 91.7(1.4)
Nearest Neighbour | 74.2(93) | 383(7.7) | 61.0(47) | 895(93) | 200(6.7) | 70.0(46) | 901(6.6) | 1L1(18) | 692(38) | 928(3.3) | 333(0.0) | 75.1(0.4)
MST 894(81) | 50000) | 62766 | 95456 | 61707 | 8239 | 96627 | 68945 | 83647 | 941(28) | 550(7.7) | 80.623)
Density-Based Method
Gaussian 906 (71) | 60.0(82) | 688(84) | 95.4(46) | 70.0(6.7) | 853(46) | 973(25) | 80.0(45) | 892(33) | 955(3.2) | 667(0.0) | 845 (2.0)
MoG 881(99) | 801(17.3) | 67.8(164) | 931(71) | 75.8(148) | 825(10.0) | 95.63.4) | 802(7.5) | 86.0(6.7) | 93.7(3.9) | 687(11.6) | 842(5.7)
MCD Gaussian | 89.0(85) | 55.0(7.7) | 664(9.0) | 940 (4.6) | 683(5.0) | 846(63) | 97.027) | 80.0(4.5) | 89.9(24) | 94532 | 650(50) | 84.0(3.2)
Parzen 89.0(92) | 700(6.7) | 707(G.9) | 946 (49) | 833(0.0) | 87.9(63) | 97224 | 889(0.0) | 905(.9) | 952(29) | 833(0.0) | 889 33)
Naive Parzen 901(76) | 55(10.7) | 6505.0) | 957(39) | 767(2) | 87235 | 983(1.4) | 889(0.0) | 93.6(2.4) | 96.8(21) | 833(0.0) | 90.7 2.0)
NN 918(69) | 500000) | 66020 | 95631 | 81.7G0) | 90.9(32) | 97.9(1.6) | 889(0.0) | 935G3.7) | 97.0(22) | 833(00) | 92.0(1.0)
LOF 885(61) | 667 (75) | 72.7(49) | 97.0(1L9) | 71.7(.7) | 86.1(24) | 968(2.8) | 789(33) | 88.7(28) | 926 (4.8) | 50.0(0.0) | 793 (2.6)




Reconstruction-Based Method
PCA 878(119) | 500(75) | 624385 | 93562 | 51760 | 7821 | 936@7) | 60(102) | 81844 | 913(2) | 46767 | 78723
Auto— encoder 822(120) | 57.9(153) | 647(120) | 882(95) | 61.6(140) | 81.4(7.1) | 934G.7) | 744(11) | 864 (5.9) | 884 (38) | 61.3(143) | 82.7 5.7
SOM 86.9(04) | 783(133) | 667(169) | 928(73) | 642(124) | 809(70) | 95837 | 801(63) | 86965 | 922(41) | 765(00) | 875 45
K-means 918(69) | 650000) | 71.8G1) | 96024 | 833(00) | 915(2.8) | 976(1.6) | 889(0.0) | 935(3.7) | 9%62(22) | 833(00) | 91.5 (1.6)

Table 1 (b): Average and standard deviation of AUC, specificity, F1-score for smoothed version of the

data with a two-days moving average filter and different sample size.

Fraction = 0.01

Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 99.6 (1.3) | 100 (0.0) 93.6 (15.2) | 100 (0.0) 100 (0.0) 94.8(101) | 100(0.0) | 100 (0.0) 97.0(41) | 100(0.0) | 100(0.0) 96.9 (4.0)
incsvdd 99.6 (1.3) | 100 (0.0) 93.6 (15.2) | 100 (0.0) 100 (0.0) 97.1(63) | 100(0.0) | 100 (0.0) 97.6 (41) | 100(0.0) | 100(0.0) 983 (2.8)
v-SVM 1000.0) | 9529 | 98.9(3.2) | 100(0.0) | 100(0.0) | 99.1(2.6) | 100(0.0) | 100(0.0) | 99.4(1.7) | 100(0.0) | 100(0.0) | 99.6(1.2)
Nearest Neighbour | 98.1 (3.9) | 58.3(154) | 72.3(9.9) | 86.9(125) | 167 (224) | 705(53) | 88.1(6.5) | 544(225) | 80.0(8.6) | 924(53) | 83(17.1) | 69.0(48)
MST 985 (2.4) | 85.0(5.0) | 855(21) | 99.7(0.8) | 100(0.0) 97.1(63) | 99.9(0.4) | 97.8(45) | 97.2(40) | 99.7(0.8) | 100 (0.0) 97.0(7.9)
Density-Based Method
Gaussian 100 (0.0) | 983(5.0) | 921(152) | 100 (0.0) 100 (0.0) 971(63) | 99.8(0.7) | 100 (0.0) 97.6 (41) | 99.4(1.7) | 100(0.0) 97.0(7.9)
MoG 986 (32) | 998(1.7) | 885(168) | 99.6(1.2) | 100(0.0) 922(111) | 99.7(0.7) | 99.8(1.4) | 94(103) | 993 (2.0) | 99.9(1.2) | 94.4(11.8)
MCD Gaussian 98.922) | 91.7(84) | 90.9(7.7) | 100(0.0) | 100(0.0) | 98.0(6.0) | 99511 | 9%6.7G.1) | 96.6(G.9) | 94(1.7) | 883(77) | 920 (6.8)
Parzen 99.6(1.3) | 100(0.0) | 87.7(17.0) | 1000.0) | 100(0.0) | 95.1(80) | 100(0.0) | 100(0.0) | 946(9.8) | 99.9(0.4) | 100 (0.0) | 94.6 (12.3)
Naive Parzen 992(2.5) | 100 (0.0) 947 (11.1) | 100 (0.0) 100 (0.0) 93.8(11.0) | 99.6 (1.1) | 100 (0.0) 975 (5.0) | 100(0.0) | 100(0.0) 98.7(2.7)
kNN 981(39) | 683(5.0) | 752(43) | 100(0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 98.8(3.8) | 100(0.0) | 100(0.0) 97.7 (4.7)
LOF 98.6(29) | 75.0(13.5) | 80.2(108) | 100(0.0) | 100(0.0) | 98.0(6.0) | 100(0.0) | 100(0.0) | 96.9G.0) | 99.7(0.8) | 100(0.0) | 97.4(7.9)
Reconstruction-Based Method
PCA 98.922) | 85.0(.0) | 8521) | 92013) | 850G.0) | 91.42.7) | 986(1.9) | 889(0.0) | 922(6.0) | 97.8(22) | 833(00) | 89.1(9.7)
Auto— encoder 97.4(6.0) | 89.1(13.0) | 86.0 (142) | 985(32) | 945(9.6) | 91.8(94) | 99224 | 93.7(102) | 93.7(83) | 986 (3.8) | 94495 | 93.7(9.7)
SOM 993 (1.9) | 99.9(1.2) | 84.7(19.8) | 99.8(0.7) | 100(0.0) 91.4(9.6) | 99.9(03) | 100 (0.0) 952(7.9) | 99.6(1.3) | 100(0.0) 93.4 (12.1)
K-means 992(25) | 85.0(1L7) | 87.0(104) | 100(0.0) | 100(0.0) | 97.1(63) | 100(0.0) | 100(0.0) | 98.8(3.8) | 100(0.0) | 100 (0.0) | 99.2(2.5)

2. The Second Case of Infection (Flu)

Table 2 (a): Average and standard deviation of AUC, specificity, F1-score for the raw dataset (without smoothing)

and different sample size.

Fraction = 0.01

Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 781(19.2) | 25 (25.1) 533(52) | 90(11.4) 233201 | 69537 | 935(7.0) | 28920.0) | 72.7(3.7) | 87.0(5.6) | 233 (20.1) | 71.6 (4.1)
incsvdd 67.1 (18.0) 18.3 (5.0) 52.3(9.4) 87.5 (14.2) 23.3(20.1) 70.3(2.8) | 91.9(8.4) 28.9 (20.1) 72.7(3.7) | 86.1(5.8) 23.3(20.1) 71.6 (4.1)
v-SVM 917 (114) | 182(86) | 61.4(7.5) | 93.0(6.8) | 19082 | 657(.7) | 965(.1) | 264(11.9) | 69.1(5.7) | 9653.8) | 27.6(232) | 69.7 (9.5)
Nearest Neighbour | 39.4 (11.8) | 167 (0.0) | 541(1.4) | 32.8 (14.9) 67(11.1) | 662(3.2) | 383(9.5) 8.6(94) | 66.4(07) | 29.7(9.5) | 45 (13.7) 66.5 (0.5)
MST 45.3 (12.7) 16.7 (0.0) 53.8(5.1) 42.1(16.2) 18.3 (5.0) 69.6 (4.2) 52.1(10.6) 23.3(3.3) 70.8 (3.0) 52 (11.7) 18.3 (5.0) 71.4 (1.3)




Density-Based Method
Gaussian 90.0(15.9) | 183(5.0) | 542(3.9) | 93.9(82) | 23.3(20.1) | 703(2.8) | 96.2(5.6) | 28.920.1) | 732(3.1) | 974(3.9) | 23.3(20.1) | 72.0(3.8)
MoG 81.6 (19.7) | 30.7(10.6) | 52.2(10.1) | 89.0(7.9) | 232(19.4) | 69.4(3.8) | 93.0(5.0) | 289(19.7) | 71.5(44) | 948(3.7) | 23.6(17.6) | 70.7(3.7)
MCD Gaussian 89.4(13.0) | 16.7(0.0) | 53.8(5.1) 931(8.0) | 21.7(15.0) | 70.5(1.6) | 971(5.0) | 289(20.1) | 732(3.1) | 97.5(4.0) | 25.0(20.1) | 72.5(3.9)
Parzen 87.2(16.3) | 21.7(10.7) | 50.9(6.9) 909 (8.1) | 23.3(20.1) | 703(2.8) | 942(5.8) | 322(21.4) | 73.6(4.9) | 955(43) | 26.7(21.4) | 71.7(4.2)
Naive Parzen 889 (11.9) | 200(6.7) | 53.2(4.9) 912(82) | 233(201) | 71.1(1.1) | 954 (5.7) | 333(21.1) | 74.0(3.4) | 95.9(43) | 383(16.8) | 76.0(3.4)
kNN 922(10.6) | 20.0 (10.0) | 54.8(2.6) | 93.9(6.7) | 23.3(20.1) | 7L.1(1.1) | 97.1(5.3) | 28.9(20.1) | 732(3.1) | 97.4(3.9) | 23.3(20.1) | 72.0(3.8)
LOF 91.1(10.9) | 16.7(0.0) | 53.8(5.1) | 945(84) | 23.3(20.1) | 703(2.8) | 95.9(5.5) | 28.9(20.1) | 732(3.1) | 97.2(4.0) | 23.3(20.1) | 72.0(3.8)

Reconstruction-Based Method
PCA 71.0 (9.6) 183 (5.0) | 52.3(9.4) | 742(9.5) | 167(0.0) | 701(27) | 79.0(7.7) | 233(3.3) | 71.4(1.9) | 77.8(6.0) | 16.7 (0.0) 704 (1.3)
Auto - encoder 702(19.2) | 253 (10.8) | 543 (7.8) | 73.4(163) | 21.8(145) | 702(3.8) | 81.0(13.0) | 283(15.0) | 72.1(3.3) | 84(13.0) | 223(13.9) | 712(3.1)
SOM 61.5(19.9) | 24.0(83) | 542(6.6) | 67.3(104) | 21.8(132) | 67.8(45) | 86.2(83) | 27.3(13.1) | 71.7(2.2) | 941(48) | 17.7(6.7) 70.12.1)
K-means 93.3(9.6) 183(5.0) | 54.2(3.9) | 925(6.3) | 23.3(20.1) | 7L.1(1.1) | 96.2(5.5) | 289(20.1) | 73.2(3.1) | 96.0(4.1) | 23.3(20.1) | 72.0 (3.8)

Table 2 (b): Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with a
two-days moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1

SVDD 100 (0.0) 100 (0.0) 96.0 (8.0) 100 (0.0) | 100 (0.0) 98.2 (3.6) 100 (0.0) 100 (0.0) 96.0 (8.5) | 100(0.0) | 100(0.0) 98.7 (2.0)
incsvdd 100 (0.0) 100 (0.0) 96.0 (8.0) 100 (0.0) | 100 (0.0) 98.2 (3.6) 100 (0.0) 100 (0.0) 96.6 (8.6) | 100(0.0) | 100(0.0) 98.7 (2.0)
v-SVM 100 (0.0) 100 (0.0) 99.1(3.1) | 100(0.0) | 100(0.0) 992(2.3) | 100(0.0) 100 (0.0) 99.5(1.6) | 100(0.0) | 100(0.0) 99.5 (1.3)
Nearest Neighbour | 76.7 (21.3) | 13.3(25.7) | 55.7(10.6) | 79(120) | 25.0(26.2) | 724(9.8) | 77 (11.4) 17 (13.4) 705 (43) | 79.7(85) | 20(27.8) 717 (8.2)
MST 972(6.7) | 55(10.7) 683(8.5) | 99.4(1.1) | 86.7(6.7) | 92.1(0.7) 100 (0.0) 97.8(6.7) | 97.2(4.6) | 99.7(0.6) | 100(0.0) 98.7 (2.9)

Density-Based Method
Gaussian 96.7 (10.0) | 72 (16.8) 74.9(12.4) | 981(5.0) | 87 (14.6) 91.3(9.2) 100 (0.0) 100 (0.0) 98.8(24) | 100(0.0) | 100(0.0) 99.6 (1.3)
MoG 96.7 (10.0) | 72 (16.8) 74.9(12.4) | 981(5.0) | 88(10.7) 91.9 (8.6) 100 (0.0) 100 (0.0) 982 (4.0) | 100(0.0) | 100(0.0) 99.6 (1.3)
MCD Gaussian 95.0(10.7) | 55 (15.0) 656 (5.5 | 972(53) | 60(17.0) 82.0 (8.5) 100 (0.0) 100 (0.0) 99.4(1.8) | 100(0.0) | 100(0.0) 99.6 (1.3)
Parzen 97.2(6.7) 100 (0.0) 93.0 (15.6) | 99.7(0.8) | 100 (0.0) 96.2 (6.5) 100 (0.0) 100 (0.0) 941(8.6) | 99.9(0.4) | 100(0.0) 96.4 (4.5)
Naive Parzen 100.0 (0.0) | 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 98.2 (3.6) 100 (0.0) 100 (0.0) 97.6 (41) | 100(0.0) | 100(0.0) 98.1(4.3)
kNN 100.0(0.0) | 983(5.0) | 96.6(7.0) | 99.7(0.8) | 100(0.0) 99.1(2.7) | 100(0.0) 100 (0.0) 98.8(3.8) | 100(0.0) | 100(0.0) 99.6 (1.3)
LOF 100.0(0.0) | 983(5.0) | 96.6(7.0) | 99.4(1.1) | 96.7(6.7) | 96.7(5.6) | 99.9(04) | 944(5.6) | 962(3.5 | 100(0.0) | 100(0.0) 99.1(1.7)

Reconstruction-Based Method
PCA 76.5(13.0) | 433 (13.4) | 60.8(10.0) | 66.3(83) | 26.7(13.4) | 71.9(71) | 56.9(11.2) | 222(122) | 70.7(5.1) | 654(6.8) | 25(13.5) 71.8 (4.6)
Auto — encoder 93.6 (11.6) | 83.2(19.6) | 81.8(17.5) | 96.5(7.2) | 86.2(19.3) | 89.9(10.4) | 97.4(5.9) | 86.7(19.4) | 91.1(9.5) | 98.2(4.3) | 89.4(16.6) | 93.7(7.1)
SOM 97.1(6.1) 100 (0.0) 821(19.6) | 99.7(1.2) | 100(0.0) 90.4(13.2) | 100 (0.0) 100 (0.0) 973 (41) | 99.9(0.4) | 100(0.0) 97.4 (4.6)
K-means 100 (0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 99.1(2.7) | 100(0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 99.6 (1.3)

3. The Third Case of Infection (Flu)

Table 3 (a): Average and standard deviation of AUC, specificity, F1-score for the raw dataset (without smoothing)

and different sample size.




Fraction = 0.01

Boundary and Domain-Based Method
MOdCIS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 79.7(6.8) | 66.7(0.0) | 782(142) | 86.4(47) | 66.7(0.0) | 90.6(3.7) | 84.6 (44 | 66.7(0.0) 883 (3.9) | 85.4(4.7) | 66.7(0.0) 90.5 (4.3)
incsvdd 83.1(9.2) | 66.7(0.0) | 79.6(14.5 | 85.9(47) | 66.7(0.0) | 90.6(3.7) | 84.9(4.0) | 66.7(0.0) 883 (3.9) | 85.6(4.9) | 66.7(0.0) 90.5 (4.3)
v-SVM 83.1(7.8) | 66.7(0.0) | 83.7(5.8) 829(5.1) | 66.7(0.0) 863 (4.2) | 841(4.8) | 66.7(0.0) 86.0 (2.6) | 84.7(5.9) | 66.7 (0.0) 87.1(2.4)
Nearest Neighbour | 89.4 (11.8) | 70.0(10.0) | 85.6(7.6) | 967(51) | 73.3(134) | 92.1(3.8) | 812(13.7) | 33(10.0) | 759(21) | 79.3(9.6) | 3.3 (10.0) 80.3 (0.6)
MST 95.6 (7.4) | 66.7(0.0) | 84.1(5.9) | 940(3.7) | 66.7(0.0) | 90.5(5.9) | 89.0(47) | 66.7(0.0) | 89.5(1.8) | 92.0(4.1) | 66.7(0.0) 91.5 (1.8)
Density-Based Method
Gaussian 872(7.9) | 66.7(0.0) | 82.2(7.9) | 87.5(6.7) | 66.7(0.0) 89.7(42) | 87.7(G.7) | 66.7(0.0) 88.9 (3.7) | 882(43) | 66.7(0.0) 90.5 (4.3)
MoG 90.6 (8.8) | 68.7(7.9) | 763(148) | 85.6(51) | 66.7(0.0) 87.9(5.9) | 88.6(5.5) | 66.7(0.0) 882 (4.0) | 90.5(3.8) | 66.7(0.0) 90.7 (3.9)
MCD Gaussian 872(7.9) | 66.7(0.0) | 82.2(7.9) | 87.5(6.7) | 66.7(0.0) | 90.6(3.7) | 88.0(5.9) | 66.7(0.0) 88.9 (3.7) | 882(4.3) | 66.7(0.0) 91.0 (2.9)
Parzen 86.4(8.7) | 66.7(0.0) | 77.7(148) | 854(64) | 66.7(0.0) 87.8(65) | 85.8(71) | 66.7(0.0) 86.0 (4.0) | 87.4(5.0) | 66.7(0.0) 90.6 (3.0)
Naive Parzen 79.7(6.8) | 66.7(0.0) | 77.7(148) | 803(3.6) | 66.7(0.0) 87.9(63) | 77.7(63) | 66.7(0.0) 889 (2.4) | 822(62) | 66.7(0.0) 91.0 (4.2)
kNN 81.9(7.6) | 66.7(0.0) 81.5(13.9) | 821(44) | 66.7(0.0) | 90.6(3.7) | 86.2(7.0) | 66.7 (0.0) 88.9 (2.4) | 87.9(5.0) | 66.7(0.0) 91.0 (4.2)
LOF 81.1(11.2) | 66.7(0.0) | 81.5(13.9) | 82.1(6.1) | 66.7(0.0) | 91.5(2.8) | 84.7(6.7) | 66.7(0.0) | 89.5(1.8) | 86.3(4.9) | 66.7 (0.0) 91.9 (1.3)
Reconstruction-Based Method
PCA 92.5(7.1) | 66.7(0.0) | 84.1(5.9) | 941(48) | 66.7(0.0) | 89.7(4.2) | 93.4(2.6) | 66.7(0.0) | 89.5(1.8) | 93.4(3.5 | 66.7 (0.0) 91.0 (2.9)
Auto - encoder 86.4(13.3) | 68.8(13.8) | 81.0(13.3) | 84.2(10.0) | 65.2(8.4) 891(6.2) | 83.3(10.7) | 60 (16.0) 86.5(5.3) | 85.4(9.6) | 59.7(162) | 89.7 (4.4)
SOM 94.7(7.8) | 66.8(24) | 80.5(11.9) | 93.6(4.8) | 67.5(5.2) 88.4(6.3) | 93.4(4.8) | 66.7(0.0) 87.7(3.7) | 942(3.9) | 66.7(0.0) 91.3(2.6)
K-means 94.6(8.1) | 70.5(107) | 82.2(107) | 90.4(8.8) 67.0 (3.3) 88.5(6.7) | 922(5.8) | 66.7(0.0) 88.5(3.0) | 94.4(5.0) | 66.7(0.0) 91.1(2.8)
Table 3 (b): Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with a
two-days moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 100 (0.0) 100 (0.0) 93.6 (15.2) | 100(0.0) | 100(0.0) 96.2 (6.5) 100 (0.0) | 100 (0.0) 96.8 (6.1) | 100(0.0) | 100(0.0) 98.1(4.3)
incsvdd 100 (0.0) 100 (0.0) 93.6 (15.2) | 100(0.0) | 100(0.0) 96.2 (6.5) 100 (0.0) | 100 (0.0) 96.8 (6.1) | 100(0.0) | 100(0.0) 98.1(4.3)
v-SVM 100 (0.0) 100 (0.0) 99.6(2.5) | 100(0.0) | 100(0.0) 98.9(3.5) | 100(0.0) | 100(0.0) 99.3(2.2) | 100(0.0) | 100(0.0) 99.4(1.9)
Nearest Neighbour | 95.6 (13.4) | 73.3(41.7) | 84.3(18.7) | 962(35) | 43.3(21.4) | 87.9(4.6) | 93.7(7.8) | 3.3(10.0) | 748(3.3) | 92.5(83) | 3.3(10.0) | 79.8(3.3)
MST 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 95.1(8.0) 100 (0.0) | 100 (0.0) 982(2.7) | 100(0.0) | 100(0.0) 99.1(1.7)
Density-Based Method
Gaussian 100 (0.0) 100 (0.0) 93.0 (15.6) | 100(0.0) | 100 (0.0) 96.0 (8.0) 100 (0.0) | 100 (0.0) 98.0 (6.0) | 100(0.0) | 100(0.0) 99.1(2.7)
MoG 100 (0.0) 100 (0.0) 92.8(12.9) | 100(0.0) | 100(0.0) 92.5(13.0) | 100(0.0) | 100 (0.0) 96.0 (6.6) | 100(0.0) | 100(0.0) 97.5 (4.4)
MCD Gaussian 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 97.1(6.3) 100 (0.0) | 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 99.1(2.7)
Parzen 100 (0.0) 100 (0.0) 91.6 (15.5) | 100(0.0) | 100 (0.0) 93.1(9.0) 100 (0.0) | 100 (0.0) 92.9(85) | 100(0.0) | 100(0.0) 97.3 (4.3)
Naive Parzen 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 97.1(6.3) 100 (0.0) | 100 (0.0) 98.0 (6.0) | 100(0.0) | 100(0.0) 98.6 (4.3)
kNN 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 99.1(2.7)
LOF 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 98.8(2.4) | 100(0.0) | 100(0.0) 99.1(2.7)
Reconstruction-Based Method
PCA 100 (0.0) 100 (0.0) 96.0 (8.0) | 100(0.0) | 100 (0.0) | 99.1(2.7) | 100 (0.0) | 100 (0.0) | 99.4(1.8) | 100 (0.0) | 96.7 (10.0) | 97.9 (2.7)




Auto — encoder 99.2(4.9) | 99.5(41) | 93.2(14.5) | 98.5(5.3) | 943(154) | 93.7(9.9) | 98.8(5.2) | 94.3(157) | 95.5(7.3) | 99.1(3.8) | 93.7(16.8) | 97.0 (4.8)
SOM 100 (0.0) 100 (0.0) 90.3(17.8) | 100(0.0) | 100(0.0) 91.3(13.5) | 100(0.0) | 100 (0.0) 93.5(9.3) | 100(0.0) | 100(0.0) 97.3 (3.8)
K-means 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 98.0 (6.0) 100 (0.0) | 100 (0.0) 98.0 (6.0) | 100(0.0) | 100(0.0) 99.1(2.7)
4. The Fourth Case of Infection (Flu)
Table 4 (a): Average and standard deviation of AUC, specificity, F1-score for the raw dataset (without smoothing)
and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdCIS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 100 (0.0) | 100 (0.0) 94.0(92) | 971(33) | 75.0(0.0) | 888(45) | 98.7(1.4) | 85.7(0.0) | 925(2.8) | 984(1.8) | 75.0(0.0) 90.6 (2.9)
incsvdd 100 (0.0) | 100 (0.0) 94.0(92) | 96.7(41) | 75.0(0.0) | 89.7(4.2) | 986(1.3) | 85.7(0.0) | 93.0(2.7) | 97.9(21) | 75.0(0.0) 91.0 (2.9)
v-SVM 97.9(3.6) | 75.0(0.0) 85.7(5.4) | 965(7) | 74825 | 836(3.8) | 984(2.0) | 85.7(0.0) | 93.2(2.1) | 97.6(3.0) | 75.0(0.0) 89.5 (1.8)
Nearest Neighbour | 90.6 (13) | 5.9 (13.3) | 591(5.3) | 69.5(14.1) | 8.5(10.4) | 7442.7) | 735(12.4) | 200(27.3) | 765(8.1) | 78.1(10.7) | 27.5(26.2) | 81.1(6.6)
MST 992(2.5) | 75.0(0.0) 841(59) | 988(27) | 550(15.0) | 855(3.3) | 982(3.3) | 65.7(172) | 87.5(3.5) | 988(21) | 60.0(20.1) | 87.7(4.1)
Density-Based Method
Gaussian 983(33) | 82.5(11.5) | 86.4(9.0) | 97.5(2.8) | 75.0(0.0) 90.6 (3.7) | 99.1(1.0) | 85.7(0.0) | 93.7(2.1) | 988(1.7) | 75.0(0.0) 91.5 (1.6)
MoG 99.1(3.4) | 97.1(8.0) 88.8(134) | 991(21) | 905(122) | 952(48) | 98725 | 921(7.1) | 944(6.1) | 988(27) | 874(125) | 93.9(6.0)
MCD Gaussian 97.7(3.6) | 77.5(7.5) | 85.5(2.1) | 97.9(28) | 75.0(0.0) | 90.6(3.7) | 991(1.0) | 857(0.0) | 93.7(2.1) | 99.0(1.7) | 75.0(0.0) 92.0 (1.0)
Parzen 96.0 (4.0) | 80.0(10.0) | 83.0(6.0) | 95.8(5.6) | 75.0(0.0) | 89.7(42) | 982(2.6) | 87.1(43) | 922(6.0) | 99.0(1.6) | 87.5(125) | 93.0 (4.0)
Naive Parzen 93.5(6.2) | 75.0(0.0) 803(9.0) | 93.3(9.7) | 750(0.0) | 887(64) | 96.1(6.3) | 77.1(13.1) | 89.9(7.0) | 96.3(46) | 70.0(10.0) | 89.8(3.3)
kNN 983 (3.3) | 75.0(0.0) 841(59) | 946(46) | 72575 | 90932 | 98027 | 82986 | 927(33) | 97531 | 75.0(0.0) 91.1(2.8)
LOF 96.0 (4.0) | 75.0(0.0) 841(5.9) | 95.8(4.9) | 750000 | 91.5(2.8) | 985(2.1) | 829(8.6) | 93429 | 98.6(24) | 75.0(0.0) 92.0 (1.0)
Reconstruction-Based Method
PCA 99.2(2.5) | 100 (0.0) 96.0(8.0) | 98.8(19) 85.0(12.3) | 92.8(5.8) | 99.4(1.0) | 88.6(5.7) | 93.5(3.5) | 99.4(1.3) | 85.0(12.3) | 94.1(4.0)
Auto — encoder 95.7(9.1) | 81.3(254) | 83.7 (14.5) | 92.6(11.7) | 63.9(32.3) | 87.6(9.0) | 95.9(8.0) | 68.1(33.9) | 88(10.1) | 962(9.2) | 66.0(31.7) | 89.2(8.1)
SOM 992(2.5) | 84.4(12.1) | 89.4(69) | 96.8(3.8) | 74.9(64) | 89.4(a3) | 986(1.8) | 833(80) | 927(3.1) | 984(26) | 75.0(0.0) 91.0 (2.3)
K-means 96.9(3.9) | 75.0(0.0) 841(59) | 95.8(49) | 7500000 | 90.6(3.7) | 98.0(2.3) | 85.7(0.0) | 94.2(1.8) | 96735 | 75.0(0.0) 91.52.7)
Table 4 (b): Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with a
two-days moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 100 (0.0) 100 (0.0) 93 (15.6) 100 (0.0) | 100 (0.0) 95.1 (8.0) 100 (0.0) 100 (0.0) 962 (6.0) | 100(0.0) | 100(0.0) 97.7 (4.4)
incsvdd 100 (0.0) 100 (0.0) 93.0 (15.6) | 100(0.0) | 100(0.0) 96.0 (8.0) 100 (0.0) 100 (0.0) 982(2.7) | 100(0.0) | 100(0.0) 99.1(1.7)
v-SVM 100 (0.0) 100 (0.0) 98.9(3.7) | 100(0.0) | 100(0.0) 99.0(3.0) | 100(0.0) 100 (0.0) 99.3(2.1) | 100(0.0) | 100(0.0) 99.5 (1.7)
Nearest Neighbour | 90.0 (123) | 15 (30.1) 658(102) | 933(7.5) | 47.5(17.5) | 828(5.6) | 97.8(2.6) | 60.0(5.7) 855(23) | 97.5(3.1) | 625(12.5) | 87.8(4.7)
MST 100 (0.0) 100 (0.0) 98.0 (6.0) 100 (0.0) | 100 (0.0) 96.2 (6.5) 100 (0.0) 100 (0.0) 99.4(1.8) | 100(0.0) | 100(0.0) 97.1(6.0)
Density-Based Method
Gaussian 100 (0.0) 100 (0.0) 89.0(15.8) | 100(0.0) | 100(0.0) | 95.0 (15.0) | 100 (0.0) | 100 (0.0) | 98.0 (6.0) | 100 (0.0) | 100 (0.0) | 97.4(7.9)




MoG 100 (0.0) 100 (0.0) 84.5(22.6) | 100(0.0) | 100(0.0) 91.8(12.3) | 99.9(0.6) | 100 (0.0) 937(82) | 100(03) | 100(0.0) 95.7(8.1)
MCD Gaussian 100 (0.0) 100 (0.0) 95.0(15.0) | 100(0.0) | 100(0.0) 96.7(10.0) | 100 (0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 97.4(7.9)
Parzen 100 (0.0) 100 (0.0) 91.0 (15.8) | 100(0.0) | 100(0.0) 90.4 (13.4) | 100 (0.0) 100 (0.0) 92.9(8.0) | 100(0.0) | 100(0.0) 95.1(8.0)
Naive Parzen 100 (0.0) 100 (0.0) 93.0 (15.6) | 100(0.0) | 100(0.0) 95.1 (8.0) 100 (0.0) 100 (0.0) 96.8(6.7) | 100(0.0) | 100(0.0) 97.2 (4.8)
kNN 100 (0.0) 100 (0.0) 96.0 (8.0) 100 (0.0) | 100 (0.0) 98.2(3.6) | 100(0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 98.6 (4.3)
LOF 100 (0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 95.8(10.1) | 100 (0.0) 100 (0.0) 98.0(6.0) | 100(0.0) | 100(0.0) 97.4(7.9)

Reconstruction-Based Method
PCA 100 (0.0) 100 (0.0) 93.0(15.6) | 100(0.0) | 100(0.0) 95.0(15.0) | 99.4(1.9) | 943(11.5 | 96.0(6.6) | 99.8(0.6) | 100 (0.0) 97.4(7.9)
Auto - encoder 97.9(7.5) | 948(15.6) | 90.1(15.9) | 98.9(4.8) | 954(14.0) | 92.8(12.1) 99.0(3.6) | 96.5(10.6) | 955(7.3) | 99.0(3.8) | 93.5(17.6) | 95.4(7.7)
SOM 100 (0.0) 100 (0.0) 83.8(22.5) | 100(0.0) | 100(0.0) 82.8(23.3) | 100(0.0) 100 (0.0) 92.4(9.1) | 100(0.0) | 100(0.0) 95.5 (8.3)
K-means 100 (0.0) 100 (0.0) 93.0(15.6) | 100(0.0) | 100(0.0) 97.1(6.3) | 100(0.0) 100 (0.0) 97.5(6.0) | 100(0.0) | 100(0.0) 98.2 (4.3)

ll.  Hourly
1. The First Case of Infection (Flu)
Table 5: Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with 48
hours moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1

SVDD 97.6 (1.9) 832(34) | 858(1.7) | 97.8(1.2) | 857(5.0) | 905(9.6) | 977(12) | 904(5.1) | 94229 | 981(09) | 91.03.7) | 96.8(0.9)
incsvdd 97.4 (1.9) 845(28) | 868(1.9) | 977(1.2) | 86720 | 93.9(1.0) | 975(1.2) | 885(1.5 | 96.0(1.1) | 979(09) | 889(1.2) | 97.0(0.7)
v-SVM 98.1(2.1) 845(1.1) | 905(1.1) | 99.0(1.1) | 926(0.0) | 96.1(1.3) | 99.5(0.6) | 93.8(0.5 | 96.9(1.4) | 99.4(04) | 942(0.0) | 97.1(1.3)
Nearest Neighbour | 84.8(6.0) | 75.9(45) | 74.8(6.0) 893 (22) | 76.5(4.1) 871(3.3) | 89.0(4.0) | 77.5(3.9) 893 (44) | 902(@.7) | 77.5(3.8) | 91.4(6.4)
MST 90.5 (3.1) 85.4(3.9) 67.6 (14.5) | 94.4(2.0) | 85.7(4.0) 851(7.0) | 94.7(24) | 88.8(3.5) 87.8(85) | 95.8(22) | 88.8(3.0) | 90.9(5.9)

Density-Based Method
Gaussian 98.1(22) | 79.8(4.9) | 83.9(2.7) | 99.5(0.9) | 90.1(1.7) | 952(1.8) | 99.6(0.7) | 92.9(1.3) | 97.1(2.5) | 99.5(0.5) | 922(1.0) | 97.7(1.1)
MoG 95.8 (3.6) 82.7(43) | 83.7(50) | 983(1.5) | 86227 | 92327 | 987(14) | 887(46) | 947(35) | 986(1.6) | 882(3.1) | 95.3(3.2)
MCD Gaussian 98.6 (2.1) | 753(6.9) | 81.3(2.5) | 99.6(0.9) | 89.6(1.9) | 95.0(1.8) | 99.6(07) | 92.5(1.8) | 97.0(23) | 99.6 (04) | 92.0(1.2) | 97.7(1.1)
Parzen 91.9(2.9) | 93.6 (2.0) | 63.4(16.5) | 96.2(2.3) | 94.4(2.0) 81.6 (10.2) | 96.6 (2.6) | 94.8(1.7) 842(9.5) | 97.4(22) | 95.6 (1.2) 87.9 (7.1)
Naive Parzen 948(3.7) | 76.4(56) | 77.6(7.9) | 987(1.2) | 852(3.3) | 91.8(29) | 9.1(1.1) | 89.1(3.8) | 948(25 | 989(0.9) | 89.7(24) | 96.2(1.6)
kNN 971(3.4) | 788(20) | 84.2(2.1) | 991(1.0) | 929(07) | 96.0(1.8) | 99.6(04) | 93.8(0.7) | 97.3(1.9) | 99.5(0.3) | 940(0.6) | 98.2(0.9)
LOF 96.9(3.5) | 783(3.0) | 842(24) | 992(1.1) | 91.9(0.9) | 96.0(1.8) | 99.6(0.5 | 93.7(0.8) | 97.3(2.1) | 99.5(04) | 93.1(04) | 97.8(1.2)

Reconstruction-Based Method
PCA 971(3.4) | 63.9(88) | 754(0.3) | 99.4(1.2) | 764(6.6) | 902(1.1) | 99.1(1.3) | 751(6.8) | 924(1.1) | 98.9(1.2) | 69.1(41) | 93.1(0.8)
Auto - encoder 92.0(4.8) | 795(7.6) | 789(83) | 96.2(2.6) | 83.1(7.2) | 91.1(3.9) | 96.3(32) | 843(77) | 927(5.0) | 96.7(3.0) | 84.0(8.0) | 94.6 (4.4)
SOM 94.1(2.3) 822(33) | 82639 | 956(1.1) | 8293G.1) | 91.6(1.9) | 948(23) | 83.4(5.8) | 923(41) | 955(1.9) | 841(3.8) | 943 (3.8)
K-means 97.3(3.2) 80.9(2.5) | 85.5(2.5) | 989(1.1) | 926(0.7) | 95.8(1.8) | 99.3(0.6) | 92.9(07) | 97.3(1.4) | 99.4(04) | 941(02) | 98.1(1.1)

2.

The Second Case of Infection (Flu)

Table 6: Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with 48

hours moving average filter and different sample size.




Fraction = 0.01

Boundary and Domain-Based Method

MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 100 (0.0) | 100 (0.0) 963 (7.7) | 100(0.0) | 100(0.0) 96.9(5.9) | 985(3.0) | 76.9(7.8) | 91.9(2.6) | 988(22) | 81.0(7.2) | 94.4(2.4)
incsvdd 100 (0.0) | 100 (0.0) 98.1(4.4) | 100(0.0) | 100(0.0) 97.4(53) | 98.6(33) | 65.7(11.6) | 89.4(2.1) | 99.0(2.2) | 743(86) | 93.6(1.7)
v-SVM 100 (0.0) | 100 (0.0) 99.6(0.9) | 100(0.0) | 100(0.0) 99.5(1.6) | 99.7(0.8) | 98.7(04) | 98.8(1.9) | 99.8(0.6) | 99.6(04) | 99.1(2.0)
Nearest Neighbour | 97.6 (4.9) | 100 (0.0) 85.9(14.1) | 99.4(0.8) | 100(0.0) 949(41) | 97.6(L.1) | 925(3.4) | 943(22) | 981(0.9) | 921(32) | 958(2.5)
MST 100 (0.0) | 100 (0.0) 786 (16.1) | 100(0.0) | 100(0.0) 87.1(8.6) | 97.8(1.5) | 993(0.2) | 91.6(6.1) | 984(1.3) | 99.3(0.2) | 93.0(4.2)
Density-Based Method
Gaussian 100 (0.0) | 100 (0.0) 97.5(7.6) | 100(0.0) | 100(0.0) 97.8(47) | 99.0(1.6) | 793(7.6) | 92.8(1.8) | 99.6(0.7) | 84.9(58) | 95.6(1.9)
MoG 100 (0.0) | 99.4(1.7) | 93.8(10.9) | 100(0.0) | 100(0.0) 96.7(6.1) | 98.0(2.8) | 782(10.5) | 91.3(32) | 98.7(1.9) | 82.0(87) | 941(3.2)
MCD Gaussian 100 (0.0) | 100 (0.0) 97.5(7.6) | 100(0.0) | 100(0.0) 98.1(4.1) | 992(1.3) | 782(6.1) | 92.8(1.9) | 99.6(0.6) | 86.1(6.5) | 95.9(1.8)
Parzen 100 (0.0) | 100 (0.0) 58.9(16.4) | 100(0.0) | 100(0.0) 79.8(13.1) | 983(1.7) | 99.3(0.2) | 844(102) | 989(13) | 99.3(0.2) 87.8(6.6)
Naive Parzen 100 (0.0) | 100 (0.0) 94.8(10.2) | 100(0.0) | 100(0.0) 958(8.0) | 99.0(24) | 95.0(3.1) | 96.2(4.0) | 989(1.9) | 98.0(1.5) | 97.1(3.2)
kNN 100 (0.0) | 100 (0.0) 97.5(7.6) | 100(0.0) | 100(0.0) 95.8(7.6) | 98.7(1.4) | 955(23) | 951(4.0) | 99.2(1.1) | 94.6(23) | 96.1(3.5)
LOF 100 (0.0) | 100 (0.0) 941(11.2) | 100(0.0) | 100(0.0) 95.6 (3.8) | 90.0(4.9) | 77.9(6.9) | 88.7(5.6) | 91.8(2.2) | 79.1(6.3) | 91.4(3.4)
Reconstruction-Based Method
PCA 95.9(4.4) | 655(6.4) | 765(1.3) | 91.7(7.3) | 542(47) | 82.5(45) | 744(81) | 33.7(2.9) | 82.8(2.8) | 771(6.1) | 32.1(2.2) 86.7 (1.0)
Auto - encoder 99.5(1.8) | 97.1(9.2) | 92.5(10.8) | 99.4(23) | 97.7(7.0) | 957(63) | 93.4(7.9) | 69.4(19.7) | 90.0(52) | 95.1(5.9) | 71(20.9) 926 (4.1)
SOM 100 (0.0) | 100 (0.0) 947(9.0) | 100(0.0) | 100(0.0) 962 (5.4) | 93.8(5.5) | 69.0(18.9) | 889(59) | 99.1(23) | 955(10.9) | 97.4(3.7)
K-means 100 (0.0) | 100 (0.0) 99.3(1.8) | 100(0.0) | 100(0.0) 98.0 (4.3) | 99.7(0.8) | 98.4(0.6) | 98.5(3.2) | 99.8(0.6) | 993(03) | 99.0(2.4)
3. The Third Case of Infection (Flu)
Table 7: Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with 48
hours moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 93.5(53) | 79.8(53) | 848(82) | 963(24) | 77.7(42) 91.8(4.6) | 959(3.6) | 69.8(43) | 93.3(3.0) | 963(23) | 68.9(3.0) | 95.1(1.3)
incsvdd 928(52) | 744(3.6) | 828(73) | 95.7(24) | 76.7(4.1) 91.4(45) | 952(34) | 67431 | 93.0(23) | 955(22) | 69.6(24) | 94.9(1.5)
v-SVM 94.7(33) | 641(0.4) | 83.2(1.7) | 97.7(2.1) | 80.2(0.3) 91.7(1.6) | 96.5(24) | 67.4(0.6) 87.8(23) | 97.4(15) | 753(02) | 90.8(1.9)
Nearest Neighbour | 91.8(12.7) | 92.1(14) | 87.0(8.8) | 962(13) | 92.1(0.8) 929(5.8) | 929(3.1) | 81.6(3.8) | 924(5.6) | 93.6(23) | 81.5(34) | 94.9(2.8)
MST 943 (41) | 922(1.9) | 746(22.3) | 97.0(1.8) | 94.2(0.8) 85.9(14.8) | 94.0(3.0) | 89.4(L1) | 91.1(6.5) | 95.6(1.3) | 89.4(1.1) | 93.7(4.2)
Density-Based Method
Gaussian 96.0 (2.1) 883 (1.1) | 86.0(18.6) | 983(1.5) | 89.4(1.5) 94.8(6.5) | 97.1(1.7) | 87.0(0.6) | 96.5(1.8) | 97.9(1.2) | 88.0(0.6) | 97.7(1.0)
MoG 95.0 (4.5) 851(43) | 841(162) | 981(1.6) | 882(2.5) 931(7.9) | 96625 | 82155 | 947@&1) | 972(1.7) | 87.1(1.6) | 96.62.5)
MCD Gaussian 95.9 (2.1) 88.1(1.3) | 85.9(18.6) | 987 (1.4) | 89.4(1.9) 94.9(6.2) | 97.0(1.6) | 86.9(0.6) | 96.5(1.7) | 98.0(1.2) | 88.1(0.6) | 97.8(0.9)
Parzen 941(42) | 97.8(0.5) | 588(24.5) | 97.2(1.9) | 96.5(0.5) 780 (20.0) | 951(32) | 91.6(17) 86.2(9.3) | 96.7 (1.8) | 92.0(1.7) 89.4 (7.1)
Naive Parzen 93.4 (4.2) 80.5 (3.4) 83.9(10.9) | 97.3(2.0) | 812(42) 90.5(89) | 952(34) | 80.1(0.4) | 93.8(42) | 95.9(23) | 802(0.0) | 949(25)
kNN 94.0 (4.5) 85.724) | 841(17.7) | 97224 | 880(2.7) 925(7.7) | 95.7(24) | 85.4(0.5) | 93.9(6.4) | 965(1.8) | 85.6(0.6) | 96.7(2.6)
LOF 91.9 (4.3) 86.7(1.2) | 80.9(11.2) | 93.5(2.8) | 84.0(7.1) 90.9 (4.9) | 921(3.0) | 844(23) | 923(54) | 93.8(22) | 83.7(45) | 95.4(3.3)




Reconstruction-Based Method
PCA 97.5 (2.6) 87.5(1.4) | 88.4(14.5) | 98.6(1.2) | 89.1(1.2) 945(5.2) | 972(1.4) | 851(0.9) | 96.7(18) | 97.9(1.1) | 86.7(0.5) | 97.5(1.2)
Auto — encoder 91.6 (8.2) 81.7 (12.4) | 84.4(14.0) | 954(3.5) | 84.5(8.9) 921(8.0) | 93.6(4.0) | 79.4(10.9) | 94.4(41) | 94.4(4.0) | 80.0(12.9) | 96.2(2.4)
SOM 90.7 (4.8) 843(4.0) | 821(18.1) | 93.9(24) | 83.6(5.1) 916 (7.6) | 931(2.7) | 79.6(5.7) | 949(2.8) | 943(22) | 824(43) | 96.5(1.8)
K-means 91.9(6.9) | 78.7(12.8) | 81.8(147) | 971(2.7) | 863 (6.4) 93.8(5.8) | 96.0(2.6) | 84341 | 95.6(3.4) | 96.7(1.8) | 86.4(0.9) | 96.9(1.9)
4. The Fourth Case of Infection (Flu)
Table 8: Average and standard deviation of AUC, specificity, F1-score for smoothed version of the data with 48
hours moving average filter and different sample size.
Fraction = 0.01
Boundary and Domain-Based Method
MOdClS 1 Month 2 Months 3 Months 4 Months
AUC Specificity F1 AUC Specificity F1 AUC Specificity F1 AUC Specificity F1
SVDD 98.8(1.3) | 93.1(24) | 91.0(80) | 95.7(24) | 83.7(5.7) | 86.9(174) | 96.9(2.0) | 83.5(3.3) | 94.6(45) | 974(1.1) | 863(57) | 92.3(11.4)
incsvdd 98.4(1.6) | 920(2.7) | 905(7.6) | 955(24) | 823(3.0) | 91.9(63) | 96.6(22) | 83.2(23) | 947(40) | 973(1.0) | 83.3(2.6) | 96.1(2.9)
v-SVM 99.6(0.6) | 93.4(0.0) | 96.0(1.4) | 99.1(L5) | 86.7(0.3) | 94.1(2.0) | 99.2(1.2) | 85.7(0.1) | 94.2(23) | 99.4(0.8) | 87.5(0.5 | 94.9(2.8)
Nearest Neighbour | 98.7(3.3) | 100 (0.0) 88.0 (155 | 92.8(4.1) | 84.9(52) | 888(6.9) | 93.8(1.9) | 80.5(3.6) | 923(3.6) | 943(1.7) | 80.8(37) | 94.2(2.5)
MST 99.6 (0.8) | 100 (0.0) 70.8(182) | 97.8(0.8) | 97.0(1.0) | 863(11.1) | 981(0.8) | 96.8(1.2) 90.5(7.3) | 98.4(0.5) | 97.0(L.0) | 929(5.1)
Density-Based Method
Gaussian 99.5(1.0) | 96.8(1.5) | 91.0(13.7) | 99.5(0.8) | 89.9(2.6) | 950(5.1) | 99.7(0.7) | 93.2(1.6) | 97.2(4.0) | 99.8(0.4) | 944(14) | 97.9(2.6)
MoG 99.5(1.1) | 99.9(0.6) 89.7(16.5) | 993(1.1) | 893(3.9) | 940(6.7) | 995(0.8) | 92.8(2.8) | 96.4(5.0) | 99.7(05) | 94725 | 97.8(3.2)
MCD Gaussian 99.5(0.9) | 963 (1.9) | 91.7(11.2) | 99.7(0.8) | 89.8(2.3) | 95.2(4.3) | 99.7(0.6) | 941(1.4) | 97.5(3.7) | 99.8(0.4) | 95.6(14) | 98.1(2.6)
Parzen 99.6 (0.8) | 100 (0.0) 38.8(14.8) | 98.6(0.9) | 100(0.0) 78.8(11.4) | 98.9(0.9) | 100(0.0) 85.9(10.0) | 99.3(0.6) | 100.0 (0.0) | 89.5(7.0)
Naive Parzen 97.6 (1.9) | 933 (2.4) 841(13.1) | 989(1.9) | 90.5(1.4) | 93.3(80) | 98914 | 91.3(13) | 952(51) | 991(1.0) | 92221 | 96.6 3.4
kNN 99.3(1.5) | 100 (0.0) 84.7(183) | 99.8(0.6) | 88.9(3.8) | 940(6.8) | 99.7(05) | 95.9(1.4) | 96.8(54) | 99.8(0.4) | 99.1(04) | 98.0(3.4)
LOF 99.1(1.4) | 100 (0.0) 85.7(19.6) | 96.8(1.8) | 83.5(6.1) | 90.1(7.1) | 983(1.6) | 84.9(5.2) 93.5(4.8) | 983(1.3) | 85.4(5.0) | 942(3.9)
Reconstruction-Based Method
PCA 993(1.1) | 96.2(45) | 89.8(15.5) | 99.7(0.6) | 90.7(3.2) | 96.3(1.5) | 99.8(0.4) | 95.9(1.4) | 98.3(1.6) | 99.9(0.3) | 96.3(1.5) | 98.6 (1.4)
Auto - encoder 98.6 (3.6) | 96.6(7.0) 88.6 (16.3) | 96.6(4.1) | 83 (14.1) 924 (6.1) | 96.8(4.6) | 843(155) | 951(44) | 97.5(3.2) | 86.1(11.3) | 96.6 (2.8)
SOM 99.1(1.9) | 100(0.2) 84.9(18.9) | 93.5(22) | 841(54) | 91.4(59) | 93.9(24) | 84.6(53) | 93.2(44) | 952(34) | 883(59) | 9%6.2(3.1)
K-means 99.3(1.4) | 99.4(1.7) 88.4(18.2) | 98.7(1.9) | 85.6(5.2) | 93.2(4.6) | 993(1.1) | 93.7(3.8) | 96.5(43) | 99.8(04) | 96.1(24) | 97.9 (2.9)
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Abstract

Background: Infection incidences are often associated with problematic BG management and
people with type 1 diabetes usually face challenges to control BG in range throughout the period.
A recent study has characterized infection states in people with type 1 diabetes and put forward
diabetes profiles such as blood glucose levels, insulin injection, carbohydrate consumption, and
the ratio of insulin-to-carbohydrate as optimal parameters to devise an infection detection model.
Further, another study has devised a bivariate infection detection model and demonstrated the
potential of blood glucose levels and insulin-to-carbohydrate ratio. Inspired by these previous
studies, this study aims to investigate the potential of insulin and meals profile as event indicator
variables by using the insulin-to-carbohydrate ratio as a sole input parameter.

Objective: The study aims to realize an infection detection model exploiting insulin and carbs
profiles from people with type 1 diabetes under free-living conditions, where the ratio of insulin-
to-carbohydrate is computed on a time bin basis to form an input feature.

Method: One-class classifier and unsupervised methods were tested and evaluated. The models
were evaluated based on three attributes; data granularity, data nature, and sample sizes. Three
different metrics; area under the ROC curve (AUC), specificity, and F1-score were used to measure
(quantify) the modes performances. A self-management dataset incorporating nine patient-years
captured within the longitudinal records of 3 people with type 1 diabetes were used. The dataset
consists of different parameters, however, only insulin and carbohydrate profiles were used as
input features to the models. All experiments were performed using MATLAB®2018b
(Mathworks, Inc, Natwick, MA). Further, the results are compared with previously published
results.

Result: The models generally demonstrated excellent performance in describing the data as well
as detecting the infection episodes. Generally, for a small sample size, the boundary and domain-
based method, especially the v-SVM, performed better. However, with larger sample size, all three
categories produced a comparable description of the data. Unsupervised models tested on the same
dataset produced comparable performance, however, one of the drawbacks of the unsupervised
models is that they require a pretty large data size to produce comparable performance.



Conclusion: Apart from its significance in outbreak detection, detecting infection episodes among
people with type 1 diabetes can be useful for the individuals. In this regard, this study has
demonstrated the potential of insulin and carbs profile in detecting infection episodes among this
group of peoples. Generally, the proposed approaches have demonstrated superior performance in
detecting deviations from the norm due to infection onset. In comparison to each particular model
from their respective groups, v-SVM, K-means, KNN, and Gaussian families achieved better
performance on average in all the infection states. In general, we foresee that the presented results
could further encourage researchers to examine additional features on a large scale basis on top of
the presented features.

Keywords: Type 1 Diabetes mellitus, Self-recorded data, Detecting Infection incidence, Decision
support system, Outbreak detection system, Digital infectious disease detection system.

1. Introduction

Individualized surveillance refers to tracking the individual health status for detecting infectious
disease outbreak among the public, and is believed to have a promising potential to revitalize the
surveillance systems [26; 30; 49; 50]. In this regard, individualizing the surveillance effort can add
double benefits; can monitor and notify any potential health changes to the individual and at the
same time can deliver the information necessary for detecting infectious disease outbreaks [49]. In
this kind of surveillance, the case detection needs to be realized by a personalized health model
that can continuously examine the individual health status and detect when the individual becomes
infected. The main drivers behind the conception of such a model are the rapid progress in
information and communication technology, and the widespread availability of different
smartphones and wearables equipped with a variety of physiological sensors, which created a
suitable platform to easily self-track health data [17; 26; 28; 33; 35]. These technologies are
increasingly been integrated into our daily life for a variety of reasons ranging from fitness tracking
to managing diseases [3; 13; 14; 16; 17; 21; 34; 48]. As a result, a huge amount of data are being
recorded on a daily basis that grows at an unprecedented rate [12; 36; 47]. The existence of these
data is the cornerstone in the effort towards individualizing the surveillance systems. In this regard,
for instance, recent studies have shown the feasibility of smartwatches and wearable technology
in monitoring, detecting, and predicting illness [5; 22; 25; 26; 33; 45].

Further, self-recorded health-related data from people with type 1 diabetes could be one potential
choice, which is becoming rich in both quality and quantity as a result of advancement in diabetes
technologies [1; 2; 4]. Type 1 diabetes is a chronic disease that results in a lack of blood glucose
control as a result of insulin deficiency within the body [7; 9]. This group of patients is expected
to follow complex treatment regimens to control their blood glucose levels within the
recommended targets including tracking blood glucose levels throughout the day, administrating
balanced insulin while considering factors like blood glucose levels, meal intake, physical activity,
and other possible factors. Recently, Woldaregay et.al. [50] has carried out a retrospective
numerical analysis to study the effect of infection episodes (flu) on the key parameters of the blood
glucose dynamics as an effort to pinpoint parameters for realizing a personalized health model in
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individuals with type 1 diabetes. The study characterized infection states in this group of people
by the presence of elevated BG levels, alteration in carbohydrate intake, and actions of the patient
to lower it down e.g. enhanced and frequent insulin injection as compared to the regular days [50].
Further, Woldaregay et.al. [49] have developed a personalized health model using blood glucose
levels and insulin-to-carbohydrate ratio as input features to the algorithm and demonstrated the
success of the models in detecting infection state from the regular days. To this end, the aim of
this study is twofold; to demonstrate the potential of using the insulin-to-carbohydrate ratio as an
input feature to the algorithm, and further, compare the performance with the results presented in
[49] using both blood glucose levels and insulin-to-carbohydrate ratio as input feature. Therefore,
the purpose is to develop a personalized computational model for continuous and automatic
detection of infection states in people with type 1 diabetes under free-living conditions using
insulin and meals profile as event indicator variables, in which the ratio of insulin-to-carbohydrate
is computed on a time-bin basis to form the input feature. This univariate input feature presents an
advantage when there is a lack of access to blood glucose measurements. As a point anomaly, each
point in the time-series of the ratio is evaluated against a reference description generated by the
models to determine its degree of normality.

2. Materials and Methods

2.1. Materials

Both real and simulated infection episodes were used to evaluate the performance of the models.
The dataset consists four patient-years with real influenza episodes and five regular patient-years
with simulated infection episodes, detailed description of the dataset can be found from [49; 50],
the participants characteristic is given in Table 1. The dataset consists of different BG dynamics
parameters including blood glucose (BG), insulin, and carbohydrate information, however, the
study has made use of only insulin and carbohydrate information. Moreover, based on the
description provided in [50] and considering pathogen-specific deviations, infection states of
different sizes and shapes were simulated and injected into the regular patient-years for
performance evaluations. The simulated infection states were 10%, 20%, 30%, and 40%
simultaneous deviation, i.e. higher insulin and lower carbohydrate by the same factor, from the
total insulin and carbohydrate profile of individuals, as shown in Figure 1. The simulated infection
states were used to assess the model’s performance to a different degree of infection-induced
changes from small to large changes in the individual BG dynamics. This directly corresponds to
the fact that different pathogens induce a various degree of deviation on BG dynamics. The study
protocol has been reviewed by the Norwegian Regional Committees for Medical Health Research
Ethics Northern Norway (REK) (Reference number: 108435). Written consents have been
obtained and the participants have donated the datasets. All the data from the participants are
anonymized. All experiments were performed using MATLAB®2018b (Mathworks, Inc,
Natwick, MA).
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Figure 1: Characteristics of the input feature, i.e. insulin to carbohydrate ratio, with simulated
infection states of varying degree and shape (o = 0%, 10%, 20%, 30%, and 40%).

Table 1: Participants characteristics [50].

Gender 2 males and 1 female

Age 34 +13.2 years

Bodyweight Subject 1 (83 kg), Subject 2 (77kg), Subject 3 (70kg)
HbA1lc Subject 1 (6.0%), Subject 2 (7.3%), Subject 3 (6.2%)

Carbohydrate counting  Level 3 (advanced)

2.2. Models, Optimizations, Evaluations, and Performance Metrics

Almost the same group of models used in Woldaregay et.al. [49], i.e. one-class classifier and
unsupervised methods, is used in this study but the models are tested and evaluated using only the
insulin-to-carbohydrate ratio. Description of the models are given in Table 2, and further details
can be found in [49]. The ratio was labeled as a set of target and non-target data. All the data,
which are a regular period of the year was set as a target. The period containing the infection
episode was set as a non-target. The one-class classifier models were trained on the target and
tested using a dataset containing both the target and non-target data. 10 times 3-fold stratified
cross-validation was used to evaluate the performance of the one-class classifier. Regarding the
unsupervised method, no data labeling is required, and hence the entire patient-year was presented
at once [49]. The one-class classifiers were evaluated and compared based on three features; data
granularity, i.e. hourly and daily, data nature, i.e. raw and smoothed (2 days moving average), and
different training sample sizes, and the unsupervised methods were evaluated with the same
features but sample sizes. Further, the model’s performance is compared with the results reported
in Woldaregay et.al. [49].



The hyper-parameters of most of the one-class classifier models, i.e. complexity parameter y, were
optimized based on the consistency approach [44; 49] except for Parzen, and NN, which was
optimized by using the leave-one-out error. Min-max was used for normalizing the dataset [19].
For MST, the complete MST is selected. In all the cases, a pre-specified threshold of outlier
fraction in the training dataset was set to be &' = 0.01, where one percent of the most dissimilar
target data could be excluded from generating the data description. The number of neighbors (K)
in both local outlier factor (LOF) and connectivity-based outlier factor (COF) is determined based
on repeated experiments. The model’s performance was evaluated for each individual’s dataset
and reported using three performance metrics; m runs average and standard deviation of the area
under the receiver operating characteristic (AUC), specificity, and F1-score. Comparison of the
overall models' performance among all the individual's dataset was carried based on these metrics,
however, for the sake of clarity, the findings are depicted in terms of F1-score, given its practical
implication, and the rest of the metrics values are given in Appendix A. The models were
implemented using MATLAB toolbox, ddtools, prtools, and Anomaly detection toolbox [10; 11;
40].

Table 2: The models tested. BD = boundary and domain-based, DN= density-based, RE =
reconstruction-based methods [49].

Models One-class classifier | Unsupervised
Support vector data description (SVDD) [39; 40; 43] N BD X
One-class support vector machine (v-SVM) [32] N BD X
Nearest neighbor (NN) [27; 38; 39; 42] N BD X
Minimum spanning tree (MST) [18] N BD X
Gaussian [27; 38; 40; 41] N DN X
Minimum covariance Gaussian (MCGQG) [29; 38] N DN X
Mixture of Gaussian (MOG) [38; 40] v DN X
Parzen [23; 27; 38; 41] v DN X
Naive Parzen [38; 40] N DN X
k-nearest neighbor (KNN) [27; 38; 41] N DN X
Local outlier factor (LOF) [6; 40] N DN N
K-means [40] N\ RE X
Self-organizing map (SOM) [39; 40] \ RE X
Auto-encoder network (AE) [38; 39] N RE X
Connectivity-based outlier factor (COF) [37] X N

3. Results

The models were tested and evaluated using the ratio of insulin-to-carbohydrate as the sole input
parameters. As a point anomaly, each point in the time-series of the ratio is evaluated against a
reference description generated by the models to determine its degree of normality. As per the



findings, generally, the models exhibit performance variations with different sample sizes, as
shown in Figure 2-4, and the degree of these variations is mainly dependent on the data nature
and granularity. As a rule of thumb, a sample size of 2 months for the daily raw data, 1 month for
the daily smoothed data, and 2 months for the hourly data could be sufficient to start with when
the individual participants join the system. Smoothing allows the models to generate excellent
description compared to the raw dataset. In general, among the three methods, the boundary and
domain-based method produced a better performance with a 1-month sample size in both data
granularities. For a higher sample size, all the three methods achieved comparable description with
the raw and smoothed daily data, and the density and reconstruction-based methods are better with
the hourly data. In particular, on average, v-SVM produced a better performance from 1-month
sample size and all the models achieved comparable performance for the higher sample size except
NN. The performance (score) plot of the models can be found in Appendix B, which depicts the
capability of each model in detecting the infection episode from the regular period. These models
were trained on a random block of 120 regular days (4 months) of the patient year and tested on
the entire patient-year.

3.1. One class classifier

3.1.1. Daily raw dataset

This input feature depicts the original pre-processed data without smoothing and can contain short
and fast-scale features, which could affect the model’s generalization. As expected, as shown in
Figure 2, the models suffer in performance degradations, where the models’ performance exhibits
wider variations. Increasing the sample size has shown some improvement on the models’
descriptions, specifically after the three-month sample size. As compared to the other group of
methods, the boundary and domain-based method, specifically v-SVM, performed better with a 1-
month sample size. With a two-month sample size, all the three methods demonstrated significant
improvement, and all the models except NN generated comparable description. For higher sample
sizes (three and four-month), there is no difference among all the three groups of methods, and the
worst model being NN. Overall, a model such as v-SVM performed better with the 1-month sample
size, and except NN, all the other models achieved comparable performance. As the sample size
increase, all the models except NN improved and produced comparable performances.



A) One-Month Daily Raw Dataset B) Two-Month Daily Raw Dataset
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Figure 2: Univariate input feature - The models’ median and average F1-score over the daily raw
datasets.

3.1.2. Daily smoothed dataset

This input dataset is a filtered (smoothed) version of the raw dataset with fewer short-term and
fast-scale features, and generally, the models are expected to generate improved description
compared to the raw version. As compared to the raw dataset, as expected, the models have
achieved significant performance improvement, as shown in Figure 3. In this specific dataset,
increasing the sample size has little effect on performance improvement as the models have already
achieved better description with lower sample sizes. As compared to the other group of methods,
the boundary and domain-based method, specifically v-SVM, performed better with a 1-month
sample size. With a two-month sample size, all the three methods improved, and boundary and
domain-based method (i.e. v-SVM and MST), density-based method (i.e. Gaussian families, LOF
and K-NN), and reconstruction based method (i.e. K-means) performed better. For higher sample
sizes (three and four-month), all three methods generate comparable performances, and all the
models produced similar descriptions except NN, which produces the worst description. Overall,
on average, models such as v-SVM and MST achieved relatively greater performance in all the
sample sizes, while all the other models except NN achieved a comparable description with two
and more sample sizes. Generally, as the sample size increases, all the models except NN achieved
comparable performance.
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Figure 3: Univariate input feature - The models’ median and average F1-score over the daily
smoothed datasets.

3.1.3. Hourly smoothed dataset

The hourly dataset is a filtered version depicting the relationship between the average blood
glucose levels and the ratio. However, in the univariate sense, only the user’s estimated carb
consumption and insulin requirements within each hour of the day are considered. It is obvious
that increasing the data granularity could provide finer details and therefore early detection,
however, at the cost of unwanted features, which might become very significant as the level gets
higher. Therefore, as expected, despite presenting a large sample size and smoothing the data, as
can be seen from Figure 4, the models exhibit high variance as compared to the daily smoothed
dataset. As compared to the other group of methods, the boundary and domain-based method,
specifically v-SVM, performed better with a 1-month sample size. With a two-month sample size,
all the three methods improved, and boundary and domain-based method (i.e. v-SVM, and SVDD),
density-based method (i.e. Gaussian families, LOF, Parzen, Naive Parzen, and K-NN), and
reconstruction based method (i.e. SOM and, K-means) performed better. For higher sample sizes
(three and four-month), all three methods generate comparable performances, and the models
achieved somewhat comparable descriptions except NN, which generated the worst description in
all the sample sizes. Generally, increasing the sample size has helped the models to capture the
data distribution better. Overall, models such as v-SVM achieved relatively greater performance
with a 1-month sample size, while models such as Gaussian families and K-means achieved better
descriptions with higher sample sizes.
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Figure 4: Univariate input feature - The models’ median and average F1-score over the hourly
smoothed datasets.

3.1.4. Models performance with a different level of deviations

As described in the method section, the simulated data depicts a two-week-long simulated
infection triggered deviations that were injected into each of the five regular patient-years.
Simultaneous deviations of a = 10%, 20%, 30%, and 40% were added to the daily aggregated
insulin and carbohydrate values. The models were trained with 4-month sample size, and their
performance was evaluated and compared on the raw and smoothed version of each patient-years.
For the sake of clarity, the median and average performance (F1-score) are presented. As shown
in Figure 5, with increasing deviation a, the model’s detection performance improves. In a
comparison of the data types, the models achieved better detection performance with the smoothed
dataset. Detecting infection states that induce very small deviations, i.e. a < 10% change, requires
training the models with a suitable threshold that could reject outliers in the training dataset that
exceeds the induced deviations (i.e. o < 10%). However, this could in turn increases the false alarm
rate and make the model less sensitive flagging regular days as an infection state. In this regard,
for an application that involves detecting an infection state, it is necessary to favor the inclusion
of some of the less significant outliers in the data description to avoid frequent false alarm,
however, at the expense of missing infection state that induces small deviations (i.e. o < 10%) on
the blood glucose dynamics. Per the findings, with o = 10%, the density-based method performed
a better detection task, and specifically, MOG achieved better description. In this regard, generally,
the Gaussian family achieved better performance with the raw dataset, however, all the models
achieved comparable descriptions except NN with the smoothed dataset. It is better to note that,
despite the small deviation (oo = 10%), smoothing the data has helped the models to achieve good
descriptions. For a = 20%, among the three methods, the density-based method (i.e. Gaussian
families, Parzen and naive Parzen) and reconstruction-based method (i.e. SOM and K-means)
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achieved better description with the raw data, and regarding the smoothed data, the boundary and
domain-based method (i.e. SVDD, and v-SVM), density-based method (i.e. Gaussian families, and
K-NN) and reconstruction based method (i.e. SOM, and K-means) achieved relatively better and
comparable performance. For o = 30%, the density-based method performed better, and
specifically, Parzen and naive Parzen achieved slightly better performance with the raw data, and
almost all the models except the nearest neighbor achieved comparable performance with the
smoothed dataset. For a = 40%, all the three methods achieved comparable performance, and all
the models except NN achieved comparable performances.
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Figure 5: Univariate input feature - median and average performance (F1-score) of the models
over the five patient years injected with different degree of deviations.

3.2.  Unsupervised method

For comparison purposes, this section presents the performance of two density-based unsupervised
models, LOF and COF, using a univariate input, i.e. the insulin-to-carbohydrate ratio, as given in
Figure 6. The performance of these models was compared based on the data nature (raw and
smoothed), and data granularity (daily and hourly). For the sake of clarity, the average
performance of each model was computed using their respective performance on the individual
infection states with different data granularity, and the nature of data and the details can be found
in Appendix A. The optimal threshold and number of neighbors were selected after performing
repeated evaluations for different combinations of values. The optimal threshold values used in
the model evaluation are given in Table 3. As can be seen from the figure, smoothing the daily
dataset significantly improved the models’ performance. As expected, despite the smoothing the
hourly dataset yields inferior performance to the daily scenario, due to the presence of unwanted
short-term and fast-scale features as a result of higher data granularity. In general, both these
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models achieved comparable performance in all the infection states. Regarding the raw dataset,
LOF showed a slight edge over the COF. For the hourly and daily smoothed dataset, both the
models achieved comparable performance. The performance (score) plot of the models can be
found in Appendix B, depicting the capability of each model in detecting the infection state from
the regular period. These models were tested on the entire patient-year.

A) Daily Raw Dataset B) Daily Smoothed Dataset
100 T T T T 100 T
80 - b 80 -
60 - b 60 -
40 - 1 40 -
20 - b 20 -
0 0
1st PYr 2nd PYr 3rd PYr 4th PYr 1st PYr 2nd PYr 3rd PYr 4th PYr
ILOF
IcoF
C) Hourly Dataset - D) Average
1st PYr 2nd PYr 3rd PYr 4th PYr Daily Raw Daily Smoothed Hourly

Figure 6: Univariate input features - performance comparison (F1-score) of the unsupervised
models using univariate input, i.e. insulin to carbohydrate ratio.

Table 3: Univariate input features - optimal values of thresholds used in performance evaluation.
The values given as Th are the optimal threshold values used for each patient-year, h depicting that
particular year.

Granularity Pre-pro. Model (Thresholdpatient-year)

LOF (T1=2.7, T2=15, T3=2.95, T4=2.2)
COF (T1=1.4,T2=1.1, T3=2.3, T4=1.8))
LOF (T1=1.9, T2=1.9, T3=2.8, T4=2.8))
COF (T1=1.6, T2=1.5, T3=2.8, T4=3.1))
LOF (T=1.9, T2=1.6, T3=1.2, T4=1.7))
COF (T1=1.6, T2=1.3, T3=1.2, T4=1.3))

Without filter
Daily
With filter

Hourly With filter

4. Discussion

4.1. Principal finding
Recently, Woldaregay et.al. [50] have characterized infection states in people with type 1 diabetes
by the presence of elevated BG episodes, alteration in carbohydrate intake, and actions of the
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patient to lower it down, e.g. enhanced and frequent insulin injection as compared to the regular
days. The study has put forward diabetes profiles such as blood glucose levels, insulin injection,
carbohydrate consumption, and the ratio of insulin-to-carbohydrate as optimal parameters to
devise an infection detection model. Further, Woldaregay et.al. [49] have devised a bivariate
infection detection model and demonstrated the potential of blood glucose levels and insulin-to-
carbohydrate ratio. Inspired by these previous studies, this study aims to demonstrate the potential
of insulin and meals profile as event indicator variables by using the insulin-to-carbohydrate ratio
as a sole input parameter to the model, where the ratio of insulin-to-carbohydrate is computed on
a time bin basis to form an input feature. The performance evaluation of the models demonstrated
the potential of the insulin and meals profile as event indicator variables for detecting the infection
states from the regular days. Generally, for a small sample size, the boundary and domain-based
method, especially v-SVM, performed better. However, for a larger sample size, all three
categories produced a comparable description of the data. In comparison to each particular model
from their respective groups, v-SVM, K-means, KNN, and Gaussian families achieved better
performance on average in all the infection states.

4.2. Comparison of input features

4.2.1. One class classifier

The performance of any model can be greatly affected by the input features selected for modeling
[46]. In this regard, comparative analysis of the performance achieved in this study with a
univariate input, i.e. insulin to carbohydrate ratio, and a bivariate input, i.e. blood glucose levels
and insulin to carbohydrate ratio presented in Woldaregay et. al. [49] are performed. As shown in
Figure 7-9, except under certain circumstances, where both achieved comparable performance,
the univariate input feature-based models displayed superior performances. However, despite the
improved performance one of the drawbacks of the univariate input feature-based models
emanates from the fact that these models cannot differentiate between high ratio values that arise
due to infection episode or just a regular day. In this regard, it worth mentioning that theoretically,
a very large ratio is considered as normal value as long as the individual blood glucose levels go
to the hypoglycemia state responding to the high insulin injection and low carbohydrate intake
[31; 49; 50], and however, the univariate input feature-based models consider such a situation as
abnormal by just looking upon the ratio values as outliers. However, it should be noted that in
practical settings such incidence might be fatal for the individuals and might end up being
unconscious and sometimes dead [8; 20], and therefore, such ratio values might be almost non-
existent in a practical sense. Therefore, it can be concluded that the univariate input could do the
same task as the bivariate input when it comes to detecting infection incidences, i.e. large ratio
values, despiting lacking the capability to differentiate between these ratio values. As compared to
the bivariate input feature-based model, the other drawbacks of the univariate input feature-based
model are related to the fact that this model might sometimes generate a false alarm in rare
situations that are very sparse, i.e. too small values not included in training the models. This rare
situation can be manifested in the individual’s blood glucose management practice, for instance,
if the patient on random days prefers to replace insulin requirement with physical exercise/activity
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sessions, this instance could end up with a very small insulin-to-carbohydrate ratio and be flagged
as a false alarm. In these circumstances, without the blood glucose level feature, it will remain
difficult for the models to differentiate between the normality or abnormality of a small value of
the insulin-to-carbohydrate ratio. Hence, having blood glucose levels as an additional input feature
could minimize such unnecessary alarms.

A) One-Month Daily Raw Dataset
—

SVDD vSVM NN MST Gauss MoG MCD Parzen NP kNN LOF AE SOM Kmean

C) Three-Month Daily Raw Dataset
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Figure 7: Daily raw dataset - performance comparison (F1-score) of models using bivariate input,
i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input feature, i.e. insulin
to carbohydrate ratio, based on the daily raw dataset. The error bars are given in terms of the overall

mean and standard deviation of each model across all the patient-years and infection states.

13



A) One-Month Daily Dataset

B) Two-Month Daily Dataset
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Figure 8: Daily smoothed dataset - performance comparison (F1-score) of models using bivariate
input, i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input feature, i.e.
insulin to carbohydrate ratio, based on the daily smoothed dataset. The error bars are given in terms

of the overall mean and standard deviation of each model across all the patient-years and infection
states.

A) One-Month Hourly Smoothed Dataset

B) Two-Month Hourly Smoothed Dataset
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C) Three-Month Hourly Smoothed Dataset
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Figure 9: Hourly smoothed dataset - performance comparison (F1-score) of models using bivariate
input, i.e. blood glucose levels and insulin to carbohydrate ratio, and univariate input feature, i.e.
insulin to carbohydrate ratio, based on the hourly smoothed dataset. The error bars are given in
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terms of the overall mean and standard deviation of each model across all the patient-years and
infection states.

4.2.2. Unsupervised Method

The comparative analysis of the model's performance in regard to the bivariate, i.e. blood glucose
levels and insulin-to-carbohydrate ratio, and univariate input features, i.e. insulin-to-carbohydrate
ratio, is shown in Figure 10. The analysis presents a comparison of the average performance that
can be gained by utilizing either of the bivariate or univariate input features. Per the findings, the
models with a univariate input feature have achieved improved performance compared to the
bivariate input. This improvement could be linked with the discriminative power of the ratio
compared to blood glucose levels.

Il univariate
Il Bivariate

LOF Daily Raw COF Daily Raw LOF Daily Smoothed = COF Daily Smoothed LOF Hourly COF Hourly

Figure 10: Performance comparison (F1-score) of the unsupervised models using a bivariate input,
i.e. blood glucose levels and insulin to carbohydrate ratio versus a univariate input, i.e. insulin to
carbohydrate ratio, source partially from [49], Table 8.

4.3. Comparison of unsupervised versus one-class classifier methods

Generally, the comparative analysis of the performance achieved with the one-class classifier and
unsupervised methods depicts that the unsupervised method fails to achieve comparable
performance, especially with the bivariate input feature. One of the drawbacks of the unsupervised
method is related to the fact that they require a fairly large sample size to at least produce
comparable performance with the one-class classifiers [15; 49]. This characteristic can be easily
observed by looking at the performance of the unsupervised method based on the whole patient-
year and the one-class classifier trained only with four months of the patient-year. To further
illustrate the difference in performance, the comparison of the best performing unsupervised
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model, LOF, to its one-class classifier version, is given in Figure 11. As can be seen from the
figure, under almost all the circumstances the one-class classifier model achieved superior
performance. The characteristic of the data distribution, which contains a high and sparse density
pattern, could be the reason behind the performance degradation of the unsupervised method [24]
since these models expect clear demarcation between normal and abnormal values. Generally, the
state of blood glucose dynamics contains very rare events that contribute to the existence of sparse
regions within the distribution. In this regard, a typical example could be a holiday season, where
an individual happens to consume too many carbohydrates. Furthermore, the individual decision
to switch to physical activity or exercise sessions to compensate for insulin requirements could
result in a similar pattern. These sparse data or rare events are a normal portion of the data, which
needs to be treated as such by the detection methods. However, in these and other typical scenarios,
the unsupervised method could end up considering these situations as abnormal resulting in a false
alarm. In this regard, one of the main drawbacks of the unsupervised method is related to the fact
that they determine anomalies from the data themselves and, there is no mechanism to let the
model learn and accept certain sparse regions just like the one-class classifiers. Thus, the atypical
nature of the underlying data distribution affects the performance of an unsupervised method. Yet,
the one-class classifier method can handle such kind of situation if properly introduced with such
an example during the learning phase [49].
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Figure 11: Performance comparison (F1-score) of unsupervised and one-class classifier version
of the local outlier factor (LOF) model using both a bivariate input, i.e. blood glucose levels and
insulin to carbohydrate ratio, and a univariate input, i.e. insulin to carbohydrate ratio, source
partially from [49].
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Conclusion

Infection incidences are often associated with problematic BG management and people with type
1 diabetes usually face challenges to control BG in range throughout the period. Apart from its
significance in outbreak detection, detecting infection episodes among people with type 1 diabetes
can be useful for the individuals. In this regard, this study has demonstrated the potential of insulin
and carbs profile in detecting infection episodes among this group of peoples. Generally, the
proposed approaches have demonstrated superior performance in detecting deviations from the
norm due to infection onset. In comparison to each particular model from their respective groups,
v-SVM, K-means, KNN, and Gaussian families achieved better performance on average in all the
infection states. In general, we foresee that the presented approach could further encourage
researchers to examine additional features on a large scale basis on top of the presented features.
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Appendix A — Models performance using the univariate input

feature: Ratio of Insulin-to- Carbohydrate

This appendix presents the evaluation of the models in each patient-year. The performance is
depicted in terms of the area under the ROC curve (AUC), specificity, and F1-score. The table
depicts the performance of each model in regard to different evaluation criteria; 1) model
performance across each infection episode and thereby depicting performance variations among
individuals, 2) sample sizes depicts model performance with limited data sample sizes, 3) data
granularity, i.e. daily and hourly, depicts the model's performance in response to variations in detail
within the data, 4) data nature, i.e. raw and smoothed data (moving average window size = 2 days
or 48 hrs), depicts the model performance improvement gained by removing short term and fast
scale features from the data.

1. One-class classifier Method
1.1. Daily

1.1.1. The 1* Infection Episode (Flu)

Table 1: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction = 0.01
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Table 2: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

1.1.2. The 2" Infection Episode (Flu)

Table 3: Univariate Input Raw Data (different sample sizes) - Average and standard deviation (F1-
score, AUC, specificity).

Fraction = 0.01
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Table 4: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

1.1.3.  The 3" Infection Episode (Flu)

Table 5: Univariate Input Raw Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction = 0.01
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Table 6: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

1.1.4. The 4™ Infection Episode (Flu)

Table 7: Univariate Input Raw Data (different sample sizes) - Average and standard deviation (F1-
score, AUC, specificity).

Fraction = 0.01
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Table 8: Univariate Input Smoothed Data (different sample sizes) - Average and standard deviation
(F1-score, AUC, specificity).

Fraction = 0.01

1.2. Hourly

1.2.1. The 1% Infection Episode (Flu)

Table 9: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01
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1.2.2. The 2" Infection Episode (Flu)

Table 10: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

1.2.3. The 3" Infection Episode (Flu)

Table 11: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01
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1.2.4.The 4th Infection Episode (Flu)

Table 12: Univariate Input Smoothed Data (different sample sizes) - Average and standard
deviation (F1-score, AUC, specificity).

Fraction = 0.01

2. Unsupervised Method

Table 13: Univariate Input Raw and Smoothed Data for both the daily and hourly data granularity
- Average and standard deviation (F1-score, AUC, specificity). The parameters kd, and kn represent
the optimal number of nearest neighbors for the daily and hourly cases respectively.

Density-Based Methods
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Appendix B - Score plot of the models using the univariate input

feature: Ratio of Insulin to Carbohydrate

The following appendix presents the performance score of the different models evaluated in the
dissertation using univariate input — insulin-to-carbohydrate ratio. Both the one-class classifiers
and unsupervised models were tested. For the one-class classifier models, a random block of a 4-
month sample size from each patient-year was used to train the models and evaluated with the
whole patient-year — containing both the regular and infection days. Unsupervised models were
tested with the whole patient-year. The smoothed version of the dataset is used and the models
were tested with both the hourly and daily datasets. The score plot of the models is given below,
and, as can be seen from the figures, each model generated different scores and rejected varying
portions of the infection episodes.

1. One-class classifier Method
1.1. Daily

1.1.1. The First Infection Episode (Flu)

Boundary and Domain based Methods

Daily Average BG Vs. Insulin to Carbs Ratio

]
H
H
sl | |

]
H
3

H
g
sl | |

Figure 1: Boundary and domain-based method.
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Figure 2: Density-based method.

Figure 3: Reconstruction-based method.
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1.1.2. The Second Infection Episode (Flu)
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Figure 5: Density-based method.
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Figure 6: Reconstruction-based method.

1.1.3. The Third Infection Episode (Flu)

Figure 7: Boundary and domain-based method.
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Figure 8: Density-based method.
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Figure 9: The score of the reconstruction-based method on the whole patient-year.
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1.1.4. The Fourth Infection Episode (Flu)
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Figure 10: Boundary and domain-based.
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Figure 11: Density-based method.
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Figure 12: Reconstruction-based method.

1.2.  Hourly

1.2.1. The First Infection Episode (Flu)

Figure 13: Boundary and domain-based method.
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Density based methods
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Figure 14: Density-based method.
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Figure 15: Reconstruction-based method.
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1.2.2. The Second Infection Episode (Flu)

Boundary and Domain based Methods
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Figure 16: Boundary and domain-based.

Density based methods
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Figure 17: Density-based method.
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Figure 18: Reconstruction-based method.

1.2.3. The Third Infection Episode (Flu)
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Figure 19: Boundary and domain-based method.
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Density based methods
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Figure 20: Density-based method.
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Figure 21: Reconstruction-based method.
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1.2.4. The Fourth Infection Episode (Flu)
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Figure 22: Boundary and domain-based method.

Density based methods

Insulin to Carbs Ratio

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Normal Gaussian
° (D2 vV Y R R STy " P
§-20
i L ' | | | | 1 L
0 1000 2000 3000 40 0 6000 7000 8000 9000

00 500
MCD Gaussian
o

0 1000 2000 3000 4000 5000 6000 7000 8000 2000
Number of Hours

Figure 23: Density-based method.
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Figure 24: Reconstruction-based method.

2. Unsupervised method
2.1. Dalily
2.1.1. The First Infection Episode (Flu)

Figure 25: LOF and COF (k = 30 data points).
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2.1.2. The Second Infection Episode (Flu)

Figure 26: LOF and COF (k = 30 data points).

2.1.3. The Third Infection Episode (Flu)

Figure 27: LOF and COF (k = 30 data points).
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2.1.4. The Fourth Infection Episode (Flu)
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Figure 28: LOF and COF (k = 30 data points).

2.2. Hourly
2.2.1. The First Infection Episode (Flu)

Insulin To Carbohydrate Ratio
T T J_Vi

el 1 1 1 | |
e
S

0 1000 2000 3000 4000 5000 6000 7000 8000

LOF (k=240)
T

1 T T f

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

COF (k=240)
I

% 1000 2000 3000 40

00 5000 6000 7000 8000 9000
Number of Hours

Figure 29: LOF and COF (k = 240 data points).
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2.2.2. The Second Infection Episode (Flu)
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Figure 30: LOF and COF(k = 240 data points).

2.2.3. The Third Infection Episode (Flu)
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Figure 31: LOF and COF(k = 240 data points).
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2.2.4. The Fourth Infection Episode (Flu)
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Figure 32: LOF and COF(k = 240 data points).
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Abstract. The rapid improvement in mobile health technologies revolutionized what
and how people can self-record and manage data. This massive amount of
information accumulated by these technologies has potentially many applications
beyond personal need, i.e. for public health. A challenge with collecting this data is
to motivate people to share this data for the benefit of all. The purpose of this study
is to survey and examine factors that may motivate sharing this data. We asked 447
participants four questions related to health data sharing and motivation. Participants
with a chronic disease were concerned about data sharing but also willing to share
health data if personalized feedback is provided. Functionality, ease of use, and
privacy are regarded as crucial features of health apps.

Keywords. Public health, mHealth, motivation, health surveys, health data sharing.

1. Introduction

The ubiquitous nature of smartphones, wearables, and sensors have revolutionized the
way people collect health-related data. An increasing number of people collects large
amounts of data for disease-management, fitness, and self-surveillance. In a recent study,
more than 60% of American participants tracked various health parameters, including
diet, weight, and physical exercise, where 21% relied on fitness tracker technology [1].
People with chronic diseases use different technologies, e.g. mHealth apps and
continuous glucose monitors for diabetes management, collecting and processing health
data for their self-management. This data can potentially be used as a secondary source
of information for public health, including tracking of disease trends, behavioural patterns
over time, chronic diseases status, research, and policy work [2, 3, 4, 5]. The impact of
these self-collected data highly depends on people's willingness to share their data for
the intended purpose. Considering the potential of these data to inform about individual
and population health, understanding the users' expectations and willingness towards
mass data sharing is an important area of research. Various factors could affect people's
motivations to engage in mass data sharing, e.g. lack of trust, which is mainly

! Corresponding author, E-mail: andre.henriksen@uit.no ; * Authors contributed equally
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subject to data security, privacy, and confidentiality issues [6]. When sharing such data,
expectation and willingness often differ in different patient groups, as well as in healthy
people [7, 8], e.g. people with type 1 diabetes have a high need to record health data
several times per day. Here, we examine factors related to people's knowledge and
expectations toward raising motivation for sharing of health-related data and comparing
these factors across different groups.

2. Method

We created an online survey with questions related to motivational factors around
mHealth apps and data sharing. Questions were derived from 16 in-person interviews [6].
The survey was conducted among English-speaking internet users in a Swiss cohort of
healthy people and also in English and Norwegian online diabetes groups. We collected
data between 11/2018 and 08/2019. The questions related to data sharing are: 1) How
concerned are participants about sharing health data, 2) what do participants expect in
return when sharing health data, 3) which data types are participants willing to share
anonymously for research, and 4) how important are different criteria in order to agree
to install an application that collects and shares data from their wearable device. Options
were on a 4-point Likert scale from "not important at all" to "very important" (including
"I don't know"), or multiple-choice. We stratified responses into three groups: 1) People
with diabetes (PWD), 2) people with other chronic disease and 3) people without a
chronic disease. Details about the questionnaire are available at DataverseNO [9]. We
report descriptive statistics on age, gender, experience using wearable devices and
mobile health apps and wearables for sharing health or activity data.

3. Results

Four hundred forty-seven (447) participants finished the survey, of which eight did not
answer whether they have a disease, and nine selected "Do not want to answer".
Further analyses are based on the remaining N=430. Sixty-one (61) participants had
diabetes, 82 participants had another chronic disease, and 285 had no chronic disease.
The majority of participants came from Switzerland (187), Norway (59),
US/UK/Australia/Canada (77), France (26), and Germany (13). Remaining 46 came
from 35 countries covering all continents. Table 1 gives their demographics, familiarity
with mHealth apps, and sharing experience. There was no age (p=.083) or gender
(p=-133) difference between the groups. However, 97% in the diabetes group use a
wearable device for collecting activity or other health data, compared to only 51% in
the "no disease" group, and 55% in the "other chronic disease" group, x2(423)=44.04,
p=-001. Many PWD has experience in sharing data, less so people without a chronic
disease, ¥2=19.6, p < .001.
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Table 1. Demographics and familiarity with mHealth apps. Na= no answer.

With diabetes With other chronic diseases Without chronic disease

Age: <30 y; 30-50y; >50y 15;17;27 (Na: 2) 9;32;40 (Na: 1) 34; 96; 146 (Na: 6)
Gender: female; male; other 35;25;1 59;20; 3 177, 99; 3
Wearable device: yes; no 59;2 44; 36 143; 137

Sharing experience: yes; no 24,27 (Na: 10)  22;45 (Na: 14) 47;160; (Na: 11)

3.1. Technologies use for health tracking

87% of those with diabetes use a health-specific device, in addition to often using a
Physical Activity (PA) tracker. 3% use no sensor or wearable device. Among those
with other- or no chronic diseases, the use of sensors integrated in the smartphone and
PA trackers are most common. 25-30% use mobile health apps. Generally, participants
preferred to discuss health issues with health providers. PWD would discuss it with
others PWD (17%), but rarely with their family (6%). This is in contrast to persons with
other- or no chronic disease, where 19% and 20%, respectively, would discuss health
issues with their family and friends, see Figure 2b. This difference with whom to share
was statistically significant, y>=34.67, p<.001.

3.2. Concerns about data sharing

Regarding what people are most concerned about sharing health data, persons with no
chronic disease are in general least concerned, and all three groups rate storage as least
and transparency as most concerning. Figure la shows how each group rate concerns
about confidence and trust, data ownership, storage location/availability, and
transparency of third party usage. Figure 1b shows how important certain features are
for each group in order to agree to install an application that collects and share health
data from their wearable device.

Concernment about sharing Importance of health app features
36 B Persons with diabetes @ Persons with other chronic diseases 36 @ Persons with diabetes @ Persons with other chronic diseases
0 Persons with no chronic diseases T O Persons with no chronic diseases

34 T 34

32 T 32

3.0 3.0

28 28

26 26 %

24 24 &

22 22

20 20

Confidenceand  Ownership  Storagelocation/  Transparency Automatic setup Customized Automatic data Non-disturbing Tailored data
trust availability feedback collection analysis

Figure 1. a: Concerns about different aspects of data sharing. b: Importance of features, answer option 1 to 4.
3.3. Participants expectations for sharing health data
Regarding what participants expected in return for sharing their health data, personalized

feedback was chosen by 60% of participants, integrated view (i.e. aggregated results),
was chosen by 53%, decision support by 36%, and least chosen (16%) was comparing
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status with others. There was no difference between the groups in their expectations,
smallest p > .74, but comparing with others was rated as least important (Figure 2a).
Expecting in return for sharing Health tracking technology

mPersons with diabetes B Persons with disbetes

er chronic disease:

sons with no chronic diseas
vith no chronic diseases

” mmﬂw Sl

ersonalized Int q ated fum\ aring '*‘«lJml Smartphone  Physical Mobile Health No usage

Feedback vie support  anyth sensors actvity  healthapps  specific
tracker sensors

Figure 2. a: Expectations for sharing data. b: Group distribution of health tracking technology.
3.4. Willingness to anonymously share given data types in a research project

Groups do not differ in sharing lifestyle/dietary information, signs of infection, daily
mood, geographical location, sleep duration, social environment (corrected for multiple
comparisons). Participants are least willing to share their geographical location. Persons
with chronic disease are more willing to share medication intake, physiological
indicators and their weight. An overview is given in Table 2

Table 2. Overview of willingness to share specific health data by group. Chr. = chronic.

= = = 2
= S ] 2 = 9
ST = B0 @ =] = ] =
= s = ~ on o S — E =
532 Frg S8 25 f Zg E5 _E z % S
T<E 5% B e & Lz ¥E g ¥ 0 E£E& 3
SES £35E 2¢ 2% F 0 £2E 3S 25 @ $E S
SEE O E $E BE A e O 75 B h o Z
N 213 219 195 202 193 248 87 240 221 173 89
Diabetes 53 41 31 46 29 43 20 43 43 30 5
Other chr. 44 45 45 40 46 54 16 50 49 35 16
No chr. 116 133 119 116 118 151 51 147 129 108 68
X2 43.48 9.05 522 2439 573 8.93 6.92 829 1548 2.87 7.59
p-value <.001 011 .074 <001 .057 .012 .031 .016 <.001 .238 .023

3.5. Features' importance in mHealth app

Regarding which features of a health-app is important to participants (1=not important
to 4=very important), non-disturbed tracking and automatic setup is rated by most as
important, i.e. the main effect of feature, F(3.83, 1163.75)=3.389, p=.01, n?>= .011. All
features were more important to people with a chronic disease, F(2, 304)=12.09, p<.001,

2=.074. PWD rate automatic data collection as most important, yielding a significant
interaction effect, F(7.66, 1163.75)=2.104, p=.035, n>=.014.

4. Discussion

Mass sharing of health data could provide vital information for individual health
management and public health. Continuous collection of quality health-related data and
willingness to share these are limited by the user's motivation and expectations. The rate
of acceptance of health tracking devices among clinicians is increasing [10], but
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retention is decreasing [11]. Compared to PWD who use wearable sensors, participants
with no- and other chronic disease reported higher adoption of sensors integrated in the
smartphone and PA trackers. Automatic data collection, easier interface, e.g. voice
command, tailored and personalized feedback is likely to increase usage and long-term
engagement in such devices.

Concern about health data sharing is dependent on the type of data, and related
concerns on issues such as privacy, security, confidentiality, transparency, and
ownership. Participants with no chronic disease are less concerned compared to people
with a chronic disease. Indeed, potential consequences of data leakage like repeated low
blood glucose level (hypoglycemia) might result in the suspension of one's driving
license or disqualification of health insurance enrollment in some countries. Some
privacy and security shall be kept, i.e. many participants do not want to share their
geographical location.

This study on how to motivate health data sharing is a collaboration between several
projects where different systems for health data collection are under development.
Results from the present study, and upcoming publications on related topics, will be used
to direct the implementations of these systems for maximum acceptance. Future works
include data collection, data quality and accuracy analysis, and detecting health patterns
at the population level and in people with specific chronic diseases. Fulfilment of
participant's expectations and resolving individual concerns could motivate sharing
health-related data. Results indicate that participants expect some kind of immediate
benefits from sharing their data, including tailored and personalized data analysis,
integrated view, feedback and others. Comparison of status among peers was found to
be less relevant.
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