
 

 

 

Faculty of Health Sciences 
Department of Pharmacy 
 
Horizontal transfer, selection and maintenance of antibiotic resistance 
determinants 
 

Julia Kloos 
A dissertation for the degree of Philosophiae Doctor - March 2021 



 
 

Horizontal transfer, selection and maintenance of antibiotic resistance determinants 
 
 

Julia Kloos 
 
 
 

A dissertation for the degree of Philosophiae Doctor  
March 2021 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 

 

 
 
 

Microbial Pharmacology and Population Biology Research Group  

Department of Pharmacy 

Faculty of Health Sciences 

UiT The Arctic University of Norway 



Acknowledgements 
 

The presented work was carried out in the Microbial Pharmacology and Population Biology Research 
Group at the Department of Pharmacy (IFA), UiT The Arctic University of Norway.  
 
I am grateful to former and current colleagues and students at IFA that made me feel welcome ever 
since I started working here and made these last years so enjoyable. I would like to thank the 
Norwegian PhD School of Pharmacy and the National Graduate School in Infection Biology and 
Antimicrobials for providing travel grants and organizing meetings, which allowed me to explore the 
microbial world internationally. 
 
Most of all, I am deeply grateful to my main supervisor Pål Johnsen, for being full of enthusiasm, 
great ideas and good humor. I admire the way you share your profound knowledge and scientific 
experience with your students and colleagues and are available for questions, discussions and new 
results at any time. Your guidance and trust were always encouraging and invaluable to me - thank 
you!  
My co-supervisor Klaus Harms taught me many tips and tricks in microbiological laboratory methods 
since the first day I arrived at IFA, which encouraged me to consider a PhD in microbiology. Thank 
you, Klaus, for pondering with me on the many molecular puzzles that bacteria provide, patiently and 
enduringly. Thank you Ørjan for bringing smelly, interesting bugs to our lab, for your structured 
thinking, and fast and thorough feedback based on your great expertise in clinical microbiology.   
 
Finishing this PhD was only possible with the good colleagues I had. Thank you all for making 
MicroPop the diverse, lively and supportive research group that it is. To Ane, Elizabeth, Nicole, 
Conny and Iren: thank you for sharing both joy and frustration about lab life with me, and for all the 
trust and support. You are great scientific role models and friends to me. Thank you João, a.k.a. ‘team 
piggy’ co-responsible and ‘husband’, for allowing all the questions and discussions, and for being 
such a reliable companion.  
 
Dear Theresa, thank you for being my constant source of encouragement and inspiration. Our trips 
across northern Norway, exploring mountains on long tracks, mean a lot to me. Thank you Anke and 
Marita, for keeping our friendship alive over long distance and many years and being curious about 
my Tromsø-life and work. Thank you, Tony, for so much joy and support J.  
 
Danke and meine Familie ♡ 
 

               
               Tromsø, March 2021         Julia Kloos 



 

 

 

I 

Table of contents 
 
List of papers ..................................................................................................................................... II 

Abbreviations .................................................................................................................................. III 

Summary .......................................................................................................................................... IV 

Introduction ....................................................................................................................................... 1 

Evolution of antibiotic resistance .................................................................................................... 1 

Horizontal gene transfer ................................................................................................................ 13 

Mobile genetic elements ................................................................................................................ 17 

Bacterial fitness and cost of antibiotic resistance .......................................................................... 25 

Reversibility of resistance ............................................................................................................. 33 

Objectives ......................................................................................................................................... 38 

Materials and Methods ................................................................................................................... 39 

Bacterial species ............................................................................................................................ 39 

Methodological approaches ........................................................................................................... 43 

Summary of Results ......................................................................................................................... 48 

Paper I: Conserved collateral antibiotic susceptibility networks in diverse clinical strains 
of Escherichia coli. ........................................................................................................................ 48 

Paper II: Tn1-transposition in the course of natural transformation enables horizontal antibiotic 
resistance spread in Acinetobacter baylyi. ..................................................................................... 49 

Paper III: Piggybacking on niche-adaptation improves the maintenance of multidrug resistance 
plasmids. ........................................................................................................................................ 50 

Discussion ......................................................................................................................................... 51 

Conclusion ........................................................................................................................................ 60 

References ......................................................................................................................................... 61 
 

  



 II 

List of papers 
 

Paper I 

Podnecky, N.L., Fredheim, E.G.A., Kloos, J., Sørum, V., Primicerio, R., Roberts, A.P., Rozen, D.E., 

Samuelsen, Ø., Johnsen, P.J.  

Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia 

coli.  

Nature Communications, 2018. https://doi.org/10.1038/s41467-018-06143-y 

Reprinted under the Creative Commons Attribution 4.0 International License 

 

Paper II 

Kloos, J., Johnsen, P.J., Harms, K. 

Tn1-transposition in the course of natural transformation enables horizontal antibiotic 

resistance spread in Acinetobacter baylyi. 

Microbiology, 2020. https://doi.org/10.1099/mic.0.001003 

Reprinted under the Creative Commons Attribution 4.0 International License 

 

Paper III 

Kloos, J.*, Gama, J.A.*, Hegstad, J., Samuelsen, Ø., Johnsen, P.J. 

Piggybacking on niche-adaptation improves the maintenance of multidrug resistance 

plasmids. 

accepted manuscript Molecular Biology and Evolution, 2021 

https://doi.org/10.1093/molbev/msab091 

Reprinted under the Creative Commons Attribution 4.0 International License 

 

* These authors contributed equally to this work.  

  



 III 

Abbreviations 
 
ArcAB  Aerobic Respiration Control 

AST  Antimicrobial Susceptibility Testing  

BMD  Broth Microdilution  

CCR  Carbon Catabolite Repression 

CR  Collateral Resistance 

CS  Collateral Sensitivity 

DHFR  Dihydrofolate Reductase  

DR  Direct Repeat 

dsDNA double-stranded DNA 

ESBL  Extended Spectrum Beta-Lactamase  

EUCAST European Committee on Antimicrobial Susceptibility Testing 

G-/G+  Gram-negative/Gram-positive 

HGT  Horizontal Gene Transfer 

IC90  Inhibitory Concentration 90% 

ICE  Integrative Conjugative Element 

IR  Inverted Repeat 

IS  Insertion Sequence 

MDR  Multidrug Resistance 

MGE  Mobile Genetic Element 

MIC  Minimal Inhibitory Concentration  

MPC  Mutant Prevention Concentration 

MSC  Minimal Selective Concentration 

MSW  Mutant Selection Window 

NDM  New-Delhi Metallo-β-lactamase 

PBP  Penicillin-Binding Protein 

ssDNA  single-stranded DNA 

ST  Sequence Type 

TSD  Target Site Duplication 

UPEC  Uropathogenic E. coli  

UTI  Urinary Tract Infection 

VIM  Verona-Integron Metallo-β-lactamase 

WGS  Whole Genome Sequencing  



 IV 

Summary 

 
The rapid emergence of antibiotic resistance in bacterial pathogens represents a substantial clinical 

and financial burden to our society. The development of antibiotics is generally unprofitable and 

challenged by the need for innovative and evolution-robust drugs. It is thus insufficient to rely on the 

discovery of new therapeutic agents, but important to understand the selection, spread and 

maintenance of bacterial antibiotic resistance in order to counteract its emergence. The work 

presented in this thesis focused on mechanisms and evolutionary dynamics underlying these factors. 

Collateral sensitivity, when bacterial resistance to one antibiotic potentiates the effect of other 

antibiotics, may be exploited in infection treatment to limit resistance evolution. We assessed 

collateral susceptibility changes in ten diverse isolates of single-drug resistant uropathogenic 

Escherichia coli towards 16 antibiotics and found conserved changes especially in ciprofloxacin 

resistant mutants. Collateral responses changed also another parameter important for resistance 

selection, the mutant prevention concentration, accordingly. We reveal that knowledge of the 

mechanism as well as the fitness cost of resistance supports the predictability of bacterial collateral 

responses in antibiotic resistant mutants (paper I). 

Horizontal gene transfer between bacterial pathogens contributes to the rapid spread of antibiotic 

resistance, and natural transformation is one of the major routes for bacterial horizontal gene 

acquisition. We demonstrate, that natural transformation of Acinetobacter baylyi by the resistance-

encoding, replicative transposon Tn1 occurred through its transposition from incoming donor DNA 

into the chromosome. In this process, host and transposon proteins were essential. We present a model 

of transposition-mediated natural transformation from a circular, double-stranded intermediate 

molecule of cytoplasmic donor DNA (paper II).  

Antibiotic resistance plasmids play a major role in the dissemination of multidrug resistance 

between bacteria and are increasingly recognized to establish stable associations with clinical 

bacterial hosts. We show that the biological burden of carrying a clinical resistance plasmid in an E. 

coli uropathogen is reduced after adaptation of this host to the laboratory environment through 

mutations in its CCR and ArcAB regulatory systems. We identify that transcriptional downregulation 

of plasmid genes explains the reduced plasmid cost mechanistically. Thus, we reveal that simple 

niche-adaptation presents a novel solution to the ‘plasmid paradox’ by improving the permissiveness 

of bacteria towards resistance plasmids (paper III).  
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Introduction 

 

Evolution of antibiotic resistance  
Bacteria have been and will always be with us1 and our dependence on effective treatment options 

for human infections with disease causing bacteria is immense. Paul Ehrlich introduced the term 

chemiotherapy to describe the use of chemically synthesized drugs in the treatment of microbial 

infections. The identification of compounds with antisyphilitic and antistreptococcal activity, 

Salvarsan (1909) and the sulfonamide Prontosil (1932), respectively, lead to their worldwide 

distribution and further development2. A major scientific breakthrough of the 20th century was the 

discovery of penicillin, a natural product of the Penicillium mold with activity against Staphylococcus 

aureus, by Sir Alexander Fleming in 19283. Soon after however, a penicillin-destroying enzyme was 

identified in Escherichia coli4, and Fleming highlighted in his Nobel prize lecture that bacterial 

resistance evolution could eventually render these ‘magic’ drugs inefficient5.  

Today, infections with multidrug-resistant (MDR) bacteria endanger basic and modern medicine 

globally since adequate therapeutic options are limited6. Estimates based on European surveillance 

data from the year 2015 indicate that resistant bacteria caused more than 670 000 infections, and 

around 5% of patients died consequently7. This creates a health burden which is, measured in 

disability-adjusted life years, comparable to the combined effect of influenza, tuberculosis and 

HIV/AIDS in Europe7. Members of the Gram-negative (G-) Acinetobacter spp. and 

Enterobacterales8 represent priority MDR pathogens9,10 and are the focus of the presented thesis. For 

the latter, the problem of antibiotic resistance is worsened by the successful association of epidemic 

MDR plasmids11 with high-risk clones, exemplified by E. coli sequence type (ST)131 and Klebsiella 

pneumoniae ST25812. Worldwide in 2014, these two bacterial species were the estimated cause of 50 

million infections that required hospital treatment with last resort antibiotics (carbapenems), while 

3.1 million infections were even resistant to these drugs13. 

In this thesis, the term ‘antibiotics’ comprises substances of microbial origin as well as synthetic 

drugs that are used in the treatment of bacterial infections. Their overuse and misuse in animal and 

human health significantly drives the selection for inherent or acquired bacterial antibiotic 

resistance14. To date, the enormous number of bacterial genetic resistance determinants15 and 

mechanisms16  compromise the effect of all routinely used antibiotics. It is even suggested that 

resistance evolves faster to newly introduced antibiotics17. In order to avoid this development for 

future antibiotics, we require improved understanding of the multiple factors that contribute to 

bacterial antibiotic resistance evolution (Figure 1) and how they interplay with each other.  
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Figure 1: Factors that influence antibiotic resistance evolution in bacteria. The figure is based on references14,18-20. 
HGT = horizontal gene transfer; MGE = mobile genetic element.  
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chemically synthesized antibiotics that were developed in the 1950’s and 60’s15. Essentially all major 

chemical drug classes were discovered by the 1960’s, and only five additional ones, all active against 

Gram-positive (G+) bacteria, have reached approval for human use since then. These include the 

oxazolidinones (2000, linezolid), lipopetides (2003, daptomycin), pleuromutilins (2007, 

retapamulin), the macrolacton Fidaxomicin (2011) and the diarylquinolone Bedaquiline (2012)24. 

More recently, Teixobactin (2015, depsipeptide) and Malacidin A (2018, malacidins) were 

discovered using in situ cultivation or culture-independent approaches, respectively25,26. Both 

represent novel antibiotic classes with activity against G+ bacteria, while new chemical classes for 

G- infections are alarmingly scarce6. The recently launched agents avibactam and vaborbactam 

represent first-in-class chemical scaffolds that are used in combination with β-lactam antibiotics. 

They inhibit some but not all resistance determinants (β-lactamases; see β-lactam resistance) present 

in G- bacteria and are thus adding only limited clinical benefit over existing treatment options6. It is 

estimated that 11 new antibiotics will be approved between 2019 and 2024, of which the majority 

will only be chemical modifications of already existing drug classes6.  

Antibiotics can further be classified as bacteriostatic (e.g. trimethoprim) or bactericidal (e.g. 

quinolones, β-lactams, nitrofurantoin), which specifies if their effect inhibits bacterial growth or kills 

bacteria, respectively. Their activity against a broad (e.g. tetracyclines, β-lactams, fluoroquinolones) 

or narrow spectrum (e.g. polymyxins) of bacterial species further classifies antibiotics. Finally, 

antibiotics are categorized according to their dose-dependent (e.g. quinolones, aminoglycosides) or 

time-dependent (e.g. β-lactams, macrolides) antibacterial effect. 

 

Molecular target sites of antibiotics 

Antibiotics inhibit growth or induce death in bacterial cells by selectively acting on biochemical 

pathways that are essential for bacterial physiology and metabolism. Examples for the major 

molecular target sites of antibiotics in bacteria are presented below, with a special focus on the 

clinically relevant drugs used in paper I (Figure 2).  

β-lactams represent the oldest but still most important class of antibiotics. They target the bacterial 

cell wall by blockage of enzymes that are bound to the cytoplasmic membrane and involved in 

peptidoglycan synthesis of G- and G+ bacteria27. These so-called penicillin-binding proteins (PBPs) 

exhibit transpeptidase and transglucosylase function and perform polymerization, reconstruction and 

degradation of the bacterial cell wall during active cell growth. Penicillins (e.g. amoxicillin, 

mecillinam, temocillin), cephalosporins (e.g. ceftazidime) and carbapenems (e.g. ertapenem) 

covalently bind to and inhibit these bacterial enzymes. The antibiotic fosfomycin inhibits the 

synthesis of bacterial cell wall precursor molecules by binding to the cytoplasmic enzyme MurA28. 
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Protein synthesis (translation) in G+ and G- bacteria is affected by a variety of antibiotic classes, 

such as macrolides (e.g. azithromycin), aminoglycosides (e.g. gentamicin), tetracyclines (e.g. 

tetracycline, tigecycline) or amphenicols (e.g. chloramphenicol). These drugs bind either to the 

ribosomal RNA or to ribosomal polypeptide-structures of the large (50S) or small (30S) sub-unit of 

bacterial ribosomes. Their binding interferes with the initiation, elongation or termination of protein 

synthesis and results in truncated and misfolded proteins29. DNA transcription to messenger RNA 

is blocked by binding of rifamycin drugs (e.g. rifampicin) to the β-subunit of bacterial RNA 

polymerase, which is encoded by rpoB29. Ciprofloxacin is an example of a fluoroquinolone antibiotic. 

In G- bacteria, quinolone antibiotics bind primarily to the GyrA subunit of the topoisomerase II 

tetramer GyrA2GyrB2 (bacterial gyrase), while the ParC subunit of the topoisomerase IV tetramer 

ParC2ParE2 is a preferred target for antibiotic binding in G+ bacteria30. Both enzymes are involved 

in the cleavage and re-ligation of DNA, which facilitates the molecule’s relaxed and negatively super-

coiled topology, and chromosome separation, during and after DNA replication30. The DNA-

enzyme-fluoroquinolone complex stalls bacterial DNA synthesis by blocking replication fork 

movement. High drug concentrations introduce double-strand breaks and cause chromosome 

fragmentation30. Sulfonamides and trimethoprim are antifolate antibiotics that inhibit the pathway for 

de novo synthesis of folate, which is for example required in bacterial nucleic acid synthesis. 

Sulfonamides such as sulfamethoxazole bind to the enzyme dihydropteroate synthase (DHPS) in 

competition with the enzyme’s bacterial substrate para-aminobenzoic acid. Trimethoprim targets 

folic acid synthesis in a later step than sulfonamides and binds to bacterial dihydrofolate reductase 

(DHFR) in competition with dihydrofolic acid31. The outer membrane of G- bacteria is the target 

site of polymyxins such as colistin. These peptide antibiotics interact with the lipopolysaccharide 

structure on the bacterial outer membrane and subsequently disrupt both, the outer and inner 

membranes23. Nitrofurantoin is a prodrug that requires intracellular bioactivation by type I 

nitroreductase enzymes32,33. The reactive intermediates of the drug are thought to have multiple 

target sites in G+ and G- bacteria and cause for example DNA and ribosome damage34. 
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Figure 2: Illustration of the major molecular target sites of antibiotics in bacteria.  
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resistance mutations are transmitted vertically through bacterial binary fission, HGT facilitates the 

spread of resistance determinants both between related and unrelated bacterial pathogens38,39.  

Resistance evolved also as a natural bacterial trait and independent from the human use of 

antibiotics40,41. This so-called intrinsic or inherent resistance allows bacteria to withstand antibiotics 

that are present in their environmental niche or from their own production but renders them also 

resistant towards therapeutically used antibiotics16,41. Species-specific functional or structural 

characteristics contribute to intrinsically decreased bacterial antibiotic susceptibility42. The 

combination of intrinsic resistance at clinically relevant levels and resistance acquisition by mutations 

or HGT in important nosocomial pathogens such as P. aeruginosa, Acinetobacter spp. and 

enterococci minimizes treatment options tremendously10,43.  

In clinical settings, an infection is considered resistant when appropriate dosing and administration 

of antibiotics are not effective in the eradication of bacteria and/or the patient’s curation. To evaluate 

the likelihood of treatment failure or success, clinical breakpoints were implemented (see below). 

Microbiologically, resistance is defined as the presence of molecular mechanisms that let bacteria 

survive the exposure to antibiotics15,16 (see Bacterial resistance mechanisms towards antibiotics).  

 

Determining antibiotic susceptibility and clinical breakpoints  

Bacterial susceptibility towards an antibiotic is measured as the in vitro growth-preventing effect of 

the drug on the organism. The lowest concentration of an antibiotic that inhibits the visible growth of 

bacteria is defined as the minimal inhibitory concentration (MIC) (Figure 3), and the MIC of resistant 

bacteria is increased compared to the MIC of wildtype bacteria. To determine MIC values, 

antimicrobial susceptibility testing (AST) is performed and involves phenotypic methods such as 

broth microdilution (BMD) or diffusion gradient strip tests. These methods yield the MIC for a 

specific bacteria-antibiotic combination. BMD is the ‘gold standard’ technique for the vast majority 

of species-antibiotic combinations, and other methods of AST should be calibrated against BMD 

(ISO 20776-1:2019)44,45. The European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) provides guidance in the interpretation of AST to facilitate the standardized surveillance 

of antibiotic resistance46. 

To assist clinicians in the interpretation of susceptibility testing, the concept of clinical breakpoints 

is internationally applied and regularly revised for clinically relevant species-drug combinations45,47. 

These represent MIC ‘cutoff’ values and are used to categorize bacterial isolates and predict treatment 

outcome. Isolates with MIC values below the clinical breakpoint fall into either of the two susceptible 

categories, where the likelihood of therapeutic success is high under a standard drug dosing regimen 

(S) or when drug exposure is increased (I). However, an MIC value at or above the clinical breakpoint 
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represents the resistant category (R), where the likelihood of therapeutic failure is high46. Clinical 

breakpoints are based on pharmacokinetic/pharmacodynamic data of the tested species-drug 

combination as well as information about the resistance mechanism44. Additionally, knowledge of 

the epidemiological cut-off value, which is the highest MIC value measured for a wildtype population 

of a bacterial species, is addressed44. MICs above the EUCAST clinical breakpoint was the inclusion 

criteria for resistant E. coli mutants generated in paper I. 

 
Mutant selection window 

From a pharmacokinetic perspective it was traditionally assumed, that antibiotic resistance is selected 

for between the MICs of the susceptible and the resistant members of the population. The latter 

antibiotic concentration is termed the mutation prevention concentration (MPC) and the antibiotic 

concentration range between MIC and MPC represents the so-called mutant selection window 

(MSW)48 (Figure 3).  

 

 

 
Figure 3: Schematic of the traditional mutant selection window. The growth of wildtype bacteria (until MIC) and 
resistant mutants (until MPC) is illustrated (black line) in increasing antibiotic concentrations. At the MIC, growth has 
declined by 99%. At the MPC, even bacteria with an acquired resistance mutation do not survive antibiotic exposure. The 
minimal selective concentration (= MSC) is indicated as shaded lines. Reprinted and adapted under the Creative 
Commons Attribution 4.0 International License from49. 
 

 

MSC
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However, it was later demonstrated that resistant bacteria, pre-existing or de novo generated, are 

selected for even at antibiotic selection pressures far below the MIC. In vitro, Gullberg and colleagues 

showed that antibiotic concentrations at more than 100-fold reduced wildtype MICs still provided a 

growth advantage to E. coli with chromosomal resistance50 or with an MDR plasmid51. Their findings 

suggested that the MSW expands to an even lower concentration than the MIC, which they designated 

the minimal selective concentration (MSC)50. Thus, research on the selection dynamics at MSC and 

MPC elucidates the impact of antibiotic concentration gradients in the treated human body, and also 

in the environment, on the evolution of resistance52. 

 
Bacterial resistance mechanisms towards antibiotics 

Different biochemical mechanisms lead to resistance in bacteria. They may affect the antibiotic agent 

itself, which can be enzymatically inactivated, degraded or modified. Furthermore, the antibiotic 

molecular target can be structurally altered, overproduced or circumvented by alternative cellular 

pathways. Finally, reduced drug uptake or increased drug efflux impacts the effective antibiotic 

concentration in the cell16,53 (Figure 4, from left to right). As a consequence, the pharmacodynamic 

interaction between the drug and the bacterial target is decreased or becomes irrelevant and the 

bacteria is less affected by the antibiotic.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Illustration of the major antibiotic resistance mechanisms in bacteria. Bacterial enzymes that act on 

the drug are indicated in yellow, molecular target sites of the antibiotic are indicated in green, and bacterial cell 

wall/cell membrane proteins are indicated in purple. 
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The examples for resistance mechanisms given below are based on specific drugs and mechanisms 

focused on in this thesis. They evolved through de novo mutations in E. coli (paper I), or by 

horizontal transfer of plasmids into E. coli (paper III).  
 

Ciprofloxacin resistance 

E. coli acquires ciprofloxacin resistance most frequently by de novo mutations in the drug target 

genes gyrA (bacterial DNA gyrase) and parC (topoisomerase IV) affecting codons that are located in 

the so-called quinolone resistance determining region (abbreviated as QRDR)54. In clinical isolates, 

increasing resistance develops by several mutational paths in a multistep process55-57 and is generally 

initiated by a gyrA-located mutation (S83L)58. Clinical resistance (MIC >0.5 μg/mL) is not achieved 

by acquisition of a single mutation56,57,59 and triple drug target mutants in gyrA (S83L, D87N) and 

parC (S80I) are the predominant genotypes in clinical E. coli. This is likely due to the isolates’ 

selectively beneficial resistance level (up to 16 μg/mL) and growth rate (relatively unchanged)56,58. 

Although gyrB and parE drug target mutations are observed in E. coli clinical isolates57,58,60, their 

role in ciprofloxacin resistance evolution is less characterized. Higher-level resistance (>32 μg/mL) 

results from the acquisition of four to six putative resistance mutations, most often combining drug 

target alterations and increased ciprofloxacin efflux58,61. Mutations in the transcriptional repressor 

genes marR, acrR and soxR lead to upregulation of the major efflux pump in E. coli, AcrAB-TolC61-

63, while mutations in the RNA polymerase β-subunit gene rpoB increase the expression of the MdtK 

efflux pump59 (paper I). Growth reduction of E. coli efflux-mutants inhibits their early selection 

during clinical ciprofloxacin resistance evolution56. Finally, mutations in transcriptional regulator 

genes marA and envZ and the consequent decrease in expression of the outer membrane porin OmpF 

cause resistance by reduced ciprofloxacin uptake64,65 (paper I).  

 

Mecillinam resistance 

In E. coli, the described mutational target for mecillinam resistance is very large. In vitro, E. coli 

resistance levels above the clinical breakpoint (MIC >8 μg/mL) were achieved through single 

mutations in altogether 38 target genes, which affected different cellular functions and occurred at 

high frequencies66,67. In the patient however, resistance arises only at low and stable frequencies68 

and the diversity of mutational targets observed in vitro is not reflected in resistant clinical isolates66. 

This is possibly due to the slow growth that reduces their survival in the rapidly flushing urinary tract, 

as observed in experimentally obtained resistant mutants66. In clinical E. coli isolates, high-level 

resistance (MIC = 32 μg/mL) was due to loss-of-function mutations in cysB, which encodes a 

transcription regulator for the biosynthesis of the amino acid cysteine66. A decline in cellular cysteine 
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caused an oxidative stress response and subsequent increase in the expression of PBP1B, LpoB 

(activator of PBP1B) and FtsZ (cell division protein), which represents a bypass mechanism leading 

to mecillinam resistance67. A recent Tn-seq approach identified that the induction of the stringent 

response or the Rcs envelope stress response through elevated ppGpp levels could be linked to more 

than 100 genes in mecillinam resistant E. coli69 (relA, aspS, tusB or aceE, aceF, respectively), some 

of which were also target for resistance mutations in clinical isolates (paper I). Finally, mutations in 

the cellular drug target PBP2 (mrdA) or its functional partner RodA (mrdB) inhibit peptidoglycan 

synthesis and lead to mecillinam resistance70. 

 

Nitrofurantoin resistance  

E. coli evolves mutational resistance to nitrofurantoin through highly reproducible trajectories in 

vitro71. Since the biologically active toxic intermediates are formed by enzymatic reduction32,33, the 

primary targets for nitrofurantoin resistance mutations, both in resistant clinical isolates and in 

experimentally generated mutants, are the genes nfsA and nfsB of the type I nitroreductase72 (paper 

I). Clinical resistance levels (MIC >64 μg/mL) are reached by the acquisition of multiple mutations, 

although in vitro, this resistance-level was occasionally observed for single-mutants in nfsA as well72 

(paper I). The stepwise acquisition of two putatively inactivating nitroreductase-mutations, first in 

nfsA and then in nfsB, increased resistance in E. coli mutants to high levels (MIC >128 μg/ml)72. In 

vitro, nitroreductase mutations are frequently selected in combination with loss-of-function mutations 

in the gene mprA (encoding EmrR) of an EmrAB-TolC efflux pump repressor71 (paper I), which 

promotes E. coli nitrofurantoin resistance by increased drug efflux73.  

 

Trimethoprim resistance  

The great majority of trimethoprim resistance mutations in E. coli are related to one single locus, the 

folA gene encoding the drug target enzyme DHFR. DHFR is the primary cellular drug target, and in 

experimentally evolved E. coli, DHFR-associated mutations are either found in the substrate-binding 

region of the enzyme or in the promoter region of folA74,75 (paper I). Mutational alterations in active 

site residues of DHFR decreases the binding affinity of trimethoprim, while binding of the natural 

substrate dihydrofolic acid is unaffected76. Mutations in the folA promoter region caused a more than 

100-fold enzyme overproduction in a clinical E. coli isolate, which decreased the impact of drug-

bound DHFR77. It can be assumed that folA-amplification during in vitro drug adaptation resulted in 

DHFR overproduction and resistance above clinical breakpoint74 (paper I). A single drug-target 

mutation leads to resistance just above clinical breakpoint (MIC >4 μg/mL) (paper I), however, high-

level resistance requires the stepwise acquisition of mutations in the DHFR-promoter and drug 



 11 

binding-site, as demonstrated for resistant clinical isolates77 and experimentally generated 

mutants74,75 (paper I). 

 

β-lactam resistance  

Enzymatic inactivation of β-lactam antibiotics was first described in 1940 for penicillin4. Today, it 

represents the predominant resistance mechanism against this drug class in G- bacteria and is 

commonly acquired by HGT mechanisms (see Horizontal gene transfer). The responsible enzymes 

are encoded by bla-genes, universally termed β-lactamases, and close to 3000 variants were identified 

until 201878. β-lactamases are present in the bacterial periplasm and active at the peptidoglycan layer. 

Collectively, they have the ability to inactivate all known β-lactam antibiotics by hydrolytic cleavage 

of the drug’s characteristic β-lactam ring78.  

As shown in Figure 5 (left), β-lactamases are categorized on different levels. Structural and 

biochemical differences separate serine β-lactamases (SBL) from metallo-β-lactamases (MBL). SBLs 

form intermediate acyl-enzymes with β-lactam antibiotics using an active site serine and successively 

perform fast drug-hydrolysis79, whereas MBLs interact with β-lactams via Zn2+-dependent 

recognition before hydrolyzing the drug80. Furthermore, β-lactamases are classified based on amino 

acid sequence relatedness81 (Figure 5, left, class) or characteristics regarding their substrate 

specificity or inhibitor sensitivity (Bush subgrouping)82.  

 

 

 
 
Figure 5: Simplified categorization scheme for β-lactamase enzymes. Biochemical characteristics divide β-lactamases 
according to their active site serine (= SBL) or metal-dependence (= MBL). Further categorization follows Ambler 
molecular classes (A, B, C and D). Clinically important carbapenemases in Enterobacterales are highlighted (grey circle). 
The global spread of major carbapenemases in Enterobacterales is indicated by the number of countries per enzyme. 
Reprinted and adapted with permission from83.  
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In the context of this thesis, the MBLs Verona-Integron-encoded (VIM-type) and New-Delhi MBL 

(NDM-type) are highlighted here. The plasmids employed in paper III harbor variants thereof, 

namely VIM-1 in pG06-VIM-1 and NDM-1 in pK71-77-1-NDM (see Multidrug resistance plasmids). 

They represent so-called carbapenemases which have the capacity to inactivate all β-lactam 

antibiotics except monobactams83. Among the targeted drugs, carbapenems are valuable, synthetic, 

last-line antibiotics for the treatment of MDR infections, especially by extended-spectrum-β-

lactamases (ESBL)-producing Enterobacterales. Compared to other β-lactamases, carbapenemases 

emerged rather late78, for example VIM-1 in 199784 and NDM-1 in 200985. Nevertheless, they are the 

primary cause of carbapenem-resistant G- bacteria today and among Enterobacterales. 

Carbapenemase-producing K. pneumoniae as well as E. coli from the family Enterobacteriaceae are 

clinically predominant and frequently associated with horizontally transferrable carbapenem 

resistance86-88. Besides VIM and NDM-type, widely distributed carbapenemases in Enterobacterales 

are the SBLs K. pneumoniae carbapenemase (KPC-type) and oxacillinases of the OXA-48 subgroup 

(OXA-type), as well as the IMP-type MBL (imipenemase)83 (Figure 5, left). Although VIM-1 is not 

the most common VIM-type variant worldwide, it is endemic both in K. pneumoniae and E. coli in 

Greece83. NDM-type carbapenemases are the geographically most widespread MBL in 

Enterobacterales and its endemicity is currently reported for Bangladesh, India, Pakistan and China83 

(Figure 5, right).   
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Horizontal gene transfer 
Sequence analyses of biological samples from different environmental or clinical sources such as 

plants, soil, wastewater, gut microbiome of human and animals, hospital surfaces or plumbing 

systems frequently confirm that resistance genes are abundant89,90. Pathogenic bacteria can acquire 

these resistance determinants by HGT39,89, of which transduction, conjugation and natural 

transformation represent the three canonical mechanisms91.  

Transduction is mediated by bacteriophages, which accidentally exchange genetic material between 

donor and recipient bacteria during their own propagation between hosts92. During transduction, the 

randomly packed genomic donor DNA in the phages’ head is protected from degradation over a long 

time and over long distances. Phage-host recognition may be limited to closely related bacteria; 

however, some phages have evolved a broader host-range93. Sequence analysis frequently reveals 

that antibiotic resistance genes can be associated with phages in hospital environments39 and in vitro 

transduction transferred resistance plasmids up to 30 kb between clinical isolates of S. aureus94. 

Conjugation is the directed transfer of genetic material from a donor to a recipient cell that are in 

close proximity92 and is mediated either by integrative conjugative elements (ICEs) or by extra-

chromosomal DNA elements called plasmids (see Plasmids). Plasmids either encode the conjugative 

machinery for DNA transport between donor and recipient cell on tra-genes or encode mobility (mob) 

genes that make them mobilizable through simultaneous transport with a conjugative plasmid95. HGT 

by conjugation is the primary mechanism by which antibiotic resistance genes are disseminated 

between bacterial pathogens39, especially Enterobacterales86, and facilitates plasmid-associated 

outbreaks of MDR96,97. Plasmid instability and the metabolic costs related to the conjugation process 

and to plasmid maintenance represent limitations to conjugative gene transfer (see Fitness cost of 

plasmid carriage). Natural transformation was central in the experiments for paper II. The 

requirements for successful gene acquisition in the naturally competent G- bacterium A. baylyi are 

thus described in more detail below. 

Recent studies reveal additional routes for the horizontal transmission of genetic material, for 

example by DNA-containing membrane vesicles released from bacterial cells98, through cell-to-cell 

connecting nanotubes99 or by phage-like gene transfer agents89. The relevance of these newer 

mechanisms in the spread of antibiotic resistance between bacterial pathogens, however, requires 

further confirmation and examination. Intra- and interspecies transfer of resistance-encoding 

plasmids by A. baylyi outer membrane vesicles occurred at low frequencies (10-6 and 10-8; 

respectively)100, and nanotube-mediated transfer of plasmid-DNA among Bacillus subtilis cells99 may 

be a result of the recipients’ ability for DNA uptake by natural transformation101.  
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Natural transformation  

Natural transformation is the process by which bacterial cells take up, integrate and express free DNA 

from the extracellular environment91. This ‘transformation principle’ was first described in 1928 by 

Frederick Griffith. He observed that avirulent Streptococcus pneumoniae cells became virulent when 

he injected them together with heat-inactivated cells of virulent S. pneumoniae into mice, which could 

later be explained by DNA transfer102. Our current understanding of natural transformation developed 

especially through more than 50 years of research in model organisms such as S. pneumoniae, B. 

subtilis, Neisseria gonorrhoeae and A. baylyi103, however experimental evidence for natural 

transformability of more than 80 species, with similar proportions of G+ and G-, exists104. These 

mainly represent environmental species104,105, but also important hospital-associated, pathogenic 

species9,104, and some experimental evidence for the potential to undergo natural transformation was 

also obtained in clinical isolates39,106,107. 

 

Competence and DNA uptake during natural transformation 

Since natural transformation is not facilitated by infecting agents such as phages or plasmids, the 

recipient’s competence to bind and actively transfer donor DNA into the cytoplasm is required108. 

Competence is a physiological state encoded by the recipient, and the ‘competence regulon’ includes 

a conserved set of genes that is common to almost all naturally transformable species104. In A. baylyi, 

the proteins of the DNA-uptake machinery are encoded by the com and pil genes, and drpA109. These 

proteins make up the DNA-uptake pilus and membrane-associated uptake pores and facilitate binding 

and translocation of double-stranded DNA (dsDNA) through the periplasmic space and 

peptidoglycan layer109. They further mediate transport of single-stranded DNA (ssDNA) into the 

bacterial cytoplasm and finally, initiate recombination of the foreign DNA with the bacterial 

genome109 (Figure 6). Competence genes are constitutively expressed in some species, for example 

A. baylyi, Helicobacter pylori and N. gonorrhoeae, while other species require certain conditions and 

signals (growth phase, cell density, chemicals, stress conditions like nutrient starvation, antibiotic 

treatment, DNA damage) to regulate a transient state of competence103. Moreover, the DNA-uptake 

apparatus of N. gonorrhoeae or Haemophilus influenzae only binds DNA that contains a specific 

nucleotide sequence, while other bacteria such as B. subtilis or A. baylyi take up DNA from any 

source105,110.  
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Figure 6: Illustration of natural transformation in competent G- bacteria. The DNA-uptake machinery of a 
competent recipient bacterium can bind dsDNA (blue) from the environment and translocate it into the cell. The single-
strand DNA-binding protein SSB and DNA processing protein DprA (both in green) protect incoming, linear ssDNA 
from enzymatic degradation by exonucleases, and DprA loads the recombinase (= RecA)111. RecA initiates homology 
search within the recipient’s chromosome, which eventually leads to integration of the transforming ssDNA by 
recombination. DNA-translocation of bound dsDNA (blue) to the cytoplasmic membrane in G- bacteria is achieved by 
retraction of the DNA-uptake pilus (type IV pilus, dark purple), opening of the secretin pore ComQ (light purple) in the 
outer membrane (OM), and binding of the periplasmic, DNA-pulling competence protein ComEA. Finally, dsDNA is 
degraded to ssDNA, which crosses the inner membrane (IM) through the ComA membrane channel (not shown here) and 
reaches the cytoplasm. Reprinted with permission from103 with protein names according to the model of DNA uptake in 
A. baylyi109.  
 
 
DNA uptake during natural transformation requires free and naked DNA in the environment. 

Prokaryotic DNA is abundant in the environment through the lysis of dead bacterial cells, the 

disruption of live cells or active excretion of DNA by, for example, Acinetobacter, Pseudomonas, 

Bacillus and Streptococcus spp.105. Compared to DNA that is transferred during conjugation and 

transduction, this extracellular DNA is not protected by a membrane (pore) or virus capsule, which 

can cause biochemical, chemical and/or physical modification, and fragmentation of the DNA 

spontaneously or by nucleases. However, DNA of different sources (plant, bacteria) was 

demonstrated to persist in environments such as soil, water, saliva or blood to varying degrees and 

may eventually transform bacteria91,105,112. 

 

DNA recombination during natural transformation 

To ensure further inheritance, the incoming ssDNA has to be integrated within the recipient genome 

during natural transformation91. Depending on the type of donor DNA and its sequence similarity to 

the recipient chromosome, different recombination mechanisms are possible after DNA uptake in A. 

baylyi. Plasmids can establish extra-chromosomally and replicate autonomously110 (see Plasmids). 

Homologous recombination is mediated by the RecA recombinase and occurs between donor and 
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recipient DNA segments with at least 20 nucleotides sequence homology105. The integration of 

acquired DNA by RecA-dependent mechanisms during natural transformation is reduced if proteins 

of the RecBCD/RecFOR DNA repair pathways, which generate RecA-loaded 3’-DNA ends, are 

absent113. Interestingly, a RecA-independent mechanism of DNA integration was described for short, 

homologous fragments of 20 to 80 nucleotides114. The recombination frequency for foreign DNA 

decreases with the degree of sequence dissimilarity between donor and recipient DNA but can be 

facilitated even if only limited or no sequence similarity is present (homology-facilitated illegitimate 

recombination (HFIR)115 and double-illegitimate recombination (DIR or HFDIR)116. In A. baylyi, 

recombination during natural transformation can occur at frequencies from 10-3 for homologous 

chromosomal donor DNA and integration of a selectable resistance marker gene, or 10-12 for short 

fragments of fully heterologous DNA (B. subtilis) (short-patch double-illegitimate recombination, 

SPIDR)117. Finally, an important finding was that integron-associated resistance from unrelated 

species can be chromosomally acquired by A. baylyi through the site-specific recombination functions 

of transposons or insertion sequence (IS) elements during natural transformation118. However, the 

frequency of natural transformation events in nature or hospital settings and their relevance for 

clinical antibiotic resistance evolution is poorly understood39.
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Mobile genetic elements 
Mobile genetic elements (MGEs) move between and within DNA molecules. They are abundant in 

bacterial genomes and encode functions for their own mobility and adaptive traits such as antibiotic 

or heavy metal resistance, virulence or pathogenicity factors, or metabolic functions95. Conjugative 

plasmids, ICEs or bacteriophages represent MGEs that move between bacterial cells by HGT 

mechanisms (see Horizontal gene transfer), while transposons and IS elements encode site-specific 

recombination functions to move intracellularly95 (see Transposable elements). Integrons and gene 

cassettes are resistance-encoding genetic elements that are mobilizable through their association to 

MGEs such as plasmids and transposons. Due to interactions between transposable and conjugative 

genetic elements, HGT can essentially mobilize any chromosomal gene, which has great impact on 

bacterial niche-adaption by acquisition of new ecological functions. The relevant MGEs for this thesis 

are plasmids (paper III) and transposons (paper II) and are described in more detail below.  

 

Plasmids  

Plasmids are extra-chromosomal, double-stranded and generally circular DNA molecules that 

naturally exist in bacteria. They represent the best characterized and most promiscuous vectors of 

horizontal resistance spread. The so-called plasmid backbone comprises functions for plasmid 

replication and inheritance or for their horizontal infectious transfer by conjugation (see Horizontal 

gene transfer). A more variable plasmid region harbors accessory genes that promote host adaptation 

to, for example, antibiotics119.  

Plasmids replicate semi-autonomously within the host cell by theta, rolling-circle or strand-

displacement mode of replication120. Theta-type replication is described for small and large plasmids 

and most often used by plasmids in Enterobacterales. Here, leading and lagging strands are replicated 

simultaneously from the plasmid’s origin of replication (ori). In rolling circle replication, first 

identified for small plasmids in G+ bacteria, leading and lagging DNA strands are synthesized in two 

separated cycles, from the double-stranded origin (dso) and the single-stranded origin (sso), 

respectively120. Importantly, plasmid replication usually sequesters host enzymes like helicases, 

primases and polymerases, which reflects the parasitic character of plasmids within a bacterial host120. 

A plasmid therefore contains sites that both plasmid and host-encoded proteins may interact with. For 

example, replication at the ori can be initiated by plasmid-encoded Rep proteins, or independent of 

that, by host polymerases after the binding of a plasmid-encoded RNA II primer120, which is for 

example the case for ColE1-like MDR plasmids in Enterobacterales86.  

The dependence on host-functions for plasmid replication affects the host-range and horizontal spread 

of plasmids, because elements that have similar requirements for their replication and partitioning are 
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unstable if they coexist in the same cell. Such plasmids are members of the same ‘incompatibility 

group’. Current methods identify plasmid-incompatibility (Inc)-types for example by in vitro PCR-

based replicon-typing, which targets conserved regions specific to plasmid replication121, or in silico 

from sequencing data122. In Enterobacterales, contemporary resistance plasmids represent Inc-types 

that were common already before antibiotic introduction123. Enterobacterales species comprise close 

to 30 plasmid Inc-types of varying host ranges, and IncF, IncI, IncA/C and IncH are frequently found 

resistance encoding plasmid types86. IncQ plasmids, for which RSF1010 is a widely used reference, 

replicate by a strand-displacement type and encode their own initiation, helicase and primase proteins, 

which makes them less dependent on host-factors and broadens their host-range beyond 

Enterobacterales120.  

In addition to replication, several plasmid-encoded factors determine the stable vertical inheritance 

of these genetic elements. For example, multimer resolution systems (mrs) facilitate plasmid 

separation into monomers by site-specific recombination after plasmid-replication119. The subsequent 

segregation of plasmid molecules into each daughter cells is enabled by a high plasmid copy-number 

and random diffusion, or by partitioning systems (par) that facilitate the active assembly of plasmid 

molecules at either cell pole119. Plasmid-encoded addiction systems function as post-segregational 

killing systems (psk) and as such ensure survival of plasmid-containing cells while plasmid-free cells 

are eradicated. This can take place by endonuclease attack through restriction-modification systems, 

or by a stable toxin factor in toxin-antitoxin systems119. The majority of resistance plasmids in 

Enterobacterales are present in only a few copies per cell86 and their stability in bacterial populations 

depends on the above-mentioned mechanisms. However, further plasmid-host dynamics affect 

plasmid persistence and are described below (see Fitness cost of plasmid carriage). 

 

Multidrug resistance plasmids 

Since plasmids accumulate and physically link resistance determinants encoded by other MGEs, for 

example transposons or integrons, they contribute greatly to the horizontal spread of resistance. The 

majority of resistance plasmid types that are described in Enterobacterales is conjugative and/or 

exhibit a broad host range, while some are at least mobilizable86,95. Carriage of MGEs and also 

conjugative functions leads to larger plasmids, and the described resistance plasmids in 

Enterobacterales range in size from 45 kb to above 200 kb86. Plasmid-associated resistance 

determinants are described for all major antibiotic classes15 and more than 75% of plasmids in 

Enterobacterales can be associated to resistance gene carriage124. A phylogenetic analysis estimates 

that genes encoding an OXA-type β-lactamase moved onto plasmids already more than 100 million 

years ago125, however, the introduction of antibiotics in medical use reinforced the selection for 
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resistance genes in existing plasmids of human pathogens123. A recent study found up to seven 

plasmids in human intestinal Enterobacteriaceae samples, and plasmid-associated resistance genes, 

including ESBLs, lead to a MDR phenotype126. Carbapenemase genes are frequently mobilized 

through their association to plasmids and other MGEs11, as exemplified here for the enzymes carried 

by the plasmids of paper III, pG06-VIM-1 and pK71-77-1-NDM (Figure 7). The blaVIM-1-gene 

cassette is commonly incorporated into the variable region of a plasmid-located class I integron88, 

and associated to rarely detected, but broad host-range plasmid-types such as IncR (pG06-VIM-1) or 

IncW86. IncR plasmid sequences are also reported as part of multi-replicon plasmids for example with 

the promiscuous IncA/C or IncF plasmids, which facilitates their horizontal mobility as they are 

otherwise immobile11,127. BlaNDM-1 is linked to plasmid-located IS26 and a complete or truncated 

ISAba12588,128, and commonly associated to IncA/C-type plasmids, although many other replicon 

types also carry this carbapenemase-variant11,87. 

 

 

 

Figure 7: Examples for carbapenemase-encoding MDR plasmids of clinical origin. The maps illustrate the plasmids 
used in paper III. Plasmid pG06-VIM-1 (GenBank KU665641) originates from a K. pneumoniae wound infection 
isolate129. It belongs to the IncR-group, for which repB encodes the replication initiation protein. A carbapenemase is 
encoded by blaVIM-1 and additionally, the plasmid carries aminoglycoside (aadA1, aadA2, aacA7, aphA1), macrolide 
(mphA, mphR, mrx), sulfonamide (sul1) trimethoprim (dfrA1, dfrA12) and antiseptic (qacEΔ1) resistance genes (all in 
green), a toxin-antitoxin system (vagCD), a recombinase for multimer resolution (resD), and genes parAB involved in 
partitioning of the plasmid (blue)130. Mobile elements are indicated in red. Genes blaVIM-1, aacA7, dfrA1, aadA1 are 
associated to a class 1 integron127, and gene aphA1 is part of transposon Tn4352131. Reprinted and adapted with permission 
from130. Plasmid pK71-77-1-NDM (GenBank CP040884) was isolated from uropathogenic E. coli132. It is a IncC type 1 
plasmid (also designated IncA/C2) and replication initiation is encoded by repA (yellow). The plasmid encodes resistance 
to β-lactams (blaNDM-1 and blaCMY-6), aminoglycosides (aac(6’)-Ib, aac(3)-II, rmtC), sulfonamide (sul1) and bleomycin 
(bleMBL) (purple). Genes for conjugative transfer (tra) are blue and mobile elements are indicated in orange. Reprinted 
under the Creative Commons Attribution 4.0 International License from128. 
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Transposable elements 

Transposable elements are distinct DNA segments that are associated to the bacterial chromosome or 

to plasmids and able to move between genomic locations by transposition133. Transposition involves 

the cleaving and rejoining of DNA strands, as well as the formation of double- or single-stranded 

DNA-intermediates134. This autonomous movement of genetic segments was first suggested in 1950 

by Barbara McClintock135. Her observation was, that DNA-translocation in the chromosomal loci 

encoding maize kernel pigmentation resulted in gene activation or inactivation and correlated with a 

varying color pattern of the kernels. Eventually, she received the Nobel prize for her discovery of 

MGE in 1983136. In bacteria, transposition of resistance determinants was first described in the early 

1970’s, and the designation ‘transposons’ was then introduced for bacterial DNA segments with the 

potential to move by transposition137. Today we know that transposons are ubiquitous in bacteria and 

Tn numbers are assigned to more than 600 unique bacterial transposons138. In their entirety, bacterial 

transposons carry resistance determinants against all major classes of antibiotics138, and their site-

specific recombination functions were shown to promote the spread of antibiotic resistance by 

transposition between different plasmids97, or between a chromosomal and plasmid location126,139 in 

clinical strains.  

The best-characterized examples of autonomously moving transposable elements are IS elements140 

and transposons138. IS elements can be as small as 700-900 bp, as is the case for example for the 

ubiquitous IS6-family including IS26, and they typically only contain the minimal transposition 

module consisting of a transposase gene (tnp) and two terminal inverted repeats (IRs) to which the 

transposase binds for transposition initiation95,140 (Figure 8, top). Unit transposons are distinct from 

IS elements in that they carry so-called passenger genes, which encode for example antibiotic, 

antiseptic or heavy metal resistance, virulence, or catabolic processes, in addition to the transposition 

module95. Their size can be up to 86 kb, but the average is around 12 kb138. Further, any genomic 

segment can be moved by transposition if it is flanked by two related IS-elements and is than called 

a composite transposon95. Autonomous transposable elements such as conjugative transposons (= 

ICE) encode genes for their intercellular transfer in addition to excision and insertion functions, or 

carry genes for DNA processing during conjugation such as in mobilizable transposons133.   

Intracellular transposition can also move otherwise immobile resistance elements onto horizontally 

transferable genetic units. For example, genetic elements called integrons do not encode 

transposition functions. Instead, they efficiently capture antibiotic resistance functions encoded by 

gene cassettes; the integron-integrase (intI) performs DNA insertion by site-specific recombination 

between the integron attI site and the gene cassette attC site, or DNA excision by recombination 

between two attC sites of gene cassettes. Despite their own immobility, integrons expressing 
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resistance gene cassettes are important elements in resistance evolution and their translocation to new 

sites is mediated by the transposable elements they are associated with141. Below I will focus on the 

large and widespread Tn3-family of unit transposons of which two members, Tn1 and Tn4401, were 

employed in the work for paper II. 

 

Tn3-family transposons 

Examples for well-described representatives of Tn3-family transposons are Tn1 (Figure 8, middle), 

Tn2 and Tn3, which are the earliest identified bacterial resistance transposons142. Furthermore 

Tn4401143 (Figure 8, bottom) and the integron-carrying Tn21, which also carries a mercury resistance 

operon144, are well-known. More Tn3-family transposons that harbor integrons with associated gene 

cassettes are for example Tn1696 and Tn133195. Tn3-family transposons in clinical isolates are often 

plasmid-associated, and those described in G- bacteria carry for example β-lactam (Tn2 [blaTEM]), 

carbapenem (Tn4401 [blaKPC]), colistin (Tn6452 [mcr]), aminoglycoside (Tn5393 [strA, strB]) and 

tetracycline (Tn1721 [tetA]) resistance genes. In G+ bacteria, Tn1546 is a Tn3-family representative 

that mobilizes vancomycin resistance (vanA)95.  

 
Tn3-family transposons: structure 

Transposons exhibit different structural compositions, transposase types, transposition mechanisms 

(replicative/non-replicative) and target site preferences. Structural characteristics for Tn3-family 

elements are the tnpA and tnpR genes which encode the transposase and resolvase proteins145, 

respectively, as well as the res site and two 38-bp IRs, which together facilitate a replicative 

transposition mechanism (Figure 8, middle and bottom)146. The TnpA proteins of the Tn3-family are 

called DDE-transposases due to a conserved motif of three amino acids in their catalytic site (aspartic 

acid/aspartic acid/glutamic acid, or short DDE), but are also known as RNase H-like enzymes147. 

TnpR represents an S- or Y-recombinase with an active site serine or tyrosine, respectively, and is 

involved in the resolution step of the transposition pathway (see below)147. For members of subgroups 

to this transposon family tnpA and tnpR may be organized differently with respect to the res site 

(Tn21-subfamily) or show little sequence similarity with the same genes in Tn3-like elements 

(Tn4401 and its variants143), however, their flanking IRs are related to IRs of other Tn3-family 

transposons148.  
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Figure 8: The genetic composition of a typical IS element, and two thesis-relevant transposons.  
IS elements are simple, short transposable elements and only contain a minimal transposition module consisting of a 
transposase gene (tnpA), and the left and right IRs (IRL and IRR; vertical black bars). The transposase gene usually covers 
the entire element. Tn1 is a Tn3-family transposon and carries a broad-spectrum β-lactam resistance gene (blaTEM-2) in 
addition to the transposition module. This is comprised of tnpA and tnpR, which are transcribed in opposite directions, 
and the two 38-bp IRs, which contain an external transposase cleavage site, and an internal transposase recognition and 
binding site (domain A and B, respectively; not shown). The resolvase TnpR is a site-specific serine recombinase but acts 
also as repressor for tnpR and tnpA145. The 120-bp res site separates these two genes and contains three sub sites (I, II and 
III), which are binding sites for the resolvase during replicative transposition147, and promoters for tnpA and tnpR. Tn4401 
is a Tn3-like transposon and is bracketed by two 39-bp long IRs. The transposon harbors ISKpn7 and ISKpn6 up- and 
downstream of a blaKPC-2 carbapenemase gene, respectively. It is suggested that the interrupted IR (IRD) has evolved from 
ISKpn7 insertion into the ancestral IRR, and a downstream ‘replacement’ IRR now delimits Tn4401143. Reprinted and 
modified with permission from95. 
 

 

Tn3-family transposons: transposition mechanism 

Tn3-family transposons move by a ‘copy-in’ mechanism, and much of our knowledge about the 

biochemistry of this transposition pathway is based on studies using bacteriophage Mu as a model. 

This replicative transposition mechanism involves the formation of a double-stranded, circular DNA 

co-integrate, for which the Tn3-family transposase does not require sequence similarity between the 

transposon and the target site. After resolution of this structure, one copy of the transposon is inserted 

into the target molecule, while the donor molecule also contains the elements147 (Figure 9). In a first 

step, the transposase recognizes and binds the IRs, and catalyzes the cleavage of DNA single-strands 

at the outermost 3′ ends of the transposon by hydrolysis. The transposase binds the transposon ends 

and transfers them to the target DNA. This nucleoprotein complex is also referred to as the 

‘transpososome’134. In the so-called strand-transfer reaction, Tn3-family transposases typically 

introduce a 5-bp single-strand gap into the target DNA which creates free 5’-ends that are joined with 

the transposon’s 3′-OH groups147. This generates a branched molecule, called a Shapiro-intermediate, 

which contains two structures that resemble replication forks as a consequence of the staggered target 
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DNA cleavage149. Further steps involve the repair of the gaps between target and transposon DNA 

and synthesis of the complementary strands of the transposon by host replication functions147 (Figure 

9, left). If the donor and target molecules were circular, the result is a circular, double-stranded co-

integrate structure in which the target and the donor DNA are connected through directly repeated 

copies of the transposon, of which each has one newly synthesized strand147. In this co-integrate, 5-

bp long target site duplications (TSDs) are present where transposon DNA was joined to target DNA 

(Figure 9, middle). These TSDs are direct repeats and a characteristic result of a transposition event. 

They reflect the preferred target site sequence of the transposase protein, the ‘consensus sequence’, 

which is generally AT-rich and 5-bp long for Tn3-family transposases150,151 (Figure 9, right). 

However, transposon insertion is probably not only determined by the sole presence of the consensus 

sequence but may abide also other characteristics of the target DNA152 (paper II). It is suggested that 

replication processes or DNA repair events at the target site provide a signal for transposition147.  

In most characterized Tn3-family transposons, resolution of the cointegrate is mediated by a TnpR 

serine resolvase, which performs site-specific recombination between the two transposon res-sites. 

Once the res recombination sites (subsite I in each element) are aligned in parallel, TnpR can bind 

and introduce double-strand breaks, perform DNA strand-exchange through rotation of the DNA-

protein complex within subsite I, and rejoin DNA147. The donor and target molecules are now 

separated and contain one copy of the transposon each.  

In vitro, Tn3-transposition between plasmid replicons can occur at frequencies of 10-2/10-3 153, and 

for Tn4401 at frequencies of 10-3/10-4 154. Although cointegrate resolution occurs independent from 

host recombination functions, RecA-mediated homologous recombination between the directly 

repeated transposons can resolve co-integrates in the absence of TnpR, although less efficiently155. 

New Tn3-based transposons evolve by a sequence of homology- and resolvase-mediated 

recombination events between related and unrelated elements as it is suggested for Tn2-like 

transposons142, or by the recruitment of ‘replacement’ IRs as described for Tn4401 evolution143 

(Figure 9, bottom). 
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Figure 9: Schematic of the transposition mechanism used by Tn3-family transposons.  
Replicative transposition by the copy-in mechanism is a two-step process and requires transposon- and host-encoded 
functions (indicated in orange and blue, respectively). The transposase (TnpA) cleaves DNA single-strands at the 
transposon’s IRs (black) and joins them with DNA ends at the target site (blue triangle with 5-bp target sequence) during 
the so-called “strand-transfer” reaction. Single-strand gaps between target and transposon DNA, and also the 
complementary transposon-strand, are filled up by cellular DNA replication functions. This generates a double-stranded, 
circular co-integrate molecule called Shapiro-intermediate, which contains two copies of the transposon. During 
resolution, the resolvase (TnpR) performs site-specific recombination at the transposon’s res-sites (white box), which 
leads to the separation of donor and target molecule. Characteristic TSDs are present at either end of the newly inserted 
transposon in the target molecule. 
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Bacterial fitness and cost of antibiotic resistance 
The biological fitness of bacteria is, at the broadest level, defined as their ability to survive and divide 

in a particular environment. Traditionally, growth rate and competitiveness are measured in vitro or 

in vivo to estimate the fitness of one bacterial genotype relative to another when both strains are 

growing under the same conditions. For example, the maximum exponential growth rate r of strain 

A and strain B is measured, and the relative fitness w is calculated as the ratio of absolute growth 

rates (w = rA/rB). The assessment of competitiveness is the ‘gold standard’ of fitness estimation156. 

Here, a 1:1 volumetric mixture of strains A and B is inoculated and the population density (N) of each 

competitor is determined at the start (i) and the end (f) of an experimental cycle. The respective net 

population growth is calculated as mA/B = ln (NA/B(f)/NA/B(i)) (m = Malthusian parameter), and the 

relative competitive fitness as w = MA/MB157. The relative fitness w can be increased (>1), equal (1) 

or reduced (<1). As a consequence of fitness differences between two bacterial populations, their 

frequencies will change over time, and the less fit population will decrease due to negative selection. 

 

The selective benefit of resistance acquisition in bacteria is futile once antibiotics are removed and 

the fitness of resistant relative to susceptible strains represents a key criterion for the persistence of 

resistance in bacterial populations20. The effect of newly acquired resistance on fitness has been 

studied in vitro for many antibiotics and types of resistance mutations158 (paper I), for resistance 

plasmids (paper III and below), resistance encoding integrons159 and transposons160,161, and also in 

vivo56,160,162. The general observation is that resistance acquisition reduces bacterial fitness in 

antibiotic-free conditions163. The predictability of this so-called ‘fitness cost’ for a particular 

combination of resistance determinant and host genetic background is however limited since both 

factors impact the cost128,130,164-166 (paper I and III), in addition to the bacterial environmental 

context167. A recent meta-analysis shows, however, that costs associated to resistance mutations are 

generally greater than the costs imposed by horizontally acquired resistance determinants168. This is 

explained by the acquired type of resistance mechanism. De novo resistance mutations in the 

antibiotic target site cause perturbation of essential cellular functions like cell wall synthesis, DNA 

replication or protein synthesis by changing the proteins involved in these processes (PBPs, DNA 

gyrase and topoisomerase, RNA polymerase, ribosomes)169. Different from that, horizontally 

acquired resistance determinants mainly encode proteins for enzymatic drug modification (e.g. 

aminoglycoside-modifying enzymes) or degradation (e.g. β-lactamases), or for proteins involved in 

drug influx or efflux, and these alterations interfere less with cellular processes15. For horizontally 

acquired resistance, fitness costs are however also created by other factors than the resistance 

mechanism (see Fitness cost of plasmid carriage; reviewed in170,171).  
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The cost of resistance usually leads to a decline in resistant versus susceptible bacteria in absence of 

antibiotics. The greater the fitness cost is, the faster resistance should theoretically decrease in 

bacterial populations172. However, several studies revealed that newly acquired resistance by 

mutations173 (paper I) or HGT events128,130,160,161 (paper III) can impose a low or no fitness cost, 

and most worryingly, some examples for resistance determinants that confer a fitness benefit to their 

bacterial host also exist for mutations56,165 and plasmids161. Another important observation is that 

resistance-associated fitness costs can be reduced or ameliorated over evolutionary time, while 

resistance is maintained (see Solutions to the plasmid paradox). The evolution of no or low-cost 

resistant bacteria decreases the likelihood that they are outcompeted by drug-sensitive strains even 

when selective pressures are removed and stabilizes antibiotic resistance in bacterial populations. To 

contextualize the work of paper III, I will hereafter focus on the fitness costs associated to horizontal 

plasmid acquisition in bacteria and the proposed mechanisms that reduce this cost.  

 

Fitness cost of plasmid carriage  

There is not one straight forward mechanism that can be attributed to the cost of recently acquired 

plasmids (reviewed in171). Instead, several genetic and molecular conflicts arise from plasmid-host 

interactions, as indicated in Figure 10 and described below.  

All major HGT mechanisms, conjugation, transformation and transduction, facilitate the acquisition 

of plasmids, which involves the entry of ssDNA into the recipient bacterium. RecA-binding to this 

ssDNA triggers the cell’s SOS response, and as a consequence of DNA repair induction and slower 

bacterial cell division, fitness is temporarily reduced171 (Figure 10-2). Furthermore, specific fitness 

costs are associated with plasmid transfer by conjugation and presumably due to several factors such 

as the expression of plasmid-encoded ATPases and the conjugational transfer machinery (T4SS)174, 

as well as the transient overexpression of plasmid-encoded genes upon plasmid arrival in the recipient 

cell171. Likewise, infection of plasmid-carrying cells by so-called ‘male-specific’ phages via the 

conjugation apparatus reduces fitness inevitably (Figure 10-1). Once a plasmid is established in the 

cell, recombinase expression of plasmid-associated MGEs such as transposons can mobilize these 

elements into the host chromosome and cause detrimental effects on bacterial fitness if the element’s 

insertion interrupts genes that code for relevant host proteins or regulators171 (Figure 10-3). Although 

plasmid acquisition implies replication of some additional DNA, the requirement for extra 

nucleotides does generally not restrain bacterial fitness168. However, the expression of plasmid 

replication proteins was associated with induction of the bacterial SOS response and to plasmid costs, 

possibly through sequestration or inhibition of host replication or repair proteins. This was 

demonstrated for example for the interaction of RepA-expression from plasmid pSC101 and the host 
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primase DnaG in E. coli175, interaction of the replication protein gene rep of pNUK73 and P. 

aeruginosa helicases and proteinases176 and was also suggested for TrfA1, an IncP-1b replication 

protein, and the Shewanella oneidensis helicase DnaB177 (Figure 10-4). It appears however, that the 

greatest metabolic burden of plasmid carriage results from the sequestration or occupation of cellular 

components such as RNA polymerases and ribosomes, tRNAs, amino acids, which causes inefficient 

and inaccurate transcription and translation, respectively. In line with this, costly plasmid acquisition 

was associated to an increased, global transcriptional demand on the host cell, involving genes 

associated with translation or SOS response176,178 (Figure 10-5). The resulting lack or 

alteration/misfolding of essential host proteins disturbs downstream bacterial physiology or is lethal 

to the cell. Moreover, the more horizontally acquired proteins interact with established host protein 

networks, for example the cellular replication network, the more they impact a host’s fitness176 

(Figure 10-6). Finally, interference of plasmids with other horizontally transferred MGEs can 

produce fitness costs, which was demonstrated for plasmid pNUK73 in P. aeruginosa and the 

expression of proteins associated to a horizontally acquired transposon and phage176 (Figure 10-7).  

 

 

 
 
Figure 10: Illustration of plasmid-host interactions. Different stages of plasmid acquisition and maintenance by a 
bacterial host may cause fitness costs: 1) plasmid transfer by conjugation, 2) entry of ssDNA during HGT, 3) 
recombinational interaction between plasmid and chromosome, 4) plasmid replication, 5) plasmid-gene expression 
(transcription, translation), 6) plasmid- and host-protein interaction, 7) plasmid interactions with other MGEs. Reprinted 
and adapted with permission from171. 
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The size of a plasmid does generally not correlate with the fitness burden it creates168,179. Both large 

and small resistance-encoding plasmids can be either rather costly or not so costly (Table 1). 

However, clinical resistance plasmids generally show low or no fitness burden in a clinically isolated 

host (see Table 1-a), while model plasmids or artificial plasmids largely impose a significant cost in 

laboratory strains (see Table 1-b). Larger resistance plasmids also carry more resistance genes180. 

However, it is the presence of particular resistance genes or an increasing number of antibiotics that 

the element confers resistance to that are responsible for higher fitness costs rather than the plasmid 

size, as demonstrated experimentally for blaCTX-M-15 and tetA/R in E. coli180, or in a meta-analysis168, 

respectively. For resistance plasmids in E. coli it was further shown in vitro that the number or the 

type of plasmid replicons that a host carries is not a good indicator for fitness costs, and this may be 

because known resistance plasmid replicons vary in their resistance gene content, which is a better 

predictor of fitness cost181. Furthermore, fitness costs vary between different plasmid-host 

combinations and depend both on the genetic background as well as the acquired plasmid that is 

tested128,130,161.   

 

Solutions to the plasmid paradox  

Undoubtedly, plasmids facilitate rapid bacterial adaptation to selective environments. However, their 

accessory traits are not generally essential for bacteria, and host fitness costs in plasmid-unselective 

conditions or their segregational loss during vertical inheritance should cause a decline in the 

frequency of plasmid-bearing cells relative to plasmid-free cells.  However, studies of different 

plasmid-host combinations show that conjugative as well as non-conjugative plasmids persist in 

bacterial populations over several hundred generations of plasmid-unselective cultivation128,130,161,182 

(paper III). This so-called ‘plasmid paradox’ has been the focus of theoretical models183,184 and 

experimental evolution studies (reviewed in 185,186), which describe at least five non-exclusive 

mechanisms for the maintenance of plasmids over evolutionary time scales. Solutions to the plasmid 

paradox comprise mechanisms of plasmid-host adaptation that impact plasmid stability, mobility and 

cost, which originate from genetic changes in the plasmid, the host, or both. The key mechanisms are 

related to:  

 

- improved segregational plasmid stability: evolution of a model plasmid in E. coli showed that 

stability was increased in the absence of plasmid-selection through a small duplication involving the 

plasmid’s ori region. This reduced the interference between plasmid replication and the transcription 

of a plasmid-associated accessory gene in proximity to the ori and improved plasmid stability187. 

Alternatively, plasmids can acquire addiction systems to improve their stability, which was 
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demonstrated for a conjugation-deficient as well as a conjugative plasmid and a transposon-associated 

toxin-antitoxin system in Pseudomonas moraviensis188 or S. oneidensis189, respectively. Similarly, 

the insertion of transposon-associated resolvases into plasmids positively affected the resolution of 

plasmid multimers and thus plasmid segregation188. Finally, an increase in plasmid copy number can 

facilitate plasmid stability by counteracting ineffective plasmid partitioning177,190.  

 

- selection for plasmid-associated traits: in vitro, sporadic exposure to plasmid-selective agents 

promotes the maintenance of extremely costly plasmids in bacteria191,192. However, mathematical 

models postulate that constant selection for plasmid-associated beneficial traits will not maintain the 

element extra-chromosomally, but select for backgrounds that captured the selective trait 

chromosomally184.  This was also demonstrated in vitro and facilitated through the association of 

beneficial plasmid genes to transposons. Surprisingly, transposition to the chromosome of 

Pseudomonas spp. occurred in plasmid selective as well as unselective conditions and decreased 

plasmid frequency178,193. 

 

-high conjugation rates: theory suggests that the loss of plasmid-bearing cells through segregation 

or fitness costs can be offset by high rates of conjugational plasmid transfer183. In vitro, this was 

shown for some very efficient plasmid donors194, but sufficiently high conjugation rates are not 

commonly observed in vitro186. In addition, conjugational plasmids could be maintained by infection 

of bacteria that are not under negative selection, for example other strains or species that are present 

in the specific ecological niche184. However, the costs associated to horizontal plasmid spread by 

conjugation reduce vertical plasmid inheritance195 and conjugation may thus not represent the major 

evolutionary trajectory for plasmid maintenance174,196. Especially since analysis of GenBank plasmid 

sequences shows that only around 50% of these plasmids are conjugative197. Yet, plasmids seem to 

be maintained by other HGT mechanisms or by plasmid-host dynamics described here, and also 

benefit from the simultaneous spread with conjugative plasmids if they are mobilizable.  

 

- compensation of fitness costs: the evolutionary selection for reduced plasmid costs is very likely 

key to plasmid persistence, however the so far described underlying mechanisms are rather diverse. 

This is different from mutational resistance, for which in vitro and in vivo (mice and humans) studies 

frequently demonstrate that cost compensation primarily occurs through the re-establishment of the 

cellular function that got impaired by the resistance mechanisms198. Compensatory mutations can 

arise in the same gene as the resistance mutation, or externally, and restore for example the translation 
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elongation rate at the ribosomes of aminoglycoside resistant E. coli199, or the RNA polymerase 

transcription efficiency in rifampicin resistant E. coli200, thus reducing fitness costs. 

Plasmid cost compensation was first described in the late 80’s by Bouma and Lenski, who found that, 

after 500 generations of host-plasmid adaption, pACYC184-carriage was even beneficial201. More 

recent reports on the genetic changes and mechanisms behind this so-called compensatory evolution 

find that host adaptation occurs more frequent than changes in the plasmid but appears also in both 

loci simultaneously (Table 1). Importantly, compensatory mutations arise specifically in plasmid-

carrying lineages where they improve fitness, but not in plasmid-free cells, where they might even 

reduce fitness178,201. Plasmid-host adaptation was observed after experimental evolution 

with177,188,190,201 and without161,196,202 (paper III) antibiotic selection pressure.  

At least four studies demonstrated that mutations in plasmid or host replication proteins improved 

bacterial fitness by reducing the detrimental interference between the replication machineries, and by 

prevention of the SOS response176,177,190,203. Mechanistically, this was achieved by mutations in the 

plasmid’s replication initiation protein TrfA1189,190, which decreased the protein’s affinity to the DNA 

helicase DnaB of S. oneidensis and Pseudomonas putida177. Likewise, the loss of chromosomal 

UvrD-like helicase or kinase functions of P. aeruginosa PAO1 reduced the expression of a plasmid’s 

replication protein, and thus fitness costs176. In Pseudomonas sp. H2, mutations affecting 

chromosomal helicase functions (Xpd/Rad3 or UvrD-like) were even shown to provide RP4-carrying 

strains with a fitness benefit compared to isogenic plasmid-free strains203. Further, the deletion of 

plasmid-associated resistance genes204, genes for conjugational transfer196, or both174 alleviated the 

plasmid cost. Such events are facilitated if costly genes are flanked by MGEs174,204. In vitro, the cost 

of conjugative plasmids was also decreased by host-adaptive changes that reduced transfer rates196, 

which could also theoretically be correlated to cost reduction195. Finally, compensatory mutations 

that altered the transcriptional demand of plasmid-carriers ameliorated plasmid costs. This was for 

example achieved by mutational inactivation of the global regulators GacA/S in Pseudomonas 

fluorescens178 or inactivation of chromosomal helicase/kinase functions in P. aeruginosa191, which 

resumed transcription profiles of the compensated strains to that of plasmid-free strains.  
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Table 1: Fitness costs of newly acquired plasmids in various hosts and the effect of compensatory 
evolution. 
 

Host Plasmid Fitness effectc Effect of adaptation 
(which partd) 

E. coli128  
(23 isolates) 

pK71-77-1-NDM (~145 kb) (a) 
(blaNDM-1)     

majority no cost,  
3% to 27% cost 

not studied 

E. coli MG1655187  pCON (~3 kb) (b) no cost not studied 

E. coli130  
(2 isolates) 

pG12-KPC-2 (~111 kb) (a) 
(blaKPC-2)  

2 and 4% cost not studied 

K. pneumoniae205  pKpQIL (~114 kb) (a) 
(blaKPC-3)   

no cost not studied 

K. pneumoniae  
and E. coli96  

pUUH239.2 (~220 kb) (a) 
(blaCTX-M-15/TEM-1/OXA-1)  

no and 4% cost not studied 

E. coli206  seven plasmids (>100 kb) (a) 
(blaCTX-M-14/15/27)  

no cost not studied 

Enterobacteriaceae207  
(29 isolates) 

p3R-IncX3 (~46 kb) (a) 
(blaNDM-5)  

majority no cost not studied 

E. coli MG1655208  R1 (~100 kb) (b) 32% cost cost amelioration or 
fitness benefit (p+c) 

E. coli B201,209  pACYC184 (~4 kb) (b) 5-10% cost fitness benefit (c) 

E. coli K12196  RP4 (~60 kb) (b) 
R1 (~100 kb) (b) 

21% cost,  
6% cost 

cost reduction (p+c) 

K. pneumoniae  
and E. coli174  

pKP33, (~73 kb) 
(blaCTX-M-15/TEM-1/OXA-1) (a)  

6% to 12.5% cost cost amelioration (p) 

P. aeruginosa PAO1191  pNUK73 (~5 kb) (b) 21% cost cost amelioration (c) 

P. fluorescens SBW25178  pQBR103 (~425 kb) (b) 27% cost cost amelioration (c) 

E. coli paper III  
(1 isolate)  

pK71-77-1-NDM (~145 kb) (a) 
pG06-VIM-1 (~53 kb) (a) 
(blaNDM-1 and blaVIM-1)   

5% cost cost amelioration (c) 

Pseudomonas sp. H2203  RP4 (~60 kb) (b) 7% cost fitness benefit (c) 

Enterococcus faecium161  
(6 isolates) 

six vanA-plasmids (a) 
(between 80 and 200 kb)  

25% cost, 
no cost, 
or 10% benefit  

fitness benefit (p+c) 

a: clinical plasmid/host; b: model plasmid/lab host; c: fitness assessed by growth rate measurements or competition 
experiments; d: p = plasmid, c = chromosome. 
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In conclusion, plasmid persistence in bacterial populations is impacted by several factors, and the 

long-term maintenance of plasmids is likely due to a combination of the above-described evolutionary 

dynamics. Interestingly, plasmid-host evolution frequently results in trade-offs, such that 

compensation increases fitness and improves the vertical inheritance of plasmids but at the same time 

reduces their horizontal spread174,196 or constrains the plasmid’s host-range by specialization of 

plasmid-host pairs190. However, in addition to cost compensation, plasmid-host adaptation also 

improved the permissiveness of adapted Pseudomonas hosts to various naive plasmids203. So far, our 

knowledge on plasmid-host adaptation is largely based on studies in controlled laboratory 

environments using laboratory-based model systems. This situation warrants research towards 

understanding the evolutionary trajectories that stabilize plasmid-associated resistance in plasmid-

host pairs of clinical origin as in Porse et al.174 or paper III, where we find that growth adaptation of 

patient-derived E. coli isolates to the experimental conditions pleiotropically alleviates the cost of 

clinical MDR plasmids. The cost compensating adaptation occurred independent of plasmid-carriage 

and thus represents a novel solution to the ‘plasmid paradox’.
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Reversibility of resistance 
Since the use of antibiotics selects resistant and removes susceptible clones in bacterial populations, 

a reduction in drug consumption should also decrease the frequency of resistance. The major driving 

force for the loss of resistance in such unselective conditions is the fitness burden that resistance 

determinants usually impose on bacteria, and resistant bacteria theoretically emerge less the greater 

the fitness cost is172. Most antibiotics are prescribed on the community-level210. However, 

interventions to reduce antibiotic use in the community did not result in an adequate decline in 

resistance211,212, showed persisting resistance even after 12 years20, or worse, significantly increased 

the prevalence of plasmid-associated resistance due to a fitness benefit of resistant strains over 

susceptible ones213. These observations can be explained by several biological and evolutionary 

processes that stabilize resistance determinants in bacterial populations20,214, for which examples are 

listed here: 

  

- if bacteria re-acquire resistance at high enough rates by mutations or HGT events 

- if resistance is co-selected with physically linked beneficial traits, for example antibiotic or heavy 

metal resistance genes or virulence factors (e.g. on MGE; see Mobile genetic elements)  

- if resistance is genetically associated with highly transmissible, clinically widespread clones12 

- if resistance is associated with plasmid-stability functions (see Plasmids) 

- if the selective disadvantage of resistance is weak or absent due to low or no cost of resistance, 

and/or compensatory evolution (see Bacterial fitness and cost of antibiotic resistance) 

- if antibiotic selection pressures are sustained either because the overall volume of drug use is 

unchanged or sporadic exposure to antibiotics, even at very low concentrations, occurs50,51 

 

It becomes apparent that, even if antibiotics are removed, straightforward reversal of resistance is 

difficult or even impossible due to the interplay of the many factors mentioned above. Unfortunately, 

the development of innovative antibiotics, for example from a novel drug class, with a novel drug 

target or binding site or with a novel mode of action, is stagnating6. In the light of this antibiotic void, 

research increasingly focuses on optimizing the use of available drugs and minimizing resistance 

evolution. To provide the background for the work done in paper I, I describe an evolution-informed 

approach for infection treatment using drug combinations below. 
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Evolution-informed treatment strategies  

Typically, drug combinations are used in the treatment of chronic or severe infections with the 

rationale to clear the infection more efficiently through a broadened and stronger antibiotic effect, 

and to delay the emergence of de novo resistance215. Treatment efficacy is ideally enhanced by 

interactions between the combined drugs that change the bacterial physiology and increase the killing 

or growth inhibitory effect beyond what is expected based on the individual drug effects 

(synergism215). More recently, selection inversion strategies were described in the context of 

combination therapy216. Those rely on the spontaneous evolution of resistance before the benefit of 

combining antibiotics is conveyed. For example, resistance acquisition can relax a suppressive drug-

interaction or induce synergistic drug-interactions and thus increase antibiotic potency upon evolution 

of single-drug resistant mutants216. Moreover, resistance evolution can lead to a biological 

phenomenon called collateral sensitivity (CS)217. CS is the opposite of cross resistance (CR = 

resistance to one drug confers also resistance to other antibiotics) and confers resistant mutants with 

increased susceptibility to certain antibiotics. Therefore, the phenomenon is also called negative 

cross-resistance218 or hypersensitivity219. Research into the design of CS-informed treatment 

strategies has gained considerable interest during the last decade with the aim of limiting resistance 

development by selecting against resistant mutants. 

 

Collateral sensitivity: concept 

CS in bacteria was first described in 1952, when Szybalski and Bryson reported that “a strain made 

resistant to one antibiotic [became] considerably more sensitive to another”217. The usefulness of this 

sensitivity-tradeoff in bacterial infection treatment was however only put under scrutiny in 2013, 

when Sommer et al. introduced the idea of ‘collateral sensitivity cycling’220. In this context and 

considering the use of two drugs, resistance evolution during treatment with drug A could be 

counteracted by switching to drug B if the genotype resistant to A collaterally increased its 

susceptibility to B (Figure 11). Such an evolutionary tradeoff inverts the usual selection dynamics 

and resistant mutants are not selected anymore. If CS to A and B evolves reciprocally, the drugs can 

be switched periodically upon de novo resistance emergence. At every switch, the resistant 

subpopulation is preferentially eliminated compared to the sensitive wildtype and hence the 

population susceptibility returns to wildtype levels. Then, the infection can be cleared by the 

combined effect of drug treatment and host immune system. CS could be exploited using one drug at 

a time i.e. sequentially/cycled218,220, or by co-administration of drugs219,221,222. Single-drug therapy, 

however, reduces the overall drug load and thus exhibits less adverse effects as well as it decreases 

the likelihood to select for resistance to both drugs. 
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Figure 11: Example of a cycling protocol using a drug pair (A and B) for which resistance evolution in bacteria (orange 
and blue dots) results in reciprocal CS, meaning that resistance to one drug reinforces increased susceptibility to the other 
drug and vice versa (indicated as graphs). Thus, antibiotics can be used to select against the resistant subpopulation. 
 

 

Collateral sensitivity: findings, limitations and predictors 

To identify collateral responses in bacteria, the first systematic in vitro studies measured susceptibility 

changes in laboratory-evolved, single-drug resistant E. coli mutants towards large panels of 

antibiotics219,220. Those first screens found that in E. coli, CS evolved reciprocally between 

aminoglycoside, polymyxin and tetracycline drugs classes220. By today, a variety of clinically 

relevant G+ and G- pathogens such as S. aureus or Staphylococcus epidermidis49,218,222,223, E. 

faecalis224, Burkholderia multivorans225, Salmonella enterica164, P. aeruginosa226, and other clinical 

relevant organisms227 have been investigated for CS/CR, most of the studies using single laboratory 

model strains. Importantly, the more recent reports employed larger sample sets of clinical isolates 

of E. coli (paper I), P. aeruginosa228 or S. aureus222 to study CS/CR responses.  

CS/CR effects are typically assessed by measuring the antibiotic concentration that is required to 

inhibit growth of a resistant strain as well as its susceptible wildtype strain, and calculation of the 

relative fold changes of susceptibility, which are visualized in heat maps and in networks of collateral 

responses219,220 (paper I). Hitherto it was demonstrated, that both CS and CR are common 

phenomena in single-drug resistant bacteria, that CR is more prevalent than CS, and that CS changes 
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are often as small as 2 to 4-fold219,220,227 (paper I). Even for such small magnitudes, the selective 

consequences associated to CS could be demonstrated by different approaches: in vitro dose-response 

experiments confirmed that the growth of resistant mutants with CS towards a certain antibiotic is 

inhibited at lower drug concentrations than the wildtype219,220 (paper I). Aminoglycoside-resistant E. 

coli exhibited CS towards a particularly large number of antibiotics, also from different drug classes, 

which lead to the selective growth inhibition of such mutants in dose-response experiments219,220. 

Compared to single antibiotic exposure, the combined221,223 or sequential218 use of drugs to which CS 

evolved, slowed down resistance evolution of E. coli221 and S. aureus218,223, which was 

experimentally demonstrated by the lower resistance levels developed during drug exposure 

compared to a wildtype. Time-kill experiments in E. coli demonstrated that a resistant mutant is 

eliminated faster than the wildtype by the drug towards which CS was observed220. The latter was 

shown for antibiotics from different drug classes to which the respective resistant mutant exhibited 

reciprocal CS, for example gentamicin and cefuroxime220. Furthermore, reciprocal CS effects 

between antibiotics of the same drug class (β-lactams) slowed down E. coli229 or methicillin-resistant 

S. aureus222 resistance evolution in vitro and in a mouse model. Finally, in vitro cycling of two 

bactericidal antibiotics with reciprocal CS repeatedly eradicated the resistant subpopulation from a 

mixed E. coli wildtype/resistant population220. 

So far, few in vitro studies investigated in which way collateral effects on growth inhibition of 

resistant mutants also alter the MPC (see Mutant selection window) to secondary drugs. In resistant 

E. coli, the MPC was shifted towards lower or higher antibiotic concentrations according to the sign 

of the collateral susceptibility change220 (paper I). CS towards erythromycin in different single-drug 

resistant S. epidermidis mutants frequently narrowed the concentration range in which first-step 

mutants emerged (MSW)49. Importantly, the same study found that CS network patterns based on 

growth inhibition and MPC were similar49. 

Our knowledge on the relevance of collateral effects emerging from horizontal resistance acquisition 

is still limited, but was investigated for the plasmid-associated genes blaCTX-M-15229 and blaOXA48230, 

or MDR plasmids231 in E. coli. Evolution of resistance to ceftazidime and mecillinam by mutations 

in blaOXA48 and blaCTX-M-15, respectively, resulted in CS towards other β-lactams, including 

carbapenems230 or cefotaxime229, respectively. Furthermore, reciprocal CS between mecillinam-

resistant and cefotaxime-resistant blaCTX-M-15-variants limited resistance evolution in vitro and in 

mice during combination treatment with these drugs229. Such CS phenotypes exemplify how 

collateral responses upon resistance evolution would allow the use of previously ineffective drugs for 

strains that harbor these widely disseminated MDR determinants. E. coli acquisition of MDR 
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plasmids resulted in small but, in some cases, significant CS for aminoglycosides, macrolides or 

polymyxins231. 

Despite the frequent evolution of CS in single-drug resistant bacteria, several factors affect the 

successful use of CS-informed treatment in medical practice. It was demonstrated that CS responses 

evolve repeatedly in independent populations exposed to a specific drug, however the responses 

varied with the diversity of mutational paths towards resistance in vitro164,226 and in a mathematical 

model232. When investigated across different species, even the same resistance mutation led to 

different CS responses164. Also, genetic interaction with de novo resistance mutations in the resistant 

strain during treatment233 or the acquisition of compensatory mutations over evolutionary time 

(Sørum et al., unpublished data) interfere with the stability of collateral networks and how efficient 

bacteria can be eradicated through CS tradeoffs. Importantly, we identified that the resistance 

mechanism, especially efflux mutations, as well as the relative fitness of resistant mutants provide 

some degree of predictability for collateral responses across diverse uropathogenic E. coli isolates 

(paper I). 

 

Collateral sensitivity: mechanisms  

Albeit the number of studies that investigate the frequency of CS is growing, the mechanisms of this 

phenomenon are still poorly understood. CS is likely achieved by an enhanced antibiotic-target 

interaction and growth inhibition, which represents, on a molecular level, an inversion of resistance 

mechanisms234. Firstly, CS can be caused by an increased net uptake of drug molecules into the cell, 

or by their reduced efflux. For the latter, Lazar et al. were the first to describe a CS mechanism in E. 

coli. Mutations in trkH, cyoB/C, ispA, nuo or hemA resulted in aminoglycoside resistance due to a 

decreased inner membrane potential and reduced active uptake of these drugs219. Simultaneously, 

antibiotics that are substrate for proton motif force-dependent efflux pumps such as AcrAB-TolC 

accumulated intracellularly, leading to CS219. Secondly, increased chemical activation of 

nitrofurantoin was linked to CS. Mutations in spoT, lon, or hemL in mecillinam- and tigecycline-

resistant E. coli upregulated expression of the nitroreductases NfsA and NfsB, and the increased 

formation of the toxic intermediate led to CS towards nitrofurantoin234. Thirdly, CS could be caused 

by an increased toxicity of the drug, for example by activation of the SOS response. This effect was 

described for a tigecycline-resistant lon mutant of E. coli with CS towards nitrofurantoin234. Lastly, 

an enhanced drug binding at the target can promote CS. This can be caused by allosteric changes of 

the target structure222, or as suggested for mecillinam-resistant blaCTX-M-15-variants, by reduced 

affinity of the mutated enzyme to another antibiotic, in this case cefotaxime, which is free to bind to 

the target229.  
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Objectives 
This PhD thesis aimed to increase our understanding of the selection, spread and maintenance of 

bacterial antibiotic resistance. We investigated: 
 

1. a strategy of selection inversion in drug resistant populations (paper I) 

2. a mechanism that facilitates the horizontal spread of antibiotic resistance (paper II) 

3. the maintenance of plasmid-mediated antibiotic resistance (paper III). 

 

 

The specific objectives were:  

 

Paper I 

• to determine collateral sensitivity networks for relevant antibiotics across a diverse set of 

single-drug resistant (ciprofloxacin, mecillinam, nitrofurantoin, trimethoprim), clinical 

isolates of uropathogenic E. coli; 

• to analyze the generality and evaluate predictors of the identified collateral responses. 

 
 

Paper II 

• to determine the frequency of Tn1-transposition during natural transformation of A. baylyi; 

• to identify host and element functions that are required for transposition.  

 

Paper III 

• to determine the fitness of uropathogenic E. coli isolates that carry carbapenemase-encoding 

resistance plasmids (blaVIM-1 or blaNDM-1) before and after experimental evolution; 

• to identify genomic targets of plasmid-host adaptation; 

• to investigate mechanisms that contribute to plasmid maintenance. 
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Materials and Methods 
 

Bacterial species 

Escherichia coli and the ECOSENS collection 

Escherichia comprises motile, facultative anaerobic, G- rods of the family Enterobacteriaceae. The 

first isolate of the genus was obtained from the gut of an infant in 1885235. The species Escherichia 

coli is a symbiotic inhabitant of the mammalian gut and predominantly found in the small intestine236. 

Increasingly, environmental samples of Escherichia can be genetically distinguished237,238. For more 

than 100 years, descendant strains of E. coli K-12 and B239 have been exploited as malleable model 

organisms for molecular, biotechnological and genetic studies240. For example, fundamental findings 

in E. coli are related to sexual recombination in bacteria, such as the discovery of bacterial gene 

transfer by conjugation241 and transduction242, and the description of today’s plasmids243,244. The 

amount of research done on E. coli is also exemplified by over 22 000 E. coli genomes that are 

deposited online to date245. The first fully assembled genome was available in 1997 (E. coli strain 

MG1655)246, followed by increasingly accurate sequences247, which facilitated the construction of an 

E. coli single-gene knock-out collection for the study of gene essentiality248. Experimental evolution 

studies using E. coli cover different aspects of microbial adaptation processes, for example the 

adaptation to different growth conditions249,250, fitness dynamics of adaptation157,161 (paper III) or 

the evolution of antibiotic resistance50,219,221,251 (paper I). An immense effort and scientific 

commitment are put into the continuation and analysis of the long-term experimental evolution of E. 

coli by Lenski and co-workers, which is already exceeding 76 000 bacterial generations252. 

Apart from being a persistent or transient commensal, pathogenic E. coli frequently cause diarrhea, 

urinary tract infections (UTIs) and even serious bloodstream infections or meningitis253,254. From the 

human gut as a common reservoir, intestinal and extra-intestinal sites can be colonized by pathogenic 

E. coli, which are abbreviated as IPEC or ExPEC, respectively255.  E. coli’s etiological potential is 

further categorized into pathotypes based on disease symptoms, virulence determinants and 

phylogeny, for example uropathogenic E. coli (abbreviated as UPEC) or enterohemorrhagic E. coli 

(abbreviated as EHEC)255. Additional subdivision based on surface antigen -O, -H, and -K (serotype), 

multi-locus sequence typing, and biochemical properties (biotype) is important to understand the 

epidemiology of E. coli pathogens255,256. A combination of core and accessory genome analysis is 

suggested to more accurately distinguish E. coli pathogens from commensals255,257, and also E. coli 

pathotypes from one another258.  

UTIs are most often caused by UPEC254. In two multicenter studies including 16 European countries 

and Canada the prevalence of UPEC ranged between 74%-77% of all tested organisms associated to 
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community-acquired uncomplicated UTI in women (ECOSENS Project I259 and II68). UPEC present 

an enhanced metabolic flexibility to survive in the rather hostile microenvironment of the bladder and 

kidney, which is nutritionally poor and nitrogen-rich260. Via the fecal-periurethral route UPEC infect 

the bladder (cystitis), however, the infection can also involve the kidneys (pyelonephritis) and from 

there enter the bloodstream through tissue invasion253. UPEC belong to diverse STs and mainly to 

phylogroups B2, A and D261,262. The E. coli strains used in this thesis originate from the ECOSENS 

studies I259 (paper I) and II68 (paper I and paper III), respectively, and were isolated in Greece, 

Portugal, Sweden, and the UK. These 11 UPEC isolates were pan-susceptible according to disc 

diffusion tests, belonged to diverse STs as determined by multi-locus sequence typing and were 

plasmid-free according to results from pulse-field-gel electrophoresis and PCR-based replicon 

typing261. Our own bioinformatic analysis revealed a different ST than previously described for two 

isolates, the presence of plasmids for three of the employed isolates and an acquired resistance 

element or mutational resistance determinants in four strains (paper I).  

 

Acinetobacter and strain A. baylyi ADP1 

The first organism that represents the current Acinetobacter classification was isolated in 1911 from 

soil263. This genetically diverse genus comprises more than 60 species that belong to the family 

Moraxellaceae264,265. Its members are G-, non-motile, non-spore forming and strictly aerobically 

growing coccobacilli i.e. they may form rod-shaped cells during exponential growth that become 

coccoid when entering stationary phase266. Acinetobacter spp. can be isolated in high abundance from 

soil and aquatic environments267, or activated sludge268. Also food samples (vegetables, dairy 

products, meat and fish) and the human flora, especially skin, represent a natural habitat269,270. 

However, members of the ‘Acinetobacter baumannii complex’ (A. baumannii, A. pittii, A. 

nosocomialis) are only rarely found in environmental habitats but instead represent the frequent cause 

of MDR hospital infections, for example UTI, wound infections, ventilator-associated pneumonia 

and bloodstream infections271-273.  

In paper II, a spontaneous rifampicin-resistant mutant of A. baylyi strain ADP1 was used268,274. 

Taylor and Juni first isolated the organism from soil in 1960275, and its high competence for the uptake 

of exogenous DNA by bacterial natural transformation was soon after demonstrated276. Genome 

analysis of diverse Acinetobacter spp. suggests that most members of the genus can undergo natural 

transformation under conditions that induce the expression of competence genes37. Interspecies 

transformability was confirmed for clinical isolates of A. baumannii and also other Acinetobacter 

spp.106,107,277-280. A. baylyi is closely related to A. baumannii37 and shares around 80% identity in core 
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genes with clinical isolates of this species281,282. It is gaining more attention as a potential pathogen 

due to its, still sporadic, clinical occurrence in immune-compromised patients283,284. 

A. baylyi ADP1 is a widely used model organism to study the adaptive potential of bacterial natural 

transformation113,285,286. This is due to its competence for DNA uptake at high frequencies110,274,287 

from all kinds of sources110, even eukaryotic114, and easy handling in the lab, which results from its 

minimal nutritional requirements and a short generation time288. The transformation capabilities of 

ADP1 are thoroughly investigated; frequencies as high as 10-3 can be measured for homology-

facilitated transformation with chromosomal donor DNA and 10-4 for plasmid transformation, 

respectively110. In liquid culture, ADP1 develops maximum competence for DNA uptake once the 

availability of nutrients is increased, for example directly after dilution of an overnight culture into 

fresh medium110. Competence only drops when the strain enters stationary phase289. Transformation 

is facilitated by the addition of DNA into a growing culture, and ADP1 binds and takes up 

extracellular, dsDNA indiscriminate of origin (e.g. not species-specific287), topology (linear or 

circular DNA110) or nucleotide sequence (heterologous or homologous DNA110). DNA-uptake 

sequences are not described for Acinetobacter spp., and ssDNA transformation of ADP1 can occur 

but is inefficient110,114. The ADP1 genome does not include plasmids281 and is unusually small but 

represents the average genome size of the Acinetobacter genus37 (3.6 and 3.8 Mbp, respectively). A 

single-gene knock-out collection of ADP1 has been constructed290, and further genetic manipulation 

of ADP1 was used to study various metabolic pathways and molecular mechanisms that contribute 

to genome plasticity in bacteria, thereby exploiting its nutritional versatility and natural 

transformability285,291.  

 
No drugs for bad bugs 

Both of the above-described bacterial genera include species that present a particular threat in the 

global emergence of resistant pathogens292. A. baumanni and E. coli are classified as so-called 

ESCAPE organisms293 (originally ESKAPE294) together with E. faecium, S. aureus, Clostridium 

difficile, P. aeruginosa and other Enterobacterales such as K. pneumoniae, for which current 

treatment options are increasingly insufficient due to MDR infections. More specifically, ESBL-

producing or carbapenem-resistant Enterobacterales including E. coli, and carbapenem-resistant A. 

baumannii, represent pathogens for which research and drug development efforts are of critical 

priority according to the World Health Organization9.  

Although the rate of carbapenem-resistant E. coli blood isolates in most European regions is reported 

to be below 2% in 2019, a rising trend can be observed10. For example, colonisations and infections 

with carbapenem-resistant isolates of Enterobacterales in Norway increased 10 times from 2008 to 

2018 (54 patients)295. During this time, selection for carbapenem resistance rose with the clinical use 
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of these drugs in infections with third generation cephalosporin-resistant E. coli, which increased 

significantly across Europe10,296 (Figure 12, top).  

Many Acinetobacter spp., including the clinically predominant A. baumannii, are intrinsically 

resistant to a wide range of antibiotics43. Incidence of clinical Acinetobacter isolates resistant to 

carbapenems (mainly due to carbapenemases), aminoglycosides (mostly through aminoglycoside-

modifying enzymes) and fluoroquinolones (efflux pump-related) is especially high in some Baltic, 

Southern and South-eastern European countries, and evolves through a combination of mutational, 

and importantly, horizontal resistance acquisition10 (Figure 12, bottom).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: National percentages for blood isolates of third generation cephalosporin-resistant E. coli (2019) and 
Acinetobacter spp. resistant to fluroquinolones, aminoglycosides and carbapenems (2018). Reprinted from10,297  

E. coli Acinetobacter spp.

E. coli Acinetobacter spp.
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Methodological approaches  
Further experimental details can be found in the respective papers I-III.  

 

Collateral sensitivity networks in E. coli UTI isolates (paper I) 

As previous studies tested collateral responses against a larger panel of antibiotics only in laboratory 

strains (E. coli MG1655220,221, E. coli BW25113219), we employed ten E. coli isolates from patients 

diagnosed with uncomplicated UTI (ECOSENS I259 and II68). Importantly, the strains were 

phenotypically pan-susceptible to antibiotics and thus collateral effects could be determined for 

individual antibiotic resistance mutations. To account for the impact of strain diversity on collateral 

networks, we chose to work with different STs, as determined in261. The antibiotics to which primary 

resistance was evolved in these strains (ciprofloxacin, nitrofurantoin, mecillinam, trimethoprim) were 

chosen due to their clinical relevance in the treatment of uncomplicated UTI in women according to 

national (Norway)298 and international (Europe and USA)299 guidelines. Nitrofurantoin, trimethoprim 

(-sulfamethoxazole) and (piv)mecillinam represent drugs which are recommended in the first-line, 

empiric therapy of uncomplicated UTIs caused by common uropathogens due to their good clinical 

and microbiological efficacy. Other β-lactams and also fluoroquinolones, such as ciprofloxacin, 

should only be considered as alternative treatment options for complicated UTI298,299.  

To obtain resistant E. coli mutants at or above the respective clinical breakpoint according to 

EUCAST45 (version 7.1), we used a static, stepwise selection regime on solid media containing 

ciprofloxacin, nitrofurantoin, mecillinam or trimethoprim in two-fold increasing concentrations. This 

method is comparable to the gradient plate technique employed in the pioneering studies investigating 

bacterial CR/CS217,220. In several selection rounds, increasing lethal concentrations of antibiotics are 

used to select for increasingly resistant mutants. At each replating event on higher concentrations, 

strong selection pressure for resistance acquisition, and bottlenecks, are applied. The cultivation steps 

were kept at a minimum throughout this selection procedure to avoid acquisition of adaptive 

mutations to the laboratory environment. To confirm resistance of the 40 mutants phenotypically, we 

performed AST by the gradient strip method to obtain the MIC. Next, we assessed collateral effects 

in our mutants by BMD, monitoring bacterial growth in an antibiotic gradient and measuring optical 

density (OD600), determination of the 90% inhibitory concentration therefrom (IC90; strongly 

correlates to inhibition levels IC50 or IC95 and thus approximates the MIC221), and generation of heat 

maps and CS/CR networks, as previously described220. The BMD method represents the gold 

standard in AST and improved overall sensitivity and precision. Compared to strip tests, where 

changes in susceptibilities are estimated from visual determination of growth inhibition and with a 

sensitivity of 2-fold, BMD allowed high-throughput screening of susceptibility changes by automated 
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endpoint absorbance measurements, and an increase in resolution to 1.5-fold. We assayed CR/CS 

responses towards 16 different antibiotics, including bacteriostatic and bactericidal drugs with diverse 

modes of action to which our wildtype strains were phenotypically susceptible. Furthermore, the 

selected agents represented frequently or conservatively used (for example the last-line drug colistin), 

clinically relevant antibiotics, older antibiotics (for example temocillin and fosfomycin), and drugs 

that are not licensed in all European countries (fosfomycin). Conserved collateral effects (when 

CR/CS to a specific antibiotic was prevalent in ≥50% of mutants) where further characterized by 

generating dose-response growth inhibition curves and MPC measurements for representative 

resistant mutant-wildtype pairs, as was also done previously220. 

Similar to Lazar et al.219, we investigated the genetic mechanism of resistance by whole genome 

sequencing (WGS). Short-read next generation, paired-end sequencing was performed by Illumina 

technology, which	 is	currently the most accurate sequencing technique. A reference genome was 

assembled for each wildtype strain. By using WGS, read alignment, BLAST search, and intensive 

literature study, we identified putative resistance mutations. WGS was especially useful for 

mecillinam mutants, since resistance to this drug reportedly can be achieved by mutations in at least 

38 different genes66. The concentration at which first-step resistant mutants are prevented to arise, 

the MPC, was determined similar to Imamovic et al.220. Two-fold increments in antibiotic 

concentrations were employed since the endpoint determination by distinction of growth/no growth 

turned out problematic using 1.5-fold changes. This was likely due to the required large amount of 

inoculum (approximately 1010 cells48) causing an uneven growth inhibition.  

To determine the relative fitness (w) of resistant mutants, we measured the maximum exponential 

growth rate (r), which is a commonly used fitness parameter and reflects a strain’s ability to 

reproduce. Growth rate measurements were performed on all 40 mutants and their respective 

wildtypes and determined by following changes in the optical density (OD600) of individually growing 

strains in liquid culture. Although this measure captures growth dynamics just during exponential 

phase and only fitness differences >5% are detected, it represents a quick and easy method to 

approximate fitness without the need for a selective marker gene156. Multivariate statistical analysis 

was performed by redundancy analysis to quantify how much strain background, presence of efflux-

related mutations and relative fitness explains the observed variation in collateral responses. 

 

Horizontal spread of resistance-transposons by natural transformation (paper II) 

The horizontal dissemination of resistance by transposition-mediated natural transformation was first 

demonstrated in A. baylyi strain ADP1 by Domingues et al.118. To further investigate this finding, we 

employed the same recipient strain since it is highly competent for natural transformation, which 
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facilitated the detection and quantification of the expected rare recombination events, and easy 

genetic manipulation of recipient strains. Standard in vitro assays for bacterial natural transformation 

can be performed either in liquid culture or by applying the transformation mix on a filter (detailed 

protocols in300). Since the frequency of transposition was reported to be low118, we performed our 

transformation assays in liquid culture, as described previously301, where the detection limit can be 

decreased simply by upscaling of the assay volume. 

Domingues et al.118 reported the transposition of Tn21, a well-described element of the Tn3-family 

of replicative transposons. Relating to this finding, our donor DNA contained Tn1, an element of the 

same transposon-family which also moves by a copy-and-paste transposition mechanism147. Tn1 

encodes a β-lactamase (blaTEM-2)302 and its sequence is highly identical to Tn2 and Tn3142. All three 

elements express resistance to ampicillin and additional β-lactam antibiotics and are of clinical 

relevance especially in G- species95. Tn1 has a small size (4.9 kb), which simplified cloning 

procedures. To increase the amount of intracellular transposon copies per net amount of incoming 

DNA during natural transformation, we constructed a plasmid-vector containing Tn1. This narrow-

host range plasmid carried an origin of replication (p15A) that is only functional within 

Enterobacteriaceae, so stable plasmid replication in ADP1 was not expected. Donor DNA and 

recipient genome did not contain sequence similarities that would promote homology-facilitated 

recombination events. 

The efficiency of natural transformation increases with the amount of donor DNA added, following 

a saturation kinetic110. Due to the low frequency of reported transposition events118, near-saturating 

amounts of extracellular donor DNA were added to the assay to ensure DNA uptake by the majority 

of cultured cells. Both circular plasmid DNA as well as linear donor DNA were employed in 

transformation assays to investigate whether the transient expression of transposon genes in the 

bacterial cytoplasm depended on the possibility for plasmid establishment. Linear donor DNA was 

amplified by PCR from plasmid templates, or by restriction enzyme digestion of the plasmid. 

However, the complete elimination of circular template DNA could only be achieved by enzymatic 

restriction of donor DNA and additional agarose gel purification of previously restricted DNA. 

Transposition results in characteristic TSDs147. We verified transposition events phenotypically by 

selection of ampicillin-resistant candidate clones and transposon-specific PCR. To confirm 

transposition events genetically, genomic DNA was isolated from Tn1-containing isolates and Sanger 

sequencing was performed using outward facing primers with respect to the Tn1 sequence. This 

allowed the identification of transposon insertion-site within the ADP1 chromosome. 
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The requirement for host- and/or transposon-functions for transposition in the course of natural 

transformation was not investigated before, and we used ADP1 mutant recipients or modified donor 

DNA to study the role of specific enzymes on transposition-mediated natural transformation.  

 

Evolution of plasmid-mediated antibiotic resistance (paper III) 

With respect to the clinical problem of plasmid-driven resistance, there is a lack of studies employing 

clinically relevant plasmid-bacteria combinations to investigate compensatory evolution303. Here, two 

plasmid-host combinations were constructed from clinical plasmids that confer carbapenem 

resistance, pG06-VIM-1129,130 and pK71-77-1-NDM128,304, and a clinical UPEC isolate (ST537)259,261. 

The plasmids varied in their size, Inc-type, resistance profile and potential for horizontal mobilization.  

Experimental evolution is a common method to study adaptation in bacteria157,305. In vitro evolution 

studies are most often performed using a serial transfer regime on growing liquid cultures, which 

rapidly increases the number of bacterial generations reached306. Transfer bottlenecks of 1/100 

maintain enough genetic diversity for natural selection to act towards the enrichment of the fittest 

mutants. The use of standard laboratory growth media was the most practical starting point to 

investigate the so far unknown evolutionary dynamics of clinical plasmid-host pairs, whereas 

artificial or even human urine represent a more complex environment that could affect growth 

dynamics in unexpected ways. We froze down mixed populations after 300 generations as bacterial 

growth adaptation is highest immediately after transfer to a new medium157. 

Researchers in the field of plasmid-host dynamics are urged to combine 'omic' technologies, for 

example genomics and transcriptomics (and more) to determine the outcome of plasmid-host 

experimental evolution303. We performed WGS on our evolved populations and on purified ancestral 

and evolved clones using short-read, paired-end Illumina sequencing.	For sequence comparison, a 

closed reference genome of the ancestral host was generated by hybrid-assembly of long- (PacBio) 

and short-read sequencing data. Closed plasmid sequences were available from previous studies128,130. 

A high coverage in the evolved populations (average >1000) allowed the identification and 

comparison of single-nucleotide changes and small indels arising above 1% frequency on the 

chromosome and the plasmids. The breseq pipeline allowed the analysis of short-read DNA re-

sequencing data from the heterogenic population data, and also the clonal data, relative to the 

reference307. Although the use of short-read data limited the analysis of structural variations in our 

study, some conclusions on rearrangement, deletion or insertion of larger genomic regions could be 

inferred from read coverage plots generated using breseq.  

To measure the fitness effect of plasmid carriage in ancestral and evolved backgrounds, we 

determined the relative fitness w of representative clones, either from the growth rate (r) or, to gain 
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resolution, by measuring the ‘head-to-head’ competitiveness of two genotypes. The latter captures a 

more comprehensive picture of fitness since growth dynamics across the lag, log and stationary phase 

are considered. The competitors, plasmid-free and plasmid-containing isogenic strains, are mixed 1:1 

in liquid culture and in certain time intervals, viable bacteria are determined156. This method requires 

a selectable marker gene, for example a resistance gene, which was present on the plasmid. We 

employed serial transfer competition experiments over an extended period of time and calculated a 

selection coefficient from the relative frequencies of the competitors, as previously described161,308. 

Small differences in fitness (1%) can be detected by this method169. Smaller differences (0.1%) could 

be revealed by high throughput competition experiments using flow cytometry and fluorescence 

tagged strains (fluorescence-activated cell sorting)191. This would require genetic modification of the 

strains, and the fact that clinical isolates are commonly difficult to manipulate represented an obstacle 

to this approach.  

Since gene expression is a major determinant for the cost of plasmids, transcriptomic analyses are 

used to identify the cellular processes that cause and compensate plasmid fitness costs through 

changed expression levels176,178. For the analysis of bacterial transcription profiles in ancestral and 

evolved strains, we performed Illumina-based RNA-Seq. SARTools (DESeq2-based) was used for 

genome-wide differential gene expression (DGE) analysis309. As established tools for functional 

pathway analysis and visualization of DGE results rely on lab strain annotations, those were not 

suitable for our clinical isolates. We used the PANTHER classification system to assign protein 

families based on our own sequence data310. 

To investigate the role of the individual proteins that were targeted by mutations in plasmid cost 

compensation, we employed single-gene deletion strains in competition assays using knock-out 

strains of the Keio collection248 to circumvent molecular work in our clinical strains. We employed 

ELISA (enzyme-linked immunosorbent assay) to determine the effect of a cpdA mutation on 

intracellular cAMP levels in an evolved strain biochemically. 
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Summary of Results 
 

Paper I: Conserved collateral antibiotic susceptibility networks in diverse clinical strains 

of Escherichia coli.  

Collateral sensitivity-informed treatment aims at reducing the emergence of resistance in bacterial 

populations during antibiotic therapy.  

Resistance mutations affecting drug target (ciprofloxacin, trimethoprim), drug activation 

(nitrofurantoin), drug efflux (ciprofloxacin, nitrofurantoin, mecillinam) and diverse cellular targets 

(mecillinam) were identified by WGS in clinical E. coli isolates with generated single-drug resistance. 

IC90 measurements revealed the most conserved and also strongest collateral responses in 

ciprofloxacin-resistant mutants, including CS towards gentamicin, fosfomycin, ertapenem and 

colistin, and CR towards temocillin, chloramphenicol, ceftazidime, mecillinam and trimethoprim. 

The collateral susceptibility changes in this resistance group were linked to efflux-related resistance 

mechanisms. Reciprocal CS responses were not identified across the different resistance groups. On 

average, resistance acquisition reduced relative fitness by 1% (nitrofurantoin), 6% (trimethoprim), 

36% (mecillinam) and 47% (ciprofloxacin). Multivariate statistical analysis identified that resistance 

mechanisms, particularly efflux mutations (33%) and fitness costs (17%) were significant predictors 

of the observed collateral effects, while the genetic diversity of the strain backgrounds did not 

influence the observed collateral networks. The MPC changed correspondingly to the identified 

CR/CS responses in 71% of cases.  
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Paper II: Tn1-transposition in the course of natural transformation enables horizontal 

antibiotic resistance spread in Acinetobacter baylyi. 
 

Transposition is a DNA-recombination mechanism that facilitates the movement of transposon-

associated resistance genes intracellularly, and also horizontally through plasmid conjugation. 

Natural transformation of A. baylyi ADP1 by a non-replicative, pACYC184-based donor DNA 

substrate carrying Tn1 (blaTEM-2) resulted in chromosomal transposon-insertion at a frequency of 

8×10-9. Transposition was observed in the wildtype ADP1 and an exonuclease deficient ADP1 strain 

(DrecBCD DsbcCD). Chromosomal target site duplications were verified for 43 insertion events and 

represented the typical consensus sequence that is reported for the Tn3-family. In 80% of cases, a 

170-kb region around the ADP1 replication terminus was the preferred target for Tn1-insertions. 

Transposition was not observed when the Tn1-transposase (tnpA) or Tn1-resolvase (tnpR) were 

deleted from the donor DNA substrate, or when the transposon was present on a linear donor DNA 

fragment. Natural transformation assays with ADP1 mutant strains (DrecO, DrecA, DdprA or 

DrecBCDDsbcCD) revealed an essential (RecA) or inhibiting (RecBCD) role of host proteins on 

plasmid transformation. The results were summarized in a model. This suggests that donor DNA 

circularized in the cytoplasm from rare dimeric plasmid molecules with redundant ends, which 

facilitated the observed transposition events during natural transformation. 
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Paper III: Piggybacking on niche-adaptation improves the maintenance of multidrug resistance 

plasmids. 

 

The evolution of stable, low-cost plasmid-host relationships drives the maintenance of resistance in 

nosocomial pathogens.  

The clinical MDR plasmids pG06-VIM-1 (blaVIM-1) from K. pneumoniae and pK71-77-1-NDM 

(blaNDM-1) from E. coli displayed a 5.3% and 5.5% cost in a uropathogenic E. coli isolate in head-to-

head competitions, respectively. WGS of experimentally evolved plasmid-free and plasmid-carrying 

lineages revealed strong parallel adaptation of the E. coli regulatory systems ArcAB and CCR. The 

targeted genes, arcA, arcB, cpdA, crp and cyaA presented known targets for bacterial growth 

adaptation under laboratory conditions. None of the evolved plasmid sequences were altered by point 

mutations. Growth rate measurements of evolved relative to ancestral strains displayed growth 

improvement (7-17%) irrespective of pG06-VIM-1 presence. The cost of pG06-VIM-1-carriage was 

ameliorated to below 1% in head-to-head competitions of adapted backgrounds. CpdA had lost its 

cAMP-degrading function in adapted backgrounds (cpdA.D3.bp488‑490) with and without pG06-

VIM-1, which was indicated by the doubling of intracellular cAMP. The cost of pG06-VIM-1 

carriage was either significantly reduced (DcpdA) or ameliorated to no cost (Dcrp) in E. coli single-

gene deletion mutants. Transcriptome analysis revealed a net downregulation of plasmid gene 

expression in adapted backgrounds. 
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Discussion 
 

This thesis approached the problem of antibiotic resistance by investigating aspects of its selection, 

spread and maintenance in bacteria (paper I, II and III, respectively). 

The development of resistance in bacterial pathogens increasingly challenges empiric infection 

therapy9,10. Besides the usual strategies to fight antibiotic resistance such as the reduction in drug 

consumption or misuse, the search for novel drugs or improved diagnostics, it is also important to 

consider concepts from evolutionary biology, for example collateral sensitivity19. This evolutionary 

tradeoff makes bacteria that are resistant to one antibiotic more vulnerable to other antibiotics. Hence, 

CS-informed treatment strategies have the potential to select against rather than for resistance in 

bacteria220. In paper I, we described this biological phenomenon in the context of UTI treatment and 

identified predictors for conserved collateral susceptibility changes across clinical uropathogenic E. 

coli (UPEC) isolates. 

Horizontal gene transfer (HGT) facilitates the rapid dissemination of plasmids and associated 

resistance elements therein, for example transposons95. The horizontal spread of transposons relies 

however not only on their plasmid-location and the possibility to ‘hitch a ride’ during conjugation. In 

addition, they have the potential to activate their transposition properties during natural 

transformation118. In paper II, we determined the frequency and mechanistic requirements of such 

events for a replicative transposon in the natural transformation model organism A. baylyi and 

propose a mechanistic model for this route of horizontal transposon spread. 

From a bacterial perspective, antibiotic resistance acquisition often confers selective pitfalls. The 

bacterial host frequently experiences a fitness burden of maintaining resistance plasmids in the 

absence of antibiotic selection pressures, and the biological cost of resistance is a major determinant 

for the stability or loss of plasmids in bacterial populations. However, this conflict is resolved by 

adaptive mechanisms that compensate plasmid fitness costs171. In paper III, we demonstrate the 

compensatory evolution of two clinical MDR plasmids in a UPEC isolate and provide a new solution 

to the question why plasmids persist, the so-called plasmid paradox185,186.   

 
Collateral susceptibility changes in a clinical context 
UTIs caused by UPEC are very common both in the community and hospitals and linked to 

considerable morbidity and mortality254. Over the years 2000 to 2014, a significant increase in 

ciprofloxacin and trimethoprim resistant UPEC was reported for five European countries (4-16% and 

17-31%, respectively), while resistance to mecillinam and nitrofurantoin remained at low levels (2-
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4%)311. In paper I, we employed UPEC isolates to investigate collateral susceptibility changes in a 

clinical context, rather than in single laboratory strains219,220. 

A finding of clinical relevance in our study was that resistance development towards trimethoprim, 

nitrofurantoin and mecillinam did not limit the choice of secondary drugs in our strains, since only 

few collateral responses (trimethoprim, nitrofurantoin) or more frequent cases of CS than CR 

(mecillinam) were found. Hence, our results encourage continuation of first-line use of these 

antibiotics as recommended by national and international guidelines298,299. Furthermore, our results 

support the reserved use of ciprofloxacin in the treatment of complicated UTI, as our ciprofloxacin 

resistant mutants evolved conserved CR responses towards the two UTI drugs trimethoprim and 

mecillinam, and cases of CR towards chloramphenicol and amoxicillin beyond clinical breakpoints. 

Both would limit treatment choices for ciprofloxacin-resistant strains.  

It should be noted that we did not observe any cases of reciprocal CS-effects, which are a prerequisite 

for clinical drug cycling approaches as suggested by Imamovic et al.220. However, our results 

provided support for the mutant selection window hypothesis48 and implied, that CR increases the 

likelihood to select for MDR strains. In this regard, results from a recent investigation of collateral 

effects on MPCs in S. epidermidis confirm our finding49. Importantly, the results from our statistical 

model suggested that specific resistance mechanisms in a given clinical isolate forecast collateral 

effects. Hence, their rapid identification could inform clinical CS-based treatment. 

 

Predictors for conserved collateral responses 

The main research question asked in paper I was whether conserved collateral susceptibility changes 

occur across different UPEC strains. We found that this was particularly the case in ciprofloxacin-

resistant mutants and this finding agreed with frequent collateral responses in ciprofloxacin-resistant 

mutants of a clinical P. aeruginosa strain228. In that study, CS towards several aminoglycosides was 

common, and similarly, CS towards gentamicin was observed in all our ciprofloxacin-resistant 

mutants. 

Our data demonstrates for the first time, that strain diversity does not contribute to collateral changes 

as much as resistance mechanism and/or relative fitness of the resistant strains, which we identified 

as main predictors for the observed collateral responses. However, the identified costly mutations in 

our ciprofloxacin- and mecillinam-resistant mutants (paper I) are less commonly acquired in vivo56,66 

and thus highly conditional. In contrast to our finding, a recent study modelled susceptibility and 

fitness changes that were experimentally derived from S. pneumoniae resistant mutants, together with 

antibiotic pharmacodynamics, and found that fitness has no predictive value for collateral responses 

in this species312. Furthermore, it is well-established that compensatory evolution can ameliorate the 
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fitness cost associated to resistance mutations198. Especially the costly efflux-related resistance in 

ciprofloxacin-resistant mutants (paper I) imposes selective pressures towards evolutionary 

adaptation, and our research group recently demonstrated that fitness cost compensation returned 

drug-efflux to wildtype levels and weakened collateral responses in E. coli (Sørum et al., unpublished 

data).  

Although the results of paper I cannot be generalized beyond E. coli, they revealed important aspects 

of collateral responses in clinical isolates. It will be important to separate the contribution of distinct 

resistance mechanisms and genetic background on susceptibility changes in future studies and assess 

collateral networks for a variety of resistance mechanisms across large isolate collections using the 

isogenic wildtype for comparison. Confounding factors could for example be epistatic interactions 

between resistance mutations and preexisting mutations in the genome164 or inherent resistance 

mechanisms227. Furthermore, fitness as well as resistance levels of resistant mutations are context-

dependent167,313, and thus collateral responses may vary in different growth media.  

 

Knowledge-gaps in CS-based treatment strategies 

The clinical implementation of CS-informed antibiotic therapy depends strongly on the predictable 

evolution of collateral responses across different bacterial strains and species. However, it was shown 

that for some antibiotics, several (mutational) evolutionary paths towards resistance are possible and 

depending on the order of mutation acquisition, different collateral responses evolved within the same 

species226. More recent CS/CR studies also demonstrated divergent outcomes of de novo resistance 

evolution towards the same drug across different pathogen species in vitro227 and in theoretical 

models of stepwise resistance evolution164. In P. aeruginosa, the order of drug use affected the 

efficient killing of resistant strains or the evolution of CS phenotypes differently233. Thus, even 

though collateral responses in bacteria appear pervasive and our results suggest possible 

predictability, the existing literature confirms various complicating factors which require further 

investigation before this useful trade-off can be exploited in medical practice.  

Furthermore, the major bulk of studies on collateral responses was generated in single-drug resistant 

mutants, although resistance in clinical settings is mainly driven by horizontal plasmid 

acquisition11,86. Three reports have so far demonstrated that clinical MDR plasmids231 or plasmid-

associated resistance genes229,230 contributed to relevant collateral susceptibility changes in E. coli. It 

is however not clear if collateral phenotypes associated with plasmids are due to particular resistance 

genes alone or if other plasmid-specific traits play a role. Different collateral responses may be caused 

by horizontally acquired resistance towards the employed primary drugs in paper I, especially in the 

case of trimethoprim, where resistance is mainly mediated by plasmids15,31, and frequently co-
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selected with mobile ciprofloxacin resistance genes68. However, ciprofloxacin36 and nitrofuratoin314 

resistance above the clinical breakpoint is largely only achieved in the presence of additional 

chromosomal resistance mutations. Similarly, it is likely that mecillinam resistance in UPEC cannot 

be attributed substantially to horizontal gene transfer, since the drug is relatively stable against 

plasmid-mediated β-lactamases including ESBLs and some carbapenemases315. 

 

Evolution of better plasmid hosts in a clinical context 

Plasmid-mediated resistance is the main driver of multidrug resistance (MDR) in isolates of 

Enterobacterales11,86, however, plasmid persistence in absence of antibiotic selection pressures 

represents an enigma183,185. In paper III, we approached the lack of studies that mimic plasmid 

acquisition events as they occur in nosocomial pathogens303 and we expand the so far limited 

molecular data on co-evolution dynamics between clinical plasmids and their G- hosts174. We found 

that the carbapenemase-encoding plasmids pG06-VIM-1 and pK71-77-1-NDM moderately reduced 

fitness of our UPEC strain by around 5%, which was consistent with existing literature in that clinical 

plasmid-host combinations are less costly205,316. The main research question asked in paper III was, 

if and how such low costs could be minimized during plasmid-host co-evolution by compensatory 

adaptation, as opposed to the amelioration of large costs previously observed in laboratory-plasmid 

combinations178,191. We found that general adaptation of our UPEC strain to the laboratory 

environment, and not plasmid-specific compensatory evolution, improved its permissiveness towards 

the here employed, unrelated, non-conjugative and conjugative plasmids. Importantly, niche-

adaptation ameliorated plasmid-associated fitness burdens and may represent a more commonly 

distributed way of plasmid pre-adaptation in bacteria than so far anticipated, with the potential to 

promote long-term maintenance of plasmids in their clinical hosts. Hence, our observations added a 

new rationale to the already described mechanisms of plasmid persistence in bacterial populations.  

 

Pleiotropic effect of niche-adaptation on plasmid maintenance 

In paper III, we examined the genetic basis underlying plasmid-mediated fitness costs and their 

compensation, which were so far mainly investigated in laboratory strains and plasmids171. Our WGS 

analysis revealed that two E. coli regulatory systems (CCR and ArcAB) were target for mutational 

niche-adaptation across all evolved replicate lineages, while the plasmids were largely unchanged. 

The improved growth of adapted strains independent of pG06-VIM-1 presence confirmed that CCR 

and ArcAB mutations were associated with E. coli adaptation to the in vitro conditions, as previously 

reported249,317,318. The results of paper III agreed with existing reports in laboratory plasmid-host 

pairs in that plasmid-associated fitness costs were frequently mitigated by adaptation of the bacterial 
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host to the plasmid178,203,209,319. Likewise, global regulators (e.g. gacA/S178) were previously identified 

as mutational targets for the compensation of costly plasmids. Different to existing reports, we 

demonstrated that the effect on plasmid costs was the consequence of UPEC adaptation to the 

experimental conditions, and not to the plasmid. Previously, population genomic analysis of the high-

risk clone E. coli ST131 showed that alterations in gene regulatory regions can be associated to the 

acquisition and maintenance of MDR plasmids320. Importantly, the results of paper III provided in 

vitro evidence that links bacterial niche-adaptation and plasmid persistence as it happens that hosts 

adapt to their environment by regulatory changes249,317,318. Further research is warranted to understand 

if such pleiotropic effects improve the ability of pathogens to maintain MDR plasmids also across 

other growth media (e.g. urine), plasmid types and kinds of environmental adaptation. 

 

Transcriptional changes that relieve plasmid burden 

Gene expression processes have been advocated to be the major causes of fitness burdens associated 

to plasmid acquisition171. This was supported and exemplified in two studies where plasmid 

acquisition led to 13% (749 genes176) and 17% (1006 genes178) changes in chromosomal gene 

expression. In contrast, our findings revealed that acquisition of a clinical plasmid resulted in less 

dramatic chromosomal gene expression changes (max. 0.4% = 16 genes; paper III) and thus agreed 

with recent reports of low fitness and also transcriptional burdens from MDR plasmid uptake in 

clinical hosts316. In vitro, compensatory mutations in global regulators mitigated the translational 

burden in P. fluorescens plasmid-carriers178, and similarly we found that the majority of chromosomal 

genes with altered expression upon plasmid acquisition in adapted clones were associated to 

translation (Clone 2+VIM; paper III). As expected from the nature of CCR and ArcAB related 

mutations, niche-adapted backgrounds showed frequent transcriptional changes to chromosomal 

genes (21-34% of genes), which did not appear plasmid-specific. 

Two recent transcriptomic studies provided evidence for an association between plasmid gene 

expression and plasmid cost, which was supported by highly expressed plasmid genes compared to 

chromosomal genes166, and particularly high expression of plasmid-associated antibiotic resistance 

genes166,180. We hypothesized that the observed regulatory mutations would impact plasmid gene 

expression in a beneficial way, as compensatory evolution relieved bacterial hosts also from the 

transcriptional demand generated by plasmid genes176,178. We found that 14-28% of plasmid genes 

altered their expression in niche-adapted backgrounds, which resulted in a net decrease of pG06-

VIM-1-associated transcriptional burden. This effect was consistent with a 17% downregulation of 

plasmid gene expression in P. fluorescens due to compensatory mutations in global regulators178. 

Three pG06-VIM-1-located antibiotic resistance genes (strB, aadA2, sul1; paper III) were 
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downregulated in adapted backgrounds, however, the low total number of altered genes per clone 

complicated the systematic analysis of affected biological processes. Since not one single pG06-VIM-

1 gene changed expression beyond the 2-fold threshold and the remaining affected plasmid genes 

varied between the two investigated adapted clones, we were careful to conclude on the specific cause 

of fitness cost more precisely. Taken together, the results of paper III demonstrated that niche-

adaptive mutations ameliorated plasmid costs by reducing the transcription-associated burden of 

pG06-VIM-1 in our UPEC strain. The findings advanced our understanding of plasmid-mediated 

resistance and the emergence of successful relationships between plasmids and their bacterial host. 

More studies should examine the transcriptional perturbations caused by MDR plasmids in their 

clinical hosts to increase our knowledge on the biological pathways that are impacted by plasmid-

host conflicts and thus represent targets for compensatory evolution. Ideally, such investigations also 

examine how transcriptional changes transfer into proteomic and metabolomic alterations. 

 

Multiple evolutionary strategies towards plasmid persistence  

In two cases, mobile elements associated with the large, conjugative pK71-77-1-NDM may have been 

responsible for the removal of costly plasmid traits (paper III), corresponding to the previously 

reported loss of plasmid-encoded conjugation machinery174,196 and/or resistance genes174. The relative 

growth rates for the pK71-77-1-NDM-co-evolved replicate clones were significantly improved by 

14-23%, with exception of the strain in which the ∼8.8 kb deletion in pK71-77-1-NDM occurred 

(unchanged) (unpublished results paper III). Future studies could investigate the consequences of 

pK71-77-1-NDM-deletions as well as CCR/ArcAB mutations on competitive fitness, plasmid 

conjugation and plasmid stability in pK71-77-1-NDM-hosts. While deletion of the observed costly 

regions likely promotes plasmid maintenance over short terms by improving host fitness and thus 

vertical inheritance174,195, it limits the potential for horizontal plasmid spread or host adaptation to a 

selective niche by conjugation. Alternatively, increased conjugational transfer can promote plasmid 

persistence in a population, and we found that native pK71-77-1-NDM transferred at a higher 

frequency from adapted backgrounds. The results of paper III were thus in agreement with existing 

literature in that long-term plasmid persistence is facilitated by a combination of different 

evolutionary processes that impact plasmid cost compensation, plasmid mobility, plasmid 

maintenance functions as well as episodes of positive selection for plasmid traits191. In addition, 

transduction and natural transformation may have a greater potential to contribute in plasmid 

dissemination than anticipated so far, as suggested previously197.  
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Resistance spread by transposition during natural transformation 
The relevance of natural transformation events in clinical settings is poorly understood, although the 

ability to acquire novel genetic information by this HGT mechanisms is prevalent in G+ as well as 

G- species including highly important nosocomial pathogens39. In paper II, we showed that the 

blaTEM-2-encoding transposon Tn1 can spread horizontally by replicative transposition during natural 

transformation. This was hence the second study that evidenced the potential of (replicative) 

transposons to participate in the horizontal, nonclonal spread of their associated resistance traits 

beyond plasmid conjugation, but during natural transformation of competent species, as proposed by 

Domingues et al.118. As the species-specific requirements for competence development are still 

largely unexplored104, we probably underestimate the contribution of natural transformation in 

general, and the specific mechanism described here, in antibiotic resistance evolution. It would be 

interesting to test the capacity for Tn1-mediated natural transformation in clinically relevant species. 

Isolates of A. baumannii could be possible recipients. In vitro studies increasingly demonstrate the 

specie’s ability to undergo natural transformation, and different experimental conditions are identified 

that promote competence induction106,107,277-280.  

 

A mechanistic model of transposon-mediated natural transformation  

Transposition during natural transformation uncouples transposon spread from the host-range 

properties of conjugative elements and recombines genetic material independent from the relatedness 

between donor and recipient bacterium118. In paper II, we were the first to examine the molecular 

requirements for this mechanism of transposon mobilization in more detail. Taken together, we 

showed that transposition in our model system depended on the stabilization of incoming vector-

DNA through intramolecular circularization, followed by transposon gene expression. More 

specifically, our results indicated that the Tn1-encoded proteins TnpA and TnpR rather than A. baylyi 

recombinases (transposases and ISs321) or RecA-mediated homologous recombination155 facilitated 

replicative transposition into the chromosome of A. baylyi via formation of typical, circular co-

integrate structures and their resolution, as described for this transposon-family147. We concluded that 

the absence of TnpR halted Tn1-transposition at the step of co-integrate resolution. This implied that 

stable, circular co-integrates were formed once tnpA was expressed from reconstituted donor DNA 

vector, which appeared more efficient when the tnpA repressor, TnpR322, was deleted. This model 

was consistent with the occurrence of transient plasmid transformants of A. baylyi when naturally 

transformed with donor DNA vector. It is however not clear why lack of TnpA abolished not only 

the formation of transposants or co-integrate transformants, but also that of transient plasmid 

transformants. Finally, the requirement for a transient circular cytoplasmic intermediate, and not a 
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linear as previously suggested118, was further supported by the lack of colony growth with linear Tn1-

vector as donor DNA. DNA that enters the bacterial cytoplasm in the course of natural transformation 

is however linear and single-stranded108, but double-stranded plasmid DNA reassembles efficiently 

when dimeric plasmid strands are present intracellularly323. The genomic integration of transforming 

DNA by recombination with the chromosome113,324,325 or plasmid reconstitution326 is impacted by 

cytoplasmic proteins that act on DNA single-strands (RecA, DprA, RecO) or degrade DNA double-

strands (RecBCD). We inferred the role of these host factors in the circularization of cytoplasmic 

Tn1-vector DNA from plasmid transformation frequencies in A. baylyi deletion mutants. We found 

that RecA-mediated homology search and DprA-mediated loading of RecA on ssDNA are processes 

that facilitated plasmid transformation to a greater degree than RecO-mediated hybridization of 

complementary ssDNA strands did. According to our model, a dimeric ssDNA strand with 

overlapping ends, and a complementary strand-fragment, are minimum requirements for plasmid 

reconstitution with involvement of the above-mentioned enzymes. Lack of RecBCD increased 

plasmid transformation efficiencies, which implied that plasmid circularization in A. baylyi involved 

RecBCD-sensitive linear dsDNA intermediates. Building up on our results, also larger fragments of 

transforming chromosomal DNA could circularize at repeat regions or be protected from RecBCD 

degradation by Chi sequences327, and facilitate transient transposon-gene expression in the course of 

natural transformation. Generally, one should keep in mind that chromosomally inserted resistance 

may confer lower resistance levels than plasmid-associated genes126,328, and selection pressures for 

transposition events may have to be adjusted.  

 

Dynamics of transposition events  

Transposon-insertion can disrupt genes that are essential for viability, and have further metabolic 

effects for example on host fitness170. In paper II, Tn1-transposition did not occur into essential 

genes of A. baylyi but revealed a clear preference for the replication terminus. Interestingly, this 

resembled the pattern of Tn917-transposition into the chromosome of the G+ species E. faecalis329 

and B. subtilis152 from a temperature-sensitive plasmid. It was demonstrated, that the activity of 

proteins that mediate DNA replication fork termination or chromosome separation attracted Tn917-

transposition into the B. subtilis terminus152. Unexpectedly, lack of the XerC-recombinase, which 

resolves chromosome dimers in A. baylyi, abolished transformant growth (paper II). In conclusion, 

we cannot exclude that local DNA repair or replication dynamics represent mechanistic requirements 

of Tn1-transposition that underlie the observed transposon insertion in proximity to the A. baylyi 

terminus, since host replication factors are required during replicative transposition147. This 
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hypothesis is further supported by the lack of correlation between the prevalence of consensus 

sequence in the recipient chromosome and Tn1-insertion around the terminus (paper II).  

The fitness of A. baylyi transposants was not investigated in paper II. In previous reports, transposon 

acquisition had variable outcomes, including beneficial160, neutral or negative118,161 effects of 

different elements. The different transposants obtained in paper II could be used in the future to 

compare fitness-consequences of Tn1-acquisition into the terminus region versus other chromosomal 

loci, and it remains to be tested whether transposition from our Tn1-vector is attracted to the terminus 

of other naturally competent bacterial species. 

 

Potential of transposon spread by transposition during natural transformation  

Although we confirm that transposition-mediated natural transformation contributes to the horizontal 

transfer of resistance at lower frequencies than other HGT mechanisms (10-9 paper II; < 10-8 118), it 

has the potential to facilitate MDR dissemination across species borders. Subsequently, transposon-

associated resistance can spread more efficiently between related species. This can for example occur 

by the intermolecular movement of the chromosome-located transposon to a plasmid and between 

plasmids, which represents a relevant mean of transposon-associated MDR spread in hospital 

settings97,126,330. Furthermore, once chromosomally acquired, transposons can promote the spread of 

their embedded resistance determinants via homologous recombination-mediated natural 

transformation. The latter possibility is exemplified by the 1,000-times increased (now 10-4 to 10-5) 

intraspecies transfer of a Tn21-embedded integron during natural transformation with donor DNA 

from an A. baylyi Tn21-transposant in vitro118.  

A possible effect of altered transposon activity on the frequency of transposition during natural 

transformation could be investigated based on reports of transposition ‘triggers’ such as nutritional 

starvation in E. coli331 or antibiotic-induced SOS-response and its consequences on integrase 

activity332. It would be interesting to use our Tn1-vector and test the potential for transposition-

mediated natural transformation in a plasmid-carrying strain as recipient, since it was previously 

observed that Tn3-transposition between plasmid replicons occurred more frequent than between 

plasmid and chromosome333.  
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Conclusion  
 

The presented thesis examined the dynamics of bacterial antibiotic resistance evolution by 

chromosomal (paper I) as well as mobile resistance determinants (paper II, III).  

In paper I, the evolution of conserved collateral responses across resistant mutants of diverse E. coli 

isolates was demonstrated for the first time. Collateral changes were primarily driven by efflux-

mutations, and resistance mechanism may hence be a useful predictor of bacterial collateral responses 

during evolution-informed treatment. Furthermore, transposons mobilized antibiotic resistance 

during natural transformation of A. baylyi (paper II). Future research can build up on our model of 

transposition-mediated natural transformation to explore molecular requirements and insertion 

dynamics of other transposons in different bacterial hosts. Finally, E. coli accidentally became a better 

plasmid-host by adapting to a new environmental niche (paper III). This finding advanced plasmid 

paradox research in clinical pathogens and represented a novel explanation for the persistence of 

plasmids in bacterial populations.  
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Conserved collateral antibiotic susceptibility
networks in diverse clinical strains of Escherichia coli
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There is urgent need to develop novel treatment strategies to reduce antimicrobial resistance.

Collateral sensitivity (CS), where resistance to one antimicrobial increases susceptibility to

other drugs, might enable selection against resistance during treatment. However, the suc-

cess of this approach would depend on the conservation of CS networks across genetically

diverse bacterial strains. Here, we examine CS conservation across diverse Escherichia coli

strains isolated from urinary tract infections. We determine collateral susceptibilities of

mutants resistant to relevant antimicrobials against 16 antibiotics. Multivariate statistical

analyses show that resistance mechanisms, in particular efflux-related mutations, as well as

the relative fitness of resistant strains, are principal contributors to collateral responses.

Moreover, collateral responses shift the mutant selection window, suggesting that CS-

informed therapies may affect evolutionary trajectories of antimicrobial resistance. Our data

allow optimism for CS-informed therapy and further suggest that rapid detection of resis-

tance mechanisms is important to accurately predict collateral responses.
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The evolution and increasing prevalence of antimicrobial
resistance is driven by the consumption and misuse of
antimicrobials in human medicine, agriculture, and the

environment1–3. Historically, the threat of antimicrobial resis-
tance was overcome by using novel antimicrobials with unique
drug targets. However, the discovery rate of new antimicrobial
agents has dwindled4–6 and severely lags behind the rate of
resistance evolution7. While concerted scientific, corporate, and
political focus is needed to recover antimicrobial pipelines8–10,
there is an urgent need for alternative strategies that prolong the
efficacy of existing antimicrobials and prevent or slow the
emergence, spread, and persistence of antimicrobial resistance.
Current global efforts to improve antimicrobial stewardship lar-
gely focus on reducing overall antimicrobial consumption and
increasing awareness of resistance development9,11–13. While
these efforts will affect the evolution and spread of resistance,
mounting evidence suggests that these changes alone will not lead
to large-scale reductions in the occurrence of antimicrobial
resistance14–18.

Several recent studies have examined novel treatment strategies
using multiple antimicrobials that could reduce the rate of
resistance emergence and even reverse pre-existing resistance.
These approaches, collectively termed selection inversion strate-
gies, refer to cases where resistance becomes costly in the pre-
sence of other antimicrobial agents19. Among the most promising
of these strategies are those based on a phenomenon first reported
in 1952, termed collateral sensitivity (CS), where resistance to one
antimicrobial simultaneously increases the susceptibility to
another20. CS and its inverse, cross-resistance (CR), have been
demonstrated for several bacterial species and across different
classes of antimicrobials21–27. These results have formed the basis
of proposed CS-informed antimicrobial strategies that combine
drug pairs22,28 or alter temporal administration, e.g. drug
cycling21,29. CS-informed strategies would force bacteria to evolve
resistance along a predictable trajectory, resulting in CS; this
predictability could be exploited to ultimately reverse resistance
and prevent the fixation of resistance and multi-drug resistance
development at the population level of bacterial communities.

Initial in vitro experiments support using CS-based strategies
to re-sensitize resistant strains21 and reduce rates of resistance
development29; however, the broader application of this prin-
ciple depends on predictable bacterial responses during anti-
microbial therapy. This predictability must be general for a
given drug class and should not vary across strains of the same
species. To date, most studies of CS and CR have focused on
describing collateral networks21–23 using resistant mutants
derived from single laboratory-adapted strains and limited
numbers of clinical isolates. Two studies on Pseudomonas
aeruginosa have investigated CS in collections of clinical
isolates30,31. However, these studies lack either baseline con-
trols30 or sufficient genetic diversity among tested strains31. As
valuable as earlier work has been, the responses of single strains
(laboratory or clinical) may not be representative of CS and CR
responses in other strains.

To address this limitation, here we focus on understanding
collateral networks in clinical urinary tract isolates of Escherichia
coli with selected resistance to drugs widely used for the treatment
of urinary tract infections: ciprofloxacin, trimethoprim, nitro-
furantoin, and mecillinam. We investigate collateral networks to
16 antimicrobials from diverse drug classes in 10 genetically
diverse clinical strains (corresponding to 49 laboratory-generated
mutants) to assess the factors contributing to collateral responses
(both CS and CR). This approach allows us to identify variation
in the sign and magnitude of collateral responses and identify
mechanisms of CS and CR that are preserved in various genetic
backgrounds. Using multivariate statistical modeling, we show

that resistance mutations, particularly those affecting efflux
pumps, and the relative fitness of resistant isolates are more
important determinants of collateral networks than genetic
background. Our results support the idea that collateral responses
may be predictable.

Results
Collateral responses vary between and across resistance groups.
We examined collateral responses to antimicrobial resistance in
a panel of 10 genetically diverse (Supplementary Fig. 1a–b)
E. coli strains isolated from urinary tract infections. For each of
these pan-susceptible strains (Supplementary Fig. 1c)32, a single
resistant mutant was generated to each of four individual
antimicrobials used to treat urinary tract infections: cipro-
floxacin, trimethoprim, nitrofurantoin, and mecillinam. Here
we define resistance group as the collection of mutants from the
10 different genetic backgrounds that were selected for resis-
tance to the same antimicrobial. Mutants resistant to mecilli-
nam required only a single selection step, while multiple
selection steps were required to select for resistance above
clinical breakpoints for the remaining antimicrobials. In total,
40 resistant mutants were generated with resistance levels above
clinical breakpoints, as determined by antimicrobial suscept-
ibility testing using both gradient strip diffusion (Supplemen-
tary Table 1) and inhibitory concentration 90% (IC90)21 testing
(Table 1). The two methods are correlated, but IC90 measure-
ments allow for more robust detection of small relative differ-
ences in susceptibility33,34. Changes in the IC90 of resistant
mutants from each respective wild-type strain (Supplementary
Fig. 2) were compared for 16 antimicrobials (Table 2). Overall,
collateral responses were observed in 39% (233/590) of possible
instances (Supplementary Table 2); of these 49% (115/233)
were associated with only a 1.5-fold change in IC90. Such small
changes would not be observed by typical two-fold anti-
microbial susceptibility testing methods frequently used in
clinical laboratories.

Overall CR was more frequent than CS, 141 versus 92 instances
(Supplementary Table 2), and collateral networks varied con-
siderably between resistance groups. We observed 19 cases of
conserved collateral responses (Fig. 1a), where CR or CS to a
specific antimicrobial was found in ≥50% of the mutants within a
resistance group, defined as CR50 or CS50, respectively. For each
CR50 and CS50 observation, IC90 results were further assessed by
generating dose–response curves of representative strain:drug
combinations (Supplementary Fig. 3). Inhibition of growth was
shown to vary across antimicrobial concentrations between
resistant mutants and respective wild-type strains, confirming
the changes in antimicrobial susceptibility determined by the IC90
assays.

During the selection of resistant mutants, we often observed
colonies of varying size for all resistance groups, suggesting
changes to bacterial fitness. To test this, we measured the growth
rates of mutants relative to the respective wild-type strains
(Supplementary Fig. 4). In general, mutants resistant to
ciprofloxacin and mecillinam displayed severely reduced growth
rates, suggesting high costs of resistance. Relative growth rates
varied between 0.34–0.75 with a mean of 0.53 for ciprofloxacin-
resistant mutants and between 0.49–0.79 with a mean of 0.64 for
mecillinam-resistant mutants. Mutants resistant to nitrofurantoin
and trimethoprim displayed lower fitness effects, and several
resistant mutants harbored apparent cost-free resistance muta-
tions (Supplementary Fig. 4). Only two of ten nitrofurantoin-
resistant mutants and four of ten trimethoprim-resistant mutants
displayed an apparent cost of resistance. Relative growth rates
varied between 0.93–1.05 and 0.68–1.07 with averages of
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0.99–0.94 for nitrofurantoin- resistant and trimethoprim-
resistant mutants, respectively.

Ciprofloxacin resistance linked to conserved collateral
responses. Nearly half (108/233, 46%) of the observed collateral
responses were in ciprofloxacin-resistant mutants, while the
remaining 125 were distributed between the other three resistance
groups (Supplementary Table 2). Within the ciprofloxacin-
resistant group, the majority of collateral responses were CR
(70/108, 65%). Additionally, CS responses in ciprofloxacin-
resistant mutants were the most conserved in our dataset, with
CS to gentamicin occurring in 8 of 10 strains and CS to fosfo-
mycin in 7 of 10 strains (Fig. 1a). Gentamicin and other ami-
noglycosides are important for the treatment of a wide range of
infections35, while fosfomycin is primarily used for treatment of
uncomplicated urinary tract infections36,37. The ciprofloxacin-
resistant mutants were also unique in the magnitude of observed

changes, with cases of CR close to 30-fold and CS as high as six-
fold changes in IC90 (Supplementary Fig. 2).

Characterization of antimicrobial-resistant mutants. We
hypothesized that CS and CR variation in and between resistance
groups could be attributed to different mutations causing resis-
tance in each strain. Using whole genome sequencing, we iden-
tified a total of 149 mutations in the resistant mutants
(Supplementary Data 1–4). Of these, 88 mutations affect pre-
viously described or putative antimicrobial resistance-associated
genes, gene-regions, or pathways (Supplementary Data 1–4). The
remaining mutations were found in other cellular processes not
known to affect antimicrobial susceptibility (e.g. metabolic
pathways and virulence factors), such as mutation to the FimE
regulator of FimA that was frequently observed in mecillinam-
resistant mutants (Supplementary Data 2). Aside from FimE, we
did not observe mutations in regions unrelated to resistance

Table 1 Description of Escherichia coli strains used in the study and average IC90 changes following antimicrobial selection

Strain STa Origin CIPb MECb NITb TMPb

WTc cCIPR WTc cMECR WTc cNITR WTc cTMPR

K56-2 73 Greece 0.014 16 0.146 >30 8 >64 0.225 >28
K56-12 104 Portugal 0.016 1.67 0.273 28 7.33 >64 0.563 >32
K56-16d 127 Portugal 0.009 3 0.167 18.7 4 >64 0.25 >30
K56-41 73 Greece 0.016 2.33 0.104 13.3 6 >64 0.25 6.67
K56-44d 12 Greece 0.013 1.67 0.141 16 6.67 >64 0.375 6
K56-50 100 Greece 0.012 3 0.141 10.7 12 >64 0.172 18
K56-68 95 Sweden 0.014 4 0.141 30 6.67 >64 0.208 18.7
K56-70 537 Sweden 0.007 2.67 0.083 >32 4.67 >64 0.25 14.7
K56-75e 69 UK 0.008 1.17 0.063 13 6 >64 0.167 5.33
K56-78 1235 UK 0.015 6 0.141 16 8 >64 0.5 7.33

aMulti-locus sequence type (ST)
bThe average IC90 values (µgmL−1) of three or more biological replicates for wild type (WT) and resistant (R) mutants to ciprofloxacin (CIP), mecillinam (MEC), nitrofurantoin (NIT), and trimethoprim
(TMP). Individual results above detection limits (MEC= 32 µgmL−1, NIT= 64 µgmL−1, TMP= 32 µgmL−1) were analyzed as those values, yielding final results with uncertainty (>average). EUCAST
Clinical Breakpoints v 7.1 for Enterobacteriaceae63 were: >0.5 µg mL−1 CIP, >8 µgmL−1 MEC, >64 µgmL−1 NIT, and >4 µg mL−1 TMP
cThe strain number names the WT, and designations CIPR, MECR, NITR, and TMPR describe which drug the isolates were selected with, and resistance achieved
d, eStrains containing the Col156 or Col(MP18) replicon, respectively

Table 2 List of antimicrobials used in this study

Antimicrobiala Abbreviation Drug class Drug target(s) Solvent

Amoxicillin AMX β-lactam (Penicillin) Cell wall synthesis Phosphate bufferb

Azithromycin AZT Macrolide Protein synthesis (50S) ≥95% Ethanol
Ceftazidime CAZ β-lactam (Cephalosporin) Cell wall synthesis Water+ 10% (ww-1) Na2CO3

Chloramphenicol CHL Amphenicol Protein synthesis (50S) ≥95% Ethanol
Ciprofloxacin CIP Fluoroquinolone DNA replication, cell division 0.1 N HCl
Colistin COL Polymyxin Cell wall & cell membrane Water
Ertapenem ETP β-lactam (Carbapenem) Cell wall synthesis Water
Fosfomycin FOS Phosphonic Cell wall synthesis (MurA) Water
Gentamicin GEN Aminoglycoside Protein synthesis (30S) Water
Mecillinam MEC β-lactam (Penicillin) Cell wall synthesis (PBP2) Water
Nitrofurantoin NIT Nitrofuran Multiplec Dimethyl sulfoxide
Trimethoprim TMP Antifolate Folate synthesis (FolA) Dimethyl sulfoxide
Sulfamethoxazole SMX Antifolate Folate synthesis (FolP) Dimethyl sulfoxide
TMP+ SMX (1:19) SXT Antifolate Folate synthesis (FolA+ FolP) Dimethyl sulfoxide
Temocillin TEM β-lactam (Penicillin) Cell wall synthesis Water
Tetracycline TET Tetracycline Protein synthesis (30S) Water
Tigecycline TGC Tetracycline Protein synthesis (30S) Water

aWhen available, final antimicrobial concentration was determined using manufacturer-provided or calculated drug potencies, otherwise potency was assumed to be 100%. Aliquots were stored at −20
or −80 °C in single-use vials. All antimicrobials and chemical solvents were obtained from Sigma-Aldrich (St. Louis, MO, USA) with the exception of ciprofloxacin (Biochemika, now Sigma-Aldrich) and
temocillin (Negaban®)
b0.1 mol L−1, pH 6.0 phosphate buffer supplemented with 6.5% (v v−1) 1 M NaOH (sodium hydroxide)
cNitrofurantoin is thought to target macromolecules including DNA and ribosomal proteins, affecting multiple cellular processes, including protein, DNA, RNA, and cell wall synthesis
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across mutants of the same resistance group (parallel evolution),
suggesting that such mutations had limited, if any, effect on
collateral responses in this study.

For each of the 40 resistant mutants at least one putative
resistance mechanism was identified, including mutations to
previously described antimicrobial drug targets and promoters of
drug targets, drug-modifying (activating) enzymes, regulators of
efflux pumps, RNA polymerases and mutations to other
metabolic and biochemical processes that may contribute to
resistance (Table 3). Briefly, all but one ciprofloxacin-resistant
mutant contained mutations in both gyrA and efflux regulatory
genes and/or gene-regions likely affecting efflux expression
(acrAB and/or mdtK), while one strain had only drug target
mutations and displayed the well-described GyrA (S83L) and

ParC (G78D) mutation combination (Supplementary Data 1).
Both efflux and drug target mutations are frequently found in
surveys of clinical isolates38–41. Nitrofurantoin-resistant mutants
had mutations in one or both nitro-reductases (nfsA, nfsB) and
the majority of strains had additional mutations in mprA, which
encodes an efflux regulator of EmrAB-TolC pump expression
(Supplementary Data 3). Mutants resistant to trimethoprim
contained mutations either in folA and/or its promoter or genetic
amplification of a large region containing folA (Supplementary
Data 4). The mecillinam-resistant mutants are unique in that they
evolved as single step mutants, where a single mutation could
confer clinical resistance to mecillinam. Resistance development
for the remaining three drugs required several steps, as multiple
mutations were required for resistance above clinical breakpoints.
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Fig. 1 Conserved collateral responses in antimicrobial resistant mutants. a Relative change in antimicrobial susceptibility was determined by comparing
average IC90 values of resistant mutants to the respective wild-type strain. Collateral responses that were found in ≥50% of the strains are displayed,
excluding CR observed in all trimethoprim-resistant mutants to trimethoprim-sulfamethoxazole (see Supplementary Fig. 2). Antimicrobials are ordered by
most frequent CR (red; left) to most frequent CS (blue; right) for each group. *The slow growing K56-12 CIPR was incubated an additional 24 h for IC90

determination. b The average IC90 (open circles) and average mutation prevention concentration (MPC; filled circles) were determined and compared
between resistant mutants (colored) with collateral responses, either CS (blue) or CR (red), and their respective wild-type strain (black) in strain:drug
combinations representing conserved collateral responses, excluding temocillin. The mutant selection window (vertical lines) was defined as the range
between IC90 (lower bound) and MPC (upper bound). K56-16 NITR had equivalent IC90 and MPC values for azithromycin, thus no mutation selection
window was reported. Generally, changes in MPC values reflected observed IC90 changes, shifting the mutation selection window upwards or downwards
accordingly. In 8/10 tested combinations an increase in IC90 value (CR) from wild-type to resistant mutant correlated with at least a small increased MPC,
with the remaining combinations showing no change in MPC value. Similarly, decreased IC90 values (CS) correlated with decreased MPCs (5/7)
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In total, 12 different mutations in genes and/or cellular processes
previously linked to mecillinam resistance were identified in this
resistance group (Supplementary Data 2)42.

The ciprofloxacin-resistant group displayed a clear trend where
conserved CR responses were strongly linked to mutations in
efflux regulatory regions suggesting that gyrA drug target
mutations had a limited effect on CS and CR. Trimethoprim-
resistant mutants also had few collateral responses, likely due to
the specific mechanism of resistance affecting a single unique
drug target (i.e. overexpression/alteration of FolA). To further
investigate the effects of drug target mutations, we assessed the
collateral responses of mutants generated following a single
selection-step with ciprofloxacin. These first-step mutants con-
tained single, non-synonymous mutations to gyrA and no other
mutations (e.g. in efflux pumps) linked to ciprofloxacin resistance
(Supplementary Data 1). The IC90 of these strains was uniformly
lower than in ciprofloxacin-resistant strains containing multiple
resistance mutations. Few collateral responses were observed in
these first-step mutants (Fig. 2), and none were conserved across
different strain backgrounds. These results suggest that most
collateral responses observed in the ciprofloxacin-resistant
mutants are due to the observed efflux mutations.

Efflux and fitness are main contributors to collateral responses.
Multivariate statistical approaches were used to investigate the
extent to which genetic (strain) background, resistance group, the
putative mechanism of resistance (in particular efflux-related
mutations), growth rate, and the fitness cost of resistance explain
the variation in collateral responses. All factors were investigated
individually (Supplementary Fig. 5a–e). Throughout the
remaining analyses we focus mainly on efflux-related mutations,
rather than resistance group, to explicitly address putative
mechanisms of resistance, and relative fitness rather than growth
rate.

We estimated several models with individual, or a combination
of, factors to assess their effect size and significance given some
level of collinearity between fitness and efflux-type (Fig. 3,
Supplementary Fig. 5a–r). A model including strain background,
relative fitness, and efflux-related mutations as factors explained
62.5% of the total variation in IC90 values (Fig. 3a, b,
Supplementary Table 3). In this three-factor model there was
clear separation of the mutants by resistance group (Fig. 3a). The

ciprofloxacin-resistant mutants showed strong CR towards
temocillin, chloramphenicol, ceftazidime, and amoxicillin, separ-
ating this resistance group from the others along the first
ordination axis (Fig. 3a, b). Along the second ordination axis,
mecillinam-resistant isolates were distinct, had CR to temocillin,
and were more likely to have CS towards drugs, such as
azithromycin and chloramphenicol (Fig. 3a, b). Both efflux-type
and relative fitness were significant predictors when tested alone
and in combination (Supplementary Table 3). The model (Fig. 3a,
b) also revealed that strain background had a non-significant
(p= 0.993) contribution (Supplementary Table 3). Even when
modeled alone (Supplementary Fig. 5a), strain background only
accounted for 6.5% of the variation and was non-significant
(Supplementary Table 3).

We initially hypothesized that genetic background would
significantly affect collateral responses. Our initial analysis
suggests that it does not. Arguably, the inclusion of IC90 data
from the drugs to which primary resistance was selected could
confound the analysis, despite our efforts to minimize these
effects using log-transformed data. We used the same approaches
to assess a subset of collateral responses, excluding data for all of
the 40 resistant mutants to five antimicrobials containing the
drugs used for selection (ciprofloxacin, mecillinam, nitrofuran-
toin, trimethoprim) and trimethoprim-sulfamethoxazole. Within
the subset model, patterns consistent with the full model were
observed, but with a lower degree of clustering by resistance
group (Fig. 3c). For example, K56-2 CIPR is now co-localized
with the mecillinam-resistant isolates, indicating that this isolate
is distinct from other ciprofloxacin-resistant mutants (Fig. 3c),
which still showed strong tendencies of CR to temocillin,
chloramphenicol, ceftazidime, and amoxicillin (Fig. 3c, d).
Despite these changes, efflux-type and fitness were still significant
predictors of collateral networks, and strain background
remained non-significant (Supplementary Table 3) when mod-
eled alone (Supplementary Fig. 5f) and in two-factor combina-
tions (Supplementary Fig. 5n–o), but had a limited, significant
contribution (p= 0.040), determined by permutation tests, in the
three-factor model (Fig. 3c, d, Supplementary Table 3). However,
mutations in efflux-related genes and gene regulators were the
strongest predictor of collateral responses tested, explaining over
33% of the variation in the subset. Fitness alone also had
significant predictive value, but to a lesser extent (17% variation
explained). It is important to note that we observed a correlation
between efflux mutations and relative fitness that is likely
explained by reduced fitness resulting from the cost of over-
expression of efflux pump(s)39.

To investigate the influence of resistance mechanism on IC90
variation at a higher resolution, we modeled each resistance
group separately relating the putative resistance mechanism
(beyond efflux-type) and fitness separately and in combination
(Supplementary Fig. 6a–o). However, potentially due to a lower
number of samples within each resistance group that were
separated into more detailed classifications of resistance mechan-
ism, these factors had varying degrees of contribution. For
mutants resistant to ciprofloxacin (Supplementary Fig. 6a) and
trimethoprim (Supplementary Fig. 6j), resistance mechanism was
non-significant, but it was a significant factor for those resistant
to mecillinam (Supplementary Fig. 6d) and nitrofurantoin
(Supplementary Fig. 6g). Fitness was a significant factor only
for the mecillinam resistance group (Supplementary Fig. 6e) and
similarly, models containing both resistance mechanism and
fitness were non-significant for all resistance groups, with the
exception of the mecillinam-resistant mutants (Supplementary
Fig. 6f).

In the first-step (GyrA) ciprofloxacin mutants, strain back-
ground was a significant factor for collateral responses

Table 3 The number of antimicrobial resistant mutants with
resistance-associated mutations

Resistance
mechanism

CIPR MECR NITR TMPR

Drug target Modification 10a 6
Overproduction 6

Drug activation Nitroreductase
disruption

10

Drug uptake Porin mutation 1
Efflux AcrAB-TolC 7 1

MdtK 9 1
MdfA 1
EmrAB-TolC 7
ABC transport 1

ppGpp
synthesis
(stringent
response
activation)

Stringent
response

4

tRNA synthesis 4
tRNA processing 1
Cellular
metabolism

3

aAll mutants resistant to ciprofloxacin contained one mutation in the gyrA gene, except the K56-
2 CIPR mutant that contained two mutations in gyrA and a mutation in parC
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Fig. 2 Collateral effects in gyrA mutants with decreased susceptibility to ciprofloxacin. Relative changes in antimicrobial susceptibilities, CS (blue) and CR
(red), were determined by comparing average IC90 values of nine first-step mutants to their respective wild-type strain. Antimicrobials are ordered by
antimicrobial class, as in Supplementary Fig. 2
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significant. For more comprehensive multivariate models see Supplementary Fig. 5–6
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(Supplementary Fig. 6m). However, this was not the case when
the original ciprofloxacin-resistant mutants from the same strain
backgrounds were added to the analysis (Supplementary Fig. 6n),
suggesting again that other factors are more important than strain
background. Overall, in comparison to the ciprofloxacin-resistant
mutants, collateral responses of first-step mutants were far less
frequent and more closely resembled those of the GyrA/ParC
mutation-containing K56-2 CIPR mutant. A final redundancy
analysis was performed on all ciprofloxacin-resistant and first-
step mutants (Supplementary Fig. 6o), and showed a significant
effect of resistance mechanism, supporting that mechanism,
efflux in particular, is a major driver of collateral responses.

Collateral responses shift the mutation selection window. The
mutant selection window can be defined as the concentration
space between the lowest antimicrobial concentration that selects
for and enriches resistant mutants43 and the concentration that
prevents the emergence of first-step resistant mutants, the
mutation prevention concentration (MPC)44,45. In theory, if drug
concentrations remain above the MPC during treatment, anti-
microbial resistance is less likely to evolve44,45. It was recently
demonstrated in E. coli MG1655 that changes in MPC correlated
with collateral responses in resistant mutants21. We determined
the MPC for 17 strain:drug combinations that exemplified con-
served collateral responses (Fig. 1b). The MPC for each resistant
mutant and its respective wild-type were compared. In 12/17
(70.6%) the change in MPC was consistent with the sign of col-
lateral responses as determined by IC90. This demonstrates that
even small CS/CR changes can affect the mutant selection win-
dow, correspondingly shifting it down or up. In 4/17 (23.5%) the
MPC displayed no change between the wild-type and mutant.
This was observed when testing the MPC for mecillinam, tri-
methoprim, and azithromycin, though we speculate that
increasing the precision of the MPC assay (as was done with IC90
testing) might negate these discrepancies. Changes in MPC
results with azithromycin were inconsistent with the change in
IC90 for a ciprofloxacin-resistant mutant and the mutants resis-
tant to mecillinam and nitrofurantoin, which displayed a
decreased MPC instead of an expected increase or no change,
respectively.

Discussion
Here, we identify conserved collateral responses in antimicrobial
susceptibility across genetically diverse clinical E. coli strains
following antimicrobial resistance development. Our findings are
relevant beyond urinary-tract infections because uropathogenic
E. coli are shown to also stably colonize the bladder and gut46 and
to cause bloodstream infections47. Our data show that CS and CR
are pervasive in clinical E. coli strains, consistent with earlier
results based on laboratory-adapted strains of various species21–
23,25,30,48 and a limited number of clinical isolates21,30. Resistance
to ciprofloxacin resulted in a greater number of collateral
responses than resistance to mecillinam, nitrofurantoin, or tri-
methoprim. This is likely due to mutations to known regulators of
the AcrAB-TolC and MdtK efflux pumps. Both have broad
substrate specificities to diverse antimicrobials including fluor-
oquinolones, β-lactams, tetracycline, chloramphenicol, trimetho-
prim-sulfamethoxazole, and some macrolides for the AcrAB-
TolC efflux pump49,50, and fluoroquinolones, chloramphenicol,
trimethoprim, and some β-lactams for the MdtK pump39,51.
Interestingly, both overexpression of MdtK51 and RpoB39 muta-
tions (that were linked to MdtK expression) have been shown to
reduce susceptibility to fosfomycin, as was observed in the
ciprofloxacin-resistant mutants in this study (Fig. 1a). Overall, CR
was much more prevalent than CS, and the magnitude of

collateral responses were most often small, consistent with other
reports21–23. We observed that collateral responses varied sub-
stantially by resistance group, but variation was also observed
within resistance groups.

Using CS50 and CR50 thresholds to identify conserved
responses, we found that conserved CR was more than twice as
common as conserved CS. Whereas many of the conserved col-
lateral responses identified in this study support the findings in
previous work using single laboratory-adapted strains, we
observed several clinically relevant differences. For example, our
finding of conserved CS in ciprofloxacin-resistant mutants to
gentamicin was previously reported in E. coli K1222 but not in E.
coli MG165521. In mutants resistant to ciprofloxacin we also
observed conserved CR towards chloramphenicol, as reported in
ref. 21, but not in ref. 23. We identified conserved CR of
nitrofurantoin-resistant mutants to amoxicillin, and this was not
reported in MG165521. These observations underscore the
importance of exploring collateral networks in multiple mutants
of different clinical strain backgrounds and with different resis-
tance mechanisms to assess their potential clinical application.

Visual inspection of the data revealed a few clinically relevant
examples of CS phenotypes that appeared independent of puta-
tive mechanism of resistance. We show that E. coli strains resis-
tant to ciprofloxacin display CS towards gentamicin, fosfomycin,
ertapenem, and colistin, and these phenotypes were conserved
across multiple mechanisms of resistance. These results parallel
those of a recent study on P. aeruginosa clinical isolates from
cystic fibrosis patients, where resistance to ciprofloxacin was
associated with CS to gentamicin, fosfomycin, and colistin31.
Taken together these data support the presence of general, con-
served collateral networks that may both affect the population
dynamics of antimicrobial resistance during treatment and
counter-select for resistance, as recently indicated31.

We assumed a priori that genetic background, resistance
group, resistance mechanism, and the fitness cost of resistance
could potentially affect the generality, sign, and magnitude of
collateral networks in clinical E. coli strains. Despite the fact
that some collateral responses are conserved across different
strains and mechanisms of resistance, our multivariate statis-
tical approaches show overall that mechanism of resistance is
the key predictor of CS and CR variability. This is primarily the
case for efflux-related mutations. However, mechanism of
resistance also significantly contributed to the observed CS and
CR variation in the mecillinam mutants where no efflux
mutations were found. The presented data are consistent with
earlier reports based on multiple resistant mutants derived from
single strains with different resistance mechanisms towards
specific antimicrobials22,23,52. Our finding that genetic back-
ground did not significantly contribute to collateral responses is
an important addition to these earlier studies. Finally, we found
that the fitness cost of resistance also contributed significantly
to the observed variation in CS and CR, despite some colli-
nearity between efflux-related mutations and reduced fitness.
Taken together, our data and previous reports indicate that
applied use of collateral networks in future treatment strategies
may be dependent on rapid identification of specific resistance
mechanisms. Moreover, clinical application of CS as a selection
inversion strategy warrants further investigations to ideally
explore CS in isogenic backgrounds, representing several
diverse strains, with permutations of all known antimicrobial
resistance-associated traits. Such extensive studies would likely
provide valuable information on the mechanisms of CS. Other
confounding factors such as mobile genetic elements with
heterogeneous resistance determinants should also be investi-
gated as they would likely influence and reduce the predict-
ability of collateral networks.
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Selection inversion, as described by ref. 21, depends on the
cycling of drug pairs that display reciprocal CS. We did not
observe reciprocal CS between any of the four drugs studied here
that are widely used for treatment of urinary tract infections.
However, we asked if modest reductions and increases in anti-
microbial susceptibilities would affect the mutant selection win-
dow44 for the most prevalent CS and CR phenotypes. We
subjected conserved CS and CR phenotypes to MPC assays and
revealed that even a small 1.5-fold change in IC90 could equally
alter the MPC, resulting in a shift of the mutant selection win-
dow (Fig. 1b). These results suggest that antimicrobial treatment
strategies informed by collateral networks could affect the evo-
lutionary trajectories of antimicrobial resistance. Sequential
treatment using drug pairs that display CR would, following
resistance development, shift the mutant selection window
towards higher antimicrobial concentrations, as was previously
observed53, and increase the likelihood for resistance develop-
ment to subsequent treatment options (Fig. 4a). Conversely,
sequential treatment based on drug pairs that display CS can shift
the mutant selection window down and reduce the window of
opportunity for high-level resistance development (Fig. 4b). This
result suggests that the initial choice of antimicrobial may set the
stage for later resistance development.

Based on our in vitro findings, trimethoprim and nitrofur-
antoin are attractive from a clinical perspective, as resistance to
these resulted in few collateral responses, preserving the innate
sensitivity to available secondary antimicrobials (Fig. 4c, d).
However, mecillinam could be even more attractive, as CS
largely dominates the observed collateral responses in resistant
mutants. Additionally, isolates resistant to mecillinam,

especially those evolved in vivo, are associated with high fitness
costs42. In contrast, exposure to ciprofloxacin was more likely
to cause dramatic collateral responses that depend on the
mechanism of resistance and could potentially negatively
impact future therapeutic options (Fig. 4c). These observations
align with antimicrobial treatment recommendations in Nor-
way, where mecillinam, nitrofurantoin, and trimethoprim are
recommended for first-line therapy of uncomplicated urinary-
tract infections, and ciprofloxacin is reserved for otherwise
complicated infections54. Similarly, in the United States nitro-
furantoin, trimethoprim-sulfamethoxazole, and mecillinam are
recommended before fluoroquinolones, such as ciprofloxacin,
ofloxacin, and levofloxacin55.

Our conclusions are not without limitations. First, we
acknowledge that including more clinical isolates from different
infection foci, more diverse genetic backgrounds including dif-
ferent bacterial species, as well as other selective agents, could
change the outcome of our statistical analyses. This would allow
increased sensitivity for the assessment of the different factors
controlling collateral responses. A more targeted approach to
assess the impact of specific resistance mechanisms on CS and CR
across genetically diverse clinical strains is lacking in the field.
Our analyses suggest that the fitness cost of resistance explains
some variability in the collateral networks reported here. We used
relative growth rates as a proxy for relative fitness, and our data
are consistent with reports demonstrating that growth rates affect
susceptibilities to several antimicrobials56,57. It is unclear if col-
lateral networks will be perturbed by compensatory evolution,
which eliminates the fitness costs of primary resistance58–60.
Finally, this and previous studies focus on antimicrobial
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resistance development to a single drug, and there is a complete
lack of data on how multidrug resistance, including resistance
genes on mobile genetic elements, will affect collateral networks.
We are currently investigating these and other questions that will
aid in our understanding of collateral networks and their
potential therapeutic application.

Methods
Bacterial strains. We used 10 clinical, urinary-tract infection isolates of E. coli
from the ECO-SENS collections61,62 originating from countries across Europe
between 2000 and 2008 (Table 1). The isolates were chosen to represent pan-
susceptible strains with diverse genetic backgrounds and were reported plasmid-
free32. Subsequent analysis based on whole-genome sequencing discovered two
changes to previously reported sequence types and the presence of plasmid repli-
cons in three strains (Supplementary Table 4). E. coli ATCC 25922 was used for
reference and quality control purposes. For general growth, bacterial strains were
grown in either Miller Difco Luria–Bertani (LB) broth (Becton, Dickinson and Co.,
Sparks, MD, USA) or on LB agar; LB broth with select agar (Sigma-Aldrich) at 15 g
L−1 and incubated at 37 °C.

Selection of antimicrobial-resistant mutants. Single antimicrobial-resistant
mutants were selected at drug concentrations above the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints63 for cipro-
floxacin, nitrofurantoin, trimethoprim, and mecillinam (Supplementary Table 1).
Briefly, 100 µL of 10× concentrated overnight culture was spread on Mueller
Hinton II agar (MHA-SA; Sigma-Aldrich) plates containing ciprofloxacin (Bio-
chemika), nitrofurantoin (Sigma-Aldrich), or trimethoprim (Sigma-Aldrich) with
two-fold increasing concentrations of the antimicrobial. After 24–48 h, a mixture of
growth from the highest concentration plate with multiple colonies was used to
start a new overnight culture at the same antimicrobial concentration. This was
repeated until there was growth above the clinical breakpoint63. Mecillinam-
resistant mutants and first-step ciprofloxacin mutants (gyrA mutation-containing)
were selected as single-step mutants on LB or MHA-SA agar, respectively. Mutants
were confirmed as E. coli using matrix-assisted laser desorption ionization time-of-
flight (MALDI-TOF) analysis with MALDI BioTyper software (Bruker, MA, USA).

Antimicrobial susceptibility testing. Mutants were initially screened for resis-
tance above EUCAST breakpoints63 with gradient diffusion strips following
manufacturers guidelines (Liofilchem, Italy), on Mueller Hinton II agar (MHA-BD;
Becton, Dickinson and Company). Plates with insufficient growth were incubated
for an additional 24 h.

To maximize the precision of our susceptibility estimates and in accord with
related studies on CS, collateral changes were determined by IC90 testing21 with
some modifications. IC90 values were determined following 18 h incubation at 700
rpm (3 mm stroke) in Mueller Hinton Broth (MHB, Becton, Dickinson and Co.).
Slow-growing strains where positive growth controls did not reach OD600 nm of 0.3
after 18 h (i.e. K56-12 CIPR) were interpreted after 42 h incubation. Standard two-
fold concentrations and the median values between them were used as a 1.5-fold
testing scale. IC90 values were the lowest concentration tested that resulted in ≥90%
inhibition of growth. Percent inhibition was calculated compared to the positive
control (untreated sample) with background removed21. IC90 results were
determined in at least three biological replicates on separate days. The final result
reflects the average of a minimum of three replicates that met quality control
standards, including the result of ATCC 25922 on each plate, positive growth
control OD600 nm > 0.3, negative growth control OD600 nm < 0.05, and accepting no
more than one skip (defined as a break in the inhibition pattern). When one skip
was observed, the IC90 value was consistently interpreted as the lowest
concentration tested that resulted in ≥90% inhibition of growth. Fold change in
IC90 was calculated as the ratio between the resistant mutant and its respective
wild-type. The IC90 testing varied for two antimicrobials (according to EUCAST
recommendations), where fosfomycin was tested in MHB supplemented with
25 µg mL−1 glucose-6-phosphate (Sigma-Aldrich) and tigecycline was tested in
fresh MHB media that was prepared daily.

Dose–response curves were generated with average OD600 values (background
subtracted) for concentrations tested during IC90 testing. Averages were plotted for
mutants and respective wild-type strains.

MPC testing. We determined the MPC for 17 of 20 conserved collateral responses.
Temocillin was excluded due to lack of supply and trimethoprim-sulfamethoxazole
was excluded for trimethoprim-resistant isolates due to fundamental CR between
trimethoprim and trimethoprim-sulfamethoxazole. MPC determination was based
on previous work by Marcusson et al.64. Briefly, 10 mL overnight culture was
centrifuged and the pellet re-suspended in 1 mL MHB, estimated to contain ≥1010
CFU (actual values were 1.4 × 1010–7 × 1010 CFU). The inoculum was split and
spread onto four large (14 cm diameter) MHA-SA agar plates for each anti-
microbial concentration tested in a two-fold dilution series. The MPC was the
lowest concentration with no visible growth after 48 h. Where growth/no growth
was difficult to interpret, suspected growth was re-streaked on plates at the same

antimicrobial concentration. Azithromycin and ertapenem were regularly incon-
sistent, making re-streaking essential. Resistant mutants and wild-types were tested
in parallel, and results represent the average of at least two biological replicates.

Growth rate measurements. To obtain growth curves of wild-types and resistant
mutants, single colonies were used to inoculate at least three biological replicates of
MHB starter cultures (2 mL) that were incubated at 37 °C for 24 h shaking at 500
rpm. Each culture was diluted 1:100 in MHB (resulting in ~2 × 107 cell mL−1) and
250 µL was added in triplicate to a 96-well microtiter plate. The plate was incubated
overnight at 37 °C in a Versamax plate reader (Molecular Devices Corporation,
California, USA) with shaking for 9.2 min between reads. OD600 measurements
were taken every 10 min and growth rates were estimated using the GrowthRates
v.2.1 software65. To a varying extent, the ciprofloxacin-resistant mutants of K56-12,
K56-16, K56-44, and K56-68, as well as, K56-44 MECR, K56-68 MECR, and K56-70
TMPR displayed noise in the growth curves due to clumping or non-homogeneous
growth, and GrowthRates was unable to fit a line with R-value above the 0.98 cut-
off value. Additional experiments and visual inspection of the log-transformed
OD600 values were used to solve this issue. If GrowthRates failed to analyze the
curves, a line was fitted within the log phase through at least five consecutive points
that displayed log-linear growth. Growth rate (r) was calculated based on the
slope65. Relative growth rates were calculated as r(resistant mutant) r(wild-type)−1.

Whole genome sequencing. Genomic DNA was isolated using the GenElute
Bacterial Genomic DNA kit (Sigma-Aldrich) following guidelines for Gram-
positive DNA extraction. Purity and quantification was determined with Nanodrop
(Thermo Scientific) and Qubit High Sensitivity DNA assay (Life Technologies),
respectively. For library preparation of wild-types and resistant mutants, 1 µg of
DNA was sheared on a Covaris S2 to ≈400 bp using the recommended settings
(intensity: 4, duty cycle: 10%, cycles per burst: 200, treatment time: 55 s). Libraries
were then prepared and indexed using the DNA Ultra II Library Preparation Kit
(New England Biolabs, E7645). For library preparation of DNA from first-step
ciprofloxacin mutants, 1 ng of DNA was used with the Nextera XT DNA prep kit
(Illumina, San Diego), according to the producer’s instructions. All libraries were
quantified by Qubit High Sensitivity DNA assay and distributions and quality
assessed by Bioanalyser DNA 1000 Chip (Agilent, 5067-1504) before normalizing
and pooling. Illumina sequencing, NextSeq 550, and MiSeq, was used for the first-
step ciprofloxacin mutants and the wild-types and resistant mutants, respectively,
using paired-end reads. For NextSeq 550 a mid-output flowcell with 300 cycles was
used. V2 chemistry was used for the MiSeq sequencing.

Wild-type genomes were assembled, as follows. Illumina adapters on wild-type
reads were removed with Trimmomatic version 0.3666 using standard settings, then
assembled with SPAdes67. Contigs less than 500 bp in length or less than 2.0
coverage were removed. Wild-type genome assemblies were inspected and
compared to the E. coli MG1655 genome (GenBank U00096.2) using QUAST68.
Final assembled genomes of wild-type strains were annotated using the automated
Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/
annotation_prok/).

Wild-type and mutant sequences were compared to identify putative resistance
mechanisms. First, wild-type genomes were annotated with Rapid Annotation
using Subsystem Technology server (RAST, version 2.0) for E. coli69. SeqMan
NGen (DNASTAR, Madison, WI) was used to align raw mutant reads to the
corresponding, annotated wild-type genomes, using standard settings. Reported
SNPs had ≥10× coverage depth and ≥90% variant base calls. SNPs present in the
wild-type assembly or in at least two mutants resistant to different antimicrobials
from the same strain background were excluded. Reported SNPs, indels, and
rearrangements were manually inspected and gene annotations confirmed using
Gene Construction Kit (Textco Biosoftware Inc., Raleigh, NC) and NCBI BLAST
searches, respectively.

Multilocus sequence typing (MLST), as well as, plasmid replicon and acquired
antimicrobial resistance gene content were determined for the wild-type genomes
using MLST version 1.8, PlasmidFinder version 1.3, and ResFinder version 3.070,
respectively (http://genomicepidemiology.org/). The MLST of each wild-type strain
was confirmed compared to the original reported sequence type32 for all but two
strains, K56-41 and K56-70. These strains were originally described as ST420 and
ST550, but were ST73 and ST537 in our analysis, respectively (Supplementary
Table 4). The wild-type strains were previously described as plasmid free, but we
identified two small plasmid replicons, Col156 in K56-16 and K56-44 and Col
(MP18) in K56-75 (Supplementary Table 4). Using ResFinder, we detected only
one acquired genetic element, sul2 (linked to sulfonamide resistance) in K56-44,
and two point mutations, PmrB V161G in K56-50 and K56-70 and ParE D475E in
K56-78, that are linked to colistin and quinolone (ciprofloxacin) resistance,
respectively (Supplementary Table 4). Though all of the wild-type strains were
phenotypically pan-susceptible (Supplementary Fig. 1c), these resistance
determinants could affect antimicrobial susceptibilities differentially in the
presence of other mutations71,72.

To assess genetic diversity, a phylogenic tree was generated based on the
genome sequences of wild-type strains. Assembled wild-type genomes were
annotated with PROKKA73, the core gene-encoding regions were extracted and
compared using ROARY74, and a maximum-likelihood tree with 100 bootstraps
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was generated using RAxML75. Genetic distances were calculated in R76 using
previously described methods77.

Multivariate statistical analyses. The fold changes of mean IC90 values relative
to the parental wild-type strain (collateral responses) were log transformed.
Statistical analyses were performed on the complete data set, as well as a subset
of the data excluding five antimicrobials (ciprofloxacin, mecillinam, nitrofur-
antoin, trimethoprim, and trimethoprim-sulfamethoxazole). To estimate and
test the effects of strain background, resistance group, resistance mechanism,
growth rate, and relative fitness we relied on multivariate modeling (redundancy
analysis) to address the co-variation in IC90 across antimicrobials. A redundancy
analysis is a constrained version of a principle component analysis that addi-
tionally allows for hypothesis testing. Linear constraint scores were plotted for
each mutant. Response variables were overlaid with independent scaling to
illustrate the direction of steepest ascent (increasing CR) from the origin for each
antimicrobial. Data were inspected to check whether the assumptions underlying
redundancy analysis were met. Significance testing of multivariate models and
their factors (Supplementary Table 3) was done via permutation tests (1000
permutations), an approach robust to deviations from multivariate normality
and variance homogeneity; p < 0.05 was considered significant. Analyses were
done in R76 using the Vegan work package78.

Data availability
Whole-genome sequencing data are available at NCBI (BioProject PRJNA419689). All
other relevant data are available within this article, the Supplementary Information, or
from the corresponding author upon request.
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Abstract

Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally 
between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also 
occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process 
using the replicative transposon Tn1 and the naturally competent bacterium Acinetobacter baylyi. We find that chromosomal 
insertion of Tn1 by transposition occurs at low but detectable frequencies and preferably around the A. baylyi terminus of rep-
lication. We show that Tn1 transposition is facilitated by transient expression of the transposase and resolvase encoded by the 
donor DNA. RecA protein is essential for the formation of a circular, double- stranded cytoplasmic intermediate from incom-
ing donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes 
the double- stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural 
transformation.

INTRODUCTION
Horizontal gene transfer drives bacterial evolution through 
the acquisition of novel genetic material and accelerates the 
spread of adaptive traits such as antimicrobial resistance 
(AMR) between bacteria [1]. AMR in bacterial pathogens 
represents a growing public health concern [2] and there is 
an urgent need to increase our understanding of the basic 
mechanisms of AMR spread.
Conjugation, transduction and natural transformation are 
believed to be the main routes of intercellular gene transfer 
[3]. During conjugation, conjugative plasmids or conjuga-
tive transposons move into a recipient bacterium through 
cell- to- cell contact. Transduction includes the transfer of 
host DNA, mispackaged into bacteriophage particles during 
late infection, to a recipient cell. Natural transformation is 
the active uptake of free DNA from the environment and 
subsequent genomic integration [4]. Only bacteria that are 
competent for natural transformation can actively take up free 
DNA. Competence to undergo natural transformation was 
experimentally demonstrated in at least 80 bacterial species, 
both Gram- positive and Gram- negative [5]. The majority of 
the 12 global priority pathogens are naturally transformable, 

including those categorized as critically antibiotic- resistant: 
Acinetobacter baumannii, Pseudomonas aeruginosa and some 
Enterobacteriaceae [6, 7]. Natural transformation as a pathway 
for recruiting genetic variation, including AMR genes, was 
recently demonstrated between different species of the genus 
Acinetobacter [8] and different genera, for example from 
carbapenem- resistant Klebsiella pneumoniae to A. baumannii 
[9].

AMR determinants are frequently captured on mobile genetic 
platforms such as plasmids and transposons, and in associated 
mobilizable elements such as integrons, which all represent 
multidrug resistance- conferring units [10–12]. Transposons 
are widespread genetic elements in bacteria [13] and in 
other domains of life. They move intra- and intermolecularly 
between different genomic positions within a cell in a process 
called transposition [14]. Through transposition, transposons 
can be inserted into conjugative plasmids or into bacte-
riophages, which facilitates the mobility of non- conjugative 
transposons between cells [12]. Thus, transposon- embedded 
AMR determinants can be mobilized at multiple hierarchical 
genetic levels, and intermolecular movement of transpo-
sons between different plasmids or between plasmids and 
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chromosomal locations also occurs within clinical pathogens 
[15–18]. Therefore, the investigation of transposon mobility 
across different bacterial hosts could aid the understanding 
of AMR spread.
Stable integration of horizontally acquired mobile genetic 
elements into the bacterial recipient genome is crucial for 
long- term inheritance and is facilitated by plasmid establish-
ment or rearrangement events between donor and recipient 
DNA such as homology- based recombination, site- specific 
recombination, or transposition [12]. A recent study demon-
strated the transposition of a Tn21- like transposon (Tn3- 
family) of Salmonella enterica serovar Typhimurium 490 into 
the chromosome of Acinetobacter baylyi ADP1 in the course 
of natural transformation [19]. Tn21 insertion occurred 
independently at different loci in several transformants, and 
target site duplications (TSDs) at the insertion sites strongly 
suggested DNA recombination by transposition [19]. Since 
ADP1 harbours no transposons of the Tn3- family [20], these 
results indicated that the transposase was expressed from 
the incoming donor DNA. The authors concluded that a 
cytoplasmic, linear DNA double- strand formed after uptake, 
allowing gene expression and movement of the structural 
transposon [19].
In the present study, we used the Tn3- like replicative trans-
posons Tn1 [21] and Tn4401 [22] as donor DNA to quantify 
and characterize transposition during natural transformation 
in molecular detail. As a recipient, we employed the naturally 
competent soil bacterium A. baylyi strain ADP1 also used 
by Domingues et al. [19]. ADP1 is transformable at high 
frequency by DNA from any source, including PCR products, 
which allows the detection and quantification of rare DNA 
recombination events [23, 24].

METHODS
Bacterial strains and growth conditions
A. baylyi ADP1 strain BD413 Rpr (wild- type) [25] and the 
derivative mutants ΔrecA::tetA (JV37) [26], ΔdprA::aacC1 
(NH29) [27], ΔrecO (KOM82) [27] and ΔrecBCD ΔsbcCD 
(KOM45) [28] were employed as recipient strains in natural 
transformation assays and have been described previously. 
The ΔxerC::nptII sacB mutant was constructed as reported 
previously for A. baylyi deletion strains [29, 30]. Briefly, DNA 
sequences of about 1000 bp each upstream and downstream 
of xerC (ACIAD2657) in ADP1 (GenBank CR543861) were 
PCR- amplified using primers xerC- up- f/xerC- up- r (upstream 
segment) and xerC- down- f/xerC- down- r (downstream 
segment; all primer sequences are listed in Table S1 available 
in the online version of this article). The PCR products were 
inserted sequentially into the plasmid vector pGT41 upstream 
and downstream of a nptII sacB selectable marker gene pair. 
The resulting plasmid contained a ΔxerC::nptII sacB allele 
embedded into its natural flanking regions and was used to 
naturally transform ADP1. The resulting XerCD- deficient 
transformant (kanamycin- resistant) was confirmed pheno-
typically and by PCR (primers xerC- up- f/xerC- down- r and 
xerC- ctrl/xerC- down- r; Table S1). PCR assays were carried 

out with high- fidelity Phusion DNA polymerase (Thermo 
Scientific) and standard parameters except using an additional 
10 % dimethylsulfoxide, or with DreamTaq DNA polymerase 
(Thermo Scientific).
Escherichia coli strains EC100 (Epicentre), DH5α [31] or SF8 
recA [32] were employed as host strains for strain construc-
tions and donor DNA preparations. Strains were grown 
in Luria–Bertani (LB) medium at either 30 °C (A. baylyi) 
or 37 °C (E. coli). For transformant selection, media were 
supplemented with antibiotics at the following concentra-
tions: ampicillin, 100 mg l−1 (Tn1 in pJK2, pJKH1, pJK7 and 
pTn4401); streptomycin, 40 mg l−1 (RSF1010); kanamycin, 10 
mg l−1 (pKH80- PCR).

Donor DNA preparations for natural transformation 
experiments
Plasmid pJK2 (6896 bp; Fig. 1) was constructed as follows: 
transposon Tn1 on plasmid RP4 (4951 bp; GenBank 
BN000925) was PCR- amplified from the left to the right 
border without TSDs using DNA from E. coli K12 J53 RP4 
[German Collection of Microorganisms and Cell Cultures 
(DSMZ), DSM 3876] as template and primer Tn1- f+r (Table 
S1) as forward and reverse primer. The resulting PCR product 
was 5′-phosphorylated with polynucleotide kinase (Thermo 
Scientific) and ligated to a 1945 bp PCR product containing 
the p15A origin of replication and the chloramphenicol 
resistance gene cat of plasmid pACYC184 [33] (GenBank 

Fig. 1. Map of plasmid pJK2. The plasmid backbone contains the p15A 
origin of replication (green) and the cat gene (yellow; chloramphenicol 
resistance) of the E. coli cloning vector pACYC184. Transposon Tn1 (4.9 
kb) was cloned from plasmid RP4. In Tn1, tnpA and tnpR (blue) encode 
the transposase and resolvase, respectively. Ampicillin resistance is 
conferred by blaTEM-2 (magenta). The transposon contains a res site for 
cointegrate resolution and is flanked by two terminal 38 bp inverted 
repeats (dashed). Neither Tn1 nor pACYC184 display significant 
sequence identity with the A. baylyi genome.
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X06403; primers cat- r and p15A- r1; Table S1) using T4 
DNA ligase (Fermentas). pJKH1 (carrying Tn1ΔtnpA; 4289 
bp) was derived from pJK2 by digestion with EcoRV and 
circularization of the large fragment (T4 DNA ligase). The 
partial deletion of tnpA (869 internal of 1002 codons) was 
confirmed by restriction analysis. To construct plasmid pJK7 
(Tn1ΔtnpR; 6399 bp), we PCR- amplified pJK2 excluding tnpR 
with primers pJK2- tnpR- del- f and pJK2- tnpR- del- r (Table 
S1). The PCR- product was 5′-phosphorylated (polynucleotide 
kinase) and circularized (T4 DNA ligase), and the deletion 
of tnpR was confirmed by Sanger sequencing. The plasmids 
RSF1010, pKH80 and pTn4401 have been described previ-
ously [28, 34–36]. Plasmid donor DNA was isolated using the 
Qiagen Plasmid Extraction kit (Qiagen) and genomic donor 
DNA was purified with the GenElute Bacterial Genomic DNA 
kit (Sigma- Aldrich).
When PCR products were employed as donor DNA, PCR 
reactions were performed using high- fidelity Phusion DNA 
polymerase. Linear donor DNA substrate pJK2- PCR (6908 
bp) was obtained by inverse PCR amplification of pJK2 with 
primers cat- f and p15A- ori- f- c (Table S1). This PCR product 
carried a 12 bp overlap at the ends. Donor DNA substrate 
pKH80- PCR (4760 bp) was PCR- amplified with primers 
sbcD- up- f and sbcC- down- r (Table S1) from plasmid pKH80. 
This substrate carried two approximately neighbouring 1.0 
kbp DNA stretches from the A. baylyi chromosome covering 
parts of ACIAD0915 and ACIAD0918, interrupted in the 
centre by a 2.7 kbp nptII sacB marker gene cassette conferring 
kanamycin resistance. The PCR products were purified using 
the Qiaquick PCR purification kit (Qiagen). When indicated, 
pJK2- PCR was purified by agarose gel electrophoresis (Sea 
Plaque, LONZA) and subsequent recovery using the Qiaquick 
Gel Extraction kit (Qiagen).

Natural transformation assays in liquid medium
Preparation of naturally competent cells of A. baylyi as well 
as natural transformation assays were conducted as described 
previously [29]. In brief, competent cell stocks were prepared 
by dilution of an overnight culture 1:100 into liquid LB and 
growth of that culture under aeration until logarithmic growth 
(1×109 cells ml−1 determined with a haemocytometer) was 
reached. The cells were chilled, centrifuged for 10 min at 5000 
g and 4 °C, and concentrated 1:10 in LB media containing 
20 % glycerol (v/v). Finally, the cells were aliquoted and stored 
at −80 °C until further use.
For transformation assays, aliquoted competent cells were 
thawed on ice, diluted 1:40 in liquid LB to 2.5×108 cells ml−1, 
and DNA was added at 100 ng ml−1 unless indicated other-
wise. The assays were incubated under aeration for 90 min 
before the cells were chilled on ice, washed and resuspended 
in phosphate- buffered saline. Appropriate dilutions were 
plated on LB (recipient titre) and media containing selective 
antibiotics (transformant titre). LB plates were incubated for 
24 h while transformant plates were incubated 48 to 72 h. 
Colonies were counted and transformation frequencies were 
calculated as transformants per recipient. If no transformant 

colonies were obtained, the limit of detection was calculated 
instead. In control experiments, recipient cells were incubated 
without donor DNA to identify resistant mutants arising and 
unselective and selective plating were performed according 
to the respective assay with donor DNA.

Verification of transposition events
To identify transposition events, ampicillin- resistant trans-
formant colonies were picked and restreaked three times on 
selective medium. In some cases, an intermittent cultivation 
step on non- selective medium was carried out. Typically, 
isolates were investigated after the final restreak by PCR 
for the presence of Tn1 (primer Tn1- f+r) and pJK2 vector 
backbone DNA (primers cat- r/p15A- r1), or for the presence 
of Tn4401 (primers KPC- A/KPC- B) and pTn4401 vector 
backbone DNA (primers cat- r/p15A- r1), respectively (Table 
S1). Occasionally, ampicillin- resistant mutants arose during 
these cultivation steps, presumably through mutations. These 
isolates typically displayed an aberrant colony phenotype 
and were distinguished by the absence of transposon and 
pJK2 vector DNA in PCR analyses. These procedures clearly 
separated so- termed transposants from transient (unstable) 
transformants and mutants. Divergent transformant types 
were found in experiments using wild- type ADP1 with pJK7 
donor DNA, or strain ΔrecBCD ΔsbcCD with pJK2 donor 
DNA (see the Results and Discussion section for details).
To verify transposants, genomic DNA was isolated from 
stable ampicillin- resistant isolates that were PCR- positive for 
Tn1 and PCR- negative for pJK2 vector backbone, using the 
GenElute Bacterial Genomic DNA kit (Sigma- Aldrich). Puri-
fied DNA was used as template for Sanger DNA sequencing 
(BigDye 3.1 technology; Applied Biosystems) as follows: 1 µg 
genomic DNA was mixed with 4 µl BigDye, 2 µl BigDye buffer 
and 10 µM of primer (either bla- ins- f or Tn1- tnpA- ins- f; Table 
S1) in a volume of 20 µl. Assays were denatured for 5 min at 
95 °C, followed by 99 cycles of 30 s at 95 °C, 10 s at 55 °C and 
4 min at 60 °C, and subsequently analysed on an Applied 
Biosystems 3130xl Genetic Analyzer (in- house sequencing 
facility). blast was used to identify both recombinant joints of 
Tn1 with the chromosome of ADP1 (GenBank CR543861.1) 
and to verify the TSDs (Tables S2 and S3). The transposition 
frequency was calculated as transposants per transformant 
isolates multiplied by the transformation frequency.

Characterization of target site sequences
A consensus DNA sequence logo was generated by multiple 
sequence alignment and visualized using WebLogo software 
[37] (Figs 2 and Fig. S1) The aligned regions covered the 5 
bp TSD plus 45 nucleotides upstream and downstream of the 
duplication (Table S4). The total number and positions of this 
TSD consensus sequence (TTWTA) were determined for the 
chromosome of ADP1 using Gene Construction kit v 4.0.3 
(Textco BioSoftware, Inc.). Linear regression analysis of the 
TSD consensus sequence distribution over the chromosome 
of ADP1 was performed using GraphPad v 8.4.2 (GraphPad 
Software; P *** <0.001, ** <0.01, * <0.05).
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Susceptibility testing
The minimal inhibitory concentrations (MICs) were deter-
mined using gradient diffusion strips (Liofilchem) following 
the manufacturer’s instructions. Briefly, 0.5 McFarland 
solutions in 0.9 % saline (w/v) were prepared from freshly 
grown colonies on LB and spread evenly onto Müller–Hinton 
agar plates with a sterile cotton swab. A gradient strip for 

ampicillin was applied and plates were incubated at 30 °C 
for 18 h. Results were read at 100 % growth inhibition (n=1 
per strain).

Electroporation assays
Electrocompetent cells of A. baylyi were prepared as published 
for E. coli [38] with modifications. Briefly, a logarithmic 
culture of A. baylyi was grown at 30 °C in LB to 2.5×108 
cells ml−1. The cells were chilled, washed twice with ice- cold 
distilled water, and concentrated 500 times in 10 % ice- cold 
glycerol solution (v/v). A 40 µl aliquot was mixed with DNA 
(400 ng pJK2 or 200 ng RSF1010 DNA), transferred into a 
2 mm gap electroporation cuvette and pulsed with 12.5 kV 
cm−1 (25 µF, 200 Ω) using a BioRad electroporator. Next, the 
cells were suspended in 1 ml prewarmed SOC (2 % tryptone, 
0.5 % yeast, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 
mM MgSO4, 20 mM glucose) and aerated for 1 h at 30 °C. 
Appropriate dilutions were plated on LB (recipient titre) and 
LB containing antibiotics (transformants) and the plates were 
incubated at 30 °C for 16 to 20 h or 36 to 48 h, respectively.

RESULTS AND DISCUSSION
Natural transformation by transposon-containing 
DNA
We inserted the replicative transposon Tn1 into the narrow- 
host- range plasmid vector pACYC184 that replicates in 
Enterobacteriaceae but not in A. baylyi. The resulting circular 
plasmid pJK2 (Fig. 1) was used as donor DNA to naturally 
transform A. baylyi ADP1 wild- type cells. Ampicillin- 
resistant transformant colonies were obtained at a frequency 
of (6.4±8.4)×10−8 per recipient cell (Fig. 3).
Analyses of resistant colonies revealed two distinguishable 
groups of transformants. In the first group, ampicillin resist-
ance was stably maintained after repeated restreaking on 
selective medium and also after intermittent non- selective 
cultivation. PCR analyses showed the presence of Tn1 but 
the absence of pJK2 vector backbone DNA. This result indi-
cates that Tn1 was chromosomally acquired by DNA uptake 
and transposition. In contrast, the ampicillin resistance was 
unstable in transformants of the second group, resulting in 
heterogeneous colony size and shape when restreaked. The 
resistance was generally lost after repeated purification on 
selective medium or after intermittent non- selective cultiva-
tion, and both Tn1 and pJK2 backbone DNA could be PCR- 
amplified from cell material of the first, and with decreasing 
frequency of subsequent recultivations. This result suggests 
that transformants of group 2 received the pJK2 plasmid and 
became resistant through transient expression of blaTEM-2, but 
lost the plasmid and resistance with further cultivation due to 
the inability of pJK2 to propagate stably in A. baylyi.
To confirm that transformants of the first group occurred 
by transposition of Tn1 into the recipient chromosome, we 
determined the DNA sequences upstream and downstream of 
Tn1 by Sanger sequencing of genomic DNA. We analysed 20 
group 1 isolates with circular pJK2 DNA and an additional 8 

Fig. 3. Frequencies of transformation (black bars) and transposition 
(white bars) in A. baylyi wild- type using different transposon- containing 
donor DNA substrates: pJK2 (Tn1; n=3), pJKH1 (Tn1∆tnpA; n=4), pJK7 
(Tn1∆tnpR; n=3), pJK2- PCR (agarose gel- purified; n=3) and pTn4401 
(Tn4401; n=9). Bars represent the mean with standard deviation. 
Striped bars indicate the detection limit (dl) when no transformation or 
transposition events were observed.

Fig. 2. Consensus DNA sequence logo for Tn1- insertions into the 
chromosome of ADP1. Blue background colour indicates the target site 
duplication (TSD) consensus sequence at positions −4 to 0. Additional 
conserved positions around the TSD are shown. The TSD sequence 
motif (TTWTA; W: T or A) and preference for T at position −7 are typical 
for this transposon family. The logo was generated using WebLogo [37].
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isolates obtained with linear pJK2- derivatives (Supplemental 
Information: Supplemental Results). Altogether, we identified 
29 transposition events of Tn1 into the chromosome of ADP1, 
including one isolate with two transposons (Table S2). In all 
transposition transformants (‘transposants’), Tn1 was found 
as a chromosomal insert with a 5 bp TSD at the recombi-
nant joints, which is a hallmark of transposase activity. The 
consensus sequence of the TSD is in agreement with previous 
reports on Tn3- family transposons (Fig. 2) [39, 40]. We did 
not identify fragments of pACYC184 vector DNA or indica-
tions of non- transposition recombination events. The MIC of 
ADP1 for ampicillin (2 μg ml−1) was increased to >256 μg ml−1 
in eight randomly chosen transposants (Table S2). Together, 
these results confirm that the transposants have acquired Tn1 
during natural transformation through transposition.
The frequency of transposants using pJK2 donor DNA 
was (7.9±7.1)×10−9 (Fig. 3). To compare this transposition 
frequency to extra- chromosomal plasmid establishment or 
to homologous recombination during natural transforma-
tion, we used circular plasmid DNA (RSF1010) or linear 
homologous DNA (pKH80- PCR) in transformation assays 
with A. baylyi and obtained frequencies of (5.4±1.1)×10−6 

and (1.3±0.5)×10−4, respectively. These data indicate that Tn1 
transposition in the course of natural transformation is about 
680 times lower than plasmid aquisition and about 16 000 
times lower than homologous recombination during natural 
transformation. Nonetheless, the transposant frequency was 
higher than illegitimate recombination frequencies with fully 
heterologous donor DNA in A. baylyi [24, 41]. We conclude 
that transposon spread through natural transformation can 
occur at biologically relevant frequencies, although reports 
showing this process in situ are currently lacking. The impor-
tance of transposant formation in the environment or for 
AMR spread in the hospital is unknown but probably low 
compared with conjugation.

Chromosomal distribution of transposition events
All but one of the Tn1 insertions occurred in nonessential 
genes [42] or in intergenic regions of the ADP1 chromosome 
(Tables S2 and S3). However, the distribution of insertions 
was nonrandom, and 24 of 29 transpositions clustered within 
a 170 kbp sector around the assumed terminus of replication 
(Fig. 4a) [20]. This distribution was supported by 14 additional 
unique Tn1 insertions recovered from an A. baylyi ΔrecBCD 

Fig. 4. Characterization of Tn1 insertion sites. (a) Chromosome map of ADP1 with a magnified section of ∼170 kbp (box) around the 
approximate terminus of replication (ter; G- C/G+C skew inversion site). This region contains 174 open reading frames, of which 12 are 
essential [42]. The two major prophage regions of ADP1 and the dif site for chromosome partitioning by XerCD are indicated by grey 
open boxes and grey arrows, respectively [20, 47]. Tn1 insertions are marked as triangles (red, wild- type; blue, ∆recBCD ∆sbcCD). The 
orientation of Tn1 is indicated by the colour intensity (light, transcriptional orientation of tnpA in sense; dark, tnpA in antisense). A dashed 
triangle edge specifies insertion sites in a double transposant. Thirty- four out of 43 insertions occurred around the terminus (24 in wild- 
type and 10 in the ∆recBCD ∆sbcCD strain). (b) Number and distribution of TSD consensus sequences across the chromosome of ADP1, 
which was bi- directionally grouped into 2×18 100 kb segments from origin (ori) to ter. The number of TSD consensus sequence hits per 
group is plotted along the ori–ter axis (black and orange, first and second replichore, respectively). For both directions, linear regression 
showed a significant increase in the number of hits (first replichore: P=0.0076, R2=0.5544; second replichore: P=0.0004, R2=0.3683; 95 % 
confidence intervals are indicated); lowest hit number: 798 (group 2, second replichore), highest hit number: 1153 (group 9, second 
replichore). (c) Number of experimentally observed transposition events per region.
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ΔsbcCD strain (Supplemental Information: Supplemental 
Results and Fig. 4a). To further characterize the distribution 
bias, we determined the total number of TSD consensus 
sequence sites and their positions across the A. baylyi chro-
mosome. The TSD consensus sequence positions (n=34 863) 
followed a normal distribution, indicated by a small difference 
between the median and mean (0.16 %) relative to genome 
size. Although the incidence of TSD consensus sequence 
hits increases significantly along the origin–terminus axis of 
replication (Fig. 4b), even the highest increase in hit counts 
(30 %) does not explain why we observed more than 80 % of 
the verified Tn1 insertions in a region representing only 5 % 
of the ADP1 chromosome (Fig. 4c).
A comparable transposon insertion bias has been observed 
previously, although not in the context of natural transforma-
tion. Tn917  is a Tn3- like transposon in Gram- positive bacteria 
and preferentially inserts at the terminus in B. subtilis [43] and 
Entercoccus faecalis [44], but not in staphylococci [45, 46]. The 
bias is less strong in B. subtilis cells lacking functions involved 
in postreplicational chromosome segregation (RipX, SpoIIIE) 
or lacking the replication termination protein RTP [43]. In  
B. subtilis, codV and ripX encode the dif- directed chromosome 
partitioning recombinase often termed XerCD in Gram- 
negative bacteria [47]. We hypothesized that the absence 
of XerCD would alter the observed insertion bias of Tn1 in  
A. baylyi. We naturally transformed an ADP1 ΔxerC mutant 
by pJK2 donor DNA but did not obtain any transformants 
(detection limit: 2.2×10−10; n=3). The reason for this result 
is unclear. Further experimental investigation was impeded 
by the genetic limitations of the employed recipient strain:  
A. baylyi carries no gene homologous to rtp (tus in E. coli) [24], 
and the orthologue of spoIIIE (ftsK) is essential in A. baylyi 

[42]. Using RSF1010 as donor DNA for the A. baylyiΔxerC 
strain, the transformation frequency was (1.4±0.7)×10−6 
(n=3), which was only four times decreased compared to the 
wild- type.
Finally, we hypothesized that the distribution of Tn1 
insertions would be different using artificial transforma-
tion (electroporation). During electroporation, circular 
double- stranded DNA is directly delivered to the cytoplasm. 
However, no ampicillin- resistant isolates were obtained after 
electroporation of A. baylyi by circular pJK2 DNA (detection 
limit: 3.6×10−10; n=3). In contrast, electroporation by RSF1010 
(n=1) resulted in streptomycin- resistant transformants at a 
frequency of 5.6×10−5, which was 10 times higher than the 
frequency observed with natural transformation of A. baylyi. 
The reason for the distribution bias of transposition events 
remains unknown.

Requirement of transposon genes for transposition
Tn1 carries two genes involved in transposition: tnpA is the 
transposase gene, and tnpR encodes the resolvase for coin-
tegrate intermediates created by TnpA. TnpR also acts as a 
repressor for both tnpA and tnpR [48] (Fig. 1). We hypoth-
esized that transposition and cointegrate resolution during 
natural transformation were conferred by the tnpA and tnpR 
gene products encoded by the donor DNA and that dele-
tion of these genes would decrease transposant frequency. 
We removed the tnpA gene from Tn1 of pJK2, and natural 
transformation of A. baylyi by the resulting plasmid pJKH1 
yielded no ampicillin- resistant transformants (detection 
limit: 5.2×10−11; Fig. 3), confirming that tnpA of Tn1 but no 
recipient functions act as transposase for Tn1.
We also used plasmid pJK7 (carrying Tn1ΔtnpR) as donor 
DNA for the transformation of A. baylyi and the transfor-
mation frequency was similar to that obtained with pJK2 
[(3.5±3.5)×10−8; Fig. 3]. We PCR- screened 150 transformant 
isolates that were stably resistant after three consecutive 
streakouts and found that Tn1 and pJK2 vector backbone 
was detectable in all isolates. This transformant type was 
not detected with pJK2 but is consistent with unresolved 
cointegrate intermediates. We conclude that in the absence 
of TnpR, the derepressed TnpA efficiently recombined Tn1 
with the recipient and formed cointegrates that remained 
unresolved. Recipient functions such as RecA may contribute 
to their eventual resolution, but, taken together, these findings 
indicate that the main resolvase is the TnpR encoded by the 
donor DNA.

Formation of double-stranded cytoplasmic 
intermediates
Taken together, the presented results demonstrate that tnpA 
and tnpR genes as well as blaTEM-2- in the transient transfor-
mants of group 2 described above are expressed after uptake 
of DNA into the cytoplasm. Moreover, our data suggest 
that a circular intermediate is involved in the first (coin-
tegration) step of transposition. However, the donor DNA 
is transported as linear single- strands into the cytoplasm 

Fig. 5. Transformation frequencies of A. baylyi mutant strains (∆recO, 
∆recA or ∆dprA) by circular donor DNA substrates (RSF1010 or pJK2). 
Bars represent the mean with standard deviation from three to five 
experiments. Striped bars indicate the detection limit (dl) when no 
transformation or transposition events were observed.
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during natural transformation [49, 50]. We hypothesized 
that the uptake of two complementary DNA single- strands 
is required for double- strand formation by hybridization. 
The resulting linear DNA double- strands, however, would 
be susceptible to degradation by exonucleases such as 
RecBCD [51, 52-]. Subsequent circularization by annealing 
at overlapping ends, followed by fill- in DNA synthesis or gap 
repair, would protect these double- strands from exonucleo-
lytic degradation [53].
In B. subtilis, recO is required for efficient plasmid transfor-
mation [54], which can be explained by the activity of RecO 
to hybridize complementary DNA single- strands [55]. To 
investigate the role of RecO in double- strand formation in 
A. baylyi, we transformed a ΔrecO strain by circular pJK2 
DNA. The resulting frequency of ampicillin- resistant trans-
formants was eight times lower than in wild- type A. baylyi 
[(7.7±2.4)×10−9; Fig. 5]. With RSF1010 as donor DNA, the 
frequency was (2.4±0.4)×10−6, which was two times lower 
than in wild- type A. baylyi (Fig. 5).

Unlike recO, the recA gene is not required for plasmid trans-
formation of B. subtilis [54], suggesting that RecO is suffi-
cient to restore circular plasmids from two complementary 
single- strands in this organism. We tested whether this was 
also the case in A. baylyi. In a ΔrecA mutant transformed by 
circular RSF1010 DNA, plasmid transformants occurred at 
a frequency of (3.4±1.3)×10−7 (Fig. 5), which was ~16 times 
lower than in wild- type A. baylyi. With pJK2 as donor DNA, 
no transformants were obtained (detection limit: 1.8×10−10; 
Fig. 5). This result suggests an unexpected role of RecA in 
plasmid circularization in A. baylyi.
The DprA (DNA processing A) protein is thought to load 
incoming DNA single- strands with RecA protein [56]. In 
many naturally competent bacteria, deletion of dprA abol-
ishes or severely reduces natural transformation [27, 57–60]. 
We investigated whether natural transformation by circular 
extrachromosomal DNA was affected in an A. baylyi ΔdprA 
mutant. Using pJK2 as donor DNA, the transformation 
frequencies of the ΔdprA strain dropped below detection 
limit (7.8×10−11) (Fig. 5). With RSF1010, the transformation 
frequency was (1.4±0.2)×10−7 and thus approximately 50 times 
lower than that of the wild- type (Fig. 5). These frequencies 
are comparable with those using the ΔrecA strain as recipient. 
The results support the assumption that DprA acts upstream 
of the RecA recombination pathway. They also demonstrate 
that plasmid transformation (RSF1010) is not abolished in 
the absence of DprA.
Our findings show that deficiencies of RecA, DprA and, to a 
lesser degree, RecO reduce transformation of circular extra-
chromosomal DNA in A. baylyi, suggesting a role of these 
functions in plasmid circularization. In our experiments, the 
non- replicative plasmid pJK2 generally yielded poorer trans-
formation frequencies than the replicative plasmid RSF1010. 
We cannot exclude the possibility that some or all of the 
investigated genes also modulate the transposition efficiency 
in addition to double- strand conversion and circularization.
Next we tested whether circularization is a requirement for 
transposons to jump during natural transformation. We used 
an inverse PCR product of pJK2 as donor DNA with Tn1 
approximately in the centre (pJK2- PCR). The substrate was 
agarose gel- purified to eliminate all traces of contaminating 
template DNA (confirmed by PCR; Supplemental Informa-
tion: Supplemental Results). Using this linear DNA substrate 
for transformation of wild- type A. baylyi, no ampicillin- 
resistant transformants were obtained (detection limit: 
1.6×10−10, Fig. 3), suggesting that pJK2- PCR is insufficient 
to produce both transient transformants and transposants, 
presumably due to the cytoplasmic instability of linear 
double- stranded intermediates.

Antagonistic activity of RecBCD
Cytoplasmic linear double- stranded DNA is target for degra-
dation by the RecBCD exonuclease in many bacteria [52] and 
the absence of the nuclease may protect linear intermediates 
and enhance plasmid circularization. In A. baylyi, RecBCD 
is thought to destroy donor DNA following uptake into the 

Fig. 6. Transformation frequencies of the ∆recBCD ∆sbcCD strain using 
plasmid DNA substrates (RSF1010 or pJK2; n=5). Bars represent the 
mean with standard deviation.
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Fig. 7. Model of Tn1 transposition during natural transformation of A. baylyi. Proteins with beneficial or necessary functions are 
represented in green, and proteins with antagonistic functions are red; exemplary sequence segments providing homology are indicated 
by a shaded background. (a) Circular monomeric as well as sporadic dimeric forms of plasmid DNA are available for uptake into 
the periplasm. (b) DNA single- strands are taken up into the cytoplasm and protected from degradation by DprA (orange). DprA also 
loads RecA (yellow) onto single- stranded DNA. (c) RecO (purple) is involved in the annealing of DNA single- strands [55], in initiating or 
improving gap repair as part of RecFOR or RecOR [63, 64], or both. The linear double- stranded molecule is susceptible to degradation 
by RecBCD exonuclease (red). (d) The RecA- loaded DNA 3’-single- strand end invades the double- stranded fragment at its terminal 
homology, and circularization of the donor plasmid is completed by DNA repair and gap synthesis. (e) From the established circularized 
plasmid, the genes necessary for transposition (tnpA, tnpR) are expressed, and TnpA together with a recipient DNA polymerase form 
a transposon–target DNA cointegrate and generate the TSD. (f) TnpR resolves the cointegrate, and the recipient chromosome contains 
now a copy of Tn1.
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cytoplasm after the creation of double- stranded ends during 
homologous recombination [30]. However, in the context 
of plasmid transformation, in B. subtilis strains lacking 
AddAB, the functional equivalent of RecBCD, transforma-
tion frequencies are somewhat reduced [61]. To investigate 
the effect of RecBCD deficiency on plasmid transformation 
in A. baylyi, we transformed a ΔrecBCD ΔsbcCD strain by 
RSF1010 and obtained a 70 times increased transformation 
frequency [(3.9±0.4)×10−5] compared with the wild- type 
(Fig. 6). We also transformed the ΔrecBCD ΔsbcCD strain 
by Tn1- containing donor substrates. Using a gel- purified 
linear pJK2- PCR substrate, no transformants were obtained 
(detection limit: 4.9×10−10; n=3), strongly suggesting that a 
circular intermediate is required for transposition and trans-
formation. With circular pJK2 donor DNA the frequency 
of ampicillin- resistant transformants was (6.8×±5.6)×10−4 
(Fig. 6), which was four orders of magnitude higher than that 
of the wild- type. Analysis of 40 ampicillin- resistant isolates 
revealed stable resistance even after repeated recultivation. 
PCR analyses verified the presence of Tn1 and pJK2 vector 
backbone DNA in all isolates and circular pJK2 plasmid DNA 
could be isolated from cell material of restreaks, indicating 
extrachromosomal DNA rather than cointegrates. No trans-
posants were identified during our standard screening, but 
a transformational screening approach revealed 14 unique 
chromosomal insertions (Supplemental Information: Supple-
mental Results and Table S3). These results were unexpected, 
and we concluded that established pJK2 replicated relatively 
stably in A. baylyi in the absence of RecBCD. The parental 
plasmid of pJK2, pACYC184 [33], propagates as a theta 
replicon in E. coli and in other Enterobacteriaceae [62]. It is 
possible that absence of RecBCD allows rolling circle replica-
tion of pACYC184 in A. baylyi, as in E. coli RecBCD- deficient 
mutants [62]. In wild- type E. coli, the exonucleolytic activity 
of RecBCD is thought to degrade the nascent multimers of 
the rolling circle, forcing the plasmid into theta replication. In 
contrast, loss of RecBCD allows rolling circle replication [62].

A model for natural transformation by transposons
In this study we experimentally verify that bacteria can 
acquire transposons horizontally through transposition in 
the course of natural transformation, as observed previ-
ously for a Tn21 transposon [19]. In control experiments, 
we investigated the circularization of a replicative plasmid in  
A. baylyi during transformation, which has been studied 
before in B. subtilis [54]. Our results indicate differences in 
plasmid transformation between the two species. In contrast 
to our results, absence of RecA in B. subtilis did not affect 
plasmid establishment; instead RecO protein was required 
for that process [54].
Based on our findings, we propose a model for plasmid 
transformation and transposition in A. baylyi (Fig. 7). We 
suggest that sporadic dimeric forms of plasmid DNA with 
redundant ends are the main substrate for cytoplasmic 
donor DNA circularization. To initiate circularization, a 
small single- strand fragment is annealed with a large dimeric 
complementary strand with 5′- and 3′-overhangs. DNA fill- in 

synthesis converts the 5′-overhang into a double- strand 
(using the 3′-recessed end as primer), while the 3′-overhang 
is charged with RecA protein. It is consistent with our findings 
that DprA has a RecA- loading function [56]. The resulting 
nucleoprotein filament can undergo homology search. When 
it finds the homology of the redundant double- stranded end, 
the result is a circular intermediate with a displaced strand, 
and textbook DNA repair and gap synthesis generate a 
circular double- strand. This model is supported by lack of 
transformants with linear pJK2- PCR as donor DNA, since 
this substrate did not contain dimeric DNA molecules. The 
resulting circular double- stranded intermediate is temporally 
protected from DNA degradation (Fig. 7). Finally, the tnpA 
and tnpR genes are expressed and can lead to transposition 
of Tn1.

Is circular double- stranded DNA in general a necessary 
requirement for transposition in the course of natural trans-
formation? Probably not. Domingues et al. obtained trans-
posants using chromosomal DNA for natural transformation 
of A. baylyi [19]. Hypothetically, such DNA can form circular 
intermediates at direct repeats, and transposons surrounded 
by direct repeats may be stabilized through DNA circulariza-
tion. It is also conceivable that Chi sequences surrounding the 
transposon protect the double- stranded intermediate from 
exonucleolytic degradation [51].

To put the results of this study into broader perspective, we 
employed a published transposon- containing plasmid as 
donor DNA for transformation of ADP1. The pACYC184 
derivative pTn4401 (15.6 kbp) [35] carries the replicative 
transposon Tn4401 (~10 kbp) of the Tn3- family that contains 
the carbapenemase gene blaKPC-2 [22]. Ampicillin- resistant 
transformants formed at a frequency of (1.5±1.2)×10−9 
(Fig. 3), which was 40 times lower than the frequency observed 
with pJK2 DNA. Among 60 investigated transformants, no 
transposants were found (detection limit: 9.8×10−11). Several 
explanations for the lack of transposition of Tn4401 are 
conceivable: the MIC conferred by KPC-2 may be too low 
to detect transposants in this organism. The plasmid size 
possibly reduces the dimer/monomer ratio. Alternatively, 
the repression of tnpA may be tighter in Tn4401 than in Tn1. 
Taken together, this result shows that additional constraints 
exist for transposition during natural transformation, and 
further investigations are needed.

In conclusion, we showed that transposition of Tn1 in the 
course of natural transformation occurs at biologically 
relevant frequencies. Our results open up the possibility 
that transposable elements can even spread from dead 
cells, where fully heterologous, transposon- containing free 
DNA can transform naturally competent bacteria, albeit at 
low frequencies. Transposons play an important role in the 
dissemination of multi- drug resistance, and the identifica-
tion of both the transferred resistance genes and the genetic 
context that was transferred is crucial to understand AMR 
spread.
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Abstract 

The persistence of plasmids in bacterial populations represents a puzzling evolutionary problem with 

serious clinical implications due to their role in the ongoing antibiotic resistance crisis. Recently, 

major advancements have been made towards resolving this “plasmid paradox” but mainly in a non-

clinical context. Here we propose an additional explanation for the maintenance of multidrug 

resistance (MDR) plasmids in clinical Escherichia coli strains. After co-evolving two MDR plasmids 

encoding last resort carbapenem resistance with an extraintestinal pathogenic E. coli strain, we 

observed that chromosomal media adaptive mutations in the global regulatory systems CCR (Carbon 

Catabolite Repression) and ArcAB (Aerobic Respiration Control) pleiotropically improved the 

maintenance of both plasmids. Mechanistically, a net downregulation of plasmid gene expression 

reduced the fitness cost. Our results suggest that global chromosomal transcriptional re-wiring during 

bacterial niche-adaptation may facilitate plasmid maintenance. 
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Introduction 

Plasmids are self-replicating extrachromosomal elements that often decrease bacterial fitness 

due to the requirement of host functions for their own replication and spread (reviewed in [Baltrus 

2013; San Millan and MacLean 2017]), although beneficial (or non-costly) plasmids have been 

reported (Enne et al. 2004; Monarrez et al. 2019). These genetic elements play a key role in the 

evolution and spread of antibiotic resistance determinants in bacterial populations world-wide 

(Carattoli 2013; Partridge et al. 2018). This is particularly true for nosocomial pathogens in the family 

Enterobacteriaceae including Escherichia coli and Klebsiella pneumoniae where resistance 

determinants of high clinical relevance such as carbapenemases and extended-spectrum β-lactamases 

are frequently encoded on plasmids (Mathers et al. 2015; Rozwandowicz et al. 2018). 

From an evolutionary perspective, persistence of plasmids in bacterial populations has for a 

long time been a conundrum often referred to as the “plasmid paradox” (Stewart and Levin 1977; 

Harrison and Brockhurst 2012). This paradox can be resolved in at least five different ways. First, 

maintenance can be ensured by positive selection for plasmid encoded traits (Gullberg et al. 2014; San 

Millan et al. 2014; Stevenson et al. 2018). But, if too beneficial, positively selected traits may be 

captured by the chromosome rendering the plasmid obsolete and consequently lost, as demonstrated 

theoretically (Bergstrom et al. 2000) and experimentally (Kottara et al. 2018). Second, mathematical 

models predict that high rates of horizontal plasmid transfer can counteract segregational plasmid loss 

and the competitive disadvantage of plasmid-carriers (Stewart and Levin 1977). In vitro studies report 

that conditions exist where conjugation frequencies are indeed extremely high (Dionisio et al. 2002; 

Lopatkin et al. 2017). It is however generally accepted that conjugation is a costly process (San 

Millan and MacLean 2017) and evolution towards increased conjugation rates does not constitute a 

general solution of the paradox (Turner et al. 1998; Dahlberg and Chao 2003; Porse et al. 2016). 

Third, transmissible plasmids under purifying selection may “escape” their host and enter less hostile 

environments. This has been termed cross-ecotype transfer (Bergstrom et al. 2000). Fourth, plasmid 

stability can evolve through improved replication control (Wein et al. 2019) and the acquisition of 

addiction mechanisms (Loftie-Eaton et al. 2016). Fifth, and perhaps most prominent, negative effects 

on host fitness can be mitigated through compensatory evolution (San Millan and MacLean 2017), 

and plasmids may even become beneficial (Bouma and Lenski 1988; Dionisio et al. 2005; Starikova 

et al. 2013; Loftie-Eaton et al. 2017). Fitness compensating mutations have been demonstrated to 

occur both in the presence and absence of selective agents and identified on bacterial chromosomes 

(San Millan et al. 2014; Harrison et al. 2015; Loftie-Eaton et al. 2017), on plasmids (De Gelder et al. 

2008; Sota et al. 2010; Porse et al. 2016), or both (Dahlberg and Chao 2003; Starikova et al. 2013; 

Bottery et al. 2017). 

The last ten years have brought significant advancements in the understanding of plasmid-host 

evolutionary dynamics. However, it is not clear how the different solutions to the plasmid paradox as 

listed above are relevant for clinical strains and plasmids since the majority of published work has 
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focused on emblematic laboratory strains and/or environmental bacteria. In this report we asked if and 

how two clinical plasmids encoding the VIM-1 and NDM-1 carbapenemases affected fitness of an E. 

coli strain isolated from a patient, before and after experimental evolution. We observed striking 

parallel evolution of the CCR (Carbon Catabolite Repression) and ArcAB (Aerobic Respiration 

Control) regulatory systems in the chromosomes of both plasmid-containing and plasmid-free 

populations resulting in adaptation to the experimental conditions. No apparent plasmid-specific 

compensatory mutations were identified across evolved populations and the plasmid sequences were 

largely unchanged. Yet, the initial plasmid costs were ameliorated in the co-evolved cultures. We 

demonstrate that fitness amelioration resulted from “piggybacking” on the clinical strains’ adaptation 

to a new niche, suggesting a novel solution to the “plasmid paradox”. 
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Results 

Plasmid acquisition moderately reduces fitness in a clinical E. coli host strain. To mimic the 

acquisition of plasmid-mediated resistance to a last resort antibiotic, we transferred each of the two 

carbapenemase-producing clinical plasmids pG06-VIM-1 from K. pneumoniae (blaVIM-1 [Samuelsen 

et al. 2011]) and pK71-77-1-NDM from E. coli (blaNDM-1 [Samuelsen et al. 2011]) into an 

Extraintestinal Pathogenic E. coli sequence type (ST) 537 (strain ExPEC [Bengtsson et al. 2012]; 

Supplementary Table 1). pG06-VIM-1 is non-conjugative (Di Luca et al. 2017) while pK71-77-1-

NDM is conjugative (Gama et al. 2020). Plasmid transfer resulted in strains ExPEC+VIM and 

ExPEC+NDM, both otherwise isogenic to strain ExPEC (Figure 1a and Supplementary Table 1). 

We measured the cost of the newly introduced clinical plasmids in head-to-head competition 

experiments lasting ∼40 generations. Acquisition of either pG06-VIM-1 or pK71-77-1-NDM affected 

host fitness similarly, resulting in moderate but significant costs of 5.3% and 5.5%, respectively (one-

sample t-test, two-sided: ExPEC+VIM: w = 0.947 ± 0.002, P < 0.001; ExPEC+NDM: w = 0.945 ± 

0.012, P = 0.017; Figure 1b and Supplementary Table 6). 

 

Strong parallel evolution in global E. coli regulators occurs independently of plasmid-carriage. 

Four replicate lineages of the plasmid-containing strains ExPEC+VIM and ExPEC+NDM as well as 

the plasmid-free strain ExPEC were serially transferred for ∼300 generations (over which the 

plasmids are stably maintained [Di Luca et al. 2017; Gama et al. 2020]). This resulted in 12 evolved 

populations (Pop 1-4VIM, Pop 5-8NDM and Pop 9-12; Figure 1c and Supplementary Table 1), that we 

deep sequenced to identify putative mutations mitigating the fitness costs of plasmid carriage.  

At the population level, no changes were identified in the evolved plasmid sequences except 

in Pop 5NDM harboring a deletion in the evolved pK71-77-1-NDM (Supplementary information 

section IIIa, Supplementary Table 3 and Supplementary Figure 1). However, all 12 evolved lineages 

revealed patterns of extensive parallel evolution in chromosomal genes that are directly or indirectly 

linked to the CCR and the ArcAB regulatory systems of E. coli (Figure 2a). In total, 68 different 

mutations were identified in genes cpdA (3',5'-cyclic adenosine monophosphate (cAMP) 

phosphodiesterase), crp (cAMP receptor protein; DNA-binding transcriptional regulator), arcA 

(aerobic respiration control protein; DNA-binding transcriptional regulator) and arcB (aerobic 

respiration control sensor protein; histidine kinase). Evolved lineages had on average acquired eight 

variations in these genes ranging from three (Pop 5NDM) to 18 (Pop 6NDM) different mutations for 

individual populations (Supplementary Figure 2). Our data revealed 25, 12, 23 and eight unique 

mutations in arcA (717 bp), arcB (2337 bp), cpdA (828 bp) and crp (633 bp), respectively 

(Supplementary Figure 2). Among these unique mutations in the respective target genes, 12, one, 

three and three were found repeatedly across more than one evolved population. The majority of 

mutations in these genes were non-synonymous single nucleotide exchanges leading to amino acid 

substitutions (88%). Furthermore, Pop 2VIM acquired mutations upstream and in the open reading 
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frame of cyaA (adenylate cyclase; cAMP synthesis). For a detailed list of mutations identified across 

evolved populations, including small indels, as well as mutations found in single populations, see 

Supplementary Table 4. Whereas cpdA and arcA were mutation targets in all 12 populations, crp and 

arcB were identified in ten and four populations, respectively (Figure 2a and Supplementary Figure 

2). Surprisingly, the mutation profiles were not different in populations that co-evolved with any of 

the plasmids compared to the plasmid-free control populations, strongly suggesting that the observed 

mutational changes were not plasmid-specific. Genes of the CCR and ArcAB systems are indeed 

frequently reported as mutational targets for adaptive responses to the experimental growth conditions 

occurring during laboratory evolution experiments (Knoppel et al. 2018; Phaneuf et al. 2019). 

 

Mutations in CCR and ArcAB regulatory systems pleiotropically mitigate the cost of pG06-

VIM-1 and pK71-77-1-NDM carriage. Immediate acquisitions of pG06-VIM-1 and pK71-77-1-

NDM reduced host fitness significantly (Figure 1b). We have previously demonstrated complete 

retention of the same plasmids following experimental evolution under the same antibiotic-free 

conditions (Di Luca et al. 2017; Gama et al. 2020). Since one of the plasmids was non-conjugative, 

we assumed that fitness amelioration by compensatory adaptation was the most likely route for the 

plasmids to persist in evolved populations. However, the sequencing data presented above revealed no 

apparent plasmid-specific compensatory mutations. Therefore, we hypothesized that adaptation to the 

growth conditions could have pleiotropic effects on the costs of plasmid carriage. 

To test this hypothesis, we isolated a single clone from each evolved plasmid-carrying 

population (Pop 1-4VIM and Pop 5-8NDM) with mutations in both regulatory systems, CCR and ArcAB, 

since population sequencing data suggested that both systems were affected simultaneously (Figures 

2a and 2b). In the selected Clones 1-4VIM and Clones 5-8NDM, Sanger and Illumina sequencing 

confirmed the presence of mutations as expected from population sequencing results and no further 

chromosomal or plasmid-located point mutations (Figure 1c and 2c; Supplementary information 

section I and IIIb, and Supplementary Table 1).  

Here, we also identified large deletions in the evolved pK71-77-1-NDM for Clone 5NDM and 

Clone 7NDM (∼8.8 kb and ∼58.9 kb, respectively; Supplementary information section IIIb, 

Supplementary Table 3, Supplementary Figure 1), and susceptibility testing by disc diffusion 

phenotypically confirmed the deletions involving antibiotic resistance genes (Supplementary 

information section VI, Supplementary Table 8). The plasmid copy-number for pG06-VIM-1 and 

pK71-77-1-NDM before and after experimental evolution was unchanged (0.9-1.5 copies in all 

sequenced plasmid-carrying clones based on read coverage; Supplementary information section IIIb; 

Supplementary Table 5). Next, we attempted to isolate a set of spontaneous plasmid-free segregants 

of Clones 1-4VIM and Clones 5-8NDM, to use in competition experiments, by screening for ampicillin-

susceptible colonies. We obtained segregants for pG06-VIM-1 resulting in Clones 1-4, but not for 

pK71-77-1-NDM, which we confirmed by Sanger sequencing to have the niche-adaptive 
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mutations (Figure 1c). Illumina sequencing of Clones 2 and 3 verified that no chromosomal 

mutations were acquired during the curing procedure. 

The costs of pG06-VIM-1-carriage in co-evolved Clones 1-4VIM were assessed in head-to-

head competitions with the respective plasmid-free isogenic strains (Clones 1-4) over ∼40 

generations. Our data show that the initial costs were significantly ameliorated to ≤ 1% in all four 

evolved backgrounds irrespective of the combination of chromosomal mutations in these clones (one-

sample t-test, two-sided: Clone 1VIM: 0.7% or w = 0.993 ± 0.002, P = 0.017; Clone 2VIM: 0.4% or w = 

0.996 ± 0.001, P = 0.016; Clone 3VIM: 0.9% or w = 0.991 ±  0.0003, P = 0.001 and Clone 4VIM: 0.6% 

or w = 0.994 ± 0.002, P = 0.056; one-way ANOVA assuming equal variances, df = 4, P < 0.001, 

followed by Dunnett’s test: P < 0.001; Figure 3a and Supplementary Table 6). Illumina sequencing 

confirmed that the plasmid sequences in Clones 1-4VIM were unchanged after evolution suggesting that 

the chromosomal mutations were responsible for the fitness mitigation. To further test this we 

introduced the ancestral pG06-VIM-1 into Clone 2 and Clone 3 carrying mutations in arcA/cpdA and 

arcA/crp, respectively, resulting in Clone 2+VIM and Clone 3+VIM (Figure 3b). Competition 

experiments with the isogenic, plasmid-free genetic backgrounds revealed a significant fitness 

increase compared to the original plasmid-host combination and an amelioration of the initial cost of 

harboring pG06-VIM-1 to 1.3% and 1%, respectively (one-sample t-test, two-sided: Clone 2+VIM: w 

= 0.987 ± 0.004, P = 0.026; Clone 3+VIM: w = 0.990 ± 0.001, P = 0.002; one-way ANOVA 

assuming equal variances, df = 2, P < 0.001, followed by Dunnett’s test: P < 0.001; Figure 3b and 

Supplementary Table 6). To exclude that plasmid-specific adaptation in these pG06-VIM-1-co-

evolved clones was responsible for the observed fitness amelioration, we introduced the ancestral 

pG06-VIM-1 into an isolated clone of Pop 12 (Clone 12+VIM; Figure 3d) and determined fitness as 

described above. In this background, which had evolved without a plasmid and acquired mutations in 

arcA/cpdA, the cost of pG06-VIM-1-carriage was also significantly reduced to ≤ 1% (one-sample t-

test, two-sided: Clone 12+VIM: 0.9% or w = 0.991 ± 0.002, P = 0.009, Figure 3d). While this was 

significantly different from the initial plasmid cost, it did not differ from the cost of ancestral pG06-

VIM-1 in co-evolved Clones 2+VIM and 3+VIM (one-way ANOVA assuming equal variances, df = 

3, P < 0.001, followed by Tukey’s test; Supplementary Table 6). 

Similarly, the initial fitness cost of 5.5% imposed by the ancestral pK71-77-1-NDM in strain 

ExPEC+NDM was significantly decreased in pG06-VIM-1-free segregants carrying this plasmid 

(one-sample t-test, two-sided: Clone 2+NDM: 2.4% or w = 0.976 ± 0.007; P = 0.025; Clone 3+NDM: 

2.7% or w = 0.973 ± 0.002; P = 0.002; one-way ANOVA assuming equal variances, df = 2, P = 

0.006, followed by Dunnett’s test: P = 0.006 and P = 0.010, respectively; Figure 3c and 

Supplementary Table 6). Note that we did not obtain a plasmid-free background of Clones 5-8NDM to 

test the fitness of pK71-77-1-NDM-co-evolved strains. The results from competition experiments 

with Clone 2+NDM and Clone 3+NDM carrying the ancestral pK71-77-1-NDM strongly suggest that 

the chromosomal mutations are responsible for partial fitness amelioration. We acknowledge that the 
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deletions in evolved plasmids of Clone 5NDM and Clone 7NDM, removing conjugation and resistance 

genes, could result in further fitness improvements as demonstrated previously (Turner et al. 2014; 

Porse et al. 2016). 

We transformed the evolved pG06-VIM-1 from Clone 2VIM into the ancestral ExPEC strain 

(Figure 3d) to test for adaptive changes occurring in plasmid sequences that could be undetected using 

short-read sequencing. The evolved pG06-VIM-1 affected the ancestral host significantly (one-sample 

t-test, two-sided: ExPEC+evVIM: 3.2% or w = 0.968 ± 0.005, P = 0.01) being less costly than the 

ancestral pG06-VIM-1, but more costly in the ancestral than in an adapted background (one-way 

ANOVA assuming equal variances, df = 3, P < 0.001, followed by Tukey’s test; Figure 3d and 

Supplementary Table 6). Some undetected plasmid mutations may reduce the cost of the evolved 

plasmid, however to a lesser extent than the mutations in CCR and ArcAB systems as demonstrated 

with Clone 12+VIM above. 

Taken together, our data indicate clearly that the different mutations identified in the CCR 

and ArcAB regulatory systems are sufficient to improve plasmid maintenance. The usage of isogenic 

strains, distinguishable only by plasmid-encoded markers is however a limitation that could skew the 

accuracy of the fitness measurements because of plasmid loss or conjugation. Plasmid loss could lead 

to an over-estimation of the fitness cost, but during the ∼40 generations of fitness measurement 

(Methods and Supplementary information section IV) all tested plasmids were stable (Supplementary 

Table 7) such that the effect of this parameter can be neglected. This is further corroborated by our 

inability to select any spontaneous pK71-77-1-NDM-free segregant. We also measured the 

conjugation efficiencies for pK71-77-1-NDM (12 hours) in additional experiments (Methods and 

Supplementary information section V), revealing small but significantly increased plasmid transfer 

frequencies in the adapted backgrounds (Supplementary Figure 3). This effect could lead to under-

estimation of the fitness cost of pK71-77-1-NDM in evolved hosts. Nevertheless, we conclude that the 

mutations in the regulatory systems improve the maintenance of this plasmid, either directly reducing 

the fitness cost or through increased conjugative transfer.  

 

Plasmid cost mitigation is linked specifically to the CCR system. To investigate the individual 

roles of the CCR and ArcAB systems on plasmid cost mitigation we measured plasmid costs in 

deletion mutants for arcA, cpdA and crp – the targeted loci for adaptation in our co-evolved clones. 

Unfortunately, genetic modifications using clinical strains are notoriously difficult and for these 

experiments we used deletion mutants of E. coli (K-12 derivatives) from the Keio collection (Baba et 

al. 2006). We introduced the ancestral pG06-VIM-1 into the individual deletion strains as well as the 

Keio parent strain (Datsenko and Wanner 2000) by electroporation, resulting in strains 

BW25113+VIM, BWΔcpdA+VIM, BWΔarcA+VIM and BWΔcrp+VIM (Supplementary information 

section I and Supplementary Table 1). We measured fitness of plasmid-carrying strains relative to 

their plasmid-free counterparts in head-to-head competitions as described above. As a general 
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observation, pG06-VIM-1 was less costly in BW25113 than in the clinical isolate (one-sample t-test, 

two-sided: 2.3% or w = 0.977 ± 0.005, P = 0.016; Figure 4a and Supplementary Table 6). While 

deletion of arcA and crp had no significant effect on the fitness burden imposed by pG06-VIM-1 

compared to BW25113+VIM, we measured a significant fitness improvement of the pG06-VIM-1-

carrying DcpdA mutant (one-way ANOVA not assuming equal variances, df = 3, P = 0.004 followed 

by Dunnett’s test: BWDarcA+VIM, P = 0.993; BWDcrp+VIM, P = 0.051; BWDcpdA+VIM, P = 

0.001; Figure 4a and Supplementary Table 6) and a reduction of plasmid cost to 0.4% (one-sample t-

test, two-sided: BWDarcA+VIM: 2.2% or w = 0.978 ± 0.007, P = 0.007; BWDcrp+VIM: no cost or w 

= 1.006 ± 0.020, P = 0.534; BWDcpdA+VIM: w = 0.996 ± 0.002, P = 0.034; Figure 4a and 

Supplementary Table 6). These data strongly suggest that beyond the known effect on adaptation to 

growth conditions, cpdA mutations identified in our study pleiotropically mitigated plasmid costs. We 

could however not obtain the same level of consistency across biological replicates in competitions 

using the Dcrp mutant even though CpdA and CRP are tightly linked in the CCR regulatory system 

(Imamura et al. 1996; Matange 2015). Based on the observation that pG06-VIM-1 no longer imposes 

a cost in the Dcrp mutant, as confirmed by the one-sample t-test, we argue that crp is also involved in 

fitness mitigation despite the relatively high variance that renders the Dunnett’s test (borderline) not 

significant. 

In E. coli, the phosphodiesterase CpdA affects intracellular levels of cAMP by specifically 

hydrolyzing this signaling molecule (Imamura et al. 1996). To investigate the effect of the most 

frequently observed mutation in cpdA (cpdA.D3.bp488-490; Supplementary Table 4) on protein 

function, we measured intracellular cAMP concentrations in ancestral and evolved strains with and 

without pG06-VIM-1. The levels of intracellular cAMP increased significantly by 49% between 

ancestral and evolved strains (ExPEC and ExPEC+VIM: 2.6 to 4.3 pmol mL-1, mean = 3.7 ± 0.72 

pmol mL-1; Clone 2 and Clone 2VIM: 5.7 to 11.6 pmol mL-1, mean = 7.2 ± 2.2 pmol mL-1; two-way 

ANOVA with interactions: df = 3, P = 0.005 [assuming equal variances] and P = 0.001 [adjusted for 

unequal variances]; Figure 4b), but were unaffected by plasmid presence (two-way ANOVA with 

interactions: df = 3, P = 0.53 [assuming equal variances] and P = 0.40 [adjusted for unequal 

variances]). These data are consistent with the previously observed CpdA deficiency of an identical E. 

coli mutant resulting in an approximate doubling of intracellular cAMP (Chib and Seshasayee 2018). 

Similarly, protein function analysis of evolved population data indicates that the majority of mutations 

in cpdA lead to the loss of CpdA function (Supplementary information section VII and Supplementary 

Table 9). 

 

Mutations in CCR and ArcAB regulatory systems lead to general adaptation to the growth 

conditions. The gene products of cyaA, cpdA, crp, arcA, arcB can be associated with transcription in 

E. coli involving the global regulators CRP and ArcA (Martínez-Antonio and Collado-Vides 2003). 
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cAMP is an important second messenger that binds to CRP (Frendorf et al. 2019) and the complex 

activates cAMP-dependent regulation of carbon source utilization via the CCR system (Imamura et al. 

1996; Matange 2015). Intracellular levels of cAMP in E. coli are controlled by CyA (synthesis) and 

CpdA (degradation) (Imamura et al. 1996). Proteins ArcA and ArcB compose the ArcAB two-

component regulatory system involved in respiratory and energy metabolism of E. coli (Iuchi and Lin 

1988; Iuchi et al. 1989). Mutations in CCR- and ArcAB-associated proteins may lead to growth 

optimization in varying environments due to adaptation in downstream transcriptional regulatory 

networks (Saxer et al. 2014; Frendorf et al. 2019; Phaneuf et al. 2019). 

To verify that the mutations identified in the two regulatory systems increase fitness in the 

given in vitro environment, we assessed the fitness of pG06-VIM-1-containing and -free, evolved and 

ancestral strains by measuring exponential growth rates. Plasmid pG06-VIM-1 in Clones 1-4VIM 

displayed no mutations after experimental evolution and this approach allowed us to directly measure 

the effects of the chromosomal mutations on general fitness. Growth rates of evolved strains were 

increased by 7-17% across all comparisons independent of presence or absence of the plasmid (one-

sample t-test, one-sided: Clone 1: w = 1.11 ± 0.02; P = 0.022; Clone 2: w = 1.17 ± 0.03; P = 0.019; 

Clone 3: w = 1.13 ± 0.02; P = 0.009; Clone 4: w = 1.14 ± 0.02; P = 0.007; Clone 1VIM: w = 1.07 ± 

0.02; P = 0.023; Clone 2VIM: w = 1.13 ± 0.06; P = 0.072; Clone 3VIM: w = 1.17 ± 0.05; P = 0.040; 

Clone 4VIM: w = 1.16 ± 0.04; P = 0.026; Figure 5a and b). Despite lower resolution than competition 

experiments, these data show that the identified mutations increase fitness under the given growth 

conditions and independent of plasmid carriage. They provide further support for the plasmid cost 

mitigating role of the observed chromosomal mutations. 

 

Transcriptional alterations contribute to reduced plasmid costs. CRP and ArcA represent two of 

seven global transcription factors in E. coli and directly or indirectly control the expression of several 

hundred genes (Liu and De Wulf 2004; Shimada et al. 2011). Changes in gene expression may lead to 

a reduced burden of plasmid carriage as demonstrated previously (Harrison et al. 2015; San Millan et 

al. 2015; Kawano et al. 2020). We sought to elucidate both the origin of the initial pG06-VIM-1 cost 

and its amelioration due to mutations in CCR and ArcAB associated genes and performed RNA-Seq. 

Six replicate samples of plasmid-free strains ExPEC, Clone 2 and Clone 3, and plasmid-carrying 

strains ExPEC+VIM, Clone 2+VIM, Clone 3+VIM were sequenced resulting in on average 25 million 

paired-end reads per sample (Supplementary Table 10). Comparing the two ancestral strains ExPEC 

and ExPEC+VIM revealed differential expression of seven chromosomal genes immediately upon 

plasmid acquisition, of which only the one encoding a putative selenium delivery protein displayed a 

fold-change (2.36) beyond a 2-fold threshold (Figure 6a and Supplementary Table 11). Similarly, 

plasmid pCAR1 also significantly changes the expression of only a limited set of chromosomal genes 

in Pseudomonas putida, but with a stronger effect (>40 fold) on only one gene designated parI 
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(Miyakoshi et al. 2007). The lack of substantial evidence for altered chromosomal gene expression 

in our work suggests that the costly plasmid acquisition may not severely disrupt transcriptional 

regulation (Buckner et al. 2018) or specific cellular pathways e.g. SOS response (San Millan et al. 

2015). Instead, the cost can derive from the usage of building blocks or molecular machinery for 

plasmid replication (e.g. nucleotides), but most likely those required for expression and post-

translational events, such as amino acids, ribosomes, chaperones and acetyl/succinyl modification 

(San Millan et al. 2018; Vasileva et al. 2018 and reviewed in Baltrus 2013). 

Given that the CCR and ArcAB systems are involved in global gene regulation it is not 

surprising that mutations in evolved Clone 2 and 3 lead to considerable changes in chromosomal gene 

expression when compared to the ancestral ExPEC strain. Indeed, hundreds of genes are differently 

up and downregulated independently of pG06-VIM-1 presence (Figure 6c; Supplementary Table 11). 

Despite some differences among the four evolved clones, enrichment (Supplementary Table 12) and 

over-representation (Supplementary Table 13) analyses of protein-encoding genes show common 

trends; cell motility via cilia/flagella (and other processes that require cell component organization, 

such as the expression of adhesion factors) tends to be downregulated (Supplementary Figure 5), 

while there is upregulation of diverse metabolic processes that target macromolecule biosynthesis 

(e.g. amino acids) and ribosome assembly which are, directly or indirectly, connected to translation 

and gene expression (Supplementary Figure 4).  

After evolution, only 16 chromosomal genes of Clone 3 were affected by pG06-VIM-1 

acquisition, of which one gene encoding a phage tail protein, exhibited overexpression > 2-fold 

(Figure 6a; Supplementary Table 11). In Clone 2 we found upregulation of four chromosomal genes 

while 116 were downregulated (Figure 6a; Supplementary Table 11). Analyzing the 115 

downregulated protein-encoding genes revealed an over-representation of biological processes 

involved in tRNA metabolism and nucleotide biosynthesis (Supplementary Table 13; Supplementary 

Figure 6), while the remaining gene encodes a tRNA. Furthermore, the comparison Clone 2+VIM vs 

ExPEC+VIM revealed that 52 (or 65%) of the strain’s tRNA-encoding genes are downregulated 

(Figure 6c; Supplementary Table 11) which is indicative of altered translation processes. Therefore, at 

least in Clone 2 the low cost of pG06-VIM-1 can be attributable to interference in translation, which 

is in agreement with other reports showing that low plasmid costs are associated with gene expression 

(McNally et al. 2016; Buckner et al. 2018).  

Interestingly, overall expression of pG06-VIM-1 genes decreased in evolved hosts, such that 

in Clone 2+VIM 12 plasmid genes are downregulated and four upregulated, while in Clone 3+VIM 

seven plasmid genes are downregulated but only one is upregulated (Figure 6b; Supplementary Table 

11). Although transcriptional changes in these genes never exceed a 2-fold threshold, the net fold-

change is negative (-13.08 for Clone 2+VIM and -9.01 for Clone 3+VIM; Supplementary Table 17). 

Plasmid RNA represents 2.33 ± 0.11% of the total transcripts for ExPEC+VIM, but a significantly 

lower proportion for evolved strains (one-way ANOVA assuming equal variances, df = 2, P = 0.001, 
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followed by Dunnett’s test: P < 0.001 and P = 0.03), respectively 2.08 ± 0.08% for Clone 2+VIM and 

2.18 ± 0.11% Clone 2+VIM (Supplementary Figure 7). Taken together, these data suggest that net 

downregulation of plasmid genes after evolution offer a plausible explanation for the reduced fitness 

costs, while in other works such reduction is explained by down-regulation of highly specific plasmid 

genes (San Millan et al. 2015). Although the differences in the proportions of plasmid transcripts 

among hosts are small, they can lead to significant fitness effects if the synthesized proteins require 

chaperones (Ma et al. 2018) and post-translational modification (Vasileva et al. 2018). Thus, 

reshaping gene expression at a global level through the identified mutations in the CCR and ArcAB 

systems affects plasmid transcription levels. This represents a novel solution to the plasmid paradox 

where adaptation to a new niche (growth medium in this case) pleiotropically mediates plasmid cost 

reductions. 
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Discussion 

In this report we asked if and how plasmid-host coevolution would mitigate the fitness costs 

of two clinically highly relevant MDR plasmids newly acquired by a plasmid-free ExPEC isolate. Our 

data show that the moderate initial costs of both carbapenemase-encoding plasmids were significantly 

alleviated during laboratory evolution. Curiously, the main causes for amelioration were not plasmid-

specific compensatory mutations as reported in several recent studies (San Millan et al. 2014; 

Harrison et al. 2015; Loftie-Eaton et al. 2016; Loftie-Eaton et al. 2017), although deletions of costly 

plasmid regions (Turner et al. 2014; Porse et al. 2016) and undetected plasmid mutations could also 

have played a role. Instead, after ∼300 generations we identified strong parallel evolution in 

chromosomal genes only, independent of plasmid carriage. The mutational target genes represented 

two global regulatory systems involved in E. coli carbon catabolite repression (CCR) and aerobic 

respiration (ArcAB). Moreover, the mutations in these transcriptional regulators improved the 

maintenance of two unrelated plasmids strongly suggesting that the ExPEC host became generally 

more permissive towards plasmid acquisition, and in the future it would be interesting to test the 

effect on additional plasmid types. The pleiotropic effects on plasmid cost amelioration appears to be 

mainly due to mutations affecting the CCR regulatory system, as demonstrated by fitness results using 

cpdA and crp deletion mutants. Mechanistically, RNA-seq analyses revealed a net transcriptional 

relief on plasmid genes as a collateral cost-mitigating effect of environmental adaptation by global 

regulatory changes. 

Other studies have also reported that mutations in regulatory systems improved plasmid-host 

relationships. In a seminal study, mutations in the gacA/gacS two-component regulatory system 

reduced the cost of the mega plasmid pQBR103 by decreasing plasmid transcriptional demand in 

Pseudomonas fluorescens (Harrison et al. 2015). These mutations were specifically ameliorating the 

cost of the plasmid since they did not appear in the plasmid-free evolved lineages (true compensatory 

mutations) (Harrison et al. 2015). This is categorically different from our findings since we observed 

that adaptation in the CCR and ArcAB regulatory systems was not specific to plasmid-carrying 

populations. Two other reports frequently identified mutations in regulatory systems across multiple 

plasmid-carrying evolving populations that improved plasmid maintenance (Loftie-Eaton et al. 2016; 

Stalder et al. 2017). However, the absence of evolved plasmid-free lineages in these studies preclude 

direct comparisons with the results presented here. 

On a broader perspective, our results warrant further research on plasmid-evolutionary 

dynamics in different E. coli lineages and sub-lineages to better understand why some of them appear 

to be more prone to acquire and maintain MDR plasmids (Mathers et al. 2015; McNally et al. 2016). 

Available data support that plasmids of clinical origins rarely reduce fitness of clinical host strains 

(Sandegren et al. 2012; Schaufler et al. 2016; Di Luca et al. 2017; Buckner et al. 2018; Gama et al. 

2020; Ma et al. 2020) to the extent often seen in the pioneering studies of plasmid-host compensatory 

evolution (Lenski et al. 1994; Sota et al. 2010; San Millan et al. 2014; Harrison et al. 2015). It is also 
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clear that this alone cannot explain how successful clone-plasmid associations emerge. From 

population genomic analyses McNally and co-workers demonstrated an association between 

mutations in regulatory regions of the high-risk E. coli ST131 subclade C and the accessory genome, 

including MDR plasmids. In their interpretation, this finding represented evidence of compensatory 

evolution towards MDR plasmid acquisition. However, taken together with a recent report showing 

that ExPEC ST131 has adapted to separate ecological niches at the sub-clade level, our results provide 

an alternative explanation (McNally et al. 2019).  

Based on data presented here, it can be hypothesized that regulatory changes could also in 

part represent niche-adaptations that coincidentally facilitate MDR plasmid acquisition and 

maintenance. Moreover, chromosomal antibiotic-resistance mutations, which can be viewed as a form 

of niche-adaptation, display epistatic interactions affecting plasmid fitness cost (Silva et al 2011) as 

well as stability (Sota and Top 2008). Therefore, different types of mutations causing environmental 

adaptation can collaterally increase the permissiveness to plasmids. However, we acknowledge that 

the pleiotropic effects on plasmid costs reported here may be specific to a single environment, as 

others have reported that both fitness costs (Knoppel et al. 2018; San Millan et al. 2018; Hubbard et 

al. 2019) and compensatory evolution (Hall et al. 2020) are highly media-dependent. Consequently, 

the specific mutations reported here may be media-dependent, but the processes targeted (i.e. global 

gene regulation) are widely reported across different media, strains, and plasmids supporting the 

generality of our findings.  

Our study is not without limitations. We specifically dissected the causes of plasmid fitness 

cost amelioration for the non-conjugative pG06-VIM-1, but not in detail for pK71-77-1-NDM. 

Maintenance of the latter improved due to mutations in CCR/ArcAB regulons, but the contribution of 

each system remains unclear. Due to our experimental approaches, we could not precisely identify 

whether the chromosomal mutations affected fitness directly, or indirectly due to observations that 

conjugative transfer increased in the evolved clones. To that end, ArcA has been shown to impact 

conjugative transfer of other plasmid types (Strohmaier et al. 1998; Serna et al. 2010). However, we 

cannot exclude the possibility that the small increase in pK71-77-1-NDM conjugation is an artifact 

resulting from different growth rates, since adapted donors display faster growth than unevolved 

donor and recipient strains. The effects of CCR/ArcAB mutations on the different parameters for 

pK71-77-1-NDM maintenance (fitness costs, stability and conjugation) need further exploration. 

Also, the role of large plasmid deletions represents a subject for future research. 

 In this report, we propose “piggybacking” on niche-adaptation as a novel, not mutually 

exclusive, solution for the “plasmid paradox”. Our approaches also underscore the importance of 

using clinically relevant strains and plasmids to investigate the evolutionary dynamics of plasmid-

mediated antibiotic resistance. This knowledge can be used jointly with data from molecular 

epidemiology to better predict future emergence of successful combinations of clones, sub-lineages 

and antibiotic resistance determinants. 
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Methods 

Bacterial hosts, plasmids and culture conditions. Strains, plasmids and primers used in this study 

are listed in Supplementary Tables 1 and 2. The ancestral plasmid-free strain ExPEC was chosen as it 

represents a clinically relevant E. coli isolate (originating from urinary tract infection) while being 

plasmid-naïve. It belongs to sequence type 537, as tested by multi-locus sequence typing, and 

phenotypically susceptible to 24 antibiotics tested by disc diffusion (Bengtsson et al. 2012; Kahlmeter 

and Poulsen 2012) (Supplementary Table 1). The lack of detected replicons and antibiotic resistance 

genes make this strain an ideal clinical model to study the behavior MDR plasmids. Plasmids pG06-

VIM-1 and pK71-77-1-NDM originated from a K. pneumoniae wound infection isolate (Samuelsen et 

al. 2011) and an uropathogenic E. coli (Samuelsen et al. 2011) and were introduced into ExPEC by 

electroporation or conjugation, respectively. Strains were grown at 37°C under aeration in Miller 

Difco Luria-Bertani liquid broth (LB; Becton, Dickinson and Co.) or on LB agar (LBA) containing 

additional Select agar (15 g L-1, Sigma-Aldrich). For selection of plasmid-carrying strains, media 

were supplemented with ampicillin (100 mg L-1; Sigma-Aldrich). See Supplementary information 

section I for more details on strains constructed in this study. 

 

Experimental evolution. Single colonies of strains ExPEC, ExPEC+VIM and ExPEC+NDM were 

used to initiate four independent lineages each. The 12 lineages were evolved in 1 mL of antibiotic-

free LB medium using 2 mL-deep-96-well plates in checkered pattern (VWR International) and 

incubated at 37°C with 700 rpm constant shaking (Microplate Shaker TiMix 5, Edmund Bühler). In 

total, 48 transfers with estimated 6.6 generations between two transfers (∼300 generations) were 

performed involving a 1:100 dilution of stationary-phase cultures into fresh LB every 12 hours (∼107 

cells transferred). Endpoint populations (Pop 1-4VIM, Pop 5-8NDM and Pop 9-12) and one 

representative clone per plasmid-carrying evolved population (Clones 1-4VIM and Clones 5-8NDM) 

were stored at -80°C (Supplementary information section I and Supplementary Table I). 

 

Whole-genome sequencing. See Supplementary information section II for details on long-read 

sequencing and assembly of a closed reference genome of strain ExPEC (GenBank accession 

CP053079). For Illumina whole-genome sequencing, genomic DNA of ancestral strains ExPEC, 

ExPEC+VIM, ExPEC+NDM, eight evolved clones (Clones 1-4VIM, Clones 5-8NDM) and 12 evolved 

mixed populations (Pop 1-4VIM, Pop 5-8NDM, Pop 9-12) (Figure 1) was isolated using the GenElute 

Bacterial Genomic DNA Kit (Sigma-Aldrich). DNA-purity and -quantity was assessed using a 

NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Short-read sequencing library 

preparation and sequencing was performed following manufacturers’ instructions at the Genomic 

Support Centre Tromsø, UiT The Arctic University of Norway. The Nextera XT DNA Library 

preparation kit (Illumina) was used with an input of 1 ng genomic DNA and dual indexes. Samples 

were sequenced on a NextSeq 550 instrument (Illumina) with 300 cycles (2 × 150 bp paired-end 
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reads), and a NextSeq 500/550 mid-output flow cell was used for clonal samples. One entire high-

output flow cell was explicitly used for the population samples aiming at deep coverage. We ran Trim 

Galore v0.5.0 with default settings to remove adapter sequences (CTGTCTCTTATA) and low-quality 

bases, and SPAdes v3.13.0 with read error correction (Bankevich et al. 2012; Krueger 2012). 

Trimmed and error corrected short-reads were controlled for adapters and quality score using FastQC 

v0.11.4 (Andrews 2010). The raw sequence reads (long and short) of 24 libraries are available from 

the NCBI Sequence Read Archive (SRA, BioProject accession PRJNA630076). 

 

Short-read sequence analysis. We used the breseq computational pipeline v0.33.0 and v0.35.0 for 

prediction of mutations from clonal and population short-read sequencing data (Deatherage and 

Barrick 2014). Preprocessed reads (see above) of all evolved populations were mapped against the 

reference genome of strain ExPEC (GenBank accession CP053079), and against plasmid sequences of 

pG06-VIM-1 (Pop 1-4VIM; GenBank accession KU665641 [Di Luca et al. 2017]) or pK71-77-1-NDM 

(Pop 5-8 NDM; GenBank accession CP040884 [Gama et al. 2020]) when appropriate. Breseq was run 

with default settings except for specifications when analyzing clonal sequencing data (‘consensus-

mode’; ‘frequency-cutoff 0.9’; ‘minimum-variant-coverage 10’; ‘consensus-minimum-total-coverage 

10’) or population sequencing data (‘polymorphism-mode’; ‘frequency-cutoff 0.01’; ‘minimum-

variant-coverage 10’; ‘minimum-total-coverage 100’; ‘base quality score 20’). We focused on the 

identification of de novo single nucleotide substitutions, deletions, insertions and small indels by 

manually evaluating the predicted mutations from the breseq outputs (Supplementary information 

section IIIb). The use of short-read sequencing data bears an inherent limitation regarding the 

interpretation of chromosomal inversions, rearrangements and mutations in repeat regions due to 

misaligned reads, and these mutations were thus omitted from further analysis. Repeats were 

confirmed using ‘tandem repeat finder’ v4.09 (Benson 1999) or by manually searching the reference 

genome for multiple alignment options. For population sequencing analysis, we report genetic 

changes as low as 1% mutation frequency considering that the mutated locus reached ≥ 10% mutation 

frequency at least in one of the evolved populations. Artemis v16.0.0 (http://sanger-

pathogens.github.io/Artemis/), Gene Construction Kit v4.0.3 (Textco Biosoftware Inc.) and the 

Integrative Genomics Viewer v2.6.0 (http://software.broadinstitute.org/software/igv/) were used to 

support manual inspection of sequencing data.  

 

Competitive fitness and plasmid stability. The relative competitive fitness (w) of plasmid-carrying 

clones was determined in pairwise serial competition experiments (∼40 generations) with the isogenic 

plasmid-free strain, as described before (Starikova et al. 2013), with minor modifications. Briefly, 

pre-adapted cultures of each competitor were adjusted to the same OD600, mixed in a 1:1 ratio, and 

used to initiate 1 mL batch cultures at a density of ∼107	CFU	(= T0), in antibiotic-free LB and 2 mL-

deep-96-well plates in checkered pattern (VWR International). Plates were incubated at 37°C with 
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700 rpm shaking (Microplate Shaker TiMix 5, Edmund Bühler), and the cultures were diluted 1:100 

into fresh LB every 12 hours (= T12-72). To determine the CFU of each competitor, cultures were 

diluted in 0.9% saline (m/v) and plated selectively on LBA-ampicillin (CFUplasmid-carrying) and non-

selectively on LBA (CFUtotal) at T0 and every following timepoint. The selection coefficient was 

calculated as s = 0.5 × )/ln(1/*) with b (= slope) obtained from regressing the natural logarithm of the 

ratio (CFUplasmid-carrying/CFUplasmid-free) over timepoints, and d as the dilution factor at each transfer (here 

1:100) (Levin et al. 2000). It was multiplied by 0.5 to account for two transfers per day (to obtain s 

per day). Relative fitness was calculated as w = 1+s, where the fitness of the plasmid-free strain 

equals 1 (Supplementary Table 6). To determine spontaneous plasmid loss during competition 

experiments we proceeded similarly with pre-adapted cultures of plasmid-carrying strains as 

described above. Briefly, the density at T0 was ∼5 × 106 CFU mL-1 and cultures were transferred, 

diluted and plated selectively and non-selectively, as described above. The slope obtained by 

regressing the frequency of the plasmid-carrying population (CFUplasmid-carrying/CFUtotal) over timepoints 

was calculated (Supplementary Table 7). For determination of relative competitive fitness and 

spontaneous plasmid loss, results were obtained from at least three biological replicates, initiated on 

separate days, with three technical replicates each.  

 

Exponential growth rates. As a proxy for fitness changes due to acquired mutations in evolved 

clones with and without the plasmid, the exponential growth rates of separately growing strains were 

determined. Briefly, overnight cultures in 1 mL LB were started from a single colony grown on LBA, 

diluted 1:100 in LB, and 250 μl were aliquoted into a 96-well-microtiter plate (Thermo Scientific). 

Absorbance at OD600 nm was measured in a BioTek EPOCH2 microtiter spectrophotometer (BioTek 

Instruments), every 10 minutes, and with linear shaking. Growth rates (r) were determined using 

GrowthRates v3.0 (Hall et al. 2014). Fitness of the evolved strain was calculated as relative growth 

rate = revolved strain/rancestral strain. Results were obtained from three biological replicates including five 

technical replicates all displaying a correlation coefficient R ≥ 0.97. 

 

Intracellular cyclic adenosine monophosphate (cAMP) concentration. Intracellular cAMP was 

quantified using the Cyclic AMP Select ELISA Kit (Cayman Chemical) following manufacturers’ 

instructions. For this purpose, overnight cultures were started from single colonies into 2 mL LB, 

diluted 1:100 into fresh LB and incubated until mid-exponential growth phase (between 5.3-6.7 × 108 

CFU mL-1). Five mL of each culture were spun down at 4°C, 4000 rpm for 10 min (Eppendorf 

Centrifuge 5810), supernatant was removed, and the pellet was subsequently washed three times in 

ice-cold 0.9% saline (m/v). Cells were resuspended in 250 μl of 0.1 M HCl to stop endogenous 

phosphodiesterase activity and the suspensions were boiled for 5 minutes. After centrifugation at 4°C, 

4000 rpm for 10 min (Eppendorf Centrifuge 5810) an aliquot of the supernatant was diluted 1:2 

(ExPEC, ExPEC+VIM) or 1:8 (Clone 2VIM, Clone 2) in ELISA buffer followed by a subsequent 1:2 
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dilution step for all samples. The cAMP standard was reconstituted in 0.1 M HCl but thereafter 

diluted into ELISA buffer. Samples were applied in two dilutions, each in three biological and three 

technical replicates on the same ELISA plate. The standard was applied once and in two technical 

replicates on the same plate. The plate was incubated in the dark for 18 hours at 4°C and thereafter 

developed under slow orbital shaking and dark conditions. Absorbance was measured at 410 nm 

periodically in a BioTek EPOCH2 microtiter spectrophotometer (BioTek Instruments). Final reads 

were taken at B0-average = 0.7 and data was analyzed using the spreadsheet available at 

https://www.caymanchem.com/analysisTools/elisa (R2 standard curve = 0.96). 

 

Total RNA isolation. For transcriptome analysis, overnight cultures were initiated from single 

colonies into 2 mL LB, diluted 1:100 into fresh LB, and incubated until mid-exponential growth 

phase (OD600 0.5-0.6; average 2.2±0.9 ´ 108 CFU mL-1). Total RNA was isolated in six biological 

replicates per strain from 0.5 mL of culture using the RNeasy Protect Bacteria Mini kit (Qiagen) on 

six consecutive days. RNA-quality and -quantity were assessed with Nanodrop ND-1000 

spectrophotometer (Thermo Scientific). Contaminating genomic DNA (gDNA) was digested 

following rigorous DNAse I treatment of the Ambion DNA-free DNase kit (Thermo Scientific). 

Briefly, 50 μl assays of maximum 10 μg RNA were treated in two consecutive incubation steps at 

37°C for 30 minutes and addition of 5 μl DNase I enzyme before each step. RNA-quality and -

quantity were again assessed as described above and the absence of gDNA was tested by PCR 

amplification (40 cycles) of the adk housekeeping gene (Supplementary Table 2). The RNA integrity 

numbers (RIN) were obtained via the Agilent RNA 6000 Nano kit and the Agilent 2100 Bioanalyzer 

system (Agilent Technologies 2100), and all samples reached RIN > 9 (Supplementary Table 10). 

Depletion of ribosomal RNA from 1 μg total RNA per sample with the QIAseq FastSelect RNA 

Removal kit and library preparation using the Truseq Stranded mRNA library kit were performed at 

Qiagen (Genomic Service Hilden, Germany). The Norwegian Sequencing Centre (NSC) 

(http://www.sequencing.uio.no) performed sequencing of the library on 1/2´SP Novaseq flow cell 

with 300 cycles (2 × 150 bp paired-end reads). The raw sequence reads of 36 libraries are available 

from NCBI SRA (BioProject accession PRJNA630076). 

 

RNA-Seq analysis. NSC performed initial filtering of raw reads including adapter trimming and 

removal of low-quality reads using BBMap v34.56 (therein BBDuk) (Bushnell 2014). NSC mapped 

clean and adapter removed reads against the merged version of the ExPEC chromosome and the 

pG06-VIM-1 sequence using Hisat2 v2.1.0 (Kim et al. 2019) and generated count tables using 

FeatureCounts v1.4.6-p1 (Liao et al. 2014), resulting in an average sample alignment of 65% 

(Supplementary Table 10). Count tables were used as input for the Differential Expression analysis 

(data normalization and statistical tests) performed in R version 4.0.2 (R Core Team 2018) using the 
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default script for SARTools version 1.7.3 (Varet et al. 2016) with default settings and strain ExPEC as 

reference. 

PANTHER Generic Mappings of chromosomal genes were generated using the PANTHER 

HMM Scoring tool with the PANTHER HMM library Version 15.0 (Ashburner et al. 2000; Huaiyu 

Mi et al. 2019; H. Mi et al. 2019; The Gene Ontology Consortium 2019; Supplementary Table 16) 

and functional classification of the PANTHER accessions was retrieved from the website 

(Supplementary Table 15). Tabular lists containing the gene ID, PANTHER accession and fold 

change for all differentially expressed chromosomal genes were uploaded as PANTHER Generic 

Mappings to http://pantherdb.org/ and ran for enrichment of PANTHER GO-Slim Biological 

Processes with FDR (false discovery rate) correction. Enrichment analysis (Supplementary Table 12) 

was performed for each of the comparisons in Supplementary Table 11, except ExPEC+VIM vs 

ExPEC. For the over-representation analyses, subsets of the same lists (up and downregulated genes 

only) were uploaded separately to http://pantherdb.org/. Over-representation analyses (Supplementary 

Table 13) was performed against the PANTHER Generic Mapping of all chromosomal protein-

encoding genes (Supplementary Table 14), with Fisher exact test and FDR correction. All GO terms 

displaying significant enrichment or over-representation were compiled in three subsets (up and 

downregulated processes independent of plasmid presence, and downregulated processes due to 

plasmid presence) and used to generate Supplementary Figures 4-6, respectively, in Visualize (Day-

Richter et al. 2007) available at http://amigo.geneontology.org/visualize?mode = client_amigo. 

 

Statistical analyses. Statistical analyses were performed in R version 4.0.2 (R Core Team   2018). 

Samples were verified for normality with Shapiro-Wilk test and/or graphical visualization. 

Homogeneity of variances was tested with Levene’s test (from package car [Fox and Weisberg 2019]) 

and/or graphical visualization. One-sample or two-sample comparisons were performed with Student 

t-tests. Packages sandwich (Zeileis 2004), car (Fox and Weisberg 2019) and multcomp (Hothorn et al. 

2008) were required for ANOVA and multiple comparisons, respectively. Graphs in Figures 1, 3, 4, 5 

and 6 were produced with packages ggplot2 (Kassambara 2020), patchwork (Pedersen 2020), 

ggthemes (Arnold 2019), and RColorBrewer (Neuwirth 2014). Significance levels are indicated as: P-

value * < 0.05; ** < 0.01; *** < 0.001. Packages openxlsx (Schauberger and Walker 2019) and 

writexl (Ooms 2020) were used to read/write xlsx files. Packages data.table (Dowle and Srinivasan 

2019) and jsonlite (Ooms 2014) were required to generate Supplementary Tables 11-16. 
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Fig. 1 Fitness effect of plasmid acquisition and experimental procedures. a An ExPEC strain (black) 

acquired each of the two MDR plasmids pG06-VIM-1 (green; 53 kB; IncR [Di Luca et al. 2017]) and 

pK71-77-1-NDM (purple; 145 kB; IncC [Gama et al. 2020]) of clinical origin encoding the 

carbapenemases VIM-1 and NDM-1, respectively. b Initial fitness costs of newly transferred plasmids 

in strains ExPEC+VIM and ExPEC+NDM (n = 4 and 3, respectively). Significant plasmid costs are 

indicated by asterisks (P = * < 0.05, ** < 0.01, *** < 0.001; one-sample t-test, two-sided). Error bars 

indicate ± s.e.m. c Experimental evolution in absence of selective pressure (∼300 generations) resulted 

in plasmid-carrying (Pop 1-4VIM and Pop 5-8NDM) and plasmid-free (Pop 9-12) populations which were 

subjected to whole-genome sequencing (WGS). Representative clones per plasmid-carrying evolved 

population (Clones 1-4VIM and Clones 5-8NDM) were sequenced and segregants without evolved pG06-

VIM-1 (filled green circle) were generated for subsequent competition experiments (Clones 1-4). 
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Fig. 2 Identified mutations in the ArcAB (Aerobic Respiration Control) and CCR (Carbon 

Catabolite Repression) regulatory systems. a Chromosomal mutations after ∼300 generations of 

experimental evolution. Plasmid-carrying (Pop 1-4VIM = green; Pop 5-8NDM = purple) and plasmid-

free (Pop 9-12 = grey) populations had acquired chromosomal mutations in genes associated to the 

ArcAB (yellow) and CCR (orange) regulatory system. Black indicates otherwise mutated genes in 

single evolved populations. No point mutations were identified in plasmid sequences. See also 

Supplementary information section IIIa and Supplementary Table 4. b Total frequency of all mutations 

targeting the same gene within single evolved populations for genes linked to ArcAB and CCR 

regulatory systems (entire bar length = 100%). c Chromosomal mutations identified in co-evolved, 

plasmid-carrying, whole-genome sequenced Clones 1-4VIM and Clones 5-8NDM; ‘D3 bp’ in cpdA = 

cpdA.D3.bp488‑490.  
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Fig. 3 Fitness costs of evolved and ancestral plasmids in adapted backgrounds. a Relative fitness 

of co-evolved pG06-VIM-1-carrying clones (n = 3). Fitness of the ancestral strain ExPEC+VIM is 

indicated by a dotted green line. b Fitness cost of ancestral pG06-VIM-1 re-introduced into co-evolved 

Clone 2 and Clone 3. Fitness of ancestral strain ExPEC+VIM is indicated by a dotted green line. c 

Fitness cost of ancestral pK71-77-1-NDM introduced into co-evolved Clone 2 and Clone 3 (n = 3). 

Fitness of the ancestral strain ExPEC+NDM is indicated by a dotted purple line. d Fitness cost of 

ancestral pG06-VIM-1 introduced into evolved Clone 12, and of evolved pG06-VIM-1 isolated from 

co-evolved Clone2VIM introduced into ancestral strain ExPEC (n = 3-4). Significant plasmid costs are 

indicated by asterisks (P = * < 0.05, ** < 0.01, *** < 0.001; one-sample t-test, two-sided). Error bars 

indicate ± s.e.m. 
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Fig. 4 Effect of CCR and ArcAB systems mutations on plasmid cost and intracellular cAMP 

concentration. a Relative fitness of pG06-VIM-1 in parent strain BW25133 and deletion strains (n = 

3-5). Significant plasmid costs are indicated by asterisks (P = * < 0.05, ** < 0.01, *** < 0.001; one-

sample t-test, two-sided). Error bars indicate ± s.e.m. b Intracellular cAMP concentrations of ancestral 

strains (ExPEC and ExPEC+VIM; n = 6; left) and evolved strains (Clone 2 and Clone 2VIM carrying 

mutation cpdA.D3.bp488-490; n = 6; right) (two-way ANOVA; P = ** < 0.01; df = 3). 
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Fig. 5 Fitness-improved adapted backgrounds. Exponential growth rates of a co-evolved pG06-

VIM-1-carrying strains relatively to strain ExPEC+VIM and (each comparison n = 3) b co-evolved 

pG06-VIM-1 segregants relatively to ancestral strain ExPEC (each comparison n = 3). Significant 

fitness changes are indicated by asterisks (P = * < 0.05, ** < 0.01, *** < 0.001; one-sample t-test, one-

sided). Error bars indicate ± s.e.m. 
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Fig. 6 Differential expression analysis. Number of up and downregulated genes (Log2-fold change) 

on a chromosomes of ancestral strain ExPEC+VIM, evolved Clone 2+VIM and Clone 3+VIM upon 

acquisition of native pG06-VIM-1 (compared to respective plasmid-free strain) b evolved pG06-VIM-

1 of Clone 2+VIM and 3+VIM due to adaptive chromosomal mutations (compared to ancestral 

ExPEC+VIM) c chromosomes of evolved pG06-VIM-1-free/-carrying Clone 2 and Clone 3 due to 

adaptive chromosomal mutations (compared to ExPEC and ExPEC+VIM, respectively). Circles: up 

(red) and downregulated (blue) protein-encoding genes; differently regulated RNA-encoding genes 

(black). 
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