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Abstract

This paper presents results from ongoing research
with a goal to use a combination of time series from
non-intrusive ambient sensors and deep recurrent
neural networks to predict room usage at a univer-
sity campus. Training data was created by collect-
ing measurements from ambient sensors measuring
room CO2, humidity, temperature, light, motion
and sound, while the ground-truth counts was cre-
ated manually by human observers. Results include
analyses of relationships between different sensor
data sequences and recommendations for a proto-
type predictive model using deep recurrent neural
networks.

Index terms— Indoor Air Quality, Occupancy
Prediction, PCA, LSTM, GRU, Neural Architec-
ture Search, Deep Learning, Internet of Things

1 Introduction

With the advent of Internet of Things (IoT) a
multitude of monitoring and control opportunities
arise. The development of smarter buildings, neigh-
borhoods and cities have already embraced this.
Energy use and indoor climate control are central
aspects related to the performance of buildings. To-
day there is little knowledge on how a particular
building is actually used. What part of the in-
door area is populated at different hours? Selec-
tive energy use can lead to more efficient buildings
[2]. Monitoring the number of people in the spe-
cific rooms of a building can be used to achieve a
more focused and efficient use of energy in a build-
ing. That in turn requires the ability to compare
an estimate of space occupation and energy use.

Room occupancy has historically been moni-
tored by means of cameras and smart phones(Wi-
Fi, Bluetooth). But this raises privacy issues.
However, ambient sensors that can monitor levels
of CO2, temperature, humidity, illumination and
noise are present in many office and educational
buildings today.

The problem addressed in this work is to explore
ways to utilize existing indoor sensors and to de-
termine the number of people in different rooms at
different hours during the day with the data har-
vested from these. A prerequisite for this is that
there exists a statistical and causal relationship be-
tween the observed parameters and the unobserved
state(the number of people).

2 Related work

CO2 has proven a reliable indicator for occupancy
detection [10]. Further, CO2, illumination and
sound are known to be highly correlated with hu-
man occupancy [1]. Machine Learning algorithms
like Support Vector Machines and Random Forest
have shown promise on such sensor data [12]. Feed-
forward Neural Networks are used in [6] to predict
occupancy numbers from CO2, sound, temperature
and motion.

3 Method

To explore the possibilities described above a device
that combines different sensors and enable synchro-
nization of time series from each sensor was used
(see Figure 1). This enabled individual and com-
bined analyses of time series with a resolution of
approximately 40 recordings per hour.
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Figure 1: Four days of ambient sensor data. Note
that the values are scaled and normalized for the
plot.

The data set was collected from ambient sensors
placed in 9 relatively small study rooms that stu-
dents usually use between classes or for studying
alone and in groups. The data the sensors pro-
vided:

• CO2, as measured in parts per million(ppm)

• Humidity, as measured by the amount of water
vapour in the air

• Temperature, measured in Celsius

• Illumination, measured in lux

• Motion, which is an PIP-sensor that returns a
binary signal

• Sound level, measured in decibel

Human observers manually counted people to es-
tablish the ground-truth data for occupancy.

3.1 Preprocessing

First, the Pearson correlation between features was
investigated. Pearson correlation returns a value
between -1 and 1 where -1 is the maximum negative
correlation and 1 is the maximum positive. The
closer the value gets to 0 the lower the correlation
in any direction, and at 0 there is no correlation.

A common approach to pre-process training data
and (hopefully) reduce over-fit is to apply PCA to
reduce the number of correlated features. PCA can
be used to the determine the explained variance be-
tween the features. PCA helps to determine a vari-
able’s relative contribution to the overall. It is also
used to determine statistical co-variance between
variables.

3.2 Time-dependency Inspection

As can be seen in Figure 1: Time series of this type
often display a high degree of seasonality on a daily
basis. Inspection of the data suggested that there
were profound differences between rooms depend-
ing on their use, location in the building, heating
and ventilation. The CO2 variable would dominate
in one part while temperature and humidity gradi-
ents would be more pronounced in other parts of
the building. Latency issues became evident too.
It takes time for CO2 levels, humidity and tem-
perature to increase when people meet in a room.
Ventilation may flush stale air more or less effec-
tively. Seasonal and daily changes in weather may
affect conditions too. Spring or autumn with low
solar altitudes may produce rays that effectively
heat up a room in one part, while rooms on the
shady side may require heating. These occurrences
suggested a high degree of dynamics. States could
be affected by situations or actions that happened
several hours or even days before. Dry periods with
a lot of sun would heat up concrete constructions
and create more dust than rainy and chilly days.
A shift could impact the observations profoundly.
The conditions in a room caused by six people hav-
ing a morning meeting could be logged quite differ-
ently from a similar situation in the afternoon as
former meetings that day could create an “atmo-
spheric legacy”.

3.3 Prediction Models

In recent years, RNN architecture Long Short-Term
Memory(LSTM) has become immensely popular
due to its proven effectiveness in a number of prob-
lem areas involving sequential data [8]. The main
trick to achieving such great performance is an
elaborate setup of gates which lets each neuron in
the RNN control which information to forget or re-
member depending on the patterns in the training
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Percentage of rooms 100% 90% 50%
Variance retained in only one component 80% 95% 98%

Table 1: Showing the variance single principal com-
ponent is able to retain

sequence [9]. A simplified version called Gated Re-
current Units(GRU) was proposed more recently in
[3]. Comparison between LSTM and GRU has been
described in the literature, with performance being
found to be roughly equal in [4].

Designing architectures for neural networks has
traditionally been manually done by humans. With
the advent of great generalization tools and more
powerful hardware, this is beginning to change, and
so-called Neural Architecture Search(NAS) is gain-
ing traction [7]. With this in mind, 3 investigations
were performed:

1. Neural Architecture Search First, an ar-
chitecture search was performed using the
Keras wrapper Talos [13]. This package makes
it simple to set up extensive architecture
searches to automate the process of optimiz-
ing hyperparameters.

2. How different features influenced the
learning process A second analysis was per-
formed to investigate the learning potential
and influence each of the training features had
on the model.

3. Reproducibility and the influence of ran-
dom initial parameters Uncertainty is often
experienced with regards to achieving repro-
ducible results when training neural networks.
The initial weights of a neural network are usu-
ally selected according to a random distribu-
tion.

4 Results

First, the Pearson correlation between the features
was examined. The result is shown in Figure 2.
We observe that most signals correlate to varying
degrees, except humidity.

Next, PCA was performed, shown in Figure 3.
The result confirms mostly the same as we know
from the Pearson coefficients. Humidity is diverg-
ing from the other parameters, and there is not even
correlation between humidity in different rooms. In
Table 1 we observe that for most rooms, a very high

Figure 2: Pearson correlation between training fea-
tures

percentage of information can be retained in only
one component.

The next step was finding a suitable neural net-
work architecture for the data set. The NAS tested
more than 2000 models varying hyperparameters
and number of layers or nodes per layer. The ar-
chitecture search showed that the dimensions of the
neural network and training batches had little im-
portance. Still, some models performed better than
others. The result in Figure 4 shows the relation
between prediction and truth predicted by the best-
performing LSTM model(GRU performed similarly
with equal parameters) on the test set(10% of the
data). This architecture consist of a 16 × 6 input
vector where the former represents time steps and
the latter training features. 4 recordings per hour
was used, such that each training sample contains
4 hours of previous data. The model has 3 hidden
layers with shape (64, 64, 32) in which the last layer
is densely connected to a single ReLU node. This is
thus a regression predicting a single floating num-
ber. The network was trained with Mean Squared
Error(MSE) as the loss function and Adaptive Mo-
ment Estimation(ADAM, a variant of Stochastic
Gradient Descent) as optimizer [11]. Dropout was
turned off since this was found by searches to lead
to worse performance. However, recurrent dropout
led to better performance. A feature effectiveness
search was performed to investigate how well each
feature and all combinations of features trained the
network. The shape of the timestep vector re-
mained the same. Here, it is observed that a model
trained only on CO2 had great learning potential,
and that the other features alone had little or even
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Figure 3: Alignment of raw components with 2D
principal components. The same-colored arrows re-
spond to the same components in different rooms

no learning potential. A combination of all features
except CO2 did however have almost as good po-
tential as CO2 alone. At last, a number of tests
with different initial parameters and random seeds
were performed to test for reproducible results. In
our case, for most seeds the network performed as
expected, but in rare cases with some seeds the neu-
ral network would not train at all. If in such case
one is using a callback function to stop a network
from over-training by monitoring loss, the network
will not train and the data may appear useless. It is
observed that the model is able to generalize pat-
terns in the training set, even if the low amount
of available training data probably leads to under-
performance on accuracy. The mean absolute error
from the model in Figure 4 prediction on the test
set was at 0.73, which meant 65% accuracy after
rounding the prediction output.

5 Discussion

The data patterns found in the training samples are
hard to analyse due to a large probability of noisy

Figure 4: Prediction on the test set the best-
performing LSTM model the architecture search
converged to

interventions because of the dynamic and unpre-
dictable states the sensors are subject to. While
some of the signals clearly contain more seasonal-
ity due the nature of the data it monitors, espe-
cially CO2, others are a lot more noisy and may
only occasionally contain trends, such as sound and
light. CO2, humidity and temperature signals are
influenced by pre-existing building monitor systems
such as ventilation and thermostats.

It is not surprising that the most of the informa-
tion is contained in the CO2 times series. This
is consistent with previous research and our as-
sumptions. Interestingly, during the architecture
search a combination of the 5 other features is able
to train a model that approaches the performance
of a model trained only with CO2 data on mod-
els trained from scratch. One could assume that
the patterns contained in light and sound measure-
ments would be noisy due to external influences
from beyond the room itself. I.e. a solo person
would probably not change the sound signal very
much. Such is also the case for light, which is not
exclusively influenced by indoor lighting, but also
from sunlight. The motion sensor returns binary
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values and as such does not say anything about the
actual amount of people, only if there are people
or not. However, there was found little difference
in training precision between networks that incor-
porate these features contrary to those that do. If
anything, the models using all training features are
seemingly more robust. It seems that recurrent
neural network models like LSTM and GRU are
able to filter the noisy parts of these signals and
only use them in cases where they actually have
predictive capability.

The same seems to also be true for the temper-
ature feature. Temperature is controlled by ther-
mostats and as such would balance out any human
intervention in the heat signal. But this is also
a signal that would contribute to the training of
a recurrent neural network, since the temperature
would first rise, and the thermostat would respond
and adjust. These patterns could be present in the
sliding time window training samples, depending
on the time resolution.

Using human observers to gather ground-truth is
costly and the yield is limited. However, attempts
to introduce more automated means failed. The
room booking system proved to be a very unreli-
able source for the same purpose. Any effort to
let room users systematically share reliable mea-
surements of room use and space occupancy proved
very unreliable.

6 Conclusion

This research set out to investigate if a causal rela-
tionship between a set of sequential data describing
various properties of rooms being in regular use by
a variable number of people could be determined.
Furthermore, if identified, this causal relationship
would be used to create a deep learning model that
could be used to predict a future number of people
depending on the recorded past values of the sen-
sor measurements. The analyses presented indicate
strongly that such a causal relation exist, and that
predictive deep learning models can be created for
this purpose.

7 Further Work

Low-resolution thermal cameras with RNNs has
proven promising as a non-intrusive method for
monitoring the presence or actions of persons [5].
Such data could be used as training labels in the
setting this paper describes, or act as a count-
ing/monitoring device on its own.
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