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Abstract

We show that integrability properties of integral transforms with kernel
depending on the product of arguments (which include in particular, popu-
lar Laplace, Hankel, Mittag-Leffler transforms and various others) are bet-
ter described in terms of Morrey spaces than in terms of Lebesgue spaces.
Mapping properties of integral transforms of such a type in Lebesgue spaces,
including weight setting, are known. We discover that local weighted Mor-
rey and complementary Morrey spaces are very appropriate spaces for de-
scribing integrability properties of such transforms. More precisely, we
show that under certain natural assumptions on the kernel, transforms
under consideration act from local weighted Morrey space to a weighted
complementary Morrey space and vice versa, where an interplay between
behavior of functions and their transforms at the origin and infinity is
transparent. In case of multidimensional integral transforms, for this goal
we introduce and use anisotropic mixed norm Morrey and complementary
Morrey spaces.
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1. Introduction

The main goal of this paper is to show that weighted local Morrey spaces
and the so called complementary Morrey spaces provide a very natural
language for describing integrability properties of integral transforms

Af(x) =

∞∫
0

k(xt)f(t)dt, x > 0, (1.1)

in particular, Laplace transform

Lf(x) =

∞∫
0

e−xtf(t)dt, x > 0. (1.2)

Integral transforms of type (1.1) are well known to be widely used in
various fields of mathematics, including fractional calculus, and various
applications, with a variety of books on this topic. We refer, for instance,
to the books [9], [10], [12], [13], [36], [40] and [48], articles [22], [27], [26],
[28], [37], [44], [46], [47] and references therein. Integral transforms of such
a type are well known to be used in the study of differential equations of
fractional order, see for instance [5]. Operators of the form (1.1), besides the
Laplace transform, include in particular various forms of Bessel transform,
Mittag-Leffler transform and others. Many concrete transforms of the form
(1.1) are particular cases of so called H-transforms (see [25]).

It is well known that the scale of Lebesgue spaces is not well adjusted
for mapping properties of the Laplace transform. This concerns in general
operators of the form (1.1). By dilation arguments it is easy to show that
if

A : Lp(R+) ↪→ Lq(R+),

then necessarily q = p′ := p
p−1 , p, q ∈ [1,∞], so that Lp → Lp mapping

is possible only for p = 2. For the Laplace transform the condition q = p′
is necessary and sufficient, when 1 ≤ p ≤ 2, as shown by G.H. Hardy [23,
Theorem 9]. In [23], G.H. Hardy also proved the one-weight Lp → Lp

boundedness of operators A in the form
∞∫
0

|Af(x)|pdx ≤ c

∞∫
0

|f(x)|pxp−2dx

and
∞∫
0

|Af(x)|pxp−2dx ≤ c

∞∫
0

|f(x)|pdx
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under some condition on the kernel k(x) (necessary and sufficient when
k(x) ≥ 0). Various studies were aimed at improving candidates for the tar-
get space admitting more general weighted Lp(u) → Lq(v)-setting, see for
instance [4] and [7], and also in the frameworks of rearrangement invariant
spaces in [3].

Since the Laplace transform is well defined on appropriate functions
f when x is replaced by z = x + iy with x > 0, integrability of Laplace
transforms of Lp functions was also studied on the half plane {(x, y) : x >
0}. We refer to [39] and references therein.

In the real value setting, recently, within the frameworks of rearrange-
ment invariant function spaces there was achieved a progress in charac-
terizing the best possible domain-target candidates, see [11] and [15] and
references therein.

To our surprise, Laplace transform or any integral transform of the form
(1.1) was never studied in Morrey spaces, up to our knowledge. Meanwhile,
local Morrey spaces and their complementary counterparts provide a very
natural language for domain and target spaces for integral transforms of the
form (1.1), because functions in weighted local Morrey space have better
behavior at the origin and worse at infinity in comparison with functions in
weighted Lebesgue spaces, and vice versa for complementary Morrey space.
We refer to Section 2 for definition of local Morrey and complementary
Morrey spaces. In particular, we show that for any operator A of the form
(1.1), under certain conditions on its kernel k(t), there hold the inequalities

sup
r>0

rλ
∞∫
r

xb|Af(x)|pdx ≤ C sup
r>0

1

rλ

r∫
0

xa|f(x)|pdx, λ ≥ 0, (1.3)

sup
r>0

1

rλ

r∫
0

xb|Af(x)|pdx ≤ C sup
r>0

rλ
∞∫
r

xa|f(x)|pdx, λ ≥ 0, (1.4)

where a, b ∈ R are related to each other by the (necessary and sufficient)
condition

a + b = p− 2;

for positive kernels k(t) we also find sharp constants in the above inequali-
ties. Moreover, we also show that

lim
r→0

1

rλ

r∫
0

xa|f(x)|pdx = 0 =⇒ lim
r→∞ rλ

∞∫
r

xb|Af(x)|pdx = 0, λ > 0 (1.5)

and

lim
r→∞ rλ

∞∫
r

xa|f(x)|pdx = 0 =⇒ lim
r→0

1

rλ

r∫
0

xb|Af(x)|pdx = 0, λ > 0, (1.6)
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under the same conditions on the kernel.

We also prove some multi-dimensional versions of such statements. The
main attention is paid to integral transforms on Rn

+ = {x ∈ Rn : x1 >
0, . . . , xn > 0} with kernel depending on x ◦ y = (x1y1, . . . , xnyn), which
are mostly used in applications. The well known Morrey spaces on Rn or
domain in Rn, where there are measured averages of functions over balls or
cubes, are not suitable for this goal. To this end, we introduce anisotropic
Morrey spaces with measuring averages over n-dimensional rectangles Rh =
{x ∈ Rn

+ : 0 < xi < hi, i = 1, . . . , n}, h = (h1, . . . , hn) ∈ Rn
+.

The proofs are based on our results on integral operators, commuting
with dilations, in Morrey spaces, obtained in [41]. It is used in the one-
dimensional case and in the isotropic case in Subsection 4.1. For the study
of multidimensional integral transforms with kernel of the form k(x◦y), we
adapt results from [41] for the case of anisotropic Morrey spaces.

The paper is structured as follows. In Section 2 we provide necessary
preliminaries on local Morrey and complementary Morrey spaces and op-
erators with a kernel homogeneous of degree −n in Rn, in Morrey spaces.
The main results for the one-dimensional case are given in Section 3, where
in particular, we prove statements (1.3) - (1.6) in Theorems 3.1 and 3.2. In
Subsection 3.1 we give general theorems and in Subsection 3.2 we consider
application to some concrete integral transforms, Mittag-Leffler transform
in particular. In Section 4 we consider multidimensional versions of inte-
gral transforms. In Subsection 4.1 we briefly consider the radial Laplace
transform. Subsection 4.2 contains definition of anisotropic mixed norm
Morrey and complementary Morrey spaces. In Subsection 4.3 we extend
some results from [41] to the anisotropic setting. Subsection 4.4 contains
the main statements for integral transforms with the kernel k(x◦y). Finally,
a brief Subsection 4.5 contains some additional remarks.

2. Preliminaries

2.1. Weighted local Morrey and complementary Morrey spaces.
For a function f on Rn we introduce the notation for the following modular

Mp,λ,γ
0 (f, r) :=

1

rλ

∫
|x|<r

(|f(x)||x|γ)p dx, (2.1)

where 1 ≤ p < ∞, λ ≥ 0 and γ ∈ R.
Weighted local Morrey spaces Lp,λ,γ(Rn) are defined by the norm

‖f‖Lp,λ,γ = sup
r>0

(
Mp,λ,γ

0 (f, r)
) 1

p
.

Recall that
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Lp,λ,γ(Rn)
∣∣
λ=0

= Lp,γ(Rn) =:

{∫
Rn

|f(x)|x|γ |pdx < ∞
}
.

Vanishing weighted local Morrey space V0L
p,λ,γ(Rn), λ > 0, is defined

as the set of functions in Lp,λ,γ(Rn), which satisfy the condition

lim
r→0

Mp,λ,γ
0 (f, r) = 0. (2.2)

The set V0L
p,λ,γ(Rn) is a closed subspace of Lp,λ,γ(Rn).

We also need weighted complementary Morrey spaces cLp,λ,γ(Rn) sim-
ilarly defined via the following modular

Mp,λ,γ
∞ (f, r) := rλ

∫
|x|>r

(|f(x)||x|γ)p dx (2.3)

by the norm

‖f‖cLp,λ,γ(Rn) = sup
r>0

(
Mp,λ,γ

∞ (f, r)
) 1

p
,

and the vanishing complementary weighted Morrey space

V∞cLp,λ,γ(Rn)

is defined by the condition lim
r→∞Mp,λ,γ∞ (f, r) = 0.

Complementary Morrey spaces were introduced in [19] and [20]. Like
Morrey spaces they are also known to be used in analysis, see for instance
[21] and references therein.

In the one-dimensional case n = 1 we consider Morrey and complemen-
tary Morrey spaces on the semi-axis R+ instead of R, so that the corre-
sponding modulars in this case are

Mp,λ,γ
0 (f, r) =

1

rλ

r∫
0

|xγf(x)|p dx and Mp,λ,γ
∞ (f, r) = rλ

∞∫
r

|xγf(x)|p dx.

We refer to the books [1], [35], [45] and surveying papers [38], [42] for
Morrey spaces. Note that Morrey and Morrey-Campanato spaces attract
increasing attention of researchers during last decades, due to both the
interesting structure of spaces and various their applications, and a big
variety of interesting papers annually appears; we refer for instance to [2],
[32], [33].

We shall also use local anisotropic Morrey spaces on Rn
+ := {x ∈ Rn :

x1 > 0, . . . , xn > 0}, but we find it more appropriate to introduce them
later, in Section 4.2.
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2.2. On operators commuting with dilation and rotations in Mor-
rey spaces. In the paper [41], within the frameworks of Morrey spaces,
there were studied integral operators

Kf(x) =

∫
Rn

K(x, y)f(y)dy, x ∈ R
n

with the kernel homogeneous of degree −n, i.e. K(tx, ty) = t−nK(x, y), t >
0, and invariant with respect to rotations in Rn : K[ω(x), ω(y)] = K(x, y),
where ω : x → ω(x), |ω(x)| = |x|, is an arbitrary rotation.

For the study of such operators in Lebesgue spaces, corresponding to
the case λ = 0, we refer to [24].

Everywhere in the sequel we use the notation e1 = (1, 0, . . . , 0).

Denote

κ(p, λ, γ) :=

∫
Rn

|K(e1, y)| dy

|y|n−λ
p

+γ
, n ≥ 2 (2.4)

with one-dimensional modification

κ(p, λ, γ) :=

∫ ∞

0
|K(1, y)| dy

y
1−λ
p

+γ
< ∞, for n = 1. (2.5)

The statement of the following Proposition A, is derived from Theorem
4.2 and Corollary 4.3 in [41]: results in [41] concern the case γ = 0, which

easily leads to the statement of the proposition since |x|γ
|y|γK(x, y) satisfies

the above dilation and rotation conditions, if K(x, y) does.

Proposition A.
Let 1 ≤ p < ∞, λ ≥ 0 and γ ∈ R. Under the condition κ(p, λ, γ) < ∞,

the operator K is bounded in the spaces Lp,λ,γ and V0L
p,λ,γ and

‖Kf‖Lp,λ,γ ≤ κ(p, λ, γ)‖f‖Lp,λ,γ . (2.6)

When K(x, y) is non-negative, the condition κ(p, λ, γ) < ∞ is also neces-
sary for the boundedness in both the spaces Lp,λ,γ and V0L

p,λ,γ . Moreover,

κ(p, λ, γ) is the sharp constant and when λ > 0, f(x) = |x|λ−n
p

−γ is the
minimizing function in the case of the space Lp,λ,γ.

2.3. Auxiliaries: On isometry between weighted local Morrey and
complementary Morrey spaces. Let

Q�f(x) =
1

|x|� f
(

x

|x|2
)
, x ∈ R

n \ {0}, � ∈ R, (2.7)

so that Q2
� = I.
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Lemma 2.1. Let 1 ≤ p < ∞, λ ≥ 0 and γ ∈ R. Then the following
relations hold:

Mp,λ,γ
0 (Q�f, r) = Mp,λ,δ

∞

(
f,

1

r

)
(2.8)

and

‖Q�f‖Lp,λ,γ = ‖f‖cLp,λ,δ , (2.9)

where γ + δ = �− 2n
p .

P r o o f. The equality (2.9) for norms follows from (2.8). For (2.8) we
have

Mp,λ,γ
0 (Q�f, r) =

1

rλ

∫
|x|<r

∣∣∣∣|x|γ−�f

(
x

|x|2
)∣∣∣∣

p

dx =
1

rλ

∫
|y|> 1

r

||y|�−γf(y)|p dy

|y|2n

via the change of variables x = y
|y|2 with the Jacobian |y|−2n, and we arrive

at (2.8). �

For the dilation operator

Πtf(x) = f(tx), t > 0,

we have

‖Πtf‖Lp,λ,γ =
1

t
1−λ
p

+γ
‖f‖Lp,λ,γ (2.10)

and

‖Πtf‖cLp,λ,γ =
1

t
1+λ
p

+γ
‖f‖cLp,λ,γ (2.11)

for 1 ≤ p < ∞, λ ≥ 0 and γ ∈ R, which is a matter of direct verification.

3. Main results: one-dimensional case

3.1. Main theorems. In Theorem 3.1 we demonstrate a certain advantage
of Morrey spaces in describing mapping properties of integral transforms
of the form (1.1). Namely, we consider mapping properties

A : Lp,λ,γ ↪→ cLp,λ,δ (3.1)

and

A : cLp,λ,γ ↪→ Lp,λ,δ, (3.2)

where 1 ≤ p < ∞, λ ≥ 0 and δ, γ ∈ R. Mappings (3.1), (3.2) and proper-
ties (3.10) and (3.11), proved in the sequel, clearly show how behavior of
functions at the origin (at infinity) influences on behavior of the transform
at infinity (at the origin, respectively).

We start with the following lemma on relation between the weight ex-
ponents δ and γ.
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Lemma 3.1. Each of the mapping properties (3.1) and (3.2) may hold
only in the case when

δ + γ =
p− 2

p
. (3.3)

P r o o f. Suppose that (3.1) takes place:

‖Af‖cLp,λ,δ ≤ C‖f‖Lp,λ,γ .

To show that then (3.3) necessarily holds, we use the dilation trick, ef-
fectively working for integral operators with kernels having any kind of
homogeneity, and well known for instance for Riesz potential operators in
Lebesgue spaces, see [43]. By our assumption we also have that

‖AΠtf‖cLp,λ,δ ≤ C‖Πtf‖Lp,λ,γ

for all t > 0. It is easy to see that AΠt = 1
t Π 1

t
A. Consequently,

‖Π 1
t
Af‖cLp,λ,δ ≤ Ct‖Πtf‖Lp,λ,γ

Applying the formulas (2.10) and (2.11) we arrive at

‖Af‖cLp,λ,δ ≤ Ct
p−2
p

−δ−γ‖f‖Lp,λ,γ .

Hence (3.3) should hold.
The case of the mapping property (3.2) is similarly treated. �

In view of Lemma 3.1, all the exponents δ and γ appearing in the sequel,
will be related to each other by the condition (3.3).

Denote

κ0(p, λ, γ) :=

∫ ∞

0
|k(t)| dt

t
1−λ
p

+γ
. (3.4)

and

κ∞(p, λ, γ) :=

∫ ∞

0
|k(t)| dt

t
1+λ
p

+γ
. (3.5)

Theorem 3.1. Let 1 ≤ p < ∞, λ ≥ 0 and γ ∈ R. If κ0(p, λ, γ) < ∞,

then A : Lp,λ,γ → cL
p,λ, p−2

p
−γ

and

‖Af‖
cL

p,λ,
p−2
p −γ

≤ κ0(p, λ, γ)‖f‖Lp,λ,γ . (3.6)

If κ∞(p, λ, γ) < ∞, then A : cLp,λ,γ → L
p,λ, p−2

p
−γ

and

‖Af‖
L
p,λ,

p−2
p −γ

≤ κ∞(p, λ, γ)‖f‖cLp,λ,γ . (3.7)

If k(x) ≥ 0, x ∈ R+, then the conditions κ0(p, λ, γ) < ∞ and κ∞(p, λ, γ) <
∞ are also necessary for the boundedness (3.6) and (3.7), respectively, and
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the constants in (3.6) and (3.7) are sharp, and when λ �= 0, the minimizing

functions are f(x) = x
λ−1
p

−γ and f(x) = x−
λ+1
p

−γ , respectively.

P r o o f. With the notation Q1 = Q�|�=1 we have

Q1A = K,

where

Kf(x) =

∫ ∞

0
K(x, t)f(t)dt, K(x, t) =

1

x
k

(
t

x

)
.

Hence

‖Q1Af‖Lp,λ,γ = ‖Kf‖Lp,λ,γ .

By Lemma 2.1 we then have

‖Af‖
cL

p,λ,
p−2
p −γ

= ‖Kf‖Lp,λ,γ . (3.8)

By Proposition A, the operator K is bounded in Lp,λ,γ, if∫ ∞

0
|K(1, t)| dt

t
1−λ
p

+γ
=

∫ ∞

0
|k(t)| dt

t
1−λ
p

+γ
,

i.e. κ0(p, λ, γ) < ∞. Therefore, under this condition from (3.8) by Propo-
sition A, we have

‖Af‖
cL

p,λ,
p−2
p −γ

≤ κ0(p, λ, γ)‖f‖Lp,λ,γ

with the sharp constant when k(x) ≥ 0, x ∈ R+, which proves (3.6).
To prove (3.7) we proceed as follows

Af(x) =

∞∫
0

k(xt)f(t)dt =

∞∫
0

k
(x
t

)
f

(
1

t

)
dt

t2
=

∞∫
0

K∗(x, t)(Q1f)(t)dt

=: K∗Q1f(x), where K∗(x, t) =
1

t
k
(x
t

)
.

Hence
‖Af‖Lp,λ,δ = ‖K∗Q1f‖Lp,λ,δ , (3.9)

where we chose δ = p−2
p −γ. By Proposition A, the operator K∗ is bounded

in Lp,λ,δ if ∫ ∞

0
|K∗(1, t)| dt

t
1−λ
p

+δ
=

∫ ∞

0

∣∣∣∣k
(

1

t

)∣∣∣∣ dt

t
1+ 1−λ

p
+δ

< ∞,

which is nothing else but the condition κ∞(p, λ, γ) < ∞. Therefore by the
boundedness of the operator K∗ in Lp,λ,δ and isometry provided by Lemma
2.1, we arrive at (3.7).

Necessity of the conditions κ0(p, λ, γ) < ∞ and κ∞(p, λ, γ) < ∞ for
the corresponding mapping properties immediately follows from the repre-
sentations Q1 = K, A = K∗Q1, the same isometry and Proposition A.
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The choice of the minimizing function f(x) = x−
λ+1
p

−γ for (3.6) is
dictated by Proposition A, via the identity Q1A = K. As regards the min-
imizing function f for (3.7), from the identity A = K∗Q1, it is clear that it
should be chosen so that

Q1f = x
λ−1
p

−δ,

from which there follows that f(x) = x
−λ+1

p
−γ

. �

Theorem 3.2. Let 1 ≤ p < ∞, λ > 0 and γ ∈ R. Then the operator A
is bounded from V0L

p,λ,γ to V∞cLp,λ,δ and from V∞cLp,λ,γ to V0L
p,λ,δ, where

γ + δ = p−2
p , under the conditions κ0(p, λ, γ) < ∞ and κ∞(p, λ, γ) < ∞,

respectively, so that there hold the following “regularity properties”

lim
r→0

1

rλ

∫ r

0
|yγf(y)|pdy = 0 ⇒ lim

r→∞ rλ
∫ ∞

r
|y−γAf(y)|p yp−2dy = 0, (3.10)

when κ0(p, λ, γ) < ∞, and

lim
r→∞ rλ

∫ ∞

r
|yγf(y)|pdy = 0 ⇒ lim

r→0

1

rλ

∫ r

0
|y−γAf(y)|p yp−2dy = 0, (3.11)

when κ∞(p, λ, γ) < ∞.

P r o o f. The statements of the theorem follow from Proposition A,
and the relation (2.8). �

3.2. Application to concrete integral transforms. The reader can eas-
ily derive corresponding results for various concrete examples of integral
transforms from Theorems 3.1 and 3.2. We formulate such a corollary in
detail for the Laplace transform because of its wide popularity, and briefly
sketch arising conditions for mapping properties for such famous integral
transforms as Bessel-type and Mittag-Leffler ones.

Laplace transform

For the Laplace transform

Lf(x) =

∞∫
0

e−xtf(t)dt

we arrive at the following corollary.

Corollary 3.1. Let 1 ≤ p < ∞ and γ, δ ∈ R. The Laplace transform
satisfies mapping properties (3.1) and (3.2) if and only if γ + δ = p−2

p and

1 − λ < (1 − γ)p and 1 + λ < (1 − γ)p, respectively, and
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sup
r>0

rλ
∞∫
r

|xδLf(x)|pdx ≤ Γ

(
1 − γ +

λ− 1

p

)p

sup
r>0

1

rλ

r∫
0

|xγf(x)|pdx, λ ≥ 0,

(3.12)

sup
r>0

1

rλ

r∫
0

|xδLf(x)|pdx ≤ Γ

(
1 − γ − λ + 1

p

)p

sup
r>0

rλ
∞∫
r

|xγf(x)|pdx, λ ≥ 0,

(3.13)
with the best constants in (3.12) and (3.13), and also

lim
r→0

1

rλ

r∫
0

|xγf(x)|pdx = 0 =⇒ lim
r→∞ rλ

∞∫
r

|xδLf(x)|pdx = 0, λ > 0 (3.14)

lim
r→∞ rλ

∞∫
r

|xγf(x)|pdx = 0 =⇒ lim
r→0

1

rλ

r∫
0

|xδLf(x)|pdx = 0, λ > 0,

(3.15)
where 1− λ < (1− γ)p in (3.12) and (3.14), and 1 + λ < (1− γ)p in (3.13)
and (3.15).

Bessel transform of Hankel-type

For the Bessel-type transform

Bμ,νf(x) =

∞∫
0

(xy)μJν(xy)f(y)dy, μ, ν ∈ R, ν > −1

2
,

where

Jν(x) =

∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν

is the Bessel function of the first kind, the sufficient condition for the map-
pings (3.1) and (3.2) with γ + δ = p−2

p are

γ − μ− ν <
1

p′
+

λ

p
< γ − μ +

1

2
and

γ − μ− ν <
1

p′
− λ

p
< γ − μ +

1

2
,

respectively.

Bessel transform with McDonald function in the kernel (Meijer transform)

Another well known (see for instance [13]) Bessel-type transform is



INTEGRABILITY PROPERTIES OF INTEGRAL . . . 1285

Kμ,νf(x) =

∞∫
0

(xt)μKν(xt)f(t)dt, (3.16)

where

Kν(x) =
1

2

(x
2

)−ν
∞∫
0

tν−1e−t−x2

4t dt, ν > 0

is the Bessel-type function known as the McDonald function.

It is known that
∞∫
0

Kν(x)

xβ
dx = 2−β−1Γ

(
1 − β + ν

2

)
Γ

(
1 − β − ν

2

)
, β + ν < 1, (3.17)

see [18, 8.432(6)].
From Theorems 3.1 and 3.2, for the transform Kμ,ν we obtain the fol-

lowing.
The operator Kμ,ν possesses the mapping properties (3.6) and (3.10) if

and only if

γ + ν − μ <
λ

p
+

1

p′
,

with the sharp constant

κ0 = 2
λ−1
p

+γ−μ−1Γ

(
λ
p + 1

p′ − γ + μ + ν

2

)
Γ

(
λ
p + 1

p′ − γ + μ− ν

2

)

in (3.6). In the formula for the sharp constant we used the relation (3.17).
For the mapping properties (3.7) and (3.11) the statement is formulated in
the same way, with only change that λ should be replaced by −λ in all the
conditions and formulas.

Mittag-Leffler transform

Another popular integral transform with various forms is the Mittag-
Leffler transform with the Mittag-Leffler function in the kernel, see for
instance [14] and [48, Ch. 16]. Here we consider such a transform in the
form

Eα,βf(x) =

∞∫
0

Eα,β(−xt)f(t)dt, (3.18)

where

Eα,β(z) =
∞∑
k=0

zn

Γ(αk + β)
, z ∈ C
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is the (two-index) Mittag-Leffler function. A comprehensive source on
Mittag-Leffler functions is e.g. the book [16]. We refer to [8], where for the
goals of inversion, it was shown that the transform (3.18) may be regarded
as a particular case of integral H-transforms.

We consider the Mittag-Leffler transform (3.18) under the condition

0 ≤ α ≤ min{1, β}. (3.19)

It is known that under this assumption the following facts hold.
For the Mittag-Leffler function Eα,β(−x), x > 0, the following facts are

known:
1) Eα,β(−x) = 1

Γ(β−α)
1
x + O

(
1
x2

)
as x → ∞, see the asymptotic for

the Mittag-Leffler function in [14] and [16, Theorem 4.3] (Note: α < 1 as
formulated in Theorem 4.3 of [16], but this asymptotic is true for α = 1 as
well which can be easily derived from [16, Lemma 4.26]);

2) Eα,β(−x) > 0 (Eα,β(−x) is even completely monotonic in this case,
see [16, p.90]).

By means of these two facts, from the general Theorems 3.1 and 3.2 we
derive the following statement for the Mittag-Leffler transform (3.18).

Let 1 ≤ p < ∞, γ + δ = p−2
p and 0 ≤ α ≤ min{1, β} < ∞. Then

the transform Eα,β possesses the mapping properties (3.6) and (3.10) if and
only if

λ− 1

p
< γ <

λ

p
+

1

p′
and the mapping properties (3.7) and (3.11) if and only if

−λ + 1

p
< γ <

1

p′
− λ

p
.

The sharp constant in (3.6) is equal to

κ0(p, λ, γ) = Iα,β(σ) :=

∫ ∞

0
Eα,β(−x)

dx

xσ
,

where σ = 1−λ
p + γ, 0 < σ < 1.

Calculation of the integral Iα,β(σ) for all admissible α and β seems to
be a difficult task. Any way it is possible to reduce this integral of two
parametric Mittag-Leffler function to a similar integral of one parametric
Mittag-Leffler function:

Iα,β(σ) =
αΓ(ασ)

Γ(β − α + ασ)

∫ ∞

0
Eα,α(−x)

dx

xσ

=
α2σΓ(ασ)

Γ(β − α + ασ)

∫ ∞

0

1 − Eα(−x)

xσ+1
dx, Eα(x) = Eα,1(x), (3.20)

and we calculate this sharp constant for the case α = 1 :
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I1,β(σ) =
π

sinσπ

1

Γ(σ + β − 1)
(3.21)

(The calculation being easy for α = 0).

The formula (3.21) follows from the first equality in (3.20), since
E1,1(−x) = e−x, and consequently∫ ∞

0
Eα,α(−x)

dx

xσ
dx|α=1 = Γ(1 − σ).

We prove formulas (3.20) and (3.21) in Appendix, in order not to over-
load the main body of the paper.

As for the sharp constant κ∞ for the mapping property (3.7), it has
the same form Iα,β(σ) :=

∫∞
0 Eα,β(−x) dx

xσ , but with σ = 1+λ
p + γ ∈ (0, 1).

In a similar way, the reader can derive the corresponding corollaries
from Theorems 3.1 and 3.2 for various other integral transforms with a
kernel depending on the product of arguments.

4. Main results: Multidimensional operators

N o t a t i o n :
Rn
+ := {x = (x1, . . . , xn) ∈ Rn : x1 > 0, . . . , xn > 0};

Rh = {x ∈ Rn
+ : 0 < xi < hi, i = 1, . . . , n}, h = (h1, . . . , hn) ∈ Rn

+.
x ◦ y = (x1y1, . . . , xnyn) for x, y ∈ Rn;

x

λ = xλ1

1 . . . xλn
n , x ∈ Rn

+,
λ = (λ1, . . . , λn) ∈ Rn;

Sn−1 = {x ∈ Rn : |x| = 1}, |Sn−1| = 2π
n
2

r(n
2
) ;

p = (p1, . . . , pn), 1
p =

(
1
p1
, . . . , 1

pn

)
.

4.1. Radial integral transforms. One may consider integral transforms
of type (1.1) of functions f = f(�σ), � > 0, σ ∈ Sn−1, with respect to the
radial variable �, i.e.

Af(x) =

∫
Rn

a(|x| · |y|)f(y)dy, x ∈ R
n, (4.1)

and deal with mapping properties between Morrey and complementary
Morrey spaces in the following form

sup
r>0

rλ
∫

|x|>r

||x|δAf(x)|pdx ≤ C1 sup
r>0

1

rλ

∫
|x|<r

||x|γf(x)|pdx, (4.2)
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sup
r>0

1

rλ

∫
|x|<r

||x|δAf(x)|pdx ≤ C2 sup
r>0

rλ
∫

|x|>r

||x|γf(x)|pdx, (4.3)

when λ ≥ 0, and

lim
r→0

1

rλ

∫
|y|<r

||y|γf(y)|pdy = 0 ⇒ lim
r→∞ rλ

∫
|y|>r

||y|−γAf(y)|p yp−2dy = 0,

(4.4)

lim
r→∞ rλ

∫
|y|>r

||y|γf(y)|pdy = 0 ⇒ lim
r→0

1

rλ

∫
|y|<r

||y|−γAf(y)|p yp−2dy = 0,

(4.5)
when λ > 0.

Such mapping properties may take place only under the condition

γ + δ = n
p− 2

p
, (4.6)

which is proved similarly to 3.1 if we take into account that

AΠt =
1

tn
ΠtA, ‖Πtf‖Lp,λ;γ =

1

t
n−λ
p

+γ
‖f‖Lp,λ;γ and

‖Πtf‖cLp,λ;γ =
1

t
n+λ
p

+γ
‖f‖cLp,λ;γ .

The condition (4.6) and the condition γ + δ = � − 2n
p coincide under

the choice � = n. The application of the operator Qn to the operator (4.1)
yields

QnAf =

∫
Rn

K(x, y)f(y)dy, K(x, y) =
1

|x|n a
( |y|
|x|
)
. (4.7)

The operator on the right hand side is of the type covered by Proposition
A. Applying Proposition A, for brevity we restrict ourselves to the case
of the radial Laplace transform, i.e. a(|x| · |y|) = e−|x|·|y|. By the relation
(4.7), Lemma 2.1 and Proposition A, after direct calculations we arrive at
the following statement.

Theorem 4.1. Let 1 ≤ p < ∞, λ ≥ 0 and the weight exponents
γ and δ satisfy the condition (4.6). The operator (4.1) with the kernel

a(|x| · |y|) = e−|x|·|y| satisfies the properties (4.2) - (4.5), if and only if

γ <
n

p′
+

λ

p
,

in the case of (4.2) and (4.4), and
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γ <
n

p′
− λ

p
,

in the case of (4.3) and (4.5), with the sharp constants

C1 = |Sn−1|Γ
(

n
p′ + λ

p − γ
)

and C2 = |Sn−1|Γ
(

n
p′ − λ

p − γ
)

in (4.2) and

(4.4), respectively, |Sn−1| = 2π
n
2

Γ(n
2 )
.

In the same way the reader can arrive at a similar statement for general
kernel a(|x| · |y|).

We find more interesting to concentrate on other multidimensional in-
tegral transforms which are much more known in analysis and used in
applications. To this end, in Subsection 4.4 we prove a theorem of type of
Proposition A, for integral operators commuting with anisotropic dilation

Πtf(x) = f(t ◦ x), x ∈ R
n, t = (t1, . . . , tn) ∈ R

n
+, (4.8)

where Rn
+ = {x ∈ Rn, x1 > 0, . . . , xn > 0} and

t ◦ x = (t1x1, . . . , tnxn).
First, we introduce the corresponding spaces which well suit for this

goal, namely, local anisotropic Morrey spaces on Rn
+ and their correspond-

ing complementary versions.

4.2. Local anisotropic Morrey spaces. By Rh, h ∈ Rn
+, we denote the

n-dimensional rectangle

Rh = {x ∈ R
n
+ : 0 < xi < hi, i = 1, . . . , n} h = (h1, . . . , hn).

We use the standard notation for monomials:

h

λ := hλ1

1 · · · hλn
n , where h ∈ R

n
+,

λ = (λ1, . . . , λn), λ1 ≥ 0, . . . , λn ≥ 0.

The weighted local anisotropic Morrey space L
p,
λ;
γ(Rn
+) is defined as

the set of measurable function with the finite norm

‖f‖
L�p,�λ;�γ(Rn

+)
= sup

h∈Rn
+

1

h
λ
‖(·)
γf(·)‖L�p(Rh)

,

where the mixed L
p-norm is defined in the usual way (see [6], [34]):

‖f‖L�p(Rh)
=

⎛
⎜⎜⎝

hn∫
0

· · ·

⎛
⎜⎝

h2∫
0

⎛
⎝ h1∫

0

|f(x1, . . . , xn)|p1dx1
⎞
⎠

p2
p1

dx2

⎞
⎟⎠

p3
p2

· · · dxn

⎞
⎟⎟⎠

1
pn

.

Such anisotropic Morrey spaces on R2 were used in [31] for the study
of mixed Hardy operators.
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The complementary anisotropic mixed norm Morrey spaces are defined
by the norm

‖f‖cL�p,�λ;�γ(Rn
+)

= sup
h∈Rn

+

h

λ‖(·)
γf(·)‖L�p(R�

h)
,

where

R�
h := {x ∈ R

n
+ : x1 > h1, . . . , xn > hn}, h = (h1, . . . , hn) ∈ R

n
+.

The above defined Morrey and complementary Morrey spaces coincide

with the Lebesgue mixed norm space L
p(Rn
+) when λ = (0, . . . , 0).

When h ∈ Rn
+ is fixed, we also use the notation

N

p,
λ;
γ

(f, h) =
1

h
λ
‖(·)
γf‖L�p(Rh)

and cN

p,
λ;
γ

(f, h) = h

λ‖(·)
γf‖L�p(R�

h)
.

The corresponding vanishing Morrey space V0L

p,
λ;
γ(Rn

+) and vanish-

ing complementary Morrey space V∞cL
p,
λ;
γ(Rn
+) are defined as the sets of

functions in L
p,
λ;
γ(Rn
+) and cL
p,
λ;
γ(Rn

+), which satisfy the conditions

lim
h�λ→0

N

p,
λ;
γ

(f, h) = 0 (4.9)

and

lim
h�λ→+∞

cN
p,
λ;
γ(f, h) = 0, (4.10)

respectively. In the standard way it is proved that these sets are closed

subspaces in the spaces L
p,
λ;
γ(Rn
+) and cL
p,
λ;
γ(Rn

+), respectively.

Note, that the tendency to zero of the monomial h

λ = hλ1

1 · · · hλn
n that

the rectangle Rh degenerates, ”clinging” to coordinate hyper-planes xi =
0, i = 1, . . . , n, in an arbitrary way. Note also that

h

λ → 0 � |Rh| → 0

however, geometrically this is the same in the sense that the rectangle

Rh also ”clings” to the coordinate hyper-planes when h

λ → 0 but not

necessarily |Rh| → 0, and vice versa.

4.3. Integral operators commuting with anisotropic dilation (4.8).
If an integral operator

Kf(x) :=

∫
Rn
+

K(x, y)f(y)dy, x ∈ R
n
+

commutes with dilation (4.8): ΠtK = KΠt, t ∈ Rn
+, then its kernel K(x, y)

satisfies the condition

K(Πtx,Πty) = t−1K(x, y), where t−1 = t−1
1 · · · t−1

n . (4.11)
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Theorem 4.2. Let 1 ≤ pi < ∞ λi ≥ 0, i = 1, . . . , n, and let the
condition (4.11) be satisfied. The operator K is bounded in the space

L
p,
λ;
γ(Rn
+), if

κ :=

∫
Rn
+

|K(e, y)|dy
y

1
p
−
λ+
γ

< ∞, (4.12)

where e = (1, . . . , 1) and 1
p =

(
1
p1
, . . . , 1

pn

)
. If K(x, y) ≥ 0, then the condi-

tion (4.12) is necessary for the boundedness, and κ is the sharp constant
for the boundedness: ‖K‖ = κ.

If λi > 0, i = 1, . . . , n, then under the same condition (4.12) the oper-

ator K preserves the vanishing subspace V0L

p,
λ;
γ(Rn

+).

P r o o f. I. Boundedness in the space L
p,
λ;
γ(Rn
+).

Sufficiency part. By the change of variables y = Πxz = (x◦z) we obtain

Kf(x) = x1 . . . xn

∫
Rn
+

K(x,Πxz)f(x ◦ z) dz.

Since x = Πxe, by the condition (4.11) we get

Kf(x) =

∫
Rn
+

K(e, z)f(x ◦ z) dz.

Hence,

‖Kf‖
L�p,�λ;�γ ≤

∫
Rn
+

|K(e, z)|‖Πzf‖L�p,�λ;�γ dz. (4.13)

(Note that the Minkowsky inequality applied above, is valid for Morrey
norms since it is valid for mixed norm Libegue spaces and sup

∫ ≤ ∫ sup .)

It is not hard to calculate that ‖Πzf‖L�p,�λ;�γ = 1

t
�1
p−�λ+�γ

‖f‖
L�p,�λ;�γ . We then

obtain the sufficiency of the condition (4.12).

Necessity part. Let all λi > 0, i = 1, . . . , n. In this case we have the
direct minimizing function

f0(x) =
1

x

1
p
−
λ+
γ

.

Direct calculation shows that f0 ∈ L
p,
λ;
γ(Rn
+). Moreover,via the dilation

change of variables and relation (4.11) we obtain

Kf0(x) = xf0(x) (4.14)

when K(x, y) ≥ 0. Hence, ‖Kf0‖L�p,�λ;�γ = κ0‖f0‖L�p,�λ;�γ , which proves the
necessity and sharpness of the constant.
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If λi = 0 for some i, then (4.14) also holds but f0 /∈ L
p,
λ;
γ(Rn
+). In

this case one should use mi minimizing sequence instead of the minimizing
function f0. Thus, if, for instance, λ1 = 0, but λi > 0, i = 2, . . . , n, then
we choose the the minimizing sequence in the form

f0,ε(x) =
1

xη1−ε
1

n∏
i=2

1

xηii
, ε > 0, ηi =

1

pi
− λi + γi.

Then the arguments in the necessity part with the use of this minimizing
sequence are standard, on the base of Fatou lemma, like for instance in [41]
in the non-anisotropic case. We omit details.

II. To prove the invariance of the vanishing subspace V0L

p,
λ;
γ(Rn

+)
with respect to the operator K, we apply the Minkowsky inequality with
norm N


p,
λ;
γ
(f, h) similarly to actions in (4.13). After direct calculations

we obtain

N

p,
λ;
γ

(Kf, h) ≤
∫
Rn
+

|K(e, y)|
y

1
p
−
λ+
γ

N

p,
λ;
γ

(f, h ◦ y)dy.

It remains to observe that we can pass to the limit under the integral sign
on the right hand side by the Lebesgue dominated convergence theorem.
As regards the necessity of the condition (4.12) for the preservation of the

vanishing subspace V0L

p,
λ;
γ(Rn

+), it is proved via the technique of minimiz-
ing sequences, usual for such goals. The minimizing sequence in this case
is

fo,ε(x) =
1

x

1
p
−
λ+
γ−
ε

, ε = (ε, . . . , ε) ∈ V0L

p,
λ;
γ(Rn

+).

Similar details for isotropic case on Rn may be found in [41]. �

4.4. Multidimensional integral transforms with the kernel K(x◦y).
We consider integral transforms

Af(x) =

∫
Rn
+

k(x◦y)f(y) dy =

∫
Rn
+

k(x1y1, . . . , xnyn)f(y) dy, x ∈ R
n
+. (4.15)

Multidimensional integral transforms such as n-dimensional Laplace
transform, n-dimensional Hankel transform (known also as Koh transform)
and others, occur in various applications, see for instance [30], [29] and
[17]. We aim at the study of mapping properties of operators of form (4.15)
within the frameworks of anisotropic Morrey and complementary Morrey
spaces, introduced in Section 4.2. More precisely, we consider mapping
properties

A : L
p,
λ;
γ(Rn
+) ↪→ cL
p,
λ;
δ(Rn

+) (4.16)
and

A : cL
p,
λ;
γ(Rn
+) ↪→ L
p,
λ;
δ(Rn

+). (4.17)
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The arising necessary relation between the weight exponents γ and δ
now takes the form

γi + δi =
pi − 2

pi
, i = 1, . . . , n, (4.18)

which is checked as usual via dilation arguments with the use of dilation
operator Πtf(x) = f(t ◦ x), t ∈ Rn

+).

Theorem 4.3. Let 1 ≤ pi < ∞ λi ≥ 0, γi ∈ R, i = 1, . . . , n, and
the condition (4.18) be satisfied. The operator (4.15) satisfies the mapping
properties (4.16) and (4.17) if

κ0 :=

∫
Rn
+

|k(y)| dy

y

1
p
−
λ+
γ

< ∞ and κ∞ :=

∫
Rn
+

|k(y)| dy

y

1
p
+
λ+
γ

< ∞, (4.19)

respectively. When k(y) ≥ 0, y ∈ Rn
+, these conditions are also necessary

and κ0 and κ∞ are sharp constants for the boundedness (4.16) and (4.17),
respectively.

P r o o f. We introduce the transformation

Qf(x) =
1

x1 . . . xn
f

(
1

x1
, . . . ,

1

xn

)
, x = (x1, . . . , xn) ∈ R

n
+.

The operator Q maps the anisotropic space L
p,
λ;
γ(Rn
+) onto cL
p,
λ;
δ(Rn

+),

where γ and δ are related by the condition (4.18). Indeed, it is easy to
check that

cN

p,
λ;
γ

(Qf, h) = N

p,
λ;
γ

(f, h∗) , h∗ =

(
1

h1
, . . . ,

1

hn

)
. (4.20)

Therefore, under the condition (4.18) we have the isometry

‖Qf‖cL�p,�λ;�δ = ‖f‖
L�p,�λ;�γ (4.21)

and consequently
‖Qf‖

L�p,�λ;�δ = ‖f‖cL�p,�λ;�γ , (4.22)

since Q−1 = Q.
On the other hand, applying the operator Q to the operator A, we

obtain
QA = K, (4.23)

where

Kf(x) =

∫
Rn
+

K(x, y)f(y) dy, K(x, y) =
1

x1 . . . xn
k

(
y1
x1

, . . . ,
yn
xn

)
.

Applying Theorem 4.2 to the operator K, making use of the isometry
(4.21) via the identity (4.23), we arrive at the first condition in (4.19) for the
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mapping (4.16), together with the necessity of this condition and sharpness
of the constant κ0, when the kernel k(x) is non-negative.

Similarly, the remaining part of the theorem for the mapping (4.17) via
consideration of the composition AQ instead of QA. We omit details. �

In the next theorem we consider “vanishing properties” of type (3.10)
and (4.4) for anisotropic setting of this subsection. We restrict ourselves
to the case n = 2 for better transparency of result, extension of writing for
n > 2 being evident.

Theorem 4.4. Let 1 ≤ pi < ∞ λi ≥ 0, γi ∈ R, i = 1, . . . , n. Under
the condition (4.18) and the condition κ0 < ∞ (with n = 2), besides the
mapping (4.16), there holds the property: if

lim
h
λ1
1 h

λ2
2 →0

1

hλ1
1 hλ2

2

⎛
⎜⎝

h2∫
0

⎛
⎝ h1∫

0

|xγ11 xγ22 f(x1, x2)|p1dx1
⎞
⎠

p2
p1

dx2

⎞
⎟⎠

1
p2

= 0 (4.24)

then

lim
h
λ1
1 h

λ2
2 →0

1

hλ1
1 hλ2

2

⎛
⎜⎝

∞∫
h2

⎛
⎝ ∞∫

h1

|xδ11 xδ22 Af(x1, x2)|p1dx1
⎞
⎠

p2
p1

dx2

⎞
⎟⎠

1
p2

= 0.

(4.25)
When the kernel k(x), x ∈ R2

+, is non-negative, the condition κ0 < ∞ is
also necessary for the property (4.24) to imply the property (4.25).

P r o o f. We only have to show that (4.24) implies (4.25). To this end
we use the identity (4.23). We apply Theorem 4.2 to the operator K with

respect to the vanishing subspace V0L

p,
λ;
γ(Rn

+). Then via the relation (4.20)
we arrive at statement of this theorem. �

4.5. Additional remarks. 1o Integral transforms in mixtures of aniso-
tropic Morrey and complementary Morrey spaces

One can consider Morrey-type spaces which are mixture of usual Morrey
spaces and complementary Morrey spaces, where integration in the norm is
over (0, hi) for a part of variables or over (hj ,∞) for the remaining part of
variables. As can be seen from the proof of Theorem 4.2 it may be extended
to such a setting. Then application of Theorem 4.2 via the identity (4.23)
allows to obtain mapping properties for integral transforms of the form
(4.15). In particular, it is not hard to obtain conditions on the kernel k(y)
for the property that the condition
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lim
h
λ1
1 h

λ2
2 →0

hλ2
2

hλ1
1

⎛
⎜⎝

∞∫
h2

⎛
⎝ h1∫

0

|xγ11 xγ22 f(x1, x2)|p1dx1
⎞
⎠

p2
p1

dx2

⎞
⎟⎠

1
p2

= 0

implies

lim
h
λ1
1 h

λ2
2 →0

hλ1
1

hλ2
2

⎛
⎜⎝

h2∫
0

⎛
⎝ ∞∫

h1

|xδ11 xδ22 Af(x1, x2)|p1dx1
⎞
⎠

p2
p1

dx2

⎞
⎟⎠

1
p2

= 0,

with γi + δi = pi−2
pi

, i = 1, 2.

2o Admission of λi = 0 for vanishing subspaces

As noted in Subsection 4.2, anisotropic Morrey and complementary
Morrey spaces coincide with the mixed norm Lebesgue space space, if λi = 0
for all i = 1, . . . , n. An intermediate situation when λi may be equal to
zero for some i, i.e. when we have just Lebesgue integration over (0,+∞)
in part of variables, is also of interest. This possibility is allowed for norm
inequalities in Theorems 4.2 and 4.3. In Theorem 4.4, given for brevity for
n = 2, we supposed for simplicity that both λ1 > 0 and λ2 > 0. Analyzing
the proof, it is not hard to see that the statement of Theorem 4.4 remains
valid when either λ1 = 0 λ2 > 0 or λ1 > 0, λ2 = 0. The reader can also
easily obtain statements of type of Theorem 4.4 for an arbitrary n with
admission of λi = 0 for some i, but not all.

5. Appendix

Proof of the first equality in (3.20).

Let first β > α. It is known that the Mittag-Leffler function Eα,β(−x)
with β > α can be expressed in terms of fractional integration of order
β − α of the function Eα,α(−x):

Eα,β(−x) =
1

Γ(β − α)

1∫
0

(
1 − t

1
α

)β−α−1
Eα,α(−tx)dt, (5.26)

see for instance [16, Lemma 4.26]. Then

Iα,β(σ) =
1

Γ(β − α)

∞∫
0

dx

xσ

1∫
0

(1 − t
1
α )β−α−1Eα,α(−tx)dt

=
1

Γ(β − α)

1∫
0

(1 − t
1
α )β−α−1

∞∫
0

Eα,α(−tx)

xσ
dx.
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Then after the change of variable xt = ξ we have

Iα,β(σ) =
1

Γ(β − α)

1∫
0

(1 − t
1
α )β−α−1tσ−1dt Iα,α(σ).

Hence the first equality in (3.20) follows by easy calculations. In remains
to add the case β = α. To this end, it suffices to note that both the left
and right hand sides of the first equality in (3.20) are analytic with respect
to β ∈ C.

Proof of the second equality in (3.20).

It is known that Eα,α(−x) = −α d
dxEα,α(−x), see [16, Lemma 4.25].

Therefore,
∞∫
0

Eα,α(−x)

xσ
dx = −α

∞∫
0

1

xσ
d

dx
Eα(−x)dx = −α

∞∫
0

1

xσ
d[Eα(−x) − 1]

= ασ

∞∫
0

1 − Eα(−x)

xσ+1
dx,

which proves the second equality in (3.20).
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