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Sammendrag 

INTRODUKSJON: Docetaxel (DOC) er et potent kjemoterapeutisk legemiddel, men som har 

flere begrensninger inkludert dårlig løselighet. Dagens tilgjengelige formulering med DOC 

begrenses av rapporterte alvorlige bivirkninger som enten skyldes legemidlet i seg selv eller 

hjelpestoffene brukt i formuleringen. Nanomedisin har blitt brukt for å forbedre det terapeutiske 

utfallet av flere legemidler, men til nå er det ingen tilgjengelige nano-formuleringer med DOC. 

Det er derfor interessant å undersøke om en liposomal formulering med DOC kan løse 

legemidlet og forbedre det terapeutiske utfallet. 

FORMÅL: Målet med denne oppgaven var å etablere en metode for tillaging og karakterisering 

av DOC-liposomer i liten skala, for videre å undersøke effekten av ulike lipidkomposisjoner 

for inkorporering av legemiddel.  

METODE: DOC-liposomer ble fremstilt av ulike lipidkomposisjoner ved bruk av «thin-film 

hydration» metode og størrelsesredusert ved hjelp av sonikering. Sentrifugering ble brukt som 

metode for å fjerne fritt legemiddel fra den liposomale formuleringen. Effekten av ulike 

lipidkomposisjoner på inkorporering av legemiddel ble undersøkt med karakterisering av de 

ulike lipsomale formuleringene. 

RESULTATER: De 14 ulike liposomale formuleringene med ulik lipidkomposisjon og 

legemiddel:lipid ratio på 10:1 (vekt/vekt) viste en inkorporering mellom 18 og 115 %. Tre av 

de liposomale formuleringene viste inkorporering av DOC nær 100 % og ble undersøkt videre 

ved å øke legemiddel:lipid ratio til 2:10 (vekt/vekt) for å se om mer DOC kunne inkorporeres i 

liposomene. Økt legemiddel:lipid ratio reduserte inkorporering av DOC i liposomene for alle 

tre formuleringene, men soya-fosfatidylkolin (SPC) og positive ladet 1,2-Dioleoyl-3-

trimethylammonium-propane (DOTAP) (8:2 vekt/vekt) formuleringen hadde den høyeste 

DOC-konsentrasjonen. Vi undersøkte derfor effekten av å variere konsentrasjonen av DOTAP 

i forhold til SPC. Resultatene viste at en høyere konsentrasjon av DOTAP ga et høyere utbytte 

av DOC. 

KONKLUSJON: Vi lyktes med å etablere en småskala metode for å screene ulike liposomale 

formuleringer for deres evne til å ta opp DOC i liposommembranen. I screening studien fant vi 

at liposomale formuleringer som inneholdt det kationiske lipidet DOTAP viste bedre 

inkorporering av de ulike liposomkombinasjonene som ble undersøkt. En økende mengde 

DOTAP i SPC:DOTAP liposomer viste en økende inkorporering av DOC. 
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Nøkkelord: docetaxel, liposomer, lipider, lipidkomposisjon, legemiddelformulering, 

inkorporering av legemiddel. 
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Abstract 

INTRODUCTION: Docetaxel (DOC) is a potent anticancer drug but has several limitations 

such as poor solubility. The currently commercially available formulation of DOC is limited 

by reported serious side effects which either is attributed to the drug itself or the solvent used. 

Nanomedicine has been used for improving the therapeutic outcome of several drugs, but so far 

there are none available with DOC. It would be interesting to apply a liposomal formulation for 

delivery of DOC in order to solubilize the drug and improve the therapeutic outcome. 

OBJECTIVES: The aim with this master project was to establish a small-scale screening 

method for making and characterizing DOC liposomes and further investigate the effect of lipid 

composition on drug entrapment to find a suitable liposomal formulation of DOC. 

METHODS: DOC liposomes were made of different lipid compositions by a thin-film 

hydration method and size reduced by probe sonication. Centrifugation was used to remove 

free DOC from the liposomal formulation. The effect on varying lipid compositions on drug 

entrapment were tested with characterization of the liposomal formulations. 

RESULTS: The 14 different liposomal formulations with varying lipid compositions and a 

drug:lipid ratio of 1:10 (w/w) showed an entrapment efficiency between 18 and 115 %. Three 

of the liposomal formulations showed entrapment efficiency near 100 % and were further 

investigated by increasing the drug:lipid ratio to 2:10 (w/w) to see if more DOC could be 

entrapped in the liposomes. The DOC recovery were low for all three formulations, although 

the soy phosphatidylcholine (SPC):DOTAP liposomes showed a higher recovery compared to 

the other two. The SPC:DOTAP were brought further to investigate the effect of varying the 

concentration of DOTAP, and the results showed that a higher DOTAP concentration gave a 

higher recovery of DOC. 

CONCLUSION: A small scale screening method for investigating the effect of different 

liposomal formulations on the archived DOC entrapment was established successfully. The 

liposomes with cationic lipid, DOTAP, showed best entrapment efficiency of the different 

liposomal combinations screened. Increasing amount of DOTAP within SPC:DOTAP 

liposomes showed a greater incorporation of DOC. 

Key words: docetaxel, liposomes, lipids, lipid composition, drug carrier, formulation, 

entrapment efficiency. 
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1 General introduction 

Cancer causes millions of deaths each year and is the second leading cause of death globally 

(WHO, 2018). The first line treatment for most cancers today are surgery, radiation and 

chemotherapy (Kumari et al., 2016). Although docetaxel (DOC) is one of the most important 

cytotoxic agents in clinic today, it has several limitations such as poor solubility, nonselective 

distribution and fast elimination. In the currently commercially available formulation of DOC, 

it has been reported serious side effects such a neutropenia, musculoskeletal toxicity, peripheral 

neuropathy and hypersensitivity, which either can be attributed to the drug itself or to the 

solvent used (polysorbate 80) (Tan et al., 2012).  

Nanomedicine is a technology in which special drug systems, drug delivery systems, uses nano 

sized particles, including liposomes for medical applications (Nehoff et al., 2014). In general, 

employment of drug delivery systems with a carrier and an entrapped drug can improve the 

pharmacological properties of the drug compared with the conventional “free drug” (Allen and 

Cullis, 2004). 

Liposomes is an attractive drug carrier of several reasons. First, both hydrophilic and lipophilic 

drugs can be encapsulated or entrapped in liposomes (Tan et al., 2012). Second, the membrane 

composition of liposomes can be altered and composed of a variety of lipids and lipid 

combinations which in turn can change the organization of the membrane, charge and stability 

(Brandl, 2001). Third, size can be altered which is favourable in terms of longer half-life and 

altered pharmacokinetics (Fanciullino and Ciccolini, 2009; Bozzuto and Molinari, 2015). 

Fourth, liposomes are in general non-toxic, biocompatible and biodegradable (Akbarzadeh et 

al., 2013). Fifth, liposomal formulations are often applied to solubilize the drug which is 

beneficial with poorly soluble drugs (Laouini et al., 2012). Finally, liposomes could be 

modified with targeting moieties to achieve active targeting, or modified to achieve a triggered 

release mechanism, or altered with surface modifications to give long circulating liposomes. 

In the last decades, extensive research has been done to incorporate drugs into liposomes to 

improve therapeutic outcome, and currently several formulations are commercially available 

and more formulations are under clinical trials (Bulbake et al., 2017). 
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It is desirable to overcome the limitations and side effects alongside with improving the 

anticancer effects of DOC compared to the currently commercially available DOC formulation. 

Hence there is comprehensive focus on studies on applying a nanocarrier with DOC entrapped 

to overcome these problems. As far as we are concerned, there is no commercially available 

nanocarrier with DOC to this date (Louage et al., 2017). Hence, it is desirable to develop a 

liposomal formulation which shows good tolerability, minimal side effects and a good 

therapeutic effect. 

By applying a liposomal formulation for DOC entrapment to solubilize the highly lipophilic 

drug, one could avoid the use of Polysorbate 80. The partition coefficient and polarity of a drug 

determines where the drug will be located in the liposomal membrane, and further the 

entrapment efficiency of the drug (Bozzuto and Molinari, 2015). Lipophilic drugs, like DOC, 

can be entrapped in the lipid bilayers of the liposome (Tan et al., 2012) and because of their 

lipophilic nature they reside in the acyl chains of the liposome. The entrapment efficiency of 

drugs is dependent on the acyl chain properties, like length of acyl chain and packing density, 

in addition to changes in the drug:lipid ratio (Bozzuto and Molinari, 2015). 

We aimed at development of a liposomal formulation with DOC incorporated in the lipid 

bilayer. To find a suitable formulation, we explored the effect of lipid composition in liposomes 

and what effect the composition would have on entrapment and drug load of DOC. 
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2 Introduction 

2.1 Cancer-targeted drug delivery 

According to the World Health Organisation (WHO), cancer is the second leading cause of 

death globally, responsible for 8.8 million deaths in 2015. Cancer is a collective term applied 

for a numerous of diseases which can affect any part of the body, and the most common causes 

of cancer deaths are lung cancer, liver cancer, colorectal cancer, stomach cancer and breast 

cancer. Cancer is caused by transformation of normal cells into tumour cells in a complex 

process which progresses from pre-cancerous lesion to malignant tumour (WHO, 2018). 

Today the first line treatment for most cancers are surgery, chemotherapy and radiation. 

Chemotherapy is a highly non-specific strategy in targeting drugs to cancer tissues which leads 

to undesirable side effects to healthy tissues (Kumari et al., 2016). As a consequence, healthy 

proliferative cells in bone marrow, hair follicles and the gastrointestinal tract gets killed and 

thereby leading to common side effects like compromised immune defence because of 

decreased production of leukocytes, platelets and red blood cells, hair loss and inflammation 

and ulceration of mucus membranes in the gastrointestinal tract (Dawidczyk et al., 2014). Thus, 

conventional chemotherapy drugs suffers from several limitations, like severe toxicity to 

normal cells, non-specific biodistribution, inadequate drug concentrations at cancer cells, 

development of multiple drug resistance and poor aqueous solubility (Kumari et al., 2016). 

Nanomedicine and application of nanoparticles (NPs) as drug delivery systems for treatment of 

cancer have received extensive attention in recent years (Kumari et al., 2016). Nanomedicine 

is a branch under nanotechnology which are focused on development of pharmaceuticals 

(Etheridge et al., 2013), where use of special drug delivery systems are used for medical 

applications like treatment of cancer, medical imaging and diagnostics (Nehoff et al., 2014). 

The European Science Foundation (ESF) defined nanomedicine in 2004 as: “The field of 

Nanomedicine is the science and technology of diagnosing, treating and preventing disease and 

traumatic injury, of relieving pain and of preserving and improving human health, using molecular tools 

and molecular knowledge of the human body…. The aim of “Nanomedicine” may be broadly defined 

as the comprehensive monitoring, control, construction, repair, defence and improvement of all human 
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biological systems, working from the molecular level using engineered devices and nanostructures, 

ultimately to achieve medical benefit” (European Science Foundation, 2004). 

A drug delivery system consists of a carrier and a therapeutic drug (Jain, 2008). The drug 

delivery system-carrier can be a NP generally composed of lipids or polymers which are 

designed to improve the therapeutic and pharmacological properties of the therapeutic drug. In 

general, employment of drug delivery systems with a carrier and an entrapped drug can improve 

the pharmacological properties of the drug compared with the conventional “free drug” (Allen 

and Cullis, 2004). The drug delivery process includes administration of the drug delivery 

system, release of the therapeutic drug by the carrier, transport of the therapeutic drug across 

the biological membranes to the desired site of action (Jain, 2008).There are several types of 

nanoparticles used for drug delivery carriers, such as liposomes, micelles, polymeric 

nanoparticles, polymeric micelles, dendrimers, carbon nanotubes, nano-shells, viral 

nanoparticles and inorganic (metal) nanoparticles (Cho et al., 2008; Kumari et al., 2016). 

NPs offers several advantages in treatment of cancerous diseases which make them attractive 

compared to conventional chemotherapy. A major advantage with NPs is that they can improve 

solubility by solubilize poorly soluble, lipophilic drugs in hydrophobic compartments and 

therefore improve the pharmacokinetics of the drug compared to conventional medicine 

(Kumari et al., 2016). 

Another important property of NPs is the size in nano-range that could alter the 

pharmacokinetics of the drug and favour nanomedicine over conventional medicine (Nehoff et 

al., 2014). Conventional drugs may have a widespread distribution in the body which may affect 

normal, non-target tissues. Employment of a drug entrapped in a NP will on a general basis 

affect the clearance of the drug in direction downwards, so the half-life increases, the 

distribution volume decreases and the area under the time versus concentration curve increases 

(Allen and Cullis, 2004; Nehoff et al., 2014). The lower distribution volume will reduce the 

impact and potential side effects in normal tissues (Allen and Cullis, 2004). 

NP employed for cancer treatment can enhance safety, bioavailability and therapeutic efficacy 

compared to conventional therapy. NPs can exploit an inherent passive targeting phenomenon, 

or be altered and hence offer strategies of active targeting to cancerous tissue (Kumari et al., 

2016). 
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Many solid tumours have a unique pathophysiologic characteristic that distinguish them from 

healthy tissue, which anticancer drugs can exploit (Natfji et al., 2017). Many cancer cells grow 

fast and therefore demands energy in form of nutrients and oxygen, which leads to development 

of new blood vessels, a process called neovascularization, or recruitment of nearby existing 

blood vessels to supply the tumour cells. This results with highly disorganized angiogenic blood 

vessels and dilated tumours with enlarged gaps between the endothelial cells, which enables 

macromolecules, including NPs, to permeate and accumulate in tumour tissues (Cho et al., 

2008; Natfji et al., 2017).  

In addition, tumours show lack of- or compromised lymphatic drainage, hence NP gets retained 

present in the interstitial fluid of tumours for a longer time compared to normal tissues which 

have functional lymphatics (Peer et al., 2007). The result of the enhanced permeability of the 

tumours vascularity together with compromised lymphatic drainage leads to passive and to a 

certain extent, selective accumulation of extravasated macromolecules inside tumour cells, 

which in turn reduces the clearance from the tumour tissue (Natfji et al., 2017). This is called 

the enhanced permeability and retention (EPR) effect, illustrated in Figure 1 (Kumari et al., 

2016). 

 

Figure 1: A schematic illustration of the Enhanced Permeability and Retention effect is imagined to take place in 

leaky tumour vessels (Sætern, 2004) (with permission). 
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NPs tends to exploit the enhanced permeability and retention (EPR) effect, especially to 

tumours and inflamed tissues. Because of their small size, NPs can extravasate through cellular 

barriers. 

There are several factors that determine the efficacy of anticancer drugs. First, the ability to 

penetrate a variety of barriers and reach the tumour without losing activity or amount drug when 

traveling through the blood circulation is crucial. Second, the drug should have the ability and 

selectivity to avoid killing normal cells and tissue, but only affect tumour cells in a controlled 

manner (Cho et al., 2008). 

It is crucial for the drug to stay in the blood circulation for sufficient enough time to effectively 

reach the tumour. The chance of being caught by the mononuclear phagocyte system (MPS) is 

high if the NPs have unmodified surface characteristics. The fate of injected NPs can, to a 

certain extent, be controlled by modifying the size of the NPs and modifying the surface 

characteristics like making the surface of a NP hydrophilic. The surface can be modified to be 

more hydrophilic by coating the surface with polyethylene glycol (PEG) which is a hydrophilic 

polymer, a process known as PEGylation. PEGylation will protect NPs from opsonization by 

macrophages by repelling them (Cho et al., 2008). 

 

2.1.1 Docetaxel 

N-debenzoyl-N-tert-(butoxycarbonyl)-10-deaxetyltaxol, or docetaxel (DOC) is a semisynthetic 

Taxol/paclitaxel analogue (Guéritte-Voegelein et al., 1991) which belongs to the taxane family, 

a class of anticancer drugs (Immordino et al., 2003). DOC is prepared by semi synthesis from 

10-deacetylbaccatin-III, which are an inactive precursor that are isolated from needles of the 

European yew tree, Taxus baccata (Zhang and Zhang, 2013). DOC is used for treatment of 

breast cancer, non-small cell lung cancer, prostate cancer, gastric adenocarcinoma and head and 

neck cancer (Louage et al., 2017). 

Both DOC and paclitaxel are poorly soluble drugs. The chemical structure of DOC in Figure 2 

shows a complex taxane ring that is linked to an ester at the C-13 position. The hydrophobic 

domains of the fused ring system and side chain of DOC contributes to poor aqueous solubility 

(Straubinger and Balasubramanian, 2005). DOC is slightly more water-soluble than paclitaxel 
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because of the chemical structure, specifically a tertbutyl carbamate ester in the 

phenylpropionate side chain in addition to a hydroxyl group on C-10 (Tan et al., 2012).  

 

Figure 2: Chemical structure of docetaxel. 

 

DOC lipophilic nature causes a limited solubility in aqueous medium (Tan et al., 2012). Since 

DOC is practically insoluble (4.03 µg/mL) in water, the only currently available formulation is 

parenterally administrated (Yin et al., 2009), formulated in a 50:50 (v/v) ethanol:polysorbate 

80 formulation, commercially branded Taxotere® (Pereira et al., 2016; Louage et al., 2017). 

Polysorbate 80 is a surfactant which can cause serious hypersensitivity reactions and induce 

fluid retention and therefore have to be pre-treated with antihistamines and/or corticosteroids 

to avoid severe or fatal allergic reactions, and diuretics if swelling due to fluid retention (Louage 

et al., 2017). The currently commercially available formulation of DOC have reported to cause 

serious side effects like neutropenia, musculoskeletal toxicity, peripheral neuropathy and 

hypersensitivity reactions which either is attributed to polysorbate 80 or to DOC itself (Tan et 

al., 2012).  

In order to solubilize DOC, one could employ a liposomal formulation. There have been 

developed alternative dosage forms such as liposomes (Deeken et al., 2013; Mahalingam et al., 

2014), micelles, polymeric nanoparticles and cyclodextrin complexes in order to eliminate 

Polysorbate 80 based formulation of DOC and hopefully and ideally to eliminate toxicity and 
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adverse reactions (Manjappa et al., 2013; Naik et al., 2010). However, none of these 

formulations are commercially available but under clinical investigations for now.  

Two of the formulations under clinical trials are liposomal formulations; ATI-1123 and LE-DT 

(Louage et al., 2017). The ATI-1123 liposomal formulation of DOC was composed of 

phospholipids (PLs), cholesterol (Chol), human serum albumin and sucrose (Mahalingam et 

al., 2014). The LE-DT liposomal formulation of DOC was composed of negatively charged 

synthetic PLs and Chol (Deeken et al., 2013). Both ATI-1123 and LE-DT is currently under 

phase I and II clinical trials, respectively, and subject to a patent situation (Louage et al., 2017) 

and therefore there is little information about which PLs that were used. The results from the 

clinical trials of ATI-1123 and LE-DT have reported good tolerability, predictable and 

manageable toxicity and promising antitumor effect (Mahalingam et al., 2014; Deeken et al., 

2013). 

 

2.1.1.1 Mechanism of action 

DOC is an antineoplastic agent in which the antitumor mechanism of action is hyper-

stabilization of microtubules. By binding to the β-subunit protein of tubulin on the 

microtubules, DOC promotes assembly of tubulin into stable microtubules and simultaneously 

inhibition of microtubule depolymerization. The normal dynamic equilibrium between 

polymerization and depolymerization within the microtubule system is disrupted because of the 

formation of stable microtubule bundles and hence lead to cell cycle arrest at the G2/M phase 

and cell death (Zhang and Zhang, 2013; Tan et al., 2012). Cell death is a result of a significant 

reduction in free tubulin, inhibition of mitotic cell division and prevention of cancer cell 

proliferation (Xie et al., 2016). To achieve therapeutic efficacy, DOC is dependent on being 

released and delivered to the cytoplasm of the cell to access microtubules (Dawidczyk et al., 

2014). 
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2.2 Liposomes 

2.2.1 Characteristics of liposomes 

Liposomes are lipid based nanoparticles with a spherical shape in where an aqueous core lies 

between a lipid bilayer (Kim, 2016). The size of liposomes can range from a few nanometres 

to several micrometres. Liposomes seem to have ideal properties as a drug carrier system 

because of their ability to entrap different substances together with their morphology which is 

similar to cellular membranes (Bozzuto and Molinari, 2015). Because of this, a lot of interest 

and research have been carried out with this nanocarrier system since the discovery of 

liposomes in the 1960s by Alec D. Bangham (Bozzuto and Molinari, 2015; Bangham et al., 

1965).  

The liposomes are primarily composed of phospholipids (PL) that are either originated from 

plants or egg. In addition, liposomes can include Chol, sphingolipids, glycerolipids, long-chain 

fatty acids, membrane proteins and nontoxic surfactants (Kaur et al., 2014).  

The liposomes are arranged in bilayers, as shown in Figure 3, where the lipids arrange 

themselves so that hydrophilic head groups of the PLs points toward the aqueous phases, that 

is both outside and inside the vesicle, making the core hydrophilic, while the hydrophobic 

chains of the PLs is forming the inner core of the lipid bilayers (Kumari et al., 2016). Liposomes 

can have one or more lipid bilayers, named unilamellar (ULVs) and multilamellar vesicles 

(MLVs), respectively (Kraft et al., 2014). Poorly soluble, lipophilic drugs or compounds can 

be entrapped in the lipid bilayers as shown in Figure 3, while hydrophilic, water-soluble drugs 

or compounds can be encapsulated in the hydrophilic core of the liposome (Tan et al., 2012).  
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Figure 3: Cross section of a liposome with a phospholipid bilayer. Lipophilic drugs are entrapped in the 

phospholipid bilayer (Sætern, 2004) (with permission). 

 

The partition coefficient and polarity of a drug determines where the drug will be located in the 

liposomal membrane, and further the entrapment efficiency of the drug (Bozzuto and Molinari, 

2015). Because of DOCs high lipophilicity, it is conceivable that the drug will reside in the 

fatty acyl chains of the liposome. The entrapment efficiency of DOC is dependent on the acyl 

chain properties, like length of acyl chain and packing density, in addition to changes in the 

drug:lipid ratio (Bozzuto and Molinari, 2015). 

The liposomal properties vary substantially with composition of lipids, preparation methods, 

surface charge and size of the vesicles.  
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2.2.2 Membrane components in liposomes 

The membrane composition of the liposomal membrane might be varied by selecting different 

lipids and lipid combinations, that will ultimately change liposomal features like phase 

transition temperature (Tm), stability and charge. Which lipid(s) that are chosen will affect the 

stability of the liposomes both in vitro and in vivo and the stability of the drug. Choice of lipid 

affects the organisation and properties of the PL membrane like elasticity, permeability and 

binding of a drug (Brandl, 2001). Several studies have showed that composition of the lipid 

bilayer affects the entrapment of DOC in liposomes (Pereira et al., 2016; Naik et al., 2010; 

Manjappa et al., 2013; Immordino et al., 2003). 

The lipids used to form the bilayer will determine the rigidness or “fluidity” of the membrane 

and the charge of the bilayer (Akbarzadeh et al., 2013). A key parameter for liposomal systems 

is the gel to liquid crystalline Tm in which the structure of the bilayer loses the ordered packing 

because the hydrocarbon chains melts. The longer the length of the hydrocarbon chain is, the 

higher the Tm is (Taylor et al., 2005), due to van der Walls interactions which is stronger and 

thus require more energy to disrupt the ordered packing (Bozzuto and Molinari, 2015). In 

addition, strong head group interactions and increasing saturation of the fatty acid will increase 

the Tm (Taylor et al., 2005). If saturated PLs with long acyl chains is chosen as components, it 

will form a rigid and impermeable bilayer, whereas unsaturated PLs from natural sources gives 

a less stable bilayer that is more permeable (Akbarzadeh et al., 2013). 

 

2.2.2.1 Phospholipids 

Phospholipids (PLs) or glycerophospholipids are a subclass of lipids which are a key 

component of all cell membranes (Singh et al., 2017). PLs contain phosphorus, an polar part 

and a non-polar part (Li et al., 2015). They are amphiphilic molecules which means that they 

are composed of a hydrophilic head group and hydrophobic acyl chain-tails (Bozzuto and 

Molinari, 2015), that are linked to alcohol (Figure 4). The polar head groups will be oriented 

interiorly or exteriorly to the aqueous phases (Akbarzadeh et al., 2013). 
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Figure 4: Illustration of the general structure of phospholipids and how they arrange themselves in bilayers. 

 

PLs might differ in their composition by containing different alcohols, head group, acyl chains, 

or also by source of PL. PLs that vary in the alcohols can be divided into glycerophospholipids 

and sphingomyelins. PLs that vary in the structure of the head group gives rise to different PLs 

like phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) 

(Li et al., 2015) like shown in Figure 5. 
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Figure 5: Illustration of commonly used phospholipids for liposomal formulations. The R1 and R2 groups 

represents the fatty acyl tail groups (Inspired by (Kraft et al., 2014)). 

 

The fatty acyl chains (tail group presented in Figure 5 by R1 and R2) of the PL are typically 14-

18 carbons in length and have varying saturation (Kraft et al., 2014). Dipalmitoyl with 16 

carbons and distearoyl with 18 carbons, both saturated fatty acid chains, are popular choices 

for lipid bilayers. Dioleoyl is an unsaturated fatty acid chain with 18 carbons which also are 

commonly used (Alipour et al., 2017). 

Table 1 comprises examples of different lipids with different head groups and fatty acyl chains. 

These lipids are used in this master project. The head groups is either PC, also referred to as 

lecithin which has a neutral charge and are a major building block in membranes, PE which 

carry a neutral charge at physiologic pH 7.4 and PG which carry a negative net charge at 

physiological pH 7.4 (Kraft et al., 2014) as shown in Figure 5. 
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Table 1: Examples of different lipids with different head groups: PC, PE and PG. The fatty acyl groups vary in 

length and saturation. 

Lipid Structure 

SPC 

 

 

 

 

 

 

DMPC 

 

 

 

 

 

 

DOPC 

 

 

 

 

 

POPC 

 

 

 

 

 
 

DOPE 

 

 

 

 

  

DMPE 

 

 

 

 

 

POPE 
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DMPG 

 

DPPG 

 

 

The source of the PLs can be categorized accordingly (Samad et al., 2007): 

• Natural source. 

• Modified from a natural source. 

• Semisynthetic. 

• Synthetic. 

PLs have excellent biocompatibility which makes them attractive as pharmaceutical excipients 

and applications in drug delivery systems. When PLs is hydrated in aqueous medium, they will 

form in different assemblies like liposomes or micelles (Li et al., 2015). In the case of 

liposomes, PLs and eventually other adjacent lipid molecules interact and align to form a 

contiguous bilayers sheet, which will form enclosed vesicles in solution (Kraft et al., 2014). 

 

2.2.2.2 DOTAP 

1,2.Dioleoyl-3-trimethylammonium-propane (DOTAP) is a cationic lipid which consists of two 

unsaturated fatty acids, oleoyl chains which is bound by an ester bond to a glycerol backbone. 

The cationic head group is a quaternary ammonium salt (Zhi et al., 2018). The chemical 

structure of DOTAP is shown in Figure 6, and is one of the lipids used in this master project. 
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Figure 6: The chemical structure of 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP). 

 

2.2.2.3 Ceramides (Sphingolipids) 

Ceramides is a class of sphingolipids which are composed of two distinct functional 

components, the sphingosine structure and the esterified fatty acyl chain (Stillwell, 2016a). The 

acyl chains vary in length, where endogenous ceramide species commonly have 16-24 carbon 

atoms. In this master project we used ceramide C6 shown in Figure 7 and ceramide C12 shown 

in Figure 8.  

 

Figure 7: The chemical structure of Ceramide C6 

 

Figure 8: The chemical structure of Ceramide C12 

 

2.2.2.4 Cholesterol (sterols) 

Cholesterol (Chol) is a hydrophobic molecule, shown in Figure 9, with the exception of a polar 

-OH group which is anchored to the aqueous interface (Stillwell, 2016b). Chol can increase the 

packing of PL molecules and decrease the mobility of hydrocarbon chains, and therefore reduce 

the permeability of the liposomal bilayer (Demel and De Kruyff, 1976), hence preventing loss 
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of drug (Brandl, 2001; Dawidczyk et al., 2014). Chol also change the fluidity of the intravesical 

interactions between the head groups and hydrocarbon chains which make the lipid bilayer 

more rigid (Briuglia et al., 2015) and hence decrease the Tm (Taylor et al., 2005). Studies have 

showed that inclusion of a small amount of Chol does not have a negative effect on entrapment 

of drugs, however, increasing amount of Chol in a liposomal formulation had a negatively effect 

on drug loading (Mohammed et al., 2004; Immordino et al., 2003; Chen et al., 2017).  

 

Figure 9: The chemical structure of cholesterol. 

 

2.2.2.5 PEGylation 

Conventional liposomal formulations have been hampered by short circulation time in the 

bloodstream because of uptake by the mononuclear phagocyte system (MPS) (Kim, 2016). 

Polyethylene glycol (PEG) is a polymer which often is attached to the surface of nanoparticles 

to make the detection by the MPS more difficult. This process is called PEGylation (Bulbake 

et al., 2017; Kumari et al., 2016) and have been shown to improve the stability and circulation 

time of liposomes after intravenous administration (Bozzuto and Molinari, 2015).  

PEGylated liposomes are also referred to as Stealth™ liposomes or long circulating liposomes. 

Among various surface modifying molecules, PEG is popular because of its properties 

including conformationally flexibility, high mobility and hydrophilicity which contribute to 

decreased interactions with various plasma proteins and uptake by the MPS (Kim, 2016). 

DSPE-PEG2000, shown in Figure 10, is a PEGylated PL which is applied in different 

preparations, including Doxil® and used in this master project. The PEG layer is grafted onto 

PE and usually serves as a steric barrier to stabilize the molecule assemblies (Li et al., 2015). 
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Figure 10: The chemical structure of 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) with 

polyethylene glycol (PEG)-2000. 

 

2.2.3 Methods for preparation of liposomes 

2.2.3.1 Film-hydration method 

There are several methods for preparation of liposomes, and one of the most common used is 

the thin-film hydration method, also called Bangham-method (Bozzuto and Molinari, 2015; 

Bangham et al., 1965), which is the method applied in this project. Other methods for 

preparation of liposomes include reverse-phase evaporation, freeze-drying and ethanol 

injection (Laouini et al., 2012; Kim, 2016). In the thin-film hydration method the lipids and 

drug are dissolved in an organic solvent, then the solvent is evaporated by rotary evaporation 

to get a lipid film. The lipid film is rehydrated with an aqueous solvent (Bulbake et al., 2017). 

 

2.2.3.2 Sonication 

There are several ways to control and reduce the size of liposomes such as extrusion, 

homogenization and/or freeze-thawing, and sonication (Bulbake et al., 2017). Sonication is the 

method applied in this project. Sonication is an extensively used method for reduction of size, 

and there are two different techniques to sonicate: probe sonication and bath sonication 

(Akbarzadeh et al., 2013). Probe sonication is the technique applied in this project and involves 

a probe, the tip of the sonicator, that is directly applied into a liposomal dispersion. The probe 

transmits energy in form of ultrasonic irradiation to the lipid dispersion and thereby reduces the 

size of the vesicles (Bozzuto and Molinari, 2015). Under the ongoing process the probe is 

heated, and this heat is also transferred to the liposomal dispersion. To avoid extensive heating 

it is therefore important to keep the container in an ice bath under the process (Akbarzadeh et 

al., 2013). 
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2.2.4 Size and surface charge of liposomes 

The ideal size of a liposome depends on several biological conditions. The size should be small 

enough to avoid being captured by macrophages in the MPS and to exploit the gaps between 

the endothelial cells of the tumour with leaky vasculature ranging from 100-500 nm to enter 

the interstitial space (Bozzuto and Molinari, 2015) and at the same time be big enough to 

prevent being leaked into the capillaries from the tumour site (Cho et al., 2008). 

The size of conventional liposomes determines the fraction cleared by the MPS and it have 

been shown that small liposomes (e.g. size below 100 nm) are opsonized less rapidly and to a 

lower extent compared bigger liposomes (e.g. bigger than 100 nm) (Fanciullino and Ciccolini, 

2009). On the other hand, liposomes with a diameter < 10 nm rapidly cleared by the kidney 

(Kumari et al., 2016). 

Studies indicate that particles should have a diameter below 200 nm to effectively get 

extravasated into tumours (Peer et al., 2007), and that a reduction on size of liposomes has been 

correlated with increased accumulation in tumours. It has been displayed that small liposomes 

shows a longer half-life compared to larger liposomes (Fanciullino and Ciccolini, 2009). 

Therefore, the ideal size of liposomes for reaching the tumours should be 50-100 nm in diameter 

(Bozzuto and Molinari, 2015; Kumari et al., 2016). 

The charge of liposomes depends on the lipid composition and head group of lipids, which is 

typically expressed as surface charge or zeta potential, ζ (Kraft et al., 2014). The zeta potential 

is one of the characteristics measured of liposomes and give an index of the magnitude of the 

repulsive interaction between colloidal particles (González-Paredes et al., 2010). Liposomes 

may carry a negative, neutral or positive net charge (Kraft et al., 2014). The surface charge may 

influence kinetics, stability, interaction with and uptake of liposomes by target cells and extent 

of biodistribution (Lian and Ho, 2001). Increasing zeta potential shows a tendency that charged 

particles will repel one another and hence not aggregate (Alipour et al., 2017). 

Cationic lipids, lipids with a positive charge, have been shown to be rapidly eliminated by the 

MPS (Allen and Cullis, 2013; Kraft et al., 2014). Also, negative surface charge is recognized 

by receptors on different cells, like macrophages, and when entering the circulation, the 

negatively charged liposomes are subject to opsonization. On the other hand, a negative surface 
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charge show enhanced cellular uptake through endocytosis compared to natural counterparts 

(Kraft et al., 2014). 

 

2.2.4.1 Classification of liposomes according to structure and size 

Based on structure classification, the liposomes are classified with respect to type of vesicle 

together with size and number of lipid bilayers that enclose the aqueous phase (Samad et al., 

2007; Maheswaran et al., 2013): 

• Unilammelar vesicles (UVs): all diameter size range, with one lipid bilayer. 

• Small unilamellar vesicles (SUVs): 20-100 nm in diameter, with one lipid bilayer. 

• Medium unilamellar vesicles (MUVs): >100 nm in diameter, with one lipid bilayer. 

• Large unilamellar vesicles (LUVs): >100 nm in diameter, with one lipid bilayer. 

• Giant unilammelar vesicles (GUVs): >1 µm in diameter with one lipid bilayer. 

• Oligolamellar vesicles (OLVs): 0.1-1 µm in diameter with approximately 5 lipid 

bilayers. 

• Multilamellar vesicles (MLVs): > 0.5 µm in diameter with 5-25 lipid bilayers. 

• Multi vesicular vesicles (MVs): >1µm in diameter where the lipid bilayers have multi 

compartmental structure (Samad et al., 2007; Maheswaran et al., 2013). 

Lamellarity is a feature of the membrane structure which indicate number of bilayers the 

membrane it is composed of. If the membrane has a single bilayer, it is called unilamellar, but 

if the membrane has many bilayers it is called multilamellar, as shown in Figure 11 (van Swaay 

and deMello, 2013). Often, liposomes could be in between the categories in the above 

mentioned classification, and without any characterization with small angle X-ray scattering 

evaluation or electron microscopy it is difficult to know how many lamella there is within the 

liposomes (Škalko et al., 1998). 
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Figure 11: The size and lamellar structure of different classes of liposomes (Inspired by (van Swaay and deMello, 

2013). 

 

2.2.5 Liposomes used as drug delivery systems 

The first drug delivery system which have made success translating into clinical applications 

are liposomes. In 1995 Doxil®, a liposomal formulation of doxorubicin, entered the U.S. 

marked. Doxil® was approved for treatment of ovarian cancer and AIDS-related Kaposi´s 

sarcoma. Most of the liposomal formulations that have been developed are used for cancer 

treatment, but there are also liposomes used for treatment of fungal- or virus infections or pain 

management (Bulbake et al., 2017). To this day there is approximately 15 liposomal 

formulations on the marked (Bulbake et al., 2017; Kim, 2016). 

The research conducted on liposomes has progressed from conventional liposomes, also 

referred to as “first-generation liposomes” to long circulating liposomes in which surface 

modifications, lipid composition and size of the vesicle is modified (Immordino et al., 2006). 

Liposomes can also be modified with targeting moieties such as monoclonal antibodies, 

peptides or receptor ligands to achieve active targeting, or liposomal formulations can be 

modified to achieve triggered release, achieved by pH- or temperature sensitivity (Allen and 

Cullis, 2013). 

Liposomes offers both several advantages together with limitations, which are summarized in 

Table 2. 
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Table 2: Advantages and disadvantages of liposomes used in drug delivery systems. 

Advantages  Disadvantages 

Liposomes are in general non-toxic, flexible, 

biocompatible, completely biodegradable 

and non-immunogenic both for systemic and 

non-systemic administrations (Akbarzadeh 

et al., 2013). 

Production cost is high (Akbarzadeh et al., 

2013) and mass production is challenging 

(Kim, 2016). 

Entrapment of both hydrophilic and 

lipophilic drugs is feasible (Kim, 2016). 

A short half-life after i.v. administration due 

to rapid clearance from the bloodstream by 

the mononuclear phagocytic system (MPS) 

(Naik et al., 2010; Immordino et al., 2006). 
Changed biodistribution of the drug might 

lead to reduced exposure of toxic drugs to 

sensitive or normal tissues (Akbarzadeh et 

al., 2013). 

Can increase drug stability via 

incorporation, by protecting the drug by 

entrapment and thereby isolating the drug 

from the surrounding environment 

(Akbarzadeh et al., 2013; Peer et al., 2007). 

Stability issues might lead to a burst drug 

release (Peer et al., 2007). PLs are prone to 

chemical degradation reactions, like 

oxidation and hydrolysis (Akbarzadeh et al., 

2013). 

Flexible in formulation: size, charge and 

surface functionality can be modified either 

through addition of agents to the lipid 

membrane or by alteration of the surface 

(Peer et al., 2007). 

Active targeting is possible when coupled 

with site-specific ligands (Kumari et al., 

2016). 
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3 Aim of the study 

The aim of this master project was to establish a suitable small-scale screening method for 

making DOC-liposomes, and for separating the unentrapped DOC from the DOC-liposomes 

for further determination of the drug entrapment efficiency. This methodology was applied to 

examine different PL compositions aiming to decide which factors are affecting how well DOC 

is taken up and becomes a part of the liposomal membrane. 

Specific aims: 

• Pilot project: validate the method for making and testing the different DOC liposomal 

formulations. 

• Screening study: screening of 14 different lipid combinations to investigate how the 

different liposomal formulations affect the DOC entrapment efficiency. 

• Further, to challenge the liposomal formulations showing best entrapment of DOC in 

the Screening study, by increasing the DOC concentration to examine if increasing the 

DOC concentration also would give an increase in DOC entrapment.  

• Finally, varying the concentration of positively charged lipids, DOTAP, in the 

liposomal membrane to investigate if DOTAP concentration affect the DOC 

entrapment.  

  



 

24 
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4 Materials, instruments and experimental section 

4.1 Materials 

4.1.1 Chemicals 

Table 3: Specifications of the chemicals used in this study.  

Chemical Quality Batch/Lot nr. Manufacturer 

Acetic acid, 

CH3COOH 

ACS reagent 

≥ 99.8 % 

Lot: 

#SZBD1760V 

Sigma Aldrich Chemie GmbH, 

Steinheim, Germany 

Acetonitrile,  

C2H3N 

For HPLC, 

gradient scale 

17B101326 VWR chemicals, BDH 

Prolabo, France 

Ammonium 

molybdate 

tetrahydrate, 

(NH4)Mo7O24 · 

4H2O 

 Lot: 

#SLBN5957V 

Sigma Aldrich Chemie GmbH, 

USA 

Chloroform 99.0-99.4 (GC) Lot: 

#STBF8245V 

Sigma Aldrich Chemie GmbH, 

Steinheim, USA 

Distilled water   Distillation unit Distinction 

D4000, Bibby Sterlin LDT, 

Staffordshire, UK 

Docetaxel  20140701 Euroasian chemicals pvt Ltd., 

Mumbai, India 

Ethanol,  

C2H5OH 

96 % (v/v) Lot: 

17E224011 

VWR Chemicals, BDH 

Prolabo, France 

Fiske Subbarow 

reducer 

 Lot: 

#SLBQ3794V 

Sigma Aldrich Chemie, GmbH, 

USA. 

Formic acid,  

CH2O2 

Eluent additive 

for LC-MS 

Lot: 

#BCBJ6551V 

Sigma Aldrich Chemie GmbH, 

Steinheim, Germany 

Hydrochloric acid, 

HCl 

ACS reagent Lot: 

SZBE1360V 

Sigma Aldrich, Austria 

Hydrogen 

peroxide, H2O2 

30 % H2O2  

GR for analysis 

Lot: 

K25310009 

830 

Merck: KGaA, Darmstadt, 

Germany 

Methanol, 

CH3OH 

For HPLC 

≥ 99.9 % 

Lot: 

#SZBC272MV 

Sigma Aldrich Chemie GmbH, 

Steinheim, Germany 

MilliQ water   MilliQ gradient, Millipore 

Water purification system with 

Millipak® M 0.22µm filter 

(LOT NO C5MA58154), 

Damstadt, Germany  

Phosphorus 

standard solution, 

KH2PO4 

0.65 mM 

(phosphorous) 

Lot: 

#SLBR5870V 

Sigma Aldrich Chemie GmbH, 

Steinheim, Germany 



 

26 

 

Sulfuric acid, 

H2SO4 

Analytical 

reagent 

 May & Baker Ltd., Dagenham, 

England. 
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4.1.2 Lipids 

Table 4: Specifications of the lipids used in the liposomal formulations in this study. 

Lipid Full name Purity Batch/Lot nr. Manufacturer 

Ceramide 

C6 

N-Hexanoyl-D-erythro-

sphingosine 

> 99 % Lot: #060CER-

15 

Avanti Polar 

Lipids Inc. 

Ceramide 

C12 

N-Lauroyl-D-erythro-

sphingosine 

 Lot: #120CER-

10 

Avanti Polar 

Lipids Inc. 

Cholesterol  > 99 % 

from 

lanolin 

Lot: # 

BCBK3087V 

Sigma Aldrich Co, 

St. Louis, USA 

DMPE 1,2-Dimyristoyl-sn-

glycero-3-

phosphoethanolamine 

> 99 %  Lipoid GMBH, 

Ludwigshafen, 

Germany 

DMPC 1,2-Dimyristoyl-sn-

glycero-3-phosphocholine 

> 99 % LP-04-058-

H1228 

Genzyme 

pharmaceuticals, 

Sygena Facility, 

Liestal, 

Switzerland. 

DMPG 1,2-Dimyristoyl-sn-

glycero-3-phospho-(1’-

rac-glycerol) 

> 99 % LP-04-015-

J1007 

Lipoid GMBH, 

Ludwigshafen, 

Germany 

DOPC 1,2-Dioleoyl-sn-glycero-

3-phosphocholine 

> 99 % Lot: 

#SLBN3634V, 

product number: 

P6354-1G 

Sigma Aldrich Co, 

St. Louis, USA. 

DOPE 1,2-Dioleoyl-sn-glycero-

3-phosphoethanolamine 

> 99 % 699146-1/18 Lipoid GmbH, 

Ludwigshafen, 

Germany 

DOTAP 

chloride 

1,2-Dioleoyl-3-

trimethylammonium-

propane 

> 99 % Lot: 

#SLBC6246V, 

product number: 

D6182-250MG 

Sigma Aldrich Co, 

St. Louis, USA 

DPPG 

sodium salt 

1,2-Dipalmitoyl-sn-

glycero-3-phosho-(1’-

rac-glycerol) 

> 99 % LP-04-016-597 

1724 

Genzyme 

pharmaceuticals, 

Sygena Facility, 

Liestal, 

Switzerland. 

DSPE-

PEG2000 

1,2-Distearoyl-sn-

glycero-3-

phosphoethanolamine-N-

[amino(polyethylene 

glycol)-2000] 

> 99 % Lot # 

180PEG2PE-

121 

Avanti Polar 

Lipids Inc. 

Lipoid S 

100 (SPC) 

Soybean 

phosphatidylcholine 

 Batch: 579000-

1170718-03/902 

Lipoid GmbH, 

Ludwigshafen, 

Germany 
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POPC 1-Palmitoyl-2-oleyl-sn-

glycero-3-phosphocholine 

≥ 99 % Lot # 

BCBT9936 

Sigma Aldrich, 

Japan 

POPE 1-Palmitoyl-2-oleyl-sn-

glycero-3-

phosphoethanolamine 

≥ 95 % Lot # 

BCBV6370 

Sigma Aldrich, 

Japan 
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4.1.3 Solutions 

4.1.3.1 Mobile phases for HPLC-analysis: 

Mobile Phase A: 

I. MilliQ Water  1998.0 mL 

II. Formic acid  2.0  mL 

Mobile Phase B: 

I. Acetonitrile  1998.0 mL 

II. Formic acid  2.0 mL 

 

4.1.3.2 Solutions prepared for PC-assay: 

Fiske SubbaRow reducer: 

3.0 g Fiske SubbaRow reducer 

18.9 mL distilled water. 

Ammonium Molybdate 0.22 % (v/v): 

0.88 g ammonium molybdate powder 

Ad 400 mL distilled water 

H2SO4 10 N: 

10.88 mL H2SO4 

29.12 mL distilled water 

HCl 0.5M: 

0.411 mL HCl 

Ad 100 mL water  
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4.2 Equipment and instruments 

Balances: Sartorius BP211D, Sartorius LP4200S, Sartorius CP225D, Sartorius AG, Göttingen, 

Germany. 

Benchtop centrifuge: Biofuge Stratos with Heraeus rotor #3048 and #8172, Heraeus 

Instruments, UK. 

Drying oven: Termaks TS8056 Bench Top Drying Oven, Termaks a/s, Bergen, Norway 

HPLC: Waters e2795 separations module connected to a Waters 2489 UV/Visible detector and 

a C-18 column: XSELECT CSH XP (2.5 µm 3.0x75 mm). (Waters, Dublin, Ireland). 

LAF-bench: Holten LaminAir, Maxi Safe 2000, Allerød, Denmark. 

Particle Size Analysis and Zeta Potential Measurement: Zetasizer Nanoseries ZS, Malvern 

Instruments Limited, Worcestershire, UK. 

Rotary evaporator: Büchi Waterbath B480, Büchi Vac V-500, Büchi vacuum controller B-721, 

Büchi rotavapor R-124, Büchi labortechnik, Flawil, Schwitzerland. 

Sonicator: Sonics Vibra Cell Probe sonicator, autotune series high intensity ultrasonic processor 

VC 754 750 watt Ultrasonic processor, CVR 234 Converter, Probe 19 mm, Sonics and 

Materials, USA. 

UV-Spectrophotometer: SpectraMax 190 Microplate Reader UV Spectrophotometer, 

Molecular Devices Corporation, California, USA. 

Vortex mixer: Vortex Genie 2™, Bender & Hobein AG, Zurich, Switzerland. 

 

4.3 Computer programs 

HPLC: Empower™ 3 Software, Build 3471, Waters, 2010. 

Particle Size Analysis and Zeta Potential Measurement: Malvern Zetasizer Software for the 

nano, APS and UV. Version 7.11. Malvern Instrument Limited, Malvern, UK. 
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UV microplate reader: SoftMax Pro software version 5, Molecular Devices Corporation, 

California, USA. 

 

4.4 Experimental section 

When working with the cytotoxic drug DOC, precautions were made not to be exposed to the 

drug. Thus, the dry powder was always handled in a dedicated LAF-bench, and DOC-

containing containers were kept sealed when handled outside the LAF-bench. 

 

4.4.1 DOC stock-solution 

A DOC stock-solution containing 20 mg/mL DOC was prepared prior to making the HPLC 

standard curve (Section 4.5.3) and for accurate transfer of the aimed amount of DOC to the 

liposomal formulations (Section 4.4.2). DOC was weighed in a small sample tube on an 

analytical balance (Sartorius CP225D) placed in the LAF-bench, and the locked vial control 

weight in a more precise balance (Sartorius BP211D) before transferred to a volumetric flask 

and dissolved in 10 mL methanol. The DOC stock-solution was kept in the refrigerator at 4 °C 

when not in use. 

 

4.4.2 Preparation of liposomes with DOC 

The DOC-liposomes were prepared through three distinct steps: 1) lipid film formation using 

the thin-film hydration method, 2) lipid film hydration, as shown in Figure 12, and finally, 3) 

size reduction. The first step assured an even distribution of DOC in the lipid membrane, 

hydration the lipid film with water was the liposome forming step, whereas the sonication 

reduced the liposome size into a suitable size for intravenous administration. 
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Figure 12: A schematic presentation of the two first steps applied when preparing liposomes; the lipid film 

formation step evaporating the organic solvent and the lipid hydration step leading to the formation of a liposomal 

dispersion. 

 

4.4.2.1 Lipid film formation 

The thin-film hydration method (Bangham et al., 1965) was applied for making the lipid films. 

First, 200 mg of the selected lipid was transferred to a 100 mL round bottom flask, and 1 mL 

of the DOC stock-solution (corresponding to 20 mg DOC) was transferred by pipetting and 

mixed with the lipids. To dissolve the lipids, chloroform and/or methanol were added in 

different ratios depending on the lipids applied to dissolve the lipid(s) and the DOC. 

The round bottom flask containing the lipid-drug solution was placed in a Büchi Rotavapor R-

124 on Büchi Water Bath B-480 (Büchi laborteknik, Switzerland) with a Büchi Vac V-500 

vacuum pump system and Büchi Vacuum Controller B-721 to control the pressure under the 

rotavapor process. To keep the lipids fluid and homogeneous, the water bath was preheated and 

kept at a temperature higher than the lipids Tm (usually 44 °C). The pressure and temperature 

were adjusted to assure that the solutions did not boil but evaporate. The pressure was decreased 

gradually from 1005 mBar to 55 mBar, at a rotation speed of 80 rpm, that was gradually 

increased to 150 rpm to make sure that all solvent was removed from the lipid film. 

 



 

33 

 

4.4.2.2 Lipid film hydration 

The lipid film was hydrated with 10 mL preheated filtrated (0.2 µm) distilled water to form a 

liposomal dispersion containing 20 mg/mL lipid and 2 mg/mL DOC. The flask was vortexed 

to properly disperse and dislodge the lipid film, making sure that all lipid and drug was detached 

from the walls of the flask. The water added kept the same temperature as the lipid film. The 

liposomal dispersions were stored at 4 °C overnight before sonication. 

 

4.4.2.3 Size reduction of liposomes 

A probe sonicator (Sonics Vibra Cell high intensity ultrasonic processor VS 754 750 Watt with 

Ultrasonic processor, CVR 234 Converter with a Probe 19 mm, Sonic and Materials, USA) was 

used to reduce the size of the liposomal dispersion. Prior to sonication, the liposomal dispersion 

was brought to room temperature and transferred to a 45 mL falcon tube. The sonication probe 

was positioned in the centre of the tube making sure that it did not touch the walls. The tube 

was placed in an ice bath to prevent the sample from getting warm. Amplitude was set to 40 %. 

The duration of the sonication varied with the lipid composition and judged from the turbidity 

of the preparation and finally size measurements (Section 4.5.1). In general, sonication runs 

were between 0.5 and 4 minutes with a one-minute cooling break between each run, to avoid 

overheating. A liposome size around 100 nm was targeted.  

 

4.4.3 Removal of unentrapped drug from the liposomes by centrifugation 

The liposomal dispersions were allowed to equilibrate in the refrigerator overnight, before 

separating the unentrapped drug from the liposomes through centrifugation. The liposoma 

dispersion was separated in 15 mL falcon tubes, and centrifugated at 3000 rpm (min-1) 

(corresponding to 1800 g) for 20 minutes at 25 °C in a Biofuge stratos (Heraeus Instruments, 

Oslo) with Heraeus rotor #3048 and #3047. The centrifuge needed one minute to increase the 

velocity from 0-3000 rpm, and one minute in the end to decrease the velocity from 3000-0 rpm. 

The supernatant was transferred to new 15 mL falcon tubes and further examined, as described 

in next section. 
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4.5 Liposomal characterization 

A Zetasizer Nanoseries ZS (Malvern, UK) was used to determine both the size distributions 

and zeta potential of the prepared liposomal dispersions. 

 

4.5.1 Liposome size determination 

The liposomal dispersion was homogenized by vortexing and diluted 1:25 (v/v) with freshly 

filtrated (0.2 µm) distilled water before size measurement. The test cuvette (12 mm square 

polystyrene cuvettes, Malvern Zetasizer Nano Series) was rinsed thoroughly with 1 mL ethanol 

and 2 mL filtrated (0.2 µm) distilled water before and after measurement. Each sample was 

analysed in triplicate. The measurements gave information of the average intensity weighted 

size distribution of the liposomes and polydispersity index (PI). 

 

4.5.2 Determination of zeta potential 

The liposomal dispersions were homogenized with a vortex machine and diluted 1:20 (v/v) with 

filtrated (0.2µm) tapped water before zeta potential measurement. The disposable folded 

capillary cells (Malvern Zetasizer Nano Series) were rinsed thoroughly with ethanol, filtrated 

tapped water and flushed with 1 mL of the sample before filling the cuvette with the sample to 

be analysed. A 1 mL syringe was used to clean and fill the cells with the sample. The 

measurement was set to 3 cycles and 100 runs. Each sample was measured twice. 

 

4.5.3 HPLC: determination of DOC recovery 

The DOC concentration in the liposomal dispersions both before and after centrifugation 

(supernatant) was quantified by high performance liquid chromatography (HPLC) using a 

Waters e2795 Separations Module connected to a Waters 2489 UV/Visible detector and a C-

18 column: XSELECT CSH column XP, 2.5 µm 3.0x75 mm (Waters, Dublin, Ireland). 

The method applied had a 12 minutes run time. The sample volume injected varied were 10 µL. 

The flowrate was set to 0.5 mL/min. A gradient elution was applied, where Mobile phase A, 
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contained Milli-Q-water with 0.1 % formic acid and Mobile phase B, contained acetonitrile 

with 0.1 % formic acid. The gradient flow condition applied is given in Table 5. Temperature 

of both the column and sample were set to 25 ± 1°C. The retention time of the DOC peak was 

at 7.74 minutes and the detection wavelength applied using the Waters 2489 UV/Visible 

detector was at λ = 232 nm. 

Table 5: Gradient flow conditions for mobile phase A and B applied in the DOC-HPLC method. 

Time (min) Mobile phase A (%) Mobile phase B (%) 

0.00 80.0 20.0 

8.00 10.0 90.0 

10.00 10.0 90.0 

10.10 80.0 20.0 

12.00 80.0 20.0 

 

The standard curve was created from DOC standards with known concentrations in the range 

of 0.5-1200 µg/mL. The calibration standard curve showed linearity in the range of 0.50-1200 

µg/mL, with a R2=0.9986 (Figure 13). The amount of DOC in the liposomal formulations was 

subsequently quantified based on the standard curve. 

 

Figure 13: The docetaxel standard curve obtained using HPLC. 

 

The eluted DOC peak had a retention time of approximately 7.7 minutes, as illustrated in Figure 

14. 
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Figure 14: A typical chromatogram obtained from the HPLC when quantifying the DOC content.  

 

Before DOC quantification, the DOC-liposomal dispersion was diluted with methanol to reach 

concentrations within the span of the calibration curve. Methanol disrupt the liposomal 

structure, and forms a solution containing DOC and PLs that were separated when injected onto 

the HPLC for accurate quantification of DOC. The samples were prepared in quintuplicate (five 

preparations of each sample) in HPLC vials and every sample was injected twice.  

The amount of DOC recovery in the supernatant was compared with the amount of DOC present 

in the total sample before centrifugation to calculate the recovery of DOC in supernatant. The 

recovery of DOC was calculated by Equation 1. 

Equation 1: 

Recovery of DOC (%) = DOC concentration in supernatant (µg/mL)
DOC concentration in total sample (µg/mL)

×100 % 

 

4.5.4 Phospholipid assay – determination of the PL recovery 

In order to determine the recovery of phospholipids (PL) in the liposome-containing 

supernatant after centrifugation (Section 4.4.3), the amount of PL was determined both in the 

liposomal dispersions before centrifugation and the supernatant after centrifugation. For this, 

the phosphatidylcholine assay (PC-assay) was applied using a method obtained from Bartlett 

(Bartlett, 1959) with some modifications (Naderkhani et al., 2015). PLs such as PC, PE and PG 

contains phosphorous and through the PC-assay it is possible to quantify the amount of 
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phosphorus in the liposomal dispersions and hence give an estimation of amount lipid in the 

liposomal formulations. This was further used to adjust for loss of lipid when calculating the 

entrapment efficiency in Section 4.5.5. 

The reagent solutions used in the PC-assay (Bartlett, 1959; Naderkhani et al., 2015) are 

described in Section 4.1.3.2. In addition to these solutions, the samples (liposomal dispersions), 

the phosphorous standards for the phosphorous standard curve and the phospholipid (PL) 

reference samples were prepared: 

The liposomal formulations were diluted with distilled water, transferring 50 µL liposomal 

sample to a volumetric flask and adding distilled water to a total volume of 10 mL, giving a 

final lipid concentration of approximately 0.1 mg/mL. 

Phosphorus standard solutions were prepared to make a standard curve. A phosphorus standard 

solution with a concentration of 19.5-20.4 µgPhos/mL (Sigma Aldrich Chemie GmbH, 

Steinheim, Germany) was added to glass tubes and diluted with distilled water to reach a total 

volume of 1 mL and the following phosphorus concentrations: 1, 2, 3, 4, 5 and 8 µg/mL.  

Reference PL-samples were made by transferring 7.5 mg SPC into a 50 mL volumetric flask 

and filling it up with 50 mL 0.5M HCl. The PLs were vortexed until completely dispersed and 

left to stir overnight, where after the samples appeared opaque. 

All solutions, including the phosphorus standard solutions, the blank medium (distilled water), 

reference PL-samples and the liposomal dispersions were prepared in triplicates and 3 x 1 mL 

were transferred to glass tubes before adding 0.5 mL H2SO4 10N, to a total volume of 1.5 mL. 

The glass tubes were covered by marbles, and then heated in the oven at 160 °C for three hours. 

After cooled down to room temperature, 2 drops of 30 % (v/v) hydrogen peroxide (H2O2) were 

added to each sample, before heated at 160 °C for 1.5 hours. In the final step, and after cooled 

down to room temperature, 4.6 mL ammonium molybdate 0.22 % (v/v) and 0.2 mL Fiske 

SubbaRow reducer solution were added to the samples. Samples were mixed thoroughly by 

vortexing before heating the samples at 100°C for 7 minutes. 

Each sample was measured in triplicate, transferring 0.2 µL sample into three wells of a 96 well 

plate. Absorbance were measured with a UV spectrophotometer (SpectraMax 190, Molecular 

Devices Corporation, California, USA) at an optical density at λ = 830 nm.  
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A phosphorous standard curve was prepared for every experiment, after withdrawing 

absorbance values measured for the blanks (distilled water). The 96 well plates were measured 

both on the same day as the assay was performed and the day after. The best results were 

obtained the day after the PC-assay, judged from the R2-value of the standard curve, and 

therefor applied for further calculation of the PL recovery in the liposomal formulations. 

The calibration standard curve showed linearity in the range of 1-8 µg/mL with R2= 0.9972, 

R2= 0.997, R2= 0.9989, R2= 0.9976 and R2= 0.999 in the different experiments when 

absorbance was measured the day after sample preparation. A representative standard curve is 

given in Figure 15. 

 

Figure 15: One of the phosphorous standard curves obtained from the PC-assay. 

 

From the phosphorous standard curve (Figure 15), the phosphorous content of the reference 

PL-samples was quantified, and the ratio between the known lipid concentration (7.5 mg/50mL 

=0.148 mg/mL) and the measures mean phosphorous concentration calculated from the 

phosphorous standard curve. From these information, the PL content of the liposomal 

formulations were calculated, as given in Equation 2. 

Equation 2: 

PL conc. in liposome = Phosphorous conc. in liposome ×(
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The ratio between the quantified PL-content in liposomal dispersion before centrifugation (total 

sample) and after centrifugation (in the supernatant), expressed as PL recovery, was then 

calculated using Equation 3. 

Equation 3:  

PL recovery (%) =(
PL in supernatant (µg/mL)
PL in total sample (µg/mL)

)× 100 %  

 

4.5.5 Liposomal DOC entrapment determination 

Finally, the drug entrapment efficiency (EE %) was calculated, adjusting for the liposomes lost 

during centrifugation, that is correlated with the PL recovery found using the PC-assay (Section 

4.5.4). Bigger liposomes or liposome-aggregated will, due to the centrifugal forces, follow the 

drug precipitate into the pellet, and thus the lipid lost should be accounted for, as a low lipid 

recovery means that liposomal entrapped DOC is lost in the pellet during centrifugation (see 

section 4.5.4). The calculation of drug entrapment, adjusting for the liposome lost during 

centrifugation is shown by Equation 4. 

Equation 4: 

EE (%) =
Recovery of DOC (%) 

Recovery of phospholipid (%)
 x 100 % 

 

Drug load capacity gives the drug:lipid weight ratio, calculated from the measured amount of 

DOC (Section 4.5.3) and lipids (Section 4.5.4) present in the liposomal formulation after 

removal of the unentrapped drug by centrifugation, as measured in the supernatant. The 

calculation is shown by Equation 5. 

Equation 5: 

Drug load capacity =
DOC concentration in supernatant (µg/mL)
PL concentration in supernatant (µg/mL)

 * 

*If lipids without phosphorous were used, this was adjusted for. 
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4.6 Preparation of DOC-lipid solutions – DOTAP study 

In the final part of the study, the DOTAP study, not only DOC was added as stock-solutions 

(Section 4.4.1), but also DOTAP and SPC were prepared in known concentrations using the 

same solvents as in the previous studies. The exact volume was pipetted out from these 

solutions to assure that the actual weight ratio between the lipids and DOC was exactly as 

intended (Table 6). 

Table 6: Preparation of solutions with DOC, DOTAP and SPC for the DOTAP study. 

Liposomal 

formulation 

(DOTAP % (w/w) 

of total lipid) 

Volume DOC  

stock-solution  

(20 mg/mL in 

methanol) 

Volume DOTAP stock-

solution (80 mg/mL in 

chloroform/methanol  

(2:1 v/v) 

Volume SPC 

stock-solution 

(200 mg/mL in 

methanol) 

1 (0 %)  

 

1500 µL 

- 1 mL 

2 (10 %) 250 µL 900 µL 

3 (20 %) 500 µL 800 µL 

4 (30 %) 750 µL 700 µL 

5 (50 %) 1250 µL 500 µL 

 

The solutions were mixed in injection vials and sealed with a lid and frozen to -80°C until 

further processing following the normal procedure described in Section 4.4.2 and 4.4.3. The 

liposomal formulations were further examined and characterized as previously described 

(Section 4.5.1-4.5.3). 
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5 Results and Discussion 

The focus of this project has been to investigate how liposomal compositions affect the DOC 

entrapment. The project was separated into four sub-parts that were interconnected. The first 

part was the “Pilot project”, where we established the methods used in this thesis, validating 

the reproducibility of the methods applied by conducting repeating experiments with two 

different liposomal formulations.  

The second part was the “Screening study”, where 14 different lipid combinations in liposomal 

formulations were screened with the purpose to identify what lipids should be preferred or 

avoided to obtain the optimal DOC entrapment efficiency and drug load. The formulations that 

showed best properties with regard to entrapment efficiency were brought to the third part, the 

“Optimization study”, in which we investigated if an increased DOC:lipid ratio could increase 

the drug entrapment of these formulations. In the fourth and final part, the “DOTAP study”, the 

best liposomal formulation, containing SPC and DOTAP, was further investigated using 

different DOTAP concentrations. 

 

5.1 Pilot project 

To validate the liposome preparation method, and the suitability of the methods applied for 

quantifying DOC and PL, a Pilot project with two different liposomal formulations was carried 

out. These liposomes were made from SPC and SPC and Chol (8:2 w/w), respectively. Both 

formulations contained DOC in a 1:10 (w/w) ratio with the lipids and were prepared as 

described in Section 4.4. Both formulations were prepared in triplicates. 

Since the method applied during liposome preparation should be suitable for comparing 

different liposomal formulations and their potential of entrapping DOC in the liposomal 

membrane, we first had to look at the reproducibility of the method and also whether or not the 

liposomes were of a suitable size and size distribution, enabling good separation of the 

unentrapped drug and liposomes, assuring the liposomes remaining in the supernatant during 

the centrifugation procedure, and trapping the precipitated drug in the pellet. For this to happen, 

the liposomes should be sufficiently small, and as the rigidity of the liposomal bilayer will differ 

for different lipid compositions, the sonication time needed to reach the targeted liposome size 
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of < 100 nm was not predefined but judged by the appearance of the liposomal dispersions that 

becomes less opaque as the liposome size was reduced. In Table 7, the final sonication time 

applied for the three batches of the two “Pilot liposomal formulations” are given together with 

their size and PI values and measures of the zeta potential. 

Table 7: Liposomal characteristics of the two “Pilot liposomal formulations”. 

Liposomal 

formulation 

Sonication 

time 

Average 

diameter 

(nm ± SD) 

PI  

(AU ± SD) 

Zeta potential 

± SD 

SPC A (3 min) 79.27 ± 0.54 0.24 ± 0.01 -0.11 ± 0.36 

B (2 min) 85.77 ± 0.36 0.23 ± 0.01 -0.12 ± 0.06 

C (2 min) 80.43 ± 0.19 0.25 ± 0.01 -0.35 ± 0.05 

SPC:Chol 

(80:20 w/w) 

A (3 min) 63.54 ± 0.38 0.22 ± 0.00 -1.88 ± 0.52 

B (3 min) 58.28 ± 0.40 0.21 ± 0.01 -1.98 ±0.22 

C (3 min) 57.58 ± 0.26 0.20 ± 0.01 -2.56 ± 0.50 

 

The three parallels of the SPC liposomes showed a mean average diameter of 81.82 ± 3.46 

(Figure 16), and mean zeta potential was -0.19 ± 0.13. The three parallels of the SPC:Chol 

liposomes showed a mean average diameter of 59.80 ± 3.26 (Figure 16) and mean zeta potential 

was -2.14 ± 0.37. Although some intra variability in between the liposomal formulations, the 

results were satisfying with respect to reproducibility. 

 

Figure 16: Size distribution and mean entrapment efficiency of SPC and SPC:Chol liposomes. The value denotes 

the mean of 3 separate experiments ± SD. 
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The success of separating liposomes and free drug was judged by visually inspecting the vial 

after centrifugation, and finally from the results obtained from the PC-assay, quantifying the 

PLs present in the liposomal dispersion before (total sample) and after (supernatant). These 

results are given in Table 8. The recovery of PL in the supernatant was higher for the SPC:Chol 

liposomes than for the SPC liposomes, something that might be explained by smaller size of 

these liposomes. However, this variation in PL recovery was found acceptable, and the method 

kept unchanged for further studies. 

Table 8: Liposomal characteristics and PL-content of the two “Pilot liposomal formulations”. 

Liposomal 

formulation 

Average 

diameter  

(nm ± SD) 

PI  

(AU ± SD) 

PL concentration (mg/mL) PL recovery 

(% ± SD) Total sample Supernatant 

SPC 79.27 ± 0.54 0.24 ± 0.01 22.21 18.48  

85.9 ± 0.05 85.77 ± 0.36 0.23 ± 0.01 21.83 18.17 

80.43 ± 0.19 0.25 ± 0.01 19.75 18.00 

SPC:Chol 

(80:20 w/w) 

63.54 ± 0.38 0.22 ± 0.00 17.44 16.95  

97.3 ± 0.04 58.28 ± 0.40 0.21 ± 0.01 17.16 16.09 

57.58 ± 0.26 0.20 ± 0.01 16.49 16.67 

 

The liposomes lost in the pellet were considered when calculating the drug entrapment 

efficiency (Equation 4), as shown in Table 9. Both the higher entrapment efficiency than 100 

% and a higher PL-concentration in the total sample before centrifugation, than expected from 

the amount of lipids added (20 mg/mL and a 16 mg/mL PL concentration in the total sample 

for the SPC liposomes and the SPC:Chol liposomes, respectively), indicates that the real PL 

recovery was higher than calculated from the measured results from the PC-assay. Thus, the 

real DOC entrapment might be corresponding to a value somewhere between the measured 

DOC recovery in the supernatant and the calculated DOC entrapment values, that takes into 

account the results from the measured PL recovery. 
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Table 9: Drug content and entrapment of DOC in the “Pilot liposomal formulations”. 

Liposomal 

formulation 

DOC concentration (µg/mL) DOC 

recovery (%)  

EE (%)* 

Total sample Supernatant 

SPC 195.59 ± 2.35 184.64 ± 3.00 94.4 113.5 

190.29 ± 4.72 175.19 ± 2.23 92.1 110.6 

213.07 ± 3.61 206.85 ± 2.86 97.1 106.5 

SPC:Chol  

(80:20 w/w) 

226.91 ± 5.99 47.12 ± 1.31 20.8 21.4 

211.56 ± 8.52 53.04 ± 2.43 25.1 26.7 

218.72 ± 8.29 59.19 ± 1.19 27.1 26.8 
* DOC entrapment (%) calculated when taking into account the PL lost during centrifugation. 

 

The mean EE (%) of the SPC liposomal formulations was 110 % as shown in Table 9. The 

reason why the entrapment exceeds 100 % could be explained by the correction of lipid content. 

The mean entrapment efficacy of DOC was much lower for the SPC:Chol liposomes and around 

25 %, as shown in Figure 16. Thus, it seems that Chol is expelling the DOC from the liposomal 

membrane, and is not good for the entrapment of DOC. 
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5.2 Screening study: Liposomal lipid composition 

After validating the method in the Pilot project, the second step in the project was to screen 

different lipids in a liposomal DOC formulation to optimize entrapment of DOC. The 14 

liposomal formulations included in the study had different lipid composition, but the same 

drug:lipid ratio of 10:1 (w/w). Information on the liposomal formulations, the ratio of lipid(s) 

investigated, and the organic solvent applied for the lipid film preparation are summarized in 

Table 10. 

Table 10: Screening of liposomal formulations with different lipid compositions. No. = Formulation number. Tm 

= transition temperature. 

No. Lipid composition Lipid ratio 

(w/w) 

Tm °C Solvent 

1 SPC 100 -20 to 30 Methanol * 

2 SPC:Cholesterol 80:20  Chloroform:methanol (2:1 v/v) * 

3 SPC:DOPE 80:20 -16 Chloroform:methanol (2:1 v/v) * 

4 SPC:DOPC 80:20 -20 Methanol * 

5 SPC:DSPE-

PEG2000 

80:20 65 Chloroform 

6 SPC:DOTAP 80:20  Chloroform:methanol (2:1 v/v) * 

7 SPC:Ceramide C6 80:20  Chloroform 

8 SPC:Ceramide C12 80:20  Chloroform 

9 SPC:DPPG 80:20 41 Chloroform:methanol (2:1 v/v)* 

10 SPC:DMPG 80:20 23 Chloroform:methanol (2:1 v/v) * 

11 SPC:DMPC 80:20 24 Methanol* 

12 SPC:DMPE 80:20 50 Chloroform 

13 SPC:POPC 80:20 -9 Chloroform:methanol (4:1 v/v) 

14 SPC:POPE 80:20 25 Chloroform:methanol (6:1 v/v) 
*(Flaten, 2003) 

 

The amount of organic solvent varied and was depended on the solubility of the different lipids 

used. Another factor varied was the temperature of the water bath, which were increased to 

exceed the Tm of the different lipids (Li et al., 2015; Laouini et al., 2012). 

During sonication, the span of sonication was judged empirically from the appearance of the 

liposomal dispersions. The liposomal dispersions were visually inspected every 30 seconds to 

look at the transparency of the dispersions and evaluate the size. The dispersions went from 

being opaque and white to more transparent as they became smaller. Since this formulation is 

intended to be administrated by injection, the liposomes ought to be smaller than 200 nm 
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(Harashima et al., 1994; Allen and Cullis, 2004) and preferably around 50-100 nm (Bozzuto 

and Molinari, 2015; Kumari et al., 2016). The size was measured before centrifugation to assure 

an average diameter around 100 nm, but the polydispersity was very high. Hence, appearance 

was a decisive factor for sonication time. After purification, the average diameter and PI 

showed an acceptable range of the liposomal formulations. The different liposomal 

formulations required different sonication times for getting smaller, and therefore it was 

difficult to standardize the sonication time. 

The liposomal characteristics of liposomal formulation 1-14 are presented in Table 11. All 

formulations contained 200 mg of lipid and 20 mg of DOC. 

Table 11: Liposomal characteristics. 

No. Lipid 

composition 

Sonication 

time 

Average 

diameter  

(nm ± SD) 

PI 

(AU ± SD) 

Zeta potential 

± SD 

1* SPC 3, 2, 2 min 81.82 ± 3.46 0.24 ± 0.01 -0.19 ± 0.13 

2* SPC:Chol 3, 3, 3 min 59.80 ± 3.26 0.21 ± 0.01 -2.14 ± 0.37 

3 SPC:DOPE 1.5 min 91.31± 0.55 0.24 ± 0.00 -5.46 ± 0.48 

4 SPC:DOPC 3 min 78.11 ± 0.50 0.28 ± 0.01 -2.59 ± 0.16 

5 SPC:DSPE-

PEG2000 

0.5 min 97.55 ± 0.24 0.36 ± 0.01 -3.31 ± 0.34 

6 SPC:DOTAP 3 min 77.97 ± 0.25 0.29 ± 0.00 76.28 ± 0.90 

7 SPC:CC6 2 min 77.35 ± 0.52 0.24 ± 0.00 -1.87 ± 0.04 

8 SPC:CC12 2 min 96.93 ± 0.83 0.42 ± 0.06 -1.33 ± 0.07 

9 SPC:DPPG 0.5 min 103.67 ±0.71 0.24 ± 0.01 -31.52 ±0.62 

10 SPC:DMPG 0.5 min 98.69 ± 0.82 0.25 ± 0.00 -31.90 ± 0.40 

11 SPC:DMPC 0.5 min 109.37 ± 0.68 0.21 ± 0.00 -2.29 ± 0.05 

12 SPC:DMPE 4 min 182.57 ± 8.98 0.86 ± 0.03** -6.63 ± 0.24 

13 SPC:POPC 4 min 81.48 ± 0.26 0.21 ± 0.00 -0.34 ± 0.10 

14 SPC:POPE 2 min 86.03 ± 0.93 0.32 ± 0.02 -5.60 ± 0.48 
*n=3 (average of the results in the Pilot project) ** The estimated diameter of the liposome vesicles is too 

polydisperse, that means the PI values that exceeds 0.7 are not valid. 

 

The average size of the different liposomal formulations in the Screening study was around 100 

nm ranging from 77-109 nm, with the exception of SPC:Chol liposomes which were 60 nm and 

SPC:DMPE which were 183 nm as shown in Figure 17. 

The liposomal formulations were observed to exhibit a smaller size and lower PI after 

centrifuged to remove unentrapped DOC. This might be explained by removal of unentrapped 
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DOC in the supernatant (Pereira et al., 2016). Thus, the size and zeta potential measurements 

conducted for total lipid dispersion during sonication were only applied as a guidance for 

whether to stop the sonication and not included in the final results, as the results obtained after 

centrifugation (Table 11 and Figure 17) was considered more accurate and reliable. 

 

Figure 17: Liposomal size distributions in the Screening study. 

 

PI is a measure of heterogeneity, or the width of the distribution of particles (Woodbury et al., 

2006). Small values of PI (< 0.2) indicate homogenous distribution while larger PI values (> 

0.2) indicates high heterogeneity and broad distribution of particles. The PI value should not 

exceed 0.7 because in that case the liposomal formulations is too polydisperse and cannot be 

trusted (Malvern, 2013). 

The majority of the liposomal formulations displayed a PI < 0.3, which indicate that the 

measurement with the Malvern Zetasizer is a suitable method for these samples. SPC:Ceramide 

C12 (No. 8) and SPC:POPE (No.14) showed a PI over 0.3, respectively 0.42 and 0.32, which 
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indicate that they show a broader polydispersity, but were still below 0.7. However, the 

SPC:DMPE (No. 12) displayed a PI of 0.86 and hence it was found too polydisperse. 

 

Figure 18: Liposomal charge in the Screening study. 

 

The majority of the liposomal formulations carried a slightly negative charge, as shown in 

Figure 18. The head group of the lipids decides the charge (Kraft et al., 2014). The liposomal 

formulations composed of PE or PC were almost neutral, as expected as these head groups are 

neutral, as seen in Table 1. The SPC:DPPG (No. 9) and SPC:DMPG (No. 10) carried a high 

negative charge around -30 mV, as expected since the PG head group carry a net negative 

charge as seen in Table 1 and hence contributes to the highly negative zeta potential. The 

SPC:DOTAP (No. 6) was the only liposomal formulation in this study found to have a positive 

charge, as expected because DOTAP is a cationic lipid (Zhi et al., 2018). 

Both SPC and SPC:Chol liposomes were slightly negative charged, and close to neutral, as 

expected since either SPC or Chol bear a charge. Yang et al. (2007) prepared liposomes with 

SPC:Chol (90:10 molar ratio) with paclitaxel and reported a zeta potential which were 
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coinciding with our results, even though the lipid ratio and drug were not the same (Yang et al., 

2007). 

Neutral liposomes have a lower tendency to be cleared by the MPS but have a higher tendency 

to aggregate. Both a negative and a positive charge contributes to reduce tendency to aggregate 

and hence increase the stability (Kraft et al., 2014), but on the contrary, a negatively and a 

positively charge increases the chance of being opsonized and cleared by the MPS and hence a 

shorter period of the in the circulation after being administrated (Lian and Ho, 2001; Allen and 

Cullis, 2013).  

The results of entrapment efficiencies and drug:lipid ratio for the liposomal formulations are 

presented in Table 12. Drug recovery is the ratio between DOC concentrations in the 

supernatant after centrifugation divided by the total DOC concentration before centrifugation, 

determined by HPLC. The DOC concentration was adjusted by the PL recovery to compensate 

for variable PL recovery presented as entrapment efficiency (EE %). The drug load capacity 

represents how much DOC that is associated with the liposomes (the drug:lipid ratio), and gives 

a more comparable measure of the drug load in the liposomal membrane, as it is not associated 

with the initial drug:lipid ratio applied in the formulation (Pereira et al., 2016).  

Table 12: Liposomal characteristics of 14 liposomal formulations investigated in the Screening study. 

No. Lipid 

composition 

DOC recovery in 

supernatant (%) 

PL recovery in 

supernatant (%) 

EE (%) DOC:lipid 

ratio (w/w) 

1 SPC 94.5 ± 0.03 85.9 110.2 ± 0.04 0.104 ± 0.98 

2 SPC:Chol 24.3 ± 0.03 97.3 25.0 ± 0.03 0.040 ± 0.49 

3 SPC:DOPE 69.9 84.4 82.5 0.079 

4 SPC:DOPC 48.0 89.3 53.8 0.051 

5 SPC:DSPE-

PEG2000 

64.4 95.1 67.7 0.058 

6 SPC:DOTAP 101.7 88.8 114.6 0.122 

7 SPC:CC6 15.7 89.8 17.5 0.027 

8 SPC:CC12 20.8 89.3 23.3 0.039 

9 SPC:DPPG 65.2 90.7 71.8 0.064 

10 SPC:DMPG 92.3 95.9 96.2 0.089 

11 SPC:DMPC 48.7 84.6 57.6 0.057 

12 SPC:DMPE 39.3 99.2 39.6 0.041 

13 SPC:POPC 53.8 95.7 56.3 0.062 

14 SPC:POPE 45.9 97.4 47.1 0.052 
* Liposomes that included cholesterol (Chol), DOTAP, Ceramide C6 (CC6) and Ceramide C12 (CC12) had their 

lipid content adjusted for in the calculations; lipid amount = phospholipid content * 1.25. This since these lipids, 

accounting for 20 % (w/w) of the lipids in the formulation, do not contain phosphorous.  
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. 

The recovery of DOC after purification ranged between 16-102 % for the 14 different liposomal 

formulations. The drug recovery and entrapment efficiency of formulation no. 2, 4, 7, 8, 11, 12 

and 14 was rather low, all of them with recovery of DOC below 50 % and <60 % EE. All 

formulations showed lipid recoveries ranging between 84 and 100 %, hence the lipid loss during 

purification of liposome cannot be responsible for the amount of DOC that was lost during 

purification. A possible explanation for this could be that DOC was not fully incorporated in 

the liposomal bilayer, but rather associated with the outer surface and hence lost during 

centrifugation leading to a reduction in entrapment efficiency. This was also suggested by 

Pereira et al. (2016) which made liposomal formulations of DOC, but with non-comparable 

compositions of the liposomes. In their study, a liposomal formulation composed of 

DOPC:Chol prepared with a molar ratio of 100:50 with a lipid:drug ratio of 40:1, 20:1 and 10:1, 

respectively, showed a maximum entrapment efficiency around 90 % for all three lipid:drug 

ratios (Pereira et al., 2016). 

The 14 different liposomal formulations showed highly varying results with respect to 

DOC:lipid ratio, as shown in Table 12. The SPC (No. 1) and SPC:DOTAP (No. 6) liposomal 

formulations showed that the amount of DOC that was associated with the liposomes was 

approximately 0.1 DOC/1 lipid (w/w), which was consistent with the initial drug:lipid ratio of 

1:10 (w/w). The SPC:DMPG (No. 10) showed a DOC:lipid ratio of 0.089 DOC/1 lipid (w/w) 

which was slightly lower than the SPC and the SPC:DOTAP liposomal formulation. 

The SPC:Chol (No. 2), SPC:Ceramide C6 (No. 7) and SPC:Ceramide C12 (No. 8) liposomal 

formulations showed the lowest DOC:lipid ratio of all 14 liposomal formulations, all with a 

DOC:lipid ratio of ≤ 0.040 DOC/1 lipid (w/w). These results were consistent with the low 

entrapment efficiency of the same liposomal formulations.  

The entrapment of DOC of the 14 different liposomal formulations ranged between 18 % and 

115 % as shown in Figure 19.  
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Figure 19: Entrapment efficiency of liposomal formulation 1-14 in the Screening study. 

 

As shown in Figure 19 the entrapment of DOC varied a lot. The entrapment of DOC is 

dependent on the properties of the acyl chains of the PLs in the liposome and DOCs partition 

coefficient and polarity. Because of DOCs lipophilic nature it will reside in the fatty acyl chains 

of the liposome, and hence properties of the PLs used is a decisive factor for entrapment 

(Bozzuto and Molinari, 2015).  

This study showed no correlation between saturation of the lipids and entrapment efficiency. 

SPC:DOTAP (No. 6) is unsaturated, as shown in Figure 6 and has the highest entrapment 

efficiency, but SPC:DMPG (No. 10) is unsaturated (Table 1) and has entrapment around 100 

%. Formulation no. 3, 4, 6, 7, 8, 9, 13 and 14 were all unsaturated and displayed varying 

entrapment efficiency in the range of 18-115 %, and formulation no. 10, 11 and 12 is composed 

of saturated lipids and show an entrapment ranging from 40-96 %. 

Immordino et al. (2003) investigated different liposomal formulations of DOC, but with non-

comparable compositions of lipids. In their study it was observed that changing an unsaturated 

lipid (egg PC) with saturated lipids decreased the encapsulation efficiency. This was not found 

in our project and hence we cannot confirm or disapprove if the saturation will affect the 
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entrapment efficiency. They also observed that a higher amount of Chol or an increased 

DOC:lipid molar ratio affected the encapsulation efficiency negatively (Immordino et al., 

2003).  

Pereira et al. (2016) reported that liposomes composed of unsaturated lipids showed the highest 

DOC loading compared to saturated lipids. They used other lipid combinations in which are 

non-comparable with this study (Pereira et al., 2016). In this study we screened 14 different 

lipid combinations, in which we included 1-2 lipids in the different liposomal formulations, 

while both Immordinio et al. (2003) and Pereira et al. (2016) included more than 2 lipids in 

their liposomes. Hence it is several factors that affect how well DOC is incorporated and 

becomes a part of the liposomal membrane, and it is difficult from our findings to conclude it 

saturation affects the entrapment efficiency. It could appear like that DOC have a higher affinity 

for cationic lipid blends as compared to the non-charged and negative charged. This has also 

been described for other anticancer agents with lipophilic properties, like Camptothecin (Sætern 

et al., 2004). 

We evaluated if different lengths of the fatty acids and variety head group of the PLs used in 

the different liposomal formulations could affect the entrapment of DOC. The head group of 

PLs determine the charge. Both PC and PE are non-charged (Kraft et al., 2014) as shown in 

Figure 5. In this study we used four different PLs with PC: SPC (No 1), DOPC (No. 4), DMPC 

(No. 11) and POPC (No. 13) which showed entrapment of 110, 54, 58 and 56 %, respectively. 

Interestingly, the liposomal formulations composed of DOPC, DMPC and POPC displayed a 

rather similar entrapment of DOC, even though they had different length and saturation of the 

fatty acids, where DMPC have saturated C14 chains, DOPC have unsaturated C18 chains, and 

POPC have one C18 saturated and one C18 unsaturated chain, as shown in Table 1. 

We used four different PLs with PE as head group: DOPE (No. 3), DSPE (No.5), DMPE (No. 

12) and POPE (No. 14) which showed varying entrapment of DOC with 83, 68, 40 and 47 %, 

respectively. Hence, for these liposomal formulations, it seems like properties of the fatty acids 

was determinant of entrapment.  

PG is a negatively charged head group (Kraft et al., 2014), as seen in Figure 5. We used two 

lipids with PG: DPPG and DMPG, both which displayed a relatively high entrapment, 72 and 
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96 %, respectively. In this case it seems like a shorter fatty acyl chain gives higher entrapment, 

as saturation is the same for both dipalmitoyl in DPPG and dimyristoyl in DMPG (Table 1). 

When comparing lipids with the same fatty acyl acids, but with different head groups in 

between the different liposomal formulations, such as DMPG (No. 10), DMPC (No. 11) and 

DMPE (No. 12), the entrapment decreases from 96 % with the PG group, to 58 % with the PC 

group, to 40 % with the PE group. These lipids have the same fatty acyl group: dimyristoyl 

which are saturated with 14 carbons, as seen in Table 1. The same trend could be seen with 

POPC (No. 13) and POPE (No. 14) where entrapment decreases from 56 % with PC to 46 % 

with PE. These two lipids have the same fatty acyl group: palmitoyl-oleyl which have one 

saturated 16 carbon chain and one unsaturated 18 carbon chain. From these observations, it 

could seem like the head group of PLs affects entrapment in the following order: PG > PC > 

PE. However, this is not the case with the fatty acid dioleoyl in DOPE (No.3) and DOPC (No. 

4) where DOPE have a higher entrapment of DOC with 83 % compared to DOPC with 54 %. 

The liposomal formulations which contained ceramides showed poor entrapment of DOC. 

Ceramide C6 (No. 7) with a C6 fatty acyl chain, shown in Figure 7, showed an entrapment of 

18 %, while ceramide C12 with a C12 fatty acyl chain, shown in Figure 8, showed a slightly 

higher entrapment with 23 %.  

The liposomal formulation containing Chol (No. 2) also showed a poor entrapment of DOC 

with 25 %. Previous studies have found that Chol in liposomal formulations with hydrophobic 

drugs (paclitaxel and DOC) exhibits a negative effect on encapsulation efficiency (Crosasso et 

al., 2000; Immordino et al., 2003) and can be explained by Chol occupying the hydrophobic 

space in the membrane (Chen et al., 2017). However, Immordino et al. (2003) showed that 

inclusion of a small amount of Chol did not have a negative effect on encapsulation efficiency 

of DOC, but in concentrations over 30 mol% the encapsulation efficiency and stability 

decreased (Immordino et al., 2003). In our case, the Chol concentration was ~33 mol%, and 

therefore our results correspond well with the work of Immordino and colleagues. 

Chen et al. (2017) made liposomes with egg PC:Chol:DSPE-PEG2000:DOC at 56:40:4:4 molar 

ratio. They observed that the optimal Chol content was 40 mol% for their formulation. These 

results are not supported by the findings done in our study. The formulation and preparation 

method of Chen et al. (2017) are not comparable to the method applied in this project, as they 
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hydrated their lipid film with PBS and both probe sonicated and extruded their liposomes (Chen 

et al., 2017). 

Yang et al. (2007) made paclitaxel liposomes with SPC:Chol (90:10 lipid molar ratio) and 

SPC:Chol:DSPE-mPEG2000 (90:10:5 lipid molar ratio), and reported an entrapment efficiency 

of 61 and 57 %, respectively. Compared to this study, the SPC:Chol (No. 2) liposomes with 2:1 

molar ratio, has a much higher amount of Chol and a lower EE %. Interestingly, the SPC:DSPE-

PEG2000 (No. 5) liposomal formulation in our study showed an entrapment efficiency of 68 

%, with approximately 14:1 molar ratio of SPC:DSPE-PEG2000. The results might not be 

comparable as Yang et al. (2007) used paclitaxel as investigated drug and a different method 

of preparation, a modified thin-film hydration method where they evaporated solvents and 

flushed the lipid film with nitrogen and under vacuum overnight before hydrating the lipid film 

whit a phosphate buffer saline (PBS), thereafter extruding the dispersion to reduce the size of 

the liposomes (Yang et al., 2007). However, paclitaxel and DOC are both taxanes and are quite 

similar in structure, both highly lipophilic (Louage et al., 2017). It would be interesting to 

investigate the DSPE-PEG2000 further in a lipid combination, as PEGylation have shown 

decreased uptake by the MPS (Kim, 2016; Bozzuto and Molinari, 2015). 

Formulation number 1 (SPC), 6 (SPC:DOTAP) and 10 (SPC:DMPG) shown in Table 12 were 

the most promising liposomal formulations after screening of the different lipids combinations 

in liposomal formulations, as they show an entrapment efficiency near 100 %. 

The SPC:DOTAP formulation (No. 6) showed superior entrapment efficiency. This was the 

only cationic lipid used in the Screening study, and the formulation in this study showed a 

cationic charge at 76.3 mV. The fatty acyl chains of DOTAP, dioleyl is unsaturated with C18 

chains. In comparison with the two other PLs with dioleoyl fatty acids, DOPC and DOPE used 

in this study, the DOTAP liposomal formulation displayed a higher entrapment with 115 % 

relative to DOPE with 83 % and DOPC with 54 %. The structure which separate DOTAP 

(Figure 6) from DOPE and DOPC (Table 1) is the head group which, among other things, does 

not have a phosphorous group. Both DOTAP and DOPC have a trimethylamine in their head 

group, and both showed a higher entrapment of DOC compared to DOPE which have a NH3 

(ammonia group). 
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A study on liposomes with paclitaxel in 3 and 4 mol% with respect to lipid, and DOTAP and 

different phosphatidylcholine in different lipid ratios investigated incorporation effect 

(Campbell et al., 2001). The results indicated a high incorporation of paclitaxel near 100 % 

with increased mol% of DOTAP. The DSPC:DOTAP showed a 100 % incorporation with 3 

mol% paclitaxel and 60 % incorporation with 4 mol% paclitaxel with a 20 mol% of DOTAP. 

Our results with SPC:DOTAP, with approximately 20 mol% DOTAP and 8.5 mol% DOC 

showed an entrapment efficiency near 100 %. They also found that increasing amount of 

DOTAP increases the incorporation of paclitaxel up to a certain point and with some 

exceptions. It must be pointed out that these results are not comparable with our study, as they 

used different lipid compositions, a different drug and other preparation and characterization 

methods (Campbell et al., 2001). 

Yang et al. (2009) reported an entrapment efficiency of 98 % of SPC liposomes containing 

DOC with a 25:1 (w/w) lipid:drug ratio. Although they chose a different preparation method, 

the ethanol injection method, followed by extrusion to obtain liposomes with the targeted size 

range, 100 nm, the lipid composition is similar (Yang et al., 2009). In this study we showed 

that a lipid:drug ratio of 10:1 (w/w) of SPC liposomes was achievable with close to 100 % DOC 

entrapment efficiency (Table 12). Even though we managed to solubilize DOC with a lipid:drug 

ratio of 10:1 (w/w) and achieved a concentration of approximately 2 mg/mL, the commercially 

available DOC formulation in the Norwegian market have a concentration of 20 mg/mL 

(Felleskatalogen, n.d.). Thus, if this were to be the final formulation to be administrated, it 

would most likely require a higher volume of injection to reach therapeutic range.  

The three liposomal formulations with EE near 100 % and a DOC:lipid ratio of approximately 

1:10 (w/w), SPC (No. 1), SPC:DOTAP (No. 6) and SPC:DMPG (No. 10), respectively, were 

brought further to the Optimization study to see if these liposomal formulations could be further 

optimized.  
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5.2.1 Quantification of lipid loss 

The PC-assay examined the amount of phosphorus in the different liposomal dispersions in 

order to give an estimation of lipid concentration (Bartlett, 1959; Naderkhani et al., 2015). The 

results are presented in Table 13. The theoretically concentration of lipid was 20 mg/mL. Since 

Chol, DOTAP, Ceramide C6 and Ceramide C12 does not contain a phosphorous group like the 

other lipids, the amount of these lipids was not quantified, and hence, this was adjusted for in 

calculation. Thus, the expected quantified PL-concentration in these liposomal formulations 

were 16 mg/mL. 

Table 13: PL-content and loss of lipid during centrifugation. 

No. Lipid 

composition 

Average 

diameter 

(nm ± SD) 

PL concentration (mg/mL) ± SD PL recovery 

(%) 
Total sample Supernatant 

1  SPC 81.82 ± 3.46 21.26 ± 1.33 18.22 ± 0.24 85.9 ± 0.05 

2  SPC:Chol 59.80 ± 3.26 17.03 ± 0.49 16.57 ± 0.44 97.2 ± 0.04 

3  SPC:DOPE 91.31± 0.55 20.89 ± 0.12 17.62 ± 0.12 84.4 

4  SPC:DOPC 78.11 ± 0.50 22.63 ± 0.29 20.22 ± 0.32 89.3 

5  SPC:DSPE-

PEG2000 

97.55 ± 0.24 18.89 ± 0.06 17.96 ± 0.04 95.1 

6  SPC:DOTAP 77.97 ± 0.25 27.01 ± 0.17 23.98 ± 0.06 88.8 

7  SPC:CC6 77.35 ± 0.52 17.68 ± 0.05 15.87 ± 0.06 89.8 

8  SPC:CC12 96.93 ± 0.83 16.38 ± 0.04 14.64 ± 0.04 89.3 

9  SPC:DPPG 103.67 ±0.71 23.00 ± 0.04 20.86 ± 0.05 90.7 

10  SPC:DMPG 98.69 ± 0.82 22.39 ± 0.07 21.48 ± 0.07 95.9 

11  SPC:DMPC 109.37 ± 0.68 23.04 ± 0.08 19.49 ± 0.08 84.6 

12  SPC:DMPE 182.57 ± 8.98 22.36 ± 0.04 22.18 ± 0.05 99.2 

13  SPC:POPC 81.48 ± 0.26 22.77 ± 0.06 21.84 ± 0.09 95.7 

14  SPC:POPE 86.03 ± 0.93 20.78 ± 0.02 20.24 ± 0.05 97.4 

 

The PL recovery was around 84-99 % which indicate that the loss of lipid during purification 

process with centrifugation was relatively low. The amount of lipid added to the liposomal 

formulations was 20 mg/mL with exception of SPC:Chol, SPC:DOTAP, SPC:Ceramide C6 and 

SPC:Ceramide C12 liposomes in which the amount was 16 mg/mL, and after centrifugation 

one could expect that the liposomal formulations with smaller size would have a higher PL 



 

57 

 

recovery. This could be seen with SPC:Chol with small liposome size and high PL recovery, 

compared with several of the other liposomal formulations with bigger size and a slightly lower 

PL recovery, as shown in Table 13.  

Interestingly, the liposomal formulation with the highest PL recovery was the SPC:DMPE, 

which also displayed the biggest liposome size with 182 nm. The SPC:DMPE liposomal 

formulation was made two times, in which the first displayed an average size of 210 nm and a 

PI > 0.9 (data not shown) after two minutes sonication. Therefore, we de decided to make a 

new formulation (No. 12) to target a smaller size which was sonicated for 4 minutes. The 

targeted size was not achieved, and it seemed like this liposomal formulation needed longer 

sonication time to become smaller. Because of low entrapment and limited time for 

optimization, we decided not to make a new sample of this liposomal formulation. The high PL 

recovery of this liposomal formulation needs further investigation, but it could be that the size 

was small enough to be under the cut off line for what was become a part of the pellet, even 

though the size was bigger than the targeted size. 
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5.3 Optimization study 

This part of the study involved three of the liposomal formulations from the previous Screening 

study, SPC (formulation no 1), SPC:DOTAP (formulation no 6) and SPC:DMPG (formulation 

no 10). In order to see if these formulations could be further optimized, the lipid:drug ratio was 

increased from 10:1 (w/w) used in the Screening study to 10:2 (w/w). The purpose was to see 

if increased amount of DOC could be further solubilized in the liposomes with the same amount 

of lipid.  

The concentration of DOC was doubled compared to the Screening study, from 2 mg/mL to 4 

mg/mL. All formulations contained 200 mg of lipid and 40 mg DOC. The liposomal 

characteristics of the three different formulations are presented in Table 14 and the drug content 

is presented in Table 15.  

Table 14: Liposomal characteristics. 

Liposomal 

formulation 

Lipid 

ratio 

(w/w) 

Sonication 

time 

Average 

diameter 

(nm ± SD) 

PI 

(AU ± SD) 

Zeta potential 

± SD 

SPC 100 2 min 80.06 ± 0.61 0.28 ± 0.01 -0.45 ± 0.03 

SPC:DOTAP 80:20 1 min 104.47 ± 0.06 0.25 ± 0.01 57.70 ± 0.93 

SPC:DMPG 80:20 0.5 min 106.50 ± 0.10 0.23 ± 0.00 -28.77 ± 0.75 

 

The average diameter of the liposomal formulations shown in Table 14 was around 100 nm, 

which is similar to the average diameter of the same liposomal formulations in the Screening 

study, with exception of SPC:DOTAP which could be explained by a shorter sonication time 

in this Optimization study. The PI value of all three liposomal formulations were < 0.3 which 

indicates that they have a homogenous relatively small width distribution. The zeta potential of 

the SPC was slightly negative as expected and observed in the Screening study. The charge of 

the SPC:DOTAP liposomes were highly positive, and the SPC:DMPG liposomes were 

negatively charged, both as observed in the Screening study. Thus, as expected, increased DOC 

content in preparation did not affect the zeta potential of the liposomes. 
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Table 15: Drug content in the liposomal formulations. 

Liposomal 

formulation 

Sonication 

time 

DOC concentration (µg/mL) DOC recovery 

in supernatant 

(%)  
Total sample Supernatant  

SPC 2 min 406.24 ± 6.75 83.82 ± 1.37 21 % 

SPC:DOTAP 1 min 348.70 ± 6.97 151.65 ± 2.93 43 % 

SPC:DMPG 0.5 min 375.70 ± 7.72 74.50 ± 1.61 20 % 

 

The recovery of DOC in the supernatant after centrifugation was 21 %, 43 % and 20 % for SPC, 

SPC:DOTAP and SPC:DMPG, respectively. Compared with formulation 1, 6 and 10 in the 

Screening study, which are the same formulations but with a lipid:drug ratio of 10:1, we can 

see that the drug recovery has decreased dramatically as shown in Figure 20. It might be that 

the increased concentration of precipitated drug in the liposomal dispersion capture more 

liposomes in the pellet. Unfortunately, we did not perform any recovery assessment of PL in 

this part of the study, and thus this theory cannot be confirmed. However, both studies indicate 

the positive effect and superiority of the DOTAP formulation. 

 

Figure 20: DOC recovery after centrifugation. 
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Thus, in this third part of the study it was not executed a phospholipid assay. We assumed that 

the recovery of lipids was approximately 100 % based on the results from the Screening study, 

and hence calculated the drug:lipid ratio of the formulations in Table 15 to estimate how much 

DOC that was associated with the liposomes. The results are presented in Figure 21. The results 

were compared with the same formulations in the Screening study, but with different lipid:drug 

ratios: 20:1 and 10:1, respectively.  

For the liposomal formulations with SPC lipid only, we can see that an increasing amount of 

DOC has a negative effect on the drug:lipid ratio. This trend was also seen in the two other 

formulations: SPC:DOTAP and SPC:DMPG, but not in the same extent for SPC:DOTAP 

liposomes, as for the two other liposomal formulations. 

 

Figure 21: Estimated DOC:lipid ratio of the liposomal formulations from the Screening study (blue) and the 

Optimization study (beige). 

 

It is desirable to achieve a high entrapment of DOC, in other words, to achieve the highest 

drug:lipid ratio. The outcome of increasing the drug:lipid ratio is reduced amount of lipid 

administrated for a given dose. This is beneficial both with concerns of reducing the economic 
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cost of production (Straubinger and Balasubramanian, 2005). DOTAP is more expensive than 

other naturally occurring lipids (Sætern et al., 2004). 

In this Optimization study, we investigated if DOC could be further solubilized in the 

liposomes, and from the results, it seemed like a 10:1 (w/w) lipid:drug ratio, used in the 

Screening study, was better for entrapment of DOC. The SPC:DOTAP liposomal formulation 

achieved a higher DOC recovery compared to the SPC and the SPC:DMPG liposomal 

formulation with a 10:2 (w/w) lipid:drug ratio, and was brought to the DOTAP study for further 

investigation. 
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5.4 DOTAP study: the effect of different DOTAP concentration on 

DOC entrapment 

The SPC:DOTAP liposomal formulation showed a superior recovery of DOC compared with 

the other formulations in the third part of the study, the “Optimization study”. DOTAP and 

cationic liposomes are particularly interesting because of the electrostatic attraction between 

the positive particles and negative charged components that covers cells (sulphated 

proteoglycans of glycocalyx) which leads to binding to cells (Steffes et al., 2017). A previous 

study demonstrated that cationic liposomes composed of DOTAP:DOPC:Paclitaxel have 

ability to accumulate in tumour blood vessels and increase antitumoral efficacy (Schmitt-Sody 

et al., 2003). 

Sætern et al. (2004) compared the effect of varying the amount of DOTAP in egg PC:DOTAP 

and Camptothecin liposomes in order to find an optimal content of DOTAP for maximum 

incorporation of the drug. They reported that with increasing amount of DOTAP they reached 

a plateau for incorporation of the drug at approximately 20 mol% DOTAP (Sætern et al., 2004). 

The fourth and final part of the project involved comparison of the effect of varying the 

concentration of DOTAP within SPC:DOTAP liposomes. This part involved making new 

liposomal formulations with DOC, where the amount of DOTAP was tested in increasing 

concentrations. The liposomes were prepared with a thin film-hydration method and sonicated 

for one minute. The liposomal characteristics of the five different formulations is presented in 

Table 16. All formulations contained 200 mg lipid and 30 mg DOC. 

Table 16: Liposomal characteristics of DOC:SPC:DOTAP liposomes. 

Liposomal 

formulation 

(DOTAP % (w/w)  

of total lipid) 

Lipid composition  

(lipid ratio w/w) 

Average 

diameter 

(nm ± SD) 

PI 

(AU ±SD) 

Zeta potential 

± SD 

1 (0 %) SPC 98.10 ± 0.40 0.22 ± 0.01 -0.92 ± 0.39 

2 (10 %) SPC:DOTAP (9:1) 106.55 ± 0.72 0.27 ± 0.01 54.93 ± 1.75 

3 (20 %) SPC:DOTAP (8:2) 102.28 ± 0.53 0.26 ± 0.01 51.80 ± 1.57 

4 (30 %) SPC:DOTAP (7:3) 102.05 ± 0.47 0.23 ± 0.01 57.58 ± 1.74 

5 (50 %) SPC:DOTAP (1:1) 97.62 ± 0.57 0.22 ± 0.01 60.33 ± 2.98 
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Since sonication processing of SPC:DOTAP liposomal formulations in part 3, the 

“Optimization study”, gave satisfactory size and PI, we decided to sonicate all the formulations 

for 1 minute. The average diameter was around 100 nm for all five liposomal formulations. 

Formulation 1 was composed of 100 % SPC. Formulation 2-5 were composed of increasing 

amount of DOTAP, from 10-50 % (w/w). It seemed like the average diameter decreased slightly 

with increasing amount of DOTAP. 

The PI value of all five liposomal formulations were < 0.3. The zeta potential of formulation 1 

(SPC) was slightly negative, as expected since the PC head group are neutral (Kraft et al., 

2014). Formulation 2-5 all showed a highly positive charge, as expected based on previously 

results and the fact that DOTAP is a cationic lipid (Zhi et al., 2018). 

The five different liposomal formulations were characterized with measurement of 

concentration before and after purification using centrifugation, as shown in Table 17. 

Table 17: Drug content in the liposomal formulations with increasing amount of DOTAP. 

Liposomal formulation 

(DOTAP % (w/w)  

of total lipid) 

Docetaxel concentration (µg/mL) DOC recovery 

in supernatant 

(%) 
Total sample Supernatant  

1 (0 %) 298.19 ± 9.42 79.30 ± 1.14 27 

2 (10 %) 305.18 ± 2.86 166.67 ± 5.32 55 

3 (20 %) 318.92 ± 2.76 154.22 ± 1.34 48 

4 (30 %) 317.23 ± 6.38 168.75 ± 1.38 53 

5 (40 %) 282.83 ± 4.48 218.24 ± 5.73 77 

 

The recovery of formulation 1, the one liposomal formulation only composed of SPC was quite 

poor with only 27 % DOC left in purified sample, as shown in Figure 22. This is interestingly 

since the DOC recovery of the SPC liposomal formulation with a 10:1 (w/w) DOC:lipid ratio 

from the “Screening study”, shown in Table 12, was 95 %. It could seem like an optimal 

DOC:lipid ratio for SPC liposomes was 10:1 (w/w), as the DOC recovery for both SPC 

liposomes in this DOTAP-study, with a 10:1.5 (w/w) DOC:lipid ratio (Table 17), and in the 

“Optimization study” a 5:1 (w(w) DOC:lipid ratio (Table 15) was much lower. 
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Formulation 2-5 composed of SPC:DOTAP with increasing amount of DOTAP showed a 

recovery of DOC between 48 and 77 % as shown in Figure 22. 

 

Figure 22: DOC recovery of the five different liposomal formulations in the DOTAP study. 

 

The highest recovery of DOC was at 50 % (w/w) (~50 mol%). There seem to be a trend that an 

increasing amount of DOTAP solubilize more DOC, although the recovery of formulation 3 

and 4 was slightly lower than formulation 2. Compared to Sætern et al. (2004), it seems like 

we did not achieve an optimal DOTAP content for maximum incorporation of DOC (Sætern et 

al., 2004). It could be discussed that even more DOTAP content would solubilize even more 

DOC, but this needs further investigation. 

In this part of the study we did not perform any recovery assessment of PL. The DOC recovery 

of the five liposomal formulations was varying, and it might be that the DOC concentration was 

too high, hence precipitated in the liposomal dispersion, and thereby the precipitated drug 

captured more liposome in the pellet under centrifugation. Since we did not perform any 

recovery assessment of PL, this cannot be confirmed but needs further investigation. 

Formulation 3 (SPC:DOTAP) from this DOTAP study had a lipid ratio of 80:20 (w/w) with a 

DOC recovery of 48 %. The SPC:DOTAP liposomal formulation from the “Screening study”, 
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shown in Table 12, with a DOC:lipid ratio of 10:1 showed a recovery of DOC near 100 %. The 

SPC:DOTAP liposomal formulation from the “Optimization study”, shown in Table 15, with a 

DOC:lipid ratio of 5:1 (w/w) showed a DOC recovery of 43 %. It could seem like the optimal 

DOC:lipid ratio of the SPC:DOTAP formulation was achieved at 10:1 (w/w). 
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6 Conclusion 

The present research work focused on the effect of lipid composition on the DOC entrapment. 

We established a small scale screening method for preparing DOC-liposomes and for separating 

the unentrapped DOC from the liposomes in order to determine the DOC entrapment efficiency.  

In the Pilot project, we established the method used throughout the whole laboratory experiment 

period. In the screening study, 14 different liposomal formulations with different lipid 

compositions were prepared to investigate how the lipid compositions affected the DOC 

entrapment efficiency. Different DOC entrapment values, in the range between 18 and 115 % 

were obtained. No correlation between lipid saturation and DOC entrapment efficiency was 

observed. 

However, three of the liposomal formulations showed entrapment efficiency near 100 %, with 

110, 115 and 95 % for SPC, SPC:DOTAP and SPC:DMPG liposomal formulations, 

respectively. These formulations were brought to the Optimization study to investigate if even 

more DOC could be entrapped in the liposomes. The results showed that a 10:1 (w/w) lipid:drug 

ratio gave better entrapment efficiency than a 10:2 (w/w) lipid:drug ratio. The only cationic 

liposomal formulation in this project, SPC:DOTAP, showed the best entrapment efficiency and 

was further investigated with varying the concentration of the positively charged lipid, DOTAP, 

to see if the DOTAP concentration affected the DOC entrapment. Our results indicate that an 

increasing amount of DOTAP affects the entrapment efficiency positively. 
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7 Perspectives 

The results of this thesis represent a preliminary Pilot project and the development of liposomal 

formulation of DOC is only in its infancy. The SPC:DOTAP liposomes with DOC should be 

further explored. The formulation should be further investigated to evaluate its stability, and 

potential to be prepared sterile. Moreover, its stability in biological fluids should be confirmed. 

Short-term perspective 

• Deeper insight and further investigation on solubilizing DOC in the liposomal 

formulation. 

• Investigate if a smaller amount of Chol could contribute to a better entrapment 

efficiency. 

• Run more parallels of SPC and SPC:DOTAP to see if the results are reproducible and 

perform PC-assay to evaluate entrapment efficiency and drug load capacity accurately. 

• Evaluate other methods such as dual asymmetric centrifugation (DAC) as a processing 

method for preparing liposomes. 

• Evaluate the of stability of the liposomal formulation. 

• Evaluate in vitro efficacy (in cytotoxicity assays using human cell lines). 

Long-term perspective 

• Evaluation of safety and efficacy in animal studies after administration of the liposomal 

formulation parenterally. 
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