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Invariant characterization of Liouville metrics

and polynomial integrals

Boris Kruglikov

Abstract

A criterion in terms of differential invariants for a metric on a surface
to be Liouville is established. Moreover, in this paper we completely solve
in invariant terms the local mobility problem of a 2D metric, considered
by Darboux: How many quadratic in momenta integrals does the geodesic
flow of a given metric possess? The method is also applied to recognition
of other polynomial integrals of geodesic flows. 1

Introduction

The problem of recognizing by a metric, how many integrals admits its
geodesic flow is classical. In this paper we study locally metrics on surfaces. We
will look for the integrals analytic in momenta.

By Whittaker theorem [W] existence of such an integral is equivalent to
existence of an integral polynomial in momenta. Note that locally geodesic
flows are integrable, but the corresponding integrals are usually analytic only
on T ∗M \M . So in general polynomial integrability requires certain conditions
even locally.

The integrals of degree one in momenta correspond to surfaces of revolution,
locally ds2 = f(x)(dx2 +dy2). It is an easy fact that if such integrals exist, then
there are either one (generically) or three (space form). We provide a precise
criterion for determining existence of a local linear integral (Killing vector field).

The next interesting case concerns geodesic flows with quadratic in momenta
integrals. They correspond to Liouville metrics. The local analytic form of such
metrics near a generic point is well-known [D, B]: ds2 = (f(x)+h(y))(dx2+dy2)
and a metric has an additional quadratic integral iff it can be transformed into
such a form.

However no criterion, when the metric is Liouville has been previously ob-
tained, except for the paper [Su] (the first, rather unsuccessful attempt was done
in [V]). However the criterion of this work was not explicit. Neither did it con-
tain invariant formulae, making it difficult even to decide how many differential
invariants characterize Liouville metric and which order they have.

1MSC numbers: 53D25, 53B20; 37J15, 53A55, 70H06.
Keywords: geodesic flow, Killing field, Liouville metric, polynomial integrals, degree of mo-
bility, differential invariant, compatibility, multi-bracket, solvability.
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As the main result of this paper we resolve the classical problem of recogni-
tion for Liouville metrics and provide an explicit criterion written via a basis of
scalar differential invariants of the metric.

Moreover we shall determine the number of quadratic integrals, which co-
incides with the degree of mobility of a Riemannian metric on a surface. It
can be 6 (space form), 4 (case characterized in [D] though not through differen-
tial invariants; note that in classical works the Hamiltonian is disregarded, so
that there are 5, 3 etc integrals in their way of counting), 3 (the case studied
by Kœning [Koe]), 2 (general Liouville form) or 1 (metrics with no additional
quadratic integrals). Each of these cases will be characterized via an invariant
condition written in terms of differential invariants of the Riemannian metric.

The method of our study is the Cartan’s prolongation-projection method:
we write the system of PDEs for existence of a quadratic integral and subse-
quently calculate the compatibility conditions. If they are trivial, the system is
compatible and we stop. Otherwise we add new equations, the space of solutions
(which is a finite-dimensional linear space from the beginning – the system is of
finite type) shrinks and we continue.

For effectiveness of the method we should have explicit formulas for compat-
ibility conditions, but they are given by the result of [KL2].

The procedure stops in several steps because finally we arrive to only one
possible quadratic integral, which is just the Hamiltonian, an obvious integral of
the geodesic flow. The prolongation-projection scheme usually is characterized
by the rapidly growing complexity with each step. It is also true in our problem,
but in this case we manage to arrive to the very end of the method and to
establish the solvability criterion.

The problem of invariant characterization of Liouville metrics was initiated
in paper [KL3] in a collaboration with V.Lychagin as an application of our
general compatibility criterion. The results are repeated in a revised form in
sections 3-4. Moreover the general idea of solution to the problem was sketched
there, but the complete answer appears here for the first time.

Let us also indicate that the solution of the problem presented here is ex-
pressed via scalar differential invariants and we especially care to minimize the
number/order of the invariants.

At the end of the paper we discuss the problem of higher degree integrals
and make some claims and conjectures about dimension of the space Jn of
polynomial in momenta integrals F of deg F = n.

Acknowledgment. While solving the problem I profited from discussions
with V. Matveev, V. Lychagin and E. Ferapontov. I wish to thank them all.

1. PDEs and Prolongation-Projection scheme

In this section we deduce the basic system of equations for polynomial inte-
grability, discuss compatibility criterions and formulate the general scheme of
investigating solvability.
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Liouville metrics

This paper deals mostly with local existence problem, so that whenever
opposite is not explicitly stated all statements should be assumed local in M .
Moreover we impose the usual regularity assumption. Regular points form a
nonempty open set, but it does not need to be of full measure in the C∞ case
(in analytic case regular points are generic) and such pathological examples exist
even in R2.

Let (x, y) be local coordinates on M2 and px, py be the corresponding mo-
menta on T ∗M . Writing the metric ds2 = gijdxidxj we express Hamiltonian
of the geodesic flow as H = g11p2

x + 2g12pxpy + g22p2
y, where the matrix gij is

inverse to the matrix gij of the metric g.
A homogeneous term of an integral is obviously an integral, and so we study

a function Fn =
∑

i+j=n uij(x, y)pi
xpj

y on T ∗M . Involutivity condition, i.e.
vanishing of the Poisson bracket {H, Fn} = 0, is equivalent to (n + 2) equations
E1 = 0, . . . , En+2 = 0 on (n + 1) unknown function un0(x, y), . . . , u0n(x, y).

This system E is of generalized complete intersection type studied in [KL3].
The compatibility criterion developed there states that the system is formally
integrable iff the following multi-bracket vanishes:

En+3 = {E1, . . . , En+2} (mod E1, . . . , En+2) = 0. (1)

For linear differential operators this is defined as follows.
Let Ei(u) =

∑n
j=0 Ej

i uj(n−j) be representation of the vector operator in

components Ei = (E0
i , . . . , En

i ) (Ej
i are scalar differential operators). Then the

multi-bracket equals (in this formula m = n + 1)

{E1, . . . , Em+1} =
1

m!

∑

α∈Sm,β∈Sm+1

(−1)α(−1)β E
α(0)
β(1) ·E

α(1)
β(2) · · ·E

α(m−1)
β(m) · Eβ(m+1).

Reduction modulo the system in (1) means the following. Orders of differential
operators Ei are 1 and order of the multi-bracket {E1, . . . , En+2} is (no greater
than) (n + 1). We prolong the system E = {E1 = 0, . . . , En+2 = 0} to the
order (n + 1) (such prolongation exists!), i.e. take the space of all linear com-

binations
∑n+2

i=1 ∇iEi with linear scalar differential operators ∇i of ord∇i ≤ n,
and consider the class of the multi-bracket in the quotient space (see [KL2] for
details).

Now the system E is of finite type, i.e. has no complex characteristics
(we refer the reader for this and further notions from geometry of PDEs to
[KLV, KL4]), so if compatibility condition (1) is satisfied, the system is locally
integrable.

If this condition is not satisfied we add the equation En+3 = 0 to the sys-
tem E and continue with solvability investigation of the new prolonged system
E ′. Prolongation means addition of derivatives of the generators. But if their
combination (differential corollary) drops in order (projection), it is the com-
patibility condition, which should be added to the system. Thus we get new
equations E ′′ etc, until we stabilize at a system Ē in a finite number of steps
(Cartan-Kuranishi theorem).
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Denoting T = T(x,y)M the model tangent space for independent variables
and N ≃ Rn+2(ui(n−i)) the space of dependent variables, the system E has

symbols gk ⊂ SkT ∗ ⊗ N (respectively E ′ has symbols g′k etc). Codimension of
this linear subspace (n + 2)(k + 1) − dim gk equals the number of independent
equations in the prolonged system of order k.

Cohomology Hk−1,2(E) of the Spencer δ-complex

0 → gk+1
δ

−→ gk ⊗ T ∗ δ
−→ gk−1 ⊗ Λ2T ∗ → 0

at the last term is the space of compatibility conditions ([KLV, KL4]). For the
initial system E the only non-zero second Spencer δ-cohomology is Hn,2(E) ≃ R1

and the only compatibility condition is the above reduced multi-bracket En+3.
Thus E ′ = {E1 = 0, . . . , En+3 = 0}. Further compatibility conditions (for E ′

etc) will be indicated along with prolongation-projection process.
Let Jn = {(ui(n−i))} denotes the solution space of the system E . This space

is linear and dimJn =
∑

dim ḡk. In particular this is smaller than
∑

dim gk

and since the latter quantity strictly decreases during prolongation-projection,
the method stops in a finite number of steps giving either non-trivial locally
integrable system of PDEs (solvability) or no solution result.

2. Differential invariants of a Riemannian metric

Here we describe the algebra A of scalar differential invariants of a Rieman-
nian metric g on a two-dimensional surface M . It is well-known that the first
such invariant occurs in order 2 and is given by the scalar curvature K.

Denote gradK be the g-gradient of the curvature and let sgradK = J0 gradK
be its rotation by π/2 (one needs to fix orientation, which is possible as we treat
(M, g) locally; alternatively we can square those invariants, which have unde-
termined sign). There are two invariant differentiations Lgrad K and Lsgrad K (L
is the Lie derivative). These differentiations and K do not generate A, but if
we also allow commutators they do.

There are precisely (k − 1 − δk3) functionally independent differential in-
variants of order k for k > 0. Let us briefly explain why (cf. [T]). Consider
the jet-space of Riemannian metrics Jk(S2

+T ∗M). Fibers of the projections
πk,k−1 : Jk → Jk−1 have dimensions 3(k + 1), where as usual J−1 = M .

The pseudogroup Diff loc(M) acts naturally on the jet-spaces. Its action is
transitive up to 1st jets. Indeed, the action is clearly transitive on the base and
let us consider the jets of the stabilizer of x ∈ M , i.e. the differential group
Gk

x = Jk
x,x(M, M). G1

x acts transitively on J0
x(S2

+T ∗M) with one-dimensional
stabilizer O(2).

The action of G2
x on J1

x(S2
+T ∗M) is transitive as well, but the action of G3

x

on J2
x(S2

+T ∗M) is not (though it has dimensional freedom to be!). Codimension
of a generic orbit is 1 and curvature K is the only invariant.

The stabilizer disappears only on the next step and starting from k = 3 the
actions of Gk+1

x on Jk
x (S2

+T ∗M) are free. Thus since dimKer(Gk+1
x → Gk

x) =

4
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2(k + 2), codimension of the generic orbit of Ker(Gk+1
x → Gk

x) on π−1
k,k−1(∗) is

equal to (k − 1 − δk3).
Let us establish a basis in the space of invariants.

For a tensor T denote d⊗k
∇ T = d∇(d

⊗(k−1)
∇ T ) the iterated covariant derivative

of the tensor T (d⊗2
∇ differs from d2

∇, which is equal to multiplication by the
curvature tensor). In particular, we obtain the forms d⊗i

∇ K ∈ C∞(⊗iT ∗M).
Since K is a scalar function, d∇K = dK. The next differential is symmetric,

because we consider metric (Levi-Civita) connection:

Lemma 1. d⊗2
∇ F ∈ C∞(S2T ∗M) ∀F ∈ C∞(M) iff connection ∇ is symmetric.

Proof. Since d⊗2
∇ F (ξ, η) = (∇ξdF )(η) = ∇ξ[η(F )] − [∇ξη](F ), we have:

d⊗2
∇ F (ξ, η) − d⊗2

∇ F (η, ξ) =
(
L[ξ,η] − (∇ξη −∇ηξ)

)
(F ) = T∇(η, ξ)(F ),

where T∇ is the torsion tensor. In coordinates this is expressed via Christoffel

symbols as (d⊗2
∇ F )ij = Fij −Γl

ijFl, where Fσ = ∂|σ|F
∂xσ are the partial derivatives.

�

The next differential d⊗3
∇ F ∈ Ω1M ⊗ S2Ω1M , but this (and higher) tensors

are fully symmetric iff the metric is flat:

Lemma 2. Let T∇ = 0. Then d⊗3
∇ F ∈ C∞(S3T ∗M) ∀F ∈ C∞(M) iff R∇ = 0.

Proof. d⊗3
∇ F (ξ, η, θ) = (∇ξ∇ηdF −∇∇ξηdF )(θ), whence

d⊗3
∇ F (ξ, η, θ) − d⊗3

∇ F (η, ξ, θ) =
(
([∇ξ,∇η] −∇[ξ,η])dF

)
(θ) = R∇(ξ, η)∗dF (θ)

and the result follows. �

Now to fix a basis in invariants of order i = 2+ l we consider the form d⊗l
∇ K

and denote (in non-flat case the order is essential!)

Iij = d⊗l
∇ K(gradK, . . . , gradK

︸ ︷︷ ︸

l−j

, sgradK, . . . , sgradK
︸ ︷︷ ︸

j

).

If we change the order, the expression will be changed by a lower order differ-
ential invariant. We will not use it and so omit the details, but for instance

d⊗3
∇ K(sgradK, sgradK, gradK)−d⊗3

∇ K(gradK, sgradK, sgradK) = | gradK|2.

The first invariants are: I2 = K and I3 = |∇K|2 (the index refers to the order
of differential invariant). Starting from i = 4 there are l + 1 = i − 1 invariants
Iij and we re-enumerate the index j by letters (so we write I4a instead of I40,
I5d instead of I53 etc). For instance I4b = d⊗2

∇ K(gradK, sgradK).
The two approaches to describe the algebra A of differential invariants, one

via the basic invariant I2 with two invariant differentiations and another one
via the basis Iij are closely related: the former is obtained from the latter
via the Lie-Tresse approach [Tr]. Namely let say I2, I3 be chosen as a basis,
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and ∂̂/∂̂I2 , ∂̂/∂̂I3 be the corresponding Tresse derivatives (see [KL1]). In local
coordinates (x1, x2) they can be expressed as

∂̂/∂̂I2 = ∆−1
(
D2(I3)D1 −D1(I3)D2

)
, ∂̂/∂̂I3 = ∆−1

(
D1(I2)D2 −D2(I2)D1

)
,

where Di are total derivatives [KLV] and ∆ = D1(I2)D2(I3) − D2(I2)D1(I3)
is the determinant (basis requirement above means ∆ 6≡ 0). Then the two
invariant differentiations ∇1 = Lgrad K and ∇2 = Lsgrad K equal

∇1 = I3 · ∂̂/∂̂I2 + 2I4a · ∂̂/∂̂I3 , ∇2 = 2I4b · ∂̂/∂̂I3 .

Relation to the other side constitutes an infinite sequence of identities:

∇1 I2 = I3, ∇2 I2 = 0, ∇1 I3 = 2I4a, ∇2 I3 = 2I4b,

∇1 I4a = I5a +
2(I2

4a + I2
4b)

I3
, ∇2 I4a = I5b +

2I4b(I4a + I4c)

I3
,

∇1 I4b = I5b +
I4b(I4a + I4c)

I3
, ∇2 I4b = I5c +

I2
4c − I4aI4c + 2I2

4b

I3
+ I2I

2
3 ,

∇1 I4c = I5c +
2(I4aI4c − I2

4b)

I3
, ∇2 I4c = I5d, . . .

They can be obtained successively with the help of the commutation rule for
invariant differentiations:

[gradK, sgradK] = −
2I4b

I3
gradK +

I4a − I4c

I3
sgradK.

3. Linear integrals

A Riemannian metric g on a surface M2 possesses a Killing vector field iff
it has the following local form near the point, where the field does not vanish:
ds2 = g11(x)dx2 + 2g12(x)dxdy + g22(x)dy2, so that (M2, g) is a surface of
revolution. How to recognize such a metric?

Let us write the metric locally in isothermal hyperbolic coordinates (possibly
over C): ds2 = eλ(x,y)dxdy. If the metric is positive definite (not pseudo-
Riemannian), one should rather write eλdzdz̄ and this complexification pop-
ups as follows: while the gradient of a function K equals (2e−λKy, 2e−λKx),
the skew-gradient is (2i e−λKy,−2i e−λKx)! Moreover we shall encounter i as
a factor at some coefficients below, but this does not lead to contradiction:
vanishing of these coefficients turns out to be a real condition.

In [KL3] we chose the general form, but since the answer will be expressed
in differential invariants, the choice is not essential.

Function F1 = upx + vpy is an integral of the geodesic flow iff the following
3 linear PDEs (coefficients of {H, F1}) are satisfied:

uy = 0, ux + vy + uλx + vλy = 0, vx = 0.

6
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Denote them by E1, E2, E3 respectively. This system E has symbols: dim g0 = 2,
dim g1 = 1, dim g2 = 0. The compatibility condition is given by the relation

E4 = {E1, E2, E3} (mod E1, E2, E3) = 0.

In general case the bracket should have order 2 in pure form and 1 after reduc-
tion, but in our case E4 is of order 0 and equals:

E4 = 1
2eλ(Kxu + Kyv),

where K is the Gaussian curvature. Thus compatibility condition means (M2, g)
is a spatial form: K = const. This is the case, when dim J1 = 3.

If K is non-constant, to study solvability we add the equation E4 = 0 to the
system. To describe the new system E ′ we let u = Kyw, v = −Kxw and obtain
the following system on one function w(x, y):





0 Ky Kyy

−Kx 0 −Kxx

Ky −Kx λxKy − λyKx



 ·





wx

wy

w



 = 0.

In order to have solutions the determinant of this matrix should vanish. It
equals − i

4e2λI4b. Given this condition we can drop one equation and transform
the system to the form

(log |Kx w|)x = 0, (log |Ky w|)y = 0.

Its solvability is equivalent to a 3rd order relation on the curvature, which can
be expressed as the condition I3(I5b + I5d) = 2I4b(I4a + I4c). However when
I4b = 0, then I5b = 0 and we obtain:

Theorem 1. dimJ1 = 3 iff K = const (i.e. I3 = 0) and dim J1 = 1 iff

I4b = 0, I5d = 0.

Otherwise there exist no local Killing vector fields.

Remark 1. This and further statements hold only near regular points (here
this means dK 6= 0). Indeed in non-analytic case there exist pathological coun-
terexamples. For instance for any ε > 0 it is possible to construct a C∞-metric
on the disk D2(1) satisfying I4b = I5d = 0, such that the set of regular points
(where a Killing field exist) has Lebesgue measure < ε.

We can reformulate this criterion as vanishing of the differential invariants
Jacg(K, |∇K|2) and Jacg(K, ∆gK), where Jacg(F, G) = dF∧dG

(
grad K
|∇K| , sgrad K

|∇K|

)

is the Jacobian and ∆gF = Trg[d
⊗2
∇ F ] is the Laplacian. Indeed we have:

∆gK = (I4a + I4c)/I3, so the claim follows from:

Jacg(K, |∇K|2) = 2I4b, Jacg(K, ∆gK) =
I5b + I5d

I3

(note that I4b = 0 implies I5b = 0).
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Remark 2. Some classical criteria for existence of local (global implications
follow) Killing fields are contained in [Nij, Nom], but they are neither explicit
conditions on the metric g nor finitely formulated. Our criterion in the form of
dependence of |∇K| and ∆gK on K is implicitly contained in [D].

4. More than 3 quadratic integrals

We turn now to characterization of Liouville metrics. We will again use iso-
metric hyperbolic coordinates, H = e−λpxpy, which does not restrict generality.

The function F2 = u(x, y)p2
x+2v(x, y)pxpy +w(x, y)p2

y is a quadratic integral
of the geodesic flow iff the following system E is satisfied:

uy = 0, ux + 2vy + 2uλx + 2vλy = 0, 2vx + wy + 2vλx + 2wλy = 0, wx = 0.

Denote the equations respectively by E1, E2, E3, E4. The compatibility condi-
tion can be expressed via the multi-bracket

E′
5 = {E1, E2, E3, E4} (mod E1, E2, E3, E4) = 0.

Even though it might be expected from the general theory that E′
5 has order 2,

in our case it has order 1. Divided by 2eλ it equals to

E5 = 5Kxvy − 5Kyvx − (Kxx − λxKx)u + 5(λyKx − λxKy)v + (Kyy − λyKy)w.

Thus the system E is formally integrable iff K = const. In this case dim g0 =
3, dim g1 = 2, dim g2 = 1, g2+i = 0 for i > 0 and the dimension of the solutions
space is dim J2 =

∑
dim gk = 6. Indeed J2 = S2J1, i.e. a basis in the space

of quadratic integrals is formed by pair-wise products of elements of a basis in
is the space of linear integrals.

Suppose that K 6= const, so that E5 is a differential relation of the first
order in u, v, w. Adding E5 = 0 we get the system2 E ′ ⊂ J1(2, 3) of formal
codimension 5.

Its symbols g′i ⊂ SiT ∗ ⊗ R
3 have dim g′0 = 3, dim g′1 = 1, dim g′2 = 0

and thus the only non-zero second δ-cohomology groups3 are H0,2(E ′) ≃ R1,
H1,2(E ′) ≃ R1. There are two obstructions to compatibility – Weyl tensors
W ′

1 ∈ H0,2(E ′) and W ′
2 ∈ H1,2(E ′). The former W ′

1 is proportional to

E′
6 = KyE5x+KxE5y−

5

2
K2

x(E2y−E1x)+
5

2
K2

y(E3x−E4y)(mod E1, E2, E3, E4, E5).

Multiplying this by 5Kx and further simplifying modulo E1, E2, E3, E4, E5 we
obtain the following expression:

E6 = 35
4i e

2λ I4b vx + Q1 u + 35
4i e

2λ λxI4b v + Q2 w,

2Jk(m, r) is the space of k-jets of maps ϕ : R
m → R

r and formal codimension of a system
E ⊂ Jk(m, r) is

P

i dim H1,i(E), the precise number of the equations in the system [KL4].
3The second Spencer δ-cohomology H∗,2 = ⊕Hi−1,2 is the space that contains all compat-

ibility conditions of the system. The latter are called Weyl tensors Wi ∈ Hi−1,2 (also called
curvatures/torsions/structural functions). We refer to [KL4] for a review.

8
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where

−128 e−4λK3
yQ1 = J5a and 32 e−3λI3KxQ2 = J5b

are differential invariants and provided I4b = 0 (which implies I5b = 0, see
identities in §2) they reduce to J5a|I4b=0 = J5b|I4b=0 = J5, where

J5 = 5I3(I5a − I5c) + (I4a − I4c)(I4c − 6I4a) − 25I2I
3
3

We see that the coefficients of E6 (as well as that of other Ei) are not
invariant (neither are real), but the condition of their vanishing is invariant
(and real).

If E6 vanishes, the system E ′ can be prolonged to the second jets, but is not
yet formally integrable. Another curvature – Weyl tensor W ′

2 – is the obstruc-
tion to prolongation to the third and henceforth infinite jets. Since g′2 = 0, it is
the Frobenius condition of the canonical Cartan distribution on the first prolon-
gation E ′

2 of E ′
1 = E ′ (but it is one equation, not three as one can guess without

calculation of Spencer δ-cohomology!). Originally a (linear) function on E ′
2, it

can be represented as a linear function on E ′ due to isomorphism π′
2,1 : E ′

2
∼
→ E ′.

This new equation Ẽ6 has coefficients of order 6, but they can be simplified
modulo the conditions I4b = 0, J5 = 0. Indeed we can differentiate these along
invariant fields ∇1, ∇2, see for instance the next section (this allows to express
all the higher invariants Iij with i ≥ 5 through invariants of order ≤ 4). Thus
the second obstruction to formal integrability W ′

2 is the following equation,
which turns out to be a linear function on J0(2, 3) (we multiply it by the factor
64e−3λI3

3KxKy):

Ẽ6 = J4 · (K
2
xu − K2

yv),

where

J4 = 3(I4a − I4c)(I4a + 4I4c)I4c − 15I2I
3
3 (I4a + 4I4c) + 25I5

3 .

Notice that in expression for E6 we simplified modulo the conditions I4b =
0, J5 = 0. Otherwise the coefficients are complex and more complicated, and in
addition there are terms with vx and v. For instance the coefficient of vx term
is 35

8i e
2λ(I5b + I5d)I

−1
3 , but it simplifies to zero.

Since formal (=local due to finite type condition) integrability of E ′ means
existence of 4 integrals of the geodesic flow, we get the following statement:

Theorem 2. The condition of exactly 4 quadratic integrals dimJ2 = 4 can be
expressed as 3 differential conditions on the metric:

I4b = 0, J5 = 0, J4 = 0.

5. Digression I: Darboux-Kœning’s theorem

We can deduce now the classical theorem due to Darboux and Kœnning:

9
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Theorem 3. A plane metric has exactly 4 quadratic integrals iff it has exactly
one linear integral and one more quadratic integral independent of the Hamilto-
nian and the square of the linear integral.

To one side this was proved in [D], while to the other it was given in [Koe].
It is instructive to see the equivalence by using differential invariants only (thus
below is an alternative proof of this classical theorem):

Proof. Let us suppose at first that g has 4 quadratic integrals. We may
assume K 6= const. Thus I4b = 0 and J5 = 0. We must show I5d = 0 (this
follows easily from the condition that vx-coefficient of Ẽ6 vanishes, but we will
show that it suffices to use only the first two conditions of Theorem 2).

Note that under condition I4b = 0 we have: ∇2I2 = 0, ∇2I3 = 0 and
∇2I4a = 0 (see identities of §2). The latter follows from I5b = 0 as well as from
the fact that the commutator [∇1,∇2] is proportional to ∇2. Now equation
J5 = 0 can be written as

5I3∇1I4a − 16I2
4a + 2I4aI4c + 4I2

4c − 20I2I
3
3 = 0.

Applying ∇2 to this we get 2I5d(I4a + 4I4c) = 0, which yields either I5d = 0 or
I4c = − 1

4I4a. The latter after application of ∇2 gives I5d = 0 as well.
Now suppose that g has a Killing vector field and an additional quadratic

integral, so that the dimension of the space of quadratic integrals is at least 3.
Since I4b = 0, the equation E6 is of order 0. If E6 6≡ 0, then its prolongation adds
a new first order equation to the system and the symbols satisfy: dim g0 ≤ 2,
dim g1 = 0, so that the space of quadratic integrals cannot have dimension
greater than 2. If all the coefficients of E6 vanish, then J5 = 0. If J4 6= 0, then
Ẽ6 is non-zero and of order 0. The same calculus for dimensions of symbols
and solutions space leads to contradiction. On the other hand, if J4 = 0, then
Ẽ6 ≡ 0 and we have 4 quadratic integrals. �

Corollary 1. If g possesses a Killing vector field, then its local degree of mo-
bility dimJ2 is even: 2, 4 or 6.

6. Digression II: On the number of invariants

Conditions I4b = 0, J5 = 0 do not imply J4 = 0. This pair of relations for
differential invariants can be considered as an overdetermined system, but it
is compatible meaning they do not produce new differential relations of lower
order. Actually, we showed in the previous section that the two relations imply
I5d = 0. Relations ∇1I4b = 0 gives I5b = 0 and ∇2I4b = 0 yields I5c = (I4aI4c −
I2
4c − I2I

3
3 )/I3. Then J5 = 0 implies I5a = 2

5 (3I2
4a − I4aI4c − 2I2

4c + 10I2I
3
3 )/I3.

Further derivations of these identities with ∇s yield expressions for higher
differential invariants Iij , i ≥ 6, via invariants of order ≤ 4 and they agree (there
are 8 equations to determine 5 invariants of order 6, 12 equations to determine
6 invariants of order 7 etc), which manifests the above mentioned compatibility.
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On the other hand, under certain genericity assumption, namely I4c(2I4a +
3I4c) 6= 5I2I

3
3 , the conditions I4b = 0, J4 = 0 imply J5 = 0. Indeed if we

express I5a, I5b, I5c, I5d from ∇1I4b = 0,∇2I4b = 0,∇1J4 = 0,∇2J4 = 0, and
substitute this into J5, the expression will have the factor J4. Thus in this case
the criterion of 4 integrals can be expressed as two differential conditions

I4b = 0, J4 = 0.

In general, however, we cannot remove the condition J5 = 0 from Theorem 2.4

Example. For the metric g = ε1e
(β+2)xdx2 + ε2e

βxdy2 (εk = ±1; this is
one family from the classification of [BMM]) we have (the first two identities
are obvious because ∂y is the Killing field):

I4b = 0, I5d = 0, J5 = 1
64e−10(β+2)xβ6(β − 1)(β − 6)(2 + β)6,

J4 = ε1

1024e−15(β+2)xβ10(β − 1)(β + 2)9(3β + 22).

Since I3 = ε1

4 e−3(β+2)xβ2(β + 2)2, the cases β = −2, 0 correspond to constant
curvature. Otherwise J5 = 0 for β = 1 or β = 6. In the first case J4 = 0 and
we have dimJ2(g) = 4. But in the second case dimJ2(g) = 2.

Note also that J4 = 0 for β = −22/3, but then I4c(2I4a + 3I4c) = 5I2I
3
3 and

this does not imply J5 = 0.

Remark 3. J4 is a forth order invariant obtained via reduction from a 6th order
invariant modulo the conditions I4b = 0, J5 = 0 and their ∇i-prolongations.
Thus its vanishing alone without J5 = 0 has no geometrical meaning.

7. Precisely 3 quadratic integrals

If the compatibility condition E6 = 0 is not trivial, then we add it and get
a new system E ′′. In this section we consider the generic case when this new
equation is of order 1 in u, v, w, i.e. I4b 6= 0.

Then the symbol of the system E ′′ is g′′1 = 0, i.e. it is of Frobenius type. Its
Spencer cohomology group H0,2(E ′′) ≃ R3, so the obstruction to integrability –
curvature tensor – W ′′

1 has 3 components, represented by 3 linear relations on
J0(2, 3). Indeed, we can express from E ′′ all derivatives ux, uy, vx, vy, wx, wy,
calculate 3 difference of pairs of mixed derivatives and substitute the derivative
expressions. We get the following equations:

E7 = Au + Bw = 0, E′′
7 = B̄u + Āw = 0, E′

7 = 1
2 (E′

7 + E′′
7 ) = 0, (2)

where A, B are certain complex differential expressions of order 6 in metric (see
below). One peculiarity of (2) is absence of v. Another is that there are only
two equations, not three as expected from the general theory.

4Indeed if the indicated inequality of forth order is an identity, we have 3 differential
conditions of order 4 and so the condition J5 = 0 can be reduced in order, but since this leads
to an expression with roots, we do not provide it here.
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Vanishing of E7, E
′′
7 is equivalent to four real conditions A = 0, B = 0, which

can be expressed via differential invariants of order 6. In the following sections
we will show that I4b = 0, but J5 6= 0 or J4 6= 0 implies dimJ2 < 3 and so we
obtain: the following criterion (note that I6e does not enter the formulae):

Theorem 4. The condition of exactly 3 quadratic integrals is equivalent to two
inequalities I3 6= 0, I4b 6= 0 and 4 differential relations on the metric:

I6a =
1

175I2
3I4b

(
700I5

3I4b − 825I2I
4
3I5b + 50I2I

3
3I4b(31I4a − 18I4c)

+ 6I4b(I4a − I4c)(6I2
4a + 49I2

4b − 37I4aI4c + 6I2
4c) − 25I2

3I5b(−8I5a + I5c)

− 5I3(48I2
4aI5b − 27I5bI

2
4c + 2I4bI4c(−11I5a + 46I5c)

+ I4a(−43I5aI4b − 21I5bI4c + 8I4bI5c) + 7I2
4b(4I5b − 11I5d))

)

I6b =
1

175I2
3I4b

(
1505I2I

3
3I2

4b + 72I2
4aI

2
4b + 245I3I5aI2

4b + 588I4
4b + 225I2

3I2
5b

+ 405I3I4bI5bI4c + 72I2
4bI

2
4c − 6I4aI4b(55I3I5b + 74I4bI4c) − 490I3I

2
4bI5c

)

I6c =
1

175I2
3I4b

(
−175I5

3I4b +300I2I
4
3I5b−25I2

3I5aI5b−100I2I
3
3I4b(5I4a−9I4c)

− 6I4b(I4a − I4c)(6I2
4a + 49I2

4b − 37I4aI4c + 6I2
4c) + 200I2

3I5bI5c + 5I3(6I2
4aI5b

+36I5bI
2
4c−I4bI4c(I5a+34I5c)+6I4a(I5aI4b−7I5bI4c−I4bI5c)+7I2

4b(8I5b−I5d))
)

I6d =
1

175I2
3I4b

(
1500I2

2I6
3 + 36I4

4a + 25I2
3I2

5a + 245I3I5aI2
4b + 588I4

4b + 225I2
3I2

5b

− 294I3
4aI4c + 895I3I4bI5bI4c − 185I3I5aI2

4c + 366I2
4bI

2
4c + 36I4

4c + 6I2
4a(61I2

4b

+86I2
4c − 5I3(2I5a − 9I5c))− 225I2

3I5aI5c − 490I3I
2
4bI5c +220I3I

2
4cI5c +200I2

3I2
5c

+5I2I
3
3 (102I2

4a−294I4aI4c+4(49I2
4b+48I2

4c)+I3(−85I5a+260I5c))−245I3I4bI4cI5d

− I4a(6I4c(172I2
4b +49I2

4c)+5I3(−49I4c(I5a −2I5c)+ I4b(164I5b−49I5d)))
)

Remark 4. Denoting the above four equations (i.e. l.h.s-r.h.s.) by V1, V2, V3, V4,
we can write A = (V2 + V4) + i(V1 + V3), B = (3V2 − V4) + i(3V3 − V1).

Example. Consider the metric

ds2 = (x2 + q2(y))(dx2 + dy2),

where q2(y) = ay2 + by + c. This metric is in Liouville form and hence has an
additional quadratic integral. We can calculate the invariants from the previous
theorems to find when the space of quadratic integrals has dimension D > 2.
Here’s the result according to dimension:
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⊳ D = 6 if a = 1 & 4c = b2;

⊳ D = 4 if a = 1 & 4c 6= b2;

⊳ D = 3 if a = 4±1 & b, c arbitrary.

Note that the integrable metric (x2 + 4y2 + 1)ds2
Eucl was found in classification

of Matveev [M3]. However the methods used by him are global and do not apply
to local non-complete situation.

Remark 5. One can substitute the general Liouville form ds2 = Λ · (dx2 +dy2)
in local conformal coordinates into the above four expressions. The result is a
system of 3 PDEs of order 6 in Λ together with the equation Λxy = 0 (which
simplifies the 3 PDEs a lot). This system is not of finite type (for instance
because it contains the cases of 4 integrals depending on 1 function of 1 variable)
and it is not formally integrable: an easy elimination reduces one PDE of order
6 to order 5. Then its prolongation yields two new PDEs of order 5, but they
are too long to be treated effectively.

In fact, normal forms of metrics with 2 additional integrals are better ob-
tained with a different approach, see [Koe].

8. Digression III: Simplification of invariants

The four relations from Theorem 4 provide the complete set, characterizing
the condition dimJ2 = 3, but they are not compatible in the following sense.
If we deduce the differential corollaries via derivations ∇1,∇2, some of them
will have lower order and be simpler. Let us indicate this.

Substitution of the expressions of I6a, I6b, I6c, I6d from Theorem 4 to the
identity (twice: before and after derivations!)

∇1I6b −∇2I6a

= (6I4bI
3
3+6I2I5bI

2
3+3I2I4b(I4a+I4c)I3−5I6aI4b+4I4aI6b−4I6bI4c+3I4bI6c)/I3

13
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yields us the following new relation:

I6e =
1

13475I2
3I3

4b

(
375I2

2(−34I4aI4b + 764I4cI4b + 75I3I5b)I
6
3 + 61250I3

4bI
5
3

+ 4500I3
5bI

3
3 + 1125I5bI

2
5cI

3
3 + 1125I2

5aI5bI
3
3 − 2250I5aI5bI5cI

3
3 − 10I2(906I4bI

3
4a

−6(225I3I5b+2068I4bI4c)I
2
4a +(6I4b(917I2

4b+3083I2
4c)−5I3(151I5aI4b+94I5cI4b

−315I5bI4c))I4a−4I4bI4c(4333I2
4b+1749I2

4c)+1125I2
3I5b(I5a−I5c)−5I3(35(22I5b

+ 7I5d)I
2
4b − 4I4c(524I5a − 769I5c)I4b + 45I5bI

2
4c))I

3
3 − 450I5aI5bI

2
4cI

2
3

+ 19300I4bI4cI
2
5cI

2
3 − 2800I5aI

2
4bI5bI

2
3 + 55900I4bI

2
5bI4cI

2
3 + 9500I2

5aI4bI4cI
2
3

+ 450I5bI
2
4cI5cI

2
3 − 27825I2

4bI5bI5cI
2
3 − 28800I5aI4bI4cI5cI

2
3 − 2450I5aI

2
4bI5dI

2
3

− 9800I4bI5bI4cI5dI2
3 + 2450I2

4bI5cI5dI
2
3 + 45I5bI

4
4cI3 − 13600I5aI4bI

3
4cI3

+ 111560I2
4bI5bI

2
4cI3 + 26705I4

4bI5bI3 + 40110I5aI
3
4bI4cI3 + 15560I4bI

3
4cI5cI3

−108465I3
4bI4cI5cI3+45080I4

4bI5dI3−15190I2
4bI

2
4cI5dI3+2340I4bI

5
4c+25698I3

4bI
3
4c

− 1440I5
4aI4b + 53802I5

4bI4c + 60I4
4a(27I3I5b + 235I4bI4c) + 6I3

4a(−2458I3
4b

−6625I2
4cI4b+10I3(40I5aI4b+9I5cI4b−63I5bI4c))+I2

4a(67644I4cI
3
4b+45300I3

4cI4b

−2700I2
3I5b(I5a − I5c)+5I3(2(2476I5b +931I5d)I

2
4b +2I4c(3148I5c−2315I5a)I4b

+549I5bI
2
4c))−2I4a(25(20I4bI

2
5a+9(I4bI5c−7I5bI4c)I5a+63I5bI4cI5c+I4b(373I2

5b

+49I5dI5b−29I2
5c))I

2
3 −5(2359I5cI

3
4b+I4c(1813I5d−16307I5b)I

2
4b−4758I2

4cI5cI4b

−63I5bI
3
4c+I5a(679I3

4b+3435I2
4cI4b))I3+3I4b(4067I4

4b+15599I2
4cI

2
4b+3425I4

4c))
)
.

Using similar identities for ∇1I6c − ∇2I6b, ∇1I6d − ∇2I6c, ∇1I6e − ∇2I6d

and substitutions of the 6th order invariants via the lower ones, we get 3 dif-
ferential relations of order 5 (but they are non-linear even in higher order basic
invariants). The first of them is:

1500I2
2I6

3 −5I2(−102I2
4a +294I4cI4a −6(49I2

4b +32I2
4c)+5I3(17I5a−52I5c))I

3
3

+ 25I2
5aI2

3 + 275I2
5bI

2
3 + 200I2

5cI
2
3 − 225I5aI5cI

2
3 − 175I5bI5dI2

3 + 245I5aI2
4bI3

− 185I5aI2
4cI3 + 1265I4bI5bI4cI3 − 1225I2

4bI5cI3 + 220I2
4cI5cI3 − 280I4bI4cI5dI3

+36I4
4a +1176I4

4b +36I4
4c +438I2

4bI
2
4c −294I3

4aI4c +6I2
4a(73I2

4b +86I2
4c−5I3(2I5a

−9I5c))−I4a(6I4c(246I2
4b+49I2

4c)+5I3(I4b(188I5b−91I5d)−49I4c(I5a−2I5c))) = 0

and the other two are more complicated.

Furthermore these three relations can be invariantly differentiated and then
simplified with substitutions, which resembles Cartan’s prolongation-projection
method, though for differential invariants. In a sequel one gets ”compatible”
set of relations for differential invariants, but this involves consideration of cases
(lots of inequalities and equalities) and will be omitted.
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9. Generic case: Liouville form

Here we continue investigation of the previous section, when I4b 6= 0. Suppose
that not all equalities of the previous theorem hold. Then E7 is a non-trivial
equation. If E′′

7 is independent of it, we get u = w = 0 and then v = const ·e−λ,
so that there exists no quadratic integral besides the Hamiltonian.

Thus for existence of an additional quadratic integral the corresponding
determinant |A|2−|B|2 should vanish (note that this implies w = ū, which could
be predicted because integral F is real). In this case the symbols dimensions are
dim g0 = 2, dim g1 = 0, so for Liouville (quadratic) integrability of the metric g
the system E ′′′ = {E1 = 0, . . . , E7 = 0} should be compatible.

There are precisely two compatibility conditions: DxE7 = 0 mod E ′′′ and
DyE7 = 0 mod E ′′′. The reduction mod E ′′′ can be considered here as follows:
all derivatives are expressed from the first 6 equations and substituted into
derivatives of E7. Then the equations are again linear and contain only u- and
w-terms. Writing linear dependence with E7 we get vanishing of two (complex)
determinants. This constitutes 4 real relations of order 7, but we write them as
2 complex relations.

In the theorem below A, B are differential invariants from (2) (expressions
are given in Remark 4) and J1, J2, J3, J4 are some differential invariants of order
7, precise form of which is given in Appendix.

Theorem 5. Suppose that K 6= const, I4b 6= 0 and |A|2 + |B|2 6= 0 (cases
considered separately). Then the metric g is Liouville iff it satisfies one real
relation of order 6: |A|2 = |B|2 and 4 real relations of order 7:

B J1 = AJ2, AJ3 = B J4.

Thus the problem of invariant characterization of Liouville metrics is solved.

Remark 6. Similar to Section 8 one can reduce in order and simplify differ-
ential relations from Theorem 5, but since the resulting minimal set is very
cumbersome (collection of cases involving equalities and inequalities), it won’t
be discussed.

10. Singular locus: 2 quadratic integrals

Consider now the last case I4b = 0, but suppose that either J5 6= 0 or J4 6= 0.
In this case the equation E6 (resp. Ẽ6) transforms into the equation (since
K 6= const, we may assume Kx 6= 0 or Ky 6= 0; formulae below are easily
adjustable to one of the cases):

K2
xu = K2

yw. (3)
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Prolonging this equation and using the system E ′ = {E1 = · · · = E5 = 0} we
can rewrite the new system Ē (prolongation of E ′′) in the form:

ux =
(

2 log
Ky

Kx

)

x
u, vx = −λx v +

(

log
Ky

Kx

− λ
)

y
w, wx = 0, (4)

uy = 0, vy = −λy v +
(

log
Kx

Ky

− λ
)

x
u, wy =

(

2 log
Kx

Ky

)

y
· w,

considered together with (3). System (4) consists of a three pair of equations,
two uncoupled and one coupled with the other two. The system is of Frobenius
type. Writing compatibility conditions of Ē modulo (3)+(4) we get 3 conditions
on the system to be integrable.

These three conditions are dependent (2 conditions), but modulo the condi-
tion I4b = 0 they collapse to only one condition I5d = 0.

Note that the system has dimension of symbols dim ḡ0 = 2, dim ḡ1 = 0, so
that the maximal dimension of the solution space is 2. Since the minimum is 1,
we arrive to the following statement:

Theorem 6. Let I4b = 0, but either J5 6= 0 or J4 6= 0. Then the system is
Liouville iff I5d = 0 and in this case there exists only one additional (independent
of the Hamiltonian) quadratic integral.

Note that condition I4b = 0, I5d = 0 are characteristic for existence of local
Killing vector field. Thus we conclude:

Corollary 2. Riemannian metric g possesses a local Killing field iff I4b = 0
and there is a quadratic integral, independent of the Hamiltonian.

Note that if the space of such additional integrals is 1, a representative can
be chosen as the square of a linear integral.

11. Liouville metrics: some global questions

Proposition 7. Let Liouville metric on M2 have non-constant curvature and
H be the corresponding Hamiltonian. Then for any two quadratic integrals F, G
such that the triple (F, G, H) is linear independent (over R), the triple is func-
tionally independent (in particular the integral {F, G} is non-zero).

Proof. Since F, G, H are quadrics in p, the only kind of functional depen-
dence for them can be either linear or quadratic.

Assume at first that the integrals H, F, G are linear dependent over C∞(M),
i.e. H = a · F + b · G, where a, b ∈ C∞(M) are non-constant. Then bracketing
this with H we get {H, a}F + {H, b}G = 0, which would imply that F, G, H
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have a common factor: H = v ·w, F = v · ζ, G = v · η. Commutation of H and
F, G, H gives

{H, ζ} = {v, w}ζ, {H, η} = {v, w}η, {H, w} = {v, w}w.

Substitution of w = a · ζ + b · η into the last equality yields {H, a} = {H, b} = 0,
i.e. a = const, b = const, so that F, G, H are linearly dependent.

If H, F, G are linear independent over C∞(M), but are functionally depen-
dent, then they must satisfy a quadratic relation:

U2 + V 2 = W 2, U = ζ2 − η2, V = 2 ζη, W = ζ2 + η2,

(ζ, η ∈ C∞(T ∗M) are linear in p functions) with a constant non-degenerate
transition matrix A:

(F, G, H) = (U, V, W ) · A.

Denoting Θ = {ζ, η} we observe this factor in all pair-wise Poisson brackets
{U, V }, {U, W}, {V, W}, so that

0 = {H, F} = (αU + βV + γW ) · Θ.

Here α, β, γ are certain minors of the matrix A and since F and H are non-
proportional, some of them are non-zero, implying Θ = 0. This yields {H, ζ} = 0
and {H, η} = 0. Thus we have two Killing vector fields and K = const. �

This proposition immediately implies the following statement, known due to
Kolokoltsev and Matveev ([Kol, M1, BMF]):

Corollary 3. The only closed Riemannian surfaces that admit more than one
additional quadratic integrals are the standard round sphere and flat torus in
the oriented case and the standard projective plane in the non-oriented one.

Proof. Indeed, if the metric has non-constant curvature and two additional
integrals then the Hamiltonian flow is resonant: every trajectory is given by
equation {H = c1, F = c2, G = c3} and hence is closed. Thus (M2, g) is
either S2 or RP 2. An additional investigation of metrics on S2 with all the
geodesics closed leads to K = const. The standard round sphere has 3 Killing
vector fields and thus 6 quadratic integrals. They all descend to the standard
projective plane.

Consider now the case of constant curvature. If a closed surface has negative
constant curvature, its metric is non-integrable [Koz, P]. For positive curvature
we are already done. For zero curvature we get torus or Klein bottle. Torus has
2 Killing vector fields and the symmetric square yields 3 quadratic integrals.
However a flat Klein bottle has only one Killing vector field and the number of
quadratic integrals (including Hamiltonian) is two. �

Global classification of Liouville metrics is discussed in [Ki, IKS, Kol, M2].
The final classification was achieved in [M1], see the review [BMF] for other
contributions, results and references.
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12. Cubic integrals

Let us consider next the case of integrals of degree 3. Again for brevity
sake we bring the metric to hyperbolic conformal form H = e−λ(x,y)pxpy. Then
function F = u(x, y)p3

x + v(x, y)p2
xpy + w(x, y)pxp2

y + ̺(x, y)p3
y is an integral of

the geodesic flow if the following equations hold:

uy = 0, ux + vy + 3uλx + vλy = 0, vx + wy + 2uλx + 2vλy = 0,

wx + ̺y + wλx + 3̺λy = 0, ̺x = 0.

Denoting this system of PDEs by E = {E1 = E2 = E3 = E4 = E5 = 0} we get
criterion of integrability:

E6 = {E1, E2, E3, E4, E5} mod(E1, E2, E3, E4, E5) = 0.

Multiplied by 2
15 eλ this PDE has the form E6 = Kxuxx+Kyvxx+1st order terms,

and its vanishing is equivalent to K = const. In this and only in this case the
dimension of the solution space for E is dimJ3 = 10.

If K 6= const, we add equation E6 and get a new system E ′ = E ∩ {E6 = 0},
which has the following symbols: dim g0 = 4, dim g1 = 3, dim g2 = 1, dim g3 = 0.
Thus its solution space has dimension at most 8. The only Spencer second δ-
cohomology groups are: H1,2(E ′) ≃ R1 and H2,2(E ′) ≃ R1. Thus the Weyl
tensor has two components W2 and W3. The first can be obtained as follows.

Prolongation of E6 to 3rd jets together with the system E yields 17 third
order PDEs, while there’s 16 third order differential monomials. Elimination
gives the following equation of order 2:

E7 = −4320 ieλK2
xI4

3I4b vxx + 64I3K
5
x

(
12(7I4a − 9 iI4b−

− 2I4c)(I4a − 2 iI4b − I4c) + 5I3(72I2I
2
3 − 14I5a + 29 iI5b + 16I5c − iI5d)

)
ux

− 80 ieλK2
xI3

3

(
(I5b + I5d)Kx + 162I3I4bλx

)
vx

− 4e2λKxI3
3

(
12(7I4a − 9 iI4b − 2I4c)(I4a + 2 iI4b − I4c)

+ 5I3(72I2I
2
3 − 14I5a − 29 iI5b + 16I5c + iI5d)

)
wx + 0th order terms = 0.

Thus vanishing of E7 implies I4b = 0 and I5d = 0, so that there is a Killing
vector field. Moreover further investigation of coefficients gives J5 = 0 and

50I5
3 + 5I2I

3
3 (I4a + 4I4c) − I4c(I

2
4a + 3I4aI4c − 4I2

4c) = 0.

This latter condition (notice the expression is similar to J4, but different) leads
however to contradiction: The conditions I4b = 0, I5d = 0, J5 = 0 allows to
express all invariants of order ≥ 5 through invariants I2, I3, I4a, I4c. Applying
∇1 to the above expression yields thus 3 polynomial equations on I4a, I4b, which
are compatible only with I3 = 0. Thus we get:

Theorem 8. If a metric g has non-constant curvature, then dimJ3 ≤ 7.
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In fact, we can continue and consider the system E ′′ = E ′ ∩ {E7 = 0}. It
has symbols with dim g0 = 4, dim g1 = 3, dim g2 = 0. The non-zero second
Spencer δ-cohomology group is H1,2(E ′′) ≃ R3 and the compatibility is the
Frobenius condition on the second jets, which leads (by vanishing of coefficients)
to a complicated overdetermined polynomial system on differential invariants
of order ≤ 5 (higher order are expressed via these). Computer investigation
indicates incompatibility, implying strict inequality in the above theorem.

In a similar way we can continue prolongation-projection method for 6 more
times. Finally we arrive to high order (and highly non-linear in Iστ ) differential
invariants, which express existence of at least one cubic integral. Intermediate
steps give more invariants, describing super-integrable cases, but it is rather
complicated to decide what is the precise number of the conditions (because
there are relations via derivations ∇1,∇2).

Moreover it seems that dim J3 can be neither 6 nor 5, i.e. the next realized
dimension of J3 after 10 is 4! However this has no proof so far (as well as the
fact that this implies 4 quadratic integrals). To the reverse side we have:

Theorem 9. If dimJ2 = 4, then dimJ3 = 4.

Proof. We will exploit the following statement, which can be derived from
the works of V.Matveev:

Lemma 3. If two metrics g, ḡ are projectively equivalent, then for any k ≥ 1:
dimJk(g) = dimJk(ḡ).

Actually the statement holds for any n = dimM (to a certain extent this can
be found in [TM] for k = 2, but the case of general k is similar): A local
diffeomorphism ϕ : (M, g) → (M, ḡ) is a projective transformation iff the map

F 7→ F̄ = (det G)−
k

n+1 · ϕ∗(F )

is the isomorphism Jk(g) ≃ Jk(ḡ) ∀k. Here ϕ∗(F ) := (ϕ−1)∗(F ) ◦ ϕ, ϕ∗g is
defined similarly and

G = ♯ḡ ◦ ♭ϕ∗g : TM → TM,

where ♭g : TM → T ∗M , ♯ḡ : T ∗M → TM are the natural morphisms of shifting
indices.

Remark 7. Denote G(g) the space of metrics geodesically equivalent to g (ϕ =
Id above). Then according to [TM] G(g) ≃ J2(g) with the equivalence being
given by

ḡ 7→ I = (det G)
2

n+1 · ḡ.

By the results of [BMM] (now again n = 2) any (pseudo-) Riemannian metric
g with dimJ2(g) = 4 is projectively equivalent to a metric of the family

g0 = e3x dx2 + σex dy2 ≃ x · ds2
0, σ 6= 0.

Here ds2
0 is the standard Euclidean or Minkovsky metric on R2(x, y).
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By the above remark and Lemma 3 it is enough to investigate J3(g) for
g = g0 only. Since the latter representative for g0 has the simplest form, this is
an easy investigation and the result is dimJ3(g0) = 4. �

13. Higher order integrals

When we pass to integrals of degree n, as we noted at the beginning, the
system E is given by (n + 2) equations on (n + 1) unknowns. This system is of
finite type and is a generalized complete intersection, so by theorem C of [KL3]
its solution space has dimension 1

2 (n + 1)(n + 2) iff the compatibility condition
K = const holds. Otherwise the dimension drops at least by 2:

Proposition 10. If dimJn ≥ n2+3n
2 , then the inequality is strict and K =

const.

Proof. Indeed, since the equations in the system E are linear of the first
order Ei = (∇1

i + ∇0
i )(u) and have constant coefficient of first order terms ∇1

i ,
order of the multi-bracket En+3 = {E1, . . . , En+2} drops (compared to expected
(n + 1) in general) and becomes n in pure form and (n − 1) after reduction by
equations Ei. So if the new equation is not zero, the symbols of the new system
satisfy: dim g′i ≤ n + 1 − i for i < n − 1 and dim g′n−1 = 1, dim g′n = 0. Then

dimSol(E) ≤
∑

dim g′i < n2+3n
2 . �

Further steps of prolongation-projection generalize Darboux-Kœning theo-
rem, but are more complicated. To understand this let us give more details on
the integrals for the metric g0 = x · (dx2 + dy2) from the previous section.

The Killing form is K = q (with p, q being the momenta dual to x, y) and
the 4 quadratic integrals are:

H =
p2 + q2

x
, K2 = q2, F = yH − 2p K, G = y2H − 4(yp − xq)K.

The latter integral can be considered as the additional integral from the Kœn-
ing’s theorem because {K, G} = 2F , but {K, F} = H (with a slight difference
in generators, these relations were also observed in [KKW]).

For cubic integrals we have: J3(g0) = J1(g0) · J2(g0) = 〈HK, K3, KF, KG〉.
In fact, Poisson brackets of J2(g0) give nothing new: {G, F} = 16K3.

For integrals of higher degree we have: Jk(g0) = J2(g0) · Jk−2(g0) for k > 2.
There are however relations, which are generated by precisely 1 relation in degree
4: HG − F 2 = 4K4. Thus for dk(g) = dimJk(g) we have:

d2k(g0) = d2k+1(g0) = dimSkJ2(g0) − dimSk−2J2(g0). (5)

This implies:

Theorem 11. If d2(g) = 4, then d2k(g) = d2k+1(g) = (k + 1)2.
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Proof. Indeed, by the same argument as in the last proof d2(g) = 4 implies
dn(g) = dn(g0) and the latter quantity for n = 2k or 2k + 1 due to formula (5)
equals

(
k+3
3

)
−

(
k+1
3

)
= (k + 1)2. �

It is natural to expect that the cases from the last theorem are the next in
prolongation-projection method after the space forms:

Conjecture. If K 6= const, then dn(g) ≤ ([n
2 ]+1)2 and the equality

is attained for metrics with d2(g) = 4.

For n = 2 this obviously holds, for n = 3 we supported this by arguments
in the previous section, while for n ≥ 4 this seems to be hardly treated via
successive prolongation-projection scheme.

One is tempted to suggest a kind of monotonicity as an approach, i.e. that
d2(g) < d2(h) could imply dn(g) < dn(h) for two metrics g, h, but this would be
wrong. For instance there are Liouville metrics with d2(g) = 2, d3(g) = 0, but
there are other metrics, for which the cubic integrals are the simplest polynomial
integrals: d2(h) = 1, d3(h) = 1. Indeed, according to [Te] there are metrics gk

such that d2k+1(gk) ≥ 1, while for i ≤ k: d2i−1(gk) = 0, d2i(gk) = 1 (the latter
is nonzero because Hamiltonian is always an integral).

This was proved in the loc.sit. paper via a simple calculation, but it also
follows from our approach, because the criterion of existence of non-trivial in-
tegrals of degree n (i.e. Jn 6= 0 for odd n and dn > 1 for even n) is given
by a criterion via differential invariants of order, which is monotonic in n. In
particular, we can arrange d2k+1(gk) = 1 for the above sequence.

A Long formulae

Below are the expressions for the seventh order differential invariants involved
in Theorem 5. The calculations are performed using Mathematica

5.

5Copy of the notebook with detailed computations is available from the author.
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J1 = 142500I2
3I3

9+216I4a
6
−125I3

3I5a
3+6125iI3

6I5aI4b−875iI3
3I5aI6aI4b+350I3

2I5a
2I4b

2

−6125I3
3I7aI4b

2
−133525iI3

5I4b
3
−25725iI3

2I6aI4b
3+23030I3I5aI4b

4+98784I4b
6+1125iI3

3I5a
2I5b

−73500I3
6I4bI5b+14000I3

3I6aI4bI5b+48825iI3
2I5aI4b

2I5b−12250iI3I4b
4I5b−16250I3

3I5aI5b
2

+51275I3
2I4b

2I5b
2+36000iI3

3I5b
3+5250I3

3I5aI4bI6b−26950I3
2I4b

3I6b−45500iI3
3I4bI5bI6b

+12250iI3
3I4b

2I7b+36I4a
5(−5iI4b−126I4c)−1350iI3

2I5a
2I4bI4c−67375I3

5I4b
2I4c+2800I3

2I6aI4b
2I4c

+51905iI3I5aI4b
3I4c+76440iI4b

5I4c−24350I3
2I5aI4bI5bI4c+171185I3I4b

3I5bI4c+85300iI3
2I4bI5b

2I4c

−42175iI3
2I4b

2I6bI4c+2700I3
2I5a

2I4c
2
−25725iI3

5I4bI4c
2+175iI3

2I6aI4bI4c
2
−22490I3I5aI4b

2I4c
2

+120288I4b
4I4c

2
−3950iI3

2I5aI5bI4c
2+90105iI3I4b

2I5bI4c
2+6750I3

2I5b
2I4c

2+11200I3
2I4bI6bI4c

2

+13070iI3I5aI4bI4c
3+28470iI4b

3I4c
3+71440I3I4bI5bI4c

3
−13315I3I5aI4c

4+34122I4b
2I4c

4+25245iI3I5bI4c
4

+2340iI4bI4c
5+2556I4c

6+6I4a
4(942I4b

2+635iI4bI4c+4715I4c
2
−90I3(I5a−3iI5b−8I5c))+3000I3

3I5a
2I5c

−30625iI3
6I4bI5c+875iI3

3I6aI4bI5c+11550I3
2I5aI4b

2I5c−112210I3I4b
4I5c−5750iI3

3I5aI5bI5c

−61075iI3
2I4b

2I5bI5c+19750I3
3I5b

2I5c+7000I3
3I4bI6bI5c+16700iI3

2I5aI4bI4cI5c−120505iI3I4b
3I4cI5c

+96800I3
2I4bI5bI4cI5c−30950I3

2I5aI4c
2I5c+1315I3I4b

2I4c
2I5c+53650iI3

2I5bI4c
2I5c−35470iI3I4bI4c

3I5c

+18320I3I4c
4I5c−17875I3

3I5aI5c
2
−11900I3

2I4b
2I5c

2+29125iI3
3I5bI5c

2
−39850iI3

2I4bI4cI5c
2

+30700I3
2I4c

2I5c
2+15000I3

3I5c
3+25I2

2I3
6(2298I4a

2
−6790I4b

2+6I4a(−785iI4b−1701I4c)+3900iI4bI4c

+7908I4c
2+5I3(−383I5a+561iI5b+1888I5c))+2625iI3

3I5aI4bI6c+26950iI3
2I4b

3I6c−17500I3
3I4bI5bI6c

−62300I3
2I4b

2I4cI6c−25025iI3
2I4bI4c

2I6c−27125iI3
3I4bI5cI6c−6iI4a

3(365I4b
3
−11213iI4b

2I4c+3615I4bI4c
2

−10395iI4c
3+5I3(3I5a(13I4b+84iI4c)+14I4c(19I5b−109iI5c)+I4b(−678iI5b+31I5c+392iI5d)))

−6125iI3
2I5aI4b

2I5d+17150iI3I4b
4I5d−51450I3

2I4b
2I5bI5d+22050I3

2I5aI4bI4cI5d−62965I3I4b
3I4cI5d

−39200iI3
2I4bI5bI4cI5d+7350iI3I4b

2I4c
2I5d−21560I3I4bI4c

3I5d+18375iI3
2I4b

2I5cI5d−39200I3
2I4bI4cI5cI5d

+8575I3
2I4b

2I5d
2+8750I3

3I5aI4bI6d+31850I3
2I4b

3I6d−14000iI3
3I4bI5bI6d+37625iI3

2I4b
2I4cI6d

−14000I3
2I4bI4c

2I6d−21000I3
3I4bI5cI6d+5I2I3

3(1296I4a
4
−11025iI3

5I4b+33614I4b
4+6I4a

3(−575iI4b

−2534I4c)+29995iI4b
3I4c+43420I4b

2I4c
2+12480iI4bI4c

3+14316I4c
4+2I4a

2(12295I4b
2+10665iI4bI4c

+20418I4c
2
−30I3(36I5a−59iI5b−239I5c))−I4a(17535iI4b

3+58410I4b
2I4c+30360iI4bI4c

2+41244I4c
3

+10I3(I5a(−165iI4b−1267I4c)+7I4c(249iI5b+734I5c)+3I4b(1818I5b+440iI5c−441I5d)))+5I3(I5a(4375I4b
2

+470iI4bI4c−2102I4c
2)+926I4c

2(3iI5b+8I5c)+2I4bI4c(5984I5b+325iI5c−2548I5d)+35iI4b
2(115I5b+139iI5c

−49I5d))+25I3
2(36I5a

2+35iI6aI4b+678I5b
2
−112I4bI6b+I5a(−118iI5b−478I5c)+650iI5bI5c+932I5c

2

−301iI4bI6c−448I4bI6d))+I4a
2(−7350iI3

5I4b+6(7308I4b
4+5975iI4b

3I4c+31787I4b
2I4c

2+5835iI4bI4c
3

+9915I4c
4)+5I3(I5a(1277I4b

2+32iI4bI4c−5363I4c
2)+2423I4c

2(3iI5b+8I5c)+2I4bI4c(12162I5b+1489iI5c

−5733I5d)+iI4b
2(5176I5b+1102iI5c−1715I5d))+150I3

2(3I5a
2+7iI6aI4b+130I5b

2
−42I4bI6b+I5a(−18iI5b

− 48I5c) + 46iI5bI5c + 143I5c
2
− 21iI4bI6c − 70I4bI6d)) + 12250iI3

3I4b
2I7d − 6125iI3

2I4b
3I6e

+14700I3
2I4b

2I4cI6e+I4a(1225I3
5I4b(130I4b+27iI4c)−6i(980I4b

5
−35756iI4b

4I4c+16355I4b
3I4c

2

−27203iI4b
2I4c

3+3215I4bI4c
4
−3941iI4c

5)+5I3(I5a(−3731iI4b
3
−379I4b

2I4c−2412iI4bI4c
2+6622I4c

3)

+14I4c
3(−789iI5b−1054I5c)−7I4b

3(2361I5b−1513iI5c−1449I5d)+I4b
2I4c(−26097iI5b+239I5c+5145iI5d)

+2I4bI4c
2(−17272I5b+2151iI5c+6713I5d))+25I3
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2+1232I4b

2I6c+1127iI4bI4cI6c+588iI4bI5bI5d+1078I4bI5cI5d−2I5a(7I4c(−19iI5b−109I5c)

+ I4b(53I5b +9iI5c +196I5d))+35iI4b
2I6d +980I4bI4cI6d −343I4b

2I6e))+6125I3
3I4b

2I7e.
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J2 = 142500I2
3I3
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2
−16699iI4bI4c+20418I4c

2
−30I3(36I5a+3iI5b−239I5c))

+5I3(I5a(4151I4b
2+1266iI4bI4c−2102I4c

2)+2I4c
2(−1683iI5b+3704I5c)+2I4bI4c(4178I5b−3783iI5c−2548I5d)

−7iI4b
2(985I5b−803iI5c−615I5d))+I4a(53221iI4b

3
−30438I4b

2I4c+73088iI4bI4c
2
−41244I4c

3

+10I3(I5a(−263iI4b+1267I4c)+7I4c(243iI5b−734I5c)+I4b(−5258I5b+1908iI5c+1323I5d)))+25I3
2(36I5a

2

+35iI6aI4b+762I5b
2
−252I4bI6b+I5a(6iI5b−478I5c)−678iI5bI5c+932I5c

2+231iI4bI6c−448I4bI6d))

+I4a
2(−3150iI3

5I4b +6(1904I4b
4
−29341iI4b

3I4c +17339I4b
2I4c

2
−19765iI4bI4c

3+9915I4c
4)

+5I3(I5a(2621I4b
2+2936iI4bI4c−5363I4c

2)+I4c
2(−8235iI5b+19384I5c)+2I4bI4c(10482I5b−6767iI5c

−5733I5d)+I4b
2(−14024iI5b−3622I5c+6685iI5d))+150I3

2(3I5a
2+7iI6aI4b+158I5b

2
−70I4bI6b+I5a(−10iI5b−

48I5c)−46iI5bI5c+143I5c
2+7iI4bI6c−70I4bI6d))−12250iI3

3I4b
2I7d−11025iI3

2I4b
3I6e+14700I3

2I4b
2I4cI6e

+I4a(175I3
5I4b(834I4b−119iI4c)+6(17444iI4b

5+5572I4b
4I4c+46581iI4b

3I4c
2
−13791I4b

2I4c
3

+10845iI4bI4c
4
−3941I4c

5)+5I3(I5a(6321iI4b
3
−1947I4b

2I4c−5456iI4bI4c
2+6622I4c

3)+14I4c
3(855iI5b

−1054I5c)−2I4bI4c
2(9502I5b −5507iI5c −6713I5d)+3I4b

2I4c(17421iI5b +173I5c −6125iI5d)

+7I4b
3(575I5b−2415iI5c+197I5d))+25I3

2(3224iI4bI5b
2
−1281iI4b

2I6b+I5a
2(68iI4b−126I4c)

+7I6aI4b(9I4b−7iI4c)−966I5b
2I4c−1700I4bI5bI5c+2562iI5bI4cI5c+334iI4bI5c

2
−2086I4cI5c

2+700I4b
2I6c

−1029iI4bI4cI6c+2I5a(7I4c(−15iI5b+109I5c)+I4b(17I5b−201iI5c−196I5d))−784iI4bI5bI5d+1078I4bI5cI5d

− 301iI4b
2I6d + 980I4bI4cI6d − 343I4b

2I6e)) + 6125I3
3I4b

2I7e.
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J3 = 142500I2
3I3

9+216I4a
6
−125I3

3I5a
3
−30625iI3

6I5aI4b+2625iI3
3I5aI6aI4b+4550I3

2I5a
2I4b

2

+6125I3
3I7aI4b

2
−341775iI3

5I4b
3
−13475iI3

2I6aI4b
3
−24990I3I5aI4b

4
−98784I4b

6
−3375iI3

3I5a
2I5b

+147000I3
6I4bI5b−17500I3

3I6aI4bI5b+29225iI3
2I5aI4b

2I5b−108290iI3I4b
4I5b+24250I3

3I5aI5b
2

−31675I3
2I4b

2I5b
2+36000iI3

3I5b
3
−14000I3

3I5aI4bI6b+46550I3
2I4b

3I6b−64750iI3
3I4bI5bI6b

+24500iI3
3I4b

2I7b+36iI4a
5(29I4b+126iI4c)+12450iI3

2I5a
2I4bI4c+314825I3

5I4b
2I4c−15750I3

2I6aI4b
2I4c

+91105iI3I5aI4b
3I4c−22344iI4b

5I4c−23200I3
2I5aI4bI5bI4c−116305I3I4b

3I5bI4c+8300iI3
2I4bI5b

2I4c

−43575iI3
2I4b

2I6bI4c+2700I3
2I5a

2I4c
2+91875iI3

5I4bI4c
2
−12775iI3

2I6aI4bI4c
2
−67700I3I5aI4b

2I4c
2

−147336I4b
4I4c

2+36350iI3
2I5aI5bI4c

2
−99945iI3I4b

2I5bI4c
2
−64350I3

2I5b
2I4c

2+39550I3
2I4bI6bI4c

2

+18680iI3I5aI4bI4c
3
−105342iI4b

3I4c
3
−55910I3I4bI5bI4c

3
−13315I3I5aI4c

4+4314I4b
2I4c

4
−31635iI3I5bI4c

4

−12564iI4bI4c
5+2556I4c

6
−25I2

2I3
6(−2298I4a

2+6I4a(−3475iI4b+1701I4c)+4(4270I4b
2+5235iI4bI4c

−1977I4c
2)+5I3(383I5a+2271iI5b−1888I5c))−6I4a

4(−534I4b
2+3515iI4bI4c−4715I4c

2+90I3(I5a+9iI5b−8I5c))

+3000I3
3I5a

2I5c+116375iI3
6I4bI5c−14875iI3

3I6aI4bI5c−26250I3
2I5aI4b

2I5c+148470I3I4b
4I5c

+41750iI3
3I5aI5bI5c−63525iI3

2I4b
2I5bI5c−83750I3

3I5b
2I5c+50750I3

3I4bI6bI5c−20350iI3
2I5aI4bI4cI5c

−32795iI3I4b
3I4cI5c+21450I3

2I4bI5bI4cI5c−30950I3
2I5aI4c

2I5c+95455I3I4b
2I4c

2I5c−92350iI3
2I5bI4c

2I5c

−15670iI3I4bI4c
3I5c+18320I3I4c

4I5c−17875I3
3I5aI5c

2+21700I3
2I4b

2I5c
2
−62875iI3

3I5bI5c
2

+20150iI3
2I4bI4cI5c

2+30700I3
2I4c

2I5c
2+15000I3

3I5c
3
−20125iI3

3I5aI4bI6c+75950iI3
2I4b

3I6c

+77000I3
3I4bI5bI6c+25200I3

2I4b
2I4cI6c+40775iI3

2I4bI4c
2I6c+56875iI3

3I4bI5cI6c−36750I3
3I4b

2I7c

−6125iI3
2I5aI4b

2I5d+65170iI3I4b
4I5d+29400I3

2I4b
2I5bI5d+22050I3

2I5aI4bI4cI5d+7595I3I4b
3I4cI5d

+61250iI3
2I4bI5bI4cI5d+63210iI3I4b

2I4c
2I5d−21560I3I4bI4c

3I5d+6125iI3
2I4b

2I5cI5d−39200I3
2I4bI4cI5cI5d

+8575I3
2I4b

2I5d
2+6I4a

3(3317iI4b
3
−3321I4b

2I4c+19595iI4bI4c
2
−10395I4c

3+5I3(I5a(89iI4b+252I4c)

+14I4c(127iI5b−109I5c)+I4b(522I5b+219iI5c+392I5d)))+8750I3
3I5aI4bI6d−66150I3

2I4b
3I6d

+29750iI3
3I4bI5bI6d−17325iI3

2I4b
2I4cI6d−14000I3

2I4bI4c
2I6d−21000I3

3I4bI5cI6d+5I2I3
3(1296I4a

4

+47775iI3
5I4b−15974I4b

4+6iI4a
3(2943I4b+2534iI4c)+42007iI4b

3I4c−102974I4b
2I4c

2
−67008iI4bI4c

3

+14316I4c
4
−2I4a

2(22927I4b
2+47787iI4bI4c−20418I4c

2+30I3(36I5a+275iI5b−239I5c))−5I3(I5a(5481I4b
2

−32iI4bI4c+2102I4c
2)+2I4c

2(4755iI5b−3704I5c)+7iI4b
2(131I5b+503iI5c−1155I5d)+2I4bI4c(6955I5b

+4391iI5c+2548I5d))+I4a(−21007iI4b
3+142428I4b

2I4c+144924iI4bI4c
2
−41244I4c

3+10I3(I5a(−761iI4b

+1267I4c)+7I4c(915iI5b−734I5c)+I4b(7290I5b+5206iI5c+1323I5d)))+25I3
2(36I5a

2
−203iI6aI4b−1446I5b

2

+854I4bI6b+I5a(550iI5b−478I5c)−2342iI5bI5c+932I5c
2+1099iI4bI6c−448I4bI6d))+I4a

2(36750iI3
5I4b

−6(56I4b
4+32091iI4b

3I4c+6741I4b
2I4c

2+31435iI4bI4c
3
−9915I4c

4)−5I3(I5a(5105I4b
2+3932iI4bI4c+5363I4c

2)

+I4c
2(24747iI5b−19384I5c)+iI4b

2(3364I5b+8206iI5c−9947I5d)+2I4bI4c(9648I5b+5881iI5c+5733I5d))

+150I3
2(3I5a

2
−21iI6aI4b−194I5b

2+112I4bI6b+6iI5a(9I5b+8iI5c)−334iI5bI5c+143I5c
2+161iI4bI6c

−70I4bI6d))−24500iI3
3I4b

2I7d−23275iI3
2I4b

3I6e+14700I3
2I4b

2I4cI6e+I4a(−1225I3
5I4b(262I4b+105iI4c)

+6(15484iI4b
5+33012I4b

4I4c+40331iI4b
3I4c

2+8809I4b
2I4c

3+17275iI4bI4c
4
−3941I4c

5)+5I3(I5a(−4711iI4b
3

+25945I4b
2I4c−338iI4bI4c

2+6622I4c
3)+14I4c

3(1527iI5b−1054I5c)+iI4b
2I4c(25353I5b+26897iI5c−27489I5d)

+7I4b
3(93I5b−13iI5c−567I5d)+2I4bI4c

2(13673I5b+6791iI5c+6713I5d))+25I3
2(−732iI4bI5b

2+903iI4b
2I6b

+I5a
2(−118iI4b−126I4c)+7I6aI4b(15I4b+91iI4c)+3738I5b

2I4c−2254I4bI6bI4c+452I4bI5bI5c+5698iI5bI4cI5c

−6iI4bI5c
2
−2086I4cI5c

2
−1148I4b

2I6c−2597iI4bI4cI6c+2I5a(7I4c(−127iI5b+109I5c)+I4b(229I5b+307iI5c

−196I5d))−1470iI4bI5bI5d+1078I4bI5cI5d−7iI4b
2I6d+980I4bI4cI6d−343I4b

2I6e))+6125I3
3I4b

2I7e.
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J4 = 142500I2
3I3

9+216I4a
6
−125I3

3I5a
3
−27125iI3

6I5aI4b+2625iI3
3I5aI6aI4b−350I3

2I5a
2I4b

2

+6125I3
3I7aI4b

2+15925iI3
5I4b

3+25725iI3
2I6aI4b

3+24990I3I5aI4b
4+98784I4b

6
−2875iI3

3I5a
2I5b

−7000I3
6I4bI5b−10500I3

3I6aI4bI5b−63175iI3
2I5aI4b

2I5b+37730iI3I4b
4I5b+11750I3

3I5aI5b
2

+50225I3
2I4b

2I5b
2
−36000iI3

3I5b
3
−10500I3

3I5aI4bI6b−17150I3
2I4b

3I6b+36750iI3
3I4bI5bI6b

+36iI4a
5(5I4b+126iI4c)+12550iI3

2I5a
2I4bI4c−44275I3

5I4b
2I4c−14350I3

2I6aI4b
2I4c−55615iI3I5aI4b

3I4c

−76440iI4b
5I4c+19400I3

2I5aI4bI5bI4c+169995I3I4b
3I5bI4c−86700iI3

2I4bI5b
2I4c+64925iI3

2I4b
2I6bI4c

+2700I3
2I5a

2I4c
2+42175iI3

5I4bI4c
2
−12775iI3

2I6aI4bI4c
2+10900I3I5aI4b

2I4c
2+120288I4b

4I4c
2

+25650iI3
2I5aI5bI4c

2
−69665iI3I4b

2I5bI4c
2+57150I3

2I5b
2I4c

2
−10150I3

2I4bI6bI4c
2+16540iI3I5aI4bI4c

3

−28470iI4b
3I4c

3+117430I3I4bI5bI4c
3
−13315I3I5aI4c

4+34122I4b
2I4c

4+19485iI3I5bI4c
4
−2340iI4bI4c

5

+2556I4c
6
−25I2

2I3
6(−2298I4a

2+2I4a(−6625iI4b+5103I4c)+12(1085I4b
2+605iI4bI4c−659I4c

2)

+5I3(383I5a+1359iI5b−1888I5c))−6I4a
4(−942I4b

2+635iI4bI4c−4715I4c
2+30I3(3I5a+23iI5b−24I5c))

+3000I3
3I5a

2I5c+63875iI3
6I4bI5c−14875iI3

3I6aI4bI5c−11550I3
2I5aI4b

2I5c−148470I3I4b
4I5c

+30250iI3
3I5aI5bI5c+72975iI3

2I4b
2I5bI5c+47750I3

3I5b
2I5c−1750I3

3I4bI6bI5c−18450iI3
2I5aI4bI4cI5c

+50225iI3I4b
3I4cI5c+22950I3

2I4bI5bI4cI5c−30950I3
2I5aI4c

2I5c−89825I3I4b
2I4c

2I5c+18450iI3
2I5bI4c

2I5c

−53150iI3I4bI4c
3I5c+18320I3I4c

4I5c−17875I3
3I5aI5c

2+11900I3
2I4b

2I5c
2
−2875iI3

3I5bI5c
2

−30850iI3
2I4bI4cI5c

2+30700I3
2I4c

2I5c
2+15000I3

3I5c
3
−16625iI3

3I5aI4bI6c−46550iI3
2I4b

3I6c

−49000I3
3I4bI5bI6c−34300I3

2I4b
2I4cI6c−8925iI3

2I4bI4c
2I6c+4375iI3

3I4bI5cI6c+12250I3
3I4b

2I7c

−5425iI3
2I5aI4b

2I5d+5390iI3I4b
4I5d−65100I3

2I4b
2I5bI5d+22050I3

2I5aI4bI4cI5d−18165I3I4b
3I4cI5d

−22050iI3
2I4bI5bI4cI5d+36610iI3I4b

2I4c
2I5d−21560I3I4bI4c

3I5d+29925iI3
2I4b

2I5cI5d−39200I3
2I4bI4cI5cI5d

+8575I3
2I4b

2I5d
2+6I4a

3(365iI4b
3
−11213I4b

2I4c+3615iI4bI4c
2
−10395I4c

3+5I3(I5a(137iI4b+252I4c)

+14I4c(93iI5b−109I5c)+I4b(−146I5b−165iI5c+392I5d)))+8750I3
3I5aI4bI6d+36750I3

2I4b
3I6d

−1750iI3
3I4bI5bI6d+30275iI3

2I4b
2I4cI6d−14000I3

2I4bI4c
2I6d−21000I3

3I4bI5cI6d+5I2I3
3(1296I4a

4

+34475iI3
5I4b−1666I4b

4+6iI4a
3(2087I4b+2534iI4c)−37093iI4b

3I4c+37470I4b
2I4c

2
−13152iI4bI4c

3

+14316I4c
4
−2I4a

2(−5925I4b
2+20423iI4bI4c−20418I4c

2+30I3(36I5a+213iI5b−239I5c))+5I3(I5a(175I4b
2

−764iI4bI4c−2102I4c
2)+2I4c

2(−1683iI5b+3704I5c)+2I4bI4c(4787I5b−283iI5c−2548I5d)−7iI4b
2(939I5b

−445iI5c−295I5d))+I4a(37093iI4b
3
−36920I4b

2I4c+41476iI4bI4c
2
−41244I4c

3+10I3(I5a(−333iI4b+1267I4c)

+7I4c(423iI5b−734I5c)+I4b(−2122I5b+1978iI5c+1323I5d)))+25I3
2(36I5a

2
−203iI6aI4b+6I5b

2+322I4bI6b

+I5a(426iI5b−478I5c)−1014iI5bI5c+932I5c
2+567iI4bI6c−448I4bI6d))+I4a

2(32550iI3
5I4b+6(7308I4b

4

−5975iI4b
3I4c+31787I4b

2I4c
2
−5835iI4bI4c

3+9915I4c
4)−5I3(I5a(1985I4b

2+6836iI4bI4c+5363I4c
2)

+I4c
2(9243iI5b−19384I5c)−2I4bI4c(10944I5b+2375iI5c−5733I5d)+iI4b

2(7108I5b+5590iI5c−1547I5d))

+150I3
2(3I5a

2
−21iI6aI4b−94I5b

2+84I4bI6b+I5a(46iI5b−48I5c)−242iI5bI5c+143I5c
2+133iI4bI6c−70I4bI6d))

−18375iI3
2I4b

3I6e+14700I3
2I4b

2I4cI6e−I4a(175I3
5I4b(22I4b+427iI4c)−6i(980I4b

5+35756iI4b
4I4c

+16355I4b
3I4c

2+27203iI4b
2I4c

3+3215I4bI4c
4+3941iI4c

5)+5I3(I5a(−7693iI4b
3+295I4b

2I4c−2706iI4bI4c
2

−6622I4c
3)+14I4c

3(117iI5b+1054I5c)+2I4bI4c
2(22249I5b−3435iI5c−6713I5d)+7I4b

3(3067I5b+1925iI5c

−2309I5d)+I4b
2I4c(−19041iI5b−4775I5c+3969iI5d))+25I3

2(−3868iI4bI5b
2+2597iI4b

2I6b+7I6aI4b(33I4b

−91iI4c)+1722I5b
2I4c+98I4bI6bI4c+2I5a

2(71iI4b+63I4c)+3268I4bI5bI5c−714iI5bI4cI5c+366iI4bI5c
2

+2086I4cI5c
2
−2352I4b

2I6c+441iI4bI4cI6c−2I5a(7I4c(−93iI5b+109I5c)+I4b(367I5b+499iI5c−196I5d))

+98iI4bI5bI5d−1078I4bI5cI5d−329iI4b
2I6d−980I4bI4cI6d+343I4b

2I6e))+6125I3
3I4b

2I7e.
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[Su] V. I. Šulikovskii, An invariant criterion for a Liouville surface, Doklady Akad.
Nauk SSSR 94 (1954), 29 –32.

[Te] V.V. Ten, Local integrals of geodesic flows, Regular Chaotic Dynamics 2

(1997), no. 2, 87–89.

[T] T.V. Thomas, The differential invariants of generalized spaces, Cambridge,
The University Press (1934).

[TM] P. J. Topalov, V. S. Matveev, Geodesic equivalence via integrability ,
Geom.Dedicata 96 (2003), 91–115.

[Tr] A. Tresse, Sur les invariants differentiels des groupes continus de transforma-

tions, Acta Math. 18 (1894), 1–88.

[V] V. Vagner, On the problem of determining the invariant characteristics of

Liouville surfaces, Trudy Sem. Vektor. Tenzor. Analizu 5 (1941), 246–249.

[W] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid

Bodies, Cambridge University Press, Cambridge (1937).

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway.

E-mails: kruglikov@math.uit.no.

27


	. PDEs and Prolongation-Projection scheme
	. Differential invariants of a Riemannian metric
	. Linear integrals
	. More than 3 quadratic integrals
	. Digression I: Darboux-Kœning's theorem
	. Digression II: On the number of invariants
	. Precisely 3 quadratic integrals
	. Digression III: Simplification of invariants
	. Generic case: Liouville form
	. Singular locus: 2 quadratic integrals
	. Liouville metrics: some global questions
	. Cubic integrals
	. Higher order integrals
	Long formulae

