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Invariant characterization of Liouville metrics
and polynomial integrals

Boris Kruglikov

Abstract

A criterion in terms of differential invariants for a metric on a surface
to be Liouville is established. Moreover, in this paper we completely solve
in invariant terms the local mobility problem of a 2D metric, considered
by Darboux: How many quadratic in momenta integrals does the geodesic
flow of a given metric possess? The method is also applied to recognition
of other polynomial integrals of geodesic flows.

Introduction

The problem of recognizing by a metric, how many integrals admits its
geodesic flow is classical. In this paper we study locally metrics on surfaces. We
will look for the integrals analytic in momenta.

By Whittaker theorem [W] existence of such an integral is equivalent to
existence of an integral polynomial in momenta. Note that locally geodesic
flows are integrable, but the corresponding integrals are usually analytic only
on T*M \ M. So in general polynomial integrability requires certain conditions
even locally.

The integrals of degree one in momenta correspond to surfaces of revolution,
locally ds? = f(z)(dz? + dy?). It is an easy fact that if such integrals exist, then
there are either one (generically) or three (space form). We provide a precise
criterion for determining existence of a local linear integral (Killing vector field).

The next interesting case concerns geodesic flows with quadratic in momenta
integrals. They correspond to Liouville metrics. The local analytic form of such
metrics near a generic point is well-known [DLB]: ds? = (f(z)+h(y))(dz?*+dy?)
and a metric has an additional quadratic integral iff it can be transformed into
such a form.

However no criterion, when the metric is Liouville has been previously ob-
tained, except for the paper [Su] (the first, rather unsuccessful attempt was done
in [V]). However the criterion of this work was not explicit. Neither did it con-
tain invariant formulae, making it difficult even to decide how many differential
invariants characterize Liouville metric and which order they have.
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Keywords: geodesic flow, Killing field, Liouville metric, polynomial integrals, degree of mo-
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As the main result of this paper we resolve the classical problem of recogni-
tion for Liouville metrics and provide an explicit criterion written via a basis of
scalar differential invariants of the metric.

Moreover we shall determine the number of quadratic integrals, which co-
incides with the degree of mobility of a Riemannian metric on a surface. It
can be 6 (space form), 4 (case characterized in [D] though not through differen-
tial invariants; note that in classical works the Hamiltonian is disregarded, so
that there are 5, 3 etc integrals in their way of counting), 3 (the case studied
by Keening [Koel), 2 (general Liouville form) or 1 (metrics with no additional
quadratic integrals). Each of these cases will be characterized via an invariant
condition written in terms of differential invariants of the Riemannian metric.

The method of our study is the Cartan’s prolongation-projection method:
we write the system of PDEs for existence of a quadratic integral and subse-
quently calculate the compatibility conditions. If they are trivial, the system is
compatible and we stop. Otherwise we add new equations, the space of solutions
(which is a finite-dimensional linear space from the beginning — the system is of
finite type) shrinks and we continue.

For effectiveness of the method we should have explicit formulas for compat-
ibility conditions, but they are given by the result of [KLs].

The procedure stops in several steps because finally we arrive to only one
possible quadratic integral, which is just the Hamiltonian, an obvious integral of
the geodesic flow. The prolongation-projection scheme usually is characterized
by the rapidly growing complexity with each step. It is also true in our problem,
but in this case we manage to arrive to the very end of the method and to
establish the solvability criterion.

The problem of invariant characterization of Liouville metrics was initiated
in paper [KLs] in a collaboration with V.Lychagin as an application of our
general compatibility criterion. The results are repeated in a revised form in
sections B4l Moreover the general idea of solution to the problem was sketched
there, but the complete answer appears here for the first time.

Let us also indicate that the solution of the problem presented here is ex-
pressed via scalar differential invariants and we especially care to minimize the
number/order of the invariants.

At the end of the paper we discuss the problem of higher degree integrals
and make some claims and conjectures about dimension of the space ¢, of
polynomial in momenta integrals F' of deg F' = n.

Acknowledgment. While solving the problem I profited from discussions
with V. Matveev, V. Lychagin and E. Ferapontov. I wish to thank them all.

1. PDEs and Prolongation-Projection scheme
In this section we deduce the basic system of equations for polynomial inte-

grability, discuss compatibility criterions and formulate the general scheme of
investigating solvability.
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This paper deals mostly with local existence problem, so that whenever
opposite is not explicitly stated all statements should be assumed local in M.
Moreover we impose the usual regularity assumption. Regular points form a
nonempty open set, but it does not need to be of full measure in the C*° case
(in analytic case regular points are generic) and such pathological examples exist
even in R2.

Let (x,y) be local coordinates on M? and p,,p, be the corresponding mo-
menta on T*M. Writing the metric ds* = g;jdx'dx’? we express Hamiltonian
of the geodesic flow as H = g''p2 + 2¢"%p,.p, + g**p2, where the matrix g%/ is
inverse to the matrix g;; of the metric g.

A homogeneous term of an integral is obviously an integral, and so we study
a function F, = 37, ., wij (2, y)pLp), on T*M. Involutivity condition, i.e.
vanishing of the Poisson bracket {H, F},} = 0, is equivalent to (n 4 2) equations
E,=0,...,E,42 =0o0n (n+ 1) unknown function uno(x,y),. .., uon(z,y).

This system & is of generalized complete intersection type studied in [KLg|.
The compatibility criterion developed there states that the system is formally
integrable iff the following multi-bracket vanishes:

EnJrB = {El,...,En+2} (mOdEl,...,En+2) =0. (1)

For linear differential operators this is defined as follows.

Let E;(u) = E?:o EJuj,,—j) be representation of the vector operator in
components E; = (E?,..., E") (Ef are scalar differential operators). Then the
multi-bracket equals (in this formula m =n + 1)

1 a a(0) a(l) a(m—1)
(B, Bl =— D> (=)D By By By Bagme.
Q€S ,BESm+1

Reduction modulo the system in (Il) means the following. Orders of differential
operators F; are 1 and order of the multi-bracket {E1, ..., E,42} is (no greater
than) (n 4+ 1). We prolong the system & = {E; = 0,...,FE,12 = 0} to the
order (n + 1) (such prolongation exists!), i.e. take the space of all linear com-
binations Z?:f V,;E; with linear scalar differential operators V; of ord V; < n,
and consider the class of the multi-bracket in the quotient space (see [KLg| for
details).

Now the system & is of finite type, i.e. has no complex characteristics
(we refer the reader for this and further notions from geometry of PDEs to
IKLV], [KL4]), so if compatibility condition () is satisfied, the system is locally
integrable.

If this condition is not satisfied we add the equation FE, 35 = 0 to the sys-
tem &£ and continue with solvability investigation of the new prolonged system
&’. Prolongation means addition of derivatives of the generators. But if their
combination (differential corollary) drops in order (projection), it is the com-
patibility condition, which should be added to the system. Thus we get new
equations £” etc, until we stabilize at a system £ in a finite number of steps
(Cartan-Kuranishi theorem).
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Denoting T' = T, , )M the model tangent space for independent variables
and N ~ R"”(ui(n,i)) the space of dependent variables, the system & has
symbols gx C S*T* ® N (respectively £ has symbols gj, etc). Codimension of
this linear subspace (n + 2)(k + 1) — dim g equals the number of independent
equations in the prolonged system of order k.

Cohomology H*~1:2(€) of the Spencer §-complex

0 — gr+1 i’gk®T*i’gk71®A2T*—>0

at the last term is the space of compatibility conditions ([KLVI [KL4]). For the
initial system & the only non-zero second Spencer §-cohomology is H™?(€) ~ R*
and the only compatibility condition is the above reduced multi-bracket E), ;3.
Thus & = {E; =0,...,E,y+3 = 0}. Further compatibility conditions (for &’
etc) will be indicated along with prolongation-projection process.

Let #, = {(ui(n—i))} denotes the solution space of the system £. This space
is linear and dim ¢, = > dim g. In particular this is smaller than ) dim g
and since the latter quantity strictly decreases during prolongation-projection,
the method stops in a finite number of steps giving either non-trivial locally
integrable system of PDEs (solvability) or no solution result.

2. Differential invariants of a Riemannian metric

Here we describe the algebra 24 of scalar differential invariants of a Rieman-
nian metric g on a two-dimensional surface M. It is well-known that the first
such invariant occurs in order 2 and is given by the scalar curvature K.

Denote grad K be the g-gradient of the curvature and let sgrad K = Jy grad K
be its rotation by m/2 (one needs to fix orientation, which is possible as we treat
(M, g) locally; alternatively we can square those invariants, which have unde-
termined sign). There are two invariant differentiations Lerad Kk and Lgrad k1 (£
is the Lie derivative). These differentiations and K do not generate 2, but if
we also allow commutators they do.

There are precisely (kK — 1 — d3) functionally independent differential in-
variants of order k for k > 0. Let us briefly explain why (cf. [T]). Consider
the jet-space of Riemannian metrics J*(S2T*M). Fibers of the projections
Thk—1 J& — J5=1 have dimensions 3(k + 1), where as usual J-l =M.

The pseudogroup Diff},.(M) acts naturally on the jet-spaces. Its action is
transitive up to 1st jets. Indeed, the action is clearly transitive on the base and
let us consider the jets of the stabilizer of x € M, i.e. the differential group
Gh = J¥ (M, M). G acts transitively on J2(53T*M) with one-dimensional
stabilizer O(2).

The action of G2 on J}(S2T*M) is transitive as well, but the action of G2
on J2(S2T*M) is not (though it has dimensional freedom to be!). Codimension
of a generic orbit is 1 and curvature K is the only invariant.

The stabilizer disappears only on the next step and starting from k& = 3 the
actions of GE1 on J¥(S2T*M) are free. Thus since dimKer(GE™! — GF) =
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2(k + 2), codimension of the generic orbit of Ker(GET! — G*) on 771;11@71(*) is
equal to (k — 1 — dp3).
Let us establish a basis in the space of invariants.

For a tensor T" denote d%k T=dy (dg(kfl)T) the iterated covariant derivative
of the tensor T (al@2 differs from d%,, which is equal to multiplication by the
curvature tensor). In particular, we obtain the forms d&'K € C=(®'T*M).

Since K is a scalar function, dy K = dK. The next differential is symmetric,
because we consider metric (Levi-Civita) connection:

Lemma 1. d9°F € C®(S?>T*M) VF € C>(M) iff connection V is symmetric.
Proof. Since do’F(&,n) = (VedF)(n) = Ve[n(F)] — [Ven](F), we have:
A F(§,n) = dG*F(1,€) = (Liey) — (Ven — Vn€))(F) = T (0, §) (),

where Ty is the torsion tensor. In coordinates this is expressed via Christoffel

symbols as (d@QF)ij =F; —I‘ﬁjFl, where I, = 6{;:(? are the partial derivatives.
O

The next differential dg*F € Q' M ® S2Q' M, but this (and higher) tensors
are fully symmetric iff the metric is flat:

Lemma 2. Let Ty = 0. Then dS°F € C>®(S3T*M) VF € C*®(M) iff Ry = 0.
Proof. d$®F(£,1,0) = (V¢V,dF — Vy,,dF)(6), whence
A3 F(§,n,0) — dZ°F(n,£,0) = (([Ve, Vil = Vie.)dF) (0) = Ry (&,n)*dF(0)
and the result follows. O

Now to fix a basis in invariants of order ¢ = 2+ we consider the form d@lK
and denote (in non-flat case the order is essentiall)

Lj; = d@lK(gradK,...,gradK,sgradK,...,sgradK).

l—=j J
If we change the order, the expression will be changed by a lower order differ-
ential invariant. We will not use it and so omit the details, but for instance

dS? K (sgrad K, sgrad K, grad K)—dS” K (grad K, sgrad K, sgrad K ) = | grad K |2,

The first invariants are: I» = K and I3 = |[VK|? (the index refers to the order
of differential invariant). Starting from ¢ = 4 there are | + 1 =i — 1 invariants
I;; and we re-enumerate the index j by letters (so we write Iy, instead of Iy,
I5q instead of I53 etc). For instance Iy, = do’K (grad K, sgrad K).

The two approaches to describe the algebra 2 of differential invariants, one
via the basic invariant I with two invariant differentiations and another one
via the basis I;; are closely related: the former is obtained from the latter
via the Lie-Tresse approach [Tt]. Namely let say I, I3 be chosen as a basis,
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and 9/dy,,8/9;, be the corresponding Tresse derivatives (see [KL;]). In local
coordinates (z',2%) they can be expressed as

9)0r, = AN (Do (I3)D1 — Di(I3)D2), 9/, = A~ (D1(I2)Da — Da(I2) D1 ),

where D; are total derivatives [KLV] and A = D;(I2)D2(I5) — Da(I2)D:1(13)
is the determinant (basis requirement above means A # 0). Then the two
invariant differentiations Vi = £g1ad k and Vo = Lygrad K €qual

Vi=1I3-0/d1, + 24, - 8)01,, Vo =2Iy-8/0r,.
Relation to the other side constitutes an infinite sequence of identities:

Vilo =13, Voly =0, Vil3=2I4,, Vols=2Iy,
2(142(1 + I42b) 2I4b(14a + I4c)

Vil = I, + , Voly, = Iy + ————,
Ig IS
Ly (Lyg + 1y 12 — Lo Iy. + 212
V1[4b=fsb+w, Vo Ly = I5. + ¢ 414 * 4 13,
3 3
2(I4o 4o — I?
Vilye = Is. + M7 Vo Iye = Isq,

I3

They can be obtained successively with the help of the commutation rule for
invariant differentiations:

21 Lyg — Iye
[grad K, sgrad K] = —I;“b grad K + % sgrad K.
3 3

3. Linear integrals

A Riemannian metric ¢ on a surface M? possesses a Killing vector field iff
it has the following local form near the point, where the field does not vanish:
ds?> = gi1(z)dz? + 2g12(x)dxdy + gaa(x)dy?, so that (M2, g) is a surface of
revolution. How to recognize such a metric?

Let us write the metric locally in isothermal hyperbolic coordinates (possibly
over C): ds? = @YW drdy. If the metric is positive definite (not pseudo-
Riemannian), one should rather write e*dzdz and this complexification pop-
ups as follows: while the gradient of a function K equals (2¢*K,,2e"*K,),
the skew-gradient is (2ie *K,, —2ie *K,)! Moreover we shall encounter i as
a factor at some coefficients below, but this does not lead to contradiction:
vanishing of these coefficients turns out to be a real condition.

In [KL3] we chose the general form, but since the answer will be expressed
in differential invariants, the choice is not essential.

Function F; = up, + vp, is an integral of the geodesic flow iff the following
3 linear PDEs (coefficients of {H, F}}) are satisfied:

uy = 0, Ug + Vy + Uz + VA, =0, vy = 0.
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Denote them by E1, Fo, E5 respectively. This system &£ has symbols: dim gg = 2,
dim g; = 1, dim go = 0. The compatibility condition is given by the relation

E4 = {El,EQ,Eg} (HlOd El,EQ,Eg) =0.

In general case the bracket should have order 2 in pure form and 1 after reduc-
tion, but in our case F4 is of order 0 and equals:

By = 2N Kou+ Kyv),

1
2
where K is the Gaussian curvature. Thus compatibility condition means (M2, g)
is a spatial form: K = const. This is the case, when dim ¢#; = 3.

If K is non-constant, to study solvability we add the equation F4 = 0 to the
system. To describe the new system £’ we let u = Kyw, v = —K,w and obtain
the following system on one function w(z,y):

0 K, Ky, Wy
-K, 0 — Ko - |wy | =0.
K, —-K, MNK,-)M\NK, w

In order to have solutions the determinant of this matrix should vanish. It
equals —ie”‘L;b. Given this condition we can drop one equation and transform
the system to the form

(log | Ky w[)y =0, (log [ Ky wl)y = 0.

Its solvability is equivalent to a 3rd order relation on the curvature, which can
be expressed as the condition I3(Isp + Isq) = 214 (laq + I4c). However when
Iy, = 0, then I, = 0 and we obtain:

Theorem 1. dim ¢, =3 iff K = const (i.e. I3 =0) and dim 7, =1 iff
Iy =0, Isq = 0.
Otherwise there exist no local Killing vector fields.

Remark 1. This and further statements hold only near regular points (here
this means dK # 0). Indeed in non-analytic case there exist pathological coun-
terexamples. For instance for any € > 0 it is possible to construct a C'°°-metric
on the disk D?(1) satisfying Iy = Isq = 0, such that the set of reqular points
(where a Killing field exist) has Lebesgue measure < e.

We can reformulate this criterion as vanishing of the differential invariants

Jacy (K, |VK|?) and Jacy (K, A, K), where Jac,(F, G) = dF NG (535, B51)

is the Jacobian and AyF = Tr,[do’F] is the Laplacian. Indeed we have:
AgK = (I44 + I4.) /I3, so the claim follows from:

Isp + 1
Jacy(K,|VK|?) = 2Ly,  Jacy(K, A K) = w
3

(note that Iy, = 0 implies I, = 0).
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Remark 2. Some classical criteria for existence of local (global implications
follow) Killing fields are contained in [Nij, [INom), but they are neither explicit
conditions on the metric g nor finitely formulated. Our criterion in the form of
dependence of VK| and AgK on K is implicitly contained in [D].

4. More than 3 quadratic integrals

We turn now to characterization of Liouville metrics. We will again use iso-
metric hyperbolic coordinates, H = e_’\pmpy, which does not restrict generality.

The function Fy = u(z, y)p2+2v(z, y)pepy +w(z, y)p% is a quadratic integral
of the geodesic flow iff the following system & is satisfied:

Uy =0, Uy + 20y + 2ul; + 200, =0, 2v, +wy + 20, +2wA, =0, w, =0.

Denote the equations respectively by Ei, Ea, F3, E4. The compatibility condi-
tion can be expressed via the multi-bracket

E; ={E\, Es,E3,Es} (mod Ey, Es, E3, E4) = 0.

Even though it might be expected from the general theory that Ef has order 2,
in our case it has order 1. Divided by 2e” it equals to

Es = 5K,vy — 5Kyv, — (Kpg — A Kp)u+ 5\ Ky — A\ Ky)v + (Kyy — Ay Ky)w.

Thus the system £ is formally integrable iff K’ = const. In this case dim gy =
3,dimg; =2,dimgs =1, gay; = 0 for ¢ > 0 and the dimension of the solutions
space is dim _#5 = )" dim gy = 6. Indeed 75 = 52 J1, i.e. a basis in the space
of quadratic integrals is formed by pair-wise products of elements of a basis in
is the space of linear integrals.

Suppose that K # const, so that Fj is a differential relation of the first
order in u,v,w. Adding E5 = 0 we get the systenf] & C J(2,3) of formal
codimension 5.

Its symbols g/ C S'T* ® R® have dimg) = 3, dimg; = 1, dimg) = 0
and thus the only non-zero second §-cohomology groupsy are H%2?(£’) ~ R,
HY2(&") ~ RY. There are two obstructions to compatibility — Weyl tensors
W] € H%2(£") and Wj € HY2("). The former W] is proportional to

5 5
Ef = KyE5z+KzE5y—§K§(Egy—Ele—§K§(E31—E4y)(mod E\, By, E3, Ey, Fs).

Multiplying this by 5K, and further simplifying modulo E1, Fo, F3, E4, E5 we
obtain the following expression:

_ 35 _2A 35 2\
Ee = Fe" Ipve + Qru+ Fe™ Aalypv + Q2 w,

2J%(m, ) is the space of k-jets of maps ¢ : R™ — R” and formal codimension of a system
& C JE(m,r) is 3, dim HY*(E), the precise number of the equations in the system [KLg].

3The second Spencer §-cohomology H*:?2 = @H®~1:2 is the space that contains all compat-
ibility conditions of the system. The latter are called Weyl tensors W; € H*~12 (also called
curvatures/torsions/structural functions). We refer to [KL4] for a review.
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where
—128e M K}Q1 = Jsq and 32e M 3K,Qp = J5p

are differential invariants and provided Iy, = 0 (which implies Iz, = 0, see
identities in §2) they reduce to Js4|1,,=0 = Jsb|1,,=0 = J5, Where

Js = 5I3(Isq — Ise) + (Isq — Lsc)(Iae — 6144) — 251515

We see that the coefficients of Eg (as well as that of other E;) are not
invariant (neither are real), but the condition of their vanishing is invariant
(and real).

If Eg vanishes, the system £’ can be prolonged to the second jets, but is not
yet formally integrable. Another curvature — Weyl tensor W3 — is the obstruc-
tion to prolongation to the third and henceforth infinite jets. Since g5 = 0, it is
the Frobenius condition of the canonical Cartan distribution on the first prolon-
gation &) of £] = &’ (but it is one equation, not three as one can guess without
calculation of Spencer d-cohomology!). Originally a (linear) function on &, it
can be represented as a linear function on € due to isomorphism 75 ; : £ = &’

This new equation Eg has coefficients of order 6, but they can be simplified
modulo the conditions Iy, = 0, J5 = 0. Indeed we can differentiate these along
invariant fields V1, V3, see for instance the next section (this allows to express
all the higher invariants I;; with ¢ > 5 through invariants of order < 4). Thus
the second obstruction to formal integrability W3 is the following equation,
which turns out to be a linear function on J°(2,3) (we multiply it by the factor
64e A I3K,K,):

Eo = Jy (K2u— K2v),

where
Jy = 3(Isq — Ine)(Lg + 4140) Ise — 15115 (1aq + 414.) + 25135,

Notice that in expression for Eg we simplified modulo the conditions Iy, =
0, J5 = 0. Otherwise the coefficients are complex and more complicated, and in
addition there are terms with v, and v. For instance the coefficient of v, term
is 35622 (I, + I5q)15 ", but it simplifies to zero.

Since formal (=local due to finite type condition) integrability of £ means
existence of 4 integrals of the geodesic flow, we get the following statement:

Theorem 2. The condition of exactly 4 quadratic integrals dim #5 = 4 can be
expressed as 3 differential conditions on the metric:

Ip=0, Js=0, J,=0.

5. Digression I: Darboux-Koening’s theorem

We can deduce now the classical theorem due to Darboux and Kcenning:
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Theorem 3. A plane metric has exactly 4 quadratic integrals iff it has exactly
one linear integral and one more quadratic integral independent of the Hamilto-
nian and the square of the linear integral.

To one side this was proved in [D], while to the other it was given in [Koe].
It is instructive to see the equivalence by using differential invariants only (thus
below is an alternative proof of this classical theorem):

Proof. Let us suppose at first that g has 4 quadratic integrals. We may
assume K # const. Thus Iy, = 0 and J5 = 0. We must show I54 = 0 (this
follows easily from the condition that v,-coefficient of Eg vanishes, but we will
show that it suffices to use only the first two conditions of Theorem [2]).

Note that under condition Iy = 0 we have: Vols = 0, Vol = 0 and
Vals, = 0 (see identities of §2)). The latter follows from I, = 0 as well as from
the fact that the commutator [V1, Va] is proportional to Vy. Now equation
Js = 0 can be written as

513V 14q — 1613, + 21404 + 413, — 20115 = 0.

Applying Vs to this we get 2154(14, + 414.) = 0, which yields either I54 = 0 or
Iy = —%14(1. The latter after application of Vs gives I5q = 0 as well.

Now suppose that ¢ has a Killing vector field and an additional quadratic
integral, so that the dimension of the space of quadratic integrals is at least 3.
Since Iy, = 0, the equation Fjg is of order 0. If Eg # 0, then its prolongation adds
a new first order equation to the system and the symbols satisfy: dim gy < 2,
dimg; = 0, so that the space of quadratic integrals cannot have dimension
greater than 2. If all the coeflicients of FEg vanish, then J; = 0. If J4 # 0, then
Fyg is non-zero and of order 0. The same calculus for dimensions of symbols
and solutions space leads to contradiction. On the other hand, if J; = 0, then
Eg = 0 and we have 4 quadratic integrals. 0

Corollary 1. If g possesses a Killing vector field, then its local degree of mo-
bility dim _¢#5 is even: 2, 4 or 6.

6. Digression II: On the number of invariants

Conditions Iy, = 0,J5 = 0 do not imply Jy = 0. This pair of relations for
differential invariants can be considered as an overdetermined system, but it
is compatible meaning they do not produce new differential relations of lower
order. Actually, we showed in the previous section that the two relations imply
I5q = 0. Relations V1l = 0 gives Iy, = 0 and Valy, = 0 yields Is. = (I4q1sc —
I3. — II3)/I3. Then Js = 0 implies I5, = %(312,1 — Lyolye — 212, + 10113) / I5.

Further derivations of these identities with Vg yield expressions for higher
differential invariants I;;, ¢ > 6, via invariants of order < 4 and they agree (there
are 8 equations to determine 5 invariants of order 6, 12 equations to determine
6 invariants of order 7 etc), which manifests the above mentioned compatibility.

10



Liouville metrics

On the other hand, under certain genericity assumption, namely I4.(214, +
314.) # 5I13, the conditions Iy, = 0, Jy = 0 imply J; = 0. Indeed if we
express I5a,I5b,I5C,I5d from V1[4b = 0,V214b = 0,V1J4 = 0,V2J4 = O, and
substitute this into J5, the expression will have the factor J;. Thus in this case
the criterion of 4 integrals can be expressed as two differential conditions

Iy =0, Jy=0.

In general, however, we cannot remove the condition J; = 0 from Theorem 2A

Example. For the metric g = £1e(#t2)7dz? 4 g9efdy? (e, = £1; this is
one family from the classification of [BMM]) we have (the first two identities
are obvious because 9, is the Killing field):

Lip =0, Ia =0, J5=gre”"TF(B - 1)(5 - 6)(2+ 9)°,
Ji = 15e PETDTRI0(3 — 1)(3 4+ 2)°(38 + 22).

Since I3 = %e’g(ﬁﬁ)zﬁz(ﬁ +2)?%, the cases 3 = —2,0 correspond to constant
curvature. Otherwise J5 = 0 for 3 =1 or § = 6. In the first case J;, = 0 and
we have dim _#>(g) = 4. But in the second case dim _#5(g) = 2.

Note also that Jy, = 0 for 3 = —22/3, but then I4.(214, + 314.) = 51213 and
this does not imply Js = 0.

Remark 3. J; is a forth order invariant obtained via reduction from a 6th order
twvariant modulo the conditions Iy, = 0, J5 = 0 and their V;-prolongations.
Thus its vanishing alone without Js = 0 has no geometrical meaning.

7. Precisely 3 quadratic integrals

If the compatibility condition Eg = 0 is not trivial, then we add it and get
a new system £”. In this section we consider the generic case when this new
equation is of order 1 in u, v, w, i.e. Iy # 0.

Then the symbol of the system £ is gf = 0, i.e. it is of Frobenius type. Its
Spencer cohomology group H%2(£”) ~ R3, so the obstruction to integrability —
curvature tensor — W{" has 3 components, represented by 3 linear relations on
J°(2,3). Indeed, we can express from £ all derivatives ug, Uy, Vs, Uy, Wy, Wy,
calculate 3 difference of pairs of mixed derivatives and substitute the derivative
expressions. We get the following equations:

E; = Au+ Bw =0, EY = Bu+ Aw =0, E,=1(Ey+EY)=0, (2)

where A, B are certain complex differential expressions of order 6 in metric (see
below). One peculiarity of (2]) is absence of v. Another is that there are only
two equations, not three as expected from the general theory.

4Indeed if the indicated inequality of forth order is an identity, we have 3 differential
conditions of order 4 and so the condition J5 = 0 can be reduced in order, but since this leads
to an expression with roots, we do not provide it here.
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Vanishing of Er, EY is equivalent to four real conditions A = 0, B = 0, which
can be expressed via differential invariants of order 6. In the following sections
we will show that Iy = 0, but J5 # 0 or J4 # 0 implies dim _#> < 3 and so we
obtain: the following criterion (note that Is. does not enter the formulae):

Theorem 4. The condition of exactly 3 quadratic integrals is equivalent to two
inequalities Is # 0, Iyp # 0 and 4 differential relations on the metric:

Isa (70015 14y — 8251515 15y, + 501515 14 (3114 — 1814c)

ATy
+ 6145 (Laq — Lac) (613, + 4913, — 3714q e + 613,) — 2515 15(—8154 + Isc)
— 5I3(4812 Iy — 271Isp 13, + 214y 14 (— 1115, + 4615,)

+ Ly (—43I501ay — 215y Luc + 81upI5c) + I3, (415, — 11154)))

I (150511513, + 721,13, + 2451315, 13, + 58814, + 2251512,

T 1751214
+ 4051314y Isp Lue + T2015,13, — 61aaLap (5513 I5, + T4Iuplac) — 4901513, I5.)

Ise (—17515 14 + 30012 I3 I, — 2515 Isq Is, — 1001013 Ia (5140 — 91ac)

T 175121y,
— 614 (Isq — Ise) (617, + 4913, — 3714a14c + 613.) + 20012 Iy I5. + 513 (613, I5p
+3615, 15, — Lip Lac(Isa+3415c)+61ua (Isq Ly —TIsp Lac—Lap I )+ 713, (85— I54) )

Isq (15001315 + 3614, + 251313, + 2451315, 13, + 58814, + 2251313,

" I
— 29413 T4e + 8951314 IspIse — 1851315, 17, + 36613, 17, + 3614, + 612,(6113%,

+ 8617, — 5I3(2I5, — 9Is5.)) — 22513 50 I5. — 4901313, I + 2201313 . I5. + 2001512,

+515I3(10213, — 29414 Lo +4(4913, +48172. )+ I3(—85154+26015.))—245 I3 14y Iy I5q
— Iyq (614c (17213, +4913.) + 513(—491sc(I5a — 2150) + Lup (16415, — 49154))))

Remark 4. Denoting the above four equations (i.e. L.h.s-r.h.s.) by Vi, Va, V3, Vy,
we can write A = (Vo + V3) +i(V1 + V3), B = (3Va — Vy) +i(3V3 — V1).

Example. Consider the metric
ds® = (2% + g2(y))(de® + dy?),

where ¢2(y) = ay? + by + ¢. This metric is in Liouville form and hence has an
additional quadratic integral. We can calculate the invariants from the previous
theorems to find when the space of quadratic integrals has dimension D > 2.
Here’s the result according to dimension:

12
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aD=6ifa=1& 4c="b?

a4 D=4ifa=1%& 4c # V%

a D =3if a =4% & b, ¢ arbitrary.

Note that the integrable metric (22 + 4y* + 1)ds%,,; was found in classification
of Matveev [M3]. However the methods used by him are global and do not apply
to local non-complete situation.

Remark 5. One can substitute the general Liouville form ds?> = A - (dz? + dy?)
in local conformal coordinates into the above four expressions. The result is a
system of 8 PDEs of order 6 in A together with the equation Ay, = 0 (which
simplifies the 3 PDEs a lot). This system is not of finite type (for instance
because it contains the cases of 4 integrals depending on 1 function of 1 variable)
and it is not formally integrable: an easy elimination reduces one PDE of order
6 to order 5. Then its prolongation yields two new PDFEs of order 5, but they
are too long to be treated effectively.

In fact, normal forms of metrics with 2 additional integrals are better ob-
tained with a different approach, see [Koe.

8. Digression III: Simplification of invariants

The four relations from Theorem M provide the complete set, characterizing
the condition dim _#> = 3, but they are not compatible in the following sense.
If we deduce the differential corollaries via derivations Vi, Vs, some of them
will have lower order and be simpler. Let us indicate this.

Substitution of the expressions of Igq, Igp, Igc, Igq from Theorem [ to the
identity (twice: before and after derivations!)

Viley, — Valgq
= (6Lup I34+612I5p I3+3 1o 1ap (Ina+1ac) 35160 Lap+41s0 Lo —4Tep Lac+31apT6c) /I3

13
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yields us the following new relation:

Tse (37513 (—3414qLap + 7641410y + T51315,) 15 + 6125015, 13

~ BIBRT,
+ 450013, 13 + 112515, 12, T3 + 112512, Iy Iy — 225015, Isp Isc Iy — 1012(906145 15,
—6(2251315,+2068 14y Is.) 17, + (614 (91713, +308313,) —513(151 154 Lap +9415.Lap
—315I5p14c)) Lag — 4145 140 (433313, +174913.) +1125 12 I5y (Isq — Ise) — 513(35(2215,
+ Tlsa) I3, — 414.(52415, — 76915, ) Ly, + 4515, 15.)) 15 — 45015, 15, I3 13
+ 1930014 4. 12,13 — 280015413, Isp 15 + 5590014413, 14015 + 950012, Ly 14.15
+ 45015, I3, Is I3 — 2782513, Iy I Ia — 2880015, Lyp [scI5. 15 — 245015, 1%, Isa I3
— 9800LupI5p LacI5q 12 + 245013 I5o Isq I3 + 451513, I3 — 13600150 Iap 15,13
+ 11156013, Isp I3, I3 + 2670513, Isp I3 + 4011015415, Isc 15 + 1556014515 1513
—10846513, L1 1513 +450801 4, Isq I3 — 1519013, I7, I3 +234014, I3, +2569815, I,
— 144013, Iy, + 5380213, I + 6013, (271315, + 23514 14c) + 613, (—245815,
— 662517 I3+ 10134015, Lup + 950 1ap —63I5p 140 ) ) + 12, (6764414 I3, +4530013 Ly
— 27001315 (Isq — Ise) +515(2(2476 15, + 931154) I3, + 214 (314815, — 231515,) Ly
+54915,13.)) — 2144 (25(20145 12, +9(Lap Ise — TIsp Iac) Isq +63I5p Lac Ise + L4 (37312,
+ 4915915, —2912)) I3 —5(235915. I3, + 14 (1813154 — 16307 I5) I3, — 475813 I5c Ly
—6315513,+ 154 (67913, 4343513 11p)) [3+314, (406714, + 1559917, I3, 4342513,))).

Using similar identities for Vilg. — Valgy, Vilgq — Volse, Vilge — Valgg
and substitutions of the 6th order invariants via the lower ones, we get 3 dif-
ferential relations of order 5 (but they are non-linear even in higher order basic
invariants). The first of them is:

15001218 — 515(—10212, 4 2941414, — 6(4913, + 3213.) + 515(1715, — 5215, )) I3
+ 2512, 15 + 27512, I3 + 2001215 — 22515,15.15 — 175155415 + 24515,1%, I3
— 1851541313 + 126514 Isp Iae I3 — 1225175 Is I3 + 22013 Isc I3 — 280141415413
+ 3611, + 11761}, + 3615, +4381%, 12, — 29413 1.+ 615, (7313, +8617. —5I3(2I5,
—915.)) 140 (6140(246 12, +4917 ) 4+-513 (14 (18815, —911T54) — 4914 (I5a—215.))) = 0

and the other two are more complicated.

Furthermore these three relations can be invariantly differentiated and then
simplified with substitutions, which resembles Cartan’s prolongation-projection
method, though for differential invariants. In a sequel one gets ”compatible”
set of relations for differential invariants, but this involves consideration of cases
(lots of inequalities and equalities) and will be omitted.

14
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9. Generic case: Liouville form

Here we continue investigation of the previous section, when I, # 0. Suppose
that not all equalities of the previous theorem hold. Then E7 is a non-trivial
equation. If EY is independent of it, we get u = w = 0 and then v = const -e~*,
so that there exists no quadratic integral besides the Hamiltonian.

Thus for existence of an additional quadratic integral the corresponding
determinant |A|? —|B|? should vanish (note that this implies w = 1, which could
be predicted because integral F is real). In this case the symbols dimensions are
dim go = 2, dim ¢g; = 0, so for Liouville (quadratic) integrability of the metric g
the system £ = {E; =0, ..., E; = 0} should be compatible.

There are precisely two compatibility conditions: D, E7; = 0 mod & and
DyE7 = 0 mod&”. The reduction mod & can be considered here as follows:
all derivatives are expressed from the first 6 equations and substituted into
derivatives of E7. Then the equations are again linear and contain only u- and
w-terms. Writing linear dependence with E7 we get vanishing of two (complex)
determinants. This constitutes 4 real relations of order 7, but we write them as
2 complex relations.

In the theorem below A, B are differential invariants from (2] (expressions
are given in Remark[) and J1, J2, J3, J4 are some differential invariants of order
7, precise form of which is given in Appendix.

Theorem 5. Suppose that K # const, Iy # 0 and |A]*> + |B|> # 0 (cases
considered separately). Then the metric g is Liouville iff it satisfies one real
relation of order 6: |A|*> = |B|? and /4 real relations of order 7:

B3 = AJa, AJ3 = BJa.
Thus the problem of invariant characterization of Liouville metrics is solved.

Remark 6. Similar to Section [8 one can reduce in order and simplify differ-
ential relations from Theorem [3, but since the resulting minimal set is very
cumbersome (collection of cases involving equalities and inequalities), it won’t
be discussed.

10. Singular locus: 2 quadratic integrals

Consider now the last case Iy, = 0, but suppose that either J5 # 0 or Jy # 0.
In this case the equation Eg (resp. FEg) transforms into the equation (since
K # const, we may assume K, # 0 or K, # 0; formulae below are easily

adjustable to one of the cases):

Klu= K w. (3)
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Prolonging this equation and using the system & = {E; = - = E5 = 0} we
can rewrite the new system &£ (prolongation of £”) in the form:
K K
Uy = (210gfz)xu, vz:—/\zv—k(logfz—)\)yw, wy = 0, (4)
K, K,
uy =0, vy:—)\yv—l—(logfy—)\)mu, wy=(2logfy)y-w,

considered together with ([B)). System (4) consists of a three pair of equations,
two uncoupled and one coupled with the other two. The system is of Frobenius
type. Writing compatibility conditions of £ modulo (B)+(@) we get 3 conditions
on the system to be integrable.

These three conditions are dependent (2 conditions), but modulo the condi-
tion Iy, = 0 they collapse to only one condition I54 = 0.

Note that the system has dimension of symbols dim gy = 2,dimg; = 0, so
that the maximal dimension of the solution space is 2. Since the minimum is 1,
we arrive to the following statement:

Theorem 6. Let Iy, = 0, but either J5 #= 0 or Jy # 0. Then the system is
Liouville iff Isq = 0 and in this case there exists only one additional (independent
of the Hamiltonian) quadratic integral.

Note that condition Iy, = 0,54 = 0 are characteristic for existence of local
Killing vector field. Thus we conclude:

Corollary 2. Riemannian metric g possesses a local Killing field iff Iy = 0
and there is a quadratic integral, independent of the Hamiltonian.

Note that if the space of such additional integrals is 1, a representative can
be chosen as the square of a linear integral.

11. Liouville metrics: some global questions

Proposition 7. Let Liouville metric on M? have non-constant curvature and
H be the corresponding Hamiltonian. Then for any two quadratic integrals F,G
such that the triple (F, G, H) is linear independent (over R), the triple is func-
tionally independent (in particular the integral {F, G} is non-zero).

Proof. Since F,G, H are quadrics in p, the only kind of functional depen-
dence for them can be either linear or quadratic.

Assume at first that the integrals H, F, G are linear dependent over C*° (M),
ie. H=a-F+b-G, where a,b € C*°(M) are non-constant. Then bracketing
this with H we get {H,a}F + {H,b}G = 0, which would imply that F,G, H

16
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have a common factor: H =v-w, F =v-{, G =v-7n. Commutation of H and
F,G, H gives

{H7<} = {’va}Cu {Hv 77} = {va}nv {va} = {va}w'

Substitution of w = a-{+b-n into the last equality yields {H,a} = {H,b} =0,
i.e. a = const,b = const, so that F, G, H are linearly dependent.

If H, F,G are linear independent over C*° (M), but are functionally depen-
dent, then they must satisfy a quadratic relation:

U2+ V2i=W?2 U= V=200 W= 497

((,m € C(T*M) are linear in p functions) with a constant non-degenerate
transition matrix A:

(F,G,H) = (U, V,W)- A.

Denoting © = {(,n} we observe this factor in all pair-wise Poisson brackets
{Ua V}a {Ua W}7 {‘/7 W}, so that

0={H,F}=(aU + fV + W) - ©.

Here «, 3,7 are certain minors of the matrix A and since F' and H are non-
proportional, some of them are non-zero, implying © = 0. This yields { H,(} =0
and {H,n} = 0. Thus we have two Killing vector fields and K = const. O

This proposition immediately implies the following statement, known due to
Kolokoltsev and Matveev ([Kol, M}, BME]):

Corollary 3. The only closed Riemannian surfaces that admit more than one
additional quadratic integrals are the standard round sphere and flat torus in
the oriented case and the standard projective plane in the non-oriented one.

Proof. Indeed, if the metric has non-constant curvature and two additional
integrals then the Hamiltonian flow is resonant: every trajectory is given by
equation {H = c¢1,F = ¢2,G = c3} and hence is closed. Thus (M2, g) is
either S? or RP2. An additional investigation of metrics on S? with all the
geodesics closed leads to K = const. The standard round sphere has 3 Killing
vector fields and thus 6 quadratic integrals. They all descend to the standard
projective plane.

Consider now the case of constant curvature. If a closed surface has negative
constant curvature, its metric is non-integrable [Koz, [P]. For positive curvature
we are already done. For zero curvature we get torus or Klein bottle. Torus has
2 Killing vector fields and the symmetric square yields 3 quadratic integrals.
However a flat Klein bottle has only one Killing vector field and the number of
quadratic integrals (including Hamiltonian) is two. O

Global classification of Liouville metrics is discussed in [Kil TKS| [Kol, [Ms)].
The final classification was achieved in [M;], see the review [BMFE] for other
contributions, results and references.
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12. Cubic integrals

Let us consider next the case of integrals of degree 3. Again for brevity
sake we bring the metric to hyperbolic conformal form H = e‘A(w’y)pxpy. Then
function F = u(z,y)p3 + v(z,y)p2py, + w(z, y)pmpg + o(z, y)pz is an integral of
the geodesic flow if the following equations hold:

Uy = 0, Ug + Vy + 3udy + vy =0, Vg + Wy + 2ulg + 200y =0,
Wy + 0y + WAz + 30Ny =0, 0z = 0.

Denoting this system of PDEs by £ = {E; = Es = F3 = E4 = E5 = 0} we get
criterion of integrability:

Eg = {El,EQ,E37E47E5} HlOd(El,EQ,Eg,E4,E5) = 0

Multiplied by 1—25 e this PDE has the form Fg = K, Uz, +K, vz, +15 order terms,
and its vanishing is equivalent to K = const. In this and only in this case the
dimension of the solution space for £ is dim J3 = 10.

If K # const, we add equation Eg and get a new system & = EN{Es = 0},
which has the following symbols: dim go = 4,dim ¢g; = 3,dim g2 = 1,dim g3 = 0.
Thus its solution space has dimension at most 8. The only Spencer second 0-
cohomology groups are: HY2(£') ~ R! and H*?(£’) ~ R'. Thus the Weyl
tensor has two components Ws and W3. The first can be obtained as follows.

Prolongation of Eg to 3rd jets together with the system & yields 17 third
order PDEs, while there’s 16 third order differential monomials. Elimination
gives the following equation of order 2:

Er = 43201 K213 11y vy + 6413 K5 (12(71sq — 9ilsp—
—214)(Iag — 2ilap — Luc) + 513(721215 — 1415, + 2915, + 1615, — il54)) us
— 801 K215 (Isp + Isa) Ky + 16213155 M ) vy
— 4e* K, 13 (12(TLaa — 9ilay — 204c) (Lag + 2ilap — Iuc)
+513(72115 — 1415, — 29il5;, + 1615, + il54)) w, + 0™ order terms = 0.

Thus vanishing of E; implies Iy, = 0 and I5q = 0, so that there is a Killing
vector field. Moreover further investigation of coefficients gives J5 = 0 and

5015 + 51513 (14q + 414c) — e (13, + 314014 — 4I5.) = 0.

This latter condition (notice the expression is similar to Jy, but different) leads
however to contradiction: The conditions Iy = 0,154 = 0,J5 = 0 allows to
express all invariants of order > 5 through invariants Is, I3, I44, I4.. Applying
V; to the above expression yields thus 3 polynomial equations on Iy, I3, which
are compatible only with Is = 0. Thus we get:

Theorem 8. If a metric g has non-constant curvature, then dim #5 < 7.

18



Liouville metrics

In fact, we can continue and consider the system £ = & N {E; = 0}. Tt
has symbols with dimgy = 4,dimg; = 3,dimgs = 0. The non-zero second
Spencer §-cohomology group is HY2(£”) ~ R3 and the compatibility is the
Frobenius condition on the second jets, which leads (by vanishing of coefficients)
to a complicated overdetermined polynomial system on differential invariants
of order < 5 (higher order are expressed via these). Computer investigation
indicates incompatibility, implying strict inequality in the above theorem.

In a similar way we can continue prolongation-projection method for 6 more
times. Finally we arrive to high order (and highly non-linear in I,.) differential
invariants, which express existence of at least one cubic integral. Intermediate
steps give more invariants, describing super-integrable cases, but it is rather
complicated to decide what is the precise number of the conditions (because
there are relations via derivations V1, Va).

Moreover it seems that dim _#3 can be neither 6 nor 5, i.e. the next realized
dimension of _#3 after 10 is 4! However this has no proof so far (as well as the
fact that this implies 4 quadratic integrals). To the reverse side we have:

Theorem 9. If dim #5 = 4, then dim ¢3 = 4.

Proof. We will exploit the following statement, which can be derived from
the works of V.Matveev:

Lemma 3. If two metrics g, g are projectively equivalent, then for any k > 1:
dim 7 (g) = dim _#x(g).

Actually the statement holds for any n = dim M (to a certain extent this can
be found in [TM] for & = 2, but the case of general k is similar): A local
diffeomorphism ¢ : (M, g) — (M, g) is a projective transformation iff the map

k
n

Fi F = (detG)” 71 - . (F)

is the isomorphism Jx(g9) ~ Jk(g) Vk. Here @.(F) := (o7 1)*(F) o ¢, ¢.g is
defined similarly and . . .
G=toby g:TM —TM,

where by : TM — T*M, #9 : T*M — T M are the natural morphisms of shifting
indices.

Remark 7. Denote G(g) the space of metrics geodesically equivalent to g (p =
Id above). Then according to [TM| G(g) ~ J2(g) with the equivalence being
given by

g I = (det G)w - g.

By the results of [BMM] (now again n = 2) any (pseudo-) Riemannian metric
g with dim _#5(g) = 4 is projectively equivalent to a metric of the family

go = €3 da? + e dy? ~ :v-dsg, o # 0.

Here ds? is the standard Euclidean or Minkovsky metric on R?(z,y).
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By the above remark and Lemma [ it is enough to investigate #3(g) for
g = go only. Since the latter representative for gy has the simplest form, this is
an easy investigation and the result is dim _#3(go) = 4. O

13. Higher order integrals

When we pass to integrals of degree n, as we noted at the beginning, the
system & is given by (n + 2) equations on (n + 1) unknowns. This system is of
finite type and is a generalized complete intersection, so by theorem C of [KL3]|
its solution space has dimension (n + 1)(n + 2) iff the compatibility condition
K = const holds. Otherwise the dimension drops at least by 2:

Proposition 10. If dim_¢, > ”2—;3”, then the inequality is strict and K =
const.

Proof. Indeed, since the equations in the system &£ are linear of the first
order E; = (V! + V?)(u) and have constant coefficient of first order terms V},
order of the multi-bracket E, 13 = {F1,..., Ent2} drops (compared to expected
(n+ 1) in general) and becomes n in pure form and (n — 1) after reduction by
equations F;. So if the new equation is not zero, the symbols of the new system
satisfy: dimg, <n+1—idfori<n—1anddimg), ; =1, dimg), = 0. Then
dimSol(€) < Y dim g} < 2432, O

Further steps of prolongation-projection generalize Darboux-Koening theo-
rem, but are more complicated. To understand this let us give more details on
the integrals for the metric gg = x - (dx? + dy?) from the previous section.

The Killing form is K = ¢ (with p, ¢ being the momenta dual to z,y) and
the 4 quadratic integrals are:

2 2
H =

., K?’=¢*, F=yH-2pK, G=y’H—4(yp—2q)K.
a

The latter integral can be considered as the additional integral from the Koen-
ing’s theorem because {K,G} = 2F, but {K, F} = H (with a slight difference
in generators, these relations were also observed in [KKWI).

For cubic integrals we have: J3(go) = Ji(g0) - J2(g0) = (HK, K? KF, KG).
In fact, Poisson brackets of J2(go) give nothing new: {G,F} = 16K3.

For integrals of higher degree we have: J;(go) = J2(g0) - Jk—2(go) for k > 2.
There are however relations, which are generated by precisely 1 relation in degree
4: HG — F? = 4K*. Thus for di(g) = dim Jx(g) we have:

dak(g90) = dag+1(g0) = dim S* Ta(go) — dim S¥=2 72(go). (5)
This implies:

Theorem 11. If da(g) = 4, then dok(g) = dar+1(g) = (k + 1)
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Proof. Indeed, by the same argument as in the last proof d2(g) = 4 implies
dn(g) = dn(go) and the latter quantity for n = 2k or 2k + 1 due to formula (&)
equals (k'§3) - (k'gl) = (k+1)% O

It is natural to expect that the cases from the last theorem are the next in
prolongation-projection method after the space forms:

Conjecture. If K # const, then dy,(g9) < ([%]+1)? and the equality
is attained for metrics with daz(g) = 4.

For n = 2 this obviously holds, for n = 3 we supported this by arguments
in the previous section, while for n > 4 this seems to be hardly treated via
successive prolongation-projection scheme.

One is tempted to suggest a kind of monotonicity as an approach, i.e. that
da(g) < da(h) could imply d,,(g) < dy(h) for two metrics g, h, but this would be
wrong. For instance there are Liouville metrics with da(g) = 2,d3(g) = 0, but
there are other metrics, for which the cubic integrals are the simplest polynomial
integrals: da(h) = 1,d3(h) = 1. Indeed, according to [Te|] there are metrics gy
such that dagt1(gx) > 1, while for ¢ < k: da;—1(gr) = 0, d2;(gx) = 1 (the latter
is nonzero because Hamiltonian is always an integral).

This was proved in the loc.sit. paper via a simple calculation, but it also
follows from our approach, because the criterion of existence of non-trivial in-
tegrals of degree n (i.e. J, # 0 for odd n and d,, > 1 for even n) is given
by a criterion via differential invariants of order, which is monotonic in n. In
particular, we can arrange dog+1(gr) = 1 for the above sequence.

A Long formulae

Below are the expressions for the seventh order differential invariants involved
in Theorem [l The calculations are performed using MaTtHEMATICAT.

5Copy of the notebook with detailed computations is available from the author.
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31 = 142500153 13° 421614, % — 125133 I54 2 +61251136 I 145 —875113° I5q Ia L4p+350132 1542 142
—6125133 174 14,2 —133525113° 44,2 — 257251152 I Lap 2 +2303013 154 Lap* +9878414, 6 +11251133 15,215,
—73500135 143, I5,+1400013° I5q L, Iy +488251132 I5q 141, % Inp — 12250113 145 Iy, —1625013° 5, Iy 2
+51275132 I3, % Iy 2 +36000i133 1533 + 5250133 Isq Ly Iy, — 26950132 14,3 I, — 455001133 Ly Isp I,
+12250i13° 11,2 I7p+36140° (—5il4p — 126140 ) — 13501132 I54 2 Iyp T2 —6737513° 1442 1442800132 I50 142 14
45190511354 Lap> T40+76440i14p° T4, —24350132 I5q Lup Isp Lac+17118513 145> Inp T4c+85300i132 Ly Isp 2 L4
—42175i13% 1432 Iy I4c+2700032 1542 1402 — 257251135 14y Iac 2 +1751032 Tgq Lap Tac> —2249013 5 L4, 140>
+120288143,4 1402 —3950i13% I5q Iy 1402 +90105i15 14,2 I5p Lac > +6750132 15,2 I4c2+1120015% 1up Igp 4>
+13070il3 154 I4p 1403 +2847010 433 1403 +7144013 Iy I5p Iac> —1331513 I5q T4 4341221452 140 +252451 13 Iy I40*
+2340i L5 L1c° +2556 1400 4+-6 140 (942142 +6351 L4 L1c+471514. 2 —9015 (I35 —3il5p—815.))+3000133 I56 % I5e
—30625i13% 144 1504875113 Igq Lap Isc+1155013% Isq 14y 2 I5c—11221003 1444 I5c —5750i13°% Isq Isp Isc
—61075i132 Ly % Iy I5c+19750153 I5,% I50+700013° Loy Iy Ise+16700i 132 I5q Lap Iac Isc— 120505115 Lap > TacIse
496800132145 I5p L4 I5.—30950132 I50 1402 I5e4+131513 1452 1402 154536501132 I5 T4 2 Ise— 35470113 ap Tac> Ise
+1832003 404 15— 1787513 I5q I5e2—1190013% 4% I5.2 +29125113° Iy I5.2 —39850i132 1 4p L4c 502
+30700132 1402 I5.24+1500013° I3 +2512213% (22981442 —67901 4, > +61 40 (— 785114, —1701 L4 )+3900i L4 L4c
+790814c2+513(—383154+561il5,4188815.))+2625113° I54 14p Ioc+26950i132 L4p,% I6.— 17500153 14y Isp I
—62300132 142 [4c T —25025i132 Iyp Tac2 T —27125113° Iyp Ise To e —6il40> (365145 — 11213114 2 T4e+361514p 4.2
—10395i1403+513 (354 (13144 +84il40)+1414. (1915, —109iI5 )+ Ly (—6781l5, +3115.4392i154)))
—6125i13%I5q L4y I5q+17150i13 14  I5q—51450132 Ly 2 I5p I5q+2205013% Isq Lap I acI5q—6296513 14> I4cT5q
—39200i132 Lup Isp IacI5q+ 7350113 1ap 2 1402 I5q—2156013 Ly T4 Isq+183751132 Ly 2 I5e I5q—39200132 Iup IncIsc Isg
+8575132 1432 I54% +8750133 Isq Ly I6q+31850132 143,% I54—14000i13° Iy I5y I6q+37625113% 1442 I4cl6q
—14000132 I3 I402I6q—21000133 Iy Is e Tgq+512 135 (1296144 * —11025i13° I, +3361414, 4 +614,3 (—57511 4
—253414.)+299951 14,3 I40+434201 452 142 +12480i1 4p 143 +14316 144 +2144 2 (12295145 2 +106651 Ly Ly
+2041814.%—3015 (3615, —59il5,—23915.))—T1q (1753511433 +584101 4 % [1.+30360i [p [402 +4124414.3
+1073 (150 (— 1651145 — 1267140 )+ 7140 (2491 55+ 73415 )+3 14y (181815, +440iI5. —441154)))+513 (I54 (43751432
+470i L4y L4c—210204.2) 49261402 (3il5p4-815¢ )+214p Lac (598415, +325115. —2548154)+35i14p 2 (115155413911 5.
—49154))+25132 (3615424351164 L4 +67815,% —1121 43 Iy +I50 (—118il5, —47815.)+650il5, [5.493215.>
—301il 4 I —44814 Igq))+ 10> (— 73501135 Lyy+6(73081 42 +597511 43 [4o4+31787 142 1402 +583511 4, [40>
+99151404) 4513 (I5a (1277142 +32i 145 T4, —536314:2 ) +2423 1402 (3154 +815c)+21 4p T4 (1216215, +1489i 15,
—5733154)+il42 (5176554110215, —1715154))+150132 (31502 +Tilgq Lap+1301 5% — 4214 Igp+I5a (— 18115
— 4815.) + 4615y I5c + 14315.2 — 21ilg I — 7014 16q)) + 122501133 14,2 I74 — 61251132 I43,% Ige
+1470013% 142 T4 Toe+T4a (1225135 Iyy, (1301454271140 ) —6i(9801 4 ° —357561 14 T4 +163551 43 I4.>
—27203il 452 143 +32151 4 T4t —3941i14.°) 4513 (I5a (—3731il 4> — 3791 4p 2 T4 —2412i L4, 42 +662214.3)
+1414.3(—789il5,— 1054150 ) — 714> (236115, — 15131l 5. — 1449154 )+ 1 4p 2 Lae(— 2609715, +23915.+51451154)
4214 142 (— 1727215, +2151il5.46713154))+25132% (—2832i 45 [5 2 +154Ti1 4, 2 Tgp+I50 2 (4411 4 —12614.)
+TT60 L4y (9145 —Tilae)— 105015, 2 4o — 196 14y, Iy Tac — 2092143 I5p I5.—2422i I 53 Tyo I — 2611 4 T2
—2086140 150241232143, 2 I5.+1127i0 45 Lsc 6o +58811 4y Isp I5q+10781 4y Isc Isqg—2I50 (71ae(— 19115, —10915.)

+ Iy (5315p + 9id5c + 196154)) + 351145 2 Igq + 980144 Iaclgq — 3431432 Ige)) + 6125133 14,2 I 7.
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Liouville metrics

T2 = 142500153 13° 421614, % — 125133 [543 +2625113% I'5 14, —875113° Isq I6a L4p—455013% I5 2 14,2
—612513% 174 14,2 +1261751135 11y 3 +134751132 Igq Lap > — 2303013 154 Lap* —987841,4, 6 +6251153 15,2 I,
—66500135 143, I5,+1400013° Isq Ly Iy, — 323751132 I5q Lap 2 Iny —58310i3 145 I, —1975013° 54 Iy, 2
— 1225152142 I5,2 — 36000i3° I553 + 8750135 Isq Lap Igp — 24501321453 Iy + 42000i13° 14y I5p I6p
—12250i133 Iy 2 I7p436144° (191045 — 126140 ) — 14501132 I54 2 Iy 11— 1207513° 145 % 14042800132 I50 142 14
—14455i13 54 L4 140 —175224i1 43,5 14 —24350132% I56 L Iy Tac — 5827513 143> Inp 14— 951001132 14y Iy 2 L4
+14525i132 13,2 I5p 140 +2700132 I5q 2 1402423975135 14, 142 +175113° Igq Lap a2 — 2137013 5 L4, 2 140>
5544045 1402 +6750i13% I5q Iy Iae > — 176695113 1ap % Iy 14e2+45013% 15,2 1402 +1050013% 1up Igp 4>
15210113 I54 LapTac® —85842i14p3 1403 +1474013 Lap Inp 14> —1331513 50 1404 +230341 4 2 1404 — 25875113 I5p I40t
—7884il 4 I40° +255614.54+25152 136 (22981442 — 7701432 + I 44 (2890i 145 — 10206 14 ) —9780i I g3 4.+ 790814, >
—513(3831I54+351il5,—188815.)) 4610 (774142 —22451 143 [4.4+4T1514.2—3013 (315, —5il5,—2415.))
+300013°% I542 I5c+21875i155 Iy I5e +875i113% Igq Lup Ise + 26250152 I5q Iup 2 Isc 411221003 145 I
5750113 I'5q Isp I5c+446251132 Lup 2 I I5e+16250153 I, 2 I5.+3500133 Ly Igp Ise 4148001132 I5q Lap Iae Ise

+ 101675113 14> IncIse + 48500132 Iyp Isp LacIse — 30950152 I5q 14 Ise + 54515131452 1402 I5
—57150i13% I5p 1402 I5c+2010i13 L4 L4c> I5c+1832013 1404 I5c— 17875133 I5 o 1502 —2170013% 142 I5.2
—30875113° Iy I5.2 411150132 Iy Iac I5c 2 +30700132 1402 15,2 +1500013° I5.2 — 8751133 Iso I4p T
+2450i132 143,316 —10500133 Iy Iy I6.— 7000132 Iy % Tye T6c 42467510132 Iyp T4 Too 4253751133 Iy I Ioe
—6140°(—3067i145+816114,2 I, —12365114p [4.2+103951405+513 (54 (87l 4y —25214c)+1414.(—15i15
+10975.)+Lap, (81815, —353il5.—392154))) —6825113 2 I5q Lap 2 I5q+53410i13 14  Isq— 15750132 I % Iy I5q

+ 22050132 I50 Iyp IacIsq — 45045131433 IacI5q + 441001132 Ly Isp IacIsq + 33950il3 1442 142 I5g
—215601314p 1402 I5q—54251132 143, I5oI54—3920013% 14y I1cI5c15q+857513% 14,2 1542 4+-875013% Isq Inp Iq
—245013% 1443 I6q+17500i13° Iyp Iy Igq —9975113% L4, 2 Ine Tgq— 14000132 I 14c2 T4 —2100013° 14y IscIgq
+512133 (1296140 * +2275113° 14 — 159740 4 * +61144> (2811442534114, ) —44681il 43[4 — 108161432 142
— 4137610 4 1402 +14316 T4 421402 (12827142 — 1669911 43, T4 +2041814.% —3013(36 154 +3i15,—23915.))
+513(I50,(4151 142 4+1266i 14 T4.—210204.2) 421402 (— 168315, +3704T50)+21 4[4 (417815, — 378315, —2548154)
—7iI42 (98515, —803il5. —615154))+Iaq (532211l 45> —304381432 140+ 730881l [402 — 41244143
+1013(I5q (—263114p+126714c )+ 71ac(2431T5, — 7345 )+ Lap (— 525815, +1908iI5.+1323154)))+25132 (36 154>
4351160 Lyp 476215, — 252145 Igy+I5q (6115, —AT8I5. ) —678il 5y I5c+932150 2 +231il 4 Io.— 448145 I5q))

4 1402 (—3150i73° Ly, +6(19041 4% — 293411143, T4 4+ 17339142 142 — 197651145 [40> +991514.%)
+513(I5q (26211 4p % +293611 4 I1c—536314c2)+1ae2 (—82351 5, +19384T5. )+21 4p 14 (1048215, —6767il5.
—5733154) 41432 (—14024i1 5, —362215,+66851154))+150132 (3154 2 +Tilgq L4y +15815,% — 7014, Igp+ 154 (—10il 5, —
4815.)—46iT5, Isc+14315.24+Til4p I —T01 44 I5q) ) — 122501033 1442 I74—11025113% 43,3 I6. +14700132 1442 TacTe
+ 140 (17515° 14 (83414 — 11914 ) +6(17444i0 4% +55721 4 140 +46581i1 43 142 — 13791045 % 143
+10845i0 43 T4t —39411405)+513(I5q (632110 45° — 19471452 140 —545611 45 L1402 +66221403)+1414.3 (855115
—105415.) — 214 42 (950215, — 5507iI5. — 6713154) 4 314, 2 T4 (17421l 55 + 17315, — 6125i154)

+ 7143 (57515, —2415iT5.4+197154)) +25132 (32241l 4 I5p % — 128111 4, 2 Tgp + I50 2 (68114, — 12614.)
+7T60Lap (914 —Tilae) —96615p 2 Lo — 1700145 Isp I5e+2562il 5 IacI5e+334i1 4p I5 o2 — 2086140 1502 +7001 4,2 Ie
—1029i1yp IncIse+2I50 (TIac (—15il5, 4109050 )4+Iap (17155 —201il5.—196I54) ) —784il 4p Inp I5q+107814p Isc I5g

— 3011442 Igq + 980143 Taclgq — 343142 I6e)) + 6125133 1432 Iz
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I3 = 142500153 13° 421614, % — 125133 I5,2 —306251135 I54 14y +2625115° 154 I6a 4 +455013% 54 2 14,2
6125133 I74 142 —341775113°% 1452 — 134751132 I5q L1p> — 2499013 I54 Lap* —987841,4, 6 —33751133 1542 I,
+14700013% 143,15, —1750013° I6q Lap Iy +292251132 I Ly, Inp — 108290113 14y 4 I5, 424250133 I'5 1512
—31675132 1452 I5, 2 +36000i13° I3 —1400013° I'sg Iyplap+46550132 145 Igp —64750i15° I Iy Igp
+24500i13° 1,2 Iry+36i1 44 ° (2914541261140 )+12450i 132 I50 2 L4 4431482515° 14, 2 14— 15750132 Igq 14y 2 14c
491105113 T54 Lap,> T4 —22344i1 4% 14, —23200132 I Lup Isp Tac —11630513 1ap> I5p Lac+8300i132 1up I5p % e
—43575113% 1432 Iy I4c+2700032 I54% 1402 +918751135 I L4 2 — 127751132 Isq Lap T4c > —6770013 150 14y 2 14>
—14733614p* 1402436350113 I5q I5p Lac> —99945i 13 Lap 2 Iy L4062 —6435013% 15,2 T4 +39550152 1ap IgpIac>
+18680i13 154 LapTac® —105342i14 3 1403 —5591013 Ly Isp I10° —1331513 5 140 +431414, 2 14,4 —31635113 5[40t
—12564i14p [4.°4+255614.% —25152 I35 (—229814, 2 +6144 (—34751 145 +1701 140 ) +4(42701 43, 2452351 143 L4
—197714.2)+513(383154+2271il5, —188815.)) —6140*(—5341 44 % +351511 4 [4.—4T1514.2+9013(I504+9i5,—815.))
+300013°I54 2 I5c+116375113% Iy, I5.—14875113° Igq Iup I5c—26250132 I5q Iap> I5c+14847013 14 I
417501133 I'sq Inp I5.—635251132 12 I5p I5.—83750133 I, I5.+5075013° Iup Igp I5c — 203501132 Isq Iup Iacl5e
—32795iI314 > I4c Ise+21450132 Loy Isp LacI5e—3095013% I5q Tac? I5e+9545513 L4y Tae? I5.—92350i152 I5p L4025
—15670i13 14y I1c> I50+1832013 140  I5e— 17875133 I54 I5c2+2170013% 1 4% I5c2 —62875i13% Iy 1502
+20150i132 Ly IaeI502 430700132 142 1502 +1500013° I > — 201251132 I Lap I6c+75950i132 14, % I
+77000133 14y I5p L6e+25200132 1452 Tae I +407751032% Loy I402 I60+568751133 Iyp Ise I —36750153 L4y 2 I7e
—6125i13° I5q 14y 2 I5q+65170i13 14 I54+29400032 14, % Iy I5q+22050132 I5q Lap Tac Isq+ 7595131452 I4cI5q
+61250i132 Loy Isp Iae I5q+63210i13 14y 2 Tae% I5 g — 2156013 Lap Lac> Isq+6125i132 14, 2 I5eI5q—39200152 Lap IacIsc5q
+8575132 142 I5q% 461443 (33171143 —3321 145> 14 +19595i 145 [40% —103951 434513 (I54 (89114, +25214c)
+14140 (12715, —109T5. )+ L4y (522155421911 5.4392154) ) )+8750133 I54 14y Iq—66150132 I> I g
+29750i133 Iy Isp Igq— 173251132 1442 40T g — 14000132 4, T4 2 T5q—21000133 Ly I5c T g+512 133 (1296144 %
+ATTT5113° Ly, — 159741 g3, 4611445 (294314 +253411 4. )+42007i1 4> Ly — 1029741 4,2 14,2 — 6700811 4 14>
+14316140 121442 (22927143, 2+47787i1 4 T4 — 20418142 +3013 (36 I54 4275115, — 23915 ) ) —513 (I54 (54811432
—32i14 T4 +210204.2) 421402 (4755115, — 3704150 )+ 7il 452 (131155450315, — 1155154 ) +21 4 140 (69555,
+4391i15.42548154))+1aa (—21007i143 3 +142428 14,2 140 +144924i 11 14,2 — 41244143 +1013 (154 (—761il
+1267140)+T14c (915115, — 734150 )+ 14y (729015, +5206i15.41323154)))+25132 (361542 —203il 64 L4, — 1446152
+8541 4 Igp+I50 (550iI5, —4781T5.)—2342i 5 Isc+93215.2+1099i1 4, Io. — 448144 Igq) )+ 140 2 (367501135 Ly,
—6(5614p%+32091i 145 T4 +6741143% 140243143511 4 14,3 —991514.%) =513 (154 (5105145 2 +3932i1 4 40 +536314.2)
1402 (24747115, — 1938415 )+il4p 2 (336415, 482061 I5. — 9947 I5q)+21 4p L1 (964815, +5881il5.+5733154))
+150132% (31542 —21ilga L4y — 1941552 +1121 4, Iy +6il54 (9155 +8iI5.)—334i 5, I5c+14315.2 +161il 45 6.

—T01 4 T54))—24500i133 142 I7q—23275113% 14,3 I6e +14700032 1442 Inc Tge+Taa (— 1225135 14 (26214, +105i14..)
+6(15484i143,° +330121 45 I1c+40331i43, 3 1402 4+88090 4p 2 14> +1727511 4 Lnet —394114.°%)+515 (154 (—4711i143,°3
42594514 % I4e— 3381l 45 1402 +66221403)+1414.3 (1527115, — 105415 ) +ilap% 140 (2535315, +26897il 5. —27489154)
+71443 (9315 —13il5.—56T154) 4214y T4 (13673154 +6791i15.46713154))+25132 (—732i I3 I55 2 +9031 1432 Iy
+T502 (= 118104, —126140)+TI6a Lyp (1514 +91i14c)+373815p 2 4o —22541 43 Iy Tnc+4521 40 Tsp Isc+5698i 15, T4 Ise
—6ilp 502 —208614c 502 — 11481432 I60—2597il 4 LacToe+2150 (TI1sc(—127il55410915¢ )41 4p (22915, +307i 15
—196154))—1470il 43 Iy Isq+1078 14y Isc Is g — Til4p 2 I6q+9801 45 TacToq—3431 44 % I6e))+612513° 14, % I 7.
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Liouville metrics

Ja = 142500153 13° 421614, — 125133 15,3 —271251135 I5, 14, +2625115° I5q Lo L4y —350132 154 2 1452
6125133 174 142 +15925113° 1,53 +25725113% I 5 14p> +2499013 I50 Lap 2 +987841,4;, 8 —28751153 I54,2 Iy,
—7000135 Iy Isp, — 10500133 T4 Ly, Isp — 631751132 I50 14y 2 I5p 437730103 Ly I, +11750133 I5, I5p,2
4502251321452 15,2 —36000i13° I'5,2 —1050013° I5q Lap e — 17150132 1433 I, +36750i133 Lyp Iy I
4361044 ° (514 +126i14.)+12550i132 I54 2 I 140 —4427513° 1432 1. —14350132 Ig0 Lap 2 L4 —55615103 150 Lap> Lac
— 764401145 124+19400132 I5q Lap Isp T4c+16999513 145> Inp T4 —86700i 132 Lap Iy 2 140 +649251132 14y 2 Iy 14
42700132 I542 1402 +421751135 Iyp 1402 — 127751132 Ig0 Iyp Tac 2 +1090013 I5q 1452 1402 +1202881 44 1402
425650132 I5q L5y lac> —69665i13 L4y Ispac2+5715013% I5,2 142 —10150152 Ly Iy Lac> +16540i13 50 LapLac”

— 2847011453 1403 +11743013 L Isp 110> —1331513 50 1ac* 3412214 2 142 +19485i I3 I5p I40* —2340i L4 14.°
4255614525152 I35 (—2298140 % +214 (—66251 145 +510314)+12(10851 4, 2 +605i1 4 o —65914.2)
+513(38315,+1359i15, —188815.))—6140* (—94214 2 +63511 4[4 —A4T1514.2+3013 (315, +23il5,—2415.))
+3000132 I54 2154638751135 144 I5.— 14875113 o Lyp Isc— 11550152 I5 4 Ly, 2 I5.— 14847013 14 * 15

4302501133 Isq Iy I5e+T729751132 I I5p, I5c+4T750133 15,2 I5. — 1750133 Lyp Tgp I5c — 184501132 Isq Iup IacI5e
+50225i13 14> T4 I5e+22950152 Loy Inp LacI5e—30950132 I5q Lac? I5e—8982513 142 I4c? I5.+18450i152 Iy I4c 2 I5e
—53150i314p 1463 Isc+ 1832013144 I5e — 17875135 Isq I5c2 + 11900132 143 % I5 .2 — 28751133 Iy, I 2

—30850i132 Iy I1c1502 430700032 112 I5.2 415000133 5.5 16625113 I50 14y T6.— 465501132 143 I

—4900013°3 Ly Iy Ioc—3430013% 1442 Inc Ioc—8925i13% 14y 1402 I6c+4375i13° Iyp Is e Ig4-1225013° 1y, 2 7.
—5425i132 I54 142 I5q+5390i13 14 I5q—65100132 14,2 I5p I5q+22050132 I50 Iap Iacl5q—181651314,3 Incl5q
—22050i132 Ly Isp LacI5q+36610i13 L4y 1402 I5q—2156013 Lap Lac Isq+299251152 1452 Isc I5q— 39200132 Iap Iac Isc I5g
48575132 4% I542 +6144> (36511453 — 11213142 14436151145 142 —10395 14034513 (154 (1371145 +25214c)
+14740(93i15, — 109150 ) +I4p (—146I55 —165iI5.+392154)))+875013 3 I5q Lup T4 +36 750132 14,3 Iy
—1750i132 Iy Isp Igq+302751132 Iy 2 140 T q— 14000032 Iyp T4 T g —21000133 Iy I Igq+512 13 (129614, %
+34475113° 11, — 16661 4 * +61144 > (208714, +2534il 40 ) — 370931 L3> T4 +374700 4% L4 2 —13152i1 4 14>
+1431614c % —2140% (—59251 4 2 +204231 143, T4, —2041814.2+3015 (36154 +213iI5, —23975.))+513 (154 (1751432
—T64i1 4 T10—21021402)+214.2 (—1683115, 4370415, )+21 45 T2 (A4T8T 5, —283il5.— 2548154 ) —Til 4% (93915,
—445il5.—29515q) )+ 144 (370931145, —369201 4p % 1444147611 1 1402 — 41244143 +1013 (I54 (—333il 45 +126714,)
7140 (423105, — 734150 )+ 1ap, (—212215, +19781 5. +1323154)))+25132 (36154 % — 2031164 I4p+615,2+322143 I
+ 154 (426115, —4T815.)—1014i 5 I'5.+93215.24+567il4p I — 44814 Tgq) )+ L0 2 (325501135 14, +6(7308 4%
—BT5il 4, T4c+31787 1432 I40% —5835il 4 L4 +991514. %) —513 (I54 (1985142 +6836i 14 40+536314.2)
+1402(9243115, — 1938415, ) — 204 110 (1094415, +237511 5. — 5733154 )+ilp2 (710815, +5590il5. — 1547 54))
+150132 (31542 —21il6q L4 —9415,2 484143, Iy, +I54 (46115, — 4815 ) —242i 5 Isc+14315.2 +133il 4 Lec— 70141 Ig4))
—18375i132 1443 I5e4+1470013% 142 Inc Toe — T1a (175135 T4 (2214442711 4.) — 61 (980145 ° +3575611 4,4 14
+1635514p 2 1402 +272031 1432 142 4+32151 4 I10*+3941i14°)+515 (Isq (— 769311433 +2951 4% L4 — 270611 4, 1.2
—662214.3)+1414.3 (117115, 4105415, ) +21 43 42 (222491 5, — 3435115, —6713154)+7 14,2 (306715, 4192511 5.
—2309754)+ 1452 Tac(—19041i 5, — 477515439691 T54)) 425132 (—3868il 4 Iy 2+2597i 142 Tep+T16a Lap (3314
—91i140)+1722154 2 14498140 Tgp Tnc+2150 2 (T1i1 4 +6314)+32681 4 Isp Ise—T14iT5, Ioc I5o+366i 145 5.2
+20861 401502 —2352143, 2 Ig.+441i1 4y Inc Toe— 2050 (TIac(—93il 55410915 ) +14p (36715, +499iI5.—196154))

+ 981144 Isp I5q — 1078143 Isc Isq — 32911 432 Igq — 980143 Iac Igq + 343143, Ige ) +6125153 13,2 I
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