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05 Tangent and normal bundles

in almost complex geometry

Boris S. Kruglikov

Abstract

We define and study pseudoholomorphic vector bundles structures,
particular cases of which are tangent and normal bundle almost complex
structures. As an application we deduce normal forms of 1-jets of almost
complex structures along a pseudoholomorphic submanifold. In dimension
four we relate these normal forms to the problem of pseudoholomorphic
foliation of a neighborhood of a curve and the question of non-deformation
and persistence of pseudoholomorphic tori.

Introduction

In this paper we study the differential geometry of tangent and normal
bundles in the almost complex category. Let J : TM → TM be an almost
complex structure, J2 = −1. A submanifold L ⊂M is called pseudoholomorphic
(PH-submanifold) if TL ⊂ TM is J-invariant.

We introduce two different canonical almost complex structures Ĵ and J̌ on
each of the total spaces TL and NLM of tangent and normal bundles such that
the projection to L and the zero section embeddings of L are pseudoholomorphic.
We find an explicit relation between these two almost complex structures.

Moreover, we define and investigate the theory of abstract pseudoholomor-
phic (almost holomorphic) vector bundles, partial cases of which are tangent
and normal bundles. We describe their normal forms, which produce normal
forms of 1-jets of almost complex structures along a PH-submanifolds.

Generically the only PH-submanifolds are PH-curves ([K2]). Local existence
of PH-curves was established by Nijenhuis and Woolf ([NW]). The global exis-
tence result is due to Gromov, whose paper [Gro] made compact PH-curves an
indispensable tool of symplectic geometry.

For a PH-curve L the structure Ĵ on NLM is holomorphic, while the struc-
ture J̌ is not, and they both play an important role in the deformation and
regularity questions for PH-curves. In particular, we relate Gromov’s operator
Du to our normal bundle structures. Consequently, the structure J̌ appears to
be basic for local Gromov-Witten theory.

MSC-2000 numbers: 53C15, 53A55, 32G05; 53C05, 58D27, 58A20. Keywords: almost

complex structure, normal bundle, Nijenhuis tensor, minimal connection.
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In [Mo] Moser constructed a KAM-type theory for a PH-foliation of an al-
most complex torus T 2n by non-compact curves, namely entire PH-lines C →
T 2n with generic slope. He proved that under a small almost complex per-
turbation of the standard complex structure J0 many leaves persist. If the
perturbation is big, but tame-restricted, then only some of the leaves persist.
This was proven by Bangert in [B]. Another proof is given in [KO].

In [A2](1993-25) Arnold asks about almost complex version, in the spirit
of Moser’s result, for his Floquet-type theory of elliptic curves neighborhoods
([A1]). It will be shown the direct extension fails (there are moduli in nor-
mal forms), though we conjecture the right generalization, treatable by Moser’s
method, is a possibility of foliation of a PH-torus neighborhood by PH-cylinders.

We consider specially the case dimM = 4 and find the condition for a
PH-curve neighborhood to admit a PH-foliation of a special kind. We also
study problems of persistence and isolation of PH-tori, as posed by Moser. In
particular, we obtain a geometric interpretation for his non-deformable example
from [Mo]. There Moser announced ”a study of the normal bundle”, which has
not been performed. The present paper fills the gap.

In appendix A we give a new proof of a theorem by Lichnerowicz, essentially
used in the main constructions, and consider some applications of the minimal
connections. In appendix B we discuss what happens with the normal and tan-
gent bundles for other geometric structures, which demonstrates, in particular,
that relations (5)-(6) from §2 is a PH-analog of the Ricci equation.

1. Almost complex tangent bundle

The Nijenhuis tensor of an almost complex structure J ∈ C∞(T ∗M ⊗ TM)
is given by the formula

NJ(X,Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ], X, Y ∈ TM.

We write NJ ∈ C∞(Λ2T ∗M ⊗C̄ TM) meaning it is skew-symmetric in X,Y and
J-antilinear. By the Newlander-Nirenberg theorem [NW] integrability of J can
be expressed as NJ = 0.

An almost complex connection is a linear connection ∇ that preserves the
almost complex structure: ∇J = 0. It is called minimal if its torsion T∇ = 1

4NJ .
Such connections always exist due to [L], see appendix A.

Let π : TM →M denote the projection and ρ : M → TM the zero section.

Theorem 1. There exists a canonical almost complex structure Ĵ on the total
space of the tangent bundle TM to an almost complex manifold (M,J) such that:

1. The maps π : TM →M and ρ : M → TM are pseudoholomorphic.

2. (TM, Ĵ) is integrable iff (M,J) is integrable.

Proof. Consider a minimal connection ∇. It produces the splitting Ta(TM) =
Ha ⊕ Va into horizontal and vertical components, a ∈ TM . We have natural
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isomorphisms π∗ : Ha ≃ TxM and Va ≃ TxM , x = π(a). Define the structure Ĵ
on Ta(TM) as J ⊕ J with respect to the above splitting and isomorphisms.

If we change the minimal connection ∇̃ = ∇ + A (Theorem 31 of appendix
A), then A ∈ C∞(S2T ∗M ⊗C TM). The new horizontal space is given by
H̃a = graph{A(a, ·) : Ha → Va}. Since A(a, ·) is a complex linear map, the
almost complex structure Ĵ on TM is defined canonically.

The properties of Ĵ follow directly from the construction. �

Remark 1. Whenever integrable, Ĵ defines the standard holomorphic structure.

Construction of the structure Ĵ can be generalized to the cotangent and other
tensor bundles. The adjoint J∗ to the operator J is a fiberwise complex structure
on T ∗M . The two structures induce a canonical fiberwise complex structure

on the complex-linear tensor bundles T
(r,s)
C

M of contravariant degree r and
covariant degree s tensors and also on the subbundles Sk

C
TM , Λk

C
TM . As usual,

the tensor product over C is formed by the equivalence relationX⊗JY ∼ JX⊗Y

(so that T
(r,s)
C

M 6= T (r,s)M ⊗ C etc).

Theorem 2. Let EM be one of the bundles T
(r,s)
C

M , Sk
C
M , Λk

C
M or their duals

and tensor products over C. There exists a canonical almost complex structure
Ĵ on the total space EM such that:

1. The maps π : EM →M and ρ : M → EM are pseudoholomorphic.

2. (EM , Ĵ) is integrable iff (M,J) is integrable.

Proof. The claim is obtained similarly to Theorem 1 by checking that the
admissible gauge transformations AE ∈ Ø1(M, endC EM ) are complex-linear in
all arguments. This follows from the explicit formulae: A(1,0)(X) = A(X),
A(0,1)(X) = −A(X)∗, A(2,0)(X) = A(X) ⊗ 1 + 1⊗A(X) etc. �

Remark 2. It is possible to define an almost complex structure by the above
approach on the bundles T (r,s)M = (TM)⊗r ⊗ (T ∗M)⊗s, S2i+1TM , Λ2j+1TM
etc (in some different manners), but it won’t be canonical (will depend on ∇).

For two almost complex manifolds (L, JL) and (M,JM ) a canonical almost
complex structure Ĵ on the space of PH-1-jets

J1
PH(L,M) = {(x, y,Φ) |x ∈ L, y ∈M,Φ ∈ T ∗

xM ⊗ TyM : ΦJL = JMΦ}

was introduced in [Gau]. In particular, we get almost complex structures on
J1

PH(C,M) = C × TM and J1
PH(M,C) = T ∗M × C. They are C-translations

invariant and thus yield almost complex structures on TM and T ∗M . Also

the restriction of Ĵ defines a canonical almost complex structure on T
(1,1)
C

M =
π−1

1,0(∆(M)), where ∆(M) ⊂M×M = J0(M,M) is the diagonal PH-submanifold

(π1,0 : J1
PH → J0 is the canonical projection). It can be shown that the derived

structures on TM and T ∗M coincide with the ones introduced above.
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On the other hand, J1
PH(L,M) ⊂ T

(1,1)
C

(L×M) is a PH-submanifold, whence

the canonical structure Ĵ is a generalization of that one from [Gau].
Note however that the higher PH-jet spaces Jk

PH(L,M), k > 1, bear no
structure in general ([K1]) and usually are even non-smooth.

Another canonical almost complex structure. An interesting issue is
the paper [LS]. An almost complex structure on TM , which we denote J̌ , is
constructed there via the deformation theory approach. It is not however new,
for it was introduced long before in [YK] via the complete lift operation J  Jc

(this fact was not noticed in [LS]). To see the coincidence J̌ = Jc, note that

in local coordinates (xi, yi) on TM both structures have the form

(

J 0
∂J J

)

,

where ∂ =
∑

yi∂xi . It follows from [YK, YI] that the structure J̌ enjoys the
same properties as the structure Ĵ in theorem 1.

The structures Ĵ and J̌ differ because if we let Z denote multiplication by the
complex number z = a+ ib ∈ C along the fibers of TM , Z(x, y) = (x, ay+ bJy),

we get [J̌ , Z∗] =

(

0 0
bNJ(∂, ·) 0

)

, while from the very construction Ĵ◦Z∗ = Z∗◦Ĵ.

Thus Ĵ 6= J̌ unless J is integrable.
We can also obtain Ĵ 6≡ Jc from [YI], where they provide a construction

of almost complex structure JH on TM via horizontal lift of the connection
∇̄XY = ∇Y X + [X,Y ] (equivalently Γ̄k

ij = Γk
ji in terms of Christoffel symbols).

By the construction Ĵ = JH iff ∇̄ is minimal and by the results in §2.4 of [YI]
Jc = JH iff ∇J = 0 (beware, without one of these specifications the horizontal
lift JH is connection-dependent). But if ∇ is an almost complex connection,
then NJ(X, ·) = ∇̄JXJ − J∇̄XJ , whence Jc = JH 6= Ĵ unless NJ = 0.

The argumentation in [LS] that [J̌ , Z∗] 6= 0 is indirect and based on the fact
that kernel of the Gromov operator Du is not J-invariant. In §6 we describe
this operator in terms of a canonical almost complex structure J̌ on the normal
bundle to a PH-curve (in fact, as notation suggests, there is a relation between
introduced canonical structures on tangent and normal bundles).

Remark 3. In [YI] various lifts to tangent and cotangent bundles are discussed.
The complete lift of J to the cotangent bundle is not almost complex, but this is
amended [Sa] via the calibration Jc − 1

2γ(JNJ). The transformation is surpris-
ingly similar to our formula (11) below, though we observe no precise relations.

Let us call TB-I and TB-II the (total space of) tangent bundle TM equipped
with the almost complex structures Ĵ or J̌ respectively.

2. Almost complex normal bundle

Topologically the normal bundle NLM of a submanifold L ⊂ M is defined
by the exact sequence:

0 → TL→ TM |L → NLM → 0. (1)
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If L is a complex submanifold of a complex manifold M , then NLM is a
holomorphic vector bundle over L (the total space and the projection are holo-
morphic, as well as fiberwise addition and multiplication by complex numbers).
In almost complex case this is no longer so.

Let π : NLM → L denote the projection and ρ : L→ NLM the zero section.

NB-I structure. Here we apply the construction of §1 to get a canonical
almost complex structure Ĵ on NLM , called NB-I in what follows:

Theorem 3. There exists a canonical almost complex structure Ĵ on the total
space of the normal bundle NLM to a PH-submanifold L ⊂M such that:

1. The maps π : NLM → L and ρ : L→ NLM are pseudoholomorphic.

2. The structure Ĵ is integrable iff J |L is integrable and the J-antilinear by
each argument part of the curvature vanishes, R−−

∇ (X,Y ) = 0, ∀X,Y ∈
TL, for some minimal connection ∇ totally geodesic and flat on L.

Remark 4. If J |L is integrable, the specified connection always exists locally
(the above integrability criterion is indeed local) and then R−−

∇ (X,Y ) does not
depend on its choice (see appendix A). Moreover, R−−

∇ (X,Y ) = 0 ∀X,Y ∈ TL,
whenever J is integrable along L to the second order: NJ(x) = 0 ∀x ∈ L.

Proof. Let ∇ be a minimal connection on M . It can be chosen so that L
is totally geodesic. In fact, one chooses any linear connection for which parallel
transports along L preserve TL and note that the procedures of making the
connection almost complex and then minimal (see appendix A) do not destroy
the property of L to be totally geodesic.

We define a connection ∇̂ on the bundle NLM via parallel transports as
follows. Let v = [θ] ∈ (NLM)x be the class of θ ∈ TxM and let γ(t) ⊂ L be
a curve, γ(0) = x. Calculate the parallel transport θ(t) of θ along γ(t). Then
define v(t) = [θ(t)] to be the parallel transport of v along γ(t). Since L is totally
geodesic, the definition is correct (∇̂-parallel transport of 0 is 0). Moreover the
connection ∇̂ is R-linear. So as usual in the theory of generalized connections
we conclude that ∇̂ is a linear connection.

Let Ta(NLM) = Ha ⊕ Va be the splitting into the horizontal and vertical

components induced by ∇̂, a ∈ NLM . The first spaceHa
π∗

≃ TxL has a canonical
complex structure J1 induced from J |L by π∗, x = π(a), and the second Va ≃
TxM/TxL inherits a canonical complex structure J2 from J as the quotient. So
we obtain the structure Ĵ = J1 ⊕ J2 on Ta(NLM) for each a.

The same arguments as in Theorem 1 show that the almost complex struc-
ture Ĵ on NLM does not depend on the choice of a minimal connection ∇,
preserving TL. The first property of Ĵ is obvious. For the other one we use

Lemma 4. If a vector Y ∈ Ta(NLM) is vertical, then NĴ(·, Y ) = 0.

Actually, the fiber is integrable, so it is enough to consider the pairingNĴ (X̂, Y ),

where X̂ is the ∇̂-lift of X ∈ TL. Recall ([KN]) that ∇̂XY coincides with the
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Lie derivative LX̂ Ỹ of the section Y extended by translations to a vertical vector

field Ỹ on NLM (X̂ is the ∇̂-lift of any vector field extending X ; the result will
not depend on an extension). Thus ∇̂XY = [X̂, Ỹ ] and we have (see also the
remark after proposition 13):

NĴ(X̂, Y ) = ∇̂ĴX ĴY −Ĵ∇̂ĴXY −Ĵ∇̂X ĴY −∇̂XY = (∇̂ĴX Ĵ)Y +(∇̂X Ĵ)ĴY = 0.

Now since the curvature of ∇̂ is R∇̂(X,Y )a = [̂X,Y ]a − [X̂, Ŷ ]a, we get:

NĴ(X̂, Ŷ )a = ̂NJ(X,Y )a + 4R−−

∇̂
(X,Y )a, X, Y ∈ TL. (2)

For an integrable J |L we can choose minimal ∇ to be flat on L and preserving
TL, whence we get R−−

∇̂
(X,Y ) = R−−

∇ (X,Y ) and the claim follows. �

NB-II structure. From the integrability condition of Theorem 3 we read
off that some features of 1-jet of the almost complex structure J along L are
lost in Ĵ on NLM . It is however possible to keep most of them with another
definition of the normal bundle structure J̌ , which we call NB-II.

Theorem 5. There exists a canonical almost complex structure J̌ on the total
space of the normal bundle NLM to a PH-submanifold L ⊂M such that:

1. The maps π : NLM → L and ρ : L→ NLM are pseudoholomorphic.

2. The structure J̌ is integrable iff the following 3 conditions hold:

− J |L is integrable,

− (M,J) is normally integrable along L, i. e. NJ (TL, TM |L) ⊂ TL,

− The normal component N⊥
J = χ ◦ NJ vanishes on TL to the second

order, where χ : TM |L → NLM is the natural projection.

Proof. We describe the structure J̌ on the germ of zero section in NLM ,
which then uniquely determines it on the whole total space. Let OM

L be a
tubular neighborhood of L ⊂M . Fix a J-invariant subbundle F ⊂ TM |L such
that TL⊕ F = TM |L (the totality of all such subspaces F forms a bundle over
L with contractible fibers). We identify F = TM |L/TL ≃ NLM .

Let us fix some minimal connection ∇ on M with L being totally geodesic.

Denote by NLM ⊃ ON
L

ϕ
→ OM

L the ∇-exponential map that associates to the
vector v ∈ Fx, x ∈ L, the value γ(1) along the ∇-geodesic γ with initial condi-
tions (γ(0), γ̇(0)) = (x, v).

Denote by Rt the t-times dilatation v 7→ tv along the fibers of F . We define:

Jϕ = ϕ−1
∗ Jϕ∗, Jt = adRt(Jϕ) = R

1/t
∗ JϕRt

∗ and J̌ = lim
t→0

Jt. (3)

Consider local split coordinates (x, y) on NLM such that L = {y = 0} and the
fibers of F equal {x = const}. In terms of these coordinates the limit process
transforms the matrix of Jϕ as follows:

Jϕ =

(

A(x, y) C(x, y)
B(x, y) D(x, y)

)

7→ J̌ =

(

A(x, 0) 0
dFB(x, y) D(x, 0),

)

6



where dFB(x, y) = lim
t→0

B(x, ty)/t (notice that B(x, 0) = 0 because TL is J-

invariant).
Let us check independence of J̌ on ∇ and F . When we change the connection

or the J-invariant subbundle, it is equivalent to changing the map ϕ to ϕ̃. In
the above split coordinates (xi, yj) on NLM we have (assuming the standard
rule of summation by repeated indices)

ϕ−1ϕ̃ : (xi, yj) 7→ (xi + αi
k(x)yk, yj) + o(|y|)

(choice of the norm in o(|y|) is not essential). Thus writing the matrix of Jϕ

in block form we observe that the transformation Jϕ 7→ J ϕ̃ has the following
matrix form:

(

A C
B D

)

7→ ∆−1 ·

(

A C
B D

)

· ∆ =

(

Ã C̃

B̃ D̃

)

, (4)

where

∆ = d
(

ϕ−1ϕ̃
)

= 1 +

(

U V
0 W

)

+ o(|y|),

and U,W = o(1) have to vanish on L, but V needs not to.
Since B(x, 0) = 0 we deduce from (4): Ã(x, 0) = A(x, 0) and D̃(x, 0) =

D(x, 0). The transformation of C is inessential and B changes to B̃(x, y) =
B(x, y)(1+o(1)). Thus dF B̃(x, y) = dFB(x, y) and we see that the limit process
(3) gives a well-defined result.

In addition we observe that the structure J̌ has affine behavior w.r.t. y and
thus its restriction to ON

L determines the structure on the whole NLM .
To prove integrability criterion we note thatNJ̌ = lim

t→∞
NJt

= lim
t→∞

adRt(NJ ).

Consider (xi, yj) as coordinates on both ON
L and OM

L using the identification ϕ.
Denote by N⊥

J the y-component of the value of NJ . Note that N⊥
J is well-

defined along L and whenever J |L is integrable, i.e. NJ |TL ≡ 0, its 1-jet is
well-defined. Then we calculate:

NJ̌(∂xi , ∂xj ) = NJ(∂xi , ∂xj )|y=0 + yk
(

∂ykN⊥
J (∂xi , ∂xj )|y=0

)

(5)

and
NJ̌(∂xi , ∂yj ) = N⊥

J (∂xi , ∂yj )|y=0, NJ̌(∂yi , ∂yj ) = 0, (6)

The claim follows. �

If codimC L = 1, then the connection ∇ can be chosen so that the exponential
image of the vertical foliation ϕ(F ) is J-holomorphic. This follows from

Proposition 6. Small neighborhood OL of a PH-submanifold L2n−2 ⊂ M2n

can be foliated by transversal PH-disks D2.

Proof. This follows from Nijenhuis-Woolf theorem [NW] on the existence
of a small PH-disk in a given direction, smoothly depending on it. �
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Remark 5. For n = 2 a construction of certain structure J̄ on OM
L , using the

dilatation Rt and based on the idea of Proposition 6, was used in [M2].

Denote by N I
LM and N II

L M the normal bundle equipped with the NB-

I structure Ĵ or with the NB-II structure J̌ respectively. The tangent bundle
structures TB-I and TB-II can be deduced from the normal ones via the diagonal
embedding ∆ : M →֒ M ×M because N∆(M)(M ×M) ≃ TM .

We are going to relate the concept of NB-II with the deformation theory.
The following statement will be used in §6.

Proposition 7. Let φt : (C, J t
C) → (M,JM ) with φ0(C) ⊂ L be a family of J-

holomorphic embeddings. Then φ′t|t=0 : (C, J0
C) →֒ N II

L M is a PH-embedding. In
particular, deformations of C = L lead to PH-sections φ′t|t=0 : (L, J0

L) →֒ N II
L M .

Notice that by virtue of the relation between NB-I and NB-II from the next
section the embedding φ′t|t=0 of L into N I

LM is not pseudoholomorphic.
Proof. We have JM dφt = dφtJ

t
C , whence

(R
1/t
∗ JMRt

∗)(R
1/t
∗ dφt) = (R

1/t
∗ dφt)J

t
C .

In the limit t→ 0 we get: J̌ dφ′0 = dφ′0 J
0
C . �

This proposition leads to an equivalent definition of the NB-II structure J̌ .
Consider x ∈ L, v ∈ (NLM)x and ζ ∈ Tv(NLM). Let w ∈ TxM represent

v, v = [w]. Consider a curve γ(t) in M with γ(0) = x, γ̇(0) = w and a vector
field along the curve ξt ∈ Tγ(t)M that represents ζ. Then ηt = JMξt ∈ Tγ(t)M

represents ς = J̌ζ ∈ Tv(NLM).
In fact, there exists a family of PH-disks φt : (D2

ε , J0) → (M,JM ) with
φt(0) = γ(t), d0φt(1) = ξt. Then d0φt(i) = ηt ∈ Tγ(t)M , where 1, i ∈ T0D

2
ε .

From this alternative definition we obtain

Lemma 8. Let L ⊂ M be a PH-submanifold w.r.t. two almost complex struc-
tures J1 and J2 with equal normal bundles N II

L M . Then ∇Y (J1 − J2)(X) = 0
for all X ∈ TL and Y ∈ TM |L (the choice of connection is inessential).

Proof. Let γ(t) ⊂ M be a curve with γ(0) = x ∈ L, γ̇(0) = Y . Consider
two family of PH-disks φt : (D2

ε , J0) → (M,J1) and ψt : (D2
ε , J0) → (M,J2)

with φt(0) = ψt(0) = γ(t) and d0φ0(1) = d0ψ0(1) = X . We can suppose that
they induce the same map φ′0 = ψ′

0 : (D2
ε , J0) → N II

L M . Then:

∇Y (J1 − J2)(X) = d
dt

∣

∣

t=0

(

J1d0φt(1) − J2d0ψt(1)
)

= d0φ
′
0(i) − d0ψ

′
0(i) = 0.

�

3. Pseudoholomorphic vector bundles

Consider a real vector bundle π : (E, Ĵ)
F
→ (L, J) with almost complex total

space, base and projection: π∗Ĵ = Jπ∗. The following statement is obvious:
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Proposition 9. The Nijenhuis tensor NĴ is projectible: π∗NĴ = NJ ◦Λ2π∗. �

Corollary 10. Let (L, J) be integrable (for example dimC L = 1). Then we
have: Im(NĴ) ⊂ TF . �

Definition 1. Call π a almost holomorphic vector bundle (we write PH – pseu-
doholomorphic), if the restrictions Ĵ |Fx

are constant coefficients complex struc-
tures on the fibers and there exists a linear (not necessary J-linear) connection
∇̂ on π such that the ∇̂-lift C-splits the exact PH-sequences

0 → Fx → TaE
L99

−→ TxL→ 0, x = π(a),

In this case the zero section L ⊂ E is a Ĵ-holomorphic submanifold.

Proposition 11. The canonical almost complex structures Ĵ , J̌ on TM and
Ĵ , J̌ on NLM are PH vector bundle structures.

Proof. For TB-I and NB-I structures Ĵ the claim is implied directly by the
construction. For TB-II and NB-II structures J̌ this follows from the explicit
formulas and the affine behavior by the fiber coordinates. �

Consider an arbitrary splitting TE = H ⊕ V into horizontal and vertical
components. Restricting the first argument of the Nijenhuis tensor to H and
the second to V = TF we obtain a tensor N ′

Ĵ : π∗TL⊗ TF → TF .

Proposition 12. The tensor N ′
Ĵ does not depend on a choice of horizontal

component H (not necessary Ĵ-lift) and is constant along the fibers. So it is
lifted from a canonical tensor (we will use the same notation) N ′

Ĵ : TL⊗F → F

with Ĵ-invariant image Π′
Ĵ = NĴ(H,V ) ⊂ F .

Proof. Independence of H follows from Proposition 9. Let us prove con-
stancy along the fibers F . Let ∇̂ be a connection from the definition.

Denote #j = j − (−1)j. There are local coordinates (xi, yj) on π−1(U) =
U × F , with x a base coordinate and y a linear fiber coordinate, such that the
structure Ĵ |F has constant coefficients w.r.t. y:

Ĵ∂yj = (−1)j−1∂y#j . (7)

Let ∇̂∂
xi
∂yj = Γk

ij(x)∂yk . The ∇̂-lift of ∂xi is: ∂̂xi = ∂xi − Γs
ij(x)y

j∂ys .

Let J∂xi = ak
i (x)∂xk on the base. Then Ĵ ∂̂xi = ak

i (x)∂̂xk and we get:

Ĵ∂xi = ak
i ∂xk +

(

(−1)sΓ#s
ij − ak

i Γs
kj

)

yj∂ys . (8)

Thus NĴ(∂xi , ∂yj) = γs
ij(x)∂ys is expressed via the Christoffel symbols as

γs
ij = (−1)s+jΓ#s

i,#j − (−1)sak
i Γ#s

kj − (−1)jak
i Γs

k,#j − Γs
ij , (9)

so it is constant along the fibers. Note that rk(Π′
Ĵ ) can vary with x ∈ L. �
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Definition 2. Let us call a PH-bundle almost complex structure Ĵ on (E, π)
normally integrable if N ′

Ĵ = 0.

For such a structure integrability is equivalent to integrability of (L, J) and
vanishing of R−−

∇̂
(cf. proofs of Theorems 3, 5 and formula (2)). In particular:

Proposition 13. Normally integrable PH bundles over holomorphic curves are
holomorphic. �

If ∇̂ is obtained from a minimal connection ∇, as for the structures Ĵ of §1-2,
then it additionally preserves Ĵ |F , meaning Γ#s

i,#j = (−1)s+jΓs
ij . So (9) implies

γs
ij = 0 and N ′

Ĵ = 0. In particular, the NB-I structures Ĵ over a PH-curve is

normally integrable (while the NB-II structure J̌ is usually not). To describe
such structures in general notice that formula (2) implies the following:

Proposition 14. If a PH bundle structure Ĵ is normally integrable, then re-
striction of the Nijenhuis tensor to both horizontal components determines a
canonical tensor N ′′

Ĵ : π∗Λ2TL → TE with the image Π′′
Ĵ = NĴ(H,H) ⊂ TE

being a Ĵ-invariant differential system. This tensor projects to the tensor NJ

on the base and is affine-linear along the fiber. �

Let a ∈ E and x = π(a) ∈ L be its projection. Denote by r = ra ∈ Fx ⊂ TaE
the radius-vector ~xa.

Theorem 15. Let (E, Ĵ , π) be a pseudoholomorphic vector bundle over an al-
most complex manifold (L, J). Then Ĵ can be expressed via some normally
integrable PH vector bundle structure J0 and the tensor NĴ by the formula:

Ĵ = J0 +
1

2
J0NĴ(r, ·). (10)

Proof. Let us define the structure by the formula

J0 = Ĵ −
1

2
ĴNĴ(r, ·). (11)

Since NĴ |F ≡ 0 this structure J0|F = Ĵ |F is a constant complex structure on

the fibers F , proving formula (10) for Ĵ .
To show that the structure J0 is almost complex, we note that NĴ(r, Y ) ∈ F

for any Y and NĴ(r, Y ) = 0 for Y ∈ F . Therefore

J2
0 = Ĵ2 −

1

2
Ĵ2NĴ(r, ·) −

1

2
ĴNĴ(r, Ĵ ·) +

1

4
ĴNĴ(r, ĴNĴ (r, ·)) = Ĵ2 = −1.

To obtain N ′
J0

= 0 we use (11) and the coordinates of proposition 12:

NJ0
(∂xi , ∂yj ) =

= NĴ(∂xi , ∂yj ) − [ 12 ĴNĴ(ys∂ys , ∂xi), (−1)j−1∂y#j ] + Ĵ [12 ĴNĴ(ys∂ys , ∂xi), ∂yj ]

= NĴ(∂xi , ∂yj ) + 1
2 (−1)jĴNĴ(∂xi , ∂y#j) + 1

2 Ĵ
2NĴ(∂xi , ∂yj ) = 0,

where we expressed r = ys∂ys . The claim follows. �
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Corollary 16. If the base is a PH-curve, dimC L = 1, then the structure J0 in
formula (10) is complex analytic, making π into a holomorphic vector bundle.

�

Definition 3. Let us call the structure J0 of theorem 15 the normally integrable
form (n.i.f.) of the PH-bundle structure Ĵ .

Certainly normally integrable form of a normally integrable structure (e.g.
TB-I or NB-I) Ĵ is this structure itself. Now we will describe a relation between
NB-I and NB-II structures (implying a similar relation for TB-I and TB-II). We
consider the latter as a general pseudoholomorphic vector bundle.

Theorem 17. Let (L, J) be the zero section of a PH vector bundle (E, Ĵ, π).
Then its NB-I structure coincides with the n.i.f. J0 of the structure Ĵ as in (10).

Proof. We use formulae (7) and (8) for the almost complex structure.
Consider a linear connection ∇, given by the relations

∇∂
xi
∂xj = 0, ∇∂

xi
∂yj = Γk

ij(x)∂yk , ∇∂
yi
∂xj = 0, ∇∂

yi
∂yj = 0.

Calculate by it a minimal connection ∇̃ by the algorithm of appendix A. It in
turn produces the following connection on the normal bundle NLE ≃ E:

∇̄∂
xi
∂yj =

(3

8
Γs

ij +
1

8
(−1)sak

i Γ#s
kj −

1

8
(−1)jak

i Γs
k,#j +

3

8
(−1)s+jΓ#s

i,#j

)

∂ys .

Using the relation J̄ ∂̄xi = ak
i ∂̄xk we get the formula

J̄∂xi = ak
i ∂xk +

1

2

(

(−1)sΓ#s
ij − (−1)jΓs

i,#j − ak
i Γs

kj − (−1)s+jak
i Γ#s

k,#j

)

yj∂ys ,

which together with the formula J̄ |F = Ĵ |F (7) describes the NB-I structure
(E, J̄) of the zero section.

But substitution of formulae (8) and (9) into (11) yields the same expressions
for J0, proving the claim: J̄ = J0. �

Thus the two PH-bundles N I
LM and N II

L M are related as follows:

NB-II
n.i.f.
−→ NB-I (12)

Relation to other generalizations of holomorphic bundles. Our
PH-vector bundle structures differ from ”bundle almost complex structures”
of Bartolomeis and Tian [BT], because (see §1) the multiplication morphism
µ : C × E → E is not pseudoholomorphic in general (though its restriction
µ : R × E → E is). But they satisfy the requirements of ”almost holomor-
phic vector bundles” by Lempert and Szöke [LS]. Actually our definitions are
equivalent:

Proposition 18. (E,M, π) is a PH vector bundle structure iff the fiber-wise
addition α : E ×M E → E is a PH-map.
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Proof. The almost complex structure Ĵ on E ×M E is induced from the
natural product structure on E × E, since the former is the preimage of the
diagonal ∆(M) ⊂M ×M (which is pseudoholomorphic).

In local coordinates (xi, yj) the structure Ĵ on E is given by formulae (7)-
(8). Then the structure on E ×M E is given in local coordinates (xi, zj, wk) as
follows (we do not specify coefficients bsij via the Christoffel coefficients):

Ĵ∂xi = ak
i (x)∂xk + bsij(x)z

j∂zs + bsij(x)w
j∂ws ,

Ĵ∂zj = (−1)j−1∂z#j , Ĵ∂wj = (−1)j−1∂w#j .

The map α∗ maps both ∂zj and ∂wj to ∂yj . It is enough to check that it is a

PH-map only on the basic vectors. Consider a point (x, z, w)
α
7→ (x, y = z +w).

For ∂zj and ∂wj we have: α∗Ĵ = Ĵ α∗. And for the horizontal vectors:

Ĵ(x,y)α∗(∂xi) − α∗(Ĵ(x,z,w)∂xi) = bsij(x)(y
j∂ys − zj∂ys − wj∂ys) = 0.

Thus if (E, Ĵ) is a PH bundle, the map α is pseudoholomorphic.
On the other hand if α is a PH-map, then the above arguments show local

existence of a connection ∇̂, satisfying the requirement of definition 1. The
space of such connections is contractible, whence the global existence. �

4. Normal form of 1-jet of J along a submanifold

Consider the ideal of R-valued functions corresponding to a submanifold L:

µL = {f ∈ C∞(M) | f(L) = 0}.

Its degrees determine the filtration µk on every C∞(M)-module, in particular
we can talk about jets of tensor fields along L: Jk(T ) = C∞(T )/µk+1

L C∞(T ).

Theorem 19. Let L ⊂ M be a PH-submanifold with respect to two almost
complex structures J1 and J2. Assume that the following holds:

1. For every point x ∈ L: J1(x) = J2(x), NJ1
(x) = NJ2

(x).

2. The normal bundles N II
L M w.r.t. the structures J1 and J2 coincide.

Then J1 and J2 are 1-jet equivalent along L: There exists a diffeomorphism ϕ
of a neighborhood O(L), such that ϕ|L = Id, dxϕ = 1 for all x ∈ L and

J2 = ϕ∗J1 modµ2
L.

Notice that the required conditions are necessary for 1-equivalence.

Remark 6. When Ji are integrable and defined on different manifolds Mi, but
with the same normal bundle N , there is the Nirenberg-Spencer cohomology ob-
struction ns0(J1, J2) ∈ H1(L;TL⊗N∗) ([NS, MR]) for the 1st order equivalence.
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It equals the difference of obstructions to splitting the normal bundle sequence
(1). In particular, if the sequences are isomorphic, then ns0(J1, J2) = 0.

In our case M1 = M2 and the class ns0 vanishes by condition 2. However if
we want to formulate the equivalence of 1-jets of J1 and J2 on different mani-
folds, we should require ns0(J1, J2) = 0, where the latter will be determined via
NB-I structure (common for J1 and J2) and sequence (1).

In the calculations below we denote by
.

= the equivalence modulo µL (equal-
ity of 0-jets) and by

..

= the equivalence modulo µ2
L (equality of 1-jets).

Proof. Let us choose a minimal connection ∇ near L with L being totally
geodesic. We wish to find ϕ : OL → OL with dϕ ◦ J1

..

= J2 ◦ dϕ. This implies

dϕ ◦NJ1

.

= NJ2
◦ Λ2dϕ. (13)

Thus the tensor ∇dϕ is symmetric along L. Indeed, we have: (∇Xdϕ)(Y ) =
∇dϕ(X)(dϕ(Y )) − dϕ(∇XY ) and so

(∇Xdϕ)(Y ) − (∇Y dϕ)(X)

= T∇(dϕ(X), dϕ(Y )) + [dϕ(X), dϕ(Y )] − dϕT∇(X,Y ) − dϕ[X,Y ]

= 1
4 (NJ2

◦ Λ2dϕ− dϕ ◦NJ1
)(X,Y )

.

= 0.

Denote Φ(2) = ∇dϕ ∈ C∞(S2T ∗M ⊗ TM |L). In terms of this tensor, the
condition dϕ ◦ J1

..

= J2 ◦ dϕ holds iff for all X,Y ∈ TM |L we have:

Φ(2)(X, J1Y ) + dϕ (∇XJ1)(Y ) = J2Φ
(2)(X,Y ) + (∇dϕ (X)J2)(dϕ (Y )). (14)

Denote
P (X,Y ) = (∇dϕ (X)J2)(dϕ (Y )) − dϕ (∇XJ1)(Y ). (15)

This yields the followings property along L:

P (X, J1Y ) = −J2P̧(X,Y ),

which implies that P (X,Y ) = J2B(X,Y )−B(X, J1Y ) for some (2, 1)-tensor B.
Conditions (15) and (13) yield (with J = J1 = J2 along L):

P (X,Y ) − P (Y,X) = P (JX, JY ) − P (JY, JX).

From this we obtain a solution (similarly to Theorem 1 of [K1])

Φ(2)(X,Y ) = −
1

2
[B(X,Y ) +B(Y,X)]

+
J

4
[B(JX, Y ) +B(JY,X) −B(X, JY ) −B(Y, JX)]

of the equation P (X,Y ) = Φ(2)(X, J1Y ) − J2Φ
(2)(X,Y ) and hence of (14).

We want to construct a map with dϕ
.

= 1. This requirement, equation (15)
and assumptions of the theorem imply that P (X,Y ) = 0 along L if X ∈ TL or
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Y ∈ TL (see lemma 8). Thus we can choose B with the same property and get
Φ(2)(X,Y ) = 0 if at leat one of X,Y belongs to TL.

Now we integrate the symbols Φ(2) to get the 2-jet of ϕ along L, using the
Taylor-Maclaurin decomposition by the normal coordinate y along a compli-
mentary to TL J-invariant subbundle F , as in the proof of theorem 5. �

A combination of Theorems 15 and 19 yields normal forms of 1-jets of almost
complex structures J along a PH-submanifold L ⊂ (M,J).

Let us choose a J-invariant subbundle F transversal to L, as in the proof
of Theorem 5. Consider the radial vector field r, which equals ~xa at the point
a ∈ Fx, x ∈ L (as in Theorem 15). Let A be an automorphism of TM |OL

, which

equals A =

(

1/2 0
0 1/4

)

along L in the decomposition TM |L = TL⊕ F .

Theorem 20. Let L ⊂ (M,J) be a PH-submanifold and NJ ∈ C∞(Λ2T ∗M ⊗C̄

TM |L) be the field of Nijenhuis tensors of J along it. Then there exist a nor-
mally integrable almost complex structure J0 in a neighborhood OL ⊂ M and
a diffeomorphism ϕ of OL such that J0 = J along L, dϕ = 1 along L and we
have:

ϕ∗J = J0 + J0NJ(r, A·) modµ2
L. (16)

In particular, when L is a PH-curve, the structure J0 can be chosen complex.

Proof. Define J ′ = J − JNJ(r, A·). This is an almost complex structure
modµ2

L (see [K1] about such jets). In fact, J ′ .

= J and AJ
.

= JA, so that

J ′2 ..

= J2 − J2NJ(r, A·) − JNJ(r, AJ ·)
..

= J2 = −1.

Notice that we get J
..

= J ′ + J ′NJ(r, A·).
Let J0 = J̌ ′ be the corresponding NB-II structure (it is already a genuine

almost complex structure). Then J̃ = J0 + J0NJ(r, A·) is an almost complex
structure modµ2

L and it has the same NB-II structure as the structure J .
Now we want to check the second part of assumption 1 in Theorem 19 for

the structures J, J̃ (we obviously have J̃
.

= J).
LetX⊥ denote the F -component ofX ∈ TM |L. Then we get [X,NJ(r, Y )]

.

=
NJ(X⊥, Y ) (compare with the proof of Theorem 15, where r = yi∂yi in local
coordinates). And so we calculate:

NJ′(X,Y )
.

= NJ(X,Y ) − [JX, JNJ(r, AY )] − [JNJ(r, AX), JY ]

+ J [X, JNJ(r, AY )] + J [JNJ(r, AX), Y ]
.

= NJ(X,Y ) − JNJ(JX⊥, AY ) − JNJ(AX, JY ⊥)

−NJ(X⊥, AY ) −NJ(AX, Y ⊥)

= NJ(X,Y ) − 2NJ(X⊥, AY ) − 2NJ(AX, Y ⊥).

Thus if X,Y ∈ TL, then NJ′(X,Y ) = NJ(X,Y ). If X ∈ TL, Y ∈ F ,
then NJ′(X,Y ) = NJ(X,Y ) − 2NJ(AX, Y ) = 0. And if X,Y ∈ F , then
NJ′(X,Y ) = NJ(X,Y ) − 2NJ(AX, Y ) − 2NJ(X,AY ) = 0.
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Therefore, NJ′ vanishes for vertical vectors and J0 is normally integrable.
In particular, J0 is the NB-I structure of the structure J ′, see (12).

By a calculation, similar to the above one, we obtain along L:

NJ̃(X,Y ) = NJ0
(X,Y ) + 2NJ(X⊥, AY ) + 2NJ(AX, Y ⊥).

Since NJ0
(X,Y ) = 0 if X or Y belongs to F and NJ0

|TL = NJ |TL, we conclude
that NJ̃(X,Y ) = NJ(X,Y ) for all X,Y ∈ TM |L.

Thus from Theorem 19 we get a local diffeomorphism ϕ identical up to the
first order on L and such that J̃

..

= ϕ∗J . �

Remark 7. When L is a point, the structure J0 can also be chosen complex.
Moreover in this case A = 1/4 and formula (16) looks especially simple. We
write it in local coordinates (xi) centered at the given point x0 ∈M :

Jk
i = (−1)kδ#k

i − (−1)k 1
4N

#k
ij (0)xj + o(|x|).

A general way to obtain similar formulae for jets at a point is related to the struc-
tural function (Weyl tensor) of the corresponding geometric structure ([KL]).

5. Four-dimensional case and Arnold’s question

In this and next sections we consider the special case dimM = 4. Proper
PH-submanifolds are PH-curves L2 ⊂ (M4, J). So N I

LM = (NLM, Ĵ) is a
holomorphic line bundle, while N II

L M = (NLM, J̌) is a PH-line bundle.
Nijenhuis tensor characteristic distribution Π = Im(NJ) ⊂ TM4 ([K3]) is

J-invariant and has rank 2 in the domain of non-integrability for J , NJ 6= 0.

Proposition 21. At the points x ∈ L, where the Nijenhuis tensor characteristic
distribution Π is transversal to L, the same happens to the NB-II characteristic
distribution Π̌. But NJ̌(x) = 0 at the points x, where Π ⊂ TL.

Proof. This follows from formulae (6). �

Corollary 22. If the Nijenhuis tensor characteristic distribution Π is tangent
to L, then the NB-I and NB-II structures coincide and are holomorphic. �

Holomorphic line bundles over a genus g curve L = Σg are parameterized
by g complex parameters. Line bundles over rational curves L = C̄ ≃ S2 are
determined by the topological type, i.e. by the self-intersection number L ·L of
the zero section. But for other curves the holomorphic and differentiable types
of holomorphic bundles are different.

A holomorphic line bundle over an elliptic curve L = C/Z2(2π, ω) ≃ T 2

(g = 1), ω ∈ C \ R, depends on one parameter l ∈ C \ {0}. If the zero section
has self-intersection number p, the bundle is: E → T 2, (z, w) 7→ z, J0 = i, with

E = C
2/(z, w) ∼ (z + 2π,w) ∼ (z + ω, le−ipzw). (17)
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The pair (ω, l) can be chosen to satisfy: |ω| ≥ 2π, −π < |Reω| ≤ π,
Imω > 0, e− Im ω < |l| ≤ 1. The number ω is defined by the restriction J0|T 2

and the number l is defined by 1-jet of the structure J0 on T 2.
A PH-line bundle (NLM, J̌) over a genus g curve L = Σ2

g is parametrized by

g complex parameters (for NB-I structure J0 = Ĵ), a cohomology class ns0 ∈
H1(L;TL⊗N∗), see remark 6, and a smooth 1-form NJ̌ ∈ Ø1(L; autC̄(NLM)).

Consider an elliptic curve L = T 2 in a complex surface (M4, J0) with the
normal bundle N I

LM given by (17). For p < 0 ([Gra]) or p = 0 and generic
pair (ω, l) ([A1]) a small neighborhood of the torus in M4 is biholomorphically
equivalent to a neighborhood of the zero section in NLM . In [A2] Arnold asks
about non-integrable version of this result.

Proposition 23. Codimension of the set of almost complex structures, the
germs of which on the PH-curve L ⊂ (M,J) are isomorphic to these of the
normal bundle L ⊂ NLM , in the set of all almost complex structures is infinity.

Proof. For existence of such an isomorphism two conditions must fulfil.
First, by Corollary 10, the Nijenhuis tensor characteristic distribution Π2 should
be integrable and transversal to L whenever non-zero. Second, by Proposition
12, the Nijenhuis tensor NJ should be constant along the leaves of Π2. Both
conditions are of codim = ∞. �

The two mentioned conditions are necessary, but not sufficient.

Example. Let M4 = L2 ×D2 have coordinates (z = x+ iy, w = s+ it). Equip
it with the almost complex structure

J∂x = a1∂x + (1 + a2)∂y + b1∂s + b2∂t, J∂s = ∂t. (18)

Then L×{0} is a PH-curve, if bi = 0 on it. Moreover, one can achieve ai|L = 0.
The integrability condition Π2 = TF , Fc = {z = c}, and the requirement of

the tensor NJ constancy along F write as follows (ci = ci(x, y)):















∂a1

∂t
= a1

∂a1

∂s
−

1 + a2
1

1 + a2

∂a2

∂s
,

∂b1
∂t

= −
∂b2
∂s

+ b1
∂a1

∂s
+
b2 − b1a1

1 + a2

∂a2

∂s
+ c1,

∂a2

∂t
= (1 + a2)

∂a1

∂s
− a1

∂a2

∂s
,

∂b2
∂t

=
∂b1
∂s

+ b2
∂a1

∂s
−
b1 + b2a1

1 + a2

∂a2

∂s
+ c2.

This is a Cauchy-Kovalevskaya type system, so any analytical initial condi-
tion (ai, bi)|t=0 = (α0

i (s), β
0
i (s)) determines uniquely the solution. PH bundle

structures correspond to α0
i = λi(x, y), β

0
i = µi(x, y) + νi(x, y)s. There are

however different solutions, for example: a1 = −b1 = − s
1+t , a2 = −b2 = − t

1+t .

Thus the answer to Arnold’s question is negative. A generalization of his
theory should look differently. It will concern existence of a PH-foliation of a
T 2-neighborhood by cylinders. In holomorphic situation there exists a foliation
by holomorphic cylinders, given in the representation (17) as {w = const}. Does
it persist if we perturb the structure J to an almost complex one?
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We discuss this question in [K3]. Note however that in the complex situation
transport along the leaves of the foliation is holomorphic. When does a PH-
foliation exist with pseudoholomorphic transports?

By transports here we mean the following. Let D2
z be a foliation by transver-

sal PH-disks as in proposition 6. Let H be a PH-foliation with L as a leaf. A
path between two points z1, z2 ∈ L determines a map D2

z1
→ D2

z2
of shifts along

H, called the transport. Homotopically non-trivial loops yield the monodromy
(for a PH-foliation H by cylinders, one cycle has a trivial monodromy).

The requirement of PH-transports is independent of the choice of transver-
sal disks family. For a generic almost complex structure the monodromy and
transports are non PH-maps of the disks D2

z .

Proposition 24. Let L ⊂ (M4, J) be a PH-curve. Existence of a PH-foliation
H of its neighborhood with PH-transports is a condition of codimension infinity.

Proof. The requirements of PH-transports means that projection along H is
a PH-map. Thus by Corollary 10 the Nijenhuis tensor characteristic distribution
is integrable and tangent to H. Also the Nijenhuis tensor should be locally
projectible along H. These are two conditions of codim = ∞. �

Here is another generalization of Arnold’s theory of holomorphic curves
neighborhoods:

Theorem 25. A small neighborhood OL of a PH-curve L = Σ2
g is Kobayashi

hyperbolic iff g ≥ 2. For g = 0 the punctured neighborhood OL \ L is not
hyperbolic and for g = 1 it is not hyperbolically imbedded into OL.

We refer to [Kob] for the basics of hyperbolic spaces. In almost complex con-
text the corresponding notions were introduced in [KO] and a non-integrable
version of Brody criterion was established. Its application together with a theo-
rem of Lang (§3.6 [Kob]) and compactness from [Gro] yield the above statement.

6. Deformations of PH-curves

In this section we continue to study PH-curves L ≃ (Σ2
g, j). Let X =

C∞(Σ,M ;A) be the space of all smooth maps u : Σ2
g →M2n representing a fixed

homology classA ∈ H2(M) and ̺ : E → X be the bundle with the fiber ̺−1(u) =
Eu = Ω0,1(u∗TM) being the space of anti-linear maps TΣ → TM over u. For
Fredholm theory these spaces should be completed to appropriate functional
spaces ([MS]), whose precise choice is not crucial due to elliptic regularity. But
we will not specify them, because it is irrelevant for our geometric approach.

PH-curves L = Im[u : (Σ2
g, j) → (M,J)] in the class A are zeros of the

section ∂̄J = 1
2 (1 + J ◦ j∗) ◦ d : X → E and their union forms the moduli

space M(A, J) = ∂̄−1
J (0). To study regularity of a point u ∈ M(A, J) Gromov

[Gro] considers the linearization Du = D∂̄J : C∞(u∗TM) → Ω0,1(u∗TM). This
Gromov’s operator can be explicitly written ([MS, IS]) as

Du(v) = ∂̄u,J(v) + 1
4NJ(v, ∂J (u)). (19)
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The operator descends to the normal bundle in virtue of the following diagram:

0 → C∞(TΣ)
du

−−−−→ C∞(u∗TM)
proj

−−−−→ C∞(u∗TM)/C∞(TΣ) → 0

∂̄





y

Du





y
Ďu





y

0 → Ω0,1(TΣ)
du

−−−−→ Ω0,1(u∗TM)
proj

−−−−→ Ω0,1(u∗TM)/Ω0,1(TΣ) → 0.

As before we consider only regular PH-curves L = u(Σ) (singularities may
enlarge the sheaf of holomorphic sections of the normal bundle, see [IS]), in
which case C∞(u∗TM)/C∞(TΣ) = C∞(NLM) and similar for Ω0,1.

Proposition 26. The Gromov operator Ďu : C∞(NLM) → Ω0,1(NLM) coin-
cides with the Cauchy-Riemann operator ∂̄J̌ of the NB-II structure J̌ .

Of course, an indication of this result is Proposition 7.
Proof. This follows from Theorem 15 because the operator ∂̄J̌ with the

PH-bundle structure from formula (10) coincides with the expression (19). �

Now we introduce the Dolbeault cohomology groupsH0,0

∂̄J̌

(N II
L M) = Ker(Ďu)

and H0,1

∂̄J̌

(N II
L M) = CoKer(Ďu) (of course, Sobolev spaces are needed to insure

via Fredholm property that the dimensions are finite). Vanishing of the former
is equivalent to non-existence of deformations for the PH-curve L, while vanish-
ing of the latter means transversality of ∂̄J to the zero section of ̺ at u, whence
u is a regular point of the moduli space M(A, J).

Consider the case dimM = 4, where N I
LM is a holomorphic line bundle.

The following statement is essentially contained in [Gro, HLS, IS] (the two
statements below are equivalent via Kodaira-Serre duality).

Theorem 27. If c1(N
I
LM) < 0, then H0,0

∂̄J̌

(N II
L M) = 0. If c1(N

I
LM) > 2g − 2,

then H0,1

∂̄J̌

(N II
L M) = 0. �

For higher-dimensional M in the case g = 0 one proceeds as follows: By
Grothendieck’s theorem a holomorphic line bundle over S2 splits into line bun-
dles N I

LM = ⊕Li and then one gets the vanishing theorem requiring the corre-
sponding inequality for the Chern class of each line bundle Li.

Now for the rest of the section we study a particular interesting case of an
elliptic PH curve (g = 1) in four-dimensional manifold M4 and its deforma-
tion. We wish to get a non-deformation criterion, which is based on the whole
structure of N II

L M , not only of N I
LM .

Let self-intersection number of the curve be L · L = p. If p < 0, the curve
is not deformed by the positivity of intersections ([M1]). For p > 0 the virtual
moduli space has positive dimension (by the index computation for the linearized
Cauchy-Riemann operator).

Consider now topologically trivial normal bundles, p = 0, when the elliptic
curves are generically discrete and persistent under a small perturbation of the
structure J (this case was studied in [Ku] and the number of non-parametrized
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PH-tori was estimated). We will formulate an explicit sufficient condition of
non-deformation and persistence.

Let π : (E, J) → T 2 be a PH line bundle. Due to corollary 16 there exist
coordinates (z = x+ iy, w = s+ it) on E, with the gluing rule (17), such that

{

J∂x = ∂y + s · ξ − t · Jξ, J∂s = ∂t,
J∂y = −∂x − s · Jξ − t · ξ, J∂t = −∂s.

The vertical vector field ξ = 1
2JNJ(∂s, ∂x) can be decomposed ξ = 2β1∂t−2β2∂s

with β = β(z), β = β1 + iβ2.
Every PH-curve in E, homologous to the zero section T 2, is of the form

L = f(T 2) for some section f ∈ C∞(π). This follows from the properties of PH-
maps π : L→ T 2 of degree 1 (also from positivity of intersections for the spheres-
compactification of the fibers). Let us deduce the equation for f = f1 + if2.
The tangent bundle to the curve w = f(z) is spanned by

η1 = ∂x + ∂x(f1)∂s + ∂x(f2)∂t, η2 = ∂y + ∂y(f1)∂s + ∂y(f2)∂t. (20)

The pseudoholomorphicity condition Jη1 = η2 along f(T 2) is equivalent to the
equation

fz̄ + βf̄ = 0. (21)

Below we use the normalization of §5 for the pair (ω, l) from (17), charac-
terizing the holomorphic line bundle NB-I over an elliptic curve L = T 2.

Proposition 28. Let J be a PH line bundle structure and the corresponding
complex structure J0 from (10) have the multiplier l (normalized as in §5).
Determine the function Λ ∈ C∞(T 2) from the equation 1

2JNJ(∂w, ∂z) = Λ∂w̄.
Let l 6= 1 if Λ ≡ 0 and if Λ 6≡ 0 assume the inequality:

|∂z̄Λ| ≤ (1 − ε)|Λ|2 − |τΛ|, τ = ln |l|/ Imω, (22)

for some ε > 0. Then the zero section T 2 is the only PH-torus in E.

Notice that if Λ 6= 0, the inequality can be achieved via a simple rescaling. Its
meaning is then that the structure J is far from being integrable (J0).

Proof. We have Λ = −2iβ̄ because

1

2
JNJ(∂w, ∂z) = −2(β2 + iβ1)∂w̄,

1

2
JNJ(∂w̄, ∂z) = 0,

1

2
JNJ(∂w, ∂z̄) = 0,

1

2
JNJ(∂w̄, ∂z̄) = −2(β2 − iβ1)∂w,

(23)

Let us show that equation (21) has no nonzero solutions.
Our torus neighborhood is the product of the cylinder C2 = {z ∈ C | Im z ∈

[0, Imω)}/2πZ and C(w) glued by the rule (z, w) 7→ (z + ω, lw). The boundary
∂C2 consists of the circle S1 = R/2πZ and its ω-shift.
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Introduce the real-valued linear function σ = iτ 1
2 (z − z̄) and note that the

function h = e2σ satisfies: h(z + 2π) = h(z), h(z + ω) = h(z)/|l|2. So using
formula (21) and its consequence fz̄z = −βz f̄ + |β|2f we get:

0 =
( ll̄

|l|2
− 1

)

∮

S1

i

2
e2σfz̄ f̄dz̄ =

∫∫

C2

i

2
d(e2σfz̄f̄dz̄) =

∫∫

C2

e2σ
[

2|β|2|f |2 − (iτβ + βz)f̄
2
] i

2
dz ∧ dz̄.

Taking the real part we deduce:
∫∫

C2

e2σ(2|β|2 − |τβ| − |βz|)|f |
2 dx ∧ dy ≤ 0.

Since by the assumption 2(1 − ε)|β|2 − |τβ| ≥ |βz | for some positive ε, we
should have f = 0 or β = 0. If β ≡ 0, then the Fourier decomposition of
the 2π-periodic holomorphic function f and the condition f(z + ω) = lf(z) for
e− Im ω < |l| ≤ 1, l 6= 1, imply f ≡ 0. If β vanishes only on a domain D ⊂ T 2,
then f is holomorphic in D and vanishes in T 2 \D, whence f ≡ 0.

So there are no PH-tori T̃ 2, homologous to the zero section, with f 6≡ 0. If
the homology class of T̃ 2 is a multiple of the zero section [T̃ 2] = k[T 2] a k-finite
covering finishes the proof. �

Proposition 29. The linearized equation for close PH-tori can be written as

fz̄ + αf + βf̄ = 0. (24)

The function α = 0 for the normal coordinate w on NT 2M , equipped with NB-I
complex structure and with the gluing rule (17). Alternatively α = const for a
global well-defined coordinate w.

Proof. Since we are interested in the linearized equation, which is deter-
mined by 1-jet of J , we can use the normal form given by Theorem 20 (we sim-
plify it for dimension 4): J

..

= J0 + 1
2JNJ(r, ·). We write the complex structure

J0 in coordinates (z, w) of O(T 2) with the gluing rule (17) (p = 0): J0∂z = i∂z,
J0∂w = i∂w. Note that in these coordinates r = w∂w + w̄∂w̄.

The most general form of the Nijenhuis tensor along T 2 is the following:
− 1

2JNJ(∂z , ∂w)
.

= a∂z̄ +b∂w̄, where a = a(z, z̄), b = b(z, z̄) are smooth functions
on T 2. Then we obtain ({z = const} is assumed a PH-foliation, as in Proposition
6):

J∂z
..

= i∂z + aw∂z̄ + bw∂w̄, J∂w = i∂w.

If w = f(z, z̄) is a surface, then η = ∂z + fz∂w + f̄z∂w̄ and η̄ = ∂z̄ + fz̄∂w + f̄z̄∂w̄

span a complexified tangent plane to its graph.
Thus w = f(z, z̄) is a PH-curve iff Jη − iη − awη̄

.

= 0 (w = f is a function
of the first order of smallness on T 2, so we disregard wfz̄), which is equivalent
to the equation fz̄ = βf̄ with β = i

2 b̄. The first statement is proved.
We obtain the second statement, introduce a global coordinate by the change

w 7→ w · exp
( z − z̄

ω̄ − ω
ln l

)

, which yields equation (24) with α =
i

2

ln l

Imω
. �
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Remark 8. Equation (24) with α = 0, β = const was considered by Moser
[Mo]. The proposition proves a remark on p. 430 that ”the linearized equation
can be brought into form (24) with α = const”.

Theorem 30. Let the normal bundle of a PH-curve T 2 ⊂ (M4, J) be topo-
logically trivial and its NB-II structure be described by the function Λ, as in
Proposition 28, satisfying inequality (22). Then the curve is isolated and per-
sistent under small perturbations of J .

Proof. This follows from Propositions 7 and 28. Alternatively, since index
of the linearized Cauchy-Riemann operator P (f) = fz̄+af+bf̄ , f ∈ C∞(T 2,C),
is zero, the required properties follow from non-existence of non-zero solutions
of the equation P (f) = 0. �

Certainly a big perturbation of J can destroy the properties. Another crite-
rion of deformations non-existence with an additional requirement of complex
transports is given by Proposition 24.

A. Minimal almost complex connections

In this appendix we prove a theorem, which is basically due to Lichnerowicz.
Our proof, however, differs from the original one ([L]).

Recall that a linear connection on an almost complex manifold (M,J) can
always be taken J-linear. In fact, for any connection ∇ we can define

∇̂X =
1

2
(∇X − J∇XJ).

One easily checks that ∇̂ is a linear connection satisfying ∇̂JY = J∇̂Y .
Also let us recall that every tensor uniquely decomposes into its J-linear and

anti-linear parts. For instance if T is a (2, 1)-tensor, it has the decomposition

T = T++ + T+− + T−+ + T−−, where

T ε1ε2(JX, Y ) = ε1JT
ε1ε2(X,Y ), T ε1ε2(X, JY ) = ε2JT

ε1ε2(X,Y );

T ε1ε2(X,Y ) =
1

4

[

T (X,Y ) − ε1JT (JX, Y ) − ε2JT (X, JY ) − ε1ε2T (JX, JY )
]

.

Theorem 31. For any almost complex connection ∇ the totally antilinear part
of its torsion is T−−

∇ = 1
4NJ . There are connections, called minimal, for which

T∇ = 1
4NJ . These connections are sections of an affine bundle M(M,J) associ-

ated with the vector bundle S2T ∗M ⊗C TM over M .

Proof. The first formula follows directly from the definitions. There are also
other formulae expressing the Nijenhuis tensor via a covariant differentiation
(see [K1] for flat connections).

Consider now an almost complex connection ∇. We can make a gauge
transformation ∇ 7→ ∇̃ = ∇ + A, A ∈ C∞(T ∗M ⊗ (T ∗M ⊗C TM)), with the
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J-linearity condition imposed to keep ∇̃ almost complex. Then the torsion is
changed by the rule:

T∇̃ = T∇ +�(A),

where � = alt : ⊗2T ∗M ⊗ TM → Λ2T ∗M ⊗ TM is the alternation operator.
Introducing the decomposition

A = A+ +A−, Aε(X,Y ) =
1

2

[

A(X,Y ) − εJA(JX, Y )
]

,

we compute the components of �(A) =
∑

εi=±�
ε1ε2(A):

�
++(A) = A+ −A+τ, �+−(A) = −A−τ, �−+(A) = A−, �−−(A) = 0,

where τ(X,Y ) = (Y,X). We can make all the components of the torsion vanish-
ing, save for T−−

∇ , using the graded commutation relations T ε1ε2

∇ ◦ τ = −T ε2ε1

∇ .

Actually we get a minimal connection ∇̃ with the gauge

A = −
1

2
T++
∇ − T−+

∇ .

This proves the second part of the statement.
The last one follows from the above formulae for �ε1ε2(A): The gauge trans-

formation ∇ 7→ ∇+A does not change the minimality iff A+ is symmetric and
A− = 0, i.e. A ∈ C∞(S2T ∗M ⊗C TM). �

Proposition 32. Let ∇ ∈ M(M,J) be a minimal connection. Then

4S{R∇(X,Y )Z} = S{NJ(NJ (X,Y ), Z)} + S{(∇XNJ)(Y, Z)},

where S denotes the cyclic sum.

Proof. This is a direct corollary of the first Bianchi’s identity. �

Remark 9. Thus the field of the Nijenhuis tensors NJ ∈ C∞(Λ2T ∗M ⊗C̄ TM)
on a manifold M is not arbitrary. For a general position tensor NJ this follows
also from a result of [K1]: Such a tensor field N restores the structure ±J ,
which in turn determines NJ and we obtain the constraint N = NJ .

The formula of the proposition involves the curvature R∇, but neither it, nor
even its anti-linear part R−−

∇ is independent of ∇ ∈ MM . However we have:

Proposition 33. The operator �X∧YZ = ∇NJ (X,Y )Z− 4R−−
∇ (X,Y )Z is inde-

pendent of ∇ ∈ MM , tensorial in X,Y and is an NJ -twisted differentiation in
Z: �X∧Y (fZ) = (NJ (X,Y )f)Z + f�X∧Y Z.

Proof. In fact, if ∇̃ = ∇ + A ∈ MM is another minimal connection, then
A ∈ C∞(S2T ∗M ⊗C TM) and we calculate: R−−

∇̃
= R−−

∇ + 1
4ANJ

. �

Using � we can multiply invariants of an almost complex structure. For
instance, �NJ ∈ C∞(Λ2

C
T ∗M⊗(Λ2T ∗M⊗C̄TM)). There are other ways to get

invariants – by prolongation-projection method and via the Frölicher-Nijenhuis
bracket ([K1]), but they are different from this differentiation.
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B. Normal bundle in other geometries.

The proposed construction of the tangent and normal bundle structures is
more general and can be carried out for other geometric structures (the subman-
ifold L ⊂ M should allow restriction of the structure). One chooses a Cartan
connection ∇ (i.e. preserving the structure) on M with a kind of minimality: Its
torsion should be equal to the corresponding structural (Weyl) tensor ([St, KL]),
which is realized (we consider, for simplicity, the case of the first order struc-
tures) via a splitting σ of the exact sequence

0 → g(1) i
−→ g ⊗ T ∗

xM
δ

−→ Λ2T ∗
xM ⊗ TxM

σ
L99

−→ H0,2(g) → 0.

Here the last term is the Spencer δ-cohomology group (space of structural func-
tions), g ⊂ aut(TxM) is the symbol of the geometric structure and g(1) = Ker δ
is its prolongation ([KL]). The freedom in a choice of ∇ is thus reduced to g(1).

For an almost complex structure J : g = glC(TxM,J) and the prolongation
is g(1) = S2T ∗

xM ⊗C TxM , cf. Theorem 31.
For a symplectic structure Ω: g = sp(TxM,Ω), g(1) = S3T ∗

xM and a canon-
ical normal bundle structure Ω̂ appears. By the symplectic neighborhood theo-
rem ([W]) it is completely determined by the restriction ΩL and the isomorphism
class of the normal bundle with fiber-wise symplectic structure, usually called
”symplectic normal bundle” (νL,Ω).

For a Riemannian structure g: g = so(TxM, g), g(1) = 0. ∇ is the Levi-
Civita connection. It splits the normal bundle NLM and leads to the normal
bundle structure ĝ. Another approach to ĝ is similar to (3): One constructs
a normal foliation W around L via geodesics γ ⊂ W in all normal directions
T⊥

x L, x ∈ L, and applies the dilatations Rt along geodesics.
Defining in this way the normal structure on NLM we obtain two structural

tensors on L: One original on L ⊂M and the other from the normal bundle on
the zero section L ⊂ NLM . There are relations between these tensors. For an
almost complex structure J we described them in §3.

Consider now a Riemannian metric g. Our structural tensors are: Rieman-
nian curvature Rg along L and the normal bundle curvature Rĝ at zero section.

To describe the relations consider the curvature of the normal bundle R⊥.
It is the curvature tensor of the normal connection ∇⊥, given by the orthogonal
decomposition in TM |L = TL⊕NLM , R = R‖ + R⊥. Note that R⊥(X,Y ) =
Rĝ(X,Y ) for X,Y ∈ TL and the left-hand side is not defined for others X,Y .

Let II : TL ⊗ TL → NLM be the second quadratic form of L and A :
TL⊗NLM → TL be the shape (Peterson) operator given by g(A(X,V ), Y ) =
g(II(X,Y ), V ), X,Y ∈ TL, V ∈ NLM . The Ricci equation reads:

[Rg(X,Y )V ]⊥ = R⊥(X,Y )V + II(X,A(Y, V )) − II(Y,A(X,V )),

where X,Y, Z ∈ TL, V ∈ NLM .
In particular when L is totally geodesic II = 0 and A = 0, so that the

equation mean Rg(X,Y ) = Rĝ(X,Y ) for X,Y ∈ TL at the points of L.
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Similar calculations occurs in other geometries, like projective or conformal,
they can be deduced from the basic structure equations [N] of these geometries.
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Birkhäuser Verlag, Progr. in Math. 117(1994), 69–73.

[Gra] H. Grauert, Uber Modificationen und exzeptionelle analytische Mengen, Math.
Ann., 146, no. 4 (1962), 331–368.

[Gro] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent.
Math., 82 (1985), 307–347.

[HLS] H. Hofer, V. Lizan, J.-C. Sikorav, On genericity for holomorphic curves in

four-dimensional almost-complex manifolds, Jour. of Geom. Anal., 7 (1998),
149–159.

[IS] S. Ivashkovich, V. Shevchishin, Structure of the moduli space in a neighborhood

of a cusp-curve and meromorphic hulls, Invent. Math. 136 (1999), no. 3, 571–
602.

[Kob] S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag (1998).

[KN] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry , Wiley-
Interscience, (1963)

[KL] B. S. Kruglikov, V.V. Lychagin, On equivalence of differential equations Acta
et Commentationes Universitatis Tartuensis de Matematica, 3 (1999), 7–29.

[KO] B. Kruglikov, M. Overholt, The Kobayashi pseudodistance on almost complex

manifolds, Differential Geom. Appl., 11 (1999), 265–277.

[K1] B. S. Kruglikov, Nijenhuis tensors and obstructions for pseudoholomorphic

mapping constructions, Math. Notes, 63, no. 4 (1998), 541–561.

[K2] B. S. Kruglikov, Non-existence of higher-dimensional pseudoholomorphic sub-

manifolds, Manuscripta Mathematica, 111 (2003), 51–69.

24



[K3] B. S. Kruglikov, Characteristic distributions on 4-dimensional almost complex

manifolds, in: Geometry and Topology of Caustics - Caustics ’02, Banach
Center Publications, 62 (2004), 173–182.

[Ku] S. B. Kuksin, Double-periodic solutions of nonlinear Cauchy-Riemann equa-

tions, Comm. Pure Appl. Math., XLIX (1996), 639–676.
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