ANOMALY OF LINEARIZATION AND AUXILIARY INTEGRALS.

BORIS KRUGLIKOV

Abstract

In this note we discuss some formal properties of universal linearization operator, relate this to brackets of non-linear differential operators and discuss application to the calculus of auxiliary integrals, used in compatibility reductions of PDEs.

Introduction

Commutator $[\Delta, \nabla]$ of linear differential operators $\Delta, \nabla \in \operatorname{Diff}(\pi, \pi)$ in the context of non-linear operators $F, G \in \operatorname{diff}(\pi, \pi)$ is up-graded to the higher Jacobi bracket $\{F, G\}$, which plays the same role in compatibility investigations and symmetry calculus 1

The linearization operator relates non-linear operators on a bundle π with linear operators on the same bundle, whose coefficients should be however smooth functions on the space of infinite jets. The latter space is the algebra of \mathscr{C}-differential operators and we get the map

$$
\ell: \operatorname{diff}(\pi, \pi) \rightarrow \mathscr{C} \operatorname{Diff}(\pi, \pi)=C^{\infty}\left(J^{\infty} \pi\right) \otimes_{C^{\infty}(M)} \operatorname{Diff}(\pi, \pi)
$$

defined by the formula KLV]

$$
\ell_{F}(s) h=\left.\frac{d}{d t} F(s+t h)\right|_{t=0}, \quad F \in \operatorname{diff}(\pi, \pi), \quad s, h \in C^{\infty}(\pi) .
$$

However it does not respect the commutator:

$$
\left[\ell_{F}, \ell_{G}\right] \neq \ell_{\{F, G\}}
$$

Example: Consider the scalar differential operators on \mathbb{R}, so that $\pi=1$ and $J^{\infty}(\pi)=\mathbb{R}^{\infty}\left(x, u, p=p_{1}, p_{2}, \ldots\right)$. Choose

$$
F=p^{2}, G=p+c \cdot x ; \quad\{F, G\}=2 c p \Longrightarrow \ell_{\{F, G\}}=2 c \mathcal{D}_{x}
$$

If we commute $\ell_{F}=2 p \mathcal{D}_{x}$ and $\ell_{G}=\mathcal{D}_{x}$, we get: $\left[\ell_{F}, \ell_{G}\right]=-2 p_{2} \mathcal{D}_{x}$, so that we observe an anomaly.

There are two reasons for this. The first is that the operator of linearization disregards non-homogeneous linear terms, which are important for the Jacobi bracket. The second is the non-linearity itself.

[^0]The goal of this note is to discuss reasons and consequences of this anomaly (this also plays a significant role in investigation of coverings and non-local calculus [KKV]).

Acknowledgement. The results were obtained and systematized during the research stay in Max Planck Institute for Mathematics in the Sciences, Leipzig, in April-May 2007.

1. Anomaly via Hessian

The Jacobi bracket of non-linear operators $F, G \in \operatorname{diff}(\pi, \pi)$ is expressed via linearization as follows:

$$
\{F, G\}=\ell_{F} G-\ell_{G} F
$$

We also consider the evolutionary operators defined by duality:

$$
\vartheta_{F} G=\ell_{G} F .
$$

Since ℓ_{G} is a derivation in $G, Э_{F}$ is a derivation (satisfies the Leibniz rule) and their union can be treated as the module of vector fields. These operators have no anomaly, i.e. the map Э : $C^{\infty}\left(J^{\infty} \pi\right) \rightarrow$ $\operatorname{Vect}\left(J^{\infty} \pi\right)$ is an anti-homomorphism:

$$
\left[Э_{F}, Э_{G}\right]=-Э_{\{F, G\}} .
$$

This instantly implies Jacobi identity for the bracket $\{F, G\}$, so that ($\operatorname{diff}(\pi, \pi),\{\}$,$) is a Lie algebra [KLV].$

The operators of universal linearization and evolutionary differentiation do not commute and this leads to the following
Definition. The Hessian operator $\operatorname{diff}(\pi, \pi) \times \operatorname{diff}(\pi, \pi) \rightarrow \mathscr{C} \operatorname{Diff}(\pi, \pi)$ is defined by the formula

$$
\operatorname{Hess}_{F} G=\left[Э_{G}, \ell_{F}\right] .
$$

We will also write $\operatorname{Hess}_{F}(G, H)=\operatorname{Hess}_{F} G(H)$ for $F, G, H \in \operatorname{diff}(\pi, \pi)$ and note that $\operatorname{Hess}_{F} \equiv 0$ for linear operators F, because in this case $\ell_{F}=F$, which reduces the claim to the commutation of left and right multiplications.

Next we note that the Hessian Hess_{F} is symmetric:
Lemma 1. $\operatorname{Hess}_{F}(G, H)=\operatorname{Hess}_{F}(H, G)$.
Indeed:

$$
\operatorname{Hess}_{F}(G, H)=Э_{G} \ell_{F} H-\ell_{F} Э_{G} H=Э_{G} Э_{H} F-\ell_{F} \ell_{H} G,
$$

so that

$$
\begin{aligned}
& \operatorname{Hess}_{F}(G, H)-\operatorname{Hess}_{F}(H, G)=\left[Э_{G}, Э_{H}\right] F-\ell_{F}\{H, G\} \\
&=-Э_{\{G, H\}} F-\ell_{F}\{H, G\}=0 .
\end{aligned}
$$

Now we can express the anomaly of linearization via the Hessian:
Proposition 2. $\left[\ell_{F}, \ell_{G}\right]-\ell_{\{F, G\}}=\operatorname{Hess}_{G} F-\operatorname{Hess}_{F} G$.
Indeed we have:

$$
\begin{aligned}
& {\left[\ell_{F}, \ell_{G}\right] H=} \\
& \quad=\ell_{F} Э_{H} G-\ell_{G} Э_{H} F \\
& =Э_{H}\left(\ell_{F} G-\ell_{G} F\right)-\operatorname{Hess}_{F}(H, G)+\operatorname{Hess}_{G}(H, F) \\
& \quad=Э_{H}\{F, G\}-\operatorname{Hess}_{F}(G, H)+\operatorname{Hess}_{G}(F, H) \\
& \quad=\ell_{\{F, G\}} H+\left(\operatorname{Hess}_{G} F-\operatorname{Hess}_{F} G\right) H .
\end{aligned}
$$

Finally let us express the Leibniz identity for non-linear operators and the Jacobi bracket. For linear operators it is well-known, but for non-linear ones there's an anomaly:

Proposition 3. $\left\{F, \ell_{G} H\right\}=\ell_{\{F, G\}} H+\ell_{G}\{F, H\}-\operatorname{Hess}_{F}(G, H)$.
This is obtained as follows:

$$
\begin{aligned}
\left\{F, \ell_{G} H\right\}= & \ell_{F} \ell_{G} H-Э_{F} \ell_{G} H \\
& =\left[\ell_{F}, \ell_{G}\right] H+\ell_{G}\left(\ell_{F}-Э_{F}\right) H-\operatorname{Hess}_{G}(F, H) \\
& =\ell_{\{F, G\}} H+\ell_{G}\{F, H\}-\operatorname{Hess}_{F}(G, H) .
\end{aligned}
$$

2. Coordinate expressions

A local coordinate system $\left(x^{i}, u^{j}\right)$ on π induces the canonical coordinates $\left(x^{i}, p_{\sigma}^{j}\right)$ on the space $J^{\infty} \pi$, where $\sigma=\left(i_{1}, \ldots, i_{n}\right)$ is a multi-index of length $|\sigma|=i_{1}+\cdots+i_{n}$. The operator of total derivative of multiorder $\sigma($ and order $|\sigma|)$ is $\mathcal{D}_{\sigma}=\mathcal{D}_{1}^{i_{1}} \cdots \mathcal{D}_{n}^{i_{n}}$, where $\mathcal{D}_{i}=\partial_{x^{i}}+\sum p_{\tau+1_{i}}^{j} \partial_{p_{\tau}^{j}}$.

The linearization of $F=\left(F_{1}, \ldots, F_{r}\right)$ is $\ell_{F}=\left(\ell\left(F_{1}\right), \ldots, \ell\left(F_{r}\right)\right)$ with

$$
\ell\left(F_{i}\right)=\sum\left(\partial_{p_{\sigma}^{j}} F_{i}\right) \cdot \mathcal{D}_{\sigma}^{[j]},
$$

where $\mathcal{D}_{\sigma}^{[j]}$ denotes the operator \mathcal{D}_{σ} applied to the j-th component of the section from $C^{\infty}(\pi)$.

The i-th component of the evolutionary differentiation ϑ_{G} corresponding to $G=\left(G_{1}, \ldots, G_{n}\right)$ equals

$$
Э_{G}^{i}=\sum\left(\mathcal{D}_{\sigma} G_{j}\right) \cdot \partial_{p_{\sigma}^{j}}{ }^{[i]},
$$

where $\partial_{p_{\sigma}^{j}}{ }^{[i]}$ denotes the operator $\partial_{p_{\sigma}^{j}}$ applied to the i-th component of the section from $C^{\infty}(\pi)$.

Then i-th components of the Jacobi bracket is given by

$$
\{F, G\}_{i}=\sum\left(\mathcal{D}_{\sigma}\left(G_{j}\right) \cdot \partial_{p_{\sigma}^{j}} F_{i}-\mathcal{D}_{\sigma}\left(F_{j}\right) \cdot \partial_{p_{\sigma}^{j}} G_{i}\right)
$$

These formulas are known [KLV]. It is instructive to demonstrate the Jacobi identity in coordinates. For this we need the following assertion.

Lemma 4. In canonical coordinates on $J^{\infty} \pi$:

$$
\partial_{p_{\sigma}^{i}} \mathcal{D}_{\tau}=\sum \mathcal{D}_{\tau-\varkappa} \partial_{p_{\sigma-\varkappa}^{i}}
$$

(the difference of multi-indices $\sigma-\varkappa$ is defined whenever $\varkappa \subset \sigma$), the summation is by \varkappa counted with multiplicity. More generally for vector differential operators if $\mathcal{D}_{\sigma}^{[j]}$ is the operator \mathcal{D}_{σ} acting on the j-th component, then the above formula holds true for such specification.

This follows from iteration of the formula $\left[\partial_{p_{\sigma}^{j}}, \mathcal{D}_{i}\right]=\partial_{p_{\sigma-1_{i}}^{j}}$. Thus

$$
\begin{gathered}
\{F,\{G, H\}\}=\sum F_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(G_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(H)-F_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(H_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(G) \\
-G_{p_{\sigma} p_{\tau}} \mathcal{D}_{\tau}(H) \mathcal{D}_{\sigma}(F)+H_{p_{\sigma} p_{\tau}} \mathcal{D}_{\tau}(G) \mathcal{D}_{\sigma}(F) \\
-\left(G_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(H_{p_{\tau-\varkappa}}\right)-H_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(G_{p_{\tau-\varkappa}}\right)\right) \mathcal{D}_{\tau}(F),
\end{gathered}
$$

which yields $\sum_{\text {cyclic }}\{F,\{G, H\}\}=0$.
Now we write the Hessian:

$$
\operatorname{Hess}_{F}(G, H)=\sum F_{p_{\sigma} p_{\tau}} \mathcal{D}_{\sigma} G \cdot \mathcal{D}_{\tau} H
$$

and its symmetry in G, H and vanishing for linear F is obvious.
The compensated Leibniz formula can be written as follows:

$$
\begin{aligned}
& \quad\left\{F, \ell_{G} H\right\}-\ell_{\{F, G\}} H-\ell_{G}\{F, H\}= \\
& \sum F_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(G_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(H)-\left(G_{p_{\sigma} p_{\tau}} \mathcal{D}_{\tau}(H) \mathcal{D}_{\sigma}(F)+G_{p_{\tau}} \partial_{p_{\sigma}} \mathcal{D}_{\tau}(H)\right) \mathcal{D}_{\sigma}(F) \\
& -\left(F_{p_{\sigma} p_{\tau}} \mathcal{D}_{\sigma}(G)+F_{p_{\sigma}} \partial_{p_{\tau}} \mathcal{D}_{\sigma}(G)\right) \mathcal{D}_{\tau}(H)+\left(G_{p_{\sigma} p_{\tau}} \mathcal{D}_{\sigma}(F)+G_{p_{\sigma}} \partial_{p_{\tau}} \mathcal{D}_{\sigma}(F)\right) \mathcal{D}_{\tau}(H) \\
& -G_{p_{\sigma}}\left(\mathcal{D}_{\sigma-\varkappa}\left(F_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(H)-\mathcal{D}_{\sigma-\varkappa}\left(H_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(F)\right)=-\operatorname{Hess}_{F}(G, H)
\end{aligned}
$$

and the anomaly in commuting linearizations is:

$$
\begin{aligned}
& {\left[\ell_{F}, \ell_{G}\right]-\ell_{\{F, G\}}=} \\
& \qquad F_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(G_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(H)-G_{p_{\sigma}} \mathcal{D}_{\sigma-\varkappa}\left(F_{p_{\tau}}\right) \mathcal{D}_{\tau+\varkappa}(H) \\
& -\left(F_{p_{\sigma} p_{\tau}} \mathcal{D}_{\sigma}(G)+F_{p_{\sigma}} \partial_{p_{\tau}} \mathcal{D}_{\sigma}(G)\right) \mathcal{D}_{\tau}(H)+\left(G_{p_{\sigma} p_{\tau}} \mathcal{D}_{\sigma}(F)+G_{p_{\sigma}} \partial_{p_{\tau}} \mathcal{D}_{\sigma}(F)\right) \mathcal{D}_{\tau}(H) \\
& =\operatorname{Hess}_{G}(F, H)-\operatorname{Hess}_{F}(G, H)
\end{aligned}
$$

This gives an alternative proof of Propositions 3 and 2 .

3. Auxiliary integrals

Definition. An operator $G \in \operatorname{diff}(\pi, \pi)$ is called an auxiliary integral for $F \in \operatorname{diff}(\pi, \pi)$ if

$$
\{F, G\}=\ell_{\lambda} F+\ell_{\mu} G
$$

for some operators $\lambda \in \operatorname{diff}(\pi, \pi)$ and $\mu \notin \mathscr{C} \operatorname{Diff}(\pi, \pi) \cdot F \backslash\{0\}$. The set of such G is denoted by $\operatorname{Aux}(F)$.

It is better to denote $\operatorname{Aux}_{\mu}(F)$ the space of G satisfying the above formula with some fixed $\mu \in \operatorname{diff}(\pi, \pi)$, because it is a vector space. Then $\operatorname{Aux}(F)=\cup_{\mu} \operatorname{Aux}_{\mu}(F)$. We can assume $\operatorname{ord}(\mu)<\operatorname{ord}(F)$ for scalar operators, i.e. $\operatorname{rank} \pi=1$.

With certain non-degeneracy condition for the symbols of F, G the following statement holds:

Theorem 5. A non-linear differential operator G is an auxiliary integral for another operator F iff the system $F=0, G=0$ is compatible (formally integrable).

The generic position condition for the symbols of F, G is essential. If $\pi=\mathbf{1}$ is the trivial one-dimensional bundle, this condition is just the transversality of the characteristic varieties $\operatorname{Char}^{\mathbb{C}}(F)$ and $\operatorname{Char}^{\mathbb{C}}(G)$ in the bundle $\mathbb{P}^{\mathbb{C}} T^{*} M$ (after pull-back to the joint system $F=G=0$ in jets); in this form it is a particular form of the statement proved in KL_{2}. For rank $\pi>1$ the condition is more delicate and will be presented elsewhere.

Notice that $\operatorname{Aux}_{0}(F)=\operatorname{Sym}(F)$ is the space of symmetries of F. This is a Lie algebra with respect to the Jacobi bracket. It can be represented as a union of spaces

$$
\operatorname{Sym}_{\theta}(F)=\left\{H: \ell_{F} H=\ell_{\theta+H} F\right\}, \quad \theta \in \operatorname{diff}(\pi, \pi),
$$

which are modules over $\operatorname{Sym}_{0}(F)$. More generally we have the graded group: $\operatorname{Sym}_{\theta^{\prime}}(F)+\operatorname{Sym}_{\theta^{\prime \prime}}(F) \subset \operatorname{Sym}_{\theta^{\prime}+\theta^{\prime \prime}}(F)$

Let us assume $G \in \operatorname{Aux}_{\mu}(F), H \in \operatorname{Sym}_{\theta}(F)$, i.e.

$$
\{F, G\}=\ell_{\lambda} F+\ell_{\mu} G, \quad\{F, H\}=\ell_{\theta} F
$$

Then denoting $\operatorname{ad}_{H}=\{H, \cdot\}=\ell_{H}-Э_{H}$ we get:

$$
\begin{aligned}
& \operatorname{ad}_{F}\{G, H\}=\left\{\operatorname{ad}_{F} G, H\right\}+\left\{G, \operatorname{ad}_{F} H\right\} \\
& =-\left\{H, \ell_{\lambda} F+\ell_{\mu} G\right\}+\left\{G, \ell_{\theta} F\right\} \\
& =\ell_{\{\lambda, H\}} F+\ell_{\lambda}\{F, H\}+\operatorname{Hess}_{H}(\lambda, F)+\ell_{\{\mu, H\}} G+\ell_{\mu}\{G, H\}+\operatorname{Hess}_{H}(\mu, G) \\
& \quad-\ell_{\{\theta, G\}} F-\ell_{\theta}\{F, G\}-\operatorname{Hess}_{G}(\theta, F) \\
& =\left(\ell_{\{\lambda, H\}}+\left[\ell_{\lambda}, \ell_{\theta}\right]-\ell_{\{\theta, G\}}+\operatorname{Hess}_{H} \lambda-\operatorname{Hess}_{G} \theta\right) F+\ell_{\mu}\{G, H\} \\
& \quad+\left(\ell_{\{\mu, H\}}-\ell_{\theta} \ell_{\mu}+\operatorname{Hess}_{H} \mu\right) G .
\end{aligned}
$$

Thus $\{G, H\}$ is an auxiliary integral for F if $\ell_{\theta} \ell_{\mu}=\ell_{\{\mu, H\}}+\operatorname{Hess}_{H} \mu$ (the "iff" condition means the difference annihilates G), which can be written as

$$
\mu \in \operatorname{Ker}\left[\left(\ell_{\theta}+\ell_{\mathrm{ad}_{H}}-\operatorname{Hess}_{H}\right) \circ \ell\right] .
$$

Such a pair $\theta \in \operatorname{sym}^{*}(F)=\operatorname{Sym}(F) / \operatorname{Sym}_{0}(F), H \in \operatorname{Sym}_{\theta}(F)$ determines the action of the second component

$$
\operatorname{ad}_{H}: \operatorname{Aux}_{\mu}(F) \rightarrow \operatorname{Aux}_{\mu}(F)
$$

Also since

$$
\begin{gathered}
\ell_{\{\mu, H\}} G=Э_{G}\{\mu, H\}=Э_{G} Э_{H}(\mu)-Э_{G} \ell_{H}(\mu)=\left(Э_{H}-\ell_{H}\right) Э_{G}(\mu) \\
-Э_{\{G, H\}} \mu-\operatorname{Hess}_{H}(G, \mu)=-\operatorname{ad}_{H} Э_{G}(\mu)-\operatorname{Hess}_{H}(\mu, G)-\ell_{\mu}\{G, H\},
\end{gathered}
$$

we have:

$$
\ell_{\mu}\{G, H\}+\left(\ell_{\{\mu, H\}}-\ell_{\theta} \ell_{\mu}+\operatorname{Hess}_{H} \mu\right) G=-\left(\operatorname{ad}_{H}+\ell_{\theta}\right) \ell_{\mu} G .
$$

Thus if $H \in \operatorname{Sym}_{\theta}(F)$, i.e. $\left(\operatorname{ad}_{H}+\ell_{\theta}\right) F=0$, and $\mu \in \operatorname{Ker}\left[\left(\operatorname{ad}_{H}+\ell_{\theta}\right) \circ \ell\right]$, i.e. $\left(\mathrm{ad}_{H}+\ell_{\theta}\right) \ell_{\mu}=0$, then

$$
\operatorname{ad}_{H}: \operatorname{Aux}_{\mu}(F) \rightarrow \operatorname{Sym}(F) .
$$

4. Symmetries and compatibility

It has been a common belief that if $G \in \operatorname{Sym}(F)$, then the system $F=0, G=0$ is compatible, which forms the base of investigation for auto-model solutions. This is however not always true.
Example: Let F, G be two linear diagonal operators with constant coefficients. Then $\{F, G\}=0$ (in this case the Jacobi bracket is the standard commutator), so that G is a symmetry of F. However the system $F=0, G=0$ is usually incompatible: for generic F, G of the considered type the only solution will be the trivial zero vectorfunction.

More complicated non-diagonal operators are possible, but it would be better to consider non-homogeneous linear operators. Then if the
coefficients are constant and generic, the linear matrix part commute, but the system $F=0, G=0$ may have no solutions at all.

For instance if we take

$$
\begin{aligned}
& F=\left[\begin{array}{cc}
\left(\mathcal{D}_{x}^{2}-\mathcal{D}_{y}\right) & 0 \\
0 & \left(\mathcal{D}_{x} \mathcal{D}_{y}+1\right)
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
& G=\left[\begin{array}{cc}
\left(\mathcal{D}_{x} \mathcal{D}_{y}-1\right) \\
0 & \left(\mathcal{D}_{y}^{2}-\mathcal{D}_{x}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right],
\end{aligned}
$$

then $\{F, G\}=0$, so that $G \in \operatorname{Sym}(F)$, while the system $F=0, G=0$ is not compatible, and moreover its solutions space is empty.

Thus the flow $u_{t}=G(u)$ on the equation $F=0$ has no fixed points (no auto-model solutions). Here t is an additional variable (x is the base multi-variable for PDEs $F=0$ and $G=0$), so that $G \in \operatorname{Sym}(F)$ can be expressed as compatibility of the system

$$
F(u)=0, \quad u_{t}=G(u)
$$

while symmetric solutions correspond to the stationary case $u_{t}=0$, i.e. compatibility of the system $F(u)=0, G(u)=d^{2}$.

However if the non-degeneracy condition assumed in Theorem 5 is satisfied, then auto-model (or invariant) solutions exist in abundance, namely they have the required functional dimension and rank as Hilbert polynomial (or Cartan test [C]) predicts, see KL_{4}.

Remark. Symmetric solutions are the stationary points of the evolutionary fields and they are similar to the fixed points of smooth vector fields on \mathbb{R}^{n}, which must exist provided the vector field is Morse at infinity. The non-degeneracy condition plays a similar role.

Many examples of auto-model solutions and their generalizations can be found in $\mathrm{BK}, \mathrm{Ol}, \mathrm{Ov}$, non-local analogs use the same technique and similar theory [KLV, KK, KKV].

Compatible systems correspond to reductions of PDEs and are sometimes called conditional symmetries by analogy with finite-dimensional integrable systems on one isoenergetic surface [FZ]. But the rigorous result must rely on certain general position property for the symbol of differential operators, otherwise it can turn wrong $\mathrm{KL}_{2}, \mathrm{KL}_{3}$. The method based on this approach makes specification of the general idea of differential constraint and is described in KL_{1}.

[^1]
5. Conclusion

In this note we described the higher-jets calculus corresponding to symmetries and compatible constraints, basing on the Jacobi brackets. Another approach to integrability of vector systems is given by minimal overdetermination and it uses multi-brackets of differential operators

$$
\{\cdots\}: \Lambda^{m+1} \operatorname{diff}(m \cdot \mathbf{1}, \mathbf{1}) \rightarrow \operatorname{diff}(m \cdot \mathbf{1}, \mathbf{1})
$$

introduced in KL_{3}, which are governed by the non-commutative Plücker identity.

Following this approach a minimal generalization of symmetry for $F=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{diff}(\pi, \pi)$ with $\pi=m \cdot \mathbf{1}$ is such $G \in \operatorname{diff}(\pi, \mathbf{1})$ that

$$
\left\{F_{1}, \ldots, F_{m}, G\right\}=\ell_{\theta_{1}} F_{1}+\cdots+\ell_{\theta_{m}} F_{m}
$$

With certain non-degeneracy assumption KL_{3} this implies that the overdetermined system $F=0, G=0$ is compatible (formally integrable).

A more advanced algebraic technique would yield another higherjets calculus producing anomaly that manifests in non-vanishing of the expression

$$
\left\{\ell_{F_{1}}, \cdots, \ell_{F_{m+1}}\right\}-\ell_{\left\{F_{1}, \cdots, F_{m+1}\right\}} .
$$

Implications for vector auxiliary integrals and generalized LagrangeCharpit method follow the same scheme.

References

[BK] G. W. Bluman, S. Kumei, Symmetries and differential equations, Appl. Math. Sci. 81, Springer, 1989.
[C] E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques (French), Actualités Sci. Ind. 994, Hermann, Paris (1945).
[FZ] W.I. Fushchych, R.Z. Zhdanov, Conditional symmetry and reduction of partial differential equations, Ukrain. Math. J. 44 (1992), 970-982.
[KKV] P. Kersten, I. S. Krasilschik, A. Verbovetsky, Hamiltonian operators and ℓ^{*}-coverings, J. Geom. and Phys., 50 (2004) 273-302.
[KLV] I. S. Krasilschik, V. V. Lychagin, A. M. Vinogradov, Geometry of jet spaces and differential equations, Gordon and Breach (1986).
[KL_{1}] B. S. Kruglikov, V.V. Lychagin, A compatibility criterion for systems of PDEs and generalized Lagrange-Charpit method, A.I.P. Conference Proceedings, Global Analysis and Applied Mathematics: International Workshop on Global Analysis, 729, no. 1 (2004), 39-53.
[KL_{2}] B. S. Kruglikov, V. V. Lychagin, Mayer brackets and solvability of PDEs II, Trans. Amer. Math. Soc. 358, no. 3 (2005), 1077-1103.
$\left[\mathrm{KL}_{3}\right]$ B.S. Kruglikov, V.V. Lychagin, Compatibility, multi-brackets and integrability of systems of PDEs, prepr. Univ. Tromsø 2006-49; ArXive: math.DG/0610930.
[KL_{4}] B. S. Kruglikov, V.V. Lychagin, Geometry of Differential equations, in: D. Krupka, D. Saunders, Handbook of Global Analysis (2007); prepr. IHES/M/07/04.
[KK] I.S. Krasilshchik, P.H.M. Kersten, Symmetries and recursion operators for classical and supersymmetric differential equations, Kluwer (2000).
[Ol] P. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York (1986).
[Ov] L. V. Ovsiannikov, Group analysis of differential equations, Russian: Nauka, Moscow (1978); Engl. transl.: Academic Press, New York (1982).

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, NORWAY.

E-mail address: kruglikov@math.uit.no

[^0]: ${ }^{1}$ MSC numbers: 35A27, 58A20; 58J70, 35A30.
 Keywords: Linearization, evolutionary differentiation, compatibility, differential constraint, symmetry, reduction, Jacobi bracket, multi-bracket.

[^1]: ${ }^{2}$ I am grateful to S.Igonin and A.Verbovetsky for an enlightening discussion about the results of $\mathrm{KL}_{2}, \mathrm{KL}_{3}$ and the symmetry condition.

