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Abstract

A general method is presented for the calculation of molecular properties to arbitrary order at

the Kohm-Sham density functional level of theory. The quasienergy and Lagrangian formalisms are

combined to derive response functions and their residues by straightforward di�erentiation of the

quasienergy derivative Lagrangian using the elements of the density matrix in the atomic orbital

representation as variational parameters. Response functions and response equations are expressed

in the atomic orbital basis, allowing recent advances in the �eld of linear-scaling methodology to be

used. Time-dependent and static perturbations are treated on an equal footing, and atomic basis

sets that depend on the applied frequency-dependent perturbations may be used, e.g. frequency-

dependent London atomic orbitals.

The 2n+1 rule may be applied, if computationally favorable, but alternative formulations using

higher-order perturbed density matrices are also derived. These may be advantageous in order to

minimize the number of response equations that needs to be solved, for instance when one of the

perturbations has many components, as is the case for the �rst-order geometrical derivative of the

hyperpolarizability.
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I. INTRODUCTION

Molecular properties represent the link between observable quantities that can be deter-
mined in experimental investigations and quantum chemical calculations. For this reason,
the calculation of molecular properties has been an essential target since the development of
modern electronic-structure methods was initiated.

The focus in theoretical and experimental chemistry has in the last decade shifted to-
wards larger molecular systems. For the treatment of time-dependent phenomena of large
molecules, the method of choice today is time-dependent Kohn�Sham density functional the-
ory (KS-DFT) [1�4] (including hybrid methods and Hartree�Fock) which o�ers reasonable
accuracy at a low computational cost. In order to facilitate computations on increasingly
larger systems, it is important that the computational time scales linearly with the size of
the system. In conventional KS methods, the determination of the molecular (spin-)orbital
(MO) coe�cients requires a diagonalization of the KS matrix, a procedure that scales cubi-
cally with the size of the system. To obtain linear scaling, it is necessary to abandon the MO
description and work solely in terms of the density matrix in the atomic (spin-)orbital (AO)
representation [5�8]. By deriving working equations in the AO basis, linear scaling can be
achieved when the molecular system becomes su�ciently large and sparse matrix algebra is
used.

Molecular properties may be evaluated using the response function approach. Response
theory as developed in the eighties [9]�where response functions are subjected to a pole
and residue analysis�has been used successfully to calculate a large variety of molecular
properties. In the nineties, the quasienergy approach [10, 11] tied response function theory
closely to the energy-derivative techniques in time-independent theory. Using the quasienergy
approach, response functions may be straightforwardly derived for both variational and non-
variational wave functions [11].

In this paper we apply the quasienergy approach to determine response functions and
their residues within KS theory using the elements of the AO density matrix (which in
the following will be referred to simply as the density matrix) as variational parameters.
Response functions are then obtained in the AO basis and linear scaling may therefore be
achieved. Standard basis sets and basis sets that depend explicitly on applied frequency-
dependent perturbations (perturbation-dependent basis sets, PDBS) are treated on an equal
footing.

The presented derivation is a generalization of the developments by Helgaker et al. [12, 13],
who introduced an unconstrained exponential parameterization of the density matrix in the
AO basis and used this parameterization to determine response functions for standard basis
sets. The exponential parameterization was also extended to PDBS, but only for a static
perturbation [14]. However, for PDBS the exponential parameterization cannot be applied
without an additional idempotency constraint on the reference density matrix. To simplify
the derivations for PDBS and to obtain a more uniform description of static and time-
dependent perturbations, we will impose the idempotency constraint of the density matrix
explicitly. The response equations that are obtained will be shown to have the same structure
as the ones obtained using the exponential parameterization [13], and the response equations
may therefore be solved using the linear response solver of Coriani et al. [5].

In exact theory, the quasienergy and the density operator (or density matrix) are fun-
damentally di�erent quantities with respect to operations on the bra and ket vectors. As
a consequence, the quasienergy cannot be expressed in terms of the density operator (or
density matrix) in the same way as the energy in time-independent theory. However, we
demonstrate that the perturbation strength-derivative of the quasienergy may be expressed
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in terms of the density matrix and its time derivative, and use this to identify molecular
response functions by di�erentiation of the quasienergy perturbation-strength derivative.

The formalism has been derived with emphasis on an easy extension to higher-order
molecular properties and to provide a uniform framework for the calculation of static and
frequency-dependent molecular properties. It focuses on de�ning generic building blocks,
making it straightforward to implement molecular properties of arbitrary order.

Most implementations of response functions and energy derivatives utilize the so-called
2n+ 1 rule, also known as Wigner's theorem [15, 16], which states that the quasienergy
to order 2n+1 can be determined from perturbed parameters to order n, thereby avoid-
ing the solution of higher-order perturbed parameters. Whereas this is advantageous when
the applied perturbations have approximately the same number of components, this is not
necessarily the case if one of the applied perturbations has a larger number of components
than the other perturbations. Examples may be the evaluation of �rst-order geometrical
derivatives of electromagnetic properties, such as Raman intensities [17], Raman optical ac-
tivity [18], and pure vibrational contributions to nonlinear optical properties [19]. The latter
requires the calculation of the �rst-order geometrical derivatives of the dipole moment, the
polarizability and the �rst hyperpolarizability. For large molecules, it will for these proper-
ties be advantageous to solve for higher-order responses with respect to the electromagnetic
perturbations instead of the nuclear displacement perturbations. For this reason, we derive
response expressions that comply with the 2n+1 rule, but also alternative expressions that
require the calculation of higher-order perturbed density matrices.

In our derivations, static and frequency-dependent perturbations are treated on an equal
footing, as are also standard basis sets and PDBS. Traditionally, derivations of static molec-
ular properties using PDBS (e.g. molecular gradients and Hessians and magnetic properties
calculated using so-called London atomic orbitals [20�22]) and frequency-dependent proper-
ties using standard basis sets have been performed independently of each other. During the
last 10-15 years, however, new developments have appeared involving the use of PDBS for
the calculation of frequency-dependent response properties [17�19, 23�36], including some
works where the basis sets also depend on the applied frequency-dependent perturbation [37].
Linear-scaling methodologies for static PDBS [38, 39] have also been discussed in this context.
Our formalism is AO based and matrix oriented and includes the use of frequency-dependent
PDBS.

The outline for this paper is as follows. In the next section we summarize the quasienergy
method for an exact state. In Section III we consider response theory at the KS level of
theory and write our equations in terms of the MO coe�cients. This is an intermediate step
which allows us to rewrite the main equations in terms of the density matrix in Section IV.
In Section IVA the perturbation-strength derivative of the time-averaged quasienergy is ex-
pressed in terms of the density matrix and its time derivative. In Sections IVB-IVE we
discuss how the density matrix may be determined to arbitrary order. The determination
of response functions according to the n+1 rule�where response parameters to order n de-
termine molecular properties to order n+1�is discussed in Section IVF. The evaluation of
higher-order response functions is considered in Section IVG, where we develop expressions
that comply with the 2n+1 rule, but also consider alternative formulations that are interme-
diate between the n+1 and 2n+1 rules. In Section IVH we show how residues of response
functions may easily be identi�ed from the corresponding response function expressions by
replacing the density matrix by a �residue density matrix�. Finally, we give some concluding
remarks in Section V.

3



II. THE QUASIENERGY METHOD FOR AN EXACT STATE

A. The time evolution of an exact state

We consider a system described by the non-relativistic time-dependent electronic
Schrödinger equation (in atomic units)

H|0̄〉 = i ∂
∂t
|0̄〉 (1)

where the total Hamiltonian H is written as a sum of the time-independent zeroth-order
electronic Hamiltonian H0 and a time-dependent operator V t representing the perturbation

H = H0 + V t (2)

The zeroth-order Hamiltonian is given by

H0 = h+ 1
2

∑
i 6=j

1

rij
+ hnuc (3)

where h is a one-electron operator,

h =
∑
j

hj (4)

containing the kinetic energy of the electrons and the electron�nucleus interaction,

hj = −1
2
∇2
j −

∑
K

ZK
|RK − rj|

(5)

and hnuc contains the contribution from nuclear repulsion,

hnuc = 1
2

∑
K 6=L

ZKZL
|RK −RL|

(6)

For the calculation of magnetic properties (e.g. NMR parameters), hnuc contains additional
purely magnetic interactions, such as the Zeeman interaction between the nuclear magnetic
dipole moments and the external magnetic �eld [40].

The operator representing the perturbation is Hermitian and periodic and may be ex-
pressed in terms of its Fourier components

V t =
N∑

k=−N

exp(−iωkt)V (ωk) (7)

V (ωk) =
∑
A

εA(ωk)A (8)

where A is a one-electron operator

A =
∑
j

aj (9)
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and εA(ωk) is a complex perturbation strength parameter which controls the �eld amplitude
and phase. We note from the form of Eqs. (7)�(9) that V t may be written as

V t =
∑
j

vtj (10)

where

vtj =
∑
A

N∑
k=−N

exp(−iωkt)εA(ωk)aj (11)

The Hermicity of V t is ensured by requiring that

A† = A (12)

ω−k = −ωk (13)

ε∗A(ωk) = εA(ω−k) (14)

Since εA(ωk) = εRA(ωk) + iεIA(ωk) is linearly independent of ε∗A(ωk) = εRA(ωk) − iεIA(ωk), we
may consider εA(ωk) and εA(ω−k) as the linearly independent parameters instead of εRA(ωk)
and εIA(ωk). For notational convenience, we may collect the operator (A) and frequency
index (k) in a common index a such that

εa = εA(ωk) = ε∗A(ω−k) = ε∗−a (15)

Using Eq. (11), the one-electron operator vtj may be written in the more compact form

vtj =
∑
a

exp(−iωat)εaaj (16)

The wave function may be written in a phase-isolated form

|0̄〉 = exp[−iF (t)]|0̃〉 (17)

where we expand |0̃〉 in orders of the perturbation strengths

|0̃〉 = |0〉+ |0̃(1)(t)〉+ |0̃(2)(t)〉+ . . . (18)

The zeroth-order wave function |0〉 is an eigenfunction of H0 with energy E0

H0|0〉 = E0|0〉 (19)

and |0̃〉 is chosen to be normalized

〈0̃|0̃〉 = 1 (20)

A basic assumption in the quasienergy method is that all frequencies in V t can be written
as an integer times some fundamental frequency ω0

ωk = nkω0; nk ∈ Z (21)

This restricts the frequency components of for instance the �rst- and second-order wave
functions to [11]

|0̃(1)(t)〉 =
N∑

k1=−N

exp(−iωk1t)|0̃(1)(ωk1)〉 (22)

|0̃(2)(t)〉 = 1
2

N∑
k1=−N

N∑
k2=−N

exp
(
−i(ωk1 + ωk2)t

)
|0̃(2)(ωk1 , ωk2)〉 (23)
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The wave function |0̃〉 is thus periodic in time, with period T

|0̃(t)〉 = |0̃(t+ T )〉 ; T =
2π

ω0

(24)

and hence all quantities describing the system must have period T . We will make frequent
use of this fact in later sections.

When a time-dependent perturbation is applied, the system has no well-de�ned energy.
Instead we introduce the quasienergy Q(t) as the time derivative of the phase function
in Eq. (17), Ḟ (t) . By inserting Eq. (17) into the time-dependent Schrödinger equation,
Eq. (1), and using that H commutes with the phase factor exp[−iF (t)], the quasienergy
may be determined as

Q(t) = Ḟ (t) = 〈0̃|H − i ∂
∂t
|0̃〉 (25)

Using Eqs. (19) and (20), it is easily seen that Q(t) → E0 for the unperturbed system. As
the time-dependent Schrödinger equation, Eq. (1), is norm conserving

∂
∂t
〈0̃|0̃〉 = 〈 ˙̃0|0̃〉+ 〈0̃| ˙̃0〉 = 0 (26)

it follows that Q(t) is a real function of time

Q(t)∗ = 〈H 0̃|0̃〉+ i〈 ˙̃0|0̃〉
= 〈0̃|H|0̃〉 − i〈0̃| ˙̃0〉
= Q(t) (27)

The periodicity of the wave function, Eq. (24), may be used to remove the explicit time-
dependence from the quasienergy by introducing the time-averaged quasienergy

{Q(t)}T =
1

T

∫ T/2

−T/2
Q(t)dt =

1

T

∫ T/2

−T/2
〈0̃|H − i ∂

∂t
|0̃〉dt ; T =

2π

ω0

(28)

B. Response functions for an exact state in the quasienergy formulation

Let us now consider an operator A and expand its expectation value in orders of the
perturbation

〈A〉(t) = 〈0̄|A|0̄〉 = 〈0̃|A|0̃〉
= 〈0|A|0〉+

∑
b

exp(−iωbt)〈〈A;B〉〉ωbεb

+ 1
2

∑
b,c

exp[−i(ωb + ωc)t]〈〈A;B,C〉〉ωb,ωcεbεc

+ . . . (29)

where 〈〈A;B〉〉ωb is the linear response function, 〈〈A;B,C〉〉ωb,ωc is the quadratic response
function, and so on.

Following Ref. [11], the time-averaged quasienergy, Eq. (28), ful�lls the variational prin-
ciple

δ{Q(t)}T = 0 (30)
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which may be used to determine the wave function parameters. Furthermore, according
to the time-averaged Hellmann-Feynmann theorem, response functions may be determined
from the perturbation-strength derivative of the time-averaged quasienergy

d{Q(t)}T
dεa

=
{
〈0̃|A|0̃〉 exp(−iωat)

}
T

(31)

Inserting Eq. (29) into Eq. (31), we obtain

d{Q(t)}T
dεa

= 〈0|A|0〉δ(ωa) +
∑
b

〈〈A;B〉〉ωbεbδ(ωa + ωb)

+ 1
2

∑
b,c

〈〈A;B,C〉〉ωb,ωcεbεcδ(ωa + ωb + ωc) + . . . (32)

where δ(ωi)=1 only for ωi=0 and zero otherwise. From this expansion we identify response
functions as perturbation-strength derivatives of the time-averaged quasienergy evaluated at
zero perturbation strength

〈〈A;B〉〉ωb =
d2{Q(t)}T
dεadεb

∣∣∣∣
{ε}=0

; ωa = −ωb (33)

〈〈A;B,C〉〉ωb,ωc =
d3{Q(t)}T
dεadεbdεc

∣∣∣∣
{ε}=0

; ωa = −ωb − ωc (34)

We note that since {Q(t)}T is variational, the 2n+1 rule applies.

C. Quasienergy response theory using a density formulation

In the expression for the quasienergy, Eq. (25), time di�erentiation occurs only on the ket
state. The quasienergy is therefore an asymmetric quantity with respect to operations on
the bra and ket states. For an exact state, the density operator D is [41]

D = |0̃〉〈0̃| (35)

and consequently its time derivative becomes

Ḋ = | ˙̃0〉〈0̃|+ |0̃〉〈 ˙̃0| (36)

which is clearly a symmetric quantity with respect to operations on the bra and ket states.
As opposed to the energy, the (time-averaged) quasienergy may therefore not readily be
expressed in terms of the density operator and its time derivative. Thus, the quasienergy
method cannot be directly applied in a density operator (or density matrix) formulation of
quantum chemistry.

In the remainder of this paper we will determine molecular response functions at the
KS level of theory using the quasienergy formalism. This may straightforwardly be done
when the expansion coe�cients of the MOs in the KS determinant are used as variational
parameters (the C parameterization of KS theory) as described in Section III. However, it
is advantageous to use the elements of the density matrix as variational parameters since
the response functions are then expressed in the AO basis, i.e. the basis where linear scaling
may be achieved. As described above, this cannot be done straightforwardly. We therefore
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show that the working equations in the C parameterization may be rewritten in a form where
the perturbation-strength derivative of the time-averaged quasienergy is expressed in terms of
the density matrix and its time derivative. Using this approach, molecular response functions
may be obtained by di�erentiation of the quasienergy perturbation-strength derivative in
accordance with Eq. (32), and may thus be obtained directly in the AO basis.

III. THE QUASIENERGY FORMALISM IN KOHN-SHAM THEORY USING THE

C PARAMETERIZATION

In this section we express the quasienergy at the KS level of theory in terms of MOs
and discuss how the MO coe�cients C̃ may be determined from the variational principle in
Eq. (30).

However, before introducing the C parameterization we summarize our notation conven-
tion. A lower-case superscript letter denotes a derivative with respect to some perturbation
strength. Superscripts a, b, c denote derivatives with respect to the perturbation strengths
εa, εb, εc at ωa, ωb, ωc, respectively. Tildes are introduced to denote quantities at general �eld
strengths which in general are time-dependent. For example, for a general perturbation V t,
the overlap matrix (derivative with respect to εa) is written as S̃ (S̃a), whereas the notation
S (Sa) is used when the matrices are evaluated at V t = 0. We use the indices I, J,K, L to
label occupied MOs, and Greek letters to denote AOs, which may in general depend both
on time and on the perturbation strengths.

A. C parameterization

In KS theory, the molecular system containing N electrons is represented by a single

time-dependent Slater determinant |̃KS〉

|K̃S〉 = (N !)−
1
2 |φ̃1φ̃2 . . . φ̃N | (37)

where the MOs φ̃ are expanded in a set of AOs χ̃

φ̃I =
∑
ν

C̃νI χ̃ν (38)

In the C parameterization, the MO coe�cients C̃ are the variational parameters. The MOs
must stay orthonormal at all perturbation strengths

〈φ̃I |φ̃J〉 = δIJ (39)

to ensure that |K̃S〉 is normalized. The MO matrix C̃ contains coe�cients for both occupied

and virtual MOs. As only the occupied orbitals enter in |̃KS〉, it is convenient to introduce
the MO density matrix ρ

ρ =

(
1N 0
0 0

)
(40)

which is idempotent
ρ2 = ρ (41)
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and projects out the occupied part of the C̃ matrix

C̃ρ =
(
C̃occ C̃virt

)(1N 0
0 0

)
=
(
C̃occ 0

)
(42)

The electron density ρ̃ is the sum of the absolute squares of the MOs

ρ̃ =
∑
I

|φ̃I |2 =
∑
I

∑
µν

χ̃∗µχ̃νC̃
∗
µIC̃νI =

∑
I

∑
µν

Ω̃µνC̃
∗
µIC̃νI (43)

where we have introduced the overlap distribution Ω̃µν

Ω̃µν = χ̃∗µχ̃ν (44)

B. The quasienergy in Kohn-Sham theory

The KS energy is written as a functional of ρ̃ [42]

Ẽ[ρ̃, t] = T̃s[ρ̃] + Ṽne[ρ̃] + Ṽ t[ρ̃, t] + J̃ [ρ̃]− γK̃[ρ̃] + Ẽxc[ρ̃] + h̃nuc (45)

The �rst term is the kinetic energy evaluated as an expectation value

T̃s[ρ̃] = 〈K̃S| − 1
2
∇2|K̃S〉 = −1

2

∑
I

〈φ̃I |∇2|φ̃I〉 (46)

The second and third terms represent the electron-nucleus attraction and the perturbing
operator in Eq. (16), respectively,

Ṽne[ρ̃] + Ṽ t[ρ̃, t] =
∑
I

〈
φ̃I

∣∣∣∣−∑
K

ZK
|RK − r|

+ vt
∣∣∣∣φ̃I〉 (47)

The fourth and �fth terms represent the Coulomb interaction of the electron density with
itself and the exchange contribution, respectively,

J̃ [ρ̃] = 1
2

∫ ∫
ρ̃(r1, t)ρ̃(r2, t)

r12

dr1dr2 = 1
2

∑
IJ

g̃IIJJ (48)

K̃[ρ̃] = 1
2

∑
IJ

g̃IJJI (49)

where we have introduced the two-electron integral

g̃IJKL =

∫ ∫
φ̃∗I(x1)φ̃J(x1)

1

r12

φ̃∗K(x2)φ̃L(x2)dx1dx2 (50)

Here, x refers to both spatial and spin coordinates. Ẽxc[ρ̃] is the exchange-correlation func-
tional which includes the remaining part of the energy contribution. It thus contains the
e�ects of electron correlation and corrects the error made in the kinetic energy by evaluat-
ing it in terms of a single Slater determinant. The last term h̃nuc contains purely nuclear
contributions.
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In pure DFT, the scaling factor for the exchange energy γ = 0, whereas it is nonzero in hy-
brid theories. By setting γ = 1 and removing the exchange-correlation potential altogether,
we obtain the Hartree-Fock (HF) energy.

In Eq. (45) we have adopted the widely used adiabatic approximation [2�4] where it is
assumed that the exchange-correlation potential depends on time only through the electron
density ρ̃. We are in other words assuming that the electron density responds instanta-
neously to the oscillations of the �elds in the external potential in Eq. (16). Within this
approximation, only the external perturbing potential Ṽ t[ρ̃, t] depends explicitly on time.

As Ẽxc[ρ̃] depends on the MO coe�cients C̃ through ρ̃, see Eq. (43), all terms in the KS
energy Ẽ[ρ̃] are now expressed in terms of the C̃ coe�cients. Inserting Eqs. (46)-(49) into
Eq. (45) we may write the KS energy in terms of molecular integrals

Ẽ(C̃, t) = −1
2

∑
I

〈φ̃I |∇2|φ̃I〉+
∑
I

〈
φ̃I

∣∣∣∣−∑
K

ZK
|RK − r|

+ vt
∣∣∣∣φ̃I〉

+ 1
2

∑
IJ

g̃IIJJ − 1
2
γ
∑
IJ

g̃IJJI + Ẽxc[ρ̃(C̃)] (51)

From Eq. (25), the quasienergy in KS theory is given by

Q̃(C̃, t) = Ẽ(C̃, t)− i
∑
I

〈φ̃I | ˙̃φI〉 (52)

since the time-di�erentiation operator is a one-electron operator

−i〈K̃S| ∂
∂t
|K̃S〉 = −i

∑
I

〈φ̃I | ˙̃φI〉 (53)

C. Variational conditions in the C representation

In this subsection, the variational condition for the time-averaged quasienergy, Eq. (30),
will be used to obtain an equation for the C̃ coe�cients. The variations of the C̃ coe�cients in
the time-averaged quasienergy in Eq. (52) are constrained by the orthonormality requirement
in Eq. (39). In order to allow for unconstrained variations of the C̃ coe�cients, we therefore

introduce a set of Lagrange multipliers λ̃ for the orthonormality constraint in Eq. (39) and

obtain the quasienergy Lagrangian L̃(C̃, λ̃, t)

L̃(C̃, λ̃, t) = Q̃(C̃, t)−
∑
IJ

λ̃JI(〈φ̃I |φ̃J〉 − δIJ) (54)

where λ̃ is Hermitian

λ̃ = λ̃
†

(55)

The time-average of the quasienergy Lagrangian is variational, that is

δ{L̃(C̃, λ̃, t)}T = 0 (56)

Di�erentiating L̃(C̃, λ̃, t) with respect to the λ̃ parameters gives the equation for the or-
thonormality condition for the occupied MOs, Eq. (39), which in matrix form may be written
as

ρC̃†S̃C̃ρ = ρ (57)
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Di�erentiation of L̃(C̃, λ̃, t) with respect to the complex conjugated C̃∗ parameters yields
the time-dependent self-consistent-�eld (TDSCF) equation for the C̃ matrix

F̃C̃ρ− i(R̃C̃ + S̃ ˙̃C)ρ− S̃C̃ρλ̃ρ = 0 (58)

where we have introduced the KS matrix F̃,

F̃ = h̃ + Ṽt + G̃γ(C̃ρC̃†) + F̃xc (59)

The overlap matrix S̃, the ket time-di�erentiated overlap matrix R̃, and the one-electron
matrices h̃ and Ṽt are given by

S̃µν = 〈χ̃µ|χ̃ν〉 (60)

R̃µν = 〈χ̃µ| ˙̃χν〉 (61)

h̃µν =

〈
χ̃µ

∣∣∣∣− 1
2
∇2 −

∑
K

ZK
|RK − r|

∣∣∣∣χ̃ν〉 (62)

Ṽ t
µν =

∑
a

exp(−iωat)εa〈χ̃µ|a|χ̃ν〉 (63)

whereas the two-electron matrix G̃γ(M) with scaled exchange is de�ned as

G̃γ
µν(M) =

∑
αβ

Mβα(g̃µναβ − γg̃µβαν) (64)

To obtain F̃xc in Eq. (59), we have used the adiabatic approximation and Eq. (43) to obtain

∂

∂C̃∗αK
Ẽxc[ρ̃(r, t)] =

∫
δExc
δρ(r)

∣∣∣∣
ρ(r)=ρ̃(r,t)

∂ρ̃(r, t)

∂C̃∗αK
dx

=
∑
ν

∫
Ω̃αν(r, t)ṽxc(r, t)dxC̃νK

=
∑
ν

(F̃xc)ανC̃νK

= (F̃xcC̃ρ)αK (65)

where the exchange-correlation potential ṽxc

ṽxc(r, t) =
δExc
δρ(r)

∣∣∣∣
ρ(r)=ρ̃(r,t)

(66)

and the functional derivative matrix F̃xc

F̃xc,µν =

∫
Ω̃µν ṽxcdx (67)

have been introduced. The adiabatic approximation was introduced in Eq. (66) by evaluating
the functional derivative at ρ(r) = ρ̃(r, t).

When the perturbation is turned o�, the coe�cients C̃ and the AOs χ̃ are reduced to the
zeroth-order coe�cients C and the AOs χ, respectively, and the TDSCF equation, Eq. (58),
becomes the standard Roothaan-Hall equation for the occupied part of the C coe�cients [43]

FCρ = SCρλρ (68)
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where the zeroth-order KS matrix is

F = h + Gγ(CρC†) + Fxc (69)

and the zeroth-order MO coe�cient matrix ful�lls the orthonormality condition

ρC†SCρ = ρ (70)

Having now obtained an expression for the time-averaged quasienergy Lagrangian,
Eq. (54), suitable for obtaining response functions by di�erentiation with respect to ap-
plied perturbation strengths, we will in the next section make a change of the variational
parameters from the MO coe�cient matrix C̃ to the density matrix D̃. We will demonstrate
that this transformation allows us to obtain working equations for the response functions
expressed entirely in the AO basis.

IV. THE QUASIENERGY FORMALISM IN KOHN-SHAM THEORY USING THE

D PARAMETERIZATION

The density matrix is de�ned by [43]

D̃ = C̃ρC̃† (71)

The use of ρ in Eq. (71) ensures that only the occupied part of the C̃ matrix contributes to
D̃. As discussed in Section IIC, the time-averaged quasienergy cannot be expressed directly

in terms of D̃ and its time derivative ˙̃D

˙̃D = ˙̃CρC̃† + C̃ρ ˙̃C† (72)

since ˙̃D is symmetric with respect to time di�erentiation of the C̃ and C̃∗ coe�cients, whereas
only the C̃ coe�cients are di�erentiated with respect to time in the quasienergy expression,
see Eq. (52). However, we will here show that the perturbation-strength derivative of the
time-averaged quasienergy Lagrangian in the C representation

{L̃a(D̃, t)}T =
d{L̃(C̃, λ̃, t)}T

dεa
(73)

and the variational condition
δ{L̃(D̃, t)}T = 0 (74)

may be expressed in terms of the density matrix. Note that Eqs. (73) and (74) are valid
for any perturbation strengths and are not evaluated at zero �eld strengths. We may thus
identify response functions directly in the D representation by di�erentiating Eq. (73) with
respect to the perturbation strengths since {L̃a(D̃, t)}T is just the left-hand side of Eq. (32),
from which response functions may be determined, as done for instance in Eqs. (33)-(34).

A. The quasienergy derivative in the D representation

As {L̃(C̃, λ̃, t)}T in Eq. (56) is variational with respect to the C̃ and λ̃ parameters

∂
∂C̃
{L(C̃, λ̃, t)}T = ∂

∂
˜λ
{L(C̃, λ̃, t)}T = 0 (75)
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the total perturbation-strength derivative of {L̃(C̃, λ̃, t)}T may be obtained as a partial

derivative (the time-averaged Hellmann-Feynmann theorem)

{L̃a(C̃, λ̃, t)}T =
d{L(C̃, λ̃, t)}T

dεa
=
∂{L(C̃, λ̃, t)}T

∂εa

=
∂

∂εa

{
Ẽ(C̃, t)− i

∑
I

〈φ̃I | ˙̃φI〉 −
∑
IJ

λ̃JI(〈φ̃I |φ̃J〉 − δIJ)

}
T

(76)

Thus, di�erentiated MO coe�cients C̃a and multipliers λ̃a do not contribute to
{L̃a(C̃, λ̃, t)}T . We can now express each term in Eq. (76) in terms of the density ma-
trix. Consider �rst the KS energy in Eq. (51). The one-electron parts of this equation may
be written as

T̃s[ρ̃] + Ṽne[ρ̃] + Ṽ t[ρ̃, t]
Tr
= (h̃ + Ṽt)D̃ (77)

where we have used Eqs. (46), (47), (62), and (63) to arrive at the �nal expression. The

symbol �
Tr
= � denotes that we will take the trace of the involved matrix products on both

sides of the equality.
The two-electron terms in Eqs. (48)-(49) may in a similar manner be determined as

J̃ [ρ̃]− γK̃[ρ̃]
Tr
= 1

2
G̃γ(D̃)D̃ (78)

using the de�nition of the G̃γ(D̃) matrix in Eq. (64). By inserting Eq. (71) into Eq. (43),
we see that the electron density may be expressed in terms of the density matrix as

ρ̃ =
∑
µν

Ω̃µνD̃νµ
Tr
= Ω̃D̃ (79)

It is thus clear that the exchange-correlation functional Ẽxc[ρ̃] depends on D̃ through ρ̃. We
may now express the KS energy in Eq. (51) in terms of D̃

Ẽ(D̃, t)
Tr
= (h̃ + Ṽt)D̃ + 1

2
G̃γ(D̃)D̃ + Ẽxc[ρ̃(D̃)] + h̃nuc (80)

The partial derivative of the KS energy with respect to εa becomes

Ẽ0,a(D̃, t) =
∂

∂εa
Ẽ(D̃, t)

Tr
=
(
h̃a + Ṽt,a + 1

2
G̃γ,a(D̃) + F̃Ωa

xc

)
D̃ + h̃anuc (81)

where we have introduced the superscript notation �0, a� to denote a partial derivative with
respect to εa (and zeroth order with respect to D̃, as it will be explained in Section IVF). In
order to evaluate the exchange-correlation contribution within the adiabatic approximation
we have used Eqs. (66), (67), and (79) to obtain

∂

∂εa
Ẽxc[ρ̃(D̃)] =

∫
δExc
δρ(r)

∣∣∣∣
ρ(r)=ρ̃(r,t)

∂ρ̃(r, t)

∂εa
dx

=
∑
µν

∫
Ω̃a
µν(r, t)ṽxc(r, t)dxD̃νµ

Tr
= F̃Ωa

xc D̃ (82)

where we have introduced the functional derivative matrix F̃Ωa

xc , de�ned in terms of the
perturbed overlap distributions Ωa

(F̃Ωa

xc )µν =

∫
Ω̃a
µν(r, t)ṽxc(r, t)dx (83)
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Let us now consider the second and third contributions of Eq. (76) � that is, the time
derivative term

−i
∑
I

〈φ̃I | ˙̃φI〉 = −i
∑
I,µν

(
C̃∗µIC̃νI〈χ̃µ| ˙̃χν〉+ C̃∗µI

˙̃CνI〈χ̃µ|χ̃ν〉
)

Tr
= −i

(
ρC̃†R̃C̃ρ+ ρC̃†S̃ ˙̃Cρ

)
(84)

and the multiplier term

−
∑
IJ

λ̃JI(〈φ̃I |φ̃J〉 − δIJ)
Tr
= −

(
C̃†S̃C̃ρλ̃ρ− ρλ̃ρ

)
(85)

It is convenient to rewrite Eq. (84) in a symmetric form in the C representation before
introducing the density matrix. In order to do this, we di�erentiate Eq. (57) with respect to
time

ρ ˙̃C†S̃C̃ρ+ ρC̃†(R̃ + R̃†)C̃ρ+ ρC̃†S̃ ˙̃Cρ = 0 (86)

with
˙̃S = R̃ + R̃† (87)

and write Eq. (84) as

−i
∑
I

〈φ̃I | ˙̃φI〉
Tr
= − i

2

(
2ρC̃†R̃C̃ρ+ ρC̃†S̃ ˙̃Cρ+ ρC̃†S̃ ˙̃Cρ

)
Tr
= − i

2

(
2ρC̃†R̃C̃ρ+ ρC̃†S̃ ˙̃Cρ− ρ ˙̃C†S̃C̃− ρC̃†(R̃ + R̃†)C̃ρ

)
Tr
= − i

2

(
ρC̃†T̃C̃ρ+ ρC̃†S̃ ˙̃Cρ− ρ ˙̃C†S̃C̃ρ

)
(88)

where the anti-Hermitian matrix T̃

T̃ = R̃− R̃† (89)

has been introduced. Due to the fact that −i〈K̃S| ∂
∂t
|K̃S〉 = −i

∑
I〈φ̃I |

˙̃φI〉 is real, in accor-
dance with the properties of exact theory, see Eq. (27), the right-hand side of Eq. (88) is
Hermitian.

After these manipulations, we can evaluate the perturbation-strength derivative of the
time derivative and multiplier terms of Eq. (76)

∂

∂εa

(
− i
∑
I

〈φ̃I | ˙̃φI〉 −
∑
IJ

λ̃JI(〈φ̃I |φ̃J〉 − δIJ)

)
Tr
=

∂

∂εa

(
− i

2

(
ρC̃†T̃C̃ρ+ ρC̃†S̃ ˙̃Cρ− ρ ˙̃C†S̃C̃ρ

)
−
(
C̃†S̃C̃ρλ̃ρ− ρλ̃ρ

))
Tr
= − i

2
T̃aD̃− S̃aW̃ (90)

where we have introduced the Hermitian matrix W̃

W̃ = i
2

˙̃CρC̃† − i
2
C̃ρ ˙̃C† + C̃ρλ̃ρC̃†

= 1
2

(
i ˙̃CρC̃† + C̃ρλ̃ρC̃†

)
+ 1

2

(
i ˙̃CρC̃† + C̃ρλ̃ρC̃†

)†
(91)
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To obtain Eq. (90) we have used the de�nition of the density matrix, Eq. (71), and the
idempotency relation for the ρ matrix in Eq. (41).

We now have to rewrite the second term in Eq. (90) in terms of the density matrix. Using
Eqs. (57), (58), and (72), we can express the terms in the �rst parenthesis of Eq. (91) as

i ˙̃CρC̃† + C̃ρλ̃ρC̃† = i ˙̃CρC̃† + C̃ρC̃†(S̃C̃ρλ̃ρ)C̃†

= i ˙̃CρC̃† + C̃ρC̃†
[(

F̃− iR̃
)
C̃ρ− iS̃ ˙̃Cρ

]
C̃†

= D̃
(
F̃− iR̃

)
D̃ + i(1− C̃ρC̃†S̃) ˙̃CρC̃†

= D̃
(
F̃− iR̃

)
D̃ + i(1− C̃ρC̃†S̃)( ˙̃D− C̃ρ ˙̃C†)

= D̃
(
F̃− iR̃

)
D̃ + i ˙̃D− iD̃S̃ ˙̃D + i

[
C̃(ρC̃†S̃C̃ρ) ˙̃C† − C̃ρ ˙̃C†

]
= D̃

(
F̃− iR̃

)
D̃ + i ˙̃D− iD̃S̃ ˙̃D (92)

The W̃ matrix may then be expressed in terms of D̃

W̃ = 1
2

(
D̃
(
F̃− iR̃

)
D̃ + i ˙̃D− iD̃S̃ ˙̃D

)
+ 1

2

(
D̃
(
F̃− iR̃

)
D̃ + i ˙̃D− iD̃S̃ ˙̃D

)†
= D̃

(
F̃− i

2
T̃
)
D̃ + i

2

( ˙̃DS̃D̃− D̃S̃ ˙̃D
)

(93)

Introducing a generalized KS matrix F̃

F̃ = F̃− i
2
T̃ = h̃ + G̃γ(D̃) + Ṽt + F̃xc − i

2
T̃ (94)

where we have inserted Eq. (59), we may write W̃ as

W̃ = D̃F̃D̃ + i
2

( ˙̃DS̃D̃− D̃S̃ ˙̃D
)

(95)

By inserting Eqs. (81) and (90) into Eq. (76), the perturbation-strength derivative of the
time-averaged quasienergy Lagrangian matrix in the C representation can be expressed in
terms of the density matrix as

{L̃a(D̃, t)}T =
∂

∂εa

{
Ẽ(D̃, t)− i

∑
I

〈φ̃I | ˙̃φI〉 −
∑
IJ

λ̃JI(〈φ̃I |φ̃J〉 − δIJ)

}
T

{Tr}T
=

(
h̃a + Ṽt,a + 1

2
G̃γ,a(D̃) + F̃Ωa

xc − i
2
T̃a
)
D̃− S̃aW̃ + h̃anuc (96)

where
{Tr}T
= is a short-hand notation for tracing and time-averaging. {L̃a(D̃, t)}T is not a

Lagrangian function and will be referred to as the quasienergy derivative in the D parameter-

ization. In order to obtain a compact expression for Eq. (96), we introduce the generalized
KS energy Ẽ in analogy with Eq. (94)

Ẽ
{Tr}T
= Ẽ(D̃, t)− i

2
T̃D̃

{Tr}T
=

(
h̃ + Ṽt + 1

2
G̃γ(D̃)− i

2
T̃
)
D̃ + Ẽxc[ρ̃(D̃)] + h̃nuc (97)

and write the time-averaged quasienergy derivative in the D parameterization as

L̃a(D̃, t)
{Tr}T
= Ẽ0,a − S̃aW̃ (98)
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We note the close relationship between Eq. (98) and the expression derived by Pulay for the
molecular gradient [44]. The main di�erence lies in the generalization of the energy function
Ẽ0,a and the W̃ matrix which is a generalization of the energy-weighted density matrix.

Response functions can now be obtained in the D representation by straightforward di�er-
entiation of {L̃a(D̃, t)}T with respect to the perturbation strengths, as follows from Eqs. (33)-
(34)

〈〈A;B〉〉ωb =
d{L̃a(D̃, t)}T

dεb

∣∣∣∣
{ε}=0

= Lab ; ωa = −ωb (99)

〈〈A;B,C〉〉ωb,ωc =
d2{L̃a(D̃, t)}T

dεbdεc

∣∣∣∣
{ε}=0

= Labc ; ωa = −ωb − ωc (100)

We note that for perturbation-independent basis sets, S̃ = S, and Eq. (98) reduces to the
simple expression

L̃a(D̃, t)
{Tr}T
= Ṽt,aD̃ + h̃anuc (101)

B. Time-dependent SCF equation for the density matrix

In order to introduce the D̃ parameters into the variational conditions in Eqs. (57)
and (58), we multiply Eq. (58) by C̃†S̃ from the right and take the adjoint of the resulting
equation

(F̃− iR̃)D̃S̃− iS̃ ˙̃CρC̃†S̃ = S̃C̃ρλ̃ρC̃†S̃ (102)

S̃D̃(F̃ + iR̃†) + iS̃C̃ρ ˙̃C†S̃ = S̃C̃ρλ̃ρC̃†S̃ (103)

Subtracting Eq. (103) from Eq. (102) and inserting Eq. (72) yields

(F̃− iR̃)D̃S̃− S̃D̃(F̃ + iR̃†)− iS̃ ˙̃DS̃ = 0 (104)

By expressing R̃ in terms of its Hermitian ( ˙̃S) and anti-Hermitian (T̃) components

R̃ = 1
2

( ˙̃S + T̃
)

(105)

and inserting Eq. (94), we may write Eq. (104) as[
F̃ − i

2
S̃d
dt

]
D̃S̃−

[
S̃D̃F̃ + i

2

(
d
dt

S̃D̃
)
S̃
]

= 0 (106)

Eq. (106) is the TDSCF equation for the density matrix. For time-independent basis sets
where R̃ = 0, Eq. (106) was derived by Larsen et al. [13].

The D̃ parameters are constrained by the idempotency relation for the density matrix
which is obtained by multiplying Eq. (57) by C̃ from the left and C̃† from the right

D̃S̃D̃ = D̃ (107)

Eqs. (106) and (107) determine the time evolution of the KS state and a valid density
matrix must ful�ll both equations. In the absence of the perturbation, Eq. (106) reduces to
the zeroth-order KS variational conditions

FDS = SDF (108)
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where D is the optimized density matrix for the unperturbed system, which satis�es the
zeroth-order idempotency relation,

DSD = D (109)

Response equations are obtained by di�erentiation of the TDSCF equation, Eq. (106),
with respect to the perturbation strengths. In order to simplify formulas for response equa-
tions, it is convenient to introduce the operators [. . .]⊕ and [. . .]� as twice the Hermitian and
anti-Hermitian components of a matrix M[

M
]⊕

= M + M† (110)[
M
]�

= M−M† (111)

where the adjungation operation is considered to act before any �eld strength di�erentiation,
for instance

[F̃ b
D̃S̃]� = F̃ b

D̃S̃− S̃D̃F̃ b
(112)

even though F̃ b
for a complex perturbation strength εb is in general not Hermitian, see the

discussion in Section IVC. This slightly complex de�nition allows us to di�erentiate inside
the commutator brackets

d

dεb

[
MN . . .

]�
=

[
d

dεb
(MN . . .)

]�
(113)

Using the de�nition in Eq. (111), the TDSCF equation in Eq. (106) may be written compactly
as [(

F̃ − i
2
S̃d
dt

)
D̃S̃
]�

= 0, (114)

We are now in a position to solve the TDSCF equation, Eq. (114), order by order, by
introducing a perturbation expansion of the density matrix.

C. Perturbation expansion of the density matrix

In accordance with the wave function expansion in exact theory, Eq. (18), we expand the
density matrix in orders of the perturbation strengths

D̃ = D + D̃(1) + D̃(2) + . . . (115)

where D is the optimized zeroth-order density matrix. From Eqs. (22) and (23) it follows that
the �rst- and second-order density matrices only contain sums of the frequencies included in
V t, see Eq. (16)

D̃(1) =
∑
b

exp(−iωbt)εbDb
ω (116)

D̃(2) = 1
2

∑
bc

exp
(
−i(ωb + ωb)t

)
εbεcD

bc
ω (117)

where the subscript ω is used to denote a derivative in the frequency domain, e.g. Db
ω,

whereas the notation Db refers to a derivative in the time domain

Db = exp(−iωbt)Db
ω (118)
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The n'th order density matrix D̃(n) may in a similar manner be written as

D̃(n) =
1

n!

∑
b1,b2,...,bn

exp
(
−i(ωb1 + ωb2 + . . .+ ωbn)t

)
εb1εb2 . . . εbnD

b1b2...bn
ω

=
1

n!

∑
b1,b2,...,bn

exp(−iωbN t)εb1εb2 . . . εbnDbN
ω (119)

where we have introduced the short-hand notations

ωbN =
n∑
i=1

ωbi (120)

DbN
ω = Db1b2...bn

ω (121)

As in Eq. (118), the time and frequency domains are related by the simple expression

DbN = exp(−iωbN t)DbN
ω (122)

Note that even though D̃ is itself Hermitian, its perturbation-strength derivatives, Eqs. (118)
and (122), are not Hermitian due to the exponential phase factor which enters because
complex perturbation strength parameters are used. However, as D̃ is Hermitian to any
order, the ωb and ω−b components are related by

DbN †
ω = D−bNω (123)

Di�erentiation of Eq. (119) with respect to time followed by di�erentiation with respect to
the n perturbation strengths and evaluation at zero perturbation yields a simple expression
for the time derivative Ḋb1...bn

Ḋb1...bn =
d

dεb1 . . . εbn

(
dD̃

dt

)∣∣∣∣
{ε}=0

= −iωbN exp(−iωbN t)DbN
ω = −iωbNDbN (124)

In this subsection we have expanded the density matrix in orders of the perturbation
strengths. However, any matrix or scalar quantity that is used to characterize the system,
e.g. ṽxc, S̃ or any of the matrices in the generalized KS matrix F̃ , see Eq. (94), may be
expanded in the same way as the density matrix.

We now proceed to evaluate the density matrix derivatives using the idempotency con-
dition, Eq. (107), and the TDSCF equation for the density matrix, Eq. (114), to di�erent
orders.

D. Partitioning of the density matrix

By di�erentiating the idempotency relation in Eq. (107) with respect to εb and evaluating
at zero perturbation strengths, we obtain

Db
ωSD + DSDb

ω −Db
ω = K

(0)
ω (125)

K
(0)
ω = −(DSD)bω,0 = −DSbωD (126)

where we have used Eq. (118) and a similar expression for the overlap matrix derivative
Sb to remove the exp(−iωbt) factor common to all terms. In Eq. (125) we have collected
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the �rst-order density matrix derivatives on the left-hand side of the equation, whereas the
right-hand side only contains the zeroth-order density matrix D. The notation (DSD)bcd...ω,m

generally denotes the terms in (DSD)bcd...ω which contain density matrices up to order m.
Di�erentiating Eq. (107) n times with respect to the perturbation strengths εb1 , εb2 , . . . , εbn

gives an equation with a structure similar to that of Eq. (125)

DbN
ω SD + DSDbN

ω −DbN
ω = K(n−1)

ω (127)

where
K(n−1)
ω = −(DSD)bNω,n−1 (128)

Introducing the P and Q projectors [43]

P = DS (129)

Q = 1−DS = 1−P (130)

which project onto the occupied and virtual spaces, respectively, and which satisfy the rela-
tions

PP = P (131)

QQ = Q (132)

PQ = 0 (133)

we may write Eq. (127) as
DbN
ω P† −QDbN

ω = K(n−1)
ω (134)

To obtain Eqs. (131)�(133), we have used the idempotency relation for the optimized zeroth-
order density matrix D, Eq. (109).

In order to solve the di�erential equation in Eq. (134), we partition DbN
ω as

DbN
ω = DbN

P + DbN
H (135)

where DbN
P is a particular solution to Eq. (134)

DbN
P P† −QDbN

P = K(n−1)
ω (136)

whereas DbN
H solves the homogeneous equation

DbN
H P† −QDbN

H = 0 (137)

By applying the P and Q projectors to Eq. (136) and using Eqs. (131)�(133), we may
separate the di�erent components of DbN

P

PDbN
P P† = PK(n−1)

ω P† (138)

QDbN
P Q† = −QK(n−1)

ω Q† (139)

0 = PK(n−1)
ω Q† (140)

0 = QK(n−1)
ω P† (141)

DbN
P only contains occupied�occupied and virtual�virtual components and may be evaluated

from lower-order density matrices

DbN
P = PDbN

P P† + QDbN
P Q† = PK(n−1)

ω P† −QK(n−1)
ω Q† (142)
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For DbN
H , projection of the homogeneous equation Eq. (137) yields

PDbN
H P† = 0 (143)

QDbN
H Q† = 0 (144)

whereas the PDbN
H Q† and QDbN

H P† components are undetermined by Eq. (137). We may

thus write DbN
H as

DbN
H = PDbN

H Q† + QDbN
H P† (145)

Eqs. (137) and (145) are equivalent and satis�ed by the following ansatz for DbN
H

DbN
H = PXbN −XbNP† = [D,XbN ]S (146)

where we have introduced the S commutator

[A,B]S = ASB−BSA (147)

and the n'th order response parameters XbN which may be determined from the n'th order
TDSCF equation, where lower-order density matrices and DbN

P are introduced, as discussed
in the next subsection. Inserting P + Q = 1 in Eq. (146) we obtain

DbN
H = PXbN −XbNP† (148)

= P
(
PXbNP† + QXbNQ† + PXbNQ† + QXbNP†

)
−
(
PXbNP† + QXbNQ† + PXbNQ† + QXbNP†

)
P†

= PXbNQ† −QXbNP†

and we see that the PXbNP† and QXbNQ† components of XbN are redundant. We may
therefore require XbN to satisfy the projection relation

XbN = PXbNQ† + QXbNP† (149)

thereby eliminating the redundant occupied-occupied and virtual-virtual components of the
XbN matrix.

Eq. (146) represents the �rst term of a Baker-Campbell-Hausdor� expansion of the density
matrix in an exponential parameterization (see Ref. [13]) and the projection relation for the
XbN matrix in Eq. (149) is identical to the one used in Refs. [5, 13] to ensure a non-redundant
parameterization of the density matrix.

In the next subsection we address the determination of the XbN response parameters
from the n'th order TDSCF equation, Eq. (106). We will show that response parameters
may be determined to arbitrary order in an iterative fashion from a set of linear response
equations which all have the same form, and consequently may all be solved by the same
linear equation solver.

E. Response equations for the X parameters

1. First-order response parameters Xb

To determine the �rst-order response parameters Xb, we di�erentiate the TDSCF equation
for the density matrix, Eq. (114), with respect to the perturbation strength εb to obtain

0 =

[ (
F̃ b − i

2
S̃b d

dt

)
(D̃S̃)

+
(
F̃ − i

2
S̃ d
dt

)
(D̃S̃)b

]�
(150)
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Evaluation at zero perturbation strengths yields

0 = [F bDS + FDbS]� − ωbSDbS

+ [FDSb]� − 1
2
ωb[SDSb]⊕ (151)

where we have used Eq. (124) and collected the terms containing the density matrix derivative
in the upper line of Eq. (151). Note that the second term in the lower line of Eq. (151) is
written in terms of [. . .]⊕ instead of [. . .]� since the −i factor from Eq. (124) multiplies the
− i

2
factor in Eq. (150) and thus a�ects the adjungation operations in Eqs. (110) and (111).
From Eq. (135) the di�erentiated density matrix in the frequency domain Db

ω is given by

Db
ω = Db

P + Db
H (152)

where it from Eq. (142) follows that

Db
P = PK(0)

ω P† −QK(0)
ω Q† (153)

with K
(0)
ω given by Eq. (126). Db

H is parameterized in terms of the �rst-order response matrix
Xb, Eq. (146)

Db
H = [D,Xb]S (154)

where Xb ful�lls the projection relation in Eq. (149)

Xb = PXbQ† + QXbP† (155)

From Eq. (94), the generalized di�erentiated KS matrix F b takes the form

F b = exp(−iωbt)F b
ω (156)

F b
ω = hbω + Gγ,b

ω (D) + Gγ(Db
ω) + B + Fb

xc,ω − i
2
Tb
ω (157)

where we have renamed Vt,b
ω to be consistent with the literature [9]

B = Vt,b
ω (158)

In Appendix A 1b, it is shown that the perturbation-strength derivative of the functional
derivative matrix may be written in the form, see Eq. (A25)

Fb
xc,ω = Gxc

(
Db
H

)
+ F̆b

xc,ω (159)

where F̆b
xc,ω in Eq. (A26) does not depend on the X

b parameters. For a general matrix A, the

notation ĂbN denotes the total n'th order derivative AbN , except for the terms containing
n'th order response parameters XbN . Thus, the Xb parameters only enter through Gxc

(
Db
H

)
,

see Eq. (A24),

Gxc
µν(D

b
H) =

∑
αβ

(Db
H)βα

∫
Ωµν(r)

(∫
Ωαβ(r1)

δvxc
δρ(r1)

dx1

)
dx (160)

In order to isolate the Xb parameters, it is convenient to express the total generalized KS
matrix derivative F b

ω in Eq. (157) as

F b
ω = GKS

(
Db
H

)
+ F̆

b

ω (161)
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where
F̆
b

ω = hbω + Gγ,b
ω (D) + Gγ(Db

P ) + B + F̆b
xc,ω − i

2
Tb
ω (162)

and the two-electron KS matrix GKS is a sum of the Xb-dependent terms

GKS
(
Db
H

)
= Gγ

(
Db
H

)
+ Gxc

(
Db
H

)
(163)

Using Eqs. (118), (124), (154), and (161), we may reorganize Eq. (151) such that all terms
containing Xb only appear on the left-hand side of the equation

GKS([Xb,D]S)DS− SDGKS([Xb,D]S)

+F[Xb,D]SS− S[Xb,D]SF− ωbS[Xb,D]SS = Mb
RHS (164)

whereas the right-hand side Mb
RHS

Mb
RHS =

[
F̆
b

ωDS + FDb
PS + FDSbω

]�
− 1

2
ωb
[
SDb

PS + SDSbω
]⊕

(165)

only contains the density matrix to zeroth order. In Eq. (164) we have removed the
exp(−iωbt) factor common to all terms and inserted Db

H from Eq. (154).
Eq. (164) constitutes a set of linear equations often referred to as the linear response

equations [9, 13, 45]. In order to solve Eq. (164) in an e�cient manner, an understanding
of the underlying structure of the equations is needed. In Refs. [13, 45], generalized Hessian
E[2] and metric S[2] matrices were introduced, and their transformations on Xb were found
to be

E[2]Xb = G([Xb,D]S)DS− SDG([Xb,D]S) + F[Xb,D]SS− S[Xb,D]SF (166)

S[2]Xb = S[Xb,D]SS (167)

We may therefore write the linear response equation Eq. (164), in terms of E[2] and S[2] as

(E[2] − ωbS[2])Xb = Mb
RHS (168)

where both E[2] and S[2] are Hermitian matrices and E[2] is positive de�nite. Eq. (168) with
Xb subject to the projection relation in Eq. (155) may be solved e�ciently using the linearly
scaling, density matrix-based response solver of Coriani et al. [5]. In this response solver,
the pairing properties of E[2] and S[2]

(E[2]Xb)† = E[2]Xb† (169)

(S[2]Xb)† = −S[2]Xb† (170)

are used to add trial vectors in pairs to ensure that the response equations in the reduced
space have the same structure as Eq. (168). We refer to Ref. [5] for more details.

2. Second-order response parameters Xbc

To obtain an equation for the second-order Xbc parameters, we di�erentiate Eq. (114)
with respect to εb and εc

0 =


(
F̃ bc − i

2
S̃bc d

dt

)
(D̃S̃)

+
(
F̃ b − i

2
S̃b d

dt

)
(D̃S̃)c

+
(
F̃ c − i

2
S̃c d

dt

)
(D̃S̃)b

+
(
F̃ − i

2
S̃ d
dt

)
(D̃S̃)bc


�

(171)
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and evaluate Eq. (171) at zero perturbation strengths using Eq. (124) to obtain

0 =
[
F bcDS + FDbcS

]� − (ωb + ωc)SDbcS

+
[
F b(DS)c + F c(DS)b + F(DbSc + DcSb + DSbc)

]�
− 1

2

[
ωcS

b(DcS + DSc) + ωbS
c(DbS + DSb)

+(ωb + ωc)S(DbSc + DcSb + DSbc)

]⊕
(172)

The second-order density matrix derivative is contained in the �rst and last lines of Eq. (171).
We have collected the terms from these two lines containing the second-order density matrix
derivative in the upper line of Eq. (172).

The total second-order perturbation-strength derivative of the density matrix in the fre-
quency domain is, according to Eq. (135)

Dbc
ω = Dbc

H + Dbc
P (173)

Dbc
P only contains �rst-order derivatives of the density matrix and is given by, see Eq. (142)

Dbc
P = PK(1)

ω P† −QK(1)
ω Q† (174)

where K
(1)
ω is found from Eq. (128) with n = 2

K(1)
ω = −(DSD)bcω,1 = −(DS)bωD

c
ω − (DS)cωD

b
ω − (Db

ωS
c
ω + Dc

ωS
b
ω + DSbcω )D (175)

with
(DS)bω = Db

ωS + DSbω (176)

In Eqs. (174) and (175), we see that Dbc
P only contains �rst-order derivatives of the total

density matrix.
Dbc
H , see Eq. (146), contains the second-order response parameters

Dbc
H = [D,Xbc]S (177)

with Xbc subject to the projection relation in Eq. (149)

Xbc = PXbcQ† + QXbcP† (178)

We now proceed to isolate Dbc
H in F bc

ω . Di�erentiating Eq. (94) twice yields

F bc
ω = hbcω +

(
Gγ(D)

)bc
ω

+ Vt,bc
ω + Fbc

xc,ω − i
2
Tbc
ω (179)

Dbc
H enters in the

(
Gγ(D)

)bc
ω
and Fbc

xc,ω terms. By expanding
(
Gγ(D)

)bc
ω
, we may isolate the

one term containing Dbc
H (

Gγ(D)
)bc
ω

= Gγ(Dbc
H) + Ğγ,bc

ω (180)

where Ğγ,bc
ω only contains response parameters to �rst order

Ğγ,bc = Gγ,bc
ω (D) + Gγ,b

ω (Dc) + Gγ,c
ω (Db) + Gγ(Dbc

P ) (181)

As shown in Appendix A 1 c, Eq. (A31), we may write Fbc
xc,ω as

Fbc
xc,ω = Gxc(Dbc

H) + F̆bc
xc,ω (182)
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where F̆bc
xc,ω contains all terms which are of zeroth and �rst order in the response parameters.

Thus, we may write the second-order KS matrix derivative in a form analogous to Eq. (161)

F bc
ω = GKS(Dbc

H) + F̆
bc

ω (183)

where
F̆
bc

ω = hbcω + Ğγ,bc
ω + Vt,bc

ω + F̆bc
xc,ω − i

2
Tbc
ω (184)

and GKS(Dbc
H) is given as in Eq. (163)

GKS(Dbc
H) = Gγ(Dbc

H) + Gxc(Dbc
H) (185)

The second-order response equation, Eq. (172), in the frequency domain may now be written
as

GKS([Xbc,D]S)DS− SDGKS([Xbc,D]S) +

F[Xbc,D]SS− S[Xbc,D]SF− (ωb + ωc)S[Xbc,D]SS = Mbc
RHS (186)

where

Mbc
RHS =

[
F̆
bc

ω DS + FDbc
P S + F b

ω(DS)cω + F c
ω(DS)bω

+F(Db
ωS

c
ω + Dc

ωS
b
ω + DSbcω )

]�
− 1

2

[
ωcS

b
ω(DS)cω + ωbS

c
ω(DS)bω

+(ωb + ωc)
(
Dbc
P + S(Db

ωS
c
ω + Dc

ωS
b
ω + DSbcω )

)]⊕ (187)

Mbc
RHS only contains response parameters to �rst order. Note that the computational e�ort

is eased by the fact that the matrices needed to evaluate Dbc
P in Eq. (174) via the K

(1)
ω matrix

in Eq. (175), e.g. (DS)bω, are present in Mbc
RHS. Similar simpli�cations arise for higher-order

response equations.
We may write Eq. (186) in terms of the E[2] and S[2] matrices in Eqs. (166) and (167)(

E[2] − (ωb + ωc)S
[2]
)
Xbc = Mbc

RHS (188)

The structure of Eq. (188) is analogous to the �rst-order response equation, Eq. (168), and
may be solved using the same linear response solver [5]. Thus, to determine Xbc we need to
solve the �rst-order equations for Xb and Xc, Eq. (168), and the second-order equation for
Xbc, Eq. (188), with Xb and Xc substituted into Mbc

RHS in terms of Db
ω and Dc

ω, respectively.

3. Higher-order response parameters XbN

The derivation of the equations that determine the higher-order response parameters
XbN is analogous to the discussion of the second-order response parameters in the previous
subsection. Di�erentiating the TDSCF equation with respect to the perturbation strengths
εb1 , εb2 , . . . , εbn yields an equation of the form

0 =

(F̃ bN − i
2
S̃bN d

dt

)
(D̃S̃)

+ . . .

+
(
F̃ − i

2
S̃ d
dt

)
(D̃S̃)bN

�

(189)
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where the middle terms contain mixed derivatives of the
(
F̃ − i

2
S̃ d
dt

)
and D̃S̃ terms. By

evaluating Eq. (189) at zero perturbation strength, we may isolate the terms containing DbN

0 =

[(
F bNDS + FDbNS− ωbNSDbNS

+ . . .

]�
(190)

The n'th order density matrix derivative in the frequency domain takes the form

DbN
ω = DbN

P + DbN
H (191)

where DbN
P only contains X parameters up to order n−1, see Eq. (142), and DbN

H is given by
Eq. (146)

DbN
H = [D,XbN ]S (192)

with XbN subject to the projection relation in Eq. (149). From the discussion in the previous
section and iterative arguments, it follows that we may write the n'th order KS matrix
derivative as

F bN
ω = GKS(DbN

H ) + F̆
bN
ω (193)

where F̆
bN
ω only contains response parameters to order n−1. Thus, we may write Eq. (190)

as

GKS([XbN ,D]S)DS− SDGKS([XbN ,D]S) +

F[XbN ,D]SS− S[XbN ,D]SF− ωbNS[Xb,D]SS = MbN
RHS (194)

or, in terms of the E[2] and S[2] matrices in Eqs. (166) and (167) as(
E[2] − ωbNS[2]

)
XbN = MbN

RHS (195)

where MbN
RHS contains response parameters up to order n−1. The structure of Eq. (195) is

analogous to the �rst- and second-order response equations, Eqs. (168) and (188), and may
consequently be solved using the same linear solver [5].

The procedure for determining the n'th order response parameters can thus be summa-
rized as follows:

(1) The Xb1 , Xb2 , . . ., Xbn parameters are determined from the �rst-order response equa-
tion, Eq. (168).

(2) These �rst-order parameters are then substituted into Eq. (187) in order to solve
Eq. (188) for the Xb1b2 , Xb1b3 , . . ., Xbn−1bn parameters.

(3) This iterative procedure is continued until all relevant X parameters below order n
have been determined.

(4) By substituting lower-order response parameters into MbN
RHS, Eq. (195) may be solved

for the XbN matrix.
We emphasize that all response equations have the same form and therefore may be

solved using the same linear solver [5]. We have thus set up a scheme for determining
response parameters to arbitrary order by solving a set of response equations which are all
of the same form. We note the symmetry of the response matrices,

Xbc = Xcb (196)

Xbcd = Xbdc = Xcbd = Xcdb = Xdbc = Xdcb (197)

and similarly for higher orders, which follows from the fact that the n'th order response
equation is obtained by n'th order di�erentiation of the TDSCF equation, Eq. (114). This
reduces the number of response equations that need to be solved in order to identify XbN .
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F. Response functions using the n+1 rule

The quasienergy derivative La, Eq. (98), and its term-by-term higher derivatives evaluated
at zero perturbations strengths are given by

La
{Tr}T
= E0,a − SaW (198)

Lab
{Tr}T
= E0,ab + E1,aDb − SabW − SaWb (199)

Labc
{Tr}T
= E0,abc + E1,acDb + E1,abDc + E2,a(Db)Dc

+ E1,aDbc − SabcW − SabWc − SacWb − SaWbc (200)

where we have introduced density matrix and perturbation-strength derivatives of the gen-
eralized KS energy, Eq. (97), as

Ẽ0,ab =
∂Ẽ

∂εa∂εb
(201)

Ẽ1,a
=

∂Ẽ
∂εa∂D̃T

(202)

In this notation, the �rst index in the superscript refers to density matrix di�erentiation
whereas the second index denotes partial perturbation strength di�erentiation. We recall

that the presence of a tilde (e.g. Ẽ1,a
) indicates that general perturbation strengths are

used, whereas the absence of a tilde (E1,a) represents evaluation at zero �eld strength. Also
note that, from Eqs. (94) and (97)

F̃ = Ẽ1
=

∂Ẽ
∂D̃T

(203)

∂F̃
∂D̃

T
= Ẽ2

=
∂Ẽ

∂D̃T∂D̃T
(204)

We have here introduced the contracted Ẽ2
(M) matrix

Ẽ2
µν(M) =

∑
αβ

MβαẼ2
µναβ (205)

Eqs. (198)-(200) express the evaluation of molecular properties in terms of the n+1 rule
where perturbed density matrices to order n are required for evaluating molecular properties
to order n+1. For instance, for evaluating Labc we will need the �rst- and second-order density
matrix derivatives, Db, Dc, and Dbc. No density matrix derivatives with respect to εa are
present in Eqs. (198)�(200), as these terms were eliminated by applying the time-averaged
Hellmann�Feynmann theorem in the derivation of Eq. (98) in Sec. IVA.
Lab in Eq. (199) equals the linear response function 〈〈A;B〉〉ωb in Eq. (99) when the

frequency condition
ωa = −ωb (206)

is satis�ed. In this case the time-averaging in Eq. (199) becomes unnecessary as the expo-
nential phase factors present in each term, exp(−iωat) exp(−iωbt), cancel. We then obtain
the linear response function in the frequency domain as

〈〈A;B〉〉ωb
Tr
= E0,ab

ω + E1,a
ω Db

ω − Sabω W − SaωW
b
ω (207)
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E0,ab
ω is identi�ed by taking the partial derivatives of Eq. (97) with respect to εa and εb

E0,ab
ω

Tr
=
(
habω + Vt,ab

ω + 1
2
Gγ,ab
ω (D)− i

2
Tab
ω

)
D + E0,ab

xc,ω + habnuc,ω (208)

The exchange-correlation contribution E0,ab
xc,ω is discussed in Appendix A 2, see Eq. (A39).

The density matrix derivative of E0,a may also be identi�ed from Eq. (97),

E1,a
ω Db

ω
Tr
=

∂Ẽ
∂εa∂D̃T

∣∣∣∣
{ε}=0

Db Tr
=
(
haω + A + Gγ,a

ω (D) + FΩa

xc,ω + E2,a
xc,ω(D)− i

2
Ta
ω

)
Db
ω (209)

where the relation

TrGγ(N)M = TrGγ(M)N (210)

which follows from Eq. (64), has been used and, as in Eq. (158), we have renamed

A = Vt,a
ω (211)

The exchange-correlation contributions to Eq. (209), FΩa

xc,ω and E2,a
xc,ω(D), are treated in

Appendix A 2, see Eq. (A35).
From Eq. (95) we identify W and Wb

ω as

W = DFD (212)

Wb
ω = [Db

ωFD]⊕ + DF b
ωD + 1

2
ωb[D

b
ωSD]� (213)

where we have used Eq. (124) and where F b
ω is given by Eq. (157). For a perturbation-

independent basis set, the linear response function simpli�es to

〈〈A;B〉〉ωb
Tr
= ADb

H + habnuc,ω (214)

The quadratic response function 〈〈A;B,C〉〉ωb,ωc is given by Eq. (200) for

ωa = −ωb − ωc (215)

However, in order to minimize the number of response equations to be solved in order to
determine the quadratic and higher-order response functions, it may be preferable to rewrite
the derivatives of the quasienergy in forms that comply with the 2n+1 rule, or in alternative
forms that are intermediate between the n+1 and the 2n+1 expressions. This is the focus
of the next subsection.

G. Response functions using the 2n+1 and 2n+2 rules and alternative rules

According to the 2n+1-rule (Wigner's theorem) it is possible from a variationally de-
termined quasienergy to evaluate molecular properties to order 2n+1 from perturbed wave
function parameters up to order n. Thus, if the quasienergy could be expressed in terms of
the density matrix, the 2n+1 rule could straightforwardly be applied and molecular proper-
ties to order 2n+1 could be determined from density matrix derivatives to order n. However,
as the quasienergy cannot be expressed in terms of the density matrix, but only the �rst
derivative of the quasienergy Eq. (98), the 2n+1 rule cannot be directly be applied. In the
following we describe the modi�cations that are needed in a density matrix formulation to
allow for the evaluation of molecular properties in accordance with the 2n+1 rule.
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1. Quasienergy derivative Lagrangian

In the n+1 formulation of response functions given in the previous subsection, molecu-
lar properties were determined from derivatives of the time-averaged quasienergy gradient
{L̃a}T , Eq. (98), where the density matrix derivatives were determined from the TDSCF
equation, Eq. (114), subject to the idempotency constraint given in Eq. (107). We may thus
construct a variational Lagrangian function L̃a by adding products of Lagrange multipliers
with each equation satis�ed by D̃

L̃a = L̃a(D̃, ζ̃a, λ̃a)
{Tr}T
= L̃a(D̃)− λ̃a

[
F̃D̃S̃− i

2
S̃(D̃S̃)̇

]� − ζ̃a(D̃S̃D̃− D̃) (216)

where λ̃a multiplies the TDSCF equation, Eq. (114), while ζ̃a multiplies the idempotency

constraint, Eq. (107). Note that the Lagrangian multipliers λ̃a and ζ̃a carry a subscript

merely to denote their relation to L̃a and are not derivatives. We also note that L̃a carries
a time-averaging, which is omitted for reasons of brevity.

The quasienergy derivative Lagrangian L̃a is fully variational with respect to D̃, λ̃a, and
ζ̃a. By construction, L̃a therefore satis�es the 2n+1 rule for the density matrix derivatives
and the 2n+2 rule for the multipliers [15, 16]. We emphasize that the 2n+1 rule applies to
the density matrix derivatives Db, Dbc etc., and not to the response matrices Xb, Xbc etc.,
discussed in Section IVE.

Di�erentiation of Eq. (216) with respect to λ̃a and ζ̃a trivially yields the TDSCF equation
and the idempotency constraint [

F̃D̃S̃− i
2
S̃(D̃S̃)̇

]�
= 0 (217)

D̃S̃D̃− D̃ = 0 (218)

For variations in D̃
∂
∂D̃
L̃a = 0 (219)

we show in Appendix B that by making the following ansatz for λ̃a

λ̃a = D̃aS̃D̃− D̃S̃D̃a = [D̃aS̃D̃]	 (220)

where D̃a satis�es the di�erentiated TDSCF and idempotency equations[
F̃a

D̃S̃ + F̃D̃aS̃− i
2
S̃(D̃aS̃)̇ + F̃D̃S̃a− i

2
S̃a(D̃S̃)̇− i

2
S̃(D̃S̃a)̇

]	
= 0 (221)

D̃aS̃D̃ + D̃S̃aD̃ + D̃S̃D̃a − D̃a = 0 (222)

we may rewrite Eq. (219) as

0 =
[[

F̃a
D̃S̃ + F̃D̃aS̃− i

2
S̃(D̃aS̃)̇ + F̃D̃S̃a− i

2
S̃a(D̃S̃)̇− i

2
S̃(D̃S̃a)̇

]	
D̃S̃
]⊕

+
[([

F̃a
(D̃S̃− 1

2
)− (F̃D̃− i

2

˙̃SD̃−iS̃ ˙̃D)S̃a
]⊕ − ζ̃a)(D̃S̃− 1

2
)
]⊕

(223)

Using Eq. (221), it is seen that the upper line in Eq. (223) is zero, and ζ̃a may therefore be
determined as

ζ̃a =
[
F̃a

(D̃S̃− 1
2
)− (F̃D̃− i

2

˙̃SD̃−iS̃ ˙̃D)S̃a
]⊕

(224)

As L̃a in Eq. (216) satis�es the 2n+1 and 2n+2 rules we may simply omit all terms that do
not comply with the 2n+1 rule for the perturbed density matrices and the 2n+2 rule for
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the multipliers in Eqs. (220) and (224) when evaluating the response functions,

〈〈A;B〉〉ωb = Lab ; ωa = −ωb (225)

〈〈A;B,C〉〉ωb,ωc = Labc ; ωa = −ωb − ωc (226)

〈〈A;B,C,D〉〉ωb,ωc,ωd = Labcd ; ωa = −ωb − ωc − ωd (227)

The 2n+1 and 2n+2 rules may be used for reducing the number of equations to be solved [46].
If, for instance, the perturbation strengths are vectorial entities (electric and magnetic �elds),
the determination of the quadratic response functions using the n+1 rule in Eq. (200) requires
the solution of twelve response equations�3+3 equations for the Db and Dc matrices and 32−3
equations (we subtract by three due to symmetry of the response matrices, see Eq. (196))
for the Dbc matrix. In contrast, by applying the 2n+1 and 2n+2 rules in Eq. (226), we only

need to solve nine response equations�3 equations for Da (to determine λ̃a and ζ̃a), and
3+3 equations to determine Db and Dc. For higher-order response functions, the use of the
2n+1 and 2n+2 rules is even more advantageous.

We recall, however, that if one of the applied perturbations has a signi�cantly higher num-
ber of components than the other perturbations, as is for instance the case when considering
geometrical distortions of the nuclei, nuclear magnetic moments, or electric-�eld gradients
at the nuclei in large molecules, the n+1 rule will be the method of choice in order to avoid
solving the 3Nnuclei response equations to determine Da for these perturbations.

As discussed in Sec. IVA, we cannot express the quasienergy in terms of the density
matrix, but only its perturbation-strength derivative. However, the above described 2n+1
rule is in agreement with the one obtained for Ẽ(D̃) in time-independent theory [16].

In the following subsection we consider property formulas that comply with the 2n+1
and 2n+2 rules, but also with the n+1 rule, and formulas that are intermediate between the
n+1 and 2n+1 formulas.

2. Property formulas

Formulas for higher-order properties can be obtained by di�erentiating L̃a with respect
to perturbation strengths, while keeping as many perturbed arguments D̃, λ̃a, and ζ̃a as
required by the 2n+1 and 2n+2 rules. Di�erentiating twice, evaluating at zero �eld strength,
and keeping �rst-order perturbed arguments and zeroth-order multipliers (λa and ζa), we
get a formula for a third-order property (the quadratic response function) which reads

Labc
{Tr}T
= E0,abc + E1,acDb + E1,abDc + E2,a(Db)Dc

− SabcW − SacWb − SabWc − SaWbc
1

− λaY
bc
1 − ζaZbc

1 (228)

where we have introduced the �TDSCF equation matrix�

Ỹ=[(F̃− i
2
S̃ d
dt

)D̃S̃]	 (229)

and �idempotency constraint matrix�

Z̃= D̃S̃D̃− D̃ (230)

The �rst-order perturbed multipliers are not needed because of the 2n+2 rule for the Lagrange
multipliers. The �1� subscript on the matrices Wbc

1 , Ybc
1 , and Zbc

1 in Eq. (228) indicates that
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they only contain contributions with up to �rst-order perturbed density matrices, and we
thus miss the terms with Dbc since they are not needed due to the 2n+1 rule

Wbc
1 =

[
DbF cD + DbFDc+DcF bD

]⊕
+ DF bc

1 D

+ 1
2

[
ωb(D

bScD + DbSDc) + ωc(D
cSbD + DcSDb)

]	
(231)

Ybc
1 =

[
F bc

1 DS + F b(DcS + DSc) + F c(DbS + DSb)
+F(DbSc + DcSb + DSbc)

]	
− 1

2

[
ωbS

c(DbS + DSb) + ωcS
b(DcS + DSc)

+(ωb+ωc)S(DbSc + DcSb + DSbc)

]⊕
(232)

Zbc
1 = [DbScD + DbSDc + DcSbD]⊕ + DSbcD (233)

where we have used Eqs. (95) and (124) to obtain Eq. (231). We have in the above equations
introduced a second-order KS matrix derivative, F bc

1 , containing only up to �rst-order density
matrices

F bc
1 = E1,bc + E2,c(Db) + E2,b(Dc) + E3(Db,Dc) (234)

We will denote the formula given by Eq. (228) by Labc1,1 , since it involves �rst-order density
matrices with respect to εa (the �rst index) as Da appears in λa and ζa, see Eqs. (220)
and (224), and �rst-order with respect to εb, εc di�erentiation (the second index) as Db and
Dc but not Dbc enter

Labc1,1

{Tr}T
= (E0,a)bc1 − SabcW − SacWb − SabWc

− SaWbc
1 − λaYbc

1 − ζaZbc
1 (235)

where
(E0,a)bc1 = E0,abc + E1,acDb + E1,abDc + E2,a(Db)Dc (236)

Labc0,2 denotes the quasienergy derivative Lagrangian which is obtained by di�erentiating

Eq. (216) twice, but keeping the second-order arguments. Thus, Labc0,2 is in accordance with

the n+1 rule and may analogously be derived by di�erentiating L̃a in Eq. (98) twice

Labc0,2 = Labc
{Tr}T
= (E0,a)bc − SabcW − SacWb − SabWc − SaWbc (237)

Similarly, we always have for the higher-order derivatives that

Lab1...bn−1

0,n = {Lab1...bn−1}T (238)

A formula for Labcd2,1 (the cubic response function) is obtained by di�erentiating L̃a in Eq. (216)
three times, and keeping up to �rst-order density matrices and �rst-order multipliers in
accordance with the 2n+1 and 2n+2 rules

Labcd2,1

{Tr}T
= (E0,a)bcd1 − SabcdW − SacdWb − SabdWc − SabcWd

− SadWbc
1 − SacWbd

1 − SabWcd
1 − SaWbcd

1

− λdaY
bc
1 − λcaYbd

1 − λbaYcd
1 − λaYbcd

1

− ζdaZ
bc
1 − ζcaZbd

1 − ζb1Zcd
1 − ζaZbcd

1 (239)

The notation Labcd2,1 arises because second-order density matrices involving �a� (Dab, Dac, and

Dad) appear in the �rst-order multipliers, whereas only �rst-order density matrices involving
�bcd� occurs in Labcd2,1 .
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We may also obtain an expression which is somewhat intermediate between the n+1 and
2n+1 expressions [47]. That is, by keeping second-order �bcd� density matrices, we may
eliminate �rst-order multipliers and express the cubic response function as Labcd1,2 (�rst-order
in �a�, second-order in �bcd�)

Labcd1,2

{Tr}T
= (E0,a)bcd2 − SabcdW − SacdWb − SabdWc − SabcWd

− SadWbc − SacWbd − SabWcd

− SaWbcd
2 − λaYbcd

2 − ζaZbcd
2 (240)

Finally, we may apply the n+ 1 rule by di�erentiating Eq. (98) and keeping third-order
density matrices Dbcd and obtain

Labcd0,3

{Tr}T
= (E0,a)bcd − SabcdW − SacdWb − SabdWc − SabcWd

− SadWbc − SacWbd − SabWcd − SaWbcd (241)

Analogously, there are three formulas for �fth order properties,

Labcde2,2 = Labcde1,3 = Labcde0,4 (242)

four formulas for sixth order properties,

Labcdef3,2 = Labcdef2,3 = Labcdef1,4 = Labcdef0,5 (243)

and four formulas for seventh order properties,

Labcdefg3,3 = Labcdefg2,4 = Labcdefg1,5 = Labcdefg0,6 (244)

and so on.
To summarize: The k+n+1'th order property formula Lab1...bn+k

k,n contains density matrices
up to n'th order involving �b1, . . . , bn+k� and up to k'th order involving �a��that is, perturbed
multipliers up to order k−1. The optimal choice of k, n, which minimizes the number of
equations to solve, depends on how many components each of the perturbations has.

With all perturbations having approximately the same number of components, the lowest-

order formulas (the 2n+1 and 2n+2 rules) Lab1...bn+k
n,n (k+n+1 odd) and Lab1...bn+k

n,n−1 (k+n+1
even) are preferred.

In case the number of components in the perturbations di�er signi�cantly the formulas
should be chosen which minimize the total number of equations that have to be solved. For
example, the optimal dipole gradient formula is Lgf0,1, with the geometry perturbation (g)
�rst. In this way no geometric equations are involved, only the 3 electric �eld equations
(f). Similarly, the optimal hyperpolarizability gradient formula is Lgfff0,3 , and involves no

geometric equations. The optimal polarizability Hessian formula is Lggff1,2 , which involves
geometric- and mixed geometric-�eld equations, but no second-order geometric equations.
For the �dipole cubic force �eld� the optimal formula is Lfggg2,1 , and involves geometric and
geometry-�eld equations, but no higher-order geometric equations.

The property formulas introduced in this subsection are generally asymmetric with respect
to �a�. In the next subsection we show how these equations may be written in simpli�ed
and (almost) symmetric forms, which are to be preferred from a computational point of
view. However, as we shall see, it is not possible to express derivatives of L̃a in totally
symmetric forms with respect to εa, εb, εc, . . . di�erentiations. This is due to the fact that
�a� is fundamentally di�erent from �b, c, . . .� because the quasienergy derivative and not the
quasienergy itself is our fundamental quantity for the determination of response functions.
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3. Simpli�ed property formulas

The total �rst-order derivative with respect to εb of L̃a in Eq. (216), evaluated at general
perturbation strengths, equals the partial derivative since L̃a is variational with respect to
its arguments in agreement with the time-averaged Hellmann-Feynmann theorem

∂
∂D̃
L̃a = ∂

∂
˜λa
L̃a = ∂

∂
˜ζa
L̃a = 0 (245)

We may therefore write L̃ab as L̃ab1,0

L̃ab =
dL̃a

dεb
=
∂L̃a

∂εb
= L̃ab1,0

{Tr}T
= (Ẽ0,a)b0 − S̃abW̃ − S̃aW̃b

0 − λ̃aỸb
0 − ζ̃aZ̃b

0
{Tr}T
= Ẽ0,ab − S̃abW̃

− S̃a
(
D̃Ẽ1,b

D̃+ i
2

˙̃DS̃bD̃− i
2
D̃S̃b ˙̃D

)
− λ̃a

[
(Ẽ1,b− i

2
S̃b d

dt
)D̃S̃ + (F̃− i

2
S̃ d
dt

)D̃S̃b
]�

− ζ̃a(D̃S̃bD̃) (246)

where we have used Eqs. (95), (203), (229), and (230). We emphasize that this relation is
valid for all perturbation strengths. Alternatively, we may identify L̃ab by replacing a by
b in Eq. (216), followed by total di�erentiation with respect to εa. In this case the λ̃b and

ζ̃b multiplier terms vanish because they multiply the TDSCF equation, Eq. (217), and the
idempotency relation, Eq. (218), respectively, which are both zero. Thus, we may write L̃ab
as

L̃ab = L̃ba =
dL̃b

dεa
= L̃ba0,1

{Tr}T
= Ẽ0,ba + Ẽ1,b

D̃a − S̃baW̃ − S̃bW̃a

{Tr}T
= Ẽ0,ab + Ẽ1,b

D̃a − S̃abW̃ − S̃bW̃a (247)

Eqs. (246) and (247) must be equal. Noting that the �rst two terms in Eq. (246) also appear
in Eq. (247), it follows that the terms which di�er in the two equations must be equal, that
is

Ẽ1,b
D̃a − S̃bW̃a

{Tr}T
= −S̃a

(
D̃Ẽ1,b

D̃+ i
2

˙̃DS̃bD̃− i
2
D̃S̃b ˙̃D

)
− λ̃a

[
(Ẽ1,b− i

2
S̃b d

dt
)D̃S̃ + (F̃− i

2
S̃ d
dt

)D̃S̃b
]�

− ζ̃a(D̃S̃bD̃) (248)

As Ẽ1,b
and S̃b represent independent integral matrices, and Eq. (248) contains no mixed

terms, we may separate the Ẽ1,b
and S̃b terms and write Eq. (248) as two equations

Ẽ1,b
D̃a

{Tr}T
= −S̃a

(
D̃Ẽ1,b

D̃− λ̃a
[
Ẽ1,b

D̃S̃
]�

(249)

−S̃bW̃a
{Tr}T
= −S̃a

(
i
2

˙̃DS̃bD̃− i
2
D̃S̃b ˙̃D

)
− ζ̃a(D̃S̃bD̃)

− λ̃a
[
− i

2
S̃b(D̃S̃)̇ + (F̃− i

2
S̃ d
dt

)D̃S̃b
]�

(250)
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However, as Ẽ1,b
and S̃b does not depend on the particular perturbation but only on the

perturbation dependence of the basis functions, Eqs. (249)�(250) must hold also for arbitrary
matrices M and N

MD̃a
{Tr}T
= −S̃aD̃MD̃− λ̃a

[
MD̃S̃

]�
(251)

−NW̃a
{Tr}T
= −S̃a

(
i
2

˙̃DND̃− i
2
D̃N ˙̃D

)
− ζ̃aD̃ND̃

− λ̃a
[
− i

2
N(D̃S̃)̇ + (F̃− i

2
S̃ d
dt

)D̃N
]�

(252)

We can now rewrite Eq. (235) in a more symmetric form. We �rst expand the last three
terms

Labc1,1

{Tr}T
= (E0,a)bc1 − SabcW − SacWb − SabWc − SaWbc

1 − λaYbc
1 − ζaZbc

1

= (E0,a)bc1 − SabcW − SacWb − SabWc

− Sa
(
DF bc

1 D + Wbc
1′

)
− λa

([
F bc

1 DS + FDSbc
]� − 1

2
(ωb + ωc)

[
SDSbc

]⊕
+ Ybc

1′

)
− ζa

(
DSbcD + Zbc

1′

)
(253)

where Wbc
1′ , Y

bc
1′ and Zbc

1′ contain the (complete) lower-order terms but no second-order deriva-
tives, e.g. the idempotency matrix Zbc

1′ can be written as

Zbc
1′ = [DbScD + DbSDc + DcSbD]⊕ (254)

We can then apply Eqs. (251) and (252) evaluated at zero perturbation strength with M =
F bc

1 and N = Sbc to Eq. (253), which then simpli�es to

Labc1,1

{Tr}T
= (E0,a)bc1 − SabcW − SacWb − SabWc

+ F bc
1 Da − SbcWa − SaWbc

1′ − λaYbc
1′ − ζaZbc

1′ (255)

This expression can be made even more compact by noting that

(E0,a)bc1 + F bc
1 Da

{Tr}T
= (E0,a)bc1 + (E1)bc1 Da

{Tr}T
= Eabc1,1 (256)

Introducing the notation −(SW)abc(1,1)W
, which indicates that only up to �rst-order terms in

W should be included

−(SW)abc(1,1)W
= −SabcW − SacWb − SabWc − SbcWa (257)

Eq. (255) may be written as

Labc1,1

{Tr}T
= Eabc1,1 − (SW)abc(1,1)W

− SaWbc
1′ − λaYbc

1′ − ζaZbc
1′ (258)

A similar treatment of Eq. (239), applying also the εb derivative of Eqs. (251)�(252), results
in the simpli�ed fourth-order property formula

Labcd2,1

{Tr}T
= Eabcd2,1 − (SW)abcd(2,1)W

− SadWbc
1′ − SacWbd

1′ − SabWcd
1′ − SaWbcd

1′

− λdaY
bc
1′ − λcaYbd

1′ − λbaYcd
1′ − λaYbcd

1′

− ζdaZ
bc
1′ − ζcaZbd

1′ − ζbaZcd
1′ − ζaZbcd

1′ (259)
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while applying �rst-order relations to the equivalent formula in Eq. (240) results in

Labcd1,2

{Tr}T
= Eabcd1,2 − (SW)abcd(1,2)W

− SaWbcd
2′ − λaYbcd

2′ − ζaZbcd
2′ (260)

Analogously, the �fth-order formulas are given by

Labcde2,2

{Tr}T
= Eabcde2,2 − (SW)abcde(2,2)W

− SaeWbcd
2′ − SadWbce

2′ − SacWbde
2′ − SabWcde

2′

− λeaY
bcd
2′ − λdaYbce

2′ − λcaYbde
2′ − λbaYcde

2′ − λaYbcde
2′

− ζeaZ
bcd
2′ − ζdaZbce

2′ − ζcaZbde
2′ − ζbaZcde

2′ − ζaZbcde
2′ (261)

Labcde1,3

{Tr}T
= Eabcde1,3 − (SW)abcde(1,3)W

− SaWbcde
3′ − λaYbcde

3′ − ζaZbcde
3′ (262)

and higher-order formulas follow the same pattern. The advantage of these formulas over
those presented in section IVG2 lies in the symmetry that is obtained in the perturbations
�a, b, c, . . .� which may be used to introduce e�ective intermediates [for example Eabc1,1 in
Eq. (258)] and which leads to a slight reduction in the number of matrix multiplications.

H. Residues of response functions

1. Residues of response functions in exact theory

In exact theory, response functions have poles at frequencies ωq corresponding to excita-
tion energies from the ground state |0〉 to an excited state |q〉 [9],

ωq = Eq − E0 (263)

From the residues of response functions, transition matrix elements may be identi�ed, e.g.
the residue of the linear response function,

lim
ωb→ωq

(ωb − ωq)〈〈A;B〉〉ωb = 〈0|A|q〉〈q|B|0〉 (264)

yields transition moments between |0〉 and |q〉. If A and B are electric dipole operators, the
residues of the linear response function determine the dipole transition strength between |0〉
and |q〉.

For the quadratic response function 〈〈A;B,C〉〉−ωb,ωc , the residue at ωc = ωq is given
by [9]

lim
ωc→ωq

(ωc − ωq)〈〈A;B,C〉〉−ωb,ωc = −
∑
k 6=0

(
〈0|A|k〉〈k|B − 〈0|B|0〉|q〉

ωk − (ωq − ωb)

+
〈0|B|k〉〈k|A− 〈0|A|0〉|q〉

ωk − ωb

)
〈q|C|0〉 (265)

When A, B, and C are electric dipole operators, the residue in Eq. (265) determines the
two-photon absorption transition matrix element between state |0〉 and state |q〉. The double
residue

lim
ωb→−ωr

(ωb + ωr)[ lim
ωc→ωq

(ωc − ωq)〈〈A;B,C〉〉ωb,ωc ] = −〈0|B|r〉〈r|A− 〈0|A|0〉|q〉〈q|C|0〉 (266)
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determines matrix elements between the excited states |q〉 and |r〉. In this way molecu-
lar properties for excited states may be evaluated even though we do not have a speci�c
representation of these states.

A general response function 〈〈A;B,C, . . . ,M〉〉ωb,ωc,...,ωm have poles when an excitation
energy ωq equals one of the frequencies ωb, ωc, . . . , ωm or any sum of these frequencies. Double
residues are obtained when two frequencies (or sums of frequencies) equals two excitation
energies, e.g. as in Eq. (266) where ωc → ωq and ωb → −ωr. Similar identi�cations are
possible for triple and higher-order residues.

2. Residues of response functions in Kohn-Sham response theory

Let us consider a string of perturbations ab . . . k . . .m where k is an arbitrary index,
and investigate the general response function 〈〈A;B,C, . . . ,K, . . . ,M〉〉ωb,ωc,...,ωk,...,ωm and its
residue limωbK→ωq(ωbK − ωq)〈〈A;B,C, . . . ,K, . . . ,M〉〉ωb,ωc,...,ωk,...,ωm , where

ωbK = ωb + ωc + . . .+ ωk (267)

and ωq is an excitation energy. For sake of brevity, we will in the following denote
〈〈A;B,C, . . . ,K, . . . ,M〉〉ωb,ωc,...,ωk,...,ωm by the simpli�ed notation 〈〈A;B . . .M〉〉ωb...ωm .

In Kohn-Sham theory, we express response functions in terms of perturbed density matri-
ces as described in Sections IVF and IVG. The poles of the response functions enter through
the density matrices, in particular through the solution vectors to the response equations,
Eq. (195), entering the homogeneous part of the density matrix as in Eq. (146). For example,
for 〈〈A;B . . .M〉〉ωb...ωm we only get contributions to limωbK→ωq(ωbK−ωq)〈〈A;B . . .M〉〉ωb...ωm
through the density matrix

DbK
ω = DbK

P + DbK
H (268)

where from Eq. (146)
DbK
H = [D,XbK ]S (269)

and XbK is a solution vector to the response equation, Eq. (195),

XbK =
(
E[2] − ωbKS[2]

)−1
MbK

RHS (270)

The poles of 〈〈A;B . . .M〉〉ωb...ωm at ωbK enter through the inverse matrix (E[2]−ωbKS[2])−1,
and it is therefore necessary to consider the structure of (E[2] − ωbKS[2])−1 in more detail.
Let us �rst brie�y comment on our notation. E[2] and S[2] both contain four atomic or-
bital indices [13, 45], whereas XbN and MbK

RHS contain two atomic orbital indices. It may
sometimes be convenient to introduce a supermatrix notation in which the atomic indices
µν are collected into one common index m. We will use a Roman boldface type to describe
the conventional matrix-vector notation, whereas Italic boldface type will be used for the
supermatrix notation, e.g. E[2] and XbK are four- and two-index matrices whereas E[2] and
XbK represent a two-index matrix and a column vector, respectively.

To identify the poles of XbK , we introduce the spectral representation of (E[2] −
ωbKS

[2])−1 [45]

(E[2] − ωbKS
[2])−1 =

∑
j

[ωj − sgn(j)ωbK ]−1XjX
†
j (271)
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where ωj is an excitation energy, and Xj is an eigenvector obtained from the generalized
eigenvalue problem,

(E[2] − ωjS[2])Xj = 0 (272)

Eq. (272) may be solved using the linear response solver of Ref. [5]. In Eq. (271), the sum
includes both positive and negative j indices, where sgn(j) is one for positive indices and
minus one for negative indices. The eigenvectors for ωj and ω−j = −ωj, Xj and X−j, are
paired, such that Xj may be determined from the elements of X−j or vice versa. We refer
to Ref. [45] for more details.

Inserting Eq. (271) into Eq. (270), we obtain

XbK = (E[2] − ωbKS
[2])−1M bK

RHS

=
∑
j

[ωj − sgn(j)ωbK ]−1XjX
†
jM

bK
RHS (273)

From Eq. (273) it is clearly seen that only the terms in 〈〈A;B . . .M〉〉ωb...ωm which con-
tain the XbK response vector (or, equivalently DbK

ω ) will contribute to limωbK→ωq(ωbK −
ωq)〈〈A;B . . .M〉〉ωb...ωm , as the other response vectors are written in the same form as
Eq. (273) but with a frequency that di�ers from ωbK . Their residues for ωbK → ωq are
therefore zero.

The residue of XbK for ωbK → ωq, which we denote as XbK→q, is given by

XbK→q = lim
ωbK→ωq

(ωbK − ωq)X
bK = −XqX

†
qM

bK→q
RHS (274)

where q is a positive index and Xq is determined from Eq. (272). In the transformed right-

hand sideM bK→q
RHS , we have made the replacement ωbK → ωq whenever ωbK occurs. In matrix

form, XbK→q may be written as

XbK→q = −XqTr(X
∗
qM

bK→q
RHS ) (275)

Taking the residue of DbK
ω for ωbK → ωq, which we denote the �residue density matrix�

DbK→q
ω , gives

DbK→q
ω = lim

ωbK→ωq
(ωbK − ωq)DbK

ω = [D,XbK→q]S (276)

where we have used Eq. (268)-(269) and the fact that the particular part DbK
P does not

contribute to the residue as it does not contain XbK . When evaluating limωbK→ωq(ωbK −
ωq)〈〈A;B . . .M〉〉ωb...ωm we thus need to replace DbK

ω by DbK→q
ω .

All terms containing DbK
ω contribute to limωbK→ωq(ωbK−ωq)〈〈A;B . . .M〉〉ωb...ωm and terms

that do not contain DbK
ω may be removed. DbK

ω itself enters in 〈〈A;B . . .M〉〉ωb...ωm , and it
also enters through the particular parts of all density matrices of order k+1 and above. In
these particular density matrices, only the terms that contain DbK

ω explicitly will survive.
In the surviving terms we have to make the replacement DbK

ω → DbK→q
ω to get the desired

residue.
Consider for example the quadratic response function in Eq. (237). In the corresponding

residue, limωb→ωq(ωb−ωq)〈〈A;B,C〉〉ωb,ωc , Db
ω enters in the second-order density matrix Dbc

ω

via the particular component Dbc
P , see Eqs. (173)-(175), and in terms containing Db

ω itself. In
the terms containing Dbc

ω , it is only the terms in Dbc
P containing Db

ω explicitly that survive.
The remaining terms are removed when evaluating limωb→ωq(ωb − ωq)〈〈A;B . . .M〉〉ωb . To
get the �nal residue expression we make the replacement Db

ω → Db→q
ω in the surviving terms.

36



In conclusion, the procedure for obtaining limωbK→ωq(ωbK − ωq)〈〈A;B . . .M〉〉ωb...ωm from

the expression for 〈〈A;B . . .M〉〉ωb...ωm may be summarized as follows:
(1) All terms in the response function not containing DbK

ω are removed.
(2) The perturbed density matrix DbK

ω is replaced by DbK→q
ω , Eq. (276), and ωbK is replaced

by ωq:

DbK
ω → DbK→q

ω = [D,XbK→q]S (277)

ωbK → ωq (278)

Double residues are obtained by applying the above procedure twice to two di�erent response
matrices/frequencies. For instance, the double residue in Eq. (266) is obtained by eliminating
all terms not containing Dc

ω and making the replacements

Dc
ω → Dc→q

ω = [D,Xc→q]S (279)

ωc → ωq (280)

and then eliminating all terms not involving Db
ω, followed by the replacements

Db
ω → Db→−r

ω = [D,Xb→−r]S (281)

ωb → −ωr (282)

Triple and higher-order residues may be obtained in a similar fashion by applying the pro-
cedure three or more times.

To exemplify the above procedure we now consider the residue for the linear response
function limωb→ωq(ωb − ωq)〈〈A;B, 〉〉ωb . We take as our starting point the linear response

function in Eq. (207) and remove all terms not containing Db
ω (E0,ab

ω and −Sabω W) to obtain

Tr

(
E1,a
ω Db

ω − Saω
(
[Db

ωFD]⊕ + DGKS(Db
H)D + 1

2
ωb[D

b
ωSD]�

))
(283)

where we have used Eq. (213) and inserted Eq. (161) in the resulting expression. We then
make the replacements in Eqs. (277)-(278) for Db

ω and ωb,

Db
ω → Db→q

ω (284)

ωb → ωq (285)

For the DGKS(Db
H)D term, we have already eliminated the particular component of Db

ω,
see Eqs. (161)-(162), and we therefore make the replacement Db

H → Db→q
ω which then is

equivalent to Eq. (284). Making this replacement and the replacements in Eqs. (284)-(285)
gives the residue

lim
ωb→ωq

(ωb − ωq)〈〈A;B, 〉〉ωb
Tr
=

E1,a
ω Db→q

ω − Saω
(
[Db→q

ω FD]⊕ + DGKS(Db→q
ω )D + 1

2
ωq[D

b→q
ω SD]�

)
(286)

where from Eqs. (275)-(276) and Eq. (165) we obtain

Db→q
ω = [D,Xb→q]S (287)

Xb→q = −XqTr(X
∗
qM

b→q
RHS) (288)

Mb→q
RHS =

[
F̆
b

ωDS + FDb
PS + FDSbω

]�
− 1

2
ωq
[
SDb

PS + SDSbω
]⊕

(289)
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where ωq and Xq are determined from Eq. (272). The residue in Eq. (286) may be equated
with 〈0|A|q〉〈q|B|0〉 in Eq. (264). We cannot determine the sign of the individual transition
matrix elements but this is not important as molecular properties obtained from response
function residues are always written in terms of products of transition matrix elements.

For perturbation-independent basis sets, the residue takes a much simpler form. First,
in Eq. (286) only TrE1,a

ω Db→q
ω contribute. From Eq. (94) and (203) it follows that for

perturbation-independent basis sets

E1,a
ω =

∂F
∂εa

∣∣∣∣
{ε}=0

= A (290)

To identify an expression for Db→q
ω for perturbation-independent basis sets, we consider

Mb→q
RHS in Eq. (289), which can then be simpli�ed signi�cantly. Only the F̆

b

ω term may survive

as Db
P may be written in terms of perturbed overlap matrices, see Eqs. (153) and (126). F̆

b

ω

reduces to B for perturbation-independent basis sets, see Eq. (162). Therefore Mb→q
RHS is

given by
Mb→q

RHS = [B,S]D (291)

Inserting Eq. (291) into Eqs. (287)-(288) yields

Db→q
ω = −[D,Xq]STr(X

∗
q[B,S]D) (292)

Finally, inserting Eqs. (290) and (292) into Eq. (286) and removing the −Saω(. . .) term, we
obtain the residue for perturbation-independent basis sets,

lim
ωb→ωq

(ωb − ωq)〈〈A;B, 〉〉ωb = −Tr
(
[A,S]DXq

)
Tr
(
X∗q[B,S]D

)
(293)

in accordance with the expression in Ref. [45].

V. CONCLUSION

We have presented a generalization of response theory at the HF and KS levels of theory
to include frequency- and perturbation-dependent basis sets. The derivations are formulated
exclusively in terms of variations in the density matrix in the AO basis with the idempo-
tency relation for the density matrix as a constraint. Response equations of arbitrary order
are obtained by di�erentiation of the time-dependent SCF equation, Eq. (217), and the
idempotency constraint, Eq. (218). Using the particular-homogeneous separation of the den-
sity matrix contributions described in Section IVD, these two contributions are decoupled
and may be calculated successively. Response functions to arbitrary order are obtained by
straightforward di�erentiation of the variational time-averaged quasienergy derivative La-
grangian in Eq. (216), and residues are obtained from the corresponding response function
expressions by replacing the density matrix by a �residue density matrix� as described in
Section IVH. Response functions may be evaluated by applying the 2n+1 rule, the n+1
rule, or alternative �rules� that are intermediate between these as described in Section IVG.
The choice of rule will depend on the number of components in the various perturbations in
order to minimize the number of response equations to be solved. For certain classes of large
molecules the density matrix becomes sparse. As only matrix multiplications and additions
in the AO basis are involved, this sparsity can be utilized to obtain linear scaling for large
molecules.
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The major advantage of the present formalism�where the idempotency of the density
matrix is treated as a constraint�compared to the exponential parameterization by Hel-
gaker et al. [12, 13]�where an explicit parameterization is given for the density matrix�lies
in the treatment of PDBS. For PDBS in the exponential parameterization, an additional
constraint is introduced for the idempotency of the reference density matrix, whereas in our
formulation, standard basis sets and PDBS are treated on an equal footing. When the 2n+1
rule is applied in our formulation, the elements of the density matrix are the fundamental pa-
rameters, and compact formulas are obtained where higher-order perturbed density matrices
are eliminated. In contrast, in the exponential parameterization, the X response parameters
are the fundamental parameters, and the 2n+1 rule is applied to these parameters. This
means that the higher-order density matrix terms arising from di�erentiation of the reference
density matrix must be considered also when the 2n+1 rule is applied in the exponential
parameterization. Our formulation avoids these higher-order density matrix terms, yielding
simpler expressions for the response functions. Note that the structure of the linear response
equations in both formulations is the same, and the same linear solver [5] may therefore be
used.
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Appendix A: Perturbation strength derivatives of the functional derivative matrix

1. Derivatives of the functional derivative matrix for response equations

The aim of Sections (A 1 a)�(A 1 c) is to identify perturbation-strength derivatives of the
functional derivative matrix F̃xc to �rst and second order, evaluated at zero perturbation
strengths in the frequency domain (Fb

xc,ω and Fbc
xc,ω) in order to isolate the terms containing

the highest-order response parameters (Xb and Xbc).

a. Perturbation expansion of F̃xc

F̃xc in Eq. (67) is given as

F̃xc,µν =

∫
Ω̃µν ṽxcdx (A1)

where from Eqs. (44) and (66)

Ω̃µν = χ̃∗µχ̃ν (A2)

ṽxc(r, t) =
δẼxc
δρ(r)

∣∣∣∣
ρ(r)=ρ̃(r,t)

(A3)
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ṽxc may be expanded in terms of functional derivatives in the following manner

ṽxc(r, t) = vxc(r) +

∫
δvxc(r)

δρ(r1)
δρ̃(r1, t)dx1

+
1

2

∫ ∫
δ2vxc(r)

δρ(r1)δρ(r2)
δρ̃(r1, t)δρ̃(r2, t)dx1dx2 (A4)

where, due to the adiabatic approximation, the dependence of the external potential only
occur in δρ̃(ri, t).

F̃xc may now be expanded in orders of the perturbation strengths as

F̃xc = Fxc + F̃(1)
xc + F̃(2)

xc + . . . (A5)

where F̃xc to second order is given by

Fxc,µν =

∫
Ωµν(r)vxc(r)dx (A6)

F̃ (1)
xc,µν =

∫
Ωµν(r)ṽ(1)

xc (r, t)dx +

∫
Ω̃(1)
µν (r, t)vxc(r)dx (A7)

F̃ (2)
xc,µν =

∫
Ωµν(r)ṽ(2)

xc (r, t)dx +

∫
Ω̃(1)
µν (r, t)ṽ(1)

xc (r, t)dx

+

∫
Ω̃(2)
µν (r, t)vxc(r)dx (A8)

To obtain Eqs. (A6)-(A8) we have made a perturbation expansion of the overlap distribution
matrix

Ω̃ = Ω + Ω̃
(1)

+ Ω̃
(2)

+ . . . (A9)

and introduced an expansion of the exchange-correlation potential,

ṽxc(r, t) = vxc(r) + ṽ(1)
xc (r, t) + ṽ(2)

xc (r, t) + . . . (A10)

where the terms in Eq. (A10) are identi�ed by inserting a perturbation expansion of δρ̃(ri, t),

δρ̃(ri, t) = ρ̃(1)(ri, t) + ρ̃(2)(ri, t) + . . . (A11)

into Eq. (A4), giving

vxc(r) =
δExc
δρ(r)

(A12)

ṽ(1)
xc (r, t) =

∫
δvxc(r)

δρ(r1)
ρ̃(1)(r1, t)dx1 (A13)

ṽ(2)
xc (r, t) =

∫
δvxc(r)

δρ(r1)
ρ̃(2)(r1, t)dx1

+
1

2

∫ ∫
δ2vxc(r)

δρ(r1)δρ(r2)
ρ̃(1)(r1, t)ρ̃

(1)(r2, t)dx1dx2 (A14)

The terms in Eq. (A11) may be obtained by expanding the electron density ρ̃ in Eq. (79)

ρ̃ =
∑
µν

Ω̃µνD̃νµ
Tr
= Ω̃D̃ (A15)
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in orders of the perturbation strengths

ρ
Tr
= DΩ (A16)

ρ̃(1) Tr
= ΩD̃(1) + Ω̃

(1)
D (A17)

ρ̃(2) Tr
= Ω̃

(2)
D + Ω̃

(1)
D̃(1) + ΩD̃(2) (A18)

where ρ is the optimized electron density for the unperturbed system.

b. The �rst-order derivative Fbxc,ω

The total �rst-order functional derivative in the frequency domain Fb
xc,ω, is given by, see

Eq. (A7)

(F b
xc,ω)µν =

∫
Ωµν(r)vbxc,ω(r)dx +

∫
(Ωb

ω)µν(r)vxc(r)dx (A19)

where Ωb
ω may be determined once the speci�c perturbation dependency of the basis functions

has been de�ned. From Eq. (A13) we obtain

vbxc,ω(r) =

∫
δvxc(r)

δρ(r1)
ρbω(r1)dx1 (A20)

where the electron density derivative is found from Eq. (A17)

ρbω(r1)
Tr
= Ωb

ω(r1)D + Ω(r1)Db
ω (A21)

Db
ω is written as a sum of Db

P and Db
H , Eq. (152)

Db
ω = Db

P + Db
H (A22)

where only Db
H contains the �rst-order response parameters Xb, see Eq. (154), whereas Db

P

is determined from Eq. (153). We now write Fb
xc,ω in a form where the term containing the

Xb parameters has been separated from the remaining terms. From Eqs. (A19)-(A22), it
follows that the part of (F b

xc,ω)µν containing Db
H may be written as∫

Ωµν(r)

(∫
δvxc(r)

δρ(r1)
Tr
(
Ω(r1)Db

H

)
dx1

)
dx = Gxc

µν(D
b
H) (A23)

where we have introduced the contracted Gxc(M) matrix by

Gxc
µν(M) =

∑
αβ

Mβα

∫
Ωµν(r)

(∫
Ωαβ(r1)

δvxc
δρ(r1)

dx1

)
dx (A24)

Thus, the total derivative Fb
xc,ω may be written as a sum of Gxc

µν(D
b
H) and a matrix containing

the remaining terms which we denote as F̆b
xc,ω and which does not contain the �rst-order

response parameters Xb

Fb
xc,ω = Gxc

(
Db
H

)
+ F̆b

xc,ω (A25)

where from Eqs. (A19)-(A22)

(F̆ b
xc,ω)µν =

∫
Ωµν(r)

(∫
δvxc(r)

δρ(r1)

[
TrΩb

ω(r1)D + TrΩ(r1)Db
P

]
dx1

)
dx

+

∫
(Ωb

ω)µν(r)vxc(r)dx (A26)
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c. The second-order derivative Fbcxc,ω

The second-order derivative Fbc
xc,ω is treated in a similar manner as the �rst-order deriva-

tive Fb
xc,ω. From Eq. (A8) we obtain

(F bc
xc,ω)µν =

∫
Ωµν(r)vbcxc,ω(r)dx +

∫
(Ωb

ω)µν(r)vcxc,ω(r)dx

+

∫
(Ωc

ω)µν(r)vbxc,ω(r)dx +

∫
(Ωbc

ω )µν(r)vxc(r)dx (A27)

The aim is now to isolate terms containing Dbc
H , as only these terms contain second-order

response parameters Xbc, see Eq. (177). We thus focus on the terms containing Xbc. The
second-order exchange-correlation potential derivative vbcxc,ω(r) in the �rst term of Eq. (A27)
may be identi�ed from Eq. (A14) as

vbcxc,ω(r) =

∫
δvxc(r)

δρ(r1)
ρbcω (r1)dx1

+

∫ ∫
δ2vxc(r)

δρ(r1)δρ(r2)
ρbω(r1)ρcω(r2)dx1dx2 (A28)

where the second-order electron density derivative ρbcω is found from Eq. (A18)

ρbcω
Tr
= Ωbc

ω D + Ωc
ωD

b
ω + Ωb

ωD
c
ω + ΩDbc

ω (A29)

Only the last term in Eq. (A29) contains the Dbc
ω matrix, which is written as, see Eq. (173)

Dbc
ω = Dbc

H + Dbc
P (A30)

Comparing Eqs. (A27)-(A30) to Eqs. (A19)-(A22), we see that the Dbc
H matrix enters Fbc

xc,ω

in the same way that Db
H entered Fb

xc,ω. We may thus write Fbc
xc,ω in a form analogous to

Eq. (A25)

Fbc
xc,ω = Gxc

(
Dbc
H

)
+ F̆bc

xc,ω (A31)

where F̆bc
xc,ω contains the remaining terms of Fbc

xc,ω which may be identi�ed from Eqs. (A27)-
(A30) and which only contains up to �rst-order response parameters.

Higher-order derivatives of F̃xc may be identi�ed in an analogous fashion and they all
take the form of Eq. (A31).

2. Derivatives of the functional derivative matrix for response functions

In this section we consider the �rst-order derivative of F̃Ωa

xc , Eq. (83)

(F̃Ωa

xc )µν =

∫
Ω̃a
µν(r, t)ṽxc(r, t)dx (A32)

which is needed for the evaluation of response functions.
The exchange-correlation contribution to the linear response function is found by evalu-

ating

(TrF̃Ωa

xc D̃)b =
∑
αβ

∂

∂D̃T
αβ

(∑
µν

(F̃Ωa

xc )µνD̃νµ

)
D̃bT
αβ +

∂

∂εb

∑
µν

(F̃Ωa

xc )µνD̃νµ (A33)
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at zero �eld strengths in the frequency domain. We have split Eq. (A33) into two
contributions�the �rst term arises from the perturbation strength dependency of the den-
sity matrix, whereas the second term is the partial derivative with respect to εb. For the
�rst term in Eq. (A33) we obtain∑

αβ

∂

∂D̃T
αβ

(∑
µν

(F̃Ωa

xc )µνD̃νµ

)
D̃bT
αβ =

∑
αβ

(F̃Ωa

xc )αβD̃
b
βα +

∑
µναβ

(Ẽ2,a
xc )µναβD̃νµD̃

b
βα (A34)

= TrF̃Ωa

xc D̃b +
∑
µν

(Ẽ2,a
xc )µν(D̃

b)D̃νµ

= TrF̃Ωa

xc D̃b + TrẼ2,a
xc (D̃b)D̃

= TrF̃Ωa

xc D̃b + TrẼ2,a
xc (D̃)D̃b (A35)

In Eq. (A35) we have used Eqs. (82) and (A32) to introduce the symmetric four-index
matrix Ẽ2,a

xc and the contracted two-index matrix Ẽ2,a
xc (M), in analogy with the notation in

Eqs. (204)-(205)

(Ẽ2,a
xc )µναβ =

∂Ẽ0,a
xc

∂D̃T
µν∂D̃

T
αβ

=
∂(F̃Ωa

xc )µν

∂D̃T
αβ

=

∫
Ω̃a
µν(r, t)

∂ṽxc(r, t)

∂D̃T
αβ

dx

=

∫
Ω̃a
µν(r, t)

(∫
δvxc(r)

δρ(r1)

∂ρ̃(r1)

∂D̃T
αβ

dx1

)
dx

=

∫
Ω̃a
µν(r, t)

(∫
Ω̃αβ(r1)

δvxc(r)

δρ(r1)
dx1

)
dx (A36)

(Ẽ2,a
xc )µν(M) =

∑
αβ

(Ẽ2,a
xc )µναβMβα (A37)

In the last line of Eq. (A35) we have made use of the relation

TrẼ2,a
xc (M)N = TrẼ2,a

xc (N)M (A38)

which follows from the symmetry of Ẽ2,a
xc .

From the second term in Eq. (A33), which we denote as Ẽ0,ab
xc , we obtain

Ẽ0,ab
xc =

∂

∂εb

∑
µν

(F̃Ωa

xc )µνD̃νµ

=
∑
µν

∂(F̃Ωa

xc )µν
∂εb

D̃νµ

=
∑
µν

[∫
Ω̃ab
µν(r, t)ṽxc(r, t)dx

+

∫
Ω̃a
µν(r, t)

(∫
δvxc(r)

δρ(r1)

(
TrΩ̃

b
(r1)D̃

)
dx1

)
dx

]
D̃νµ (A39)

where we have used Eq. (79).
Thus, the total exchange-correlation contribution to the linear response function is found

by evaluating Eqs. (A35) and (A39) at zero perturbation strengths and removing the phase
factor exp(−iωbt) common to all terms to arrive at an expression in the frequency domain.
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Appendix B: Identi�cation of the Lagrange multipliers λ̃a and ζ̃a

In the following subsections, we identify the λ̃a and ζ̃a multipliers which satisfy the
variational criteria in Eq. (219)

∂
∂D̃T L̃a

{Tr}T
= ∂

∂D̃T

(
Ẽ0,a − S̃aW̃ − λ̃a

[
F̃D̃S̃− i

2
S̃(D̃S̃)̇

]� − ζ̃a(D̃S̃D̃− D̃)
)

= 0 (B1)

In Eq. (B1), we di�erentiate with respect to the transposed density matrix in order to avoid
transpositions when di�erentiating trace products,

∂
∂BT

TrBA = A (B2)

From the �rst two terms in Eq. (B1), when di�erentiating with respect to D̃T and inserting
Eq. (95), we get

∂
∂D̃T

{
Ẽ0,a − Tr S̃aW̃}T = Ẽ1,a − F̃D̃S̃a − S̃aD̃F̃ − Ẽ2

(D̃S̃aD̃)

+ i
2
(S̃D̃S̃a)̇− i

2
S̃a ˙̃DS̃ + i

2
S̃ ˙̃DS̃a − i

2
(S̃aD̃S̃)̇

= Ẽ1,a − Ẽ2
(D̃S̃aD̃)

+
[
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
(B3)

where we have used Eqs. (204)-(205) to get

∂
∂D̃T

µν
TrF̃M =

∑
αβ

∂F̃αβ

∂D̃T
µν

Mβα =
∑
αβ

Ẽ2
µναβMβα = Ẽ2

µν(M) (B4)

which is valid when M is independent of the density matrix. Furthermore, we have used the
periodicity of the system, see Eq. (24)

{Tr(D̃S̃D̃S̃a)̇}T = 0 (B5)

to obtain
∂

∂D̃T {TrS̃a
˙̃DS̃D̃}T = −(S̃D̃S̃a)̇ (B6)

From the λ̃a term of Eq. (B1), we get

∂
∂D̃T

{
−Tr

(
F̃D̃S̃− S̃D̃F̃ − i

2
S̃(D̃S̃)̇− i

2
(S̃D̃)̇S̃

)
λ̃a
}
T

= Ẽ2
(λ̃aS̃D̃−D̃S̃λ̃a) + F̃ λ̃aS̃− S̃λ̃aF̃

+ i
2

˙̃Sλ̃aS̃− i
2
(S̃λ̃aS̃)̇− i

2
(S̃λ̃aS̃)̇ + i

2
S̃λ̃a

˙̃S

= Ẽ2
([λ̃aS̃D̃]⊕) +

[
F̃ λ̃aS̃− i

2
S̃(λ̃aS̃)̇

]⊕
(B7)

and from the ζ̃a term

∂
∂D̃T

{
−Tr ζ̃a(D̃S̃D̃−D̃)

}
= −ζ̃aD̃S̃− S̃D̃ζ̃a + ζ̃a

= −
[
ζ̃a(D̃S̃− 1

2
)
]⊕

(B8)

Thus, the sum of Eqs. (B3), (B7), and (B8) should be zero. The aim of the following three
subsections is to rewrite the sum of Eqs. (B3), (B7), and (B8) into Eq. (223)

0 =
[[

F̃a
D̃S̃ + F̃D̃aS̃− i

2
S̃(D̃aS̃)̇ + F̃D̃S̃a− i

2
S̃a(D̃S̃)̇− i

2
S̃(D̃S̃a)̇

]	
D̃S̃
]⊕

+
[([

F̃a
(D̃S̃− 1

2
)− (F̃D̃− i

2

˙̃SD̃−iS̃ ˙̃D)S̃a
]⊕ − ζ̃a)(D̃S̃− 1

2
)
]⊕

(B9)
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by using the ansatz for the λ̃a multiplier in Eq. (220)

λ̃a = D̃aS̃D̃− D̃S̃D̃a = [D̃aS̃D̃]	 (B10)

In this way we may determine ζ̃a as, see Eq. (221)

ζ̃a =
[
F̃a

(D̃S̃− 1
2
)− (F̃D̃− i

2

˙̃SD̃−iS̃ ˙̃D)S̃a
]⊕

(B11)

since the upper line in Eq. (B9) is zero by Eq. (221). The ζ̃a term is written in the same
form in Eq. (B9) as in Eq. (B8), whereas the terms of Eqs. (B3) and (B7) must be rewritten
to arrive at the remaining terms of Eq. (B9).

a. Terms with F̃a

Inserting λ̃a as given by Eq. (B10) and using the idempotency relation in Eq. (218),

together with Eq. (222), the matrix [λ̃aS̃D̃]⊕ which appears in Eq. (B7), can be rewritten as

[λ̃aS̃D̃]⊕ =
[
(D̃aS̃D̃−D̃S̃D̃a)S̃D̃

]⊕
=
[
(D̃a−D̃S̃D̃a)S̃D̃

]⊕
=
[
(D̃aS̃D̃+D̃S̃aD̃)S̃D̃

]⊕
=
[
D̃aS̃D̃+D̃S̃aD̃

]⊕
= D̃aS̃D̃ + 2D̃S̃aD̃ + D̃S̃D̃a = D̃a + D̃S̃aD̃ (B12)

From this we may combine the following three terms from Eqs. (B3) and (B7) into F̃a

Ẽ1,a − Ẽ2
(D̃S̃aD̃) + Ẽ2

([λ̃aS̃D̃]⊕) = Ẽ1,a
+ Ẽ2

(D̃a) = F̃a
(B13)

where we have used Eqs. (202)-(205). Using idempotency, we manipulate F̃a
into the �rst

term of the lower line and the �rst term of the upper line in Eq. (B9)

F̃a
= F̃a − [F̃a

D̃S̃]⊕ + [F̃a
D̃S̃]⊕ = −

[
F̃a

(D̃S̃− 1
2
)
]⊕

+ [F̃a
D̃S̃]⊕

= −
[
F̃a

(D̃S̃− 1
2
)
]⊕

+
[
(2F̃a

D̃S̃−F̃a
+S̃D̃F̃a−S̃D̃F̃a

)D̃S̃
]⊕

= −
[
F̃a

(D̃S̃− 1
2
)
]⊕

+
[([

F̃a
(D̃S̃− 1

2
)
]⊕

+
[
F̃a

D̃S̃
]	)

D̃S̃
]⊕

=
[[

F̃a
(D̃S̃− 1

2
)
]⊕

(D̃S̃− 1
2
)
]⊕

+
[[

F̃a
D̃S̃
]	

D̃S̃
]⊕

(B14)

b. Terms with D̃a

Inserting λ̃a from Eq. (B10) into the remaining terms of Eq. (B7) and expanding, we
obtain [

F̃ λ̃aS̃− i
2
S̃(λ̃aS̃)̇

]⊕
=
[
F̃(D̃aS̃D̃−D̃S̃D̃a)S̃− i

2
S̃
(
(D̃aS̃D̃−D̃S̃D̃a)S

)̇]⊕
=
[
F̃D̃aS̃D̃S̃− F̃D̃S̃D̃aS̃− i

2
S̃(D̃aS̃)̇D̃S̃

− i
2
S̃D̃aS̃(D̃S̃)̇ + i

2
S̃(D̃S̃)̇D̃aS̃ + i

2
S̃D̃S̃(D̃aS̃)̇

]⊕
(B15)

Reversing the order of the matrices in the second, �fth and sixth terms (allowed in [. . .]⊕

when the non-di�erentiated matrices are Hermitian), and combining the second, fourth and
�fth terms we get[

F̃ λ̃aS̃− i
2
S̃(λ̃aS̃)̇

]⊕
=
[(

F̃D̃aS̃− i
2
S̃(D̃aS̃)̇− i

2
(S̃D̃a)̇S̃

)
D̃S̃

+ S̃D̃a
(
−S̃D̃F̃ − i

2
(S̃D̃)̇S̃− i

2
S̃(D̃S̃)̇

)]⊕
(B16)
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We may substitute the last terms using the TDSCF equation, Eq. (217),[
F̃ λ̃aS̃− i

2
S̃(λ̃aS̃)̇

]⊕
=
[(

F̃D̃aS̃− i
2
S̃(D̃aS̃)̇− i

2
(S̃D̃a)̇S̃

)
D̃S̃ + S̃D̃a

(
−F̃D̃S̃

)]⊕
=
[[

F̃D̃aS̃− i
2
S̃(D̃aS̃)̇

]	
D̃S̃
]⊕

(B17)

where we recognize the second and third terms in the upper line of Eq. (B9).

c. The terms with S̃a

From the remaining terms in Eq. (B3), by using the idempotency and expanding, we
obtain [

−S̃aD̃F̃ − i
2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
(B18)

=
[
−S̃aD̃S̃D̃F̃ − i

2
S̃a(D̃S̃D̃S̃)̇− i

2
(S̃aD̃S̃D̃)̇S̃

]⊕
=
[
−S̃aD̃S̃D̃F̃ − i

2
S̃a(D̃S̃)̇D̃S̃− i

2
S̃aD̃S̃(D̃S̃)̇

− i
2
(S̃aD̃)̇S̃D̃S̃− i

2
S̃aD̃(S̃D̃)̇S̃

]⊕
(B19)

Combining the �rst, third and �fth terms, and substituting with the TDSCF equation, this
becomes [

−S̃aD̃F̃ − i
2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
=
[
S̃aD̃

(
−S̃D̃F̃− i

2
(SD)̇S− i

2
S̃(D̃S̃)̇

)
−
(
i
2
S̃a(D̃S̃)̇ + i

2
(S̃aD̃)̇S̃

)
D̃S̃
]⊕

=
[
S̃aD̃

(
−F̃D̃S̃

)
+
(
− i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
D̃S̃
]⊕

=
[(
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
D̃S̃
]⊕

(B20)

Comparing with the �rst line of Eq. (B19), a factor D̃S̃ has appeared at the end of the
bracket. This means that the corresponding term with D̃S̃−1 is zero. Adding this zero term[

−S̃aD̃F̃ − i
2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
=
[(
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
D̃S̃
]⊕

+
[(
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
(D̃S̃−1)

]⊕
(B21)

followed by addition and subtraction[
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
=
[(
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
D̃S̃
]⊕

+
[(
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

)
(D̃S̃−1)

]⊕
+
[(

F̃D̃S̃a − i
2
(S̃D̃)̇S̃a − i

2
S̃(D̃S̃a)̇

)
D̃S̃
]⊕

−
[(

F̃D̃S̃a − i
2
(S̃D̃)̇S̃a − i

2
S̃(D̃S̃a)̇

)
D̃S̃
]⊕

(B22)

we can collect the terms into two double brackets,[
−S̃aD̃F̃ − i

2
S̃a(D̃S̃)̇− i

2
(S̃aD̃)̇S̃

]⊕
=
[[

F̃D̃S̃a − i
2
S̃a(D̃S̃)̇− i

2
S̃(D̃S̃a)̇

]	
D̃S̃
]⊕

−
[[

F̃D̃S̃a − i
2
(S̃D̃)̇S̃a − i

2
S̃(D̃S̃a)̇

]⊕
(D̃S̃− 1

2
)
]⊕

(B23)
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in which all terms appear in Eq. (B9), except[[
i
2
S̃D̃ ˙̃Sa

]⊕
(D̃S̃− 1

2
)
]⊕

=
[[

i
2
S̃D̃ ˙̃Sa

]⊕
(D̃S̃−1)

]⊕
+
[
i
2
S̃D̃ ˙̃Sa

]⊕
=
[
i
2
(S̃D̃ ˙̃Sa − ˙̃SaD̃S̃)(D̃S̃−1)

]⊕
+
[
i
2
S̃D̃ ˙̃Sa

]⊕
=
[
i
2
S̃D̃ ˙̃Sa(D̃S̃−1)

]⊕
+
[
i
2
S̃D̃ ˙̃Sa

]⊕
=
[
i
2
S̃D̃ ˙̃SaD̃S̃

]⊕
= 0 (B24)

which after some manipulations turns out to be zero.
With this we have identi�ed all terms in Eq. (B9), and thus veri�ed that λ̃a and ζ̃a given

by Eqs. (B10) and (B11) indeed solve Eq. (B1).
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