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Abstract

We present the first gauge-origin independent, frequency-dependent calculations of the hyper-
magnetizability anisotropy, which determines the temperature-independent contribution to mag-
netic field-induced linear birefringence, the so—called Cotton—Mouton effect. A density matrix-
based scheme for analytic calculations of frequency-dependent molecular properties for self-
consistent field models has recently been developed, which is valid also with frequency- and field-
dependent basis sets. Applying this scheme to Hartree-Fock wave functions, and using London
atomic orbitals in order to obtain gauge-origin independent results, we have calculated the hyper-
magnetizability anisotropy. Our results show that the use of London orbitals lead to somewhat
better basis set convergence for the hypermagnetizability compared to conventional basis sets, and
that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.



I. INTRODUCTION

When linearly polarized light passes through a fluid in a direction perpendicular to an
externally applied magnetic field, a linear birefringence, determined by the Cotton-Mouton
constant ,,C ' arises

An=ny—n; =,C\B?, (1)

where n is the refractive index of the medium and An the anisotropy arising from the dif-
ferences in its value for the components of the polarization vector aligned parallel (n) and
perpendicular (n,) with respect to the direction of the external field, respectively. X is
the wavelength of the incident light, and B is the external magnetic field induction. The
ellipticity® resulting from the effect is in general small, but the subject has gained renewed
experimental interest” !° due to the possibility of measuring the birefringence of vacuum in
the presence of strong magnetic fields as a means of verifying the theory of quantum elec-
trodynamics.'1? The state of experimental (and theoretical) work on the Cotton-Mouton
effect has been reviewed by Rizzo, Rizzo and Bishop.®

Experiment, however, still faces many technical difficulties, and the ability to calibrate
experimental observations against accurate theoretical calculations of the quantities that
determine the Cotton—Mouton effect'®>—the electric dipole polarizability, the magnetizabil-
ity and the hypermagnetizability anisotropies—has proven to be an important means of
improving the quality of experimental data, as clearly demonstrated for instance in the case
of the Cotton-Mouton effect of the neon atom.®10:1417

From a computational point of view, the hypermagnetizability anisotropy poses several
challenges. First of all, it is a frequency-dependent, fourth-order molecular property which
requires the use of cubic response theory in order for the dispersion of the tensor to be
properly taken into account.!® 2 Analytic implementations of cubic response functions have
been presented for Hartree-Fock,?! multiconfigurational self-consistent field (MCSCF)?*? and
coupled-cluster wave functions,?® as well as for Kohn-Sham density functional theory.?425
Several studies of the hypermagnetizability anisotropy and the Cotton—Mouton effect have
been presented in the literature in recent years.!”26-3436 For an account of theoretical cal-
culations of the Cotton—Mouton effect, we refer to Refs. 5,37-39.

A further complication in the calculation of the hypermagnetizability anisotropy arises
from the fact that the hypermagnetizability involves the second-order response of the
frequency-dependent polarizability to a static, external magnetic field induction. The pres-
ence of the magnetic field perturbation implies that the calculated hypermagnetizability will
be in general gauge-origin dependent, and that gauge invariant results will only be obtained
for variational wave functions in the limit of a complete basis set.

Origin-independent hypermagnetizabilities can be obtained for variational wave functions
also in finite basis sets if London atomic orbitals are used.***? In addition to providing origin-
independent results, the London orbitals also ensure rapid basis set convergence for static
magnetic properties, as perhaps most clearly illustrated for the magnetizability of PF5.%3
However, by introducing London atomic orbitals, an explicit dependence of the atomic and
molecular orbitals on the external magnetic field perturbation is introduced, leading to
additional complications in the response formalism and the subsequent implementation of the
theory. Indeed, there exists to date no analytical implementation of hypermagnetizabilities
using London atomic orbitals, neither in the static electric field limit or for a frequency-
dependent electric field. The original scheme devised for calculating origin-independent
hypermagnetizabilities using London atomic orbitals*? obtained the hypermagnetizability



tensor by finite electric-field differentiation of the analytically calculated magnetizability,
the latter calculated using London atomic orbitals. This required taking proper account of
the correction terms arising because of the coupling between the electric dipole operator and
the London orbitals.

In this work we unite the two approaches for calculating the hypermagnetizability tensor,
presenting the first frequency-dependent, origin-independent calculations of the hypermag-
netizability tensor using London atomic orbitals to obtain gauge-origin independent re-
sults. The calculations are performed using a new, general scheme for calculating frequency-
dependent molecular properties for self-consistent field states,***% including also corrections
arising from the explicit dependence in the atomic basis set on the applied perturbations
(such as geometry perturbations or external magnetic field inductions). The theory is for-
mulated in the atomic orbital (AO) basis, and uses the elements of the density matrix as the
basic variables. The code is a stand-alone code that only requires as input the (perturbed)
density matrices as well as the necessary one- and two-electron integrals. As such, it can
also be easily extended to two- and four-component SCF models.*6

We apply our origin-independent hypermagnetizability implementation to the calculation
of the Cotton—-Mouton effect in a series of fluorobenzenes as well as of benzene. For many of
these molecules there exist experiment data*” 5! to which we can compare our results, as well
as some earlier theoretical calculations using density-functional (DFT) and coupled cluster
theory.?33* By choosing a series of molecules with an increasing number of fluorine atoms,
we can explore the importance of London atomic orbitals for obtaining basis-set limit results
for the magnetizability and hypermagnetizability, a task which has been demonstrated to
be challenging in the case of the magnetizability of fluorine-rich molecules.?3*43

The rest of the paper is organized as follows: In Section II we present the theory for
analytic, frequency-dependent calculations of the hypermagnetizability using London atomic
orbitals. In Section III we summarize the details of our calculations and define the quantities
of interest for the Cotton—Mouton effect. In Section IV we present and discuss our results,
with particular emphasis on the comparison between data obtained with and without London
orbitals, and in Section V we summarize our results.

II. THEORY

In this section we will describe our formalism for the calculation of the analytic,
frequency-dependent polarizabilities, magnetizabilities and hypermagnetizabilities using
London atomic orbitals. The formalism is valid for a general time- and perturbation-
dependent basis set,? and it is formulated using the density matrix in the atomic orbital
basis as the basic variable. The general framework for the calculation of frequency-dependent
properties is described elsewhere,** and here we will only give the main features of the ap-
proach for the specific case of the polarizability, magnetizability and hypermagnetizability.

A. The quasi-energy magnetic-field derivative

The magnetic moment m={m,, m,, m.} of a molecule in an applied static, homogeneous
magnetic field B={B,, B,, B, } is the sum of the expectation values of the magnetic moment

operator m={1,, m,, M.} and the field-contracted diamagnetic susceptibility operator B,
where £ is a 3x3 matrix of operators. According to the Hellmann-Feynman theorem, for a



variational wavefunction, m is also the negative first derivative of the energy E with respect
to an applied homogeneous magnetic field B={B,, B,, B.}

m = (Y| + EBJY) = —LE(1)), (2)
E() = (|H + V), (3)
V =-B-m-1B-€B, (4)

where V is the external potential operator arising from the homegeneous magnetic field B,
and H is the molecular Hamiltonian describing the unperturbed molecular system.
Assuming a closed-shell molecule, the magnetic moment operator m is given by

_ 17 _ 1 A A _
Mo = —tao=—3 Y €apfooby, a=my,2 (5)
Byy=z,y,z

where €,3, is the Levi-Civita antisymmetric tensor, and Za, 7g and p, are components of the
electronic angular momentum, position and linear momentum operators, respectively. The
diamagnetic susceptibility operator £ is given by

~ 1 R R R R
Sap = (Ta,orﬁ,o — dag ZT%OT%O) : (6)
Y

where the summation runs over the Cartesian directions z,y, z

In Eq. 5, we have explicitly indicated that the magnetic moment operator depends on
an arbitrarily chosen gauge origin 0. Computed observable magnetic properties will only
be independent of this gauge origin in the limit of complete basis sets.?® In order to ensure
that our calculated results are independent of the choice of gauge origin also for finite basis

sets, we will utilize London Atomic orbitals (LAOs, also known as Gauge-Including Atomic
Orbitals, GIAOs) defined as*!

Xu = €xp (—iApo - T) wy, (7)

where w,, is an ordinary perturbation-independent cartesian or spherical Gaussian basis func-
tion, and where the effect of the magnetic vector potential A ,;o appearing in the complex
phase factor

AMO = %B X RMO, (8)

is to move the global gauge origin O to the “best” local gauge origin for each individual
basis function, which is chosen to be the center to which the basis function is attached.
In the case of static external magnetic fields, which is the case for the magnetizability and
hypermagnetizability, all references to the global gauge origin O vanish in the integrals
contributing to the properties, and therefore the calculation is independent of the choice of
global gauge origin.*2:°6:57

Analogous to the energy of a time-independent molecular system, the quasi-energy of a

time-dependent system Q(%) is defined as®* 5
QW) = {(W[H+ V' —i%|v)}, (9)
where the brace denotes a time average, defined as
{ . h= Tlslmoo P f_ts ...dt, (10)



and the normalized wavefunction 1) is required to have the same fundamental frequency (ies)

as the (generally) time-dependent external potential operator Vt, and are thus Fourier series
over the same infinite but discrete frequency set

Vi= Y e, Vo, =V (11)
k=—o00

Yty = > ety () =1 (12)
k=—0oc0

Although this relation does not uniquely determine the variational wavefunctions v, as
e~kly) (for any k) is also variational, differing in quasi-energy by wy, it restricts the vari-
ational wavefunctions to a discrete set, and ensures that the time average in Eq. 10 is
well-defined.

If ¢ is a variational wavefunction—that is, if the quasi-energy @ () is stationary with
respect to variations in 1, the time-dependent Hellmann-Feynman theorem applies to the
frequency-dependent magnetic moment m,,

m, = {7 (Pl +EB|Y)}, = —7-Q(1), (13)
Vi=B-m+1B-€B, B()=)_e¢“B,, (14)

where B, is the w-frequency strength (complex-valued, defining field direction, amplitude
and phase) of the applied oscillating magnetic field. Note that although the quasi-energy ()
is real-valued, its derivative —Q will in general be complex, satisfying (-2 -Q)" = Q=

d
a5 @

Notice in Eq. 9 that time-differentiation is applied to the ket [¢)), but not to the bra
(¢|. This asymmetry makes it difficult to parameterize @ in terms of density operators
derived from |¢)(1)|, such as the atomic orbital density matrix D in self-consistent field
(SCF) models, since these are symmetric in bra and ket. However, as we have demonstrated
in Ref. 44, SCF quasi-energy derivatives d%@ are readily expressible in terms of D, also in
the case of a time-dependent basis set explicitly dependent on the parameter a.

The SCF quasi-energy derivative with respect to an external magnetic field strength
a=B,,, expressed in terms of the density matrix in the atomic orbital basis can be written

aS44

40 =Q"D)={2E(D) - Tr(LS)W}, taE( ) — S*W, (15)

where we have introduced a superscript notation Q*, S* for (total) derivatives, and = denotes
that we will take the trace of the matrix products involved as well as perform time averaging.

In this work we study the Hartree-Fock model, for which the generalized energy F(D) is
the sum of the Hartree-Fock energy, the interaction energy between the molecule and the
external field (vy,. denoting the nuclear contribution), and an additional term ——TrTD
arising from the time-dependence of the AOs

E(D) = hye+TrhD +Tr 1G(D)D (16)
+ Ve + Tr VD — £Tr TD,
F = ;27E(D)=h+V+G(D)—iT, (17)



where the generalized Fock matrix F also has been introduced. The density matrix D, the
generalized “energy-weighted density matrix” W, the overlap matrix S, the one-electron
Hamiltonian matrix h, the time-differentiation matrix T, the external potential matrix V
and the two-electron matrix G(D) in the atomic orbital basis, are given by

D = CCT, (18)

W = DFD +iDSD - iDSD, D=4D, (19)

S = (Xulxv), (20)

ZKk

h,, = B L VAR Jp——— - P 21

p <Xu 5V ZK:|RK—I'| X >a (21)

T;u/ = <XM’XI/> - <Xu|Xu>a XV = %Xw (22)

VMV - <Xu|Vt|Xu> = <X/A}B -+ %B : EB}XI/>7 (23>
Guw(D) = Z(guupﬂ = Guapv) Dop, (24)

po

where C is the molecular orbital coefficient matrix, C' its adjoint (conjugate transpose),
and g0 the two-electron integrals

Guopr = / / G 301X ) o s (25)

We note the close similarity in structure between the expression for the quasi-energy
gradient in Eq. 15 and the expression introduced by Pulay for the molecular gradient.”® The
form of the expression is the same, but our definition involves time-dependent generalized
matrices that also allow for frequency dependence in the atomic-orbital basis set.

Inserting Eq. 16 for E(D) into Eq. 15 and evaluating the partial derivative, we obtain
the expression for the (negative) Hartree-Fock magnetic moment

~m,, = Q" = h'D+ 1G"D)D + V'D - iT“D — §"W, (26)

where we have used the fact that the nuclei do not interact with the magnetic field and
that thus h? . and v _ are zero, and that the integrals h, G, T and S also depend on the

nuc nuc

magnetic field strength a through the LAOs x,.

B. Magnetizability

The frequency-dependent magnetizability &(w, v) is a 3x3 matrix depending on two fre-
quencies, and is the derivative of the magnetic moment m,, with respect to B,,, or equiva-
lently by Eq. 13, the negative second derivative of the quasi-energy

Ew,v) = -m, = —E Q). (27)

In order to obtain the formula for the Hartree-Fock magnetizability, we differentiate the
magnetic moment Eq. 15 with respect to b=B,,, and use the chain rule on the first term
0
3. L(D)
da

Trg

—&(wa,wh) = Q™ = 27 E(D) + (LF)D’ + S*W + S“W”, (28)
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where D is the perturbed density matrix (vide infra), and W? is defined in terms of D°
through differentiation of Eq. 19

W’ = D'FD + {D’SD - :D'SD (29)
+ DF'D + {DS'D - {DS'D
+ DFD’ + iDSD’ — iDSD’.

Since the unperturbed system is time-independent, D is zero while D? is on the form e~ WM,
with M being time independent, and thus the expression above reduces to

W’ = D'FD + DF’D + DFD’ + £D"SD — £DSD’. (30)

C. Perturbed density matrices

Eq. 28 involves the 3 first-order perturbed density matrices D® (corresponding to the
three cartesian components of the magnetic field strength b), which must be determined in
order to calculate the magnetizability. The details of the derivation of the equations that
can be used to determine the perturbed density matrices to arbitrary order were given in
Ref. 44, but for completeness, we will give the highlights of the derivation in this section.

The set of equations that can be used to determine the perturbed densities are obtained
by differentiating the time-dependent self-consistent field equation (TDSCF) and the idem-
potency condition for the density matrix

. .

0 = FDS - SDF — {S(DS) — £(SD)S =Y, (31)
0 =DSD-D =P, (32)

with respect to b. A dot over the parenthesis here indicates that time differentiation is to be
applied to the product inside the parenthesis, and the TDSDF matrix Y and idempotency
matrix P are introduced for future reference when determining the hypermagnetizability
from the variational Lagrangian for the magnetic moment (vide infra). From Eqs. 31 and 32
we get two equations for D?

0 = F'DS — SDF’ — iS*(DS) — £(SD)S" (33)
+ FD'S — SD'F — iS(D'S) — 1(SD’)S
+ FDS’ — S'DF — iS(DS’) — {(S"D)s,

0 = DSD + DS’D + DSD’ — D°. (34)

The perturbed Fock matrix F® in Eq. 33 has two contributions, namely the field-perturbed
integrals %F, and the unperturbed two-electron matrix operator “%F:G contracted with
the perturbed density matrix D° (relaxation contribution)

F'=4F = JF + G(D’). (35)

In order to decouple Eqgs. 33 and 34, we recall that the unperturbed matrix DS is a projec-
tor, and thus split D? into four “blocks”

D’ = [DSD'SD + (1-DS)D’(1-SD)]
+ [DSD*(1-SD) + (1-DS)D'SD] = D! + D, (36)

7



which correspond to the occupied-occupied, unoccupied-unoccupied, occupied-unoccupied,
and unoccupied-occupied blocks, respectively. We denote the two first blocks the particular
component Dg, and the last two the homogeneous component D?. Inserting the partitioning

of Db defined in Eq. 36 into Eq. 34, keeping the full expansion for D? and then using the
idempotency condition to eliminate many of the terms, we find that the contribution from
D? to the perturbed idempotency condition vanishes

~-DS’D = (D!+D})SD + DS(D!+Dy}) — (D)+Dy)
= [D! +DSD’(1-SD) + (1-DS)D"SD| SD
+ DS [D! + DSD’(1-SD) + (1-DS)DSD]
— [D! + DSD"(1-SD) + (1-DS)D’SD]
= D!SD + DSD), — D). (37)

Dg is therefore a particular solution to the linear set of equations in Eq. 34, whereas D?
solves the corresponding homogeneous equation

0 = D!SD + DSD} — D!. (38)
By manipulating Di’) we find that it can be written in terms of a Hermitian matrix N
D! = DSD"SD + (1-DS)D"(1-SD)
= (D'SD+DSD’-D")SD

+ DS(D’SD+DSD’-D’) — (D’SD+DSD’-D")
= NSD + DSN — N, (39)

which we recognize as —DS’D from Eq. 34
N = D’SD+DSD’-D* = -DS'D. (40)

Similarly, manipulating D?, we find that it can be written in terms of an anti-Hermitian
matrix X

D! = DSD’(1-SD) + (1-DS)D’SD
= (D'SD-DSD")SD — DS(D’SD-DSD")
= XSD - DSX, (41)
which gives
X = D’SD-DSD?, (42)

which must be determined from Eq. 33. Inserting for D? and F? in Eq. 33 and separating
the terms involving the unknown D?, we obtain the equation

G(D!)DS—-SDG(D}) + FD!S — SDYF — iS(D.S) — £(SD?)S
= —{G(D})DS — SDG(D})

+ (2F)DS — SD(2F) — iS*(DS) - 1(SD)S"
+ FD'S — SDF — iS(D.S) — i(SD')S
+ FDS" — S"DF — iS(DS’) — £(S"D)S} (43)

8



At b = 0, the unperturbed system is time independent, and the perturbed integrals are
products of a time-dependent phase factor and a time-independent matrix: %F:e_i‘”btl\/l7
SP=e~*#'M. This means that the matrices D}, and DY are also of this form, and we may
evaluate the time-derivatives in Eq. 43, which then reduces to

G(D?)DS — SDG(D}) + FD!S — SD'F — w,SD!S
= —{G(D!)DS — SDG(D}) + (4F)DS — SD(%F)
+ FD}S — SD)F — w,SD’S
+ FDS’ — S'DF — 2SDS’ — 25'DS}, (44)

—iwbt

in which the only time-dependence is a net phase factor e on both sides, which may be
canceled.

In the case of perturbation-independent basis sets, all terms on the right-hand side of
Eq. 44 involving S and Dg vanish, the latter because Dg is defined in terms of S°, see

Eqgs. 39 and 40, and the right-hand side is further reduced to

—{(4F)DS — SD(ZF)} = BlU. (45)

Introducing the notation
EYD! = G(D!)DS — SDG(D?) + FD!S — SD’F, (46)
sPpt = SDs, (47)

we note that we for the case of perturbation-independent basis sets can write Eq. 44 com-
pactly as
(E® — w,SH¥) D) = B, (48)

which is identical to the result of Ref. 59. Eq. 44 is therefore a generalization to perturbation-
dependent basis sets of the linear sets of equations for which a linearly-scaling, density
matrix-based response solver has been developed by Coriani et al.,>® and this is the solver
we will use in this work.

Although we will not go through the details, second and higher-order equations (corre-
sponding to Egs. 33 and 34) are solved in an analogous manner (see also Ref. 44). There
are then more terms entering on the right-hand side of Eq. 40, in N (and thus D;b), and
more terms on the right-hand side of Eq. 44. However, the structure will in all be cases be
of the form of Eq. 48 (see again Ref. 44 for an exhaustive discussion).

D. Dipole moment and polarizability

It is at this point useful to briefly consider the electric-field analogues of the (frequency-
dependent) magnetic moment and magnetizability, namely the (electric) dipole moment
and polarizability a(w,v), which are defined as

o = { Tl }, = =5 Q). (49)
a(w,v) = g-p, = _d}f—dﬂ,@(w)’ F(t)=3, e ™F,, (50)
Vti=-F-p—B-m-1B-£B, (51)



where fi={/i,, fi,,, i} is the electric dipole moment operator, and F, are the complex fre-
quency strengths of the applied external electric field F', which enters the external potential
operator V' together with the magnetic field. Whereas the LAOs depended on the magnetic
field strengths B,,, they are independent of the electric field strengths f=F , and hence
S/, h/, Gf, T/ are all zero. Moreover, as opposed to the magnetic-field, which appeared
quadratically in Eq. 27, the electric field appears only linearly in V*. The formulas for
the (negative) dipole moment and polarizability, analogous to Eqs. 15 and 28, are therefore
much simpler

t

Q’(D) i %E(D) i V/D, (52)

Trg

Tr
QD) = (4F)D7 X VD, (53)
with g=F,, another electric field strength, and where the perturbed density matrix DY
can be obtained using the solver of Ref. 59 for solving Eq. 48 using the right-hand side for
perturbation-independent basis set defined in Eq. 45 in terms of the dipole moment integrals.

E. Hypermagnetizability

The hypermagnetizability n is a 3x3x3x3 tensor and a fourth-order property, and is the
negative fourth derivative of the quasi-energy

N (Wa, W, Wi, Wy) = —#;C@Q(D) = —Q“bfg(D). (54)

A formula for Q®/9 can be obtained by differentiating the negative magnetizability Eq. 28
twice, with respect electric field strengths f and g. This formula will contain the third-
order perturbed density matrix D?/9. However, according to the 2n+1 rule, alternative
formulas exist involving only first- and second-order perturbed density matrices. These can
be derived by first constructing a Lagrangian from the (negative) magnetic moment** Q(D)
(the first-order quasi-energy derivative), which is stationary with respect to variations in D
(i.e. variational)

Q*(D,X,,L,) = ZED)-S*W —L,(DSD-D)

— X,(FDS—SDF-%S(DS)-%(SD)S)
= ZE(D)-S'W - X,Y - L,P, (55)

where the first two terms are the Q*(D) from Eq. 15, and the anti-Hermitian Lagrange
multiplier X, multiplies the TDSCF matrix (or equation residual) Y, introduced in Eq. 31,
while the Hermitian Lagrange multiplier L, multiplies the idempotency matrix P, introduced
in Eq. 32. Starting from the equation 337Q*(D,X,,L,)=0 it can be shown (see Ref. 44)
that the multipliers can be expressed in terms of the corresponding perturbed density matrix

D?% as

X, = D“SD — DSD, (56)
L, = F'DS — (FD-iSD-iSD)S" (57)
+ SDF* — S*(DF+{DS+iDS) — F*.

10



According to the 2n+1 rule, since Q*(D, X,, L,) in Eq. 55 is variational, we can differentiate
it three times, and simply omit the third-order perturbed arguments D9, X% 9 1/9 from
the resulting formula (alternatively, we could omit both second- and third-order arguments,
but in that case the first-order multipliers can not be omitted (vide infra), which means
second-order equations need to be solved anyway)

afs 2 (LpD))Y - sPWI — S*WHY — X, YWY — L,PYY, (58)

where the subscripts on Qa ®79 indicate that perturbed density matrices to 1st order in the

first field @ and 2nd order in the other fields b, f and g are involved, while the subscripts

on (ZE (D))ng, W9 Y59 and L9 indicate that perturbed density matrices to 2nd order
are included. Since the LAOs (and overlap matrix) are independent of the electric field, the
following vanishing terms have been omitted from Eq. 58

—SWh — §uWP _ gutiwe — grtew s §HeW?P — §*ITW = 0. (59)

Moreover, the first- and second-order perturbed multipliers have also been omitted from
Eq. 58, as they multiply first- and second-order perturbed Y and P, which are zero when
density matrices to second order are included

X9yt _ xXboyf _ Xbiy9 _ X9yl — XSyl _ xXby /s
~LI9PP — LYP/ — LYPY - LIPY — L/PY — L'P/9 = 0. (60)

After some further manipulations of Eq. 58 (see Ref. 44), by which the third-order partial
derivative Fock matrices and overlap matrices are moved out of W29 Y9 and LY, and

become new terms in (2 E (D))gfg, it can be simplified to
Tr
W = B - SPWI - 8'WhY - X, Yo — L, Py, (61)

where the added prime in the subscripts indicates that no third-order partial derivatives of
Fock matrices or overlap matrices are included.

Differentiating Eq. 16 four times, keeping only terms involving the designated set of
perturbed density matrices, and taking into account that the LAOs are independent of f
and g, the following expression for Efl;f 9 is found

Try

ab
- <8a8bagF) Df + <8a8b8fF)Dg +G (Df)Dg (62>
+ (BaabF)ng + (BaafF)Dbg + (BaagF)Dbf
+ G'D*)D? + G*(D")D/? + G*(D/)D" + G*(D*)D"/.

abfg
E1,2

Analogously, differentiating Eqs. 19, 31 and 32 three times, keeping terms involving
perturbed matrices to second order, and utilizing that the unperturbed matrices are time-
independent, while the perturbed matrices carry time-dependent phase factors with the

respective frequencies, the following compact expressions for ng g, Ybf 9 and be 9 can be

11



derived

W3¢ = D'[FD + F/Df + F/D? + (F + ©=/=28)Dfs] (63)

D/[F"D + F/D’ + (F® + 2228") D]

D?(F*'D + F/D) + DY [F/D + (F 4 2= g) Y]

DY [F/D + (F + 2™—/8)D/] + D*(F’ — “1“*S")D + h.c.

[F/9D + F/D/ + F/DY + (F — @22 q)plo] b (64)
+ (F/'D’+F¥D/ + F*/DY + F'D" + F/D¥ + F'D/%)S — h.c.

P)/9 = (DS + DS")D/? + D/ (S'D? + SD%) + D*SD/* + h.c,, (65)

+ +

bf
Yblo

where “h.c.” is a short-hand notation for all the preceding terms with the matrix products
in reverse order and opposite sign on the frequencies. We note that these formulee become
slightly simpler for the Cotton-Mouton hypermagnetizability, for which the frequencies are
wWe=wp=0, wr=—w, = w.

The above equations form the necessary components to calculate the hypermagnetiz-
ability tensor, using London atomic orbitals to ensure gauge-origin independence of the
calculated result, as well as employing frequency-dependent electric fields. This formalism
has been implemented in a local version of the Dalton quantum chemistry program.®

III. COMPUTATIONAL DETAILS

We have calculated the frequency-dependent polarizability, the magnetizability and
the hypermagnetizability for the series of molecules C¢Hg, CsHsF, 0-CsHyFo, m-CgHyF 5,
p-CgHyF9, 1,3,5-CgH3F3 and CgFg, using both London atomic orbitals and conventional ba-
sis sets. In the latter case, the center of mass of the molecule has in all cases been chosen
as gauge origin.

For isotropic diamagnetic fluids composed of “non-spherical” molecules, the Cotton—
Mouton constant has two contributions, one temperature-independent term determined
by the hypermagnetizability anisotropy An and a temperature-dependent contribution
A [ag]1342

T (an+ opaad). (60

where N4 is Avogadro’s number, k is the Boltzmann constant and 7' the temperature in
Kelvin.
The hypermagnetizability anisotropy is defined as

1 1
An=— afB,aB T 5llaa ) 67
n=z (77 Bas ~ 3 ,Bﬂ) (67)

where summation over repeated indices is implied. The anisotropy appearing in the
temperature-dependent term is defined as

Alag] = aaséap — aadpp, (68)

which for axial molecules reduces to AaA¢, where the polarizability (P = a) and magneti-
zability (P = ) anisotropies are defined as

AP =P —P.. (69)
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For completeness, we also report the polarizability and magnetizability anisotropies defined
in the case of a general planar molecule

1
AP =7P., — 5 (Pez + Pyy) » (70)

where z denotes the axis perpendicular to the molecular plane.

The geometries of all molecules have been optimized employing the cc-pVTZ basis set
of Dunning® while using Becke’s 3-parameter exchange functional®® together with the
Lee-Yang Parr correlation functional®® (B3LYP).®* We note that in previous theoretical
work,?334 experimental geometries have been employed. Therefore small differences will ap-
pear between our results and earlier theoretical calculations, due to the small differences in
the choice of molecular geometries.

For the calculation of the properties, we have used the augmented correlation-consistent
basis sets of Woon and Dunning,®1%® as diffuse functions are known to be important in
order to obtain accurate results both for electric polarizabilities and magnetizabilities, and
because these basis sets have been demonstrated to be well suited for the calculation of
polarizabilities, magnetizabilities and hypermagnetizabilities.*3%556 In order to explore the
basis set convergence, we have utilized basis sets of double-, triple-, and quadruple-zeta
quality. All calculations have employed a wavelength of 632.8 nm, as also used by Rizzo et
al.333* For fluorobenzene we have also studied the dispersion of the hypermagnetizability
anisotropy in more detail, using a larger number of wavelengths. Since our analytic imple-
mentation of the frequency-dependent hypermagnetizability using London atomic orbitals
is currently restricted to Hartree-Fock wave functions, electron correlation effects will be
missing in our results for the polarizabilities, magnetizabilities, hypermagnetizabilities and
Cotton—Mouton constants.

The geometry optimizations have been done using the Dalton quantum chemistry pro-
gram,% whereas the molecular properties have been calculated using a local version of the
Dalton program in which the scheme described in Section II has been implemented. The
code is interfaced to the density matrix-based Hartree-Fock energy®” and response® code
of Jgrgensen, Coriani and coworkers. All calculations have been run in parallel on 40-90
processors on the local supercomputer at the University of Tromsg, using the parallel im-
plementation described in Ref. 68.

IV. RESULTS

We have collected our results for the investigated molecules in Table I. In the Table, we
report the polarizability anisotropy, the magnetizability anisotropy, the hypermagnetizabil-
ity anisotropy, the product A [a€] as well as the Cotton—Mouton constant for a temperature
of 304.1 K, as also chosen previously by Rizzo et al.3*3* Since the electric dipole polariz-
ability does not depend on whether London orbitals are used or not, we only report these
results once in the tables.

We emphasize already at this point that the Cotton—Mouton effect is more or less en-
tirely determined by the Langevin-type orientational temperature-dependent part, in all
cases studied here. The large changes observed between London and no-London results
for the Cotton—-Mouton constant are thus entirely due to differences in the magnetizabil-
ity rather than in the hypermagnetizability anisotropy. At the same time, the smallness
of the electronic rearrangement effect, essentially represented by the hypermagnetizability
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anisotropy, makes it very hard to extract it from experimental measurements of the magnetic
field-induced linear birefringence, since the results of these measurements, made at different
temperatures, must be extrapolated to the infinite-temperature limit. These difficulties are
reflected in the very generous error bars at times associated with the experimental datum
(vide infra).

Looking at the general trends for the molecules investigated, we note the very small
differences in the polarizability anisotropies across the set of molecules. Indeed, the addition
of an extra fluorine atom increases the polarizability anisotropy by less than 2%. There is
furthermore hardly any difference in the polarizability anisotropy of the ortho-, meta- and
para-difluorobenzenes (—37.10 a.u., —37.03 a.u., and —37.11 a.u., respectively, for the aug-
cc-pVQZ basis set). The differences between aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ
results are in general very small, the latter being for instance —40.81, —40.56 and —40.43
a.u. in the case of hexafluorobenzene.

The situation is somewhat similar for the magnetizability anisotropy, though the changes
induced by the addition of an extra fluorine atom is in this case larger. In general, the
addition of a fluorine atom reduces the magnetizability anisotropy by a little bit less than 8%.
We also observe a rather large basis set effect on the magnetizability anisotropy compared
to the trend in the basis set convergence most often observed for magnetizabilities. It is
on the other hand known that magnetizability anisotropies are in general somewhat harder
to converge with respect to both basis set size*® and, in particular, electron correlation®
effects than the isotropic magnetizability. However, we note that the differences between
the aug-cc-pVTZ and the aug-cc-pVQZ basis set results are in general small, and that the
aug-cc-pV'TZ basis set results can be considered essentially converged, except in the case
of hexafluorobenzene. We also note that the no-London results show a very slow basis set
convergence, and that even the aug-cc-pVQZ basis set results cannot be considered fully
converged when conventional basis sets are used.

The most spectacular example of the challenges of calculating magnetizability
anisotropies can be seen for CgFg. Without London orbitals, the magnetizability anisotropy
is reduced almost by a factor of two going from the aug-cc-pVDZ to the aug-cc-pV'TZ basis
set (from —57.16 a.u. to —31.85 a.u.), and an equally dramatic change can be observed going
from the aug-cc-pVTZ to the aug-cc-pVQZ basis set, the result for the aug-cc-pVQZ basis
set being —17.39 a.u. In relative terms, the changes are however even more dramatic for
the London atomic orbital calculations, for which the magnetizability anisotropy increases
(in absolute value) by a factor of eight going from the aug-cc-pVDZ basis set to the aug-
cc-pVTZ basis set (from —0.88 a.u. to —6.65 a.u.). However, it is somewhat rewarding
to note that the additional changes induced by going to the aug-cc-VQZ basis are much
smaller, though still increasing the magnetizability anisotropy by almost 50%, the result for
the aug-cc-pVQZ basis being —9.01 a.u.. In terms of the absolute magnitude of the changes,
these are fairly small. However, the magnetizability anisotropy does not appear to be fully
converged even with the aug-cc-pVQZ basis set (containing as many as 960 basis functions)
and London orbitals, though we would estimate the basis set limit results to be around —10.5
au to —11.0 a.u. based on the basis-set convergence observed for the other fluorobenzenes.
Hexafluorobenzene thus confirms previous observations of slow basis-set convergence for
the magnetizability of fluorine-containing molecules,3*43 though the basis-set convergence
observed here also when using London atomic orbitals is exceptionally poor.

Turning our attention to the results for the hypermagnetizabilities in Table I, we note that
the very poor basis set convergence trend of the magnetizability anisotropy is not inherited by
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the hypermagnetizability anisotropy. In particular, even though the absolute values of both
the magnetizability and its anisotropy are strongly dependent on the use of London atomic
orbitals, as well as on the size of the basis set when London orbitals are not employed, this is
not the case for the hypermagnetizability. Indeed, even for the fluorine-rich hexafluoroben-
zene, there is very little difference between London and conventional results (—59.1/—60.6
a.u., —106.5/—96.2 a.u., and —103.4/—108.2 a.u. for the London/NoLondon results obtained
using the aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ basis sets, respectively). The basis-
set dependence of the hypermagnetizability compared to the magnetizability thus appears
to behave in much the same manner as most first-order properties calculated using ab initio
methods: even though the absolute energy is in general very poorly predicted, the varia-
tion of the energy with respect to externally applied perturbations is well reproduced, even
for modest-sized basis sets in the case of electric perturbations, often leading to excellent
convergence for the molecular properties with the size and quality of the basis set.

Considering in more detail the convergence of the hypermagnetizability anisotropy with
respect to the size of the basis set, we note that it is difficult to detect clear convergence
trends. In some cases, such as for benzene, the no-London results are very stable (156.0,
155.4, and 154.8 a.u. for the DZ, TZ and QZ basis sets, respectively), converged already
at the aug-cc-pVDZ level, whereas the London orbital result changes by ~23% and ~9% in
passing from aug-cc-pVDZ to aug-ce-pVTZ to aug-cc-pVQZ (202.5, 155.7 and 137.7 a.u.),
respectively, being in apparently accidental agreement with the no-London results when
using the triple-zeta basis set. As the number of fluorine atoms in the molecules increases,
the London atomic orbital results appear in general to converge faster than the no-London
results, whereas the opposite trend is observed in case of the hydrogen-rich molecules.

Part of the somewhat unsystematic convergence behavior of the hypermagnetizability
anisotropy with the size of the basis set is due to the fact that the anisotropy is a sum of
several contributions of different signs (see Eq. 67), partially cancelling each other. System-
atic trends in the convergence of the components of the hypermagnetizability may thus be
hidden in accidental cancellations of hypermagnetizability component contributions, leading
to artificially poor (or good) basis set convergence. A more relevant criterion for evaluating
the basis set convergence of the hypermagnetizability may therefore be found by inspecting
the individual tensor components.

In Table IT and III, we have collected the symmetry-unique, non-vanishing tensor com-
ponents of the hypermagnetizability for CsHg and CgH3F3, respectively. The most striking
feature of these results is perhaps that in the case of C4Hg, many of the components appear
to be far from converged, even when using the aug-cc-pVQZ basis set, in particular when
London orbitals are employed. The 7,,,, component, for instance, shows no indication of
being close to the basis set limit: the London orbital results change from 256 a.u. for the
aug-cc-pVDZ basis, to 123 a.u. for aug-cc-pVTZ, to 64 a.u. for the aug-cc-VQZ basis. A
similar slow basis set convergence is observed for the no-London results for this hypermagne-
tizability component, although the convergence is faster than for the London orbital results.
Assuming the London and no-London results to converge to the same basis limit, it would
appear that the basis-set limit result for 7,,.. is approximately 40 a.u. Another striking in-
dication coming from the results in Table II, is that the extremely fast basis set convergence
observed in the case of the no-London results for the hypermagnetizability anisotropy of
benzene is purely accidental and the result of a fortunate cancellation of slowly converging
hypermagnetizability tensor components. Still, the basis set convergence appears in general
to be better in the case of conventional basis sets than when London orbitals are used for
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the majority of the hypermagnetizability components of benzene.

The situation changes as we add fluorine atoms to the benzene framework, and in the case
of 1,3,5-trifluorobenzene (see Table III), the London orbital results converge nicely for all
components. Only small changes are in general observed going from the aug-cc-pVTZ to the
aug-cc-pVQZ basis set, whereas the aug-cc-pVDZ basis in general appears to be too small
to be reliable. We note that there are still differences between the London and no-London
results using the aug-cc-pVQZ basis set, but the better basis set convergence of the London
orbital results would indicate that the basis-set limit should be close to the results of the
London orbital calculations.

For fluorobenzene we have also carried out calculations to investigate the frequency depen-
dence of the hypermagnetizability anisotropy, and the results obtained at the aug-cc-pVTZ
level of theory are collected in Table IV. We note that the dispersion of the hypermagneti-
zability anisotropy is as usual very small, and noticeable dispersion effects are seen only as
the region of very short wavelengths is approached. In contrast, the temperature-dependent
contribution of the Cotton—Mouton constant shows a rather noticeable dispersion effect.
Any experimentally observed dispersion in the Cotton-Mouton constant of benzene and the
fluorobenzenes is therefore dominated by the temperature-dependent contribution.

Benzene and hexafluorobenzene have previously been studied theoretically by Rizzo et
al.,?33* both at the Hartree-Fock and density-functional levels of theory, as well also by
coupled-cluster methods in the case of benzene. After correcting for an error in the sign of
the paramagnetic contribution in Refs. 33,34 (see Ref. 73), a very good agreement between
our no-London results and the results of Rizzo et al. is observed. The small residual
differences are due to differences in the molecular geometry, as we use optimized geometries
whereas experimental structures were used in Ref. 34. Rizzo et al. reached the conclusion
that correlation effects on the hypermagnetizability anisotropy were moderate (about 20-
25% ). Actually, once the sign of the paramagnetic contribution is corrected, the correlation
effects are seen to be very minor, with the Hartree-Fock, BLYP, B3LYP and CCSD results
all differing by only a few percent in the case of benzene (159.5 a.u., 158.6 a.u., 157.2 a.u. and
165 a.u., respectively).™ This small electron correlation effect may once again be accidental,
due to a fortunate cancellation of errors in the individual components. These results do
however lend hope that Hartree-Fock and density-functional theory may be able to provide
reliable estimates for the hypermagnetizability anisotropies. As expected, correlation effects
on the polarizability and magnetizability anisotropies were found to be larger.33:34

There exist experimental results for the Cotton—Mouton effect in benzene,*”*° fluoroben-
zene,” 1,3 5-trifluorobenzene and hexafluorobenzene,*”*® and these results are collected in
Table V together with our results. Experimentally, the hypermagnetizability anisotropy is
obtained by extrapolating the Cotton-Mouton constant measured for different temperatures
to the infinite-temperature limit. As already noted from our results above, the contribution
of the hypermagnetizability anisotropy to the Cotton-Mouton effect is very small, making
the experimental estimation of the effect difficult, often giving rise to very large experimental
error bars for the hypermagnetizability anisotropies.

From Table V we note a in general rather good agreement between theory and experi-
ment for the polarizability and magnetizability anisotropies, with a clear preference for the
more recent experimental results of Ritchie and Watson™ in the case of the polarizabil-
ity anisotropies of benzene and hexafluorobenzene. Note that Rizzo et al.?3** demonstrated
that electron correlation effects lead in general to an increase in the polarizability anisotropy,
yielding very good agreement with the polarizability anisotropies measured by Ritchie and
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Watson.?* Note also that the polarizability anisotropies reported in an earlier study by
Lukins, Buckingham and Ritchie*” appear in general to be too large. Since these polariz-
abilities were used by Lukins et al. to derive the magnetizability anisotropies, we would
expect these magnetizability anisotropies to be too small, which seems indeed to be the
case in comparison to the theoretical data in the case of benzene and 1,3,5-trifluorobenzene.
However, electron correlation effects can at the same time be expected to increase the mag-
netizability anisotropy slightly.3*

Due to the difficulties in extrapolating the temperature dependence of the Cotton-Mouton
effect to the infinite-temperature limit, the error bars on the experimental data for the hy-
permagnetizability anisotropies are very generous, and this makes it easy for our calculated
hypermagnetizability anisotropy to be within the experimental error bars. We note the
stunning agreement with experiment in the case of hexafluorobenzene (our result is —103.4
a.u., to be compared with the experimental result of —100 £ 880), and that the calculated
hypermagnetizability anisotropy of benzene has the wrong sign (137.7 a.u.) compared to the
center of the distribution of the experimental observations (—2700 4+ 2000 a.u.). However,
Lukins et al. were cautious about the sign of the hypermagnetizability anisotropy of ben-
zene in view of the estimated error bars, as well as the fact that a study by Geschka et al.*
indicated a positive sign for the hypermagnetizability anisotropy (An=700+1400 au, inter-
estingly enough having been neglected in the determination of the temperature dependence
of the birefringence by the authors of Ref. 49), in agreement with our calculations.

Despite the differences in the calculated and experimental magnetizability and polariz-
ability anisotropies, the agreement between the experimental and theoretical values for ,,,C
is quite satisfactory, and in all cases only slightly outside the experimental errors bars. The
reason for this perhaps somewhat surprisingly good agreement is due to the fact that whereas
the calculated polarizability anisotropy is somewhat too small, the calculated magnetizability
anisotropy is somewhat too large, leaving the total temperature-dependent contribution to
the Cotton—Mouton constant in good agreement with experiment. The inclusion of electron
correlation effects would improve the agreement between theory and experiment further.33:34

V. SUMMARY

We have presented the first analytic, frequency-dependent calculations of the hyper-
magnetizability anisotropy using London atomic orbitals to ensure gauge-origin indepen-
dent results. The implementation is based on a general framework for the calculation of
higher-order, frequency-dependent molecular properties including corrections arising from
perturbation-dependent basis functions, and it is currently limited to Hartree—Fock wave
functions. On the other hand, the approach employed here is in principle applicable to any
self-consistent field reference state which can be formulated in terms of density matrices.

We have demonstrated that the hypermagnetizability is less sensitive to the use of London
orbitals than the magnetizability itself, and the electric-field variation of the magnetizabil-
ity is thus modelled qualitatively correct, and to a large extent also quantitatively, both
by conventional basis sets as well as London orbitals. The hypermagnetizability anisotropy
converges fairly rapidly with increasing size of the basis set used, although this seems to a
large extent to be due to a fortunate cancellation of errors in the more slowly converging
components of the hypermagnetizability tensor. Whereas in the case of benzene the indi-
vidual components of the hypermagnetizability tensor are actually converging slightly faster
using conventional basis functions than using London orbitals, the use of the latter improves
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the basis set convergence when one or more fluorine atoms are put in place of the hydrogen
atoms in the benzene molecule.

Obtaining basis-set limit results for the hypermagnetizability tensor has been shown to
be a challenging task. The introduction of London atomic orbitals leads to somewhat im-
proved basis set convergence in the components of the hypermagnetizability tensor, although
these improvements are not always reflected in the convergence of the hypermagnetizability
anisotropy. This situation thus partly reflects the observations made for the calculation of
optical rotations, involving the mixed electric dipole-magnetic dipole polarizability, where
only small improvements in basis set convergence are observed when using London orbitals
compared to conventional basis sets.” However, both for the optical rotation and the hy-
permagnetizability tensor, the use of London orbitals ensures gauge-origin independence of
the results. The latter, combined with the improvements in the basis set convergence for
the individual tensor components, suggests that the scheme proposed here should be used
in future calculations of the hypermagnetizability, in particular for larger molecules.

Agreement between our calculated results and available experimental data is in general
satisfactory, in particular considering the fact that our results have been obtained at the
Hartree—Fock level of theory. For the polarizability and magnetizability anisotropies, our
data are in general within the error bars of the most recent experimental data, whereas our
predictions for ,,,C' is just outside the experimental error bars. For the hypermagnetizability
anisotropies, our calculated results are within the very generous experimental error bars. Our
results support the evidence for a positive value for the hypermagnetizability anisotropy of
benzene.
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Table I: Calculated results for the electric dipole polarizabil-
ity anisotropy A« (see Eq. 70), magnetizability anisotropy
A¢ (see Eq. 70), the product A [a€] (see Eq. 68), the hy-
permagnetizability anisotropy An (see Eq. 67) and the cor-
responding Cotton—Mouton constants (see Eq. 66). A wave-
length of 632.8 nm is employed in the calculations. ,,C' is
given in units of 1071% cm?® G=2 mol™! (47eg) for a tem-
perature of 304.1 K, whereas all other quantities are given
in atomic units. “Lon” and “NoLon” indicate the use of
perturbation-dependent London Orbitals or conventional ba-
sis sets, respectively.

Basis Aa A& Afag] An  ,C
CeHg
aug-cc-pVDZ (Lon)  —35.34 —13.50 318.1 202.5 2.49
aug-cc-pVTZ (Lon) —35.71 —14.21 338.5 155.7 2.65
aug-cc-pVQZ (Lon)  —35.82 —14.43 344.5 137.7 2.69
aug-cc-pVDZ (NoLon) —20.40 480.5 156.0 3.76
aug-cc-pVTZ (NoLon) —17.51 416.8 155.4 3.26
aug-cc-pVQZ (NoLon) —15.47 369.5 154.8 2.89
CHsF

aug-cc-pVDZ (Lon)  —36.03 —12.64 303.4 111.8 2.37
aug-cc-pVTZ (Lon)  —36.34 —13.09 317.1  88.9 2.48
aug-cc-pVQZ (Lon)  —36.41 —13.28 322.2  82.8 2.53
aug-cc-pVDZ (NoLon) —24.70 596.7 106.2 4.66
aug-cc-pVTZ (NoLon) —18.91 459.3 101.2 3.59
aug-cc-pVQZ (NoLon) —15.22 369.8 97.1 2.89
O—C6H4F2

aug-cc-pVDZ (Lon) —36.85 —11.42 280.2 54.3 2.19
aug-cc-pVTZ (Lon)  —37.07 —12.19 300.8 38.0 2.35
aug-cc-pVQZ (Lon)  —37.10 —12.44 307.3  43.0 2.40

(

(

(

aug-cc-pVDZ (NoLon) —28.49 703.5 56.9 5.50
aug-cc-pVTZ (NoLon) —-20.29 502.7 52.1 3.93
aug-cc-pVQZ (NoLon) —15.17 3754 476 293
m-CgHyF9
aug-cc-pVDZ (Lon)  —36.76 —11.58 283.5  43.1 2.21
aug-cc-pVTZ (Lon) —-37.00 —11.79 2904  28.7 2.27
aug-cc-pVQZ (Lon)  —37.03 —11.94 2944 254 2.30
aug-cc-pVDZ (NoLon) —30.52 757.0 60.7 5.91
aug-cc-pVTZ (NoLon) —20.87 518.1  48.2 4.05
aug-cc-pVQZ (NoLon) —15.07 373.1 41.0 291
p-CeHylFo

aug-cc-pVDZ (Lon)  —36.82 —11.40 279.4  41.8 2.18
aug-cc-pVTZ (Lon)  —37.06 —11.81 291.6  26.1 2.28
Cont. on next page
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Cont. from previous page

Basis Ax AE A ] An  ,C
aug-ccpVQZ (Lon)  —37.11 —12.00 296.5 16.1 2.32
aug-cc-pVDZ (NoLon) —31.99 796.7 65.0 6.22
aug-cc-pVTZ (NoLon) —21.56 535.6 47.4 4.18
aug-cc-pVQZ (NoLon) —15.38 381.3 373 2098
CgH3F
aug-cc-pVDZ (Lon)  —37.53 —10.26 256.8 —14.3 2.00
aug-cc-pVTZ (Lon)  —37.69 —10.29 258.6 —24.1 2.02
aug-cc-pVQZ (Lon)  —37.69 —10.45 262.5 —21.0 2.05
aug-cc-pVDZ (NoLon) —37.28 932.7 243 7.28
aug-cc-pVTZ (NoLon) —23.15 581.6 1.6 4.54
aug-cc-pVQZ (NoLon) —14.94 3753 —-7.5 293
CsFe
aug-cc-pVDZ (Lon) —40.81 —0.88 24.02 —59.1 0.185
aug-cc-pVTZ (Lon)  —40.56 —6.65 179.8 —106.5 1.40
aug-cc-pVQZ (Lon)  —40.43 —9.01 242.7 —103.4 1.89
aug-cc-pVDZ (NoLon) —57.16 1555 —60.6 12.14
aug-cc-pVTZ (NoLon) —31.85 861.2 —96.2 6.72
aug-cc-pVQZ (NoLon) —17.39 468.8 —108.2 3.66
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Table II: The symmetry-unique non vanishing tensor components of the hypermagnetizability of
CgHg. The molecule is located in the xy plane, with long axis of the molecule along the x axis.
All results reported in atomic units.

no-London London

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pVDZ aug-ce-pVTZ aug-cc-pVQZ

Nozze —20.54 12.13 23.51 255.72 122.56 63.89
Nozyy —133.96 —38.04 —5.65 181.58 89.43 41.02
Nows= 272.02 264.23 251.68 328.13 268.53 285.70
Neyay 56.70 25.07 14.56 37.03 17.07 11.43
- 270.06 291.97 296.29 301.73 278.60 288.19
Nzzza 97.65 141.99 161.98 188.28 188.40 196.58
o —343.59 —317.35 —299.49 —216.49 —254.71 —335.14
An 156.0 155.4 154.8 202.5 157.7 137.7

Table III: The symmetry-unique non vanishing tensor components of the hypermagnetizability of
CgF3sHs. The molecule is located in the zy plane, with long axis of the molecule along the z axis.
All results reported in atomic units.

no-London London
aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pVDZ aug-ce-pVTZ aug-cc-pVQZ

Nezax 42.95 76.47 95.15 175.31 129.80 116.48
Nazyy 67.58 166.40 208.78 311.47 251.39 234.29
Neaxzz —28.59 90.71 151.78 223.67 224.95 225.80
Neyry —12.32 —45.05 —56.81 —68.05 —60.75 —58.91
Nezzz 79.68 87.46 90.20 86.83 85.91 89.72
Nzzax 210.18 219.63 235.90 271.47 272.76 264.50
Nzzzz —95.43 —53.79 —21.10 32.02 —24.55 —27.14
An 24.3 1.6 —7.5 —14.3 —24.1 —-21.0

Table IV: Calculated dispersion of fluorobenzene using the aug-cc-pVTZ basis set and London
atomic orbitals. All results reported in atomic units.

A(nm) oo 633 550 442 350

Alag] 301.22 317.09 322.72 336.45 363.19
An 88.16 88.42 88.27 87.29 82.30
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Table V: Comparison of theoretical and experimental results for the polarizability, magnetizability
and hypermagnetizability anisotropies for CgHg, CgHsF, CgHsF3 and CgFg. All theoretical data
are calculated using London atomic orbitals. ,,C is given in CGS units of 10716 cm?® G2 mol !
(47ep), Ala€] in units of 107 em® G=2 mol™! (47eg) K, whereas all other data are reported in
atomic units. The theoretical data have been obtained at the Hartree-Fock/aug-cc-pVQZ, using a
wavelength of 632.8 nm and assuming a temperature of 304.1 K.

C6H6 CGH5F C6H3F3 CGF6
Theory Exp. Theory Exp. Theory Exp. Theory Exp.
Aa —35.82 —40.9+0.8 * —36.41 —39+3 % —37.69 —42.9+1.3% —40.43 —45.2+1.3%
—37.79+1.15 ¢ —42.8241.27°¢
AE —14.43 —13.134+0.51 ¢ —13.28 —11.940.2 ¢ —10.45 —9.19+0.66¢ —9.01 —7.9540.29¢
—11+17 —8.240.4/ —6.740.3/
—13.15+0.42 9

A ] 81.8 84.9+2.8  76.5 62.3 62.3+4.0  57.6 56.9+1.2

An 137.7 —27004£2000 *  82.8 041700 © —21.0 —50043000" —103.4 —1004880"

mC 2.69 2.74+0.077  2.53 1.8440.04 % 2,05 2.00+£0.05' 1.89 1.87+0.03 ™
2.2240.10 * 1.72+0.07" 1.51+0.07"
2.5940.07 °

?Reported in Ref. 47, based on the data reported in Ref. 70.

bRef. 50, A=632.8 nm.

“Ref. 71.

Ref. 47.

*Ref. 50. £y;=—8.6540.13; &,y =—"7.93£0.13; £..=—20.240.17 with = along the C axis and z perpendicular
to the plane.

fRef. 48.
9Ref. 49.

hRef. 47, A=441.6 nm.

‘Ref. 50, assumed.

JRef. 47 for a wavelength of 441.6 nm and 7T=300.1 K.
FRef. 50, A=632.8 nm, T=405.6+0.8 K.

'Ref. 47 for a wavelength of 441.6 nm and T=303.8 K.
MRef. 47 for a wavelength of 441.6 nm and T=304.1 K.
"Ref. 48, A=632.8 nm.
°Ref. 49, A=632.8 nm, T=304.1 K
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