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Abstra
tThis thesis is 
on
erned with 
omputer modelling of mole
ules intera
tingwith ele
tromagneti
 radiation, for appli
ations in spe
tros
opy. Responsetheory is used, in whi
h time-dependent perturbation theory applied to theground state permits the study of both ground and ex
ited states. For the
lass of self-
onsistent �eld (SCF) ele
troni
 stru
ture models, whi
h in
ludesHartree-Fo
k- and all Kohn-Sham DFT models, a full hiera
hy of new for-mulas for response fun
tions have been derived. Although there are severalequivalent formulas for a given response fun
tion, typi
ally a spe
i�
 one ispreferable due to 
omputational 
onsiderations.The derived formulas are expressed in terms of the atomi
 orbital (AO) den-sity matrix, and valid also with time- and perturbation dependent AOs, su
has the magneti
 �eld-dependent London or gauge-in
luding AOs, whi
h areemployed to obtain improved basis set 
onvergen
e and gauge-origin indepen-dent results. The density matrix has an advantage over the more 
ommonmole
ular orbital 
oe�
ient matrix (MO) parameterization in that it de
aysrapidly with the distan
e between atoms (ex
ept in dire
tions of 
ondu
tion).For large mole
ules one may therefore trun
ate the density matrix and treatit as sparse. Although this is not presently utilized in our implementation,it is expe
ted to lead to great 
omputational savings.To resolve any ambiguity in the de�nition of response theory, we formulateit by applying perturbation theory to Floquet theory, whi
h is a quantum-me
hani
al theory that in
ludes so-
alled semi-
lassi
al radiation, by whi
hboth stimulated and spontaneous emission and absorption 
an be predi
ted.The 
entral quantity in Floquet theory is the quasi-energy, and this is there-fore the 'quasi-energy formalism' of response theory.The DALTON quantum 
hemistry program has sin
e long been the leadingsoftware for 
omputing mole
ular properties. Using the program stru
turesalready present in the 
ode, su
h as integrals and integral derivatives, inaddition to re
ently implemented SCF and SCF-response program modules(the 'lins
a' development bran
h), we have implemented several new response



6 fun
tions, relevant to spe
tros
opies su
h as Cotton-Mouton, 
oherent anti-Stokes Raman s
attering (CARS), and ele
tri
-�eld-gradient indu
ed bire-fringen
e (EFGB).
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Chapter 1Introdu
tion
It was unexplained observations in spe
tros
opy that led to the advent ofquantum me
hani
s in the mid 1920s1. The radiation emitted by hot gasesshowed sharp peaks at 
ertain wavelengths, whi
h 
ould not be predi
tedwith existing theories. The two equivalent theories of quantum me
hani
sproposed by Heisenberg and S
hrödinger2 explained the peaks as arising whenthe mole
ule jumps between two of its eigenstates, with the wavelength ofthe peak determined by the di�eren
e between the two eigenenergies, andthe intensity of the peaks by the populations of the eigenstates together withthe transition dipole moment.However, both the spe
tra themselves and the S
hrödinger equation, whi
hmust be solved in order to predi
t spe
tra, are vastly 
omplex, as expressedby another pioneer, Dira
3:The fundamental laws ne
essary for the mathemati
al treatmentof a large part of physi
s and the whole of 
hemistry are thus
ompletely known, and the di�
ulty lies only in the fa
t that ap-pli
ation of these laws leads to equations that are too 
omplex tobe solved.In the early days of 
omputational (theoreti
al) 
hemistry, 
al
ulations were1W. Heisenberg: �Über Quantentheoretis
he Umdeutun Kinematis
her und Me
hanis-
her Beziehungen�, Zeits
hrift für Physik, vol. 33, p. 879-893 (1925)2E. S
hrödinger: �An Undulatory Theory of the Me
hani
s of Atoms and Mole
ules�,Phys. Rev. 28 (6): 1049�1070 (1926)3P.A.M. Dira
: �Quantum me
hani
s of many-ele
tron systems�, Pro
. Royal So
.London, Series A, vol. 123, p. 714 (1929)
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tion
arried out by hand (pen
il and paper)4,5 or by me
hani
al 
al
ulators. Withthe invention of the digital 
omputer, 
omputational 
hemistry soon be
ameone of its main tasks, and has 
ontinued to be so. But still today, after 80years of knowing the theoreti
al foundation and many billion-fold in
reasesin 
omputing power, there is still a 
onsiderable gap between the a

ura
ydelivered by 
omputation, and that of the experiments 
ondu
ted in 
hemi
allaboratories6. Thus, at present it seems Dira
 was right.Although 
omputation has yet to repli
ate experiment, it already serves wellto 
omplement, estimate or preview experiment, as, for instan
e, in the phar-ma
euti
al industry. Most of the e�orts of 
omputational (and theoreti
al)
hemists, and their 
omputers, are put into solving the time-independentS
hrödinger equation (SE): Mole
ular geometries, rea
tion energies, rea
tionbarriers, ele
tron a�nities, ionization energies, disso
iation energies, et
. Allthese tasks 
onsist of �nding either just one, or a few solutions of the SE.The predi
tion of ele
tromagneti
 spe
tra, however, requires the solution ofthe time-dependent S
hrödinger equation (TDSE). Fortunately, only a slightadaptiation of the methods used to solve the SE are needed in order for theirappli
ation to the TDSE. Moreover, the error inherited from the underlyingSE method will typi
ally dominate those introdu
ed by the approximationsto the TDSE. Therefore, 
omputational spe
tros
opy, the topi
 of this thesis,is mainly 
on
erned with �nding the right adaptations for a spe
i�
 
lass ofSE models, and interpreting the 
omputed results in relation to experimentalobservations.The rest of this thesis is organized as follows: Chapter 2 presents the fun-damental equation whi
h governs mole
ular quantum me
hani
s, namelythe S
hrödinger equation, together with the Born-Oppenheimer and self-
onsistent-�eld approximations applied to it. In Chapter 3, mole
ular prop-erties and spe
tros
opy are presented in a quasi-
lassi
al formulation knownas Floquet theory, where the ele
trons and nu
lei obey quantum me
hani
s,whereas the external ele
tromagneti
 �eld obeys the 
lassi
al Maxwell equa-tions. Response theory is then formulated by applying (Rayleigh-S
hrödinger)perturbation theory to Floquet theory. Finally, Chapter 4 summarizes theresults in this thesis, as well as gives some remarks on future developmentsand appli
ations.4W. Heitler and F. London: �Intera
tion of Neutral Atoms and Homopolar BindingA

ording to the Quantum Me
hani
s�, Zeits
hrift für Physik, vol. 44, p. 455 (1927)5D. R. Hartree and W. Hartree: �Self-
onsistent �eld, with ex
hange, for nitrogen andsodium�, Pro
. Royal So
. London, vol. 193 (1034), p. 299-304 (1948), where W. Hartree(Hartree's father) did the 
al
ulations.6That is, by equally 'a�ordable' 
omputers and laboratory equipment.



Chapter 2Quantum me
hani
s
2.1 S
hrödinger equationIn quantum me
hani
s, a system (mole
ule) 
onsisting of N parti
les (ele
-trons and nu
lei) is des
ribed by a wavefun
tion ψ(r1, r2 . . . rN), a 
omplex-valued fun
tion of the set of parti
le 
oordinates1 r1, r2 . . . rN

ψ(r1, r2 . . . rN ) ∈ C. (2.1)In the so-
alled 'Copenhagen interpretation' of the wavefun
tion, the proba-bility P of '�nding' all parti
les within the range δ of the positions t1, t2 . . . tNis the integral of the square absolute value of the wavefun
tion over the 
or-responding 3N-dimensional volume
P =

∫

‖r1−t1‖<δ

∫

‖r2−t2‖<δ

. . .

∫

‖rN−tN‖<δ

|ψ|2dr1dr2 . . . drN . (2.2)Thus |ψ|2 = ψ∗ψ is the probability density of the positions of the parti
les.Sin
e all the parti
les must be somewhere in spa
e, the 
orresponding prob-ability P for δ=∞ must be 1 (whi
h means 100%)
1 =

∫ ∫

. . .

∫

ψ∗ψ dr1dr2 . . . drN = 〈ψ|ψ〉, (2.3)whi
h is 
alled normalization of the wavefun
tion ψ. The 'bra-ket' 〈. . . | . . .〉is a short-hand notation for su
h integrals over all 
oordinates2. Addition-ally, the wavefun
tion should ful�ll so-
alled spin-statisti
s: When identi
al1Parti
les have an additional spin 
oordinate whi
h is 'hidden' in rp here.2More pre
isely, rather than an integral, it is an average over the '
enter-of-mass 
oor-dinate'
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hani
sfermions (nu
lei with an odd number of nu
leons and ele
trons) are inter-
hanged (swap 
oordinates), the wavefun
tion should 
hange sign. This isthe Pauli ex
lusion prin
iple. Moreover, when identi
al bosons (nu
lei withan even number of nu
leons) are inter
hanged, the wavefun
tion should not
hange.The time evolution of the mole
ule (its wavefun
tion) is determined by thetime-dependent S
hrödinger equation, whi
h is a linear di�erential equation
Ĥψ = i d

dt
ψ, (2.4)where the di�erential operator Ĥ is the mole
ule's Hamiltonian. The Hamil-tonian 
onsists of a kineti
 energy operator T̂p for ea
h parti
le, and a po-tential energy operator V̂pq for ea
h (distin
t) pair of parti
les. Ignoringintera
tions due to parti
le spin, the kineti
- and potential energy operatorsare given by the Lapla
e operator and Coulomb potential

Ĥ =
∑

p

T̂p +
∑

p>q

V̂pq, (2.5)
T̂p = − 1

2mp
∇2

p = − 1

2mp

(

∂2

∂x2
p

+
∂2

∂y2
p

+
∂2

∂z2
p

) (2.6)
V̂pq =

qpqq
rpq

=
qpqq

‖rp − rq‖
=

qpqq
√

(xp−xq)2 + (yp−yq)2 + (zp−zq)2
, (2.7)where atomi
 units have been used, and mp are the parti
les' masses and

qp the 
harges. Note that the Coulomb potential between parti
les of oppo-site 
harge is attra
tive (qpqq negative), while it is repulsive (qpqq positive)between those of same 
harge. The kineti
 energy is always positive.If the wavefun
tion ψ is an eigenfun
tion (eigenstate) of the Hamiltonianwith eigenvalue E (the eigenenergy), it is a stationary state, as e−iEtψ solvesthe time-dependent S
hrödinger equation
Ĥψ = Eψ ⇒ Ĥ(e−iEtψ) = i d

dt
(e−iEtψ), (2.8)and the phase fa
tor e−iEt 
an
els when 
omputing the square absolute value

|e−iEtψ|2, leaving the interpretation (probabilities P above) of the wavefun
-tion 
onstant in time (stationary). The eigenstates ψ ful�ll the variationprin
iple, whi
h states that expe
tation value of the Hamiltonian 〈ψ|Ĥ|ψ〉 isstationary with respe
t to variations in ψ. One may therefore sear
h for theground state, the eigenstate with lowest E, by minimizing this expe
tationvalue.



2.2 Born-Oppenheimer approximation 152.2 Born-Oppenheimer approximationThe nu
lei are the heaviest parti
les in a mole
ule; the lightest nu
leus, theproton 1H is ≈1836 times as heavy as an ele
tron, while the most abundant
arbon nu
leus 12C is≈21863 times as heavy. Sin
e these large masses appearin the denominator in the kineti
 energy operator in Eq. 2.6, nu
lei willhave little kineti
 energy relative to ele
trons. In the Born-Oppenheimerapproximation3, the nu
lear kineti
 energy operators T̂n are at �rst separatedfrom the ele
troni
 Hamiltonian Ĥel, whi
h then 
onsists of zero-ele
tron, 1-ele
tron and 2-ele
tron parts (n,m denoting nu
lei, e, f ele
trons)
Ĥtot =

∑

n

T̂n + Ĥel (2.9)
Ĥel =

∑

n>m

V̂nm = hnuc, (2.10)
+

∑

e

(

T̂e +
∑

n

V̂en

)

= ĥ, (2.11)
+

∑

e>f

V̂ef = ĝ, (2.12)where the nu
lear 
oordinates rn enter hnuc and ĥ as parameters. The ele
-troni
 S
hrödinger equation is then solved for all ele
troni
 states (k)
Ĥelψel

k (re; rn) = Eel
k (rn)ψ

el
k (re; rn), k = 0, 1 . . .∞, (2.13)ea
h depending parametri
ally4 on rn. The solutions Eel

k (rn) are 
alled 'po-tential energy surfa
es' (PES), and the 'equilibrium geometry' is de�ned asthe 
on�guration of rn that gives the lowest ele
troni
 energy on the ground-state PES.In a se
ond step, the 
omplete S
hrödinger equation is solved with an expan-sion over the ele
troni
 solutions ψel
k

ψtot(rn, re) =
∑

k

ψnuc
k (rn)ψ

el
k (re; rn), Ĥtotψtot = Etotψtot, (2.14)where the ψnuc

k are the 
oe�
ients and the ψel
k the basis of the expansion.Sin
e the ψel

k are eigenstates of Ĥel and orthogonal (for all rn), Eq. 2.14 leads3M. Born and R. Oppenheimer: �Zur Quantentheorie der Molekeln�, Ann. der Physik84, 20 (1927)4This is a di�erential equation in re, but an ordinary (parametri
) equation in rn.



16 Quantum me
hani
sto an in�nite set of 
oupled S
hrödinger equations
(

∑

n

T̂n + Eel
k (rn)

)

ψnuc
k (rn) = Etotψnuc

k (rn) (2.15)where the potential energy surfa
es Eel
k (rn) have the role of potential opera-tors (hen
e the name).Although the equation set Eq. 2.15 is no less 
ompli
ated than the originalS
hrödinger equation Eq. 2.4, it 
an be trun
ated to a good approximation,both in the number of PESs in
luded, and in the range and pre
ision of ea
hPES. The approximations range from the simplest, whi
h is to '
lamp' thenu
lei in the equilibrium geometry (one PES, one rn); to the harmoni
, inwhi
h the ground state PES is approximated to se
ond order about a point

rn; to more 
ompli
ated approximations of several PESs et
.2.3 Self-
onsistent �eld approximationEven in the 
rudest Born-Oppenheimer approximation, the so-
alled 
lampednu
leus approximation, in whi
h only one geometry rn on one PES is sought,an N-ele
tron S
hrödinger equation is still too di�
ult to solve. In the self-
onsistent �eld (SCF) approximation, this is ta
kled by writing the wave fun
-tion as a Slater determinant, an anti-symmetrized produ
t of N orthonormalorbitals φ1, φ2 . . . φN (1-ele
tron wavefun
tions)
ψ(r1, r2 . . . rN) =

1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) · · · φN(r1)
φ1(r2) φ2(r2) · · · φN(r2)... ... . . . ...
φ1(rN) φ2(rN) · · · φN(rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.16)A matrix determinant is the sum of all possible produ
ts of one term fromea
h row and 
olumn, with sign + or − depending on whether it is an even orodd permutation. This ensures that the wavefun
tion swit
hes sign when twoele
trons are inter
hanged, as required by the Pauli prin
iple. Moreover, sin
ethe orbitals are orthonormal, all the N ! terms in the determinant are alsoorthonormal, and the fa
tor 1/
√
N ! gives a normalized ψ. The SCF 
lass ofmodels have in 
ommon that they attempt to solve anN-ele
tron S
hrödingerequation (Eq. 2.8) by solving 
oupled 1-ele
tron S
hrödinger equations. Theterm 'self-
onsistent' is derived from the 
oupling between the 1-ele
tronHamiltonian, 
alled the Fo
k operator, and the solutions (orbitals).



2.3 Self-
onsistent �eld approximation 17Applying the variation prin
iple to the Slater determinant, one obtains theHartree-Fo
k model5, whi
h is the most basi
 SCF model. Although derivedon a di�erent basis, Kohn-Sham density fun
tional theory6 models are abroad 
lass of SCF models, and thus share the main 
hara
teristi
a withHartree-Fo
k.2.3.1 Hartree-Fo
kInserting the Slater determinant Eq. 2.16 into the expression for the energyexpe
tation value E=〈ψ|Ĥ|ψ〉, it is redu
ed to
E = hnuc +

∑

k

〈

φk

∣

∣

∣
−1

2
∇2 −

∑

n

qn
‖r−rn‖

∣

∣

∣
φk

〉 (2.17)
+

∑

j>k

∫ ∫

φ∗
j(r1)φ

∗
k(r2)

1

r12

[

φj(r1)φk(r2) − φk(r1)φj(r2)
]

dr1dr2,where the nu
lear repulsion hnuc is given by Eq. 2.10. Sin
e the diagonalterms j=k in the se
ond summation will 
an
el, it 
an be rewritten as
1

2

∑

jk

∫ ∫

φ∗
j(r1)φ

∗
k(r2)

1

r12

[

φj(r1)φk(r2) − φk(r1)φj(r2)
]

dr1dr2, (2.18)where the 
ontributions from the �rst term in the bra
ket are 
alled theCoulomb repulsion, and those from the se
ond term the ex
hange intera
tion.Expanding the orbitals in a basis of atomi
 orbitals7 (AOs) χµ(r)

φk(r) =
∑

µχµ(r)Cµk, (2.19)the energy 
an be written in matrix form in terms of the orbital 
oe�
ientmatrix C as
E = hnuc + TrC†

HC + 1
2
TrC

†
G(CC

†)C (2.20)
= hnuc + TrHD + 1

2
TrG(D)D,where Tr denotes matrix tra
e, and . . .† the 
omplex-
onjugated matrix trans-pose. Using the invarian
e of the tra
e under 
y
li
 permutations of a matrix5G. G. Hall: �The Mole
ular Orbital Theory of Chemi
al Valen
y & A Method ofCal
ulating Ionization Potentials�, Pro
. Royal So
. London A, vol. 205, p. 541-552(1951)6W. Kohn, L. J. Sham: �Self-Consistent Equations In
luding Ex
hange and CorrelationE�e
ts�, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)7Commonly nu
leus-
entered Gaussian-type fun
tions: xkylzme−ζr2
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sprodu
t, the density matrix D = CC
† has been introdu
ed. The 1- and 2-ele
tron integral matri
esH and G(D) 
ontains the integrals of the operators

ĥ and ĝ, respe
tively, over the AO basis χµ

Hµν =
〈

χµ

∣

∣ ĥ
∣

∣χν

〉

=
〈

χµ

∣

∣

∣
−1

2
∇2 −

∑

n

qn
‖r−rn‖

∣

∣

∣
χν

〉

, (2.21)
Gµν,ρσ =

∫ ∫

χ∗
µ(r1)χ

∗
ρ(r2)

1

r12

[

χν(r1)χσ(r2) − χσ(r1)χν(r2)
]

dr1dr2,

G(D)µν =
∑

ρσGµν,ρσDρσ. (2.22)The orbitals φk are required to be orthonormal, whi
h translates into thefollowing matrix equations to be satis�ed by C and D

〈φj|φk〉 = δjk ⇒ C
†
SC = 1 ⇒ DSD = D, (2.23)where Sµν = 〈χµ|χν〉 is the overlap matrix for the AO basis χµ. The latterequation is 
ommonly referred to as the idempoten
y 
ondition for the densitymatrix.Sin
e C must satisfy the orthonormality relation, it is 
onstrained, and theLagrange multipler method8 
an be used to derive the variational 
ondition

E(C,Λ) = hnuc + TrC
†
HC + 1

2
TrC

†
G(CC

†)C (2.24)
− TrΛ

(

C
†
SC−1

)

,
∂

∂C†E(C,Λ) =
(

H+G(CC
†)

)

C − SCΛ = 0, (2.25)where Λ is the Lagrange multiplier matrix for the orthonormality 
ondition.Introdu
ing the Fo
k matrix F=H+G(D), the variational 
ondition 
an beexpressed in terms of D as9
FDS = SDF, (2.26)whi
h is the SCF equation in terms of the density matrix.2.3.2 Kohn-Sham DFTHohenberg and Kohn10 showed that there is a one-to-one relation betweenthe potential fun
tions v(r) in the ele
troni
 S
hrödinger equation, and the8J.-L. Lagrange: �Théorie des fon
tions analytiques�, (1797, p. 198)9P. Pulay: �Improved SCF 
onvergen
e a

eleration�, J. Comp. Chem. 3 (4), 556-560(1982)10P. Hohenberg, W. Kohn: �Inhomogeneous Ele
tron Gas� Phys. Rev. B, vol. 136 (3B),p. B864-B871 (1964)



2.3 Self-
onsistent �eld approximation 19ele
tron density ρ(r) of the ground state (solution)
ρ(r) = N

∫ ∫

. . .

∫

|ψ(r, r2 . . . rN)|2dr2 . . . drN . (2.27)For a mole
ule, v(r) is the sum of Coulomb attra
tions to ea
h nu
leus
v(r) = −

∑

n

qn
‖r−rn‖

, (2.28)and it enters the ele
troni
 Hamiltonian together with the nu
lear repulsion
hnuc, the ele
troni
 kineti
 energy, and ele
tron repulsion. Basi
ally thismeans that two di�erent ele
troni
 Hamiltonians (di�erenent v(r)) 
annothave the same ground state density ρ(r). For mole
ules this is perhaps notsurprising�the peaks in the ground state density, and their heights, indi
atethe positions and 
harges of the nu
lei, from whi
h v(r) 
an be determined.Under the additional assumption that the ground state is non-degenerate(has multipli
ity 1), Hohenberg and Kohn also proved the existen
e of avariational density fun
tional Ev[ρ]

11 for the energy, whi
h minimum ρ(r)is the ground state density 
orresponding to v(r), hen
e the name 'densityfun
tional theory' (DFT). The nu
lear repulsion and nu
lear attra
tion areknown 
ontributions to Ev[ρ], while the kineti
 energy T and ele
tron repul-sion V are unknowns
Ev[ρ] = hnuc +

∫

v(r)ρ(r)dr + (T+V )[ρ]. (2.29)The formulation of a density fun
tional for the kineti
 energy is a di�
ulttask, as the ground state kineti
 energy 
an 
hange abruptly with small
hanges in the density. To a

ount for this, Kohn and Sham12 proposed toexpand the density in terms of orthonormal orbitals, and use the Hartree-Fo
k (or non-intera
ting) kineti
 energy Ts as the main 
ontribution, withthe remaining kineti
 energy expe
ted to vary more slowly. Analogously,the Coulomb 
ontribution J [ρ] (see Eq. 2.18) is separated from the ele
tronrepulsion, leaving the 'ex
hange-
orrelation fun
tional'Exc[ρ] as the unknown
Ev[ρ] = hnuc +

∫

v(r)ρ(r)dr + Ts[ρ] + J [ρ] + Exc[ρ], (2.30)
J [ρ] = 1

2

∫

ρ(r1)
1

r12
ρ(r2)dr1dr2, (2.31)

Exc[ρ] =
(

T − Ts + V − J
)

[ρ]. (2.32)11It is 
ustomary to write a density fun
tional with square bra
kets [. . .] around itsargument instead of (. . .)12W. Kohn, L. J. Sham: �Self-Consistent Equations In
luding Ex
hange and CorrelationE�e
ts�, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)



20 Quantum me
hani
sThis is the form of the basi
 Kohn-Sham density fun
tional theory. If Exc[ρ]is an integral over a fun
tion F (ρ(r)), it is said to be a lo
al density approx-imation (LDA), whereas an integral over F (ρ(r), ‖∇ρ(r)‖) is a generalizedgradient approximation (GGA). If an additional 'exa
t ex
hange' 
ontribu-tion (meaning Hartree-Fo
k ex
hange, see Eq. 2.18) is separated from V , itis a 'hybrid' fun
tional.As was the 
ase with Hartree-Fo
k in the previous se
tion, expanding theorbitals in terms of AOs results in a matrix expression for the Kohn-Shamenergy, and a variational 
ondition of the same form as the SCF equationEq. 2.26.



Chapter 3Properties and spe
tra
The basi
1 interpretation of spe
tros
opy is that it measures di�eren
es be-tween the stationary states of (atoms and) mole
ules, the eigenstates of theHamiltonian and solutions of the time-independent S
hrödinger equation.The mole
ule absorbs radiation at frequen
ies ωyx = Ex−Ey, whi
h 
orre-spond to di�eren
es between two eigenenergies, at a rate A proportional tothe intensity of in
oming radiation I(ωyx), the transition dipole moment, andthe population |cy|2 of the lower state ψy

A(ωyx) ∝ I(ωyx)
∣

∣

〈

ψx

∣

∣ µ̂
∣

∣ψy

〉
∣

∣

2|cy|2. (3.1)The mole
ule also emits radiation at the same set of frequen
ies, at a rate Sproportional to the same transition moment and the population of the higherstate ψx

S(ωyx) ∝
∣

∣

〈

ψy

∣

∣ µ̂
∣

∣ψx

〉
∣

∣

2|cx|2. (3.2)These two pro
esses are linear absorption and spontaneous emission, respe
-tively. Thus, in the absen
e of any in
oming radiation to be absorbed, amole
ule in a mixture of states will eventually de
ay to the ground stateby spontaneous emission of radiation. Moreover, a system of mole
ules inthermodynami
 equilibrium (
onstant populations) will emit radiation withfrequen
ies and intensities re�e
ting the populations and transition moments.1This se
tion is based on Robert C. Hilborn: �Einstein 
oe�
ients, 
ross se
tions, fvalues, dipole moments, and all that�, 2002 revision of Am. J. Phys. 50, 982�986 (1982)
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tra3.1 Propagation and Floquet theoryIn order to predi
t absorption and emission spe
tra, we need a way to deter-mine the expansion 
oe�
ients cg(t) and cx(t) of the wavefun
tion2 ψ̃(t), fora given experimental environment
ψ̃(t) = cgψg +

∑

x

cxψx. (3.3)In general, this amounts to solving the time-dependent S
hrödinger equa-tion, in whi
h the in
oming radiation gives rise to a time-dependent externalpotential V̂ t (whi
h will be presented in the next se
tion)
(

Ĥ + θ(t)V̂ t
)

ψ̃ = i d
dt
ψ̃, (3.4)where θ(t) is some fun
tion 'swit
hing' the radiation on; either instanta-neously, su
h as with the step fun
tion θ(t<0)=0, θ(t>0)=1; or gradually, aswith the error fun
tion θ(t)=erf(εt); or exponentially, θ(t)= exp(εt). As ini-tial 
ondition of the linear di�erential equation Eq. 3.4, one may spe
ify thewave fun
tion at some time, for instan
e ψ̃(−∞)=ψg or ψ̃(0)=ψg. This pro-
edure of setting an initial 
ondition followed by solving the time-dependentS
hrödinger equation is 
alled propagation, and treated in propagator theo-ries.3In this work we make the simplest possible 
hoi
e of swit
hing fun
tion,namely θ(t)=1. Rather than spe
ifying an initial 
ondition, we require thatthe wave fun
tion is the produ
t of a phase fa
tor e−iQt and a quasi-periodi
4wave fun
tion ψ(t)

ψ̃(t) = e−iQtψ(t) = e−iQt
∑

ω∈Ω

eiωtψω, (3.5)where the frequen
y set Ω(V t) 
hara
terizing quasi-periodi
ity 
onsists of�all 
ombinations of integer multiples of frequen
ies in the external potential
V t �. This means that ψ is a Fourier series in all frequen
ies appearing in
V t. That is, if V t is mono
hromati
, as when the mole
ule is irradiated by2The tilde is put on this wavefun
tion, to reserve ψ(t) for the phase isolated Floquetstate in Eq. 3.5.3J. Oddershede and P. Jørgensen: �Polarization propagator methods in atomi
 andmole
ular 
al
ulations�, Computer Physi
s Reports 2(2), 33-92 (1984)4D. A. Telnov and S.-I. Chu: �Generalized Floquet formulation of time-dependentdensity fun
tional theory for many-ele
tron systems in intense laser �elds�, AIP Conf.Pro
., vol. 525, p. 304-318 (2000)



3.1 Propagation and Floquet theory 23a single laser, ψ is a Fourier series in the laser frequen
y, and thus periodi
.Analogously, in the 
ase of two lasers, ψ is a bi-variate Fourier series, whi
h isperiodi
 only when the two frequen
ies have a 
ommon divisor, but generallyquasi-periodi
. Unless the frequen
ies in V t have a 
ommon divisor (are
ommensurate), the set Ω(V t) is dense in the real numbers.Inserting the quasi-periodi
 wave fun
tion Eq. 3.5 into the time-dependentS
hrödinger equation Eq. 3.4 with θ(t)=1, expanding the time derivative and
an
elling the phase fa
tor, the time-dependent S
hrödinger equation takesthe form of an eigenvalue equation
(

Ĥ + V̂ t
)

e−iQtψ = i d
dt
e−iQtψ, (3.6)

e−iQt
(

Ĥ + V̂ t
)

ψ = e−iQt
(

Q+ i d
dt

)

ψ, (3.7)
(

Ĥ + V̂ t − i d
dt

)

ψ = Qψ. (3.8)This will be referred to as the Floquet-S
hrödinger equation. The operator
Ĥ + V̂ t − i d

dt
is the Floquet operator, and its eigenvalue Q the quasi-energy.The eigenfun
tions ψ will in the following be referred to as Floquet states.The operator i d

dt
is Hermitian in the time-averaged s
alar produ
t

{〈

ψ
∣

∣ iφ̇
〉}

t
= { d

dt
〈ψ|φ〉}t − i

{〈

ψ̇
∣

∣φ
〉}

t
= 0 +

{〈

iψ̇
∣

∣φ
〉}

t
, (3.9)where the time-average is well de�ned for quasi-periodi
 fun
tions and leadsto the time average of a time derivative being zero

{. . .}t = lim
r,s→∞

1
r+s

∫ s

−r
. . . dt,

{

d
dt
. . .

}

t
= 0. (3.10)The Floquet operator is therefore Hermitian and the quasi-energies Q real-valued. For ea
h Floquet state ψ with quasi-energy Q, there is an in�nite setof Floquet states eiωtψ with quasi-energies Q−ω for all frequen
ies ω takenfrom the set Ω(V t), as 
an be seen by inserting eiωtψ in Eq. 3.5. Floquet statesthat in this way only di�er by a phase fa
tor eiωt are said to be degenerate.The non-degenerate Floquet states are orthogonal (at ea
h time t). This isseen by expanding the matrix element of the Floquet operator in two di�erentways

0 =
〈

ψa

∣

∣Ĥ + V̂ t − i d
dt

∣

∣ψb

〉

−
〈

ψa

∣

∣Ĥ + V̂ t − i d
dt

∣

∣ψb

〉

=
〈

ψa

∣

∣Qbψb

〉

−
〈(

Ĥ + V̂ t − i d
dt

)

ψa

∣

∣ψb

〉

+ i d
dt
〈ψa|ψb〉

= (Qb −Qa)〈ψa|ψb〉 + i d
dt
〈ψa|ψb〉. (3.11)As taught in introdu
tory mathemati
s 
ourses, the general solution of this�rst-order linear di�erential equation is

〈ψa|ψb〉 = c ei(Qb−Qa)t, (3.12)
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trawhere c is a 
omplex 
onstant. Sin
e ψa and ψb are quasi-periodi
, 〈ψa|ψb〉must also be quasi-periodi
, but the frequen
y Qb−Qa does not in generalbelong to the quasi-periodi
 set Ω(V̂ t) (unless ψa and ψb happen to be de-generate), hen
e c must be zero and the states are orthogonal.3.2 Radiation potentialThe potential5 V̂ t arising from a stati
 external (�rst order-) inhomogeneousele
tri
 �eld and a stati
 external homogeneous magneti
 �eld is given bythe expression
V̂ t = −F ·µ̂ − G· Θ̂ − B ·m̂ − 1

2
B ·ξ̂B, (3.13)where F , G and B are the ele
tri
 �eld (at the origin of the 
oordinatesystem), the ele
tri
 �eld gradient and the magneti
 �eld, respe
tively, whi
hmultiply the (negative) ele
tri
 dipole operator

µ̂ =
∑

pqprp, (3.14)ele
tri
 quadrupole operator (symmetri
 3×3 matrix)6
Θ̂ =

∑

p
qp

2
rpr

T
p , (3.15)magneti
 dipole operator

m̂ =
∑

p
qp

2mp
l̂p =

∑

p
−iqp

2mp
rp×∇p, (3.16)and magneti
 sus
eptibility operator (symmetri
 3×3 matrix)

ξ̂ =
∑

p

q2
p

4mp

(

rpr
T
p −(rp·rp)1

)

, (3.17)respe
tively. The external potential is in this 
ase time-independent (stati
),and the notation V̂ t perhaps misleading, but as will be shown below, thepresen
e of radiation leads to time-dependent F , G and B (and hen
e V̂ t).An ele
tromagneti
 wave, radiation with a single frequen
y and dire
tion, isa simple solution of Maxwell's equations7
∇·F = 4πρ, d

dt
F = c2∇×B − 4πj, (3.18)

∇·B = 0, d
dt

B = −∇×F , (3.19)5This se
tion is based on L. D. Barron and C. G. Gray: �Multipole intera
tion Hamil-tonian for time-dependent �elds�, J. Phys. A 6(1), 59-61 (1973)6There are several ways to de�ne Θ̂. In this de�nition, Θ̂ is not tra
eless and s
aledso that it multiples the ele
tri
 �eld gradient.7These are Maxwell's equations in the 'Lorentz for
e' 
onvention, where the ele
tri
 andmagneti
 �elds di�er in magnitude by a fa
tor 1
c
, as opposed to the 'Gaussian' 
onvention.



3.2 Radiation potential 25whi
h for empty spa
e (
harge ρ and 
urrent density j zero) state that the�elds are divergen
e-free (have no sour
es), and time-evolution is determinedby the opposite �eld's 
url (rotation). The speed of light c is ≈137 in atomi
units.An ele
tromagneti
 wave with frequen
y ω, propagating in the (normalized)dire
tion k is on the form
F (r) = f e−iωt exp( iω

c
k·r) + c.c., (3.20)

B(r) = b e−iωt exp( iω
c

k·r) + c.c., (3.21)where f is the wave's Jones ve
tor8, a 
omplex ve
tor whi
h determines thewave's intensity, phase, and (ele
tri
) polarization, and is perpendi
ular to k.The 
orresponding magneti
 ve
tor is given by b=1
c
k×f , and is perpendi
ularto both k and f , and di�ers from f in magnitude by a fa
tor 1

c
. The terms'c.c.' in Eqs. 3.20 and 3.21 denote the 
omplex 
onjugate of the pre
edingexpression, thus the �elds are real-valued.The polarization of the wave is linear if the real and imaginary parts of fare parallel (or either is zero), 
ir
ular (right or left) if perpendi
ular, andellipti
 in other 
ases.The ele
tromagneti
 �eld F (r),B(r) is 'translated' to an external potentialoperator V̂ t through the s
alar- and ve
tor potentials φ(r) and A(r), by therelation

V̂ t =
∑

p
iqp

2mp
(∇p ·A(rp) + A(rp) ·∇p) (3.22)

+
∑

k

q2
p

2mp
A(rp) ·A(rp) +

∑

pqpφ(rp),where the potentials φ(r) and A(r) are related to the �elds by
F (r) = − d

dt
A(r) −∇φ(r), B(r) = ∇×A(r). (3.23)However, these relations leave a great deal of freedom in the 
hoi
e of φ(r)and A(r), 
alled gauge9. By requiring r ·A(r) = 0, whi
h is to adopt themultipolar gauge10 (about the origin), the potentials are given as simpleintegrals over the �elds

φ(r) = −r ·

∫ 1

0
F (ur)du, A(r) = −r×

∫ 1

0
uB(ur)du, (3.24)8R. C. Jones, �New 
al
ulus for the treatment of opti
al systems�, J. Opt. So
. Am.,vol. 31, p. 488�493 (1941), or http://en.wikipedia.org/wiki/Jones_ve
tor9P. S
hwerdtfeger (ed.): �Relativisti
 Ele
troni
 Stru
ture Theory. Part 1. Fundamen-tals�, Elsevier (2002)10A.M. Stewart: �Wave me
hani
s without gauge �xing�, J. Mol. Stru
. (Theo
hem),vol. 626, p. 47�51 (2003)
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trawhi
h for the �elds given by Eqs. 3.20 and 3.21 
an be 
al
ulated expli
itly
φ(r) = −r ·

(

f e−iωt exp( iω
c

k·r) − 1
iω
c

k·r
+ c.c.

)

, (3.25)
A(r) = −r×

(

b e−iωt (1− iω
c

k·r) exp( iω
c

k·r) − 1

(ω
c
k·r)2

+ c.c.

)

. (3.26)The wavelengths λ=2πc/ω used in spe
tros
opy are in general several timesthe size of the mole
ules studied. Therefore, it is 
onvenient to trun
atethe s
alar and ve
tor potentials to se
ond and �rst order in r, respe
tively,so that V̂ t in Eq. 3.22 be
omes a

urate to �rst order in11 1
c
(due to thedi�eren
e in magnitude between f and b)

φ(r) = −r ·

(

f e−iωt(1 + iω
2c

k·r) + c.c.
)

= −
(

f e−iωt + c.c.
)

· r −
(

iω
2c

(kfT+fkT )e−iωt + c.c.
)

· rr
T

= −F · r − 1
2
G · rr

T , (3.27)
A(r) = −r×

(

b e−iωt(1
2
) + c.c.

)

= −1
2
r×B, (3.28)where the ele
tri
 �eld at the origin, the ele
tri
 �eld gradient and the mag-neti
 �eld have been introdu
ed

F = f e−iωt + c.c., (3.29)
G = iω

c

(

kfT + fkT
)

e−iωt + c.c., (3.30)
B = b e−iωt + c.c. = 1

c
(k×f)e−iωt + c.c. (3.31)Inserting these expressions into Eq. 3.22, the external potential operatorbe
omes

V̂ t =
∑

p
qp

2mp

(

i∇p · (−1
2
rp×B) + (−1

2
rp×B) ·i∇p

) (3.32)
+

∑

p

q2
p

2mp
(−1

2
rp×B)·(−1

2
rp×B) −

∑

pqpF · rp −
∑

p
qp

2
G · rpr

T
p ,whi
h 
an be rearranged into

V̂ t = −B·

(
∑

p
qp

2mp
(rp×i∇p)

)

+ 1
2
B·

(
∑

p

q2
p

4mp
(rpr

T
p −(rp·rp)1

)

B

−F ·(
∑

pqprp) − G·

(
∑

p
qp

2
rpr

T
p

)

= −F ·µ̂ − G·Θ̂ − B ·m̂ − 1
2
B ·ξ̂B, (3.33)11Called the �ne-stru
ture 
onstant, and 
ommonly denoted by α



3.3 Response theory 27whi
h is on the same form as Eq. 3.13, ex
ept the �elds are time-dependent.This is the ele
tri
 quadrupole�magneti
 dipole approximation to the radia-tion potential. For a �eld 
onsisting of several waves of di�erent frequen
iesand dire
tions, there will be several time-dependent 
ontributions to F ,Gand B.3.3 Response theoryWhen exposed to radiation, the mole
ule starts �u
tuating, rotating andvibrating in various ways. This means the mole
ular wavefun
tion is dis-tributed over a number of eigenstates of the Hamiltonian
ψ(t) = cg(t)ψg +

∑

x

cx(t)ψx, (3.34)whi
h makes the expli
it solution of the Floquet-S
hrödinger equation Eq. 3.8very demanding, and only appli
able to small atoms. For mole
ules, the onlyoption is therefore to resort to approximate solutions by means of perturba-tion theory.Having solved the time-independent S
hrödinger equation (with V̂ t=0), andthus found a time-independent eigenstate ψg with eigenenergy Eg, the quasi-energy Q and Floquet state ψ 
an be written as a perturbation expansion(Taylor series) in the �eld parameters f, b, g et
., that enter V̂ t

Q
∣

∣

f,b,g
= Eg + f Qf + f ∗Qf∗

+ bQb + b∗Qb∗ + g Qg + g∗Qg∗ (3.35)
+ 1

2
ff Qff + ff ∗Qff∗

+ 1
2
f ∗f ∗Qf∗f∗

+ fbQfb + f ∗bQfb

+ 1
2
bbQbb + fb∗Qfb∗ + f ∗b∗Qf∗b∗ + bb∗Qbb∗ + 1

2
b∗b∗Qb∗b∗

+ fg Qfg + f ∗g Qf∗g + bg Qbg + b∗g Qb∗g + 1
2
gg Qgg

+ fg∗Qfg∗ + f ∗g∗Qf∗g∗ + bg∗Qbg∗ 1
2
g∗g∗Qg∗g∗

+ b∗g∗Qb∗g∗ + gg∗Qgg∗ + 1
6
fff Qfff + . . .

ψ
∣

∣

f,b,g
= ψg + f ψf + f ∗ψf∗

+ b ψb + b∗ψb∗ + . . . (3.36)where supers
ripts are used as short-hand notation for derivatives, i.e. Qf∗g= d
df∗

d
dg
Q,and the ve
tor-tensor produ
ts are 
ontra
ted. Note that also derivativeswith respe
t to the 
omplex-
onjugate �elds f ∗, b∗, g∗ appear in the series.We will refer to the derivatives of the quasi-energy Qfb∗ et
., as responses, andderivatives of the wave fun
tion ψb et
., as perturbed wavefun
tions. They
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traare determined by the 
orresponding derivatives of the Floquet-S
hrödingerequation, Eq. 3.8 and the normalization 
ondition Eq. 2.3
d
df

(

Ĥ + V̂ t − i d
dt
−Q

)

ψ = 0, d
df

(

〈ψ|ψ〉 − 1
)

= 0, (3.37)Expanding the derivatives and inserting Eq. 3.33, we get
(

Ĥ + V̂ t − i d
dt
−Q

)

ψf = (e−iωtµ̂ +Qb)ψ, (3.38)
〈

ψf∗∣

∣ψ
〉

+
〈

ψ
∣

∣ψf
〉

= 0. (3.39)Applying 〈ψ| . . .〉 to the �rst equation and rearranging
〈

ψ
∣

∣Ĥ + V̂ t − i d
dt
−Q

∣

∣ψf
〉

= 〈ψ|e−iωtµ̂ +Qf |ψ〉, (3.40)
〈(

Ĥ + V̂ t − i d
dt
−Q

)

ψ
∣

∣ψf
〉

− i d
dt
〈ψ|ψf〉

= e−iωt〈ψ|µ̂|ψ〉 +Qf〈ψ|ψ〉. (3.41)The �rst term vanishes and the last term is 1 due to normalization. Tak-ing the time average, the se
ond term also vanishes (the average of a timederivative is zero, see Eq. 3.10)
{

−i d
dt
〈ψ|ψf〉

}

t
= {e−iωt〈ψ|µ̂|ψ〉}t +Qf ⇒ Qf = −µω, (3.42)and the derivative Qf of the quasi-energy with respe
t to an os
illating ele
-tri
 �eld, is found to be minus the ω-frequen
y 
omponent of the ele
tri
dipole moment. This property is known as the (time-dependent) Hellmann-Feynman theorem12,13: �The �rst derivative is given by the expe
tation valueof the perturbing operator�. Thus, no knowledge of ψf is required to obtain

Qf .Di�erentiating Qb∗ , whi
h a

ording to the previous dis
ussion is given by
−{eiωt〈ψ|m̂|ψ〉}t, with respe
t to f , the linear response Qb∗f is obtained
Qb∗f = − d

df
{eiωt〈ψ|m̂|ψ〉}t = −

{

eiωt
(〈

ψf∗∣

∣m̂
∣

∣ψ
〉

+
〈

ψ
∣

∣m̂
∣

∣ψf
〉)}

t
. (3.43)In this 
ase, however, ψf 
an not be eliminated from the formula. Goingba
k to Eq. 3.38, and using that the unperturbed wavefun
tion ψ=ψg istime-independent, and thus Qf= − µω is zero (unless ω=0)

(

Ĥ − i d
dt
−Eg

)

ψf = e−iωtµ̂ψg. (3.44)Sin
e only the phase fa
tor e−iωt is time-dependent on the right-hand side,and ψf is the only time-dependent fa
tor on the right-hand side, ψf must12H. Hellmann: Einfürung in die Quanten
hemie (Leipzig: Deuti
ke) (1937)13R. P. Feynman: �For
es in Mole
ules� Phys. Rev., vol. 56, p. 340-343 (1939)
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arry the same phase fa
tor: ψf(t) = e−iωtψf(0). This means that d
dt
ψf= −

iωψf , and the equation be
omes
(

Ĥ − ω −Eg

)

ψf = e−iωtµ̂ψg. (3.45)If ψg together with all the other eigenstates ψx of Ĥ form a 
omplete or-thonormal set, we 
an write Ĥ as
Ĥ = Eg|ψg〉〈ψg| +

∑

x

Ex|ψx〉〈ψx|, (3.46)and the inverse of the operator on the left-hand side of Eq. 3.45 
an bewritten as
(

Ĥ − ω − Eg

)−1
=

1

Eg − ω − Eg

|ψg〉〈ψg| +
1

Ex − ω − Eg

|ψx〉〈ψx|. (3.47)The solution ψf is therefore given by
ψf = e−iωt

(

−〈ψg|µ̂|ψg〉
ω

ψ +
∑

x

〈ψx|µ̂|ψg〉
Ex − ω − Eg

ψx

)

, (3.48)from whi
h ψf∗ is obtained by 
hanging ω to −ω. Inserting for ψf∗ and ψfin the linear response in Eq. 3.43, the so-
alled sum-over-states expressionfor the linear response is obtained
d
df
Qb∗f = −

{

eiωt
〈

e−iωt
(

−〈ψg|µ̂|ψg〉
−ω ψg +

∑

x

〈ψx|µ̂|ψg〉
Ex + ω − Eg

ψx

)
∣

∣

∣
m̂

∣

∣

∣
ψg

〉

+ eiωt
〈

ψg

∣

∣

∣
m̂

∣

∣

∣
e−iωt

(

−〈ψg|µ̂|ψg〉
ω

ψg +
∑

x

〈ψx|µ̂|ψg〉
Ex − ω − Eg

ψx

)〉}

t

= −
∑

x

〈ψg|µ̂|ψx〉〈ψx|m̂|ψg〉
Ex + ω − Eg

−
∑

x

〈ψg|m̂|ψx〉〈ψx|µ̂|ψg〉
Ex − ω −Eg

. (3.49)Observe that the 
ontributions from the �rst terms in ψf and ψf∗ have 
an-
eled. This is also the 
ase for the time-dependent phase fa
tors, making thetime average redundant.As there in general will be in�nitely many ex
ited states ψx, using Eq. 3.47is not a pra
ti
al way to solve the response equation Eq. 3.45. Rather, itis preferrables to solve Eq. 3.45 iteratively, using a pre
onditioner (approxi-mation to Eq. 3.45) to improve 
onvergen
e. An iterative te
hnique is alsopreferrable for �nding ψg in the �rst pla
e, and the two te
hiques are related.



30 Properties and spe
traDue to the time-independen
e of the referen
e state ψg, and the frequen
ydependen
e of the applied �elds, quasi-energy derivatives (responses) are non-zero only when the frequen
ies of the �elds sum to zero. Thus, the followingse
ond derivatives are zero, for instan
e
Qff = Qbb = Qf∗f∗

= Qb∗b∗ = 0, (3.50)sin
e the frequen
ies of the �elds sum to 2ω, 2ω,−2ω and −2ω, respe
tively.For higher-order responses, involving several di�erent frequen
ies, it is more
onvenient to use a notation whi
h spe
i�es both the �elds and their frequen-
ies, su
h as
QFF

−ω,ω, QFB
−ω,ω, QFGF

−2ω,ω,ω, QFFBB
−ν−ω,ν,ω,0. (3.51)where F is understood as the ele
tri
 �eld, B the magneti
 �eld, and G theele
tri
 �eld gradient, respe
tively. A well-established notation is the doublebra
ket14

〈〈µ;µ,m〉〉ω,ν = (−1)3QFFB
−ω−ν,ω,ν , 〈〈µ; Θ, m, µ〉〉ω,ν,γ = (−1)4QFGBF

−ω−ν−γ,ω,ν,γwhi
h lists the perturbing operators, the �rst designated as the 'outgoing'�eld and the others as 'in
oming' �elds, along with the in
oming frequen
ies.3.4 Resonan
eEven if the singularity in ψf Eq. 3.48 at ω=0 is absent from the linearresponse fun
tion Eq. 3.49, singularities remain at all ex
itation energies
ω=Ex−Eg. At �rst glan
e this may seem as a problem with response theory.But as will be explained in this se
tion15, these are resonan
es � dis
onti-nous 'jumps' in ψ and Q as the �eld is swit
hed on.For simpli
ity, we will 
onsider a two-state system, so that the Floquet state
ψ 
an be written as a linear 
ombination of the two unperturbed eigenstates
ψg and ψx

ψ = cg(t)ψg + cx(t)ψx, Ĥ = Eg|ψg〉〈ψg| + Ex|ψx〉〈ψx|, (3.52)14J. Linderberger and Y. Öhrn: �Propagators in quantum 
hemistry�, 2nd ed., Wiley(2004)15This se
tion is based on S. H. Autler and C. H. Townes: �Stark E�e
t in RapidlyVarying Fields�, Phys. Rev. 100(2), 703 (1955)
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e 31where the two 
oe�
ients are 
omplex 2π
ω
-periodi
 fun
tions of time, ex-pressed as Fourier series

cg(t) =
∞

∑

−∞
cgke

ikωt, cx(t) =
∞

∑

−∞
cxke

ikωt. (3.53)Furthermore, we write the external potential as 
oupling these two states,and 
onsider only one �eld dire
tion (say µ̂z). In addition, assume withoutloss of generality that the �eld strength f is real-valued, so that the time-dependent fa
tor be
omes 2 cosωt

V̂ t = −f(e−iωt+eiωt)
(

µ|ψx〉〈ψg| + µ|ψg〉〈ψx|
)

, (3.54)where the transition moment µ= 〈ψg|µ̂z|ψx〉 is assumed real-valued, as anyphase 
ould be absorbed into ψg or ψx. Inserting Eqs. 3.52, 3.53 and 3.54into the Floquet-S
hrödinger equation Eq. 3.8, we get
0 =

(

Ĥ + V̂ t − i d
dt
−Q

)

(

∞
∑

−∞
cgke

ikωtψg +
∞

∑

−∞
cxke

ikωtψx

) (3.55)
=

∞
∑

−∞

(

Egcgk − fµ cxk(e
−iωt+eiωt) + kωcgk −Qcgk

)

eikωtψg

+

∞
∑

−∞

(

Excxk − fµ cgk(e
−iωt+eiωt) + kωcxk −Qcxk

)

eikωtψx.To move the time-dependent fa
tors e−iωt and eiωt outside the parenthesis,we rename k to k+1 and k−1 (shift the summations) in those terms
0 =

∞
∑

−∞

(

Egcgk − fµ(cxk+1+cxk−1) + kωcgk −Qcgk

)

eikωtψg (3.56)
+

∞
∑

−∞

(

Excxk − fµ(cgk+1+cgk−1) + kωcxk −Qcxk

)

eikωtψx.Sin
e the time- and spa
e-dependent fa
tors eikωtψg and eikωtψx are linearlyindependent, this leads to the set of equations
−fµ cxk−1 + (Eg+kω)cgk − fµ cxk+1 = Qcgk, (3.57)
−fµ cgk−1 + (Ex+kω)cxk − fµ cgk+1 = Qcxk, (3.58)
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trawhi
h may be organized in the form of the eigenvalue equation for the in�nitetri-diagonal Floquet matrix
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Written more 
ompa
tly, this equation is of the form
(

H − fM− ωS
)

c = Qc, (3.59)where H 
ontains the matrix elements of the Hamiltonian, Eg and Ex al-ternating along the diagonal; M 
ontains the transition moment integral µon the �rst o�-diagonals; S 
ontains the integers k along the diagonal whi
hmultiply ω (
alled Floquet indi
es); and c the Fourier series cg(t) and cg(t)of the wavefun
tion.

Figure 3.1: Floquet states 
orresponding to the (left) groundstate ψg=π
−1/4e−x2/2, Eg = 1

2 and (right) �rst ex
ited state
ψx=(π/4)−1/4x e−x2/2, Ex=

3
2 of the one-dimensional Harmoni
 os
illator,in the potential Eq. 3.54 with µ=〈ψg|−x|ψx〉= − 1√

2
, f=0.03, ω=0.99. The
urves are |ψ|2 for −3≤x≤3 in 20 steps through one full period. Observe thatthe state on the left plot moves where V̂ t is negative (as cosωt), whereas theright plot is on the opposite side (− cosωt). The 
orresponding quasi-energiesand polarizations are marked with dots in Fig. 3.2.



3.4 Resonan
e 33The eigenvalues Q form two sets Qa+jω and Qb+jω, where j runs over allintegers, as explained after Eq. 3.10. Fortunately, the middle eigenvalues ofa trun
ated Floquet matrix 
onverge rather qui
kly to representatives fromea
h set. In the examples Figs. 3.1 and 3.2, the Floquet matrix was trun
atedto the range cx−6 . . . cg5.
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0.5
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0.54

0.9 1 1.1 1.2
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-0.2
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0
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0.3

Figure 3.2: (left) Curves of the Harmoni
 os
illator quasi-energy for
0.8≤ω≤1.2, showing the avoided 
rossing o

uring at ω=Ex−Eg=1. The
urves are for f=0.003, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08. The diagonal asymp-tote is Q=Ex−ω. (right) For ea
h 
urve on the left, the ω-frequen
y 
ompo-nent of the polarization {eiωt〈ψ|x|ψ〉}t of the 
orresponding state. Superim-posed on the 
urves tending to the ground state as f→0 are the approximatequasi-energies Q and polarizations P (ω) given by Eqs. 3.61 and 3.63. Thelowest 
urve on the left 
orresponds to the highest 
urve on the right, andvi
e versa. The dots mark the two states illustrated in Fig. 3.1. As f→0,the polarization tends to zero everywhere, ex
ept at ω=1, where it remains at
±µ

2= ±1
2
√

2
. Analogous avoided 
rossings o

ur at ω=1

2 ,
1
3 ,

1
4 . . . between ψg and

e−2iωtψx, e
−3iωtψx, e

−4iωtψx . . .. et
.Inspe
ting Eq. 3.59, it is apparent that, although multiplying di�erent ma-tri
es, f and ω have analogous roles. This means that we may generalizeresponse theory to, not only �eld derivatives, su
h as Qfg, but also frequen
y-of-�eld derivatives: Qfgω. As we will see below, with this generalization 
anbe derived a non-singular polarization spe
trum from the singular linear re-sponse in Eq. 3.49.As depi
ted in Fig. 3.2, the ground state ψg and the ex
ited state withFloquet index 1, e−iωtψx exhibit an avoided 
rossing near the exitation energy
ω=Ex−Eg (or resonan
e frequen
y). This poses a problem in perturbationtheory, as the Taylor series in Eq. 3.35 
annot 
onverge to a quasi-energy
Q with a dis
ontinuity, and will therefore diverge. More 
ru
ially, the ω-



34 Properties and spe
trafrequen
y polarization
p = P (ω) = {eiωt〈ψ|µ̂|ψ〉}t = − d

df
Q, (3.60)whi
h, unlike the quasi-energy, is an observable, 
hanges sign at the reso-nan
e.To ta
kle this, we will analyse the following approximation, valid for small fnear resonan
e

Q ≈ 1
2
(Eg+Ex−ω ± µ|δ/µ−2if |), (3.61)

ψ ≈
√

1

2
∓ 1

2|1−2ifµ/δ| ψg (3.62)
+

√

1

2
± 1

2|1−2ifµ/δ| e
−iωtψx,

p = P (ω) ≈ ± fµ

|δ/µ−2if | , (3.63)where the detuning δ = ω − (Ex−Eg) has been introdu
ed, and all the ±are negative before the resonan
e and positive after. The validity of theseapproximations is demonstrated by Fig. 3.2. The derivatives of the polar-ization p with respe
t to the frequen
y ω (or δ), the �eld f , and the mixedse
ond derivative, are given by
pω = d

dω
P (ω) = ∓ −fδ/µ

|δ/µ−2if |3 , lim
f→0

pω = 0, (3.64)
pf = d

df
P (ω) = ± δ2/µ

|δ/µ−2if |3 , lim
f→0

pf = ±µ
2

δ
, (3.65)

pfω = d2

dfdω
P (ω) = ±8f 2δ/µ− δ3/µ3

|δ/µ−2if |5 , lim
f→0

pfω = ±µ
2

δ2
, (3.66)where also the limits f→0 have been 
al
ulated. The limit of pf has a singu-larity at resonan
e δ=0, as already seen in the formula for the linear responseEq. 3.49. By inspe
tion of the formulas for p and pω, two 
ombinations withnon-singular, non-zero limits 
an be found: f/pω and p2/(fpω)

lim
f→0

f

pω

l′H

= lim
f→0

d
df
f

d
df
pω

= lim
f→0

1

pfω
= ± δ2

µ2
, (3.67)

lim
f→0

p2

fpω

l′H

= lim
f→0

2ppf

pω + fpfω

l′H

= lim
f→0

2pf2 + 2ppff

2pfω + fpffω

= lim
f→0

pf2

pfω
=

(±µ2/δ)2

±µ2/δ2
= ±µ2, (3.68)
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e 35where appli
ation of l'Hospital's rule to the zero-over-zero limits is indi
ated.Knowing these limits we may now approximate P (ω) in Eq. 3.63 by substi-tuting ±µ with ±|pf2/pfω|1/2 = pf |pfω|−1/2 and δ/µ with ±|pfω|−1/2

P (ω)
∣

∣

f
≈ f pf |pfω|−1/2

∣

∣±|pfω|−1/2−2if
∣

∣

, (3.69)whi
h may be viewed as the �rst order Taylor expansion for the linear po-larization f pf , multiplied by the renormalization fa
tor
1

√

1 + 4f 2|pfω|
. (3.70)Sin
e the renormalized linear polarization given by Eq. 3.69 is expressed interms of responses, it is also appli
able to many-state systems su
h as atomsand mole
ules. Examples of this are shown in Fig. 3.3Note that although pfω is a quadrati
 response, or third-order quasi-energyderivative, due to a property known as the the 2n+1 rule (see paper I), these
ond-order perturbed wavefun
tion ψfω is not required.Although this analysis has provided a way to avoid the singularities (reso-nan
es) in the response fun
tions, it has also revealed a problem with Floquettheory: The quasi-energy and polarization has bran
h-
ut dis
ontinuities atea
h resonan
e frequen
y (the bran
hes that tend to ψg as f→0), whi
h mayseem 'unphysi
al'. Other approa
hes to the resonan
e problem exist, for in-stan
e '
omplex response theory'16, in whi
h the polarization be
omes purelyimaginary at the resonan
e (goes as a sinωt, whi
h is out-of-phase with the

2f cosωt �eld), whi
h is the expe
ted behavior of an absorption.Resonan
es are en
ountered in Paper II, whi
h deals with CARS spe
tros
opy,where it is the di�eren
e of two �eld frequen
ies whi
h 
oin
ides with themole
ule's vibrational ex
itation energies (whi
h appear in the lowest-orderBorn-Oppenheimer 
orre
tion).
16P. Norman, D. M. Bishop, H. J. Aa. Jensen and J. Oddershede: �Near-resonant ab-sorption in the time-dependent self-
onsistent �eld and multi
on�gurational self-
onsistent�eld approximations�, J. Chem. Phys., vol. 115, p. 10323 (2001)
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Figure 3.3: (top left) Renormalized f=0.001 isotropi
 linear polarization offuran C4H4O, and (top right) triazine C3H3N3, and ele
tri
-�eld-gradientindu
ed birefringen
e (explained in paper V) (bottom left) of formalde-hyde CH2O and (bottom right) triazine, 
al
ulated from linear, respe
tively,quadrati
 Hartree-Fo
k response fun
tion. Although perhaps not evident atthe resolution of these plots, there is a sign 
hange at ea
h resonan
e. Thefrequen
y derivative pfω of the response was 
al
ulated by 3-point �nite di�er-en
es, rather than analyti
ally. The plots were prepared with the assistan
e ofLara Ferrighi and Manuel Sparta.



Chapter 4Summary and outlook
The �rst paper in
luded in this thesis presents a new hierar
hy of formu-las for response fun
tions for the SCF 
lass of models, whi
h is expressedin terms of the AO density matrix at all stages of 
omputation. Duringre
ent years, the performan
e and s
aling of SCF models have been 
on-siderably improved by 
hanging from the mole
ular orbital to the densitymatrix parameterization1,2. This has enabled 
al
ulations on mole
ules 
on-sisting of more than 1000 atoms. However, it has not been 
lear whether one
ould 
onveniently formulate the 
orresponding response theory in terms ofthe density matrix, or perhaps another equally well-s
aling parameterizationwould be preferable3. The formulas presented also take �eld-dependent (orperturbation-dependent) AOs 
orre
tly into a

ount more straightforwardlythan existing te
hniques4. Moreover, the presented formula hierar
hy is ex-haustive, in that it 
overs responses of arbitrary order, and o�ers �exibility inthe 
hoi
e of whi
h response equations (analogous to Eq. 3.45, but in termsof the density matrix) to solve, and of whi
h orders. These 'rules' range fromthe simplest, but highest-order n+1 rule to the more 
ompli
ated, lower-order
2n+1 rule (due to Wigner), through intermediate rules of the form (k+n)+1,1V. Weber, A. M. N. Niklasson, and M. Challa
ombe: �Ab Initio Linear S
aling Re-sponse Theory: Ele
tri
 Polarizability by Perturbed Proje
tion�, Phys. Rev. Lett. 92,193002 (2004)2P. Saªek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, and B. Jansík,S. Reine, F. Pawªowski, E. Tellgren, and T. Helgaker: �Linear-s
aling implementation ofmole
ular ele
troni
 self-
onsistent �eld theory�, J. Chem. Phys. 126, 114110 (2007)3T. Helgaker, H. Larsen, J. Olsen and Poul Jørgensen: �Dire
t optimization of the AOdensity matrix in Hartree�Fo
k and Kohn�Sham theories�, Chem. Phys. Lett., vol. 327(5-6), p. 397-403 (2000)4J. Olsen, K. L. Bak, K. Ruud, T. Helgaker and P. Jørgensen: �Orbital 
onne
tions forperturbation-dependent basis sets�, Th. Chem. A

., vol. 90 (5-6), p, 421-439 (1995)



38 Summary and outlookwhere k is here the the highest-order equation to be solved involving the �rst�eld, and n the highest-order equation to be solved involving the remaining�elds. Sin
e response equations are solved iteratively, typi
ally over 10�20iterations, whereas the subsequent 
ontra
tion of response fun
tions is non-iterative, the 'rule' with the lowest number of equations will in most 
asesbe preferred.In paper II we present results obtained using the (0+2)+1 rule for a quadrati
response, the geometri
al polarizability gradient, whi
h is a third-order quasi-energy derivative
d

dR
α(−ω, ω) = − d

dR
〈〈µ;µ〉〉ω = − d

dR
d

dF ∗
ω

d
dFω

Q = −QRFF
0,−ω,ω, (4.1)where R 
olle
tively denotes the nu
lear 
oordinates, Fω is the ω-frequen
y
omponent of the ele
tri
 �eld, and α(−ω, ω) the polarizability. By usingthe (0+2)+1 rule � that is, zero order R, se
ond order in F ∗

ω , Fω, ratherthan the (1+1)+1 rule, we avoid the very numerous equations for the nu-
lear 
oordinates, and are left with solving 9 ele
tri
 �eld equations (3 �rst-,6 se
ond-order). Within the so-
alled double-harmoni
 Born-Oppenheimerapproximation, where only the linear term in the quadrati
 potential energysurfa
e responds to the �elds, the polarizability gradient Eq. 4.1 
an be usedto 
al
ulate the intensities of the stimulated vibrational transitions o

uringin 
oherent anti-Stokes Raman s
attering spe
tros
opy.In paper III, also within the double-harmoni
 approximation, we have 
al
u-lated the so-
alled pure-vibrational 
orre
tions to the stati
 se
ond hyper-polarizability (
ubi
 response) γ(0, 0, 0, 0), whi
h is a fourth-order quasi-energy derivative
γ(0, 0, 0, 0) = −〈〈µ;µ, µ, µ〉〉0,0,0 = − d

dF0

d
dF0

d
dF0

d
dF0
Q = −QFFFF

0,0,0,0 . (4.2)The 
orre
tions are determined by the geometry derivatives of the dipolemoment µ, stati
 polarizability α(0, 0) and stati
 �rst hyperpolarizability
β(0, 0, 0)

d
dR
µ = − d

dR
d

dF0
Q = −QRF

0,0 , (4.3)
d

dR
α(0, 0) = − d

dR
〈〈µ;µ〉〉0 = − d

dR
d

dF0

d
dF0
Q = −QRFF

0,0,0 , (4.4)
d

dR
β(0, 0, 0) = d

dR
〈〈µ;µ, µ〉〉0,0 = − d

dR
d

dF0

d
dF0

d
dF0
Q = −QRFFF

0,0,0,0 , (4.5)whi
h we, as in paper II, have 
al
ulated using the (0+1)+1, (0+2)+1 and
(0+3)+1 rules, respe
tively, solving a total of 19 equations (3 �rst-, 6 se
ond-and 10 third-order).



39In paper IV, we present 
al
ulations of the Cotton-Mouton e�e
t, whi
h o
-
urs when light passes through a sample of mole
ules in a stati
 magneti
�eld. A beam entering with linear polarization will, depending on the �eldstrength and the angle between the �eld and the beam's polarization, be-
ome ellipti
 (see Se
. 3.2) as it passes through the medium. This is 
alledlinear birefringen
e, whi
h means that the index of refra
tion is di�erent forbeams polarized parallel and perpendi
ular to the magneti
 �eld. The e�e
tis des
ribed by the Cotton-Mouton 
onstant mC, whi
h has two 
ontribu-tions: a temperature-dependent orientation term ∆[αξ], and a temperature-independent term ∆η

mC =
2πNA

27

(

∆η +
2

15kT
∆[αξ]

)

, (4.6)where ∆[αξ] is the anisotropy of the produ
t of the polarizability α(−ω, ω)and the stati
 magnetizability ξ(0, 0), both of whi
h are linear responses, and
∆η is the anisotropy of the hyper-magnetizability η(−ω, ω, 0, 0), whi
h is a
ubi
 response

α(−ω, ω) = −〈〈µ;µ〉〉ω = − d
dF ∗

ω

d
dFω

Q = −QFF
−ω,ω, (4.7)

ξ(0, 0) = −〈〈m;m〉〉0 + ξ = − d
dB∗

0

d
dB0

Q = −QBB
0,0 , (4.8)

η(−ω, ω, 0, 0) = −〈〈µ;µ,m,m〉〉ω,0,0 + 〈〈µ;µ, ξ〉〉ω,0 (4.9)
= − d

dB0

d
dB0

d
dF ∗

ω

d
dFω

Q = −QBBFF
0,0,−ω,ω,

∆[αξ] =

xyz
∑

ij

(

αijξij − 1
3
αiiξjj

)

, (4.10)
∆η = 1

5

xyz
∑

ij

(

ηijij − 1
3
ηiijj

)

. (4.11)In the 
al
ulation of η, we have used the (1+2)+1 rule, solving a total of 21response equations (6 �rst- and 15 se
ond-order). Our 
al
ulations are the�rst on this e�e
t employing magneti
-�eld-dependent so-
alled London AOs(or gauge-in
luding AOs), whi
h provide improved basis set 
onvergen
e, andgauge-origin independent results, as explained in paper IV.Paper V, the last paper in
luded in this thesis, presents 
al
ulations on an-other linear birefringen
e, the ele
tri
-�eld-gradient indu
ed birefringen
e,or Bu
kingham e�e
t, whi
h is a 
hange in the ellipti
ity of a beam passingthrough a sample in the presen
e of an ele
tri
 �eld gradient. It is des
ribedby the quantity s, whi
h has temperature-independent and -dependent 
on-
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s = b(ω) +

1

kT

{

xyz
∑

ij

Θijαij −
xyz
∑

ijk

µi

[

Aj,ij +
5

ω
ǫijkG

′
jk

]}

,where ǫijk is the Levi-Civita tensor, and the temperature-independent term
b(ω) is a 
ombination of three quadrati
 responses

b(ω) =

xyz
∑

ij

(

Bij,ij − Bi,ij,j

)

− 5

ω

xyz
∑

ijk

ǫijkJ
′
ijk, (4.12)

B(−ω, ω, 0) = 〈〈µ;µ,Θ〉〉ω,0 = − d
dG0

d
dF ∗

ω

d
dFω

Q = −QGFF
0,−ω,ω, (4.13)

B(−ω, ω, 0) = 〈〈µ; Θ, µ〉〉ω,0 = − d
dG0

d
dF ∗

ω

d
dF0
Q = −QGFF

ω,−ω,0, (4.14)
J ′(−ω, ω, 0) = −i〈〈µ;m,µ〉〉ω,0 = − d

dBω

d
dF ∗

ω

d
dF0
Q = −QBFF

ω,−ω,0, (4.15)and the temperature-dependent 
ontributions are 
ombinations of the dipoleand quadrupole moments, µ and Θ , with the polarizability α(−ω, ω) andtwo other linear responses
A(−ω, ω) = −〈〈µ; Θ〉〉ω = −QGF

ω,−ω, (4.16)
G′(−ω, ω) = i〈〈µ;m〉〉ω = −iQBF

ω,−ω. (4.17)For the quadrati
 responses, we have used the (0+2)+1 rule, whi
h meanssolving 21 ele
tri
 �eld equations (6 �rst-, 15 se
ond-order). Results ob-tained with London- and 
onventional AOs are 
ompared, showing a greatlyimproved basis-set 
onvergen
e.The basis for our software implementation is the DALTON program. This
ode is being developed by a large group of European s
ientists, and ispresently being extended to allow for large-s
ale SCF 
al
ulations in a fu-ture release. The te
hniques developed in this thesis are well-suited for thispurpose. The implementation 
onsists of four main 
omponents:Matrix routinesIn the Fortran 90 programming language one 
an de�ne 'derived datatypes', and arithmeti
 operations in terms of these. For our type(matrix)we have also implemented aliasing (with referen
e 
ounting), automati
(de-)allo
ation, and non-allo
ated zero matri
es. Possible future opti-mizations 
ould be 1) To hide transpose and s
ale operations in thederived type (A=3∗trps(B) would make A an alias of B, without a
tu-ally transposing or s
aling any matrix elements); 2) De�ne a so-
alled



41'proxy type' for binary operations, so that for instan
e C=C+A∗B isexe
uted in one operation (DGEMM) rather than three, without allo-
ating any intermediate matri
es; 3) Utilize transpose and point groupsymmetry; 4) Distribute matri
es in parallel 
al
ulations. At present all(perturbed) matri
es are stored and manipulated by the master node.Only Coulomb-ex
hange and Kohn-Sham matri
es are 
omputed inparallel. This leads to a signi�
ant load imbalan
e between the masterand slave nodes, whi
h 
ould be avoided.Property integrals interfa
eDALTON's integral sub-program HERMIT provides an extensive 
at-alog of one-ele
tron integrals, indexed by labels ('XDIPLEN', 'ZMAG-MOM', et
.), while the various two-ele
tron and Kohn-Sham 
ontra
-tions are separate 
alls. Two interfa
e routines 
ombine a list of �eldlabels ('EL', 'MAG', 'GEO', et
.) with a list of density matri
es (aperturbation expansion of some order) to produ
e an array of responsefun
tion 
ontributions, or an array of Fo
k matrix 
ontributions. Athird interfa
e routine delivers perturbed overlap matri
es.Response equation 
ontra
tor and solverGiven a list of �eld labels and asso
iated frequen
ies, together withthe 
orresponding density and Fo
k matrix perturbation expansions,this routine evaluates the perturbed TDSCF equation and idempoten
y
ondition (see Paper I), then passes the residuals to the response solver,whi
h returns the solutions. The response solver was implemented bySonia Coriani and 
oworkers5.Response fun
tion 
ontra
torFrom a list of �eld labels and asso
iated frequen
ies, together with the
orresponding density and Fo
k matrix perturbation expansions, withva
an
ies (zeros) for ea
h equation that has not been solved (a

ordingto the (k+n)+1 rules), 
al
ulate the 
orresponding response fun
tion(array). From a programming point of view, this is the most 
om-pli
ated 
omponent, and we have thus far only implemented 
ertainspe
ial 
ases.The work on the implementation 
ontinues. Here, in the group of KennethRuud at the University of Tromsø, Radovan Bast is generalizing the inter-5S. Coriani, S. Høst, B. Jansik, L. Thøgersen, J. Olsen, P. Jørgensen, S. Reine, F.Pawªowski, T. Helgaker, and P. Saªek: �Linear-s
aling implementation of mole
ular re-sponse theory in self-
onsistent �eld ele
troni
-stru
ture theory�, J. Chem. Phys. 126,154108 (2007).



42 Summary and outlookfa
e to the DIRAC program for 2- and 4-
omponent relativisti
 
al
ulations.Meanwhile, in the group of Poul Jørgensen at the University of Århus, KasperKristensen aims to generalize the 
ode to 
al
ulate the residues (resonan
es)of the response fun
tions.


