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Abstract

This thesis is concerned with computer modelling of molecules interacting
with electromagnetic radiation, for applications in spectroscopy. Response
theory is used, in which time-dependent perturbation theory applied to the
ground state permits the study of both ground and excited states. For the
class of self-consistent field (SCF) electronic structure models, which includes
Hartree-Fock- and all Kohn-Sham DFT models, a full hierachy of new for-
mulas for response functions have been derived. Although there are several
equivalent formulas for a given response function, typically a specific one is
preferable due to computational considerations.

The derived formulas are expressed in terms of the atomic orbital (AO) den-
sity matriz, and valid also with time- and perturbation dependent AQOs, such
as the magnetic field-dependent London or gauge-including AOs, which are
employed to obtain improved basis set convergence and gauge-origin indepen-
dent results. The density matrix has an advantage over the more common
molecular orbital coefficient matrix (MO) parameterization in that it decays
rapidly with the distance between atoms (except in directions of conduction).
For large molecules one may therefore truncate the density matrix and treat
it as sparse. Although this is not presently utilized in our implementation,
it is expected to lead to great computational savings.

To resolve any ambiguity in the definition of response theory, we formulate
it by applying perturbation theory to Floquet theory, which is a quantum-
mechanical theory that includes so-called semi-classical radiation, by which
both stimulated and spontaneous emission and absorption can be predicted.
The central quantity in Floquet theory is the quasi-energy, and this is there-
fore the 'quasi-energy formalism’ of response theory.

The DALTON quantum chemistry program has since long been the leading
software for computing molecular properties. Using the program structures
already present in the code, such as integrals and integral derivatives, in
addition to recently implemented SCF and SCF-response program modules
(the ’linsca’ development branch), we have implemented several new response



functions, relevant to spectroscopies such as Cotton-Mouton, coherent anti-
Stokes Raman scattering (CARS), and electric-field-gradient induced bire-
fringence (EFGB).
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Chapter 1

Introduction

It was unexplained observations in spectroscopy that led to the advent of
quantum mechanics in the mid 1920s!. The radiation emitted by hot gases
showed sharp peaks at certain wavelengths, which could not be predicted
with existing theories. The two equivalent theories of quantum mechanics
proposed by Heisenberg and Schrodinger? explained the peaks as arising when
the molecule jumps between two of its eigenstates, with the wavelength of
the peak determined by the difference between the two eigenenergies, and
the intensity of the peaks by the populations of the eigenstates together with
the transition dipole moment.

However, both the spectra themselves and the Schriodinger equation, which
must be solved in order to predict spectra, are vastly complex, as expressed
by another pioneer, Dirac?:

The fundamental laws necessary for the mathematical treatment
of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty lies only in the fact that ap-
plication of these laws leads to equations that are too complex to
be solved.

In the early days of computational (theoretical) chemistry, calculations were

'W. Heisenberg: “Uber Quantentheoretische Umdeutun Kinematischer und Mechanis-
cher Beziehungen”, Zeitschrift fiir Physik, vol. 33, p. 879-893 (1925)

2E. Schrédinger: “An Undulatory Theory of the Mechanics of Atoms and Molecules”,
Phys. Rev. 28 (6): 1049-1070 (1926)

3P.AM. Dirac: “Quantum mechanics of many-electron systems”, Proc. Royal Soc.
London, Series A, vol. 123, p. 714 (1929)
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carried out by hand (pencil and paper)®® or by mechanical calculators. With
the invention of the digital computer, computational chemistry soon became
one of its main tasks, and has continued to be so. But still today, after 80
years of knowing the theoretical foundation and many billion-fold increases
in computing power, there is still a considerable gap between the accuracy
delivered by computation, and that of the experiments conducted in chemical
laboratories®. Thus, at present it seems Dirac was right.

Although computation has yet to replicate experiment, it already serves well
to complement, estimate or preview experiment, as, for instance, in the phar-
maceutical industry. Most of the efforts of computational (and theoretical)
chemists, and their computers, are put into solving the time-independent
Schrodinger equation (SE): Molecular geometries, reaction energies, reaction
barriers, electron affinities, ionization energies, dissociation energies, etc. All
these tasks consist of finding either just one, or a few solutions of the SE.
The prediction of electromagnetic spectra, however, requires the solution of
the time-dependent Schrodinger equation (TDSE). Fortunately, only a slight
adaptiation of the methods used to solve the SE are needed in order for their
application to the TDSE. Moreover, the error inherited from the underlying
SE method will typically dominate those introduced by the approximations
to the TDSE. Therefore, computational spectroscopy, the topic of this thesis,
is mainly concerned with finding the right adaptations for a specific class of
SE models, and interpreting the computed results in relation to experimental
observations.

The rest of this thesis is organized as follows: Chapter 2 presents the fun-
damental equation which governs molecular quantum mechanics, namely
the Schrodinger equation, together with the Born-Oppenheimer and self-
consistent-field approximations applied to it. In Chapter 3, molecular prop-
erties and spectroscopy are presented in a quasi-classical formulation known
as Floquet theory, where the electrons and nuclei obey quantum mechanics,
whereas the external electromagnetic field obeys the classical Maxwell equa-
tions. Response theory is then formulated by applying (Rayleigh-Schrédinger)
perturbation theory to Floquet theory. Finally, Chapter 4 summarizes the
results in this thesis, as well as gives some remarks on future developments
and applications.

4W. Heitler and F. London: “Interaction of Neutral Atoms and Homopolar Binding
According to the Quantum Mechanics”, Zeitschrift fiir Physik, vol. 44, p. 455 (1927)

°D. R. Hartree and W. Hartree: “Self-consistent field, with exchange, for nitrogen and
sodium”, Proc. Royal Soc. London, vol. 193 (1034), p. 299-304 (1948), where W. Hartree
(Hartree’s father) did the calculations.

6That is, by equally ’affordable’ computers and laboratory equipment.



Chapter 2

Quantum mechanics

2.1 Schrodinger equation

In quantum mechanics, a system (molecule) consisting of N particles (elec-
trons and nuclei) is described by a wavefunction ¢ (ry,rs...1ry), a complex-
valued function of the set of particle coordinates' ri,ry...1x

P(ry,ry...1y) € C. (2.1)

In the so-called 'Copenhagen interpretation’ of the wavefunction, the proba-
bility P of 'finding’ all particles within the range ¢ of the positions t1,ts...tyx
is the integral of the square absolute value of the wavefunction over the cor-
responding 3/N-dimensional volume

P = / / e / |w|2dr1dr2 e dI’N. (22)
[r1—t1]|<6 flra—t2fl<é  [ry—tn|<d
Thus |¢|? =1*1 is the probability density of the positions of the particles.

Since all the particles must be somewhere in space, the corresponding prob-
ability P for §=o0 must be 1 (which means 100%)

= [ [ [evdnde e = i) (2.3)

which is called normalization of the wavefunction . The *bra-ket’” (...|...)
is a short-hand notation for such integrals over all coordinates?. Addition-
ally, the wavefunction should fulfill so-called spin-statistics: When identical

'Particles have an additional spin coordinate which is ’hidden’ in r}, here.
2More precisely, rather than an integral, it is an average over the ’center-of-mass coor-
dinate’
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fermions (nuclei with an odd number of nucleons and electrons) are inter-
changed (swap coordinates), the wavefunction should change sign. This is
the Pauli exclusion principle. Moreover, when identical bosons (nuclei with
an even number of nucleons) are interchanged, the wavefunction should not
change.

The time evolution of the molecule (its wavefunction) is determined by the
time-dependent Schridinger equation, which is a linear differential equation

Hy = ity (2.4)

where the differential operator H is the molecule’s Hamiltonian. The Hamil-
tonian consists of a kinetic energy operator Tp for each particle, and a po-
tential energy operator qu for each (distinct) pair of particles. Ignoring
interactions due to particle spin, the kinetic- and potential energy operators
are given by the Laplace operator and Coulomb potential

H = Y T+ Vi (2.5)
P

p>q
A 1 1 [0* 9 0
T = _ 2 _ _ - — 2.6
b 2my P~ 2m, (aa;g o mg) (2:6)
. G 44 G4
Vig = T = = = Lo ,(2.7)

T'pq B [Ty — x| a \/(xp—ffq)2+(yp_yq)2+(zp_zq)2

where atomic units have been used, and mj are the particles’ masses and
q¢p the charges. Note that the Coulomb potential between particles of oppo-
site charge is attractive (g,q, negative), while it is repulsive (g,qq positive)
between those of same charge. The kinetic energy is always positive.

If the wavefunction 1 is an eigenfunction (eigenstate) of the Hamiltonian
with eigenvalue F (the eigenenergy), it is a stationary state, as e~*F%) solves
the time-dependent Schrodinger equation

HY = BE) = H(e ) = ig ('), (2.8)
and the phase factor e*¥* cancels when computing the square absolute value
le=iEt)|?, leaving the interpretation (probabilities P above) of the wavefunc-
tion constant in time (stationary). The eigenstates ¢ fulfill the variation
principle, which states that expectation value of the Hamiltonian (¢|H|[¢) is
stationary with respect to variations in ). One may therefore search for the
ground state, the eigenstate with lowest £, by minimizing this expectation
value.
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2.2 Born-Oppenheimer approximation

The nuclei are the heaviest particles in a molecule; the lightest nucleus, the
proton 'H is ~1836 times as heavy as an electron, while the most abundant
carbon nucleus 2C is ~21863 times as heavy. Since these large masses appear
in the denominator in the kinetic energy operator in Eq. 2.6, nuclei will
have little kinetic energy relative to electrons. In the Born-Oppenheimer
approximation®, the nuclear kinetic energy operators T are at first separated
from the electronic Hamiltonian H ¢l which then consists of zero-electron, 1-
electron and 2-electron parts (n, m denoting nuclei, e, f electrons)

H = T, + H (2.9)
f{el = ZVnm :hnuC7 (210)
n>m

+
-1
_I_
]
(S>
=}
N—
Il Il
S
v
==

e>f

where the nuclear coordinates r, enter h,,. and h as parameters. The elec-
tronic Schrodinger equation is then solved for all electronic states (k)

HYW (re; 1) = B (rn) v (re; 1), k=0,1...00, (2.13)

each depending parametrically* on r,. The solutions E{!(r,) are called "po-
tential energy surfaces’ (PES), and the ’equilibrium geometry’ is defined as
the configuration of r, that gives the lowest electronic energy on the ground-
state PES.

In a second step, the complete Schrodinger equation is solved with an expan-
sion over the electronic solutions 15!

wtOt rn’ re Z ¢nuc k re7 rn) f{tOt’l?Z)tOt _ Etotwtot’ (214)

where the @/)nuc are the coefficients and the ¥¢! the basis of the expansion.
Since the 9 are eigenstates of H° and orthogonal (for all r,,), Eq. 2.14 leads

3M. Born and R. Oppenheimer: “Zur Quantentheorie der Molekeln”, Ann. der Physik
84, 20 (1927)
4This is a differential equation in re, but an ordinary (parametric) equation in r,,.
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to an infinite set of coupled Schrédinger equations
(S 00+ ) ) () = B () (215)

where the potential energy surfaces E¢(r,) have the role of potential opera-
tors (hence the name).

Although the equation set Eq. 2.15 is no less complicated than the original
Schrédinger equation Eq. 2.4, it can be truncated to a good approximation,
both in the number of PESs included, and in the range and precision of each
PES. The approximations range from the simplest, which is to ’clamp’ the
nuclei in the equilibrium geometry (one PES, one r,); to the harmonic, in
which the ground state PES is approximated to second order about a point
r,; to more complicated approximations of several PESs etc.

2.3 Self-consistent field approximation

Even in the crudest Born-Oppenheimer approximation, the so-called clamped
nucleus approximation, in which only one geometry r, on one PES is sought,
an N-electron Schrédinger equation is still too difficult to solve. In the self-
consistent field (SCF) approximation, this is tackled by writing the wave func-
tion as a Slater determinant, an anti-symmetrized product of N orthonormal
orbitals ¢1, s ... ¢n (1-electron wavefunctions)

o1(r1)  Pa(r1) -+ on(ri)

1 | ¢i(r2) a(r2) -+ on(r2)
(ry,re...Ty) = \/ﬁ : : ) . (2.16)

r(ty) Oalty) o ow(ry)

A matrix determinant is the sum of all possible products of one term from
each row and column, with sign + or — depending on whether it is an even or
odd permutation. This ensures that the wavefunction switches sign when two
electrons are interchanged, as required by the Pauli principle. Moreover, since
the orbitals are orthonormal, all the ! terms in the determinant are also
orthonormal, and the factor 1/\/]W gives a normalized 1. The SCF class of
models have in common that they attempt to solve an N-electron Schrédinger
equation (Eq. 2.8) by solving coupled 1-electron Schrodinger equations. The
term ’self-consistent’ is derived from the coupling between the 1-electron
Hamiltonian, called the Fock operator, and the solutions (orbitals).
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Applying the variation principle to the Slater determinant, one obtains the
Hartree-Fock model®, which is the most basic SCF model. Although derived
on a different basis, Kohn-Sham density functional theory® models are a
broad class of SCF models, and thus share the main characteristica with
Hartree-Fock.

2.3.1 Hartree-Fock

Inserting the Slater determinant Eq. 2.16 into the expression for the energy
expectation value E = (y|H|v), it is reduced to

hnuc+z<¢k‘_%vz —ZW%H)@Q (2.17)
+ Z//¢ ry) o ( r2 |:¢]<r1)¢k(r2) ¢k<r1)¢j<r2):|drldr2a

>k

where the nuclear repulsion hy,. is given by Eq. 2.10. Since the diagonal
terms 7=k in the second summation will cancel, it can be rewritten as

_Z//¢ ry) o ( 1"2 [fﬁy(rl)%(rz) ¢k(r1)¢j(r2)}dr1dr2, (2.18)

where the contributions from the first term in the bracket are called the
Coulomb repulsion, and those from the second term the exchange interaction.
Expanding the orbitals in a basis of atomic orbitals” (AOs) x,(r)

or(r) = 22, Xu(r)Cp, (2.19)

the energy can be written in matrix form in terms of the orbital coefficient
matrix C as

E = hye+TrC'HC + ITr C'G(CCM)C (2.20)
= hpe + TTHD + 1 Tr G(D)D,

where Tr denotes matrix trace, and . ..T the complex-conjugated matrix trans-
pose. Using the invariance of the trace under cyclic permutations of a matrix

5G. G. Hall: “The Molecular Orbital Theory of Chemical Valency & A Method of
Calculating Tonization Potentials”, Proc. Royal Soc. London A, vol. 205, p. 541-552
(1951)

6W. Kohn, L. J. Sham: “Self-Consistent Equations Including Exchange and Correlation
Effects”, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)

"Commonly nucleus-centered Gaussian-type functions: z¥Fy!zme=¢r
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product, the density matriz D = CC' has been introduced. The 1- and 2-
electron integral matrices H and G(D) contains the integrals of the operators
h and g, respectively, over the AO basis x,

) = (| 392 =3 Hrfinrn” )xu>, (2.21)

Guupe = [ [ X0 02) - [eolrnns(02) = o) 52)
GD)w = > ,0GuvpoeDpo- (2.22)

A~

h

H, = <Xu

The orbitals ¢ are required to be orthonormal, which translates into the
following matrix equations to be satisfied by C and D

(i) = 051 = ctsc=1 = DSD = D, (2.23)

where S, = (xu|x») is the overlap matrix for the AO basis x,. The latter
equation is commonly referred to as the idempotency condition for the density
matrix.

Since C must satisfy the orthonormality relation, it is constrained, and the
Lagrange multipler method® can be used to derive the variational condition

E(C,A) = hy+TrC'HC + JTr C'G(CC')C (2.24)
— TrA(CfsC-1),
2E(C,A) = (H+G(CC"))C - SCA =0, (2.25)

where A is the Lagrange multiplier matrix for the orthonormality condition.
Introducing the Fock matrix F=H+G(D), the variational condition can be
expressed in terms of D as’

FDS = SDF, (2.26)

which is the SCF equation in terms of the density matrix.

2.3.2 Kohn-Sham DFT

Hohenberg and Kohn'® showed that there is a one-to-one relation between
the potential functions v(r) in the electronic Schrédinger equation, and the

8J.-L. Lagrange: “Théorie des fonctions analytiques”, (1797, p. 198)

9P. Pulay: “Improved SCF convergence acceleration”, J. Comp. Chem. 3 (4), 556-560
(1982)

10P, Hohenberg, W. Kohn: “Inhomogeneous Electron Gas” Phys. Rev. B, vol. 136 (3B),
p. B864-B871 (1964)
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electron density p(r) of the ground state (solution)

p(r) :N//.../|w(r,r2...rN)|2dr2...drN. (2.27)

For a molecule, v(r) is the sum of Coulomb attractions to each nucleus
an
v(ir)=—) ——, (2.28)
Zn: [[r =]

and it enters the electronic Hamiltonian together with the nuclear repulsion
houe, the electronic kinetic energy, and electron repulsion. Basically this
means that two different electronic Hamiltonians (differenent v(r)) cannot
have the same ground state density p(r). For molecules this is perhaps not
surprising—the peaks in the ground state density, and their heights, indicate
the positions and charges of the nuclei, from which v(r) can be determined.

Under the additional assumption that the ground state is non-degenerate
(has multiplicity 1), Hohenberg and Kohn also proved the existence of a
variational density functional E,[p]'* for the energy, which minimum p(r)
is the ground state density corresponding to v(r), hence the name ’density
functional theory’ (DFT). The nuclear repulsion and nuclear attraction are
known contributions to E,[p], while the kinetic energy T" and electron repul-
sion V' are unknowns

Bulp] = huue + Jo(x)plr)dr + (T+V)[p). (2.29)

The formulation of a density functional for the kinetic energy is a difficult
task, as the ground state kinetic energy can change abruptly with small
changes in the density. To account for this, Kohn and Sham'? proposed to
expand the density in terms of orthonormal orbitals, and use the Hartree-
Fock (or non-interacting) kinetic energy 7y as the main contribution, with
the remaining kinetic energy expected to vary more slowly. Analogously,
the Coulomb contribution J[p] (see Eq. 2.18) is separated from the electron
repulsion, leaving the ’exchange-correlation functional’ E,.[p| as the unknown

Fulpl = hue + Jo(0)p(0)de + T + Il + Buldl, (230)

Jlp] = %fp(rl)ép(rQ)drler, (2.31)

Exlp) = (T =To+V = J)[p). (2.32)

UTt is customary to write a density functional with square brackets [...] around its

argument instead of (...)
12W. Kohn, L. J. Sham: “Self-Consistent Equations Including Exchange and Correlation
Effects”, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)
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This is the form of the basic Kohn-Sham density functional theory. If E..[p]
is an integral over a function F'(p(r)), it is said to be a local density approx-
imation (LDA), whereas an integral over F'(p(r),||Vp(r)|) is a generalized
gradient approximation (GGA). If an additional 'exact exchange’ contribu-
tion (meaning Hartree-Fock exchange, see Eq. 2.18) is separated from V, it
is a ’hybrid’ functional.

As was the case with Hartree-Fock in the previous section, expanding the
orbitals in terms of AOs results in a matrix expression for the Kohn-Sham

energy, and a variational condition of the same form as the SCF equation
Eq. 2.26.



Chapter 3

Properties and spectra

The basic! interpretation of spectroscopy is that it measures differences be-
tween the stationary states of (atoms and) molecules, the eigenstates of the
Hamiltonian and solutions of the time-independent Schrédinger equation.
The molecule absorbs radiation at frequencies wy, = Ex — E\, which corre-
spond to differences between two eigenenergies, at a rate A proportional to
the intensity of incoming radiation I (wyy), the transition dipole moment, and
the population |c,|* of the lower state 1,

Alwy) o Twy) | | ] )] ey 2 (3.1)

it

The molecule also emits radiation at the same set of frequencies, at a rate S
proportional to the same transition moment and the population of the higher
state 1),

el (3.2)

S(wa) o8 Kwy

i

These two processes are linear absorption and spontaneous emission, respec-
tively. Thus, in the absence of any incoming radiation to be absorbed, a
molecule in a mixture of states will eventually decay to the ground state
by spontaneous emission of radiation. Moreover, a system of molecules in
thermodynamic equilibrium (constant populations) will emit radiation with
frequencies and intensities reflecting the populations and transition moments.

! This section is based on Robert C. Hilborn: “Einstein coefficients, cross sections, f
values, dipole moments, and all that”, 2002 revision of Am. J. Phys. 50, 982-986 (1982)
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3.1 Propagation and Floquet theory

In order to predict absorption and emission spectra, we need a way to deter-
mine the expansion coefficients ¢4 () and ¢ () of the wavefunction? v (t), for
a given experimental environment

U(t) = cgthe + Y exthx. (3.3)

In general, this amounts to solving the time-dependent Schrédinger equa-
tion, in which the incoming radiation gives rise to a time-dependent external
potential V* (which will be presented in the next section)

(H+0(t)V*') =il (3.4)
where 6(t) is some function ’switching’ the radiation on; either instanta-
neously, such as with the step function 0(¢<0)=0, §(¢t>0)=1; or gradually, as
with the error function 6(t)=erf(et); or exponentially, 6(t)=exp(et). As ini-
tial condition of the linear differential equation Eq. 3.4, one may specify the
wave function at some time, for instance 1(—00)=1, or 1)(0)=t,. This pro-
cedure of setting an initial condition followed by solving the time-dependent
Schrodinger equation is called propagation, and treated in propagator theo-
ries.?

In this work we make the simplest possible choice of switching function,
namely 6(¢)=1. Rather than specifying an initial condition, we require that
the wave function is the product of a phase factor e *?* and a quasi-periodic*
wave function (t)

U(t) = e Rhp(t) = e ey, (3.5)

weN

where the frequency set Q(V*) characterizing quasi-periodicity consists of
“all combinations of integer multiples of frequencies in the external potential
V't 7. This means that 1) is a Fourier series in all frequencies appearing in
Vt. That is, if V! is monochromatic, as when the molecule is irradiated by

2The tilde is put on this wavefunction, to reserve 1(t) for the phase isolated Floquet
state in Eq. 3.5.

3J. Oddershede and P. Jgrgensen: “Polarization propagator methods in atomic and
molecular calculations”, Computer Physics Reports 2(2), 33-92 (1984)

4D. A. Telnov and S.-I. Chu: “Generalized Floquet formulation of time-dependent
density functional theory for many-electron systems in intense laser fields”, ATP Conf.
Proc., vol. 525, p. 304-318 (2000)
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a single laser, v is a Fourier series in the laser frequency, and thus periodic.
Analogously, in the case of two lasers, v is a bi-variate Fourier series, which is
periodic only when the two frequencies have a common divisor, but generally
quasi-periodic. Unless the frequencies in V' have a common divisor (are
commensurate), the set Q(V?) is dense in the real numbers.

Inserting the quasi-periodic wave function Eq. 3.5 into the time-dependent
Schrodinger equation Eq. 3.4 with 6(t)=1, expanding the time derivative and
cancelling the phase factor, the time-dependent Schrodinger equation takes
the form of an eigenvalue equation

(FI + Vt)e’iQtQ/J = ide @y, (3.6)
A+ VY = eT(Q+id)y, (3.7)
(H+V'—id)yp = Qu. (3.8)

This will be referred to as the Floquet-Schrédinger equation. The operator
H+ V- i% is the Floquet operator, and its eigenvalue ) the quasi-energy.
The eigenfunctions ¢ will in the following be referred to as Floquet states.

The operator i% is Hermitian in the time-averaged scalar product

{(w]ig)}, = {Lle)} — i{(d|6)}, =0+ {(id]0)},,  (3.9)

where the time-average is well defined for quasi-periodic functions and leads
to the time average of a time derivative being zero

{ = lm L[ dt, {4£...} =0 (3.10)

rs—oo TTS

The Floquet operator is therefore Hermitian and the quasi-energies () real-
valued. For each Floquet state ¢ with quasi-energy (), there is an infinite set
of Floquet states e with quasi-energies Q—w for all frequencies w taken
from the set 2(V?), as can be seen by inserting ™' in Eq. 3.5. Floquet states
that in this way only differ by a phase factor e™! are said to be degenerate.

The non-degenerate Floquet states are orthogonal (at each time ¢). This is
seen by expanding the matrix element of the Floquet operator in two different
ways
0 = (Y| H+ V" =g |tn) = (Ya | H+ V' =i |vh)
= (Yo |Qutn) = ((H + V' — i) b | y) + i (Yal o)
= (Qb - Qa)<wa|wb> + Z%<¢a|¢b> (311)

As taught in introductory mathematics courses, the general solution of this
first-order linear differential equation is

(thalthy) = cel @), (3.12)
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where ¢ is a complex constant. Since 1, and 1, are quasi-periodic, (¢,|1p)
must also be quasi-periodic, but the frequency Q,—), does not in general
belong to the quasi-periodic set Q(V?*) (unless 1, and 1, happen to be de-
generate), hence ¢ must be zero and the states are orthogonal.

3.2 Radiation potential

The potential® V* arising from a static external (first order-) inhomogeneous
electric field and a static external homogeneous magnetic field is given by
the expression

Vti=—-F.i—G-© — B-1n — 1B-¢B, (3.13)
where F';, G and B are the electric field (at the origin of the coordinate

system), the electric field gradient and the magnetic field, respectively, which
multiply the (negative) electric dipole operator

o= quprp, (3.14)
electric quadrupole operator (symmetric 3x3 matrix)®
0= %ryr], (3.15)
magnetic dipole operator
m = szizp lp = Zp ;;;I::rvap, (316)
and magnetic susceptibility operator (symmetric 3x3 matrix)
~ 2
§=>, 4(::;) (rpr] = (rp-rp)1), (3.17)

respectively. The external potential is in this case time-independent (static),
and the notation V* perhaps misleading, but as will be shown below, the
presence of radiation leads to time-dependent F';, G and B (and hence V).

An electromagnetic wave, radiation with a single frequency and direction, is
a simple solution of Maxwell’s equations’

V-F = 4np, LF =*VxB — 4rj, (3.18)
V-B =0, 4B =—-VxF, (3.19)

5This section is based on L. D. Barron and C. G. Gray: “Multipole interaction Hamil-
tonian for time-dependent fields”, J. Phys. A 6(1), 59-61 (1973)

6There are several ways to define @. In this definition, © is not traceless and scaled
so that it multiples the electric field gradient.

"These are Maxwell’s equations in the 'Lorentz force’ convention, where the electric and
magnetic fields differ in magnitude by a factor %, as opposed to the ’Gaussian’ convention.



3.2 Radiation potential

25

which for empty space (charge p and current density j zero) state that the
fields are divergence-free (have no sources), and time-evolution is determined
by the opposite field’s curl (rotation). The speed of light ¢ is ~137 in atomic
units.

An electromagnetic wave with frequency w, propagating in the (normalized)
direction k is on the form

F(r) = fe™exp(2ker)+cc, (3.20)
B(r) = be “exp(®k-r)+c.c, (3.21)

where f is the wave’s Jones vector®, a complex vector which determines the
wave’s intensity, phase, and (electric) polarization, and is perpendicular to k.
The corresponding magnetic vector is given by b:% kx f, and is perpendicular
to both k and f, and differs from f in magnitude by a factor % The terms
‘c.c.” in Egs. 3.20 and 3.21 denote the complex conjugate of the preceding
expression, thus the fields are real-valued.

The polarization of the wave is linear if the real and imaginary parts of f
are parallel (or either is zero), circular (right or left) if perpendicular, and
elliptic in other cases.

The electromagnetic field F'(r), B(r) is ’translated’ to an external potential
operator V* through the scalar- and vector potentials ¢(r) and A(r), by the
relation

~

vt o= Zp ;gfp (Vp'A(rp) + A(rp) 'Vp) (3.22)
2
+ YmeAlry) A(r) + 30,00(rp),
where the potentials ¢(r) and A(r) are related to the fields by

F(r) = —4A(r) — Vo¢(r), B(r) = VxA(r). (3.23)

However, these relations leave a great deal of freedom in the choice of ¢(r)
and A(r), called gauge®. By requiring r - A(r) = 0, which is to adopt the
multipolar gauge'® (about the origin), the potentials are given as simple
integrals over the fields

¢(r) = —r -folF(ur)du, A(r) = —rxfoluB(ur)du, (3.24)

8R. C. Jones, “New calculus for the treatment of optical systems”, J. Opt. Soc. Am.,
vol. 31, p. 488-493 (1941), or http://en.wikipedia.org/wiki/Jones vector

9P. Schwerdtfeger (ed.): “Relativistic Electronic Structure Theory. Part 1. Fundamen-
tals”, Elsevier (2002)

10A M. Stewart: “Wave mechanics without gauge fixing”, J. Mol. Struc. (Theochem),
vol. 626, p. 47-51 (2003)
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which for the fields given by Eqgs. 3.20 and 3.21 can be calculated explicitly

p(r) = —r- (f @R ker) 7 1 +c.c.) , (3.25)
“k-r
A(r) = —rX (be_i‘“(l_% kzéeips)? k’I‘) — 1 + C.C.) . (326)

The wavelengths A =2mc/w used in spectroscopy are in general several times
the size of the molecules studied. Therefore, it is convenient to truncate
the scalar and vector potentials to second and first order in r, respectively,
so that V* in Eq. 3.22 becomes accurate to first order in'' 1 (due to the
difference in magnitude between f and b)

g(r) = —r-(fe ™ (1+%kr)+cc)
—(fe ™ +cc) r— (2(kfT+fk")e ™ +cc.) - rx”
= —F-r—1iG-rr’, (3.27)
A(r) = —rx(be ™ () +cc.)
— —lrxB, (3.28)

where the electric field at the origin, the electric field gradient and the mag-
netic field have been introduced

F = fe ™ 4cc, (3.29)
G = 2(kf"+ fk")e ™ +cc, (3.30)
B = be ™ +cc =1(kxfle™ +c.c. (3.31)

Inserting these expressions into Eq. 3.22, the external potential operator
becomes

~

Vio= Y (iVpe (—3rpxB) + (—ir,xB) +iV,) (3.32)

+ Zp 2q7”flzp (—%I'pXB)°(—%I'p><B) - quPF “Tp — Zp%pG ) rprga

which can be rearranged into

V' = —Be(T,5 (1 xiVy)) + 3B+ (3, 4 (rpr] — (r,m,)1) B
_F'(Zp%rp) - G- (qu?prprg)
— —F-i—G-©—B-m—'B-¢{B, (3.33)

' Called the fine-structure constant, and commonly denoted by «
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which is on the same form as Eq. 3.13, except the fields are time-dependent.
This is the electric quadrupole-magnetic dipole approximation to the radia-
tion potential. For a field consisting of several waves of different frequencies
and directions, there will be several time-dependent contributions to F,G
and B.

3.3 Response theory

When exposed to radiation, the molecule starts fluctuating, rotating and
vibrating in various ways. This means the molecular wavefunction is dis-
tributed over a number of eigenstates of the Hamiltonian

Y(t) = cg(t)g + > cxlt)tbx, (3.34)

which makes the explicit solution of the Floquet-Schrodinger equation Eq. 3.8
very demanding, and only applicable to small atoms. For molecules, the only
option is therefore to resort to approximate solutions by means of perturba-
tion theory.

Having solved the time-independent Schrodinger equation (with Vt:O), and
thus found a time-independent eigenstate v, with eigenenergy F,, the quasi-
energy () and Floquet state i) can be written as a perturbation expansion
(Taylor series) in the field parameters f,b, g etc., that enter Vit

B+ fQF + Q7 +0Q" +0°Q" +9Q7 +9°Q7  (3.35)
LFQY+ QT AP + Q7 + Q"
WhQ™ + [ Q™ + fUQI + 0 QM + b QM
F9Q" + 9@ + b9 Q" + 19 Q7 + 199 Q”

g Q1 + g QT +bg* Q" Lg'gr QT

Vg QU + g9 Q% + LfFFQIT

T S Y (3.36)

<
o
+ 4+ + + +

<
=
|

where superscripts are used as short-hand notation for derivatives, i.e. Q79 :#* d% ,
and the vector-tensor products are contracted. Note that also derivatives
with respect to the complex-conjugate fields f*,b*, g* appear in the series.
We will refer to the derivatives of the quasi-energy Q%" etc., as responses, and

derivatives of the wave function ¢® etc., as perturbed wavefunctions. They
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are determined by the corresponding derivatives of the Floquet-Schrédinger
equation, Eq. 3.8 and the normalization condition Eq. 2.3

FHAV —ig—Qw=0, (W) —-1)=0,  (3.37)
Expanding the derivatives and inserting Eq. 3.33, we get

(H+ V' —id —Q)y) = (e7™p+Q"), (3.38)

W) + (w]v’)y = o (3.39)

Applying (1] ...) to the first equation and rearranging

(WIH+V' —id - Q| = (Wl ™ f+Q ), (3.40)
(H+ V=it — Q)| ') —id(y]y)
= e NWIRlY) + QT (W) (3.41)

The first term vanishes and the last term is 1 due to normalization. Tak-
ing the time average, the second term also vanishes (the average of a time
derivative is zero, see Eq. 3.10)

(i)}, = {e™“ @la) L+ Q1 = Q' =-p,,  (3.42)

and the derivative Q' of the quasi-energy with respect to an oscillating elec-
tric field, is found to be minus the w-frequency component of the electric
dipole moment. This property is known as the (time-dependent) Hellmann-
Feynman theorem!%!3: “The first derivative is given by the expectation value
of the perturbing operator”. Thus, no knowledge of ¥/ is required to obtain
Q7.

Differentiating Q°", which according to the previous discussion is given by
—{e™t(y|mlip) }4, with respect to f, the linear response Q*/ is obtained

Q" = — L ylmly) s = —{ e (v | )} (3.43)

In this case, however, ¥/ can not be eliminated from the formula. Going
back to Eq. 3.38, and using that the unperturbed wavefunction ¥=1, is
time-independent, and thus Q/= — p , is zero (unless w=0)

(H —id — Byl = e 7™ i, (3.44)

Since only the phase factor e~ is time-dependent on the right-hand side,
and 97 is the only time-dependent factor on the right-hand side, 1/ must

12H. Hellmann: Einfiirung in die Quantenchemie (Leipzig: Deuticke) (1937)
I3R. P. Feynman: “Forces in Molecules” Phys. Rev., vol. 56, p. 340-343 (1939)
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carry the same phase factor: 1/ (t) =e ™"/ (0). This means that £¢/= —
iwyp/, and the equation becomes

(H —w — B¢ = e7™" i), (3.45)

If 1), together with all the other eigenstates 1 of H form a complete or-
thonormal set, we can write H as

H = Byl (el + 37 Bl (4, (3.46)

and the inverse of the operator on the left-hand side of Eq. 3.45 can be
written as

. _ 1
(H 0= B) ™ = e Wl + sl (347

The solution 9/ is therefore given by

wf _ 6—iwt( <wg|ll/|wg ¢+mex>’ (348)

p— w p—
from which /" is obtained by changing w to —w. Inserting for ¥/" and 1/

in the linear response in Eq. 3.43, the so-called sum-over-states expression
for the linear response is obtained
V)

%Qb*f _ _{eiwt<6—iwt( <7/fg|l~b|1/fg ¢g+z (V| f1|1g) wx)
" 6—1@5( <¢g|#:|¢g wg‘|‘z ¢x|/~”|¢g> ¢X>>}

E,+w—F
_ (gl ] thx) (Wx| [ g) (¥ ImI@bX)(@bxluw )
= -2 gEX+w—Eg S gEX—w—Eg -

+ eiwt <77Z)g

(3.49)

X

Observe that the contributions from the first terms in ¥/ and /" have can-
celed. This is also the case for the time-dependent phase factors, making the
time average redundant.

As there in general will be infinitely many excited states 1)y, using Eq. 3.47
is not a practical way to solve the response equation Eq. 3.45. Rather, it
is preferrables to solve Eq. 3.45 iteratively, using a preconditioner (approxi-
mation to Eq. 3.45) to improve convergence. An iterative technique is also
preferrable for finding v, in the first place, and the two techiques are related.
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Due to the time-independence of the reference state 15, and the frequency
dependence of the applied fields, quasi-energy derivatives (responses) are non-
zero only when the frequencies of the fields sum to zero. Thus, the following
second derivatives are zero, for instance

QIf = QP = Q"' = Q""" =, (3.50)

since the frequencies of the fields sum to 2w, 2w, —2w and —2w, respectively.

For higher-order responses, involving several different frequencies, it is more
convenient to use a notation which specifies both the fields and their frequen-

cies, such as
FF FB FGF FFBB (3.51)

—w,w? —w,w? —2w,w,w? —v—w,v,w,0"

where F'is understood as the electric field, B the magnetic field, and G the
electric field gradient, respectively. A well-established notation is the double
bracket !4

sy m)ow = (Z1P°QEEE, L0 (€m0 i)y = (1)'QTGET 5

which lists the perturbing operators, the first designated as the ’outgoing’
field and the others as 'incoming’ fields, along with the incoming frequencies.

3.4 Resonance

Even if the singularity in ¢/ Eq. 3.48 at w=0 is absent from the linear
response function Eq. 3.49, singularities remain at all excitation energies
w=Fy—E,. At first glance this may seem as a problem with response theory.
But as will be explained in this section'®, these are resonances — disconti-
nous ‘jumps’ in ¥ and @ as the field is switched on.

For simplicity, we will consider a two-state system, so that the Floquet state
1) can be written as a linear combination of the two unperturbed eigenstates

g and 1y
Y = cg(t)g + cx(t)x, H= Eg|the) (¥g| + Exlbi) (¥l (3.52)

147, Linderberger and Y. Ohrn: “Propagators in quantum chemistry”, 2nd ed., Wiley
(2004)

15This section is based on S. H. Autler and C. H. Townes: “Stark Effect in Rapidly
Varying Fields”, Phys. Rev. 100(2), 703 (1955)
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where the two coefficients are complex 2f—periodic functions of time, ex-
pressed as Fourier series

cg(t) = Z Care™t, ex(t) = Z cxpe™ (3.53)

Furthermore, we write the external potential as coupling these two states,
and consider only one field direction (say fi,). In addition, assume without
loss of generality that the field strength f is real-valued, so that the time-
dependent factor becomes 2 cos wt

~

V= — (e +e™") (o) (el + pltdg) (W), (3.54)
where the transition moment p = (4|, |t)x) is assumed real-valued, as any

phase could be absorbed into 1, or 1. Inserting Eqgs. 3.52, 3.53 and 3.54
into the Floquet-Schrédinger equation Eq. 3.8, we get

0 = (H+V'—il—Q) (Z care™ g + 3 cxkeikwtsz) (3.55)

o0

- Z(Egcgk — frea(e ™ +e™") + kwegs — Qcgr) €1y
+ Z(Excxk _ f'u Cgk<€*iwt+eiwt) 4 kwcxk . chk)eikwth.

To move the time-dependent factors e=™! and ™! outside the parenthesis,

we rename k to k+1 and k—1 (shift the summations) in those terms

0 = Z(Egcgk - fM(ka-f—l +ka_1) + kwcgk — chk)eiRWt@/)g (3.56)
+ Z(Excxk — fulcghi1t+cgr-1) + kweg — chk)eikwtw)(.

Since the time- and space-dependent factors e““”z/}g and e are linearly
independent, this leads to the set of equations

—frcam + (Bgthw)cg — frca = Qcgr, (3.57)
—fucge-1 + (Bxthw)ew — fucg = Qca, (3.58)
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which may be organized in the form of the eigenvalue equation for the infinite

tri-diagonal Floquet matrix

cEx2w —fu Cx—92 Cx—92

—fu Eg—lw —fu Cg—1 Cg—1

—fu Ex—1w —fp Cx—1 Cx—1

—fu EgtOw —fu Ce0 _ Q Ce0

—fr ExtOw —fpu Cx0 Cx0

—fu Egtlw —fu Cgl Cgl

—fu Extlo —fp Cx1 Cx1

—fu Egq2w. .. Cg2 Cg2

Written more compactly, this equation is of the form

(H- fM-wS)c = Qc, (3.59)

where H contains the matrix elements of the Hamiltonian, £, and Ey al-
ternating along the diagonal; M contains the transition moment integral p
on the first off-diagonals; S contains the integers k along the diagonal which
multiply w (called Floquet indices); and c the Fourier series c,(t) and c4()

of the wavefunction.

SN
2 N\
L \\Q //&\;%//,ﬁ/ N
Figure 3.1: Floquet states corresponding to the (left) ground
state wgzwfl/‘le*xQ/?,Eg = 1 and (right) first excited state
Q,Z)X:(w/4)_1/4xe_“*’2/2,EX:% of the one-dimensional Harmonic oscillator,

in the potential Eq. 3.54 with u=(ty|—z¢x)= — 5, f=0.03, w=0.99. The
curves are || for —3 <2 <3 in 20 steps through one full period. Observe that
the state on the left plot moves where V? is negative (as coswt), whereas the
right plot is on the opposite side (— coswt). The corresponding quasi-energies
and polarizations are marked with dots in Fig. 3.2.
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The eigenvalues ) form two sets (Q,+jw and Qp+jw, where j runs over all
integers, as explained after Eq. 3.10. Fortunately, the middle eigenvalues of
a truncated Floquet matrix converge rather quickly to representatives from
each set. In the examples Figs. 3.1 and 3.2, the Floquet matrix was truncated
to the range cx_¢ . . . Cgs.

o
al
W N P O P N W

Figure 3.2: (left) Curves of the Harmonic oscillator quasi-energy for
0.8<w<1.2, showing the avoided crossing occuring at w=FEy—FE,=1. The
curves are for f=0.003,0.01,0.02,0.03,0.04,0.06,0.08. The diagonal asymp-
tote is Q=Fx—w. (right) For each curve on the left, the w-frequency compo-
nent of the polarization {e™!(1|z|¢))}; of the corresponding state. Superim-
posed on the curves tending to the ground state as f—0 are the approximate
quasi-energies () and polarizations P(w) given by Eqs. 3.61 and 3.63. The
lowest curve on the left corresponds to the highest curve on the right, and
vice versa. The dots mark the two states illustrated in Fig. 3.1. As f—0,
the polarization tends to zero everywhere, except at w=1, where it remains at

B £1 ; ; 111
+5=3 75 Analogous avoided crossings occur at w=s, 3, 7 ... between 1); and
672lwth7 ef?nwtwm ef4zwth ... etc.

Inspecting Eq. 3.59, it is apparent that, although multiplying different ma-
trices, f and w have analogous roles. This means that we may generalize
response theory to, not only field derivatives, such as Q/9, but also frequency-
of-field derivatives: Q79%. As we will see below, with this generalization can
be derived a non-singular polarization spectrum from the singular linear re-
sponse in Eq. 3.49.

As depicted in Fig. 3.2, the ground state i, and the excited state with
Floquet index 1, e~*%), exhibit an avoided crossing near the exitation energy
w=E,—E, (or resonance frequency). This poses a problem in perturbation
theory, as the Taylor series in Eq. 3.35 cannot converge to a quasi-energy
@ with a discontinuity, and will therefore diverge. More crucially, the w-
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frequency polarization

p= P(w) = {e“ (Wlife) } = —2Q, (3.60)

which, unlike the quasi-energy, is an observable, changes sign at the reso-
nance.

To tackle this, we will analyse the following approximation, valid for small f
near resonance

Q ~ (BgtBi—w* puld/p—2ifl), (3.61)
(I \/%ﬂFm@bg (3.62)
+ \/ % + m ey,
p=Pw) ~ infM%,ﬂ’ (3.63)

where the detuning § = w — (Ex—FE,) has been introduced, and all the £
are negative before the resonance and positive after. The validity of these
approximations is demonstrated by Fig. 3.2. The derivatives of the polar-
ization p with respect to the frequency w (or §), the field f, and the mixed
second derivative, are given by

—fo/p :
pY = PW) =i lim p* =0, (3.64)
0%/ w2
F=4dpw)=+ lim pf = £~ :
V=gl =t lim p 5 (3.69)
: 8120/ — &/’ . p
fo _ & p -+ 1 Jo — 45 .

where also the limits f—0 have been calculated. The limit of p/ has a singu-
larity at resonance 6=0, as already seen in the formula for the linear response
Eq. 3.49. By inspection of the formulas for p and p“, two combinations with
non-singular, non-zero limits can be found: f/p~ and p*/(fp*)

if 2
! 1 )
im L 2 im T i — =+ (3.67)
=0 p* fm0Zpe fmople
p P 2ot e 2p72 4 oppl)
11711 = 1m = lim ————
/=0 fp* f=0pe A+ fple g0 2ple 4 fplie
f2 +u2/5)2
S A . Tw) (3.68)

fmople T Ep2/62
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where application of I’Hospital’s rule to the zero-over-zero limits is indicated.
Knowing these limits we may now approximate P(w) in Eq. 3.63 by substi-
tuting £ with £|p/?/pf|/2 = p/|pf*|7/2 and 6 /u with +|pfe|~1/2

fpllpte| 7
P 20|

P(w)| (3.69)

which may be viewed as the first order Taylor expansion for the linear po-
larization f p/, multiplied by the renormalization factor

1
1+ 4f2ple]

Since the renormalized linear polarization given by Eq. 3.69 is expressed in
terms of responses, it is also applicable to many-state systems such as atoms
and molecules. Examples of this are shown in Fig. 3.3

(3.70)

Note that although p’* is a quadratic response, or third-order quasi-energy
derivative, due to a property known as the the 2n+1 rule (see paper I), the
second-order perturbed wavefunction ¥/ is not required.

Although this analysis has provided a way to avoid the singularities (reso-
nances) in the response functions, it has also revealed a problem with Floquet
theory: The quasi-energy and polarization has branch-cut discontinuities at
each resonance frequency (the branches that tend to 1), as f—0), which may
seem 'unphysical’. Other approaches to the resonance problem exist, for in-
stance 'complex response theory’®, in which the polarization becomes purely
imaginary at the resonance (goes as a sinwt, which is out-of-phase with the
2f coswt field), which is the expected behavior of an absorption.

Resonances are encountered in Paper II, which deals with CARS spectroscopy,
where it is the difference of two field frequencies which coincides with the
molecule’s vibrational excitation energies (which appear in the lowest-order
Born-Oppenheimer correction).

16p, Norman, D. M. Bishop, H. J. Aa. Jensen and J. Oddershede: “Near-resonant ab-
sorption in the time-dependent self-consistent field and multiconfigurational self-consistent
field approximations”, J. Chem. Phys., vol. 115, p. 10323 (2001)
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Figure 3.3: (top left) Renormalized f=0.001 isotropic linear polarization of
furan C4H40, and (top right) triazine C3H3N3, and electric-field-gradient
induced birefringence (explained in paper V) (bottom left) of formalde-
hyde CHy0 and (bottom right) triazine, calculated from linear, respectively,
quadratic Hartree-Fock response function. Although perhaps not evident at
the resolution of these plots, there is a sign change at each resonance. The
frequency derivative p/“ of the response was calculated by 3-point finite differ-
ences, rather than analytically. The plots were prepared with the assistance of
Lara Ferrighi and Manuel Sparta.




Chapter 4

Summary and outlook

The first paper included in this thesis presents a new hierarchy of formu-
las for response functions for the SCF class of models, which is expressed
in terms of the AO density matrix at all stages of computation. During
recent years, the performance and scaling of SCF models have been con-
siderably improved by changing from the molecular orbital to the density
matrix parameterization"?. This has enabled calculations on molecules con-
sisting of more than 1000 atoms. However, it has not been clear whether one
could conveniently formulate the corresponding response theory in terms of
the density matrix, or perhaps another equally well-scaling parameterization
would be preferable. The formulas presented also take field-dependent (or
perturbation-dependent) AOs correctly into account more straightforwardly
than existing techniques*. Moreover, the presented formula hierarchy is ex-
haustive, in that it covers responses of arbitrary order, and offers flexibility in
the choice of which response equations (analogous to Eq. 3.45, but in terms
of the density matrix) to solve, and of which orders. These ’rules’ range from
the simplest, but highest-order n+1 rule to the more complicated, lower-order
2n+1 rule (due to Wigner), through intermediate rules of the form (k+n)+1,

V. Weber, A. M. N. Niklasson, and M. Challacombe: “Ab Initio Linear Scaling Re-
sponse Theory: Electric Polarizability by Perturbed Projection”, Phys. Rev. Lett. 92,
193002 (2004)

2P. Salek, S. Hgst, L. Thggersen, P. Jgrgensen, P. Manninen, J. Olsen, and B. Jansik,
S. Reine, F. Pawtowski, E. Tellgren, and T. Helgaker: “Linear-scaling implementation of
molecular electronic self-consistent field theory”, J. Chem. Phys. 126, 114110 (2007)

3T. Helgaker, H. Larsen, J. Olsen and Poul Jgrgensen: “Direct optimization of the AO
density matrix in Hartree—Fock and Kohn—Sham theories”, Chem. Phys. Lett., vol. 327
(5-6), p. 397-403 (2000)

4J. Olsen, K. L. Bak, K. Ruud, T. Helgaker and P. Jorgensen: “Orbital connections for
perturbation-dependent basis sets”, Th. Chem. Acc., vol. 90 (5-6), p, 421-439 (1995)
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where k is here the the highest-order equation to be solved involving the first
field, and n the highest-order equation to be solved involving the remaining
fields. Since response equations are solved iteratively, typically over 10-20
iterations, whereas the subsequent contraction of response functions is non-
iterative, the 'rule’ with the lowest number of equations will in most cases
be preferred.

In paper IT we present results obtained using the (0+2)+1 rule for a quadratic
response, the geometrical polarizability gradient, which is a third-order quasi-
energy derivative

where R collectively denotes the nuclear coordinates, F,, is the w-frequency
component of the electric field, and a(—w,w) the polarizability. By using
the (04+2)41 rule — that is, zero order R, second order in F*, F,, rather
than the (14+1)+1 rule, we avoid the very numerous equations for the nu-
clear coordinates, and are left with solving 9 electric field equations (3 first-,
6 second-order). Within the so-called double-harmonic Born-Oppenheimer
approximation, where only the linear term in the quadratic potential energy
surface responds to the fields, the polarizability gradient Eq. 4.1 can be used
to calculate the intensities of the stimulated vibrational transitions occuring
in coherent anti-Stokes Raman scattering spectroscopy.

In paper III, also within the double-harmonic approximation, we have calcu-
lated the so-called pure-vibrational corrections to the static second hyper-
polarizability (cubic response) ~(0,0,0,0), which is a fourth-order quasi-
energy derivative

7(07 07 07 O) = —<<,LL, H, ,unu>>0,0,0 = _%%%%Q = = 5:55:5 (42)

The corrections are determined by the geometry derivatives of the dipole
moment g, static polarizability «a(0,0) and static first hyperpolarizability

£(0,0,0)

%{OZ((L 0) = _ﬁz<<:ua :u>>0 = _ﬁgd;}dvod;;on = _Q§5:57 (44)

which we, as in paper II, have calculated using the (0+1)+1, (04+2)+1 and

(043)+1 rules, respectively, solving a total of 19 equations (3 first-, 6 second-
and 10 third-order).
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In paper IV, we present calculations of the Cotton-Mouton effect, which oc-
curs when light passes through a sample of molecules in a static magnetic
field. A beam entering with linear polarization will, depending on the field
strength and the angle between the field and the beam’s polarization, be-
come elliptic (see Sec. 3.2) as it passes through the medium. This is called
linear birefringence, which means that the index of refraction is different for
beams polarized parallel and perpendicular to the magnetic field. The effect
is described by the Cotton-Mouton constant ,,C, which has two contribu-
tions: a temperature-dependent orientation term Alaf], and a temperature-
independent term An

CZQWNA<

= (2 + 2 _Ala g]), (4.6)

15kT

where Afag] is the anisotropy of the product of the polarizability a(—w,w)
and the static magnetizability £(0,0), both of which are linear responses, and
An is the anisotropy of the hyper-magnetizability n(—w,w,0,0), which is a
cubic response

a(—w,w) = () = —ﬁﬁ@ =-Q., (4.7)
6(0’ O) = _<<m >>0 +&= dB* dBoQ = _QOO ) (48)
n(_wawaoao) = _<<M e, m, m>>w00 + <<:u M7€>>w70 (49)
_ _LLL_Q BBFF
dBg dBo dF} dFy, 0,0,—w,w>?
Tyz

A[Ozf] = Z(aijgij — %aiifjj), (410)

Z]zyz
An = 52 Mijij = §7iijj)- (4.11)

In the calculation of 7, we have used the (14+2)+1 rule, solving a total of 21
response equations (6 first- and 15 second-order). Our calculations are the
first on this effect employing magnetic-field-dependent so-called London AOs
(or gauge-including AOs), which provide improved basis set convergence, and
gauge-origin independent results, as explained in paper IV.

Paper V, the last paper included in this thesis, presents calculations on an-
other linear birefringence, the electric-field-gradient induced birefringence,
or Buckingham effect, which is a change in the ellipticity of a beam passing
through a sample in the presence of an electric field gradient. It is described
by the quantity s, which has temperature-independent and -dependent con-
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tributions
TYz TYz
5§ = {Z O — ZM’ [A] i + eUkG } },
ijk

where ¢, is the Levi-Civita tensor, and the temperature-independent term
b(w) is a combination of three quadratic responses

TYZ TYZ

5
bw) = Z(Bz‘j,ij - Bz‘,z‘j,j) L Z €ijk i,jka (4.12)
ij ijk
B(—w,w,()) = <<M;:ua @>>W,0 = dg; dg’* EQ OGFE,wa (413)
B(_wvwv()) = <<,u7@ :u>> 0 — dg,*o dg* dFoQ SFZW (4'14)
J/(—W,w,()) = _Z<< > = " dB, dg* dFoQ “BjFiv(]’ (415)

and the temperature-dependent contributions are combinations of the dipole
and quadrupole moments, 1 and © , with the polarizability a(—w,w) and
two other linear responses

A(_waw) = _<<N;@>>w:_ g}iw’ (416)
G'(~w,w) = i((m)), =—iQ5",. (4.17)

For the quadratic responses, we have used the (042)+1 rule, which means
solving 21 electric field equations (6 first-, 15 second-order). Results ob-
tained with London- and conventional AOs are compared, showing a greatly
improved basis-set convergence.

The basis for our software implementation is the DALTON program. This
code is being developed by a large group of European scientists, and is
presently being extended to allow for large-scale SCF calculations in a fu-
ture release. The techniques developed in this thesis are well-suited for this
purpose. The implementation consists of four main components:

Matrix routines
In the Fortran 90 programming language one can define ’derived data
types’, and arithmetic operations in terms of these. For our type(matrix)
we have also implemented aliasing (with reference counting), automatic
(de-)allocation, and non-allocated zero matrices. Possible future opti-
mizations could be 1) To hide transpose and scale operations in the
derived type (A=3xtrps(B) would make A an alias of B, without actu-
ally transposing or scaling any matrix elements); 2) Define a so-called
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'proxy type’ for binary operations, so that for instance C=C+Ax%B is
executed in one operation (DGEMM) rather than three, without allo-
cating any intermediate matrices; 3) Utilize transpose and point group
symmetry; 4) Distribute matrices in parallel calculations. At present all
(perturbed) matrices are stored and manipulated by the master node.
Only Coulomb-exchange and Kohn-Sham matrices are computed in
parallel. This leads to a significant load imbalance between the master
and slave nodes, which could be avoided.

Property integrals interface

DALTON’s integral sub-program HERMIT provides an extensive cat-
alog of one-electron integrals, indexed by labels ("XDIPLEN’, "ZMAG-
MOM’, etec.), while the various two-electron and Kohn-Sham contrac-
tions are separate calls. Two interface routines combine a list of field
labels ("EL’, '"MAG’, "GEQ’, etc.) with a list of density matrices (a
perturbation expansion of some order) to produce an array of response
function contributions, or an array of Fock matrix contributions. A
third interface routine delivers perturbed overlap matrices.

Response equation contractor and solver
Given a list of field labels and associated frequencies, together with
the corresponding density and Fock matrix perturbation expansions,
this routine evaluates the perturbed TDSCF equation and idempotency
condition (see Paper I), then passes the residuals to the response solver,
which returns the solutions. The response solver was implemented by
Sonia Coriani and coworkers®.

Response function contractor

From a list of field labels and associated frequencies, together with the
corresponding density and Fock matrix perturbation expansions, with
vacancies (zeros) for each equation that has not been solved (according
to the (k4+n)-+1 rules), calculate the corresponding response function
(array). From a programming point of view, this is the most com-
plicated component, and we have thus far only implemented certain
special cases.

The work on the implementation continues. Here, in the group of Kenneth
Ruud at the University of Tromsg, Radovan Bast is generalizing the inter-

5S. Coriani, S. Hgst, B. Jansik, L. Thggersen, J. Olsen, P. Jgrgensen, S. Reine, F.
Pawlowski, T. Helgaker, and P. Salek: “Linear-scaling implementation of molecular re-
sponse theory in self-consistent field electronic-structure theory”, J. Chem. Phys. 126,
154108 (2007).
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face to the DIRAC program for 2- and 4-component relativistic calculations.
Meanwhile, in the group of Poul Jorgensen at the University of Arhus, Kasper
Kristensen aims to generalize the code to calculate the residues (resonances)
of the response functions.



