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AbstratThis thesis is onerned with omputer modelling of moleules interatingwith eletromagneti radiation, for appliations in spetrosopy. Responsetheory is used, in whih time-dependent perturbation theory applied to theground state permits the study of both ground and exited states. For thelass of self-onsistent �eld (SCF) eletroni struture models, whih inludesHartree-Fok- and all Kohn-Sham DFT models, a full hierahy of new for-mulas for response funtions have been derived. Although there are severalequivalent formulas for a given response funtion, typially a spei� one ispreferable due to omputational onsiderations.The derived formulas are expressed in terms of the atomi orbital (AO) den-sity matrix, and valid also with time- and perturbation dependent AOs, suhas the magneti �eld-dependent London or gauge-inluding AOs, whih areemployed to obtain improved basis set onvergene and gauge-origin indepen-dent results. The density matrix has an advantage over the more ommonmoleular orbital oe�ient matrix (MO) parameterization in that it deaysrapidly with the distane between atoms (exept in diretions of ondution).For large moleules one may therefore trunate the density matrix and treatit as sparse. Although this is not presently utilized in our implementation,it is expeted to lead to great omputational savings.To resolve any ambiguity in the de�nition of response theory, we formulateit by applying perturbation theory to Floquet theory, whih is a quantum-mehanial theory that inludes so-alled semi-lassial radiation, by whihboth stimulated and spontaneous emission and absorption an be predited.The entral quantity in Floquet theory is the quasi-energy, and this is there-fore the 'quasi-energy formalism' of response theory.The DALTON quantum hemistry program has sine long been the leadingsoftware for omputing moleular properties. Using the program struturesalready present in the ode, suh as integrals and integral derivatives, inaddition to reently implemented SCF and SCF-response program modules(the 'linsa' development branh), we have implemented several new response



6 funtions, relevant to spetrosopies suh as Cotton-Mouton, oherent anti-Stokes Raman sattering (CARS), and eletri-�eld-gradient indued bire-fringene (EFGB).
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Chapter 1Introdution
It was unexplained observations in spetrosopy that led to the advent ofquantum mehanis in the mid 1920s1. The radiation emitted by hot gasesshowed sharp peaks at ertain wavelengths, whih ould not be preditedwith existing theories. The two equivalent theories of quantum mehanisproposed by Heisenberg and Shrödinger2 explained the peaks as arising whenthe moleule jumps between two of its eigenstates, with the wavelength ofthe peak determined by the di�erene between the two eigenenergies, andthe intensity of the peaks by the populations of the eigenstates together withthe transition dipole moment.However, both the spetra themselves and the Shrödinger equation, whihmust be solved in order to predit spetra, are vastly omplex, as expressedby another pioneer, Dira3:The fundamental laws neessary for the mathematial treatmentof a large part of physis and the whole of hemistry are thusompletely known, and the di�ulty lies only in the fat that ap-pliation of these laws leads to equations that are too omplex tobe solved.In the early days of omputational (theoretial) hemistry, alulations were1W. Heisenberg: �Über Quantentheoretishe Umdeutun Kinematisher und Mehanis-her Beziehungen�, Zeitshrift für Physik, vol. 33, p. 879-893 (1925)2E. Shrödinger: �An Undulatory Theory of the Mehanis of Atoms and Moleules�,Phys. Rev. 28 (6): 1049�1070 (1926)3P.A.M. Dira: �Quantum mehanis of many-eletron systems�, Pro. Royal So.London, Series A, vol. 123, p. 714 (1929)



12 Introdutionarried out by hand (penil and paper)4,5 or by mehanial alulators. Withthe invention of the digital omputer, omputational hemistry soon beameone of its main tasks, and has ontinued to be so. But still today, after 80years of knowing the theoretial foundation and many billion-fold inreasesin omputing power, there is still a onsiderable gap between the auraydelivered by omputation, and that of the experiments onduted in hemiallaboratories6. Thus, at present it seems Dira was right.Although omputation has yet to repliate experiment, it already serves wellto omplement, estimate or preview experiment, as, for instane, in the phar-maeutial industry. Most of the e�orts of omputational (and theoretial)hemists, and their omputers, are put into solving the time-independentShrödinger equation (SE): Moleular geometries, reation energies, reationbarriers, eletron a�nities, ionization energies, dissoiation energies, et. Allthese tasks onsist of �nding either just one, or a few solutions of the SE.The predition of eletromagneti spetra, however, requires the solution ofthe time-dependent Shrödinger equation (TDSE). Fortunately, only a slightadaptiation of the methods used to solve the SE are needed in order for theirappliation to the TDSE. Moreover, the error inherited from the underlyingSE method will typially dominate those introdued by the approximationsto the TDSE. Therefore, omputational spetrosopy, the topi of this thesis,is mainly onerned with �nding the right adaptations for a spei� lass ofSE models, and interpreting the omputed results in relation to experimentalobservations.The rest of this thesis is organized as follows: Chapter 2 presents the fun-damental equation whih governs moleular quantum mehanis, namelythe Shrödinger equation, together with the Born-Oppenheimer and self-onsistent-�eld approximations applied to it. In Chapter 3, moleular prop-erties and spetrosopy are presented in a quasi-lassial formulation knownas Floquet theory, where the eletrons and nulei obey quantum mehanis,whereas the external eletromagneti �eld obeys the lassial Maxwell equa-tions. Response theory is then formulated by applying (Rayleigh-Shrödinger)perturbation theory to Floquet theory. Finally, Chapter 4 summarizes theresults in this thesis, as well as gives some remarks on future developmentsand appliations.4W. Heitler and F. London: �Interation of Neutral Atoms and Homopolar BindingAording to the Quantum Mehanis�, Zeitshrift für Physik, vol. 44, p. 455 (1927)5D. R. Hartree and W. Hartree: �Self-onsistent �eld, with exhange, for nitrogen andsodium�, Pro. Royal So. London, vol. 193 (1034), p. 299-304 (1948), where W. Hartree(Hartree's father) did the alulations.6That is, by equally 'a�ordable' omputers and laboratory equipment.



Chapter 2Quantum mehanis
2.1 Shrödinger equationIn quantum mehanis, a system (moleule) onsisting of N partiles (ele-trons and nulei) is desribed by a wavefuntion ψ(r1, r2 . . . rN), a omplex-valued funtion of the set of partile oordinates1 r1, r2 . . . rN

ψ(r1, r2 . . . rN ) ∈ C. (2.1)In the so-alled 'Copenhagen interpretation' of the wavefuntion, the proba-bility P of '�nding' all partiles within the range δ of the positions t1, t2 . . . tNis the integral of the square absolute value of the wavefuntion over the or-responding 3N-dimensional volume
P =

∫

‖r1−t1‖<δ

∫

‖r2−t2‖<δ

. . .

∫

‖rN−tN‖<δ

|ψ|2dr1dr2 . . . drN . (2.2)Thus |ψ|2 = ψ∗ψ is the probability density of the positions of the partiles.Sine all the partiles must be somewhere in spae, the orresponding prob-ability P for δ=∞ must be 1 (whih means 100%)
1 =

∫ ∫

. . .

∫

ψ∗ψ dr1dr2 . . . drN = 〈ψ|ψ〉, (2.3)whih is alled normalization of the wavefuntion ψ. The 'bra-ket' 〈. . . | . . .〉is a short-hand notation for suh integrals over all oordinates2. Addition-ally, the wavefuntion should ful�ll so-alled spin-statistis: When idential1Partiles have an additional spin oordinate whih is 'hidden' in rp here.2More preisely, rather than an integral, it is an average over the 'enter-of-mass oor-dinate'



14 Quantum mehanisfermions (nulei with an odd number of nuleons and eletrons) are inter-hanged (swap oordinates), the wavefuntion should hange sign. This isthe Pauli exlusion priniple. Moreover, when idential bosons (nulei withan even number of nuleons) are interhanged, the wavefuntion should nothange.The time evolution of the moleule (its wavefuntion) is determined by thetime-dependent Shrödinger equation, whih is a linear di�erential equation
Ĥψ = i d

dt
ψ, (2.4)where the di�erential operator Ĥ is the moleule's Hamiltonian. The Hamil-tonian onsists of a kineti energy operator T̂p for eah partile, and a po-tential energy operator V̂pq for eah (distint) pair of partiles. Ignoringinterations due to partile spin, the kineti- and potential energy operatorsare given by the Laplae operator and Coulomb potential

Ĥ =
∑

p

T̂p +
∑

p>q

V̂pq, (2.5)
T̂p = − 1

2mp
∇2

p = − 1

2mp

(

∂2

∂x2
p

+
∂2

∂y2
p

+
∂2

∂z2
p

) (2.6)
V̂pq =

qpqq
rpq

=
qpqq

‖rp − rq‖
=

qpqq
√

(xp−xq)2 + (yp−yq)2 + (zp−zq)2
, (2.7)where atomi units have been used, and mp are the partiles' masses and

qp the harges. Note that the Coulomb potential between partiles of oppo-site harge is attrative (qpqq negative), while it is repulsive (qpqq positive)between those of same harge. The kineti energy is always positive.If the wavefuntion ψ is an eigenfuntion (eigenstate) of the Hamiltonianwith eigenvalue E (the eigenenergy), it is a stationary state, as e−iEtψ solvesthe time-dependent Shrödinger equation
Ĥψ = Eψ ⇒ Ĥ(e−iEtψ) = i d

dt
(e−iEtψ), (2.8)and the phase fator e−iEt anels when omputing the square absolute value

|e−iEtψ|2, leaving the interpretation (probabilities P above) of the wavefun-tion onstant in time (stationary). The eigenstates ψ ful�ll the variationpriniple, whih states that expetation value of the Hamiltonian 〈ψ|Ĥ|ψ〉 isstationary with respet to variations in ψ. One may therefore searh for theground state, the eigenstate with lowest E, by minimizing this expetationvalue.



2.2 Born-Oppenheimer approximation 152.2 Born-Oppenheimer approximationThe nulei are the heaviest partiles in a moleule; the lightest nuleus, theproton 1H is ≈1836 times as heavy as an eletron, while the most abundantarbon nuleus 12C is≈21863 times as heavy. Sine these large masses appearin the denominator in the kineti energy operator in Eq. 2.6, nulei willhave little kineti energy relative to eletrons. In the Born-Oppenheimerapproximation3, the nulear kineti energy operators T̂n are at �rst separatedfrom the eletroni Hamiltonian Ĥel, whih then onsists of zero-eletron, 1-eletron and 2-eletron parts (n,m denoting nulei, e, f eletrons)
Ĥtot =

∑

n

T̂n + Ĥel (2.9)
Ĥel =

∑

n>m

V̂nm = hnuc, (2.10)
+

∑

e

(

T̂e +
∑

n

V̂en

)

= ĥ, (2.11)
+

∑

e>f

V̂ef = ĝ, (2.12)where the nulear oordinates rn enter hnuc and ĥ as parameters. The ele-troni Shrödinger equation is then solved for all eletroni states (k)
Ĥelψel

k (re; rn) = Eel
k (rn)ψ

el
k (re; rn), k = 0, 1 . . .∞, (2.13)eah depending parametrially4 on rn. The solutions Eel

k (rn) are alled 'po-tential energy surfaes' (PES), and the 'equilibrium geometry' is de�ned asthe on�guration of rn that gives the lowest eletroni energy on the ground-state PES.In a seond step, the omplete Shrödinger equation is solved with an expan-sion over the eletroni solutions ψel
k

ψtot(rn, re) =
∑

k

ψnuc
k (rn)ψ

el
k (re; rn), Ĥtotψtot = Etotψtot, (2.14)where the ψnuc

k are the oe�ients and the ψel
k the basis of the expansion.Sine the ψel

k are eigenstates of Ĥel and orthogonal (for all rn), Eq. 2.14 leads3M. Born and R. Oppenheimer: �Zur Quantentheorie der Molekeln�, Ann. der Physik84, 20 (1927)4This is a di�erential equation in re, but an ordinary (parametri) equation in rn.



16 Quantum mehanisto an in�nite set of oupled Shrödinger equations
(

∑

n

T̂n + Eel
k (rn)

)

ψnuc
k (rn) = Etotψnuc

k (rn) (2.15)where the potential energy surfaes Eel
k (rn) have the role of potential opera-tors (hene the name).Although the equation set Eq. 2.15 is no less ompliated than the originalShrödinger equation Eq. 2.4, it an be trunated to a good approximation,both in the number of PESs inluded, and in the range and preision of eahPES. The approximations range from the simplest, whih is to 'lamp' thenulei in the equilibrium geometry (one PES, one rn); to the harmoni, inwhih the ground state PES is approximated to seond order about a point

rn; to more ompliated approximations of several PESs et.2.3 Self-onsistent �eld approximationEven in the rudest Born-Oppenheimer approximation, the so-alled lampednuleus approximation, in whih only one geometry rn on one PES is sought,an N-eletron Shrödinger equation is still too di�ult to solve. In the self-onsistent �eld (SCF) approximation, this is takled by writing the wave fun-tion as a Slater determinant, an anti-symmetrized produt of N orthonormalorbitals φ1, φ2 . . . φN (1-eletron wavefuntions)
ψ(r1, r2 . . . rN) =

1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) · · · φN(r1)
φ1(r2) φ2(r2) · · · φN(r2)... ... . . . ...
φ1(rN) φ2(rN) · · · φN(rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.16)A matrix determinant is the sum of all possible produts of one term fromeah row and olumn, with sign + or − depending on whether it is an even orodd permutation. This ensures that the wavefuntion swithes sign when twoeletrons are interhanged, as required by the Pauli priniple. Moreover, sinethe orbitals are orthonormal, all the N ! terms in the determinant are alsoorthonormal, and the fator 1/
√
N ! gives a normalized ψ. The SCF lass ofmodels have in ommon that they attempt to solve anN-eletron Shrödingerequation (Eq. 2.8) by solving oupled 1-eletron Shrödinger equations. Theterm 'self-onsistent' is derived from the oupling between the 1-eletronHamiltonian, alled the Fok operator, and the solutions (orbitals).



2.3 Self-onsistent �eld approximation 17Applying the variation priniple to the Slater determinant, one obtains theHartree-Fok model5, whih is the most basi SCF model. Although derivedon a di�erent basis, Kohn-Sham density funtional theory6 models are abroad lass of SCF models, and thus share the main harateristia withHartree-Fok.2.3.1 Hartree-FokInserting the Slater determinant Eq. 2.16 into the expression for the energyexpetation value E=〈ψ|Ĥ|ψ〉, it is redued to
E = hnuc +

∑

k

〈

φk

∣

∣

∣
−1

2
∇2 −

∑

n

qn
‖r−rn‖

∣

∣

∣
φk

〉 (2.17)
+

∑

j>k

∫ ∫

φ∗
j(r1)φ

∗
k(r2)

1

r12

[

φj(r1)φk(r2) − φk(r1)φj(r2)
]

dr1dr2,where the nulear repulsion hnuc is given by Eq. 2.10. Sine the diagonalterms j=k in the seond summation will anel, it an be rewritten as
1

2

∑

jk

∫ ∫

φ∗
j(r1)φ

∗
k(r2)

1

r12

[

φj(r1)φk(r2) − φk(r1)φj(r2)
]

dr1dr2, (2.18)where the ontributions from the �rst term in the braket are alled theCoulomb repulsion, and those from the seond term the exhange interation.Expanding the orbitals in a basis of atomi orbitals7 (AOs) χµ(r)

φk(r) =
∑

µχµ(r)Cµk, (2.19)the energy an be written in matrix form in terms of the orbital oe�ientmatrix C as
E = hnuc + TrC†

HC + 1
2
TrC

†
G(CC

†)C (2.20)
= hnuc + TrHD + 1

2
TrG(D)D,where Tr denotes matrix trae, and . . .† the omplex-onjugated matrix trans-pose. Using the invariane of the trae under yli permutations of a matrix5G. G. Hall: �The Moleular Orbital Theory of Chemial Valeny & A Method ofCalulating Ionization Potentials�, Pro. Royal So. London A, vol. 205, p. 541-552(1951)6W. Kohn, L. J. Sham: �Self-Consistent Equations Inluding Exhange and CorrelationE�ets�, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)7Commonly nuleus-entered Gaussian-type funtions: xkylzme−ζr2



18 Quantum mehanisprodut, the density matrix D = CC
† has been introdued. The 1- and 2-eletron integral matriesH and G(D) ontains the integrals of the operators

ĥ and ĝ, respetively, over the AO basis χµ

Hµν =
〈

χµ

∣

∣ ĥ
∣

∣χν

〉

=
〈

χµ

∣

∣

∣
−1

2
∇2 −

∑

n

qn
‖r−rn‖

∣

∣

∣
χν

〉

, (2.21)
Gµν,ρσ =

∫ ∫

χ∗
µ(r1)χ

∗
ρ(r2)

1

r12

[

χν(r1)χσ(r2) − χσ(r1)χν(r2)
]

dr1dr2,

G(D)µν =
∑

ρσGµν,ρσDρσ. (2.22)The orbitals φk are required to be orthonormal, whih translates into thefollowing matrix equations to be satis�ed by C and D

〈φj|φk〉 = δjk ⇒ C
†
SC = 1 ⇒ DSD = D, (2.23)where Sµν = 〈χµ|χν〉 is the overlap matrix for the AO basis χµ. The latterequation is ommonly referred to as the idempoteny ondition for the densitymatrix.Sine C must satisfy the orthonormality relation, it is onstrained, and theLagrange multipler method8 an be used to derive the variational ondition

E(C,Λ) = hnuc + TrC
†
HC + 1

2
TrC

†
G(CC

†)C (2.24)
− TrΛ

(

C
†
SC−1

)

,
∂

∂C†E(C,Λ) =
(

H+G(CC
†)

)

C − SCΛ = 0, (2.25)where Λ is the Lagrange multiplier matrix for the orthonormality ondition.Introduing the Fok matrix F=H+G(D), the variational ondition an beexpressed in terms of D as9
FDS = SDF, (2.26)whih is the SCF equation in terms of the density matrix.2.3.2 Kohn-Sham DFTHohenberg and Kohn10 showed that there is a one-to-one relation betweenthe potential funtions v(r) in the eletroni Shrödinger equation, and the8J.-L. Lagrange: �Théorie des fontions analytiques�, (1797, p. 198)9P. Pulay: �Improved SCF onvergene aeleration�, J. Comp. Chem. 3 (4), 556-560(1982)10P. Hohenberg, W. Kohn: �Inhomogeneous Eletron Gas� Phys. Rev. B, vol. 136 (3B),p. B864-B871 (1964)



2.3 Self-onsistent �eld approximation 19eletron density ρ(r) of the ground state (solution)
ρ(r) = N

∫ ∫

. . .

∫

|ψ(r, r2 . . . rN)|2dr2 . . . drN . (2.27)For a moleule, v(r) is the sum of Coulomb attrations to eah nuleus
v(r) = −

∑

n

qn
‖r−rn‖

, (2.28)and it enters the eletroni Hamiltonian together with the nulear repulsion
hnuc, the eletroni kineti energy, and eletron repulsion. Basially thismeans that two di�erent eletroni Hamiltonians (di�erenent v(r)) annothave the same ground state density ρ(r). For moleules this is perhaps notsurprising�the peaks in the ground state density, and their heights, indiatethe positions and harges of the nulei, from whih v(r) an be determined.Under the additional assumption that the ground state is non-degenerate(has multipliity 1), Hohenberg and Kohn also proved the existene of avariational density funtional Ev[ρ]

11 for the energy, whih minimum ρ(r)is the ground state density orresponding to v(r), hene the name 'densityfuntional theory' (DFT). The nulear repulsion and nulear attration areknown ontributions to Ev[ρ], while the kineti energy T and eletron repul-sion V are unknowns
Ev[ρ] = hnuc +

∫

v(r)ρ(r)dr + (T+V )[ρ]. (2.29)The formulation of a density funtional for the kineti energy is a di�ulttask, as the ground state kineti energy an hange abruptly with smallhanges in the density. To aount for this, Kohn and Sham12 proposed toexpand the density in terms of orthonormal orbitals, and use the Hartree-Fok (or non-interating) kineti energy Ts as the main ontribution, withthe remaining kineti energy expeted to vary more slowly. Analogously,the Coulomb ontribution J [ρ] (see Eq. 2.18) is separated from the eletronrepulsion, leaving the 'exhange-orrelation funtional'Exc[ρ] as the unknown
Ev[ρ] = hnuc +

∫

v(r)ρ(r)dr + Ts[ρ] + J [ρ] + Exc[ρ], (2.30)
J [ρ] = 1

2

∫

ρ(r1)
1

r12
ρ(r2)dr1dr2, (2.31)

Exc[ρ] =
(

T − Ts + V − J
)

[ρ]. (2.32)11It is ustomary to write a density funtional with square brakets [. . .] around itsargument instead of (. . .)12W. Kohn, L. J. Sham: �Self-Consistent Equations Inluding Exhange and CorrelationE�ets�, Phys. Rev., vol. 140 (4A), p. A1133-A1138 (1965)



20 Quantum mehanisThis is the form of the basi Kohn-Sham density funtional theory. If Exc[ρ]is an integral over a funtion F (ρ(r)), it is said to be a loal density approx-imation (LDA), whereas an integral over F (ρ(r), ‖∇ρ(r)‖) is a generalizedgradient approximation (GGA). If an additional 'exat exhange' ontribu-tion (meaning Hartree-Fok exhange, see Eq. 2.18) is separated from V , itis a 'hybrid' funtional.As was the ase with Hartree-Fok in the previous setion, expanding theorbitals in terms of AOs results in a matrix expression for the Kohn-Shamenergy, and a variational ondition of the same form as the SCF equationEq. 2.26.



Chapter 3Properties and spetra
The basi1 interpretation of spetrosopy is that it measures di�erenes be-tween the stationary states of (atoms and) moleules, the eigenstates of theHamiltonian and solutions of the time-independent Shrödinger equation.The moleule absorbs radiation at frequenies ωyx = Ex−Ey, whih orre-spond to di�erenes between two eigenenergies, at a rate A proportional tothe intensity of inoming radiation I(ωyx), the transition dipole moment, andthe population |cy|2 of the lower state ψy

A(ωyx) ∝ I(ωyx)
∣

∣

〈

ψx

∣

∣ µ̂
∣

∣ψy

〉
∣

∣

2|cy|2. (3.1)The moleule also emits radiation at the same set of frequenies, at a rate Sproportional to the same transition moment and the population of the higherstate ψx

S(ωyx) ∝
∣

∣

〈

ψy

∣

∣ µ̂
∣

∣ψx

〉
∣

∣

2|cx|2. (3.2)These two proesses are linear absorption and spontaneous emission, respe-tively. Thus, in the absene of any inoming radiation to be absorbed, amoleule in a mixture of states will eventually deay to the ground stateby spontaneous emission of radiation. Moreover, a system of moleules inthermodynami equilibrium (onstant populations) will emit radiation withfrequenies and intensities re�eting the populations and transition moments.1This setion is based on Robert C. Hilborn: �Einstein oe�ients, ross setions, fvalues, dipole moments, and all that�, 2002 revision of Am. J. Phys. 50, 982�986 (1982)



22 Properties and spetra3.1 Propagation and Floquet theoryIn order to predit absorption and emission spetra, we need a way to deter-mine the expansion oe�ients cg(t) and cx(t) of the wavefuntion2 ψ̃(t), fora given experimental environment
ψ̃(t) = cgψg +

∑

x

cxψx. (3.3)In general, this amounts to solving the time-dependent Shrödinger equa-tion, in whih the inoming radiation gives rise to a time-dependent externalpotential V̂ t (whih will be presented in the next setion)
(

Ĥ + θ(t)V̂ t
)

ψ̃ = i d
dt
ψ̃, (3.4)where θ(t) is some funtion 'swithing' the radiation on; either instanta-neously, suh as with the step funtion θ(t<0)=0, θ(t>0)=1; or gradually, aswith the error funtion θ(t)=erf(εt); or exponentially, θ(t)= exp(εt). As ini-tial ondition of the linear di�erential equation Eq. 3.4, one may speify thewave funtion at some time, for instane ψ̃(−∞)=ψg or ψ̃(0)=ψg. This pro-edure of setting an initial ondition followed by solving the time-dependentShrödinger equation is alled propagation, and treated in propagator theo-ries.3In this work we make the simplest possible hoie of swithing funtion,namely θ(t)=1. Rather than speifying an initial ondition, we require thatthe wave funtion is the produt of a phase fator e−iQt and a quasi-periodi4wave funtion ψ(t)

ψ̃(t) = e−iQtψ(t) = e−iQt
∑

ω∈Ω

eiωtψω, (3.5)where the frequeny set Ω(V t) haraterizing quasi-periodiity onsists of�all ombinations of integer multiples of frequenies in the external potential
V t �. This means that ψ is a Fourier series in all frequenies appearing in
V t. That is, if V t is monohromati, as when the moleule is irradiated by2The tilde is put on this wavefuntion, to reserve ψ(t) for the phase isolated Floquetstate in Eq. 3.5.3J. Oddershede and P. Jørgensen: �Polarization propagator methods in atomi andmoleular alulations�, Computer Physis Reports 2(2), 33-92 (1984)4D. A. Telnov and S.-I. Chu: �Generalized Floquet formulation of time-dependentdensity funtional theory for many-eletron systems in intense laser �elds�, AIP Conf.Pro., vol. 525, p. 304-318 (2000)



3.1 Propagation and Floquet theory 23a single laser, ψ is a Fourier series in the laser frequeny, and thus periodi.Analogously, in the ase of two lasers, ψ is a bi-variate Fourier series, whih isperiodi only when the two frequenies have a ommon divisor, but generallyquasi-periodi. Unless the frequenies in V t have a ommon divisor (areommensurate), the set Ω(V t) is dense in the real numbers.Inserting the quasi-periodi wave funtion Eq. 3.5 into the time-dependentShrödinger equation Eq. 3.4 with θ(t)=1, expanding the time derivative andanelling the phase fator, the time-dependent Shrödinger equation takesthe form of an eigenvalue equation
(

Ĥ + V̂ t
)

e−iQtψ = i d
dt
e−iQtψ, (3.6)

e−iQt
(

Ĥ + V̂ t
)

ψ = e−iQt
(

Q+ i d
dt

)

ψ, (3.7)
(

Ĥ + V̂ t − i d
dt

)

ψ = Qψ. (3.8)This will be referred to as the Floquet-Shrödinger equation. The operator
Ĥ + V̂ t − i d

dt
is the Floquet operator, and its eigenvalue Q the quasi-energy.The eigenfuntions ψ will in the following be referred to as Floquet states.The operator i d

dt
is Hermitian in the time-averaged salar produt

{〈

ψ
∣

∣ iφ̇
〉}

t
= { d

dt
〈ψ|φ〉}t − i

{〈

ψ̇
∣

∣φ
〉}

t
= 0 +

{〈

iψ̇
∣

∣φ
〉}

t
, (3.9)where the time-average is well de�ned for quasi-periodi funtions and leadsto the time average of a time derivative being zero

{. . .}t = lim
r,s→∞

1
r+s

∫ s

−r
. . . dt,

{

d
dt
. . .

}

t
= 0. (3.10)The Floquet operator is therefore Hermitian and the quasi-energies Q real-valued. For eah Floquet state ψ with quasi-energy Q, there is an in�nite setof Floquet states eiωtψ with quasi-energies Q−ω for all frequenies ω takenfrom the set Ω(V t), as an be seen by inserting eiωtψ in Eq. 3.5. Floquet statesthat in this way only di�er by a phase fator eiωt are said to be degenerate.The non-degenerate Floquet states are orthogonal (at eah time t). This isseen by expanding the matrix element of the Floquet operator in two di�erentways

0 =
〈

ψa

∣

∣Ĥ + V̂ t − i d
dt

∣

∣ψb

〉

−
〈

ψa

∣

∣Ĥ + V̂ t − i d
dt

∣

∣ψb

〉

=
〈

ψa

∣

∣Qbψb

〉

−
〈(

Ĥ + V̂ t − i d
dt

)

ψa

∣

∣ψb

〉

+ i d
dt
〈ψa|ψb〉

= (Qb −Qa)〈ψa|ψb〉 + i d
dt
〈ψa|ψb〉. (3.11)As taught in introdutory mathematis ourses, the general solution of this�rst-order linear di�erential equation is

〈ψa|ψb〉 = c ei(Qb−Qa)t, (3.12)



24 Properties and spetrawhere c is a omplex onstant. Sine ψa and ψb are quasi-periodi, 〈ψa|ψb〉must also be quasi-periodi, but the frequeny Qb−Qa does not in generalbelong to the quasi-periodi set Ω(V̂ t) (unless ψa and ψb happen to be de-generate), hene c must be zero and the states are orthogonal.3.2 Radiation potentialThe potential5 V̂ t arising from a stati external (�rst order-) inhomogeneouseletri �eld and a stati external homogeneous magneti �eld is given bythe expression
V̂ t = −F ·µ̂ − G· Θ̂ − B ·m̂ − 1

2
B ·ξ̂B, (3.13)where F , G and B are the eletri �eld (at the origin of the oordinatesystem), the eletri �eld gradient and the magneti �eld, respetively, whihmultiply the (negative) eletri dipole operator

µ̂ =
∑

pqprp, (3.14)eletri quadrupole operator (symmetri 3×3 matrix)6
Θ̂ =

∑

p
qp

2
rpr

T
p , (3.15)magneti dipole operator

m̂ =
∑

p
qp

2mp
l̂p =

∑

p
−iqp

2mp
rp×∇p, (3.16)and magneti suseptibility operator (symmetri 3×3 matrix)

ξ̂ =
∑

p

q2
p

4mp

(

rpr
T
p −(rp·rp)1

)

, (3.17)respetively. The external potential is in this ase time-independent (stati),and the notation V̂ t perhaps misleading, but as will be shown below, thepresene of radiation leads to time-dependent F , G and B (and hene V̂ t).An eletromagneti wave, radiation with a single frequeny and diretion, isa simple solution of Maxwell's equations7
∇·F = 4πρ, d

dt
F = c2∇×B − 4πj, (3.18)

∇·B = 0, d
dt

B = −∇×F , (3.19)5This setion is based on L. D. Barron and C. G. Gray: �Multipole interation Hamil-tonian for time-dependent �elds�, J. Phys. A 6(1), 59-61 (1973)6There are several ways to de�ne Θ̂. In this de�nition, Θ̂ is not traeless and saledso that it multiples the eletri �eld gradient.7These are Maxwell's equations in the 'Lorentz fore' onvention, where the eletri andmagneti �elds di�er in magnitude by a fator 1
c
, as opposed to the 'Gaussian' onvention.



3.2 Radiation potential 25whih for empty spae (harge ρ and urrent density j zero) state that the�elds are divergene-free (have no soures), and time-evolution is determinedby the opposite �eld's url (rotation). The speed of light c is ≈137 in atomiunits.An eletromagneti wave with frequeny ω, propagating in the (normalized)diretion k is on the form
F (r) = f e−iωt exp( iω

c
k·r) + c.c., (3.20)

B(r) = b e−iωt exp( iω
c

k·r) + c.c., (3.21)where f is the wave's Jones vetor8, a omplex vetor whih determines thewave's intensity, phase, and (eletri) polarization, and is perpendiular to k.The orresponding magneti vetor is given by b=1
c
k×f , and is perpendiularto both k and f , and di�ers from f in magnitude by a fator 1

c
. The terms'c.c.' in Eqs. 3.20 and 3.21 denote the omplex onjugate of the preedingexpression, thus the �elds are real-valued.The polarization of the wave is linear if the real and imaginary parts of fare parallel (or either is zero), irular (right or left) if perpendiular, andellipti in other ases.The eletromagneti �eld F (r),B(r) is 'translated' to an external potentialoperator V̂ t through the salar- and vetor potentials φ(r) and A(r), by therelation

V̂ t =
∑

p
iqp

2mp
(∇p ·A(rp) + A(rp) ·∇p) (3.22)

+
∑

k

q2
p

2mp
A(rp) ·A(rp) +

∑

pqpφ(rp),where the potentials φ(r) and A(r) are related to the �elds by
F (r) = − d

dt
A(r) −∇φ(r), B(r) = ∇×A(r). (3.23)However, these relations leave a great deal of freedom in the hoie of φ(r)and A(r), alled gauge9. By requiring r ·A(r) = 0, whih is to adopt themultipolar gauge10 (about the origin), the potentials are given as simpleintegrals over the �elds

φ(r) = −r ·

∫ 1

0
F (ur)du, A(r) = −r×

∫ 1

0
uB(ur)du, (3.24)8R. C. Jones, �New alulus for the treatment of optial systems�, J. Opt. So. Am.,vol. 31, p. 488�493 (1941), or http://en.wikipedia.org/wiki/Jones_vetor9P. Shwerdtfeger (ed.): �Relativisti Eletroni Struture Theory. Part 1. Fundamen-tals�, Elsevier (2002)10A.M. Stewart: �Wave mehanis without gauge �xing�, J. Mol. Stru. (Theohem),vol. 626, p. 47�51 (2003)



26 Properties and spetrawhih for the �elds given by Eqs. 3.20 and 3.21 an be alulated expliitly
φ(r) = −r ·

(

f e−iωt exp( iω
c

k·r) − 1
iω
c

k·r
+ c.c.

)

, (3.25)
A(r) = −r×

(

b e−iωt (1− iω
c

k·r) exp( iω
c

k·r) − 1

(ω
c
k·r)2

+ c.c.

)

. (3.26)The wavelengths λ=2πc/ω used in spetrosopy are in general several timesthe size of the moleules studied. Therefore, it is onvenient to trunatethe salar and vetor potentials to seond and �rst order in r, respetively,so that V̂ t in Eq. 3.22 beomes aurate to �rst order in11 1
c
(due to thedi�erene in magnitude between f and b)

φ(r) = −r ·

(

f e−iωt(1 + iω
2c

k·r) + c.c.
)

= −
(

f e−iωt + c.c.
)

· r −
(

iω
2c

(kfT+fkT )e−iωt + c.c.
)

· rr
T

= −F · r − 1
2
G · rr

T , (3.27)
A(r) = −r×

(

b e−iωt(1
2
) + c.c.

)

= −1
2
r×B, (3.28)where the eletri �eld at the origin, the eletri �eld gradient and the mag-neti �eld have been introdued

F = f e−iωt + c.c., (3.29)
G = iω

c

(

kfT + fkT
)

e−iωt + c.c., (3.30)
B = b e−iωt + c.c. = 1

c
(k×f)e−iωt + c.c. (3.31)Inserting these expressions into Eq. 3.22, the external potential operatorbeomes

V̂ t =
∑

p
qp

2mp

(

i∇p · (−1
2
rp×B) + (−1

2
rp×B) ·i∇p

) (3.32)
+

∑

p

q2
p

2mp
(−1

2
rp×B)·(−1

2
rp×B) −

∑

pqpF · rp −
∑

p
qp

2
G · rpr

T
p ,whih an be rearranged into

V̂ t = −B·

(
∑

p
qp

2mp
(rp×i∇p)

)

+ 1
2
B·

(
∑

p

q2
p

4mp
(rpr

T
p −(rp·rp)1

)

B

−F ·(
∑

pqprp) − G·

(
∑

p
qp

2
rpr

T
p

)

= −F ·µ̂ − G·Θ̂ − B ·m̂ − 1
2
B ·ξ̂B, (3.33)11Called the �ne-struture onstant, and ommonly denoted by α



3.3 Response theory 27whih is on the same form as Eq. 3.13, exept the �elds are time-dependent.This is the eletri quadrupole�magneti dipole approximation to the radia-tion potential. For a �eld onsisting of several waves of di�erent frequeniesand diretions, there will be several time-dependent ontributions to F ,Gand B.3.3 Response theoryWhen exposed to radiation, the moleule starts �utuating, rotating andvibrating in various ways. This means the moleular wavefuntion is dis-tributed over a number of eigenstates of the Hamiltonian
ψ(t) = cg(t)ψg +

∑

x

cx(t)ψx, (3.34)whih makes the expliit solution of the Floquet-Shrödinger equation Eq. 3.8very demanding, and only appliable to small atoms. For moleules, the onlyoption is therefore to resort to approximate solutions by means of perturba-tion theory.Having solved the time-independent Shrödinger equation (with V̂ t=0), andthus found a time-independent eigenstate ψg with eigenenergy Eg, the quasi-energy Q and Floquet state ψ an be written as a perturbation expansion(Taylor series) in the �eld parameters f, b, g et., that enter V̂ t

Q
∣

∣

f,b,g
= Eg + f Qf + f ∗Qf∗

+ bQb + b∗Qb∗ + g Qg + g∗Qg∗ (3.35)
+ 1

2
ff Qff + ff ∗Qff∗

+ 1
2
f ∗f ∗Qf∗f∗

+ fbQfb + f ∗bQfb

+ 1
2
bbQbb + fb∗Qfb∗ + f ∗b∗Qf∗b∗ + bb∗Qbb∗ + 1

2
b∗b∗Qb∗b∗

+ fg Qfg + f ∗g Qf∗g + bg Qbg + b∗g Qb∗g + 1
2
gg Qgg

+ fg∗Qfg∗ + f ∗g∗Qf∗g∗ + bg∗Qbg∗ 1
2
g∗g∗Qg∗g∗

+ b∗g∗Qb∗g∗ + gg∗Qgg∗ + 1
6
fff Qfff + . . .

ψ
∣

∣

f,b,g
= ψg + f ψf + f ∗ψf∗

+ b ψb + b∗ψb∗ + . . . (3.36)where supersripts are used as short-hand notation for derivatives, i.e. Qf∗g= d
df∗

d
dg
Q,and the vetor-tensor produts are ontrated. Note that also derivativeswith respet to the omplex-onjugate �elds f ∗, b∗, g∗ appear in the series.We will refer to the derivatives of the quasi-energy Qfb∗ et., as responses, andderivatives of the wave funtion ψb et., as perturbed wavefuntions. They



28 Properties and spetraare determined by the orresponding derivatives of the Floquet-Shrödingerequation, Eq. 3.8 and the normalization ondition Eq. 2.3
d
df

(

Ĥ + V̂ t − i d
dt
−Q

)

ψ = 0, d
df

(

〈ψ|ψ〉 − 1
)

= 0, (3.37)Expanding the derivatives and inserting Eq. 3.33, we get
(

Ĥ + V̂ t − i d
dt
−Q

)

ψf = (e−iωtµ̂ +Qb)ψ, (3.38)
〈

ψf∗∣

∣ψ
〉

+
〈

ψ
∣

∣ψf
〉

= 0. (3.39)Applying 〈ψ| . . .〉 to the �rst equation and rearranging
〈

ψ
∣

∣Ĥ + V̂ t − i d
dt
−Q

∣

∣ψf
〉

= 〈ψ|e−iωtµ̂ +Qf |ψ〉, (3.40)
〈(

Ĥ + V̂ t − i d
dt
−Q

)

ψ
∣

∣ψf
〉

− i d
dt
〈ψ|ψf〉

= e−iωt〈ψ|µ̂|ψ〉 +Qf〈ψ|ψ〉. (3.41)The �rst term vanishes and the last term is 1 due to normalization. Tak-ing the time average, the seond term also vanishes (the average of a timederivative is zero, see Eq. 3.10)
{

−i d
dt
〈ψ|ψf〉

}

t
= {e−iωt〈ψ|µ̂|ψ〉}t +Qf ⇒ Qf = −µω, (3.42)and the derivative Qf of the quasi-energy with respet to an osillating ele-tri �eld, is found to be minus the ω-frequeny omponent of the eletridipole moment. This property is known as the (time-dependent) Hellmann-Feynman theorem12,13: �The �rst derivative is given by the expetation valueof the perturbing operator�. Thus, no knowledge of ψf is required to obtain

Qf .Di�erentiating Qb∗ , whih aording to the previous disussion is given by
−{eiωt〈ψ|m̂|ψ〉}t, with respet to f , the linear response Qb∗f is obtained
Qb∗f = − d

df
{eiωt〈ψ|m̂|ψ〉}t = −

{

eiωt
(〈

ψf∗∣

∣m̂
∣

∣ψ
〉

+
〈

ψ
∣

∣m̂
∣

∣ψf
〉)}

t
. (3.43)In this ase, however, ψf an not be eliminated from the formula. Goingbak to Eq. 3.38, and using that the unperturbed wavefuntion ψ=ψg istime-independent, and thus Qf= − µω is zero (unless ω=0)

(

Ĥ − i d
dt
−Eg

)

ψf = e−iωtµ̂ψg. (3.44)Sine only the phase fator e−iωt is time-dependent on the right-hand side,and ψf is the only time-dependent fator on the right-hand side, ψf must12H. Hellmann: Einfürung in die Quantenhemie (Leipzig: Deutike) (1937)13R. P. Feynman: �Fores in Moleules� Phys. Rev., vol. 56, p. 340-343 (1939)



3.3 Response theory 29arry the same phase fator: ψf(t) = e−iωtψf(0). This means that d
dt
ψf= −

iωψf , and the equation beomes
(

Ĥ − ω −Eg

)

ψf = e−iωtµ̂ψg. (3.45)If ψg together with all the other eigenstates ψx of Ĥ form a omplete or-thonormal set, we an write Ĥ as
Ĥ = Eg|ψg〉〈ψg| +

∑

x

Ex|ψx〉〈ψx|, (3.46)and the inverse of the operator on the left-hand side of Eq. 3.45 an bewritten as
(

Ĥ − ω − Eg

)−1
=

1

Eg − ω − Eg

|ψg〉〈ψg| +
1

Ex − ω − Eg

|ψx〉〈ψx|. (3.47)The solution ψf is therefore given by
ψf = e−iωt

(

−〈ψg|µ̂|ψg〉
ω

ψ +
∑

x

〈ψx|µ̂|ψg〉
Ex − ω − Eg

ψx

)

, (3.48)from whih ψf∗ is obtained by hanging ω to −ω. Inserting for ψf∗ and ψfin the linear response in Eq. 3.43, the so-alled sum-over-states expressionfor the linear response is obtained
d
df
Qb∗f = −

{

eiωt
〈

e−iωt
(

−〈ψg|µ̂|ψg〉
−ω ψg +

∑

x

〈ψx|µ̂|ψg〉
Ex + ω − Eg

ψx

)
∣

∣

∣
m̂

∣

∣

∣
ψg

〉

+ eiωt
〈

ψg

∣

∣

∣
m̂

∣

∣

∣
e−iωt

(

−〈ψg|µ̂|ψg〉
ω

ψg +
∑

x

〈ψx|µ̂|ψg〉
Ex − ω − Eg

ψx

)〉}

t

= −
∑

x

〈ψg|µ̂|ψx〉〈ψx|m̂|ψg〉
Ex + ω − Eg

−
∑

x

〈ψg|m̂|ψx〉〈ψx|µ̂|ψg〉
Ex − ω −Eg

. (3.49)Observe that the ontributions from the �rst terms in ψf and ψf∗ have an-eled. This is also the ase for the time-dependent phase fators, making thetime average redundant.As there in general will be in�nitely many exited states ψx, using Eq. 3.47is not a pratial way to solve the response equation Eq. 3.45. Rather, itis preferrables to solve Eq. 3.45 iteratively, using a preonditioner (approxi-mation to Eq. 3.45) to improve onvergene. An iterative tehnique is alsopreferrable for �nding ψg in the �rst plae, and the two tehiques are related.



30 Properties and spetraDue to the time-independene of the referene state ψg, and the frequenydependene of the applied �elds, quasi-energy derivatives (responses) are non-zero only when the frequenies of the �elds sum to zero. Thus, the followingseond derivatives are zero, for instane
Qff = Qbb = Qf∗f∗

= Qb∗b∗ = 0, (3.50)sine the frequenies of the �elds sum to 2ω, 2ω,−2ω and −2ω, respetively.For higher-order responses, involving several di�erent frequenies, it is moreonvenient to use a notation whih spei�es both the �elds and their frequen-ies, suh as
QFF

−ω,ω, QFB
−ω,ω, QFGF

−2ω,ω,ω, QFFBB
−ν−ω,ν,ω,0. (3.51)where F is understood as the eletri �eld, B the magneti �eld, and G theeletri �eld gradient, respetively. A well-established notation is the doublebraket14

〈〈µ;µ,m〉〉ω,ν = (−1)3QFFB
−ω−ν,ω,ν , 〈〈µ; Θ, m, µ〉〉ω,ν,γ = (−1)4QFGBF

−ω−ν−γ,ω,ν,γwhih lists the perturbing operators, the �rst designated as the 'outgoing'�eld and the others as 'inoming' �elds, along with the inoming frequenies.3.4 ResonaneEven if the singularity in ψf Eq. 3.48 at ω=0 is absent from the linearresponse funtion Eq. 3.49, singularities remain at all exitation energies
ω=Ex−Eg. At �rst glane this may seem as a problem with response theory.But as will be explained in this setion15, these are resonanes � disonti-nous 'jumps' in ψ and Q as the �eld is swithed on.For simpliity, we will onsider a two-state system, so that the Floquet state
ψ an be written as a linear ombination of the two unperturbed eigenstates
ψg and ψx

ψ = cg(t)ψg + cx(t)ψx, Ĥ = Eg|ψg〉〈ψg| + Ex|ψx〉〈ψx|, (3.52)14J. Linderberger and Y. Öhrn: �Propagators in quantum hemistry�, 2nd ed., Wiley(2004)15This setion is based on S. H. Autler and C. H. Townes: �Stark E�et in RapidlyVarying Fields�, Phys. Rev. 100(2), 703 (1955)



3.4 Resonane 31where the two oe�ients are omplex 2π
ω
-periodi funtions of time, ex-pressed as Fourier series

cg(t) =
∞

∑

−∞
cgke

ikωt, cx(t) =
∞

∑

−∞
cxke

ikωt. (3.53)Furthermore, we write the external potential as oupling these two states,and onsider only one �eld diretion (say µ̂z). In addition, assume withoutloss of generality that the �eld strength f is real-valued, so that the time-dependent fator beomes 2 cosωt

V̂ t = −f(e−iωt+eiωt)
(

µ|ψx〉〈ψg| + µ|ψg〉〈ψx|
)

, (3.54)where the transition moment µ= 〈ψg|µ̂z|ψx〉 is assumed real-valued, as anyphase ould be absorbed into ψg or ψx. Inserting Eqs. 3.52, 3.53 and 3.54into the Floquet-Shrödinger equation Eq. 3.8, we get
0 =

(

Ĥ + V̂ t − i d
dt
−Q

)

(

∞
∑

−∞
cgke

ikωtψg +
∞

∑

−∞
cxke

ikωtψx

) (3.55)
=

∞
∑

−∞

(

Egcgk − fµ cxk(e
−iωt+eiωt) + kωcgk −Qcgk

)

eikωtψg

+

∞
∑

−∞

(

Excxk − fµ cgk(e
−iωt+eiωt) + kωcxk −Qcxk

)

eikωtψx.To move the time-dependent fators e−iωt and eiωt outside the parenthesis,we rename k to k+1 and k−1 (shift the summations) in those terms
0 =

∞
∑

−∞

(

Egcgk − fµ(cxk+1+cxk−1) + kωcgk −Qcgk

)

eikωtψg (3.56)
+

∞
∑

−∞

(

Excxk − fµ(cgk+1+cgk−1) + kωcxk −Qcxk

)

eikωtψx.Sine the time- and spae-dependent fators eikωtψg and eikωtψx are linearlyindependent, this leads to the set of equations
−fµ cxk−1 + (Eg+kω)cgk − fµ cxk+1 = Qcgk, (3.57)
−fµ cgk−1 + (Ex+kω)cxk − fµ cgk+1 = Qcxk, (3.58)



32 Properties and spetrawhih may be organized in the form of the eigenvalue equation for the in�nitetri-diagonal Floquet matrix
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Written more ompatly, this equation is of the form
(

H − fM− ωS
)

c = Qc, (3.59)where H ontains the matrix elements of the Hamiltonian, Eg and Ex al-ternating along the diagonal; M ontains the transition moment integral µon the �rst o�-diagonals; S ontains the integers k along the diagonal whihmultiply ω (alled Floquet indies); and c the Fourier series cg(t) and cg(t)of the wavefuntion.

Figure 3.1: Floquet states orresponding to the (left) groundstate ψg=π
−1/4e−x2/2, Eg = 1

2 and (right) �rst exited state
ψx=(π/4)−1/4x e−x2/2, Ex=

3
2 of the one-dimensional Harmoni osillator,in the potential Eq. 3.54 with µ=〈ψg|−x|ψx〉= − 1√

2
, f=0.03, ω=0.99. Theurves are |ψ|2 for −3≤x≤3 in 20 steps through one full period. Observe thatthe state on the left plot moves where V̂ t is negative (as cosωt), whereas theright plot is on the opposite side (− cosωt). The orresponding quasi-energiesand polarizations are marked with dots in Fig. 3.2.



3.4 Resonane 33The eigenvalues Q form two sets Qa+jω and Qb+jω, where j runs over allintegers, as explained after Eq. 3.10. Fortunately, the middle eigenvalues ofa trunated Floquet matrix onverge rather quikly to representatives fromeah set. In the examples Figs. 3.1 and 3.2, the Floquet matrix was trunatedto the range cx−6 . . . cg5.
0.9 1 1.1 1.2

0.46

0.48

0.5

0.52

0.54

0.9 1 1.1 1.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 3.2: (left) Curves of the Harmoni osillator quasi-energy for
0.8≤ω≤1.2, showing the avoided rossing ouring at ω=Ex−Eg=1. Theurves are for f=0.003, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08. The diagonal asymp-tote is Q=Ex−ω. (right) For eah urve on the left, the ω-frequeny ompo-nent of the polarization {eiωt〈ψ|x|ψ〉}t of the orresponding state. Superim-posed on the urves tending to the ground state as f→0 are the approximatequasi-energies Q and polarizations P (ω) given by Eqs. 3.61 and 3.63. Thelowest urve on the left orresponds to the highest urve on the right, andvie versa. The dots mark the two states illustrated in Fig. 3.1. As f→0,the polarization tends to zero everywhere, exept at ω=1, where it remains at
±µ

2= ±1
2
√

2
. Analogous avoided rossings our at ω=1

2 ,
1
3 ,

1
4 . . . between ψg and

e−2iωtψx, e
−3iωtψx, e

−4iωtψx . . .. et.Inspeting Eq. 3.59, it is apparent that, although multiplying di�erent ma-tries, f and ω have analogous roles. This means that we may generalizeresponse theory to, not only �eld derivatives, suh as Qfg, but also frequeny-of-�eld derivatives: Qfgω. As we will see below, with this generalization anbe derived a non-singular polarization spetrum from the singular linear re-sponse in Eq. 3.49.As depited in Fig. 3.2, the ground state ψg and the exited state withFloquet index 1, e−iωtψx exhibit an avoided rossing near the exitation energy
ω=Ex−Eg (or resonane frequeny). This poses a problem in perturbationtheory, as the Taylor series in Eq. 3.35 annot onverge to a quasi-energy
Q with a disontinuity, and will therefore diverge. More ruially, the ω-



34 Properties and spetrafrequeny polarization
p = P (ω) = {eiωt〈ψ|µ̂|ψ〉}t = − d

df
Q, (3.60)whih, unlike the quasi-energy, is an observable, hanges sign at the reso-nane.To takle this, we will analyse the following approximation, valid for small fnear resonane

Q ≈ 1
2
(Eg+Ex−ω ± µ|δ/µ−2if |), (3.61)

ψ ≈
√

1

2
∓ 1

2|1−2ifµ/δ| ψg (3.62)
+

√

1

2
± 1

2|1−2ifµ/δ| e
−iωtψx,

p = P (ω) ≈ ± fµ

|δ/µ−2if | , (3.63)where the detuning δ = ω − (Ex−Eg) has been introdued, and all the ±are negative before the resonane and positive after. The validity of theseapproximations is demonstrated by Fig. 3.2. The derivatives of the polar-ization p with respet to the frequeny ω (or δ), the �eld f , and the mixedseond derivative, are given by
pω = d

dω
P (ω) = ∓ −fδ/µ

|δ/µ−2if |3 , lim
f→0

pω = 0, (3.64)
pf = d

df
P (ω) = ± δ2/µ

|δ/µ−2if |3 , lim
f→0

pf = ±µ
2

δ
, (3.65)

pfω = d2

dfdω
P (ω) = ±8f 2δ/µ− δ3/µ3

|δ/µ−2if |5 , lim
f→0

pfω = ±µ
2

δ2
, (3.66)where also the limits f→0 have been alulated. The limit of pf has a singu-larity at resonane δ=0, as already seen in the formula for the linear responseEq. 3.49. By inspetion of the formulas for p and pω, two ombinations withnon-singular, non-zero limits an be found: f/pω and p2/(fpω)

lim
f→0

f

pω

l′H

= lim
f→0

d
df
f

d
df
pω

= lim
f→0

1

pfω
= ± δ2

µ2
, (3.67)

lim
f→0

p2

fpω

l′H

= lim
f→0

2ppf

pω + fpfω

l′H

= lim
f→0

2pf2 + 2ppff

2pfω + fpffω

= lim
f→0

pf2

pfω
=

(±µ2/δ)2

±µ2/δ2
= ±µ2, (3.68)



3.4 Resonane 35where appliation of l'Hospital's rule to the zero-over-zero limits is indiated.Knowing these limits we may now approximate P (ω) in Eq. 3.63 by substi-tuting ±µ with ±|pf2/pfω|1/2 = pf |pfω|−1/2 and δ/µ with ±|pfω|−1/2

P (ω)
∣

∣

f
≈ f pf |pfω|−1/2

∣

∣±|pfω|−1/2−2if
∣

∣

, (3.69)whih may be viewed as the �rst order Taylor expansion for the linear po-larization f pf , multiplied by the renormalization fator
1

√

1 + 4f 2|pfω|
. (3.70)Sine the renormalized linear polarization given by Eq. 3.69 is expressed interms of responses, it is also appliable to many-state systems suh as atomsand moleules. Examples of this are shown in Fig. 3.3Note that although pfω is a quadrati response, or third-order quasi-energyderivative, due to a property known as the the 2n+1 rule (see paper I), theseond-order perturbed wavefuntion ψfω is not required.Although this analysis has provided a way to avoid the singularities (reso-nanes) in the response funtions, it has also revealed a problem with Floquettheory: The quasi-energy and polarization has branh-ut disontinuities ateah resonane frequeny (the branhes that tend to ψg as f→0), whih mayseem 'unphysial'. Other approahes to the resonane problem exist, for in-stane 'omplex response theory'16, in whih the polarization beomes purelyimaginary at the resonane (goes as a sinωt, whih is out-of-phase with the

2f cosωt �eld), whih is the expeted behavior of an absorption.Resonanes are enountered in Paper II, whih deals with CARS spetrosopy,where it is the di�erene of two �eld frequenies whih oinides with themoleule's vibrational exitation energies (whih appear in the lowest-orderBorn-Oppenheimer orretion).
16P. Norman, D. M. Bishop, H. J. Aa. Jensen and J. Oddershede: �Near-resonant ab-sorption in the time-dependent self-onsistent �eld and multion�gurational self-onsistent�eld approximations�, J. Chem. Phys., vol. 115, p. 10323 (2001)
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Figure 3.3: (top left) Renormalized f=0.001 isotropi linear polarization offuran C4H4O, and (top right) triazine C3H3N3, and eletri-�eld-gradientindued birefringene (explained in paper V) (bottom left) of formalde-hyde CH2O and (bottom right) triazine, alulated from linear, respetively,quadrati Hartree-Fok response funtion. Although perhaps not evident atthe resolution of these plots, there is a sign hange at eah resonane. Thefrequeny derivative pfω of the response was alulated by 3-point �nite di�er-enes, rather than analytially. The plots were prepared with the assistane ofLara Ferrighi and Manuel Sparta.



Chapter 4Summary and outlook
The �rst paper inluded in this thesis presents a new hierarhy of formu-las for response funtions for the SCF lass of models, whih is expressedin terms of the AO density matrix at all stages of omputation. Duringreent years, the performane and saling of SCF models have been on-siderably improved by hanging from the moleular orbital to the densitymatrix parameterization1,2. This has enabled alulations on moleules on-sisting of more than 1000 atoms. However, it has not been lear whether oneould onveniently formulate the orresponding response theory in terms ofthe density matrix, or perhaps another equally well-saling parameterizationwould be preferable3. The formulas presented also take �eld-dependent (orperturbation-dependent) AOs orretly into aount more straightforwardlythan existing tehniques4. Moreover, the presented formula hierarhy is ex-haustive, in that it overs responses of arbitrary order, and o�ers �exibility inthe hoie of whih response equations (analogous to Eq. 3.45, but in termsof the density matrix) to solve, and of whih orders. These 'rules' range fromthe simplest, but highest-order n+1 rule to the more ompliated, lower-order
2n+1 rule (due to Wigner), through intermediate rules of the form (k+n)+1,1V. Weber, A. M. N. Niklasson, and M. Challaombe: �Ab Initio Linear Saling Re-sponse Theory: Eletri Polarizability by Perturbed Projetion�, Phys. Rev. Lett. 92,193002 (2004)2P. Saªek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, and B. Jansík,S. Reine, F. Pawªowski, E. Tellgren, and T. Helgaker: �Linear-saling implementation ofmoleular eletroni self-onsistent �eld theory�, J. Chem. Phys. 126, 114110 (2007)3T. Helgaker, H. Larsen, J. Olsen and Poul Jørgensen: �Diret optimization of the AOdensity matrix in Hartree�Fok and Kohn�Sham theories�, Chem. Phys. Lett., vol. 327(5-6), p. 397-403 (2000)4J. Olsen, K. L. Bak, K. Ruud, T. Helgaker and P. Jørgensen: �Orbital onnetions forperturbation-dependent basis sets�, Th. Chem. A., vol. 90 (5-6), p, 421-439 (1995)



38 Summary and outlookwhere k is here the the highest-order equation to be solved involving the �rst�eld, and n the highest-order equation to be solved involving the remaining�elds. Sine response equations are solved iteratively, typially over 10�20iterations, whereas the subsequent ontration of response funtions is non-iterative, the 'rule' with the lowest number of equations will in most asesbe preferred.In paper II we present results obtained using the (0+2)+1 rule for a quadratiresponse, the geometrial polarizability gradient, whih is a third-order quasi-energy derivative
d

dR
α(−ω, ω) = − d

dR
〈〈µ;µ〉〉ω = − d

dR
d

dF ∗
ω

d
dFω

Q = −QRFF
0,−ω,ω, (4.1)where R olletively denotes the nulear oordinates, Fω is the ω-frequenyomponent of the eletri �eld, and α(−ω, ω) the polarizability. By usingthe (0+2)+1 rule � that is, zero order R, seond order in F ∗

ω , Fω, ratherthan the (1+1)+1 rule, we avoid the very numerous equations for the nu-lear oordinates, and are left with solving 9 eletri �eld equations (3 �rst-,6 seond-order). Within the so-alled double-harmoni Born-Oppenheimerapproximation, where only the linear term in the quadrati potential energysurfae responds to the �elds, the polarizability gradient Eq. 4.1 an be usedto alulate the intensities of the stimulated vibrational transitions ouringin oherent anti-Stokes Raman sattering spetrosopy.In paper III, also within the double-harmoni approximation, we have alu-lated the so-alled pure-vibrational orretions to the stati seond hyper-polarizability (ubi response) γ(0, 0, 0, 0), whih is a fourth-order quasi-energy derivative
γ(0, 0, 0, 0) = −〈〈µ;µ, µ, µ〉〉0,0,0 = − d

dF0

d
dF0

d
dF0

d
dF0
Q = −QFFFF

0,0,0,0 . (4.2)The orretions are determined by the geometry derivatives of the dipolemoment µ, stati polarizability α(0, 0) and stati �rst hyperpolarizability
β(0, 0, 0)

d
dR
µ = − d

dR
d

dF0
Q = −QRF

0,0 , (4.3)
d

dR
α(0, 0) = − d

dR
〈〈µ;µ〉〉0 = − d

dR
d

dF0

d
dF0
Q = −QRFF

0,0,0 , (4.4)
d

dR
β(0, 0, 0) = d

dR
〈〈µ;µ, µ〉〉0,0 = − d

dR
d

dF0

d
dF0

d
dF0
Q = −QRFFF

0,0,0,0 , (4.5)whih we, as in paper II, have alulated using the (0+1)+1, (0+2)+1 and
(0+3)+1 rules, respetively, solving a total of 19 equations (3 �rst-, 6 seond-and 10 third-order).



39In paper IV, we present alulations of the Cotton-Mouton e�et, whih o-urs when light passes through a sample of moleules in a stati magneti�eld. A beam entering with linear polarization will, depending on the �eldstrength and the angle between the �eld and the beam's polarization, be-ome ellipti (see Se. 3.2) as it passes through the medium. This is alledlinear birefringene, whih means that the index of refration is di�erent forbeams polarized parallel and perpendiular to the magneti �eld. The e�etis desribed by the Cotton-Mouton onstant mC, whih has two ontribu-tions: a temperature-dependent orientation term ∆[αξ], and a temperature-independent term ∆η

mC =
2πNA

27

(

∆η +
2

15kT
∆[αξ]

)

, (4.6)where ∆[αξ] is the anisotropy of the produt of the polarizability α(−ω, ω)and the stati magnetizability ξ(0, 0), both of whih are linear responses, and
∆η is the anisotropy of the hyper-magnetizability η(−ω, ω, 0, 0), whih is aubi response

α(−ω, ω) = −〈〈µ;µ〉〉ω = − d
dF ∗

ω

d
dFω

Q = −QFF
−ω,ω, (4.7)

ξ(0, 0) = −〈〈m;m〉〉0 + ξ = − d
dB∗

0

d
dB0

Q = −QBB
0,0 , (4.8)

η(−ω, ω, 0, 0) = −〈〈µ;µ,m,m〉〉ω,0,0 + 〈〈µ;µ, ξ〉〉ω,0 (4.9)
= − d

dB0

d
dB0

d
dF ∗

ω

d
dFω

Q = −QBBFF
0,0,−ω,ω,

∆[αξ] =

xyz
∑

ij

(

αijξij − 1
3
αiiξjj

)

, (4.10)
∆η = 1

5

xyz
∑

ij

(

ηijij − 1
3
ηiijj

)

. (4.11)In the alulation of η, we have used the (1+2)+1 rule, solving a total of 21response equations (6 �rst- and 15 seond-order). Our alulations are the�rst on this e�et employing magneti-�eld-dependent so-alled London AOs(or gauge-inluding AOs), whih provide improved basis set onvergene, andgauge-origin independent results, as explained in paper IV.Paper V, the last paper inluded in this thesis, presents alulations on an-other linear birefringene, the eletri-�eld-gradient indued birefringene,or Bukingham e�et, whih is a hange in the elliptiity of a beam passingthrough a sample in the presene of an eletri �eld gradient. It is desribedby the quantity s, whih has temperature-independent and -dependent on-
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s = b(ω) +

1

kT

{

xyz
∑

ij

Θijαij −
xyz
∑

ijk

µi

[

Aj,ij +
5

ω
ǫijkG

′
jk

]}

,where ǫijk is the Levi-Civita tensor, and the temperature-independent term
b(ω) is a ombination of three quadrati responses

b(ω) =

xyz
∑

ij

(

Bij,ij − Bi,ij,j

)

− 5

ω

xyz
∑

ijk

ǫijkJ
′
ijk, (4.12)

B(−ω, ω, 0) = 〈〈µ;µ,Θ〉〉ω,0 = − d
dG0

d
dF ∗

ω

d
dFω

Q = −QGFF
0,−ω,ω, (4.13)

B(−ω, ω, 0) = 〈〈µ; Θ, µ〉〉ω,0 = − d
dG0

d
dF ∗

ω

d
dF0
Q = −QGFF

ω,−ω,0, (4.14)
J ′(−ω, ω, 0) = −i〈〈µ;m,µ〉〉ω,0 = − d

dBω

d
dF ∗

ω

d
dF0
Q = −QBFF

ω,−ω,0, (4.15)and the temperature-dependent ontributions are ombinations of the dipoleand quadrupole moments, µ and Θ , with the polarizability α(−ω, ω) andtwo other linear responses
A(−ω, ω) = −〈〈µ; Θ〉〉ω = −QGF

ω,−ω, (4.16)
G′(−ω, ω) = i〈〈µ;m〉〉ω = −iQBF

ω,−ω. (4.17)For the quadrati responses, we have used the (0+2)+1 rule, whih meanssolving 21 eletri �eld equations (6 �rst-, 15 seond-order). Results ob-tained with London- and onventional AOs are ompared, showing a greatlyimproved basis-set onvergene.The basis for our software implementation is the DALTON program. Thisode is being developed by a large group of European sientists, and ispresently being extended to allow for large-sale SCF alulations in a fu-ture release. The tehniques developed in this thesis are well-suited for thispurpose. The implementation onsists of four main omponents:Matrix routinesIn the Fortran 90 programming language one an de�ne 'derived datatypes', and arithmeti operations in terms of these. For our type(matrix)we have also implemented aliasing (with referene ounting), automati(de-)alloation, and non-alloated zero matries. Possible future opti-mizations ould be 1) To hide transpose and sale operations in thederived type (A=3∗trps(B) would make A an alias of B, without atu-ally transposing or saling any matrix elements); 2) De�ne a so-alled



41'proxy type' for binary operations, so that for instane C=C+A∗B isexeuted in one operation (DGEMM) rather than three, without allo-ating any intermediate matries; 3) Utilize transpose and point groupsymmetry; 4) Distribute matries in parallel alulations. At present all(perturbed) matries are stored and manipulated by the master node.Only Coulomb-exhange and Kohn-Sham matries are omputed inparallel. This leads to a signi�ant load imbalane between the masterand slave nodes, whih ould be avoided.Property integrals interfaeDALTON's integral sub-program HERMIT provides an extensive at-alog of one-eletron integrals, indexed by labels ('XDIPLEN', 'ZMAG-MOM', et.), while the various two-eletron and Kohn-Sham ontra-tions are separate alls. Two interfae routines ombine a list of �eldlabels ('EL', 'MAG', 'GEO', et.) with a list of density matries (aperturbation expansion of some order) to produe an array of responsefuntion ontributions, or an array of Fok matrix ontributions. Athird interfae routine delivers perturbed overlap matries.Response equation ontrator and solverGiven a list of �eld labels and assoiated frequenies, together withthe orresponding density and Fok matrix perturbation expansions,this routine evaluates the perturbed TDSCF equation and idempotenyondition (see Paper I), then passes the residuals to the response solver,whih returns the solutions. The response solver was implemented bySonia Coriani and oworkers5.Response funtion ontratorFrom a list of �eld labels and assoiated frequenies, together with theorresponding density and Fok matrix perturbation expansions, withvaanies (zeros) for eah equation that has not been solved (aordingto the (k+n)+1 rules), alulate the orresponding response funtion(array). From a programming point of view, this is the most om-pliated omponent, and we have thus far only implemented ertainspeial ases.The work on the implementation ontinues. Here, in the group of KennethRuud at the University of Tromsø, Radovan Bast is generalizing the inter-5S. Coriani, S. Høst, B. Jansik, L. Thøgersen, J. Olsen, P. Jørgensen, S. Reine, F.Pawªowski, T. Helgaker, and P. Saªek: �Linear-saling implementation of moleular re-sponse theory in self-onsistent �eld eletroni-struture theory�, J. Chem. Phys. 126,154108 (2007).



42 Summary and outlookfae to the DIRAC program for 2- and 4-omponent relativisti alulations.Meanwhile, in the group of Poul Jørgensen at the University of Århus, KasperKristensen aims to generalize the ode to alulate the residues (resonanes)of the response funtions.


