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ABSTRACT 

Background 

The rapid increase in antimicrobial resistance (AMR) has become a major threat to the 

successful management of infectious diseases. To counteract this global threat, development 

of novel treatment strategies is essential. A promising strategy may be exploiting collateral 

sensitivity; a phenomenon that occurs when a microorganism that has developed resistance to 

one antimicrobial agent, exhibits increased susceptibility to another antimicrobial agent. In 

order to develop novel treatment strategies and prevent further resistance development, we 

aimed to explore the generality of the concept of collateral sensitivity in clinical urinary tract 

isolates of E. coli. Furthermore, we wanted to investigate the underlying mechanisms of 

collateral sensitivity. 

Methods 

We evolved resistance to mecillinam in a collection of clinical isolates of E. coli. Ten were 

selected for further determination of possible collateral sensitivity and cross-resistance 

networks. The IC90-assay with micro broth dilution was used for this purpose, which we 

tested for eight different antimicrobial agents. The results were displayed in heat maps and 

graphs showing the distribution of AMR to various agents. PCR and DNA sequencing were 

performed for the mrdA gene to detect mutations that may confer mecillinam resistance. 

Results 

According to our results both collateral sensitivity and cross-resistance occurred in 

mecillinam resistant isolates. Chloramphenicol presented the highest tendency of collateral 

sensitivity, while ciprofloxacin presented the highest tendency of cross-resistance. In general, 

a substantial tendency for collateral sensitivity frequently appeared compared to cross-

resistance. Moreover, 13 synonymous point mutations were observed in the mrdA gene, 

leading to no alteration in the amino acid sequence. 

Conclusion 

Based on our in vitro results, we suggest mecillinam could be a good candidate to be 

employed as the first drug of choice for UTIs caused by E. coli. Mecillinam resistant isolates 

exhibited a clear tendency for collateral sensitivity, which we believe would occur on the 

population level as well. Further investigations of the underlying mechanisms of collateral 

sensitivity are required.  
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DEFINITIONS 

Antimicrobial resistance (AMR): “resistance of a microorganism to an antimicrobial drug 

that was originally effective for treatment of infections caused by it” (1). 

Cross-resistance (CR): occurs due to a single resistance mechanism which confer resistance 

to an entire class of antimicrobial agents (2).  

Collateral sensitivity (CS): in the context of microbiology, CS occurs when a microorganism 

that has developed resistance to one antimicrobial agent exhibits increased susceptibility to 

another antimicrobial agent (3).  

Community-acquired infection: infections are acquired in the community, in contrast of 

hospital-acquired infections (4). 

Hospital-acquired infections: infections are acquired in hospitals and other healthcare 

facilities, in contrast of community-acquired infections. The patient in this case must have 

been admitted for reasons other than infection, and has shown no signs of active or incubating 

infection (4).  

In vitro: “in glass”, studies are performed with microorganisms, cells or biological molecules 

outside their normal biological context (5). 

In vivo: “in the living”, studies are performed in living organisms (5). 

Isolate: a population of bacterial cells in pure culture derived from a single colony. In the 

context of clinical microbiology, isolates are usually derived from the primary culture of a 

clinical specimen obtained from an individual patient (6).  

Multidrug-resistance (MDR): defined as acquired non-susceptibility to at least one 

antimicrobial drug in three or more antimicrobials categories (2).  

Nucleotides: building blocks of nucleic acids in DNA and RNA. Nucleotides have three 

characteristics components; a nitrogenous base (purine or pyrimidine), a pentose and a 

phosphate (5). 

Nucleic acids: biomolecules essential for all known form of life. Nucleic acids, which include 

DNA and RNA, are made from monomers known as nucleotides (5). 
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Pathogen: a bacterium, virus or other microorganism that can invade the human body and 

cause disease (7).  

Plasmid: an “extrachromosomal”, circular DNA in the bacterial cells that replicates 

independently of the chromosome and regulate its own replication (8).  

Species: the basic category of bacteria; a named group of bacteria which shows a high degree 

of overall similarity as compared to other, more vaguely related strains. Currently there are no 

universally accepted species definitions (6). 

Strain: the descendants of a single isolation in pure culture, usually derived from a single 

initial colony. It may be considered as an isolate or a group of isolates that can be 

distinguished from other isolates of the same genus and species by phenotypic or genotypic 

characteristics. E.g. Two isolates can be representatives of one strain, however two strains can 

never be the same isolate (6). 

Transposon: “jumping gene”, a DNA sequence that can move from one place in the DNA to 

a different place (8). 
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1 INTRODUCTION 

1.1 Preface 

The phrase “survival of the fittest” originated from an evolutionary theory that describes the 

mechanism of natural selection (9). As early as in the 1850s, Charles Darwin discovered the 

foundation of a scientific theory on adaptation of animals and plants and their incredible 

biodiversity. Few would expect that this would give rise to human’s biggest public health 

threat in the 21st century; antimicrobial resistance, a global threat driven by the evolution of 

resistant microorganisms. To combat this threat, novel infectious treatment strategies are 

essential. A promising strategy may be exploiting collateral sensitivity; a phenomenon 

brought to light in 1952, which for the past few years has caught the interest of researchers 

again. Translating collateral sensitivity networks into treatment-guidelines may retard the 

evolution of antimicrobial resistance by constraining the evolutionary paths towards 

resistance. 

 

 

1.2 Antimicrobial agents 

The discovery of penicillin by Alexander Fleming in 1928 is considered the beginning of the 

history of modern medicine, as well as one of the greatest discoveries of the 20th century. An 

antimicrobial agent is a substance that either kills or inhibits the growth of microorganisms 

(4). These agents are categorized according to the microorganisms they act primarily against. 

Antibacterial agents are used to treat bacterial infections, antifungal drugs act against fungi, 

antiviral drugs are used specifically for treating viral infections, and antiprotozoal drugs act 

against protozoa (4). In this thesis antimicrobial agents or antimicrobials refer to antibacterial 

drugs. 

 

1.2.1 Classification of antimicrobial agents 

Antimicrobial agents are derived naturally from microorganisms, chemically modified or 

produced fully synthetic by pharmaceutical chemists (4). They can be classified in several 

ways, including: 
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Ø spectrum of activity; either broad- or narrow-spectrum 

Ø effect on bacteria; antimicrobials can either kills the microorganisms (bactericidal) or 

inhibits their growth (bacteriostatic). This distinction is rather blurred since some of 

the drugs have bactericidal effect on some species, but have bacteriostatic on others 

Ø and mode of action (4). 

I have chosen to describe antimicrobials agents in the context of their mode of action, which 

categorize them into five categories based on their site of activity (4): 

i) Inhibition of cell wall synthesis 

The bacterial cell wall is essential for maintenance of the integrity of bacterial cells (4).  The 

cell synthesis is hence an important target for antimicrobial agents. A unique and main 

component of the bacterial cell wall is peptidoglycan, which is a mixed polymer of hexose 

sugars and amino acids (4). In Gram-positive bacteria, peptidoglycan forms a thick layer 

external to the cell membrane, and may contain other macromolecules (4). While in Gram-

negative bacteria, the peptidoglycan layer is thin and is also overlaid by an outer membrane 

with other components such as lipoproteins and lipopolysaccharides (4). β-lactams target the 

bacterial cell wall synthesis by specific covalent binding to penicillin-binding proteins 

(PBPs), such as mecillinam and PBP 2 (10). The mode of action for mecillinam differs from 

other β-lactams, which bind to other PBPs (10). PBP 2 is responsible for the elongation of 

rod-shaped cells and generates the mature peptidoglycan molecules. Thus cells treated with 

mecillinam will have impaired formation of cross-links and become enlarged, non-dividing 

spheres that ultimately lyse (11, 12).  

ii) Inhibition of nucleic acid synthesis 

DNA and RNA are the keys to replication of all living forms. Antimicrobials, such as 

quinolones (e.g. ciprofloxacin), disrupt DNA or RNA synthesis by interfering with either 

nucleotide or nucleic acid biosynthetic processes in the cell (4). This causes interference of 

normal cellular processes, for instance bacterial transcription or replication, and thus cell 

viability as well (4).  

iii) Inhibition of protein synthesis 

Enzymes and most of cellular structures are primarily made of proteins, which are essential 

components necessary for bacterial cell growth and replication (4). Many antimicrobials 
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target bacterial protein synthesis by binding to either the 30S or 50S subunits of the ribosomes 

(the site of protein synthesis). Consequently, this will lead to cell death of the organism or 

inhibition of its cell growth or replication (4). Antimicrobial classes that have this mode of 

action are for instance aminoglycosides (e.g. gentamicin), macrolides, tetracyclines and 

miscellaneous (e.g. chloramphenicol and nitrofurantoin) (4). 

iv) Inhibitor of cell membrane functions 

Disruptions or damage to the cell wall structure may result in the loss of important solutes 

essential for survival of the cell (4). Unfortunately both eukaryotic and prokaryotic cells have 

this cell wall structure and consequently some of the antimicrobials in this class may often be 

lead to severe adverse effects for systemic use in humans (4). Therefore most clinical use is 

restricted to topical applications, such as polymyxin B. 

v) Inhibition of other metabolic pathways 

Inhibition of other metabolic pathways includes the folic acid pathway, a process which is 

needed for production of precursors for nucleic acid synthesis (4). For instance trimethoprim 

acts by preventing tetrahydrofolic acid synthesis. This is required for the synthesis of different 

nucleotides in the DNA and RNA (4). 

 

 

1.3 Antimicrobial resistance 

The successful discovery of antimicrobial agents was unfortunately compromised by the 

inevitable emergence of antimicrobial resistance (AMR) from the time they were first used 

(1). As the quote “Some men are born great, some achieve greatness, and some have 

greatness thrust upon them” by William Shakespeare, some bacteria are born resistant, others 

have resistant thrust upon them. In other words, enhanced levels of resistance can be achieved 

by mutations in the bacterial genome (de novo) or by acquisition of resistance-conferring 

genes through horizontal gene transfer (HGT) (4). This will be described in more detail in the 

section on AMR mechanism (section 1.3.4). I will first address the true cost of AMR, the 

current status in Europe and give a brief introduction to possible novel strategies to deal with 

the issue of AMR development both from the scientific/medical communities as well as the 

action plan suggested by the World Health Organization (WHO). 
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1.3.1 The true cost of AMR 

In the last 70 years, there has been a continual race between the discovery and development of 

novel antimicrobials and the bacteria that will respond to the selective pressure and novel 

AMR mechanisms that are developed and selected for (4, 13). 

At the present time, AMR is listed as one of the greatest threats to human health according to 

recent World Economic Forum Global Risks reports (14). It is also recognized as a growing 

global threat to the successful management of infectious diseases (15), with over 2 million 

AMR infections per year in the US alone (16). According to WHO, deaths caused by 

infectious diseases represent more than half of disease-related deaths globally (17). The 

emergence of bacteria with a diversity of resistance mechanisms has intensified the challenges 

associated with infection control and treatment strategies. 

 

1.3.2 Current status and possible strategies for improvement of treatment 

strategies 

Though AMR occurs naturally, over- and misuse of antimicrobial agents accelerates this 

process (18, 19). According to the annual surveillance reports by the European Centre for 

Disease Prevention and Control (ECDC), there is an association between the consumption 

levels of antimicrobials and the levels of AMR (20, 21). Figure 1 gives an overview of the 

consumption of antimicrobials for the majority of European countries in 2014 (20). Greece, 

Romania and France were the three countries with the highest consumption of antimicrobial 

agents. Another report of ECDC from the same year gave the latest data on AMR for different 

bacterial species in Europe (21). For invasive isolates of E. coli with resistance to third-

generation cephalosporins in 2014, there is a clear correlation of resistance prevalence and 

antimicrobial agents consumption (Figure 2). Bulgaria, Cyprus, Italy, Romania and Slovakia 

were countries with highest resistance prevalence in 2014, in which the percentage of 

resistance were 25% to < 50%. 
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Figure 1: Consumption of antimicrobials for systemic use in the community for different European countries 2014. 
The different color codes denote various antimicrobial groups. Permission obtained from: (20, 22). 
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Figure 2: Percentage of invasive isolates of E. coli with combined resistance to third-generation cephalosporins in 
2014. Permission obtained from: (21, 22). 

 

Microorganisms develop defensive mechanisms, which protect them from antimicrobials and 

allow them to become less sensitive (4). Switching to another antimicrobial or higher dosage 

is not always sufficient. In the latter, increased dosage is associated with greater adverse 

effects and toxicity for the patient. Moreover, use of high doses of antimicrobials has the 

potential to promote increase of cross-resistance in clinical settings (23). 

So why do we not develop novel antimicrobials that can combat resistant bacteria? In order to 

do this, the developed antimicrobials must be effective against resistant microorganisms (e.g. 

those with novel antimicrobial mechanism(s)), which is a tremendously challenging and time-

consuming task (24). The dramatic decrease in novel antimicrobial agents approved is not 

only due to scientific but also other several factors, including commercial ones. 

Pharmaceutical companies consider development of antimicrobial agents a poor economic 

investment compared to drugs that treat chronic illness (24). An example of this is drugs 
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treating high blood pressure (hypertension) that are taken daily for the rest of a patient’s life 

while antimicrobials are taken only for a short period of time. This is one of the major reasons 

why companies have stopped developing antimicrobial agents. In addition to the mentioned 

factors, use of a novel antimicrobial agent will probably eventually lead to development of 

AMR as well. Hence changing our antimicrobial treatment strategies may be a better solution.  

One approach to counteract drug resistance development in bacteria is combination therapy 

where two or more drugs are administered simultaneously. The first case showing success 

with combination therapy was in 1940s, based on a so-called synergistic effect (25). Synergy 

is the interaction of drugs where the combined effect is greater than the sum of drugs 

individually. Combination therapy has been considered a promising drug therapy strategy to 

the rising health threat of AMR until associated severe adverse effects were observed for 

some combination therapies. For instance the combination of tobramycin and piperacillin has 

shown renal toxicity, skin rash and ototoxicity (26). Furthermore, several studies have shown 

no difference in clinical outcomes between combination therapy and monotherapy (26). 

However, a more favorable strategy may be alternating therapy, also known as collateral 

sensitivity cycling. Translating collateral sensitivity networks into treatment-guidelines may 

retard the evolution of antimicrobial resistance by constraining the evolutionary paths towards 

resistance (27). This will be described in more detail in the section 1.4. To approach solutions 

for AMR we need to understand how currently used antimicrobial agents work and how 

bacteria are able to survive treatment with these antimicrobials. 

 

1.3.3 WHO global action plan to tackle AMR 

Several antimicrobial stewardship programs have developed strategies to control the 

emergence of AMR. In May 2015, The World Health Assembly of WHO endorsed a global 

action plan to tackle AMR (28). Their goal is to ensure continuity of successful treatment and 

prevention of infectious diseases with effective and safe medicines, used in a responsible way, 

and accessible to all who need them. They set out five strategic objectives to achieve this 

goal: 

1) “to improve awareness and understanding of AMR”; this can promote behavioral 

change by raising the issue through effective communication, education and training.  
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2) “to strengthen knowledge through surveillance and research”; integrated programs 

are needed for surveillance of AMR in all countries, which aim to extend reduction in 

prevalence of AMR by using the collected data. This should be supported by national 

governments, professional organizations and industries through the generation of such 

knowledge and bringing it into practice. 

3) “to reduce the incidence of infection”; this can be achieved through better hygiene 

and infection prevention (e.g. better sanitation, hand washing, food and water safety), 

vaccine programs and sustainable husbandry practices. 

4) “to optimize the use of antimicrobial agents”; there is need for effective, rapid, low-

cost diagnostic tools for guidance on the optimal use of antimicrobials. It is also 

important to improve regulations of the purchase and compliance of patient and health 

care provider. 

5) “develop the economic case for sustainable investment that takes account of the needs 

of all countries, and increase investment in new medicines, diagnostic tools, vaccines 

and other interventions.”; studies on the economic cost of AMR should be 

implemented for all countries, not only limited to developed countries. Additionally 

there is need for affordable tools to inform health personnel of the susceptibility of the 

pathogens to available antimicrobials (28). 

 

1.3.4 Development and dissemination of antimicrobial resistance 

Some bacteria are naturally resistant to specific antimicrobials (intrinsic resistance). Intrinsic 

resistance is the inherent ability of a species to resist the mode of action(s) of a certain 

antimicrobial agent through its inherent structural or functional characteristics (4). The 

mechanisms of this could be the lack of drug target. While acquired resistance occurs when 

a particular species, initially susceptible to a certain antimicrobial, obtains the ability to resist 

the mode of action(s) to the respective antimicrobial agent (4). 

This thesis only deal with acquired resistance mechanisms. Definitions and examples of such 

resistance mechanisms will be described in section 1.3.4.2. But first, I will address how 

antimicrobial resistance occurs and how it spreads in bacterial populations. 
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1.3.4.1 Emergence of genes conferring resistance 

A mutation is a permanent alteration in the sequence of nucleotides in a DNA molecule. 

When there are changes in the DNA sequence it can lead to genetic variation and affect the 

phenotype (8). However, a DNA mutation may or may not affect the phenotype of the 

organism depending on if the mutation leads to alteration in the amino acid sequence (29). A 

mutation can be classified by the type of alteration in the DNA, the alteration it causes in the 

protein, or by whether the mutation is a spontaneous change in the genetic material or induced 

by a mutagen in the environmet (e.g. plasmids or transposons) (29). The different types of 

mutation are:  

• Point mutation: a nucleotide in one chromosomal position is substituted of another 

nucleotide. This usually takes place during DNA replication. There are different types 

of point mutations;  

i) Transition: substitution of a nitrogenous base, such as a purine base (A or G) 

with another purine, or a substitution of a pyrimidine (T or C) with another 

pyrimidine (29).  

ii) Transversion: substitution of a purine with a pyrimidine or vice versa. This is 

the most common type of mutation, which may or may not alter the functional 

properties and stability of the protein (4). 

iii) The formation of a STOP codon in the nucleotide sequence: causing premature 

termination of a certain protein, which almost always inactivates the protein 

(8). 

• Deletion or addition of a nucleotide: occurs during DNA replication. This may be 

induced by mobile elements such as transposons (29). 

When mutations in the nucleotides do not lead to alteration in the amino acid sequence (the 

protein), they are called synonymous mutations (30). This is because the mutated codon still 

encodes for the same amino acid as the original codon. Whereas mutations that may change 

the protein sequence are called non-synonymous mutations (30).  

Mutations in the DNA may also arise through inversion (flipping a region so that it lies in 

reverse orientation), deletion (a number of base pairs have been removed) or insertion 

(incorporation of another DNA sequence) (8). An insertion or a deletion of nucleotides other 

than in groups of three leads to a frame shift mutation. The reading frame is changed and this 
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leads to a change in the protein amino acid sequence, which can lead to alteration in the 

protein function, reduction of activity or inactivation the protein.  

 

1.3.4.2 Vertical and horizontal gene transfer 

AMR mechanisms can be transferred vertically. This is transmission of genes conferring 

resistance from the bacteria to its daughter cells during DNA replication and cell division 

(13).  

Development of AMR can occur through mutations (as mentioned above) and also through 

acquisition of new AMR genes by HGT. HGT occurs when the genetic material is contained 

in mobile genetic elements, such as plasmids, transposons and bacteriophages, and transferred 

between the same or different species (13). HGT is primarily mediated by conjugation, 

transduction or transformation (4, 8); 

1. Conjugation: occurs when the donor cell transfers DNA to the recipient cell by direct 

contact through a pilus. The genetic material is exchanged between bacterial cells, 

whereas this process involves transfer of mobile genetic elements such as plasmids or 

transposons (4, 8).  

2. Transduction: gene transfer through transduction involves bacteriophage, a virus that 

infects and replicates within a bacterium. When the bacteriophage infects the recipient 

cell, it will at the same time donate its own DNA into it. Thus if the DNA of the 

bacteriophage contains resistant genes, which has been incorporated with its own 

DNA when being replicated inside a resistant bacterium, the resistant gene will be 

transferred to other cells (4, 8). 

3. Transformation: occurs when a bacterium lyses, leading to release of free 

extracellular DNA, often in the form of plasmid. This may be taken up by the recipient 

bacterial cell, which will incorporate it into its genome. Hence lysis of a resistant cell 

will cause release of resistant genes that may be taken up by other recipient cells (4, 

8). 

Mutations are clearly important with respect to resistance development. However, the main 

problem in spread of AMR is the mobile genetic elements that harbor resistance determinants 

(4). This occurs often for the antimicrobial agents of last resort, e.g. vancomycin and 

carbapenems (31, 32). Another example is colistin, an important antimicrobial agent where 
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only rare chromosomal mutation resistance was described. Nonetheless, a recent study reports 

the emergence of colistin resistance on a plasmid (33). 

 

1.3.5 Fitness cost of AMR 

AMR is caused by the development of different antimicrobial resistance mechanisms (section 

1.3.4). Newly acquired resistance is (often) costly and reversal of resistance in drug-free 

environments occurs mainly as a function of these costs. As an example, several studies have 

shown that antimicrobial resistant isolates may have slower growth rates than susceptible 

isolates (34, 35), hence AMR can lead to harmful adverse effects for the bacteria. This is 

referred to as the “cost” of resistance (36).  

In principle, antimicrobial sensitivity may be renewed by temporarily exclusion the 

antimicrobials for which resistance has emerged, thus allowing competitive replacement of 

resistant bacteria with sensitivity ones that have higher fitness (36). However, this 

disadvantage can be ameliorated by compensatory evolution through for example, mutations 

that increase or restore the fitness of the resistant isolates (37). This allows resistance to 

persist even without the presence of antimicrobials (32). 

Conventional antimicrobial cycling is based on the assumption that resistance is accompanied 

by a biological fitness cost. In the absence of selective pressure imposed by drug treatment, 

the resistance frequency of a population with high fitness cost is expected to be outcompeted 

by their non-resistant parental WTs and disappear from the bacterial population (32). 

However, due to the uncanny ability to bacteria to adapt, renewing sensitivity is difficult 

because of natural selection and the evolutionary adaption of the resistant bacteria (32). 

Furthermore, the reversal is expected to be slow even if a fitness cost is present (32). 

 

 

1.4 Collateral sensitivity 

As mentioned earlier, a possible favorable strategy to combat AMR is to constrain the 

mutational paths towards resistance taking advantage of the phenomenon of collateral 

sensitivity. Collateral sensitivity is a phenomenon which arises when bacteria acquiring 
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resistance to one antimicrobial agent become more susceptible to others (3, 38). Szybalski and 

Bryson used this term for the first time in 1952 when they did research on cross-resistance 

(3). However, it never got much attention until recently. Although there have been several 

studies on this phenomenon, the underlying mechanisms of collateral sensitivity still remain 

unclear.  

In 2013, Imamovic and Sommer suggested that collateral sensitivity cycling could contribute 

to the sustainable use of antimicrobial agents in the clinic for controlling resistant bacteria 

(38). They approached this hypothesis by evolving parallel lineages of E. coli resistant to 23 

antimicrobial agents. These resistant isolates were derived from a laboratory strain (MG1655) 

and two clinical isolates of E. coli. Collateral susceptibility profiles for the different isolates 

were determined by using microtiter plates and 2-fold dilutions of the tested antimicrobial.  

The theory behind Imamovic and Sommer’s suggestions is displayed in Figure 3, and can 

briefly be explained as follows: a pathogenic wild type (WT) cell population (black circles) 

being treated with drug A (blue arrow) at time t0. Over time emergence of resistance for drug 

A will arise (blue circles) and drug A becomes ineffective (t1). By switching to drug B (red 

arrow), which drug A-resistant isolates have become collaterally sensitive to (t2), leading to 

susceptibility of drug A-resistant isolates and selection for cells with WT resistance levels. 

Eventually, resistance to drug B (red circles) will arise (t3) and treatment will get switched 

back to drug A to, which drug B-resistant isolates have become collateral sensitive, resulting 

in susceptibility of drug B-resistant isolates (t0). Therefore through rational cycling between 

drugs A and B, they are counter selecting for resistance thus the emergence of antimicrobial 

resistant populations can be prevented.  

 
Figure 3: Collateral sensitivity cycling. A general model demonstrating the principle of collateral sensitivity cycling, 
showing the eradication of resistant strain when antimicrobials with reciprocal collateral sensitivity profiles (Drug A and B) 
are rotated. Adapted and modified from: (38). 
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Imamovic et al. also conducted an experiment to provide proof of a principle for collateral 

sensitivity cycling. According to their heat map, showing antimicrobial susceptibility profiles 

of drug-resistant strains relative to the WT, gentamicin (GEN) exhibited collateral sensitivity 

for cefuroxime (CFX). Hence a population of E. coli WT was evolved to become resistant 

toward gentamicin. Once that was achieved, gentamicin-resistant cells were mixed with WT 

cells, and the mixed population was exposed to cefuroxime. This treatment led to complete 

killing of the gentamicin-resistant cells. The same was done with the remaining WT cells, but 

this time they evolved resistance to cefuroxime. Again, cefuroxime-resistant cells were mixed 

with WT cells and exposed to gentamicin. This resulted in complete killing of cefuroxime-

resistant cells and survival of WT cells. Here they demonstrated how collateral cycling could 

be applied to select against resistance (38). 

In recent years, several studies have aimed to extend the knowledge of this phenomenon (27, 

39-44). As mentioned earlier, the underlying mechanisms of collateral sensitivity still remain 

unclear. Many studies offer an insight into this; one among them involved reduction in the 

activity of efflux pumps (39, 43). This is the best-described mechanism, which was first 

explained by Lázár et al. (39). In this work they also performed evolutionary experiments to 

study networks of collateral sensitivity interactions. Three main patterns emerged from their 

susceptibility map; first, collateral sensitivity interactions occurred frequently. Second, the 

mode of antimicrobial action has a strong influence on the distribution of interactions. And 

third, the majority of the collateral sensitivity interactions involved aminoglycosides. 

Lázár et al. suggested that resistance to aminoglycosides, caused the reduction in activity of 

efflux pumps, which altered the susceptibilities to multiple different antimicrobials such as 

ampicillin, fosfomycin and nitrofurantoin (39). The theory was that uptake of 

aminoglycosides is affected by changes in the cell membrane potential, and resistance to this 

antimicrobial group was caused by a reduction in the membrane potential. Simultaneously, 

efflux pumps that use the proton motive force had reduced function because of the reduced 

membrane potential. This leads to increase intracellular accumulation of several other 

antimicrobials whose efflux was dependent on these pumps. This theory was supported 

through whole-genome sequencing (WGS). It revealed that following adaption to 

aminoglycosides, mutations that most likely diminish the function of efflux pumps are 

frequently found (39).  
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This so-called trade-off, where the organism is losing one quality or aspect of something in 

return for gaining another quality or aspect, is an important factor of collateral sensitivity 

(27). In the Lázár-study, bacterial trade-off gives rise to alteration of the cell membrane 

permeability, that may not only cause decreased intracellular accumulation of one 

antimicrobial, but also increased intracellular accumulation of others (27, 39). 

Earlier studies on collateral susceptibility frequently used Escherichia coli (E. coli) as the 

prokaryotic model organism (38, 39, 43). It is an advantageous model organism due to its 

rapid growth, the vast knowledge humans have about this bacterium and the diversity of 

molecular tools available. Additionally, it is a very relevant pathogenic bacterium, which will 

be reviewed below. For these reasons, E. coli was chosen as the model of organism for the 

current study. 

 

 

1.5 Escherichia coli 

 E. coli is a rod-shaped, Gram-negative bacterium, which is motile and can be with or without 

a capsule (4). E. coli is also non-fastidous and bile-tolerant facultative anaerobe (4). 

This bacterium causes urinary tract infections (UTIs), diarrheal diseases, neonatal meningitis 

and bloodstream infections (septicemia) (4). However, harmless types of E. coli normally 

inhabit the gut of humans and animals, and may also colonize the lower end of the urethra and 

vagina (4). It is when E. coli spreads to other locations outside the intestinal tract, by contact 

and ingestion (faecal-oral route), that it primarily becomes a pathogen (4, 45). This may be 

food-associated or endogenous. The bacterium possesses different antigens, which can be 

used for diagnostics to characterize strains by serotyping (4). 

 

1.5.1 Pathogenic categorization 

E. coli is a diverse group of bacteria and some E. coli strains are more pathogenic than others 

(4). This is due to the carriage of different virulence factors, and makes it suitable to 

categorize pathogenic E. coli into different pathotypes: 
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- Enteropathogenic E. coli (EPEC): causes sporadic cases and outbreaks of infection 

in babies and young children. The virulence factors they possess are bundle-forming 

pili, intimin and an associated protein (4). 

- Enterotoxigenic E. coli (ETEC): the most important bacterial cause of diarrhea in 

children. The virulence factors they possess are colonization factors and production of 

enterotoxins (4). 

- Entereohaemorrhagic E. coli (EHEC): sporadic cases and outbreaks worldwide, 

which food and unpasteurized milk are important for cause of infection spread. Their 

production of verotoxins affects tissue cultures resulting in diarrhea (4). 

- Enteroinvasive E. coli (EIEC): the most common bacteria for diarrhea in areas of 

poor hygiene. By using plasmid-mediated genes they invade the cells by endocytosis 

(4). 

- Enteroaggregative E. coli (EAEC): causes diarrhea in children in areas where 

resources are poor. They also have characteristic attachment to tissue culture cells. 

Their virulence factors are plasmid-mediated fimbrae and heat-labile toxins (4). 

- Diffuse-aggregative E. coli (DAEC): causing diarrhea in children as well but is 

somewhat controversial. They produce an alpha haemolysin and cytotoxic necrotizing 

factor 1 (4). 

 

Among the diseases mentioned above, UTIs are one of the most common infections in the 

world, which this project will be focusing on (10, 46). 

 

1.5.2 E. coli – clinical relevance 

The current spread of Gram-negative bacteria is a therapeutic challenge. In this project the 

focus will be on E. coli, the most frequently isolated etiological agent from a range of 

infections such as UTIs and septicemia worldwide (4). Beside UTIs being among the most 

common infections seen in the community (10), they are also associated with prominent 

morbidity (4). The annual number of uncomplicated UTIs cases is 130-175 millions 

worldwide, which usually are caused by E. coli (46). Septicemia, originating in the urinary 

tract, is a common and serious complication of UTIs. To reduce mortality of this illness, 

appropriate treatment is critical. However the increasing prevalence of AMR E. coli limits 

clinical options and delays suitable therapy (46). Furthermore, E. coli isolates producing 

extended-spectrum β-lactamases (ESBLs), which degrade a wide range of antimicrobials 
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(specifically β-lactams) through hydrolysis, are becoming more prevalent in the community 

(10, 47). Carbapenems have been regarded as the drugs of choice to combat multi-resistant 

ESBL-producers (4). However, the emergence of resistant bacterial species to carbapenems 

have been reported and is highly associated with numerous healthcare-related risk factors and 

with high mortality (48). Thus efficient infection-control practices for containment of 

outbreaks and novel treatment strategies are necessary against the emergence of antimicrobial 

resistance in E. coli. 

 

 

1.6 Urinary tract infections 

The urinary tract includes the kidneys, the ureters (the tubes that carry urine from the kidneys 

to the bladder), the bladder (which stores urine) and the urethra (the tube that carries the urine 

from the bladder to the outside) (49). 

UTIs occur when bacteria are introduced into the urethra and move up into the bladder. E. coli 

is the most common organism causing UTIs (4). If the infection remains only in the bladder, 

the infection is called “cystitis”, however if infection travels up past the bladder and into the 

kidneys, it is called “pyelonephritis” (4). 

Cystitis is the most common bacterial infection and causes symptoms such as burning during 

urination and the need to urinate frequently (7). Pyelonephritis is less common than cystitis 

and they have similar symptoms (7). However, pyelonephritis may also cause fever, back pain 

and nausea or vomiting (7). Both infections are more common in women than men due to 

anatomical reasons. Women usually have uncomplicated cystitis and are easily treated with a 

short course of antimicrobial treatment (50). In men, cystitis may also affect the prostate 

gland and therefore is more complicated so treatment for a longer period is necessary (51).  

UTIs may be community- or hospital-acquired (4). There are a variety of mechanical factors 

that can predispose someone to develop a UTI, such as disruption of normal urine flow, 

incomplete emptying of the bladder or factors that facilitate access of organisms to the 

bladder (4).  
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1.6.1 Treatment of UTIs 

According to the Norwegian guidelines from the directorate of Health (“Helsedirektoratet”), 

the antimicrobials recommended for treatment of acute uncomplicated and complicated 

cystitis are trimethoprim, nitrofurantoin and pivmecillinam. The duration of treatment 

depends on whether it is an uncomplicated or complicated infection, 1-3 or 5-7 days, 

respectively (52). 

Treatment guidelines for other part of the world vary in their recommendations compared to 

Norway. For instance, in the United Kingdom (UK), for children of 3 months or older with 

cystitis or lower UTIs, the drugs of choice for treatment are trimethoprim, nitrofurantoin, 

cephalosporins, or amoxicillin (53). First-line agents for symptomatic lower UTIs for non-

pregnant women are trimethoprim or nitrofurantoin in Scotland (54). And according to the 

Infectious Diseases Society of America (IDSA), trimethoprim-sulfamethoxazole is one of the 

traditional first-line drugs in the US (55). With a focus on the situation in Norway and based 

on previous results from the Microbial Pharmacology and Population Biology Research group 

(MicroPop) at UiT – The Arctic University of Norway (Tromsø), which will be described 

below, we have given mecillinam special attention in this study. 

 

 

1.7 Mecillinam 

Mecillinam is a β-lactam antimicrobial, which was discovered in the 1970s with bactericidal 

effect. Mecillinam, unique among β-lactams, binds selectively to PBP 2 in the Gram-negative 

cell wall, especially E. coli (10). E. coli replicate through binary fission. This is a process 

where cells increase in length and split in two by constricting at the middle of the cell leading 

to synthesis of new cell poles (Figure 4) (56). Directed by a so-called Z-ring, which functions 

as a scaffold for other proteins to attach (such as FtzQ, -A and -Z), the formation of a septum 

is formed and divides the cell into two daughter cells. 
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Figure 4: A model of cell division including various cell division proteins. 

 

Mecillinam affects the bacterial cell wall by binding to PBP 2 and inhibits the transpeptidase 

activity of the enzyme. PBP 2 is responsible for the elongation of rod-shaped cells. Thus cells 

treated with mecillinam become enlarged, non-dividing spheres that leads to lysis (12). 

Pivmecillinam, which is the prodrug of mecillinam, is a synthetic penicillin for oral use (10) 

(Figure 5). According to the Norwegian guidelines, pivmecillinam dosage is usually 200 mg 3 

times daily for treatment of uncomplicated UTIs (52). In contrast of mecillinam, 

pivmecillinam absorbs readily from the gastrointestinal tract and undergoes enzymatic 

hydrolysis by esterases that liberate the active mecillinam (10).  

 

 

Figure 5: Chemical structures of pivmecillinam (prodrug in ester form) and mecillinam (active form). 
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Mecillinam has high clinical efficacy for the treatment of UTIs, and is also well tolerated with 

a low side-effect profile (10, 57). However, MDR bacteria that are resistant to mecillinam 

have been observed and are threatening the treatment of UTIs (58, 59). According to the 

NORM/NORM-VET report, the prevalence of mecillinam resistance has slowly increased in 

UTIs, from 4,2% in 2012, to 5,0% in 2013 and to 6,0% in 2014 (58). Another study that 

aimed to provide an update of antimicrobial resistance in E. coli causing uncomplicated UTIs, 

also showed similar results (59). This update for 2014 in Spain presented a prominent 

increase in resistance, including to mecillinam (1% to 6,5%) (59).  

In the current project, mecillinam was the drug of choice for our focus in making resistant 

mutants. This choice is based on the previous results from MicroPop. In their work, they 

evolved clinical E. coli isolates (isolates from the same ECO-SENS collection as in our study) 

resistant to four different antimicrobial agents, ciprofloxacin, mecillinam, nitrofurantoin and 

trimethoprim. For each isolate they performed MIC testing to determine the susceptibility 

profiles for 16 antimicrobial agents. They generated an overview of distribution of collateral 

sensitivity and cross-resistance as displayed in Figure 6. Based on the results from MicroPop, 

mecillinam gives a strong collateral sensitivity profile compared to the other three 

antimicrobial agents. 

 

 
Figure 6: AMR to different antimicrobial agents in various collateral sensitive/cross-resistance phenotypes. The 
average log MIC changes for each AMR group to 16 antimicrobial are compared. Blue coloring indicates collateral 
sensitivity, and red coloring indicates cross-resistance. Permission obtained from: MicroPop research group at UiT – The 
Arctic University of Norway in Tromsø.  
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1.7.1 Use of and prevalence of resistance to mecillinam in Norway 

Mecillinam is one of the first line drugs of choice for uncomplicated UTIs treatment in 

Norway (52). According to the NORM/NORM-VET report from 2014, pencillins with 

extended spectrum constitute 41% of penicillins used in Norway (58). This is an increase in 

use compared to 30% in 2003, which is due to increased use of amoxicillin and pivmecillinam 

(58). Pivmecillinam is being used more for UTIs, replacing the role of sulfonamides and 

trimethoprim. Also, the same report shows sales of single antimicrobials, where 

pivmecillinam is one of the antimicrobials that are most frequently used for outpatients. 

Together with phenoxymethylpenicillin and doxycycline, these three represent 47% of all 

prescriptions for outpatients given from primary care when methenamine is excluded.   

As mentioned above, the prevalence of resistance has slowly increased for mceillinam (58). 

However, the report also shows that the susceptibility test results are difficult to reproduce for 

this antimicrobial and therefore, the observed differences may not reflect real changes in 

prevalence. Even though resistance rates among urinary tract isolates have remained relatively 

stable over the last decade, it is trending upwards for most antimicrobials and mecillinam is 

unfortunately one of them (Figure 7). 

 

 

Figure 7: Prevalence of resistance to different antimicrobials in E. coli urinary tract isolates from 2000-2014. 
Permission obtained from: (58). 
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1.7.2 Use of and resistance prevalence of mecillinam in the world 

Although mecillinam is the most used agent for UTIs in Northern countries (60), the drug is 

not available everywhere (e.g. it is not used in Canada and the US) (57), or not a drug of 

choice in the recommendations of UTIs treatment (54, 55). According to IDSA, trimethoprim-

sulfamethoxazole is the major first-line agent in the US (55). Studies have shown high 

susceptibility rates to mecillinam in Europe and in some countries in the Americas (61, 62). 

For instance according to a surveillance study from 2008 the susceptibility rate of E. coli to 

mecillinam was above 90% for all countries that were included (9 European countries and 

Brazil) (61). This was the second highest susceptibility rate with 95,8% for all countries in 

total, right after fosfomycin with 98,1%. Similar results were reported by Kahlmeter and his 

research group, which the mean level of resistance was less than 2% for all 5 countries 

(Austria, Greece, Portugal, Sweden and the UK) (62). These countries were selected to 

represent different geographical areas in Europe.  

The vast use of mecillinam in northern Europe raises the question if there are any reasons for 

the low prevalence of resistance to mecillinam? This will be addressed on the next section on 

mecillinam resistance mechanisms. 

 

1.7.3 AMR mechanisms to mecillinam in E. coli 

There are different AMR mechanisms to mecillinam. Resistance may occur due to four major 

mechanisms: 

i) antimicrobial inactivation/modification (63, 64) 

ii) alteration in the cell wall composition (e.g. liposaccharide, PBPs) (65-69) 

iii) reduced expression of cell wall porins or 

iv) over-expression of efflux pumps. 

Antimicrobial inactivation/modification may be caused by the production of β-lactamases 

(70). β-lactamases are a heterogeneous group of enzymes classified according to what 

subclasses of β-lactams they are degrading through hydrolyzing. As mentioned earlier, 

ESBLs degrade a wide range of different β-lactams (47, 63, 64). Other groups of β-

lactamases that also degrade mecillinam are for instance carbapenemases (31, 71) and 

metallo-β-lactamases (MBLs) (72, 73). 



INTRODUCTION	
	

	 22	

Alteration in the cell wall composition is another resistance mechanism of mecillinam. An 

example of this is modification of PBPs, which may be caused by mutations of different 

resistance-encoding genes that confer resistance. PBPs have a distinct role in cell shape, 

division and elongation. Even in the absence of PBP 2 activity, high levels of cell division 

proteins (e.g. FtzQ, -A and -Z, and MrdA and -B) (65, 68, 74) and positive effector for 

septation (e.g. ppGpp, a signal for the stringent response) (69) are observed, and this effect is 

suggested to be a compensation mechanism, where cell division is restored (75).  

Reduced expression of cell wall porins is the third resistant mechanism of mecillinam. 

Gram-negative bacteria are more impermeable than Gram-positive due to its double layer of 

cell membranes. The outer cell membrane of Gram-negative bacteria forms a permeable 

barrier, thus hydrophilic antimicrobials may cross the outer membrane by diffusing through 

outer membrane porin proteins. There are three major porin types in E. coli: OmpC, OmpF 

and PhoE (76). The first two are the most important for uptake of β-lactams (77). Thus either 

the down-regulation of porins or the replacement of porins with more selective channels will 

result in decreased influx of antimicrobial agents (78). 

Over-expression of efflux pumps is the last one of the resistance mechanisms. Diffusion of 

antimicrobials through the outer cell membrane to reach its target in the periplasm may be 

stalled by efficient removal by efflux pumps. There are different types of efflux pumps, such 

as the resistance-nodulation-division (RND) efflux pumps, which include the AcrAB-TolC 

and AcrAD-TolC. Mutations in one or more efflux expression regulators may cause an 

increase in their expression and confer resistance (79). 

 

As mentioned, the prevalence of resistance to mecillinam has remained low in the world in 

general. This is contradictory comparing to in a laboratory settings where the frequency of 

mutations is high (12). To explore this matter, Thulin et al. displayed an overview of different 

resistance-encoding genes that confer mecillinam resistance in vitro (Table 1) (12).  
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Table 1: The known mecilliam resistance-encoding genes and their functions. Adapted and modified from: (12). 

Genes(s) 
(alias[es]) 

Function References  

mrdA (pbpA) Cell division and elongation (68, 80)  
mrdB (rodA)  (68, 81)  
mreB (envB)  (67)  
mreC  (67)  
ftsQ  (65, 74)  
ftsA  (65, 74)  
ftsZ  (65, 74)  

rpoB RNA synthesis (82)  

cysB Cysteine biosynthesis (83, 84)  

cysE  (83, 84)  

argS (lov) tRNA synthetases (69)  

alaS  (69)  

slt Transglycosylation (84)  

lon Rcs regulatory system (85)  

rcsB  (66, 85)  

rcsC  (66, 85)  

yrfF (mucM, 
igaA)  

 (85)  

cyaA  Global regulation (86, 87)  

crp   (86, 87)  

spoT ppGpp degration and 
synthesis 

(12)  

rfa, rfb, rfc Lippolysaccharide (12)  

galE  (12)  

aroK Shikimate kinase (11)  

 

Their work revealed that the frequency of mutations leading to mecillinam resistance is very 

high in in vitro selection-experiments compared to clinical settings, where resistance 

development seems to be rather uncommon. They suggested that mutations, which confer 

resistance in laboratory selections, have higher fitness costs. Hence their growth rates are 

reduced below the threshold level needed for stable maintenance in the bladder during 

treatment. 

In this project, the following genes were chosen for close scrutiny; mrdA, thrS, aspS and gtlX. 

These genes encode PBP 2, threonyl-tRNA synthetase, aspartate tRNA ligase and glutamyl-

tRNA-synthetase respectively (12). The aim is to detect mutations that may confer mecillinam 
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resistance, hence this work may reveal the resistance mechanism in the mecillinam resistant 

isolates. The selection of these genes was based on the work by Thulin et al. in which the 

respective genes showed a high frequency of mutations observed in laboratory settings (12) 

and on the basis of the gene encoding for the drug target of mecillinam.  

 

 

1.8 Antimicrobial susceptibility testing  

Antimicrobial susceptibility testing (AST) is central in the current project. Therefore the 

following is an introduction to different methods, which may be used for determination of 

antimicrobial susceptibility in vitro, with a focus on the methods used in this project. 

Microorganisms can be tested for their susceptibility to a certain antimicrobial using various 

laboratory techniques. Commonly, these are used to determine the minimum inhibitory 

concentration (MIC) (88). The MIC is defined as the lowest antimicrobial concentration that 

prevents growth of the microorganism. The MIC is an important result in diagnostic 

laboratories to confirm antimicrobial resistance, but can also be used to determine the potency 

of novel antimicrobials (88). There are different methods to perform AST: 

Disk diffusion: One of the oldest methods and remains as one of the most widely used AST 

in routine clinical laboratories (89). The method is based on disks containing antimicrobials, 

which are applied on MHA plates with bacterial inoculum and are incubated overnight. If an 

antimicrobial is effective against the bacteria, either bactericidal or bacteriostatic, there will 

be an area around the disk where bacteria growth is not visible. The size of the clear area 

(zone of inhibition) is dependent on how effective the antimicrobial is against that bacteria, 

thus an effective antimicrobial will create a larger zone. 

E-test: This method confirms the susceptibility of organisms to a certain antimicrobial agent 

by measuring the MIC (88). The strips used in the MIC-test have predefined and continuous 

concentration gradient of different antimicrobial agents. When applying these strips to 

inoculated agar plated and incubated, an eclipse of inhibition that intersects the strips will 

occur. The MIC value (µg/ml) can be read using the scale on the strip.  

Micro broth dilution: This method is performed by using multiple microtiter plates filled 

with MH broth (90). Then a serial dilution of different concentrations of the antimicrobial is 
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made in the plate and followed by adding the bacterial inoculum of interest. The optical 

density is measured the day after the incubation to observe the visible growth of the bacteria.  

For the current project, both MIC-test and micro broth dilution have been used. The MIC-test 

was to confirm whether the isolated phenotypes were resistant or susceptible to mecillinam. 

Micro broth dilution with the IC90-assay was used to describe possible collateral sensitivity 

and collateral resistance networks in mecillinam resistant isolates. 

 

1.8.1 EUCAST 

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is a committee 

that published breakpoints and technical aspects of phenotypic in vitro AST in Europe (88). 

These clinical breakpoints are used in clinical laboratories, providing guidance to clinicians 

with respect to the potential use of agents for treatment in patients. The organization publishes 

MIC breakpoint interpretations based on several factors, including pharmacokinetic and 

pharmacodynamics data, clinical studies, resistance mechanisms, commonly used dosing 

regimens and the WT MIC distributions for relevant species of organisms (91).  

In the latter, the highest MIC within the WT MIC distribution is used as the epidemiological 

cut-off value (ECOFF) (92). The ECOFF is used as a tool to distinguished isolates without 

(WT) and with acquired resistance mechanisms (non-WT) to a given antimicrobial agent. 

Isolates with a MIC above the ECOFF (hence likely to possess resistance mechanisms) are 

often clinically resistant. Together, ECOFFs and clinical breakpoints are used to determine 

the rate of resistance development. 

The clinical breakpoints are categorized into three groups:  

Ø Susceptible: The organism should respond to the therapy using recommended 

antimicrobial dosage for the given site of infection and species. 

Ø Intermediate: The organism’s MIC approaches or exceeds the threshold for normal 

antimicrobial dosing, but clinical response is possible with higher doses or if the 

antimicrobial concentrates at the site of infection. 

Ø Resistant: The organism is not inhibited by the concentrations achieved with normal 

dosing. 
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Depending on which type of microorganisms and antimicrobial agents are being tested, the 

MIC-value will determine the sensitivity profile of the microorganism according to the 

EUCAST clinical breakpoints (93).  

 

 

1.9 ECO-SENS projects 

The first international survey to investigate the prevalence and susceptibility of pathogens 

causing community-acquired uncomplicated UTIs is the ECO-SENS Project (94). There have 

been two ECO-SENS studies (62, 94). The first one took place in 1999-2000 and included 

4734 women, not older than 65 years, from 16 European countries and Canada (94). Patients 

with symptoms of an acute UTI provided a midstream urine sample, which was tested for the 

presence of bacteria and the susceptibility of the isolated bacteria to 12 antimicrobials was 

determined. The conclusion of the surveillance study indicates that antimicrobial resistance 

was lowest in the Nordic countries and Austria and highest in Portugal. 

The second ECO-SENS study was in 2008-2009 (62). This time, the surveillance study only 

included five countries and 1697 women gave urine samples for bacterial isolation and 

antimicrobial susceptibility testing to 14 antimicrobials. The countries were selected to 

represent areas of Europe, which were indicated to have more (Greece and Portugal) or less 

(the UK, Austria and Sweden) problems with resistance. In this project, 11 resistance isolates 

with ESBLs were identified, compared to the previous ECO-SENS study where there were 

none. 

In the first ECO-SENS study in 2000, AMR of E. coli to mecillinam was less than 3%, and 

similarly low for ciprofloxacin, gentamicin and nitrofurantoin. However, ciprofloxacin 

resistance was apparent in Portugal (5,8%). The second surveillance study in 2010 also 

showed low AMR, including mecillinam, gentamicin and nitrofurantoin in E. coli, less than 

2%. While ciprofloxacin and trimethoprim resistance had increased between the first and the 

second surveillance study; 1,1% to 3,9% for ciprofloxacin and 13,3% to 16,7% for 

trimethoprim. In both studies amoxicillin, chloramphenicol and tetracycline were not 

included. 

All of the bacterial strains used in this project belong to the ECO-SENS strain collection.  
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2 HYPOTHESIS AND AIMS 

2.1 Hypothesis 

Collateral sensitivity networks have been demonstrated for single isolates of E. coli. We 

hypothesize that such networks also exist on a population level.  

 

 

2.2 Aims 

In this project we aim to explore the generality of the concept of collateral sensitivity in 

clinical urinary tract isolates of E. coli from the ECO-SENS collection. With the emergence 

of increased multi-drug resistance (MDR), we aim to inform recommendations for novel 

treatment strategies to improve efficacy of treatment for UTIs and to prevent further 

resistance development. Furthermore, we want to investigate the underlying mechanisms of 

the reciprocal collateral sensitivity between antimicrobials agents. 
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3 MATERIALS 

3.1 Bacterial strains 

All of the bacterial strains used in this project belonged to the ECO-SENS strain collection 

described previously (62, 94). In this project 15 different ECO-SENS isolates from Greece, 

Portugal, Sweden and the UK were used to make mecillinam resistant mutants, as shown in 

Table 2. Ten of our resistant mutants were selected for further analysis. All isolates used are 

pan-susceptible, meaning the isolate is susceptible to all antimicrobial agents, and plasmid-

free. 

Table 2: ECO-SENS isolates employed in this project. Isolates in bold were used for further analysis. Sequence type 
was determined by multilocus sequence typing and phylogroup was determined by triplex PCR-based method (95). 

Name Sequence type Phylogroup Year Country 
K56-5 998 B2 2000 Greece 
K56-17 73 B2 2000 Portugal 
K56-18 998 B2 2000 Portugal 
K56-20 127 B2 2000 Portugal 
K56-23 73 B2 2000 Sweden 
K56-24 73 B2 2000 Sweden 
K56-25 73 B2 2000 Sweden 
K56-30 1161 B2 2000 Sweden 
K56-31 638 B2 2000 The UK 
K56-66 372 B2 2007-2008 Sweden 
K56-69 1230 A 2007-2008 Sweden 
K56-71 607 A 2007-2008 The UK 
K56-76 978 B2 2007-2008 The UK 
K56-77 1236 B2 2007-2008 The UK 
K56-80 141 B2 2007-2008 The UK 
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3.2 Buffers, growth media and other chemicals 

Table 3: An overview of growth media and other chemicals used in this project. 

Solution Content Preparation Storage 
temperature 

Producer/ 
manufacture 

0,85% saline Sodiumchloride 
(≥99,5%) 

Double distilled 
water (ddH2O) 

680 mg sodiumchloride were 
added to 80 mL ddH2O. 

RT Fluka 

80% glycerol 86-89 % glycerol 

ddH2O 

54 mL glycerol were added to a 
container and adjusted to 100 
mL with ddH2O. 

RT Sigma-Aldrich 

LB broth LB broth 

ddH2O 

5 g LB broth were added to 200 
mL ddH2O. 

RT BD DifcoTM, 
Miller 

LB agar 
(LBA) 

LB broth 

Select agar 

ddH2O 

12 g Select agar and 20 g LB 
broth were added to 800 mL 
ddH2O. 

-4°C BD DifcoTM, 
Miller 

Sigma-Aldrich 

MH II agar 
(MHA) 

MH II agar 

ddH2O 

7,6 g MH II agar were added to 
200 mL ddH2O. 

-4°C Sigma-Aldrich 

Mecillinam  
1 mg/mL 

Mecillinam 100 mg 

Ultra Purewater 

100 mg mecillinam were 
dissolved in 100 mL Ultra 
Purewater. 

-20°C Sigma-Aldrich 

 

MHA-Mec16 MH II agar  

Mecillinam  

1 mg/mL 

3,2 mL mecillinam 1 mg/mL 
were added to 200 mL MHA. 

-4°C Sigma-Aldrich 

50X TAE 
buffer 

Tris-base 

Glacial acid (100%) 

0,5 M EDTA (pH 
8,0) 

ddH2O 

242 g Tris-base were added to 
600 mL of ddH2O. Then 57,1 
mL glacial acetic acid and 100 
mL of 0,5 M EDTA were 
added in the mix. The mix was 
brought to a finale volume to 1 
L with ddH2O. 

RT Sigma-Aldrich 

InvitrogenTM, 
Gibco® 

Cyano-4-
hydroxy-
cinnamic-acid 
(HCCA) 
Portioned  

- - 8°C Bruker Daltonik 
GmbH 

Triflouracetic 
acid (TFA) 

- - RT Sigma-Aldrich 

70% ethanol 
(EtOH) 

96% EtOH 

ddH2O 

70 mL of 96% EtOH were 
added to 30 mL ddH2O.  

RT Sigma-Aldrich 

 
 

3.3 Polymerase chain reactions and DNA sequencing 

Some of the primers used in this project have been published previously (12) and others were 

designed for this study. The following genes were chosen for close scrutiny; mrdA, thrS, aspS 
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and gtlX. These genes encode PBP 2, threonyl-tRNA synthetase, aspartate tRNA ligase and 

glutamyl-tRNA-synthetase respectively. 

Each gene required 2-3 primer sets for complete coverage of the gene of interest (Table 4). 

Primers were diluted with nuclease-free water (Thermo Fisher Scientific), first to a stock 

concentration of 100 µM and then to a final working stock solution of 10 µM. The same 

primers were used for PCR and sequencing.   

 

Table 4: The primers used in this project. 

Primer 
name 

Sequence 5’ – 3’  Storage 
temperature  

Amplicon 
length 

Gene Reference(s) 

mrdA-F1 GTGCTGGTCGCAGAGAGTC -20°C 719 bp mrdA  This study 
mrdA-R1 TTACCGATATCATGCGTTGC -20°C  This study 
mrdA-F2 CACGTCATCGGCTATGTGTC -20°C 767 bp This study 
mrdA-R2 ATGTTGCCGGAACGTTCTTC -20°C  This study 
mrdA-F3 CCGAATGGATGGGTAAATTC -20°C 750 bp This study 
mrdA-R3 ATTGTGGGATCGAGATGGAC -20°C  This study 
thrS-F1 CTCCGGCTTCTTCTGCTT -20°C 633 bp thrS  (12) 
thrS-R1 CAGCTGGACTTCTCTTTGCC -20°C  This study 
thrS-F2 TTGCGCGGTGAATCATTACC -20°C 834 bp This study 
thrS-R2 CTGGAAGAAGCCGCGAAAC -20°C  This study 
thrS-F3 ACATTTTGTTGTTGCTGTCGC -20°C 796 bp This study 
thrS-R3 TAACATCGCTCAACCGGG -20°C  (12) 
aspS-F1 AATTTCCAGTATAATAGCCGCC -20°C 733 bp aspS  (12) 
aspS-R1 AAACCGGACATCATCAGCAG -20°C  This study 
aspS-F2 GACTACCTGGTGCCTTCTCG -20°C 733 bp This study 
aspS-R2 GACCAAGGTCTTTACCCACTTTC -20°C  This study 
aspS-F3 GGTGCCGACAACAAGAAAAT -20°C 704 bp This study 
aspS-R3 CCTCTTCGTTGACTGCCTTC -20°C  This study 
gltX-F1 GAATCAGGCGGGAGTGATAG -20 °C 862 bp gltX  This study 
gltX-R1 TTCTGGCAAATAACCGTCATC -20 °C  This study 
gltX-F2 TTTACGCGCACGTTTCTATG -20 °C 828 bp This study 
gltX-R2 CCGTCTCGATATTGACGAATC -20 °C  This study 

 

	

Table 5: Chemicals and enzymes for the PCR mastermix and sequencing reaction. 

Name of component  Storage 
temperature 

Producer 

Nuclease-free water RT Thermo Fisher Scientific 
5X Phusion HF buffer -20°C New England BioLabs® 
10 mM dNTPs -20°C New England BioLabs® 
Template DNA -80°C - 
Phusion DNA Polymerase  -20°C New England BioLabs® 
Big Dyea 4°C - 
5X Sequencing buffera 4°C - 
a Provided by UNN. 
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3.4 Agarose gel electrophoresis 

Listed in Table 6 are the different reagents for agarose gel electrophoresis that were used in 

this project.  

Table 6: Different reagents for agarose gel electrophoresis.  

Name of reagent Content Storage 
temperature 

Producer 

1X loading buffer Dilute 6X loading buffer 1:6 with 
sterilized ddH2O. 

RT - 

SmartLadder - 2-8°C EuroGentec 

Agarose 1% gel 1 g dissolved in 100 mL 1X TAE buffer. 2-8°C SeaKem, 
USA 

EtBr 0,5 µg/mL 50 µL added to 100 mL agarose 1% gel. RT - 

 
 
 

3.5 Antimicrobial agents for MIC and IC90 determination 

Micro broth dilution with IC90-assay was performed to determine collateral sensitivity profiles 

of mecillinam resistant isolates. The list over different antimicrobial agents employed and 

what kind of solution was used to dissolve them in are displayed in Table 7. 

Table 7: List over antimicrobial agents used in IC90-assay. 

Antimicrobial agent Producer Catalog no. Resuspend in  
Amoxicillin Sigma-Aldrich A0800000 Phosphate buffer, pH 6.0, 0.1 mol/L 
Chloramphenicol Sigma-Aldrich C0378 95% EtOH 
Ciprofloxacin Biochemika 17850 0,1N hydrochloride (HCl) 
Gentamicin Sigma-Aldrich G3632-1G MilliQ-water 
Mecillinam Sigma-Aldrich 33447-100MG ddH20 
Nitrofurantoin Sigma-Aldrich N7878-25g DMSOa  
Trimethoprim Sigma-Aldrich T7883-25g DMSOa  
Tetracycline Sigma-Aldrich T3383-25g MilliQ-water 
a Dimethyl sulfoxide 

MIC-testing was performed to determine the antimicrobial susceptibility of different isolates 

in static selection. The MIC-strips of mecillinam used in this study are displayed in Table 8.  

Table 8: MIC-strips of mecillinam used for MIC-testing. 

Antimicrobial agent Storage temperature Concentration gradient (µg/mL) Producer 
Mecillinam -20°C 0,016-256  Liofilchem, Italy 
 



MATERIALS	
	

	 32	

3.6 Various kits used in this project 

Different kits were used for DNA isolation of the strains and isolation of DNA from agarose 

gels as displayed in Table 9. 

Table 9: List over different kits used in this project. 

Kit Catalog No. Storage 
temperature 

Lot No. Producer 

QIAquick Gel Extraction Kit 28706 RT 127128966 QIAGEN 

GenElute Bacterial Genomic 
DNA Kit 

1002047701 RT SLBN5542V Sigma-Aldrich 

BigDye® Terminator v3.1 
Cycle Sequencing Kit 

4337455 -20°C  Thermo Fisher 
Scientific 

 

 

 

3.7 Equipment employed in this project 

Following are a list over different equipment used in our project for IC90-assay, DNA 

isolation, isolation of DNA from agarose gel and Nanodrop spectrophotometer, displayed in 

Table 10. 

Table 10: List over various equipment employed in this project. 

Name of equipment  Producer Order/Part No. 
Microplater Shaker TiMix 5 control Edmund Bühler GmbH 6167700 
VersaMax ELISA Microplate Reader Molecular Devices VERSAMAX 
Heraeus Biofuge Pico Kendro® 75003235 
Nanodrop ND-1000 Spectrophotometer NanoDrop - 
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4 METHODS 

4.1 Bacterial cultivation 

Bacterial isolates used in this project were cultured on appropriate agar plates or in liquid 

medium. Both techniques are described below. 

 

4.1.1 Streaking and isolating bacteria on solid medium (agar) 

For the streaking on agar plates, an inoculation loop was used to i) dip into a bacterial culture, 

ii) scrape a colony of an agar plate or iii) scrape from the surface of a freeze culture. Then the 

loop was dragged across the surface of the agar horizontally back and forth until ¼ of the 

plate had been covered; zone 1.  With the same loop it was dragged across the same section, 

but from another angle this time to get complete coverage of the area/zone 1. The plate was 

then turned 90 degrees. Starting from zone 1, a new loop was dragged zigzag across the plate 

until covering 1/3 of the plate (the loop only crossed zone 1 3-4 times); zone 2. This step was 

repeated once more but now from zone 2, only 2-3 times from that zone, and with bigger 

space between the zigzag motions. Finally the plate(s) was incubated over night (12-18 hours) 

at the appropriate temperature (usually 37°C). See Figure 8 for division of the various zones. 

	
Figure 8: An agar plate showing its different streak zones. 

 

4.1.2 Liquid cultures 

Bacteria can be grown in liquid cultures. The desired bacteria were transferred and suspended 

in a tube containing 4 mL LB broth using an inoculation loop. The tube(s) was incubated 

overnight with shaking at 225 rpm. 
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4.2 Storage of the bacterial isolates – Freeze stock cultures 

For long term, stable storage of the bacterial isolates used and the mutants generated in this 

project, freeze stock cultures were used.  

Freeze stock cultures were prepared for WT strains and mecillinam resistant mutants for long 

time storage of bacteria strains. Overnight culture(s) of the respective strain(s) was incubated 

over night at the appropriate temperature (37°C), 225 rpm. A tube (Cryo freeze tubes VWR 

International, USA) was added 250 µL of the inoculate and 750 µL of 80% glycerol, resulting 

in a finale concentration of 20% glycerol. The tube was then stored at -80°C. 

 

 

4.3 Preparation of bacterial growth media 

Bacteria were cultivated in either liquid or solid media. Most of the media were prepared in 

the lab. MH broth used for the IC90 assays were bought from the University Hospital of 

Northern Norway (UNN) in Tromsø to ensure stable quality throughout the experiments. 

Antimicrobial stock solutions were prepared in the lab by the technical staff for the IC90 

assays for common use.  

 

4.3.1 Liquid medium 

The liquid media were prepared by adding MH II or LB powder in ddH2O as specified by the 

manufacturer (Table 3), and then autoclaved at 121°C with 100 kPa for 20 minutes. The 

liquid media were then cooled down to the appropriate temperature (55°C) before use. 

 

4.3.2 Agar plates with and without antimicrobial drugs 

MHA and LBA were prepared as specified by the manufacturer adding appropriate amounts 

of agar. After autoclaving of the liquid medium, the solution was cooled down to below 55°C 

and the appropriate volume of thawed mecillinam stock solution was added to desired finale 

concentration, e.g. for 16 µg/mL mecillinam 3,2 mL of a 1 mg/mL solution were added to 200 
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mL MHA. Afterwards the solution was poured in empty sterile petri dishes and cooled/dried 

overnight. The MHA-Mec plates were stored at 4°C for up to one week. 

 

4.3.3 Antimicrobial stock solution 

Mecillinam powder was dissolved in ddH2O to a finale concentration of 1 mg/ml. Thereafter a 

0,2 µM filter unit was used for sterile filtration. Small volumes were aliquoted of the stock 

solution into sterile eppendorf tubes (850 µL) or Nalgene cryovials (3,5 ml). Single use vials 

were stored at -20°C. 

Other antimicrobial stock solutions prepared were dissolved and diluted in appropriate media 

according to Clinical and Laboratory Standards Institute (CLSI) or manufacturer’s guidelines. 

More details are given in the materials chapter. 

 

 

4.4 Static antimicrobial resistance selection and mutation frequency 

To acquire spontaneous antimicrobial resistant isolates, in this case of E. coli, static selection 

under antimicrobial pressure was used for this project. Clinically resistant mutants will 

henceforth be mentioned as resistant mutants in this project. 

 

4.4.1 Inoculum for selection of mecillinam resistant mutants 

A streak for isolation of the bacterial isolate(s) of interest was prepared from freeze stock 

cultures by scraping a small (5-10 µL) sample of the frozen stock and struck on LBA plate(s). 

The frozen stock was restored immediately to -75°C, and the plate(s) was then incubated at 

appropriate temperature (37°C) overnight. 
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4.4.2 Making mecillinam resistant mutants with selective plates 

10-20 sterile glass beads were added to an MHA-Mec16 plate, which was pre-warmed to RT. 

100 µL of undiluted overnight culture (after 18±2 hours) were added on the MHA-Mec16 

selective plate(s) and was shaken in horizontal plane until inoculum had been completely 

absorbed. The plates were incubated (24-48 hours) until visible growth was present. 

 

4.4.3 Determination of the initial inoculum with non-selective LBA plates 

A 96-well plate was used to fill 6 wells per sample with 900 µL of sterile 0,85% saline. 100 

µL of the overnight culture were pipetted into the first well of the dilution series. The well 

was mixed by pipetting 10-20 times and then the pipet tip was discarded. With a new tip, 100 

µL was moved from well 1 to well 2. Again the well was mixed by pipetting 10-20 times and 

the pipet tip was discarded. These steps were repeated until the entire series had been 

completed to a finale dilution factor of 10-6. LBA plates were pre-warmed to RT (2 plates for 

each strain) and 10-20 sterile glass beads were added. 100 µL dilutions, 10-5 and 10-6, were 

added onto each plate and shaken horizontally until the inoculum had been completely 

absorbed. These dilutions were chosen to give countable amounts of colonies on the plates. 

Then the glass beads were removed.  The plates were incubated at the appropriate temperature 

(37°C) until visible growth was present (for 24-48 hours) (Figure 9). 

 

Figure 9: A schematic figure of different steps in the static resistance selection protocol. 
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4.4.4 Determination of estimated mutation frequency 

After day 1, colony-forming units (CFUs) was counted for each dilution and each sample on 

LBA plates. The plates were thereafter incubated additionally until visible growth was present 

on the selective plates, and colonies were counted once more. CFUs of mecillinam resistant 

mutants were counted on day 1 or 2, and the mutation frequency was calculated. The 

inoculum was calculated from CFU counts from plates incubated for the same amount of time 

as the selective plates. The following formula was used for the calculation of mutation 

frequency:  

Mutation frequency =  #mutants on MHA-Mec16 plate
Total # of bacteria plated on selective plate

 

 

 

4.4.5 Purification and storage of mecillinam resistant isolates 

Single isolated colonies were picked from MHA-Mec16 plates (either on day 1 or day 2) and 

struck for isolation on new MHA-Mec16 plates (one plate per single isolated colony, and at 

least 3 colonies were purified). When possible, different phenotypes where chosen and 

observations of the colony morphologies were noted. After incubation of the plates at 

appropriate temperature (37°C for 24-48 hours depending on growth), a well-isolated single 

colony from each streak for isolation plate was picked with a sterile loop and inoculated into 4 

mL LB broth. If the colonies were not uniform/homogenous, streaks for isolation were 

repeated. 3 isolates per parental WT isolate were picked from the plates, inoculated in LB 

medium and incubated overnight at 37°C with shaking at 225 rpm. Incubation continued until 

visible growth was present, typically 18-24 hours. This culture was used to prepare freeze 

stocks. 

 

4.4.6 Confirmation of species 

Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) is a method 

combining mass spectrometry and an identification system based on molecular weight (96). 

The method is based on the samples being mixed with a matrix. This was accomplished by 

using a wooden toothpick to pick a bacterial colony from an agar plate and spread it on the 
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marked positions on the target plate. 1 µL matrix was added in every position when all the 

samples were applied (recommended within 10 min). Thereafter the target plate was allowed 

to air dry completely before analyzing. The matrix would absorb the energy from ionizing 

lasers and lead to ionization and the release of matrix/sample-crystals. An electrical field 

would migrate the ionized proteins through the “flight-tube”. Different mass would get to the 

detector with different times; hence the time was proportional with the mass. This specificity 

was utilized to compare the time, which functioned as a “fingerprint”, with a database and the 

identification system would give the sample an ID of a species. A score indicated the 

probability for the right identification. Scores over 2,0 indicates reliable identification on a 

species level (Appendix B). 

 

 

4.5 Antimicrobial susceptibility testing 

Microorganisms can be tested for their susceptibility to a certain antimicrobial with measured 

MIC (88). For the current project both MIC-strip testing and IC90-assay with micro broth 

dilution were used for determining the antimicrobial susceptibility of the bacteria. IC90 is the 

lowest inhibitory concentration of the antimicrobial that inhibited 90% of the growth of the 

tested isolate (97). Breakpoints of the tested microorganisms are being compared to 

EUCAST, which will determine the susceptibility profile of the microorganism (88).  

 

4.5.1 MIC-strip testing 

MIC-test is utilized to check the organism´s susceptibility to an antimicrobial agent, in this 

context the antimicrobial agent is mecillinam. The strips used in the test assay have a 

predefined and continuous concentration gradient of mecillinam (0,016-256 (µg/ml) . When 

applying these strips to inoculated agar plated and incubated, an ellipse of inhibition 

intersecting the strips will occur. The MIC-value (µg/mL) can be read on the strip scale.   

The bacterial colonies on the LBA plate(s) were selected using a sterile cotton swab. The 

cotton swab with bacteria was swabbed in sterile saline 0,85% to make a 0,5 McFarland 

medium. A cross was made on a new MHA plate with a new cotton pad, which was dipped in 

the bacterial medium. The plate was placed on a spinning machine, and then with the same 
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cotton swab it was moved from the edge of the plate to the middle with slow motion. The tip 

was turned and moved slowly backwards to the initial point (approximately 10 seconds each 

way). A MIC-strip of mecillinam was placed on the plate with sterile tweezers, and incubated 

at 37°C with ambient air (18 hours), see Figure 10. The observed MIC-value was compared to 

the clinical breakpoints defined by EUCAST to determine whether the respective bacterial 

isolate was resistant to mecillinam or not (Appendix D). 

 

 
Figure 10: Swabbing the MHA plate with bacteria medium and place the MIC-strip. 

	
	
	

4.5.2 IC90 determination 

As displayed in Table 11, the respective eight antimicrobial agents were chosen for the IC90-

assays; amoxicillin, chloramphenicol, ciprofloxacin, gentamicin, mecillinam, nitrofurantoin, 

tetracycline and trimethoprim.  

Table 11: List of antimicrobial agents employed in this project. 

Antimicrobial agent Abbreviation Class Target 
Amoxicillin AMX β-lactam Cell wall 
Mecillinam MEC β-lactam Cell wall 
Ciprofloxacin CIP Quinolone Nucleic acid synthesis, DNA gyrase 
Gentamicin GEN Aminoglycoside Protein synthesis, 30S 
Tetracycline TET Tetracyline Protein synthesis, 30S 
Chloramphenicol CHL Miscellaneous Protein synthesis, 50S 
Nitrofurantoin NIT Miscellaneous Multiple 
Trimethoprim TMP Dihydrofolate reductase 

inhibitor 
Metabolic pathways, folic acid 

biosynthesis 
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Initially, bacterial isolate(s) of interest, as well as the control isolates ATCC 25922 and K56-

44 (mecillinam resistant mutant), from freeze stocks were streaked on LBA plates and 

incubated overnight. Mecillinam resistant mutants and the parental WTs were always tested 

together in the same assay. There were performed two replicates of each isolate, with 2-fold 

or 1,5-fold antimicrobial dilutions. A 96-well microtiter plate was loaded with MH broth as 

shown in Table 12 and Table 13, depending on which fold change that was being used. 

 

Table 12: 96-well plate filled with MH broth for 2-fold CS/CR. 

 1 2 3 4 5 6 7 8 9 10 11 12 
A 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

B 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

C 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

D 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

E 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

F 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

G 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

H 100 µL  100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

Table 13: 96-well plate filled with MH broth for 1,5-fold CS/CR. 

 1 2 3 4 5 6 7 8 9 10 11 12 
A 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

B 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

C 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

D 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

E 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

F 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

G 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

H 100 µL  50 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 200 µL 

 

A working stock of the antimicrobial to be tested at 2x the highest concentration was 

prepared. The specific MIC testing guidelines and/or manufacturer’s guidelines were 

followed to ensure correct antimicrobial stock solution was made. Dilutions of the stock to the 

2x highest concentration were done in MH broth. For 2-fold, 200 µL of the antimicrobial 

working stock was added in column 2 (Table 14), either with different antimicrobials or 

different antimicrobial concentrations. For 1,5 fold 150 µL of the same working stock was 

added into the wells of column 3 as well (Table 15). ATCC strain and K56-44 were included 

with each antimicrobial being tested.  
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Table 14: 96-well filled with antimicrobial working stock for 2-fold CS/CR. 

 1 2 3 4 5 6 7 8 9 10 11 12 
A  200 µL           

B  200 µL           

C  200 µL           

D  200 µL           

E  200 µL           

F  200 µL           

G  200 µL           

H  200 µL           

Table 15: 96-well filled with antimicrobial working stock for 1,5-fold CS/CR. 

 1 2 3 4 5 6 7 8 9 10 11 12 
A  200 µL 150 µL          

B  200 µL 150 µL          

C  200 µL 150 µL          

D  200 µL 150 µL          

E  200 µL 150 µL          

F  200 µL 150 µL          

G  200 µL 150 µL          

H  200 µL 150 µL          

For 2-fold, 100 µL was taken from column 2 and mixed with the wells of column 3. It was 

pipetted 10-15 times to ensure thorough mixing. The content was completely expelled of the 

tips into column 3 and 100 µL was taken from column 3 to column 4. The mixing and serial 

dilutions of the antimicrobial were continued, and 100 µL of the mixture was discarded at the 

end from column 11. 

For 1,5-fold, 100 µL was taken from column 2 and mixed with the wells of column 4. It was 

pipetted 10-15 times to ensure thorough mixing. The content was completely expelled of the 

tips into column 4 and 100 µL was taken from column 4 to column 6. The mixing and serial 

dilutions of the antimicrobial were continued, and 100 µL of the mixture was discarded at the 

end from column 10. The same mixing and serially dilution process were repeated, but 

starting from column 3 column to 5 until reached column 11. Here 100 µL was discarded as 

well. 

Preparation of a 0,5 McFarland in 0,85% sterile saline with a few isolated colonies from LBA 

plates was done. The 0,5 McFarland was diluted 1/1000 into MH broth by adding 5 µL into 

4,995 mL MH broth. Lastly, 100 µL of the bacterial isolate inoculum was added to the 

dilution wells and the positive control wells (Table 16).  



METHODS	
	

	 42	

Table 16: A schematic illustration of added diluted experimental isolates, each row containing the same type of isolate. 

 1 2 3 4 5 6 7 8 9 10 11 12 
A 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

B 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

C 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

D 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

E 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

F 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

G 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

H 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL  

The 96-well plate was incubated at 37°C with continuous shaking at 700 rpm for 18 hours. 

For the slow growing isolates incubation continued up to 42 hours. By using a plate reader, 

the A600nm read (using SoftMax® Pro Software v5.4.1) was taken after 18 hours (additional 

after 24 and 42 hours for some strains). The measurements were used to calculate the IC90, 

and background-subtracted. The concentration at which %inhibition was ≥90 was calculated 

with the following formula: 

% !"ℎ!"!#!$% = 1 − !600 !"#$ !"#$!#%
!600 !"#$%$&' !"#$%"&  ! 100  

 

Based on the calculations of the IC90-values, the MIC-value for each isolate was determined. 

To categorize whether an isolate was resistant or susceptible for the respective antimicrobial 

agent, the MIC-values of the parental WTs and mecillinam resistant mutants were compared 

to the clinical breakpoints defined by EUCAST. The control strains were also compared for 

whether they were in range or not (Appendix D). 

 

 

4.6 Preparation of genomic DNA for PCR 

Isolation of bacterial DNA was prepared to obtain pure extraction of DNA from a variety of 

cultured bacteria. This was used for further genomic investigation with PCR. 
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4.6.1 DNA extraction using the GenElute Kit (Sigma) 

DNA isolation with GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich, 

NA2100/2110/2120) is a method, which gives high quality DNA with high degree of purity 

providing genomic bacterial DNA suitable for PCR and WGS. DNA isolation was conducted 

primarily according to the description of the manufacturer.  

The bacterial isolate(s) of interest was inoculated in 5 mL LB media and incubated overnight 

at the appropriate temperature (37°C) with shaking at 225 rpm (an LB control was always 

included from each batch of medium). 1,5 mL of overnight culture was pelleted by 

centrifuging for 2 minutes at 13000 rpm in Heraeus microfuge pico. The supernatant was 

poured off afterwards. Resuspension of the pellets was done thoroughly in 200 µL of 100 

mg/mL of lysozyme in the solution Gram positive lysis solution, which was provided in the 

kit (prepared fresh), and incubated for 30 minutes at 37°C. 20 µL RNase A solution was 

added to each sample, and they were incubated for 2 minutes at RT. Thereafter 20 µL of 20 

mg/mL Protein K solution were added to the mix, followed by 200 µL of Lysis solution C. 

The mix was vortexed thoroughly and incubated at 55°C for 10 minutes. For the column 

preparation, 500 µL Column Preparation Solution was added to each pre-assembled GenElute 

Miniprep Binding Column and centrifuged at 13000 rpm for 1 minute. The eluate was 

discarded. The binding was prepared by adding 200 µL EtOH 96% to the lysate and mixed 

thoroughly by vortexing. Afterwards the entire content of the tube was transferred to the 

column and centrifuged at 13000 rpm for 1 minute. The collection tube containing the eluate 

was then discarded. In the washing process, 500 µL Wash Solution was added to the column 

and centrifuged for 1 minute at 13000 rpm.  The collection tube was discarded and the 

column was placed in a new 2 mL-collection tube. In the second wash 500 µL Wash I 

Solution was added to the column and centrifuged for 3 minutes at 13000 rpm. Additional 1 

minute of centrifuging was performed to remove residual EtOH. The collection tube 

containing the eluate was then discarded and the column was again placed in a new 2 mL 

collection tube. Lastly, DNA was eluated with 100 µL of 10 mM Tris-base directly onto the 

center of the column and incubated for 5 minutes at RT, and then centrifuged for 1 minute at 

13000 rpm. DNA purity and concentration was determined on Nanodrop (ND-1000 v3.8.1), 

and DNA was stored at -80°C. 
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4.6.2 Determination of DNA concentration and purity with Nanodrop 

Nanodrop spectrophotometer (Nanodrop®, ND-1000 V3.8.1) was used to determine the 

concentration and purity of the DNA. The spectrophotometer was cleaned with ddH2O and 

blanked with the appropriate solution, and each sample was measured. The result from the 

spectrophotometer shows concentration of DNA in µg/ml, 260/280- and 260/230 ratios. The 

concentration of DNA was used to determine the amount of DNA for e.g. BigDye® 

Terminator v3.1 Cycle Sequencing Kit. 260/280 ratios described the purity of the isolated 

DNA. "Pure" DNA should have a ratio around 1.8. If the values were lower than 1.8, it 

indicated the presence of protein, phenol or other contaminants. While 260/230 ratios were to 

measure the purity of the nucleic acids. 260/230 ratios were commonly in the range of 2.0-

2.2. If the values were lower, it indicated the presence of contamination.  

 

 

4.7 Polymerase chain reaction using Phusion® High-Fidelity DNA 

Polymerase 

Polymerase chain reaction (PCR) was used to amplify a specific gene of interest, in this case 

mrdA which encodes PBP 2, the drug target for mecillinam. This is to find genomic mutations 

in mecillinam resistant mutants of E. coli, which may confer resistance. 

PCR is an amplification technique of small amounts of genetic material. The principle is 

based on amplification of a sequence of DNA, generating enormous amounts of copies of that 

particular DNA sequence. There are three main steps in PCR based on repeated amplification 

cycles. The first involves denaturation of the double stranded DNA (dsDNA) where it is 

melted and becomes single stranded DNA (ssDNA). In the second step we have annealing of 

the primers to the complementary regions of the ssDNA. The temperature in this step varies 

from each primer and has to be lower than the melting temperature of the primers (Tm) hence 

they can bind properly to the template. The last step involves polymerase extension of the 

ssDNA, which completes the amplifications of the wanted DNA segments.  For this project 

Phusion® High-Fidelity DNA Polymerase was chosen for DNA synthesis. 

Phusion® High-Fidelity DNA Polymerase was the polymerase which was chosen for the 

amplification. This enzyme offered high fidelity and robust performance. Templates for 
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Phusion® High Fidelity DNA Polymerase reaction were prepared by using DNA isolation 

with GenElute Kit (section 4.9).  

 

4.7.1 Preparation of mastermix for phusion PCR 

The mastermix recipe is given in Table 17. All the ingredients were stored at -20°C, and the 

mastermix was prepared fresh for each PCR. The ingredients were thawed on ice, and 

everything was kept on ice during the procedure.  

Table 17: Names and the quantity of each component per 20 µL reaction.  

Component 20 µL reaction 
Nuclease-free water to 20 µL 
5X Phusion HF buffer 4 µL 
10 mM dNTPsa 0,4 µL 
10 µM Forward primer 1 µL 
10 µM Reverse primer 1 µL 
Template DNA 2 µL 
Phusion DNA Polymerase  0,2 µL 
a Containing the four deoxyribonucleoside triphosphates (dATP, dCTP, dGTP and dTTP). 

	

4.7.2 Phusion® High-Fidelity DNA Polymerase PCR 

The Phusion® High-Fidelity DNA Polymerase thermocycler program was set up as listed in 

Table 18. See Table 19 for the specific annealing temperature for each primer set. 
Table 18: Set up for the thermocycler program with Phusion® High-Fidelity DNA Polymerase. 

Step Temperature/description Time 
1 98°C 5 min 
2 98°C 10 sec 
3 See Table 19 20 sec 
4 72°C 1 min 
5 Go to step 2 Repeat cycle 29 times 
6 72°C 10 min 
7 10°C Forever 

 

Table 19: Annealing temperatures for different sets of mrdA primers. 

Name of 
primer set 

Initial annealing 
temperature 

Annealing temperature after 
performance of gradient PCR 

mrdA 1 58°C 59°Ca 
mrdA 2 58°C - 
mrdA 3 58°C 50°Ca 
a See section 6.2.1 for more information. 
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4.8 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method for DNA separation and analysis based on their size 

and charge (98). By using an electric field the negatively-charged DNA will migrate to the 

positive electrode through a matrix of agarose. Ethidium bromide (EtBr) is added in agarose 

gel which functions as a marker by interacting itself between base pairs and emitting 

fluorescent light when exited by UV light. When placed in an electric field the DNA 

fragments will migrate to the positively charge end since the phosphate backbone of the DNA 

is negatively charged. A standard molecule marker, containing DNA molecules of different 

known sizes (200-10000 base pairs) can be compared to samples to determine the size of the 

PCR amplicons. Smaller fragments will migrate farther and faster than bigger fragments. The 

rate of migration of the DNA through the gel is determined by i) size of the molecule, ii) type 

of agarose and its concentration, iii) DNA conformation, iv) voltage applied, v) presence of 

EtBr and vi) buffers (98). 

Agarose gel was prepared by dissolving agarose (SeaKem®, USA) in 1X TAE buffer to the 

finale concentration of 1% agarose. The mix was heated in a microwave (approximately 2 

minutes) until the agarose was completely dissolved. 50 µL of 1 mg/mL EtBr was added to 

the solution when the solution was cooled down to approximately 65°C, and poured on an 

appropriate gel chamber and left to solidify (approximately 20 minutes) at RT. The solidified 

gel was then placed in an electrophoresis chamber filled with 1X TAE buffer until complete 

coverage of the gel. 2 µL PCR product was mixed with 10 µL 1X loading buffer and pipetted 

into the wells of 1% agarose gel. 3 µL of a DNA marker (Smartladder, Eurogentec USA) was 

loaded in at least one lane on each gel. Gels were run at 80 V for 1 hour. Gel Doc 

transilluminator (BioRad, USA) and the Quantity One software (BioRad, USA) was used for 

visualization of the gels and DNA bands were compared to the known DNA markers. A 

negative control of ddH2O was included for each PCR set up. 

 

 

4.9 QIAquick Gel Extraction Kit 

For some PCRs, multiple PCR products were observed of different sizes. To try to obtain pure 

samples for sequencing, bands from the agarose gel at the size expected PCR product was cut 
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out and DNA extracted using the QIAquick Gel Extraction Kit, primarily according to the 

QIAGEN’s description (99). QIAGEN is the leading provider of innovative samples and 

technologies for purpose of isolation and detection of contents in any biological sample.  

First the DNA fragment was cut out from the agarose gel and the slice was weighed. 3:1 of 

Buffer QG was added to the gel and incubated at 50°C for 10 minutes (or until the gel slice 

had completely dissolved). The tube was being vortex every 2-3 minutes during incubation to 

help dissolving. After incubation the solution was checked if it had the right yellow color 

which indicating the right pH for optimal DNA binding. 1 gel volume of isopropanol was 

thereafter added to the sample. QIAquick spin column was placed in a 2 mL collection tube 

and the sample was applied to the column and centrifuge for 1 minute. The content in the 

collection tube was discarded and QIAquick column was placed back in the same tube. 0,5 

mL Buffer QG were added to the QIAquick column and centrifuged for 1 minute. To wash, 

0,75 mL Buffer PE was added and centrifuged for 1 minute (let it stand for 2-5 minutes after 

application of Buffer PE before centrifuging). The content in the collection tube was 

discarded and the QIAquick column was centrifuged for an additional 1 minute at 13000 rpm. 

Then it was placed into a clean 1,5 mL microcentrifuge tube. To eluate DNA, 50 µL Buffer 

EB was added to the center of the QIAquick membrane, let it stand for 1 minute and 

centrifuged for 1 minute. To increase DNA concentration, 30 µL elution buffer was added, let 

it stand for 1 minute and centrifuged for 1 minute (after adding of Buffer EB, increased 

incubation time to up to 4 minutes may increase the yield of purified DNA. 

 

 

4.10 DNA sequencing 

Sanger sequencing is an automated “cycle” DNA sequencing reaction (100).  This method is 

taken advantage of chemically altered nucleotides; dideoxynucleotides tagged with 

fluorescents. While making a copy of the DNA template, the enzyme incorporates both 

nucleotides and the fluorescently tagged dideoxynucleotides. These special 

dideoxynucleotides will cause the copying process to terminate each time they are 

incorporated into the growing DNA chain. This process is repeated many times, which will 

give an enormous number of DNA copies with different lengths. The fragments with 
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fluorescents attached will be detected by a data analysis software to reveal the sequence of the 

original piece of DNA (100).  

 

4.10.1 Detection of genetic mutations on mecillinam resistance-encoding genes 

BigDye® Terminator v3.1 Cycle Sequencing Kit provided the required reagent components 

for the sequencing reaction in a pre-mixed format (101). The mix of BigDye v3.1 was added 

to sequencing buffer, DNA template from PCR, primer (either forward or revers) and brought 

to a finale volume of 20 µL with deionized water. 200 ng of DNA was added to each sample, 

which was calculated from the DNA concentration measured from Nanodrop. 

See Table 20 for overview of the reagents and the needed quantity of each reagent, and Table 

21 for how to perform cycle sequencing on thermal cycler. The samples were sent to the DNA 

sequencing facility at UNN for sequencing. 

Table 20: Reagents and quantity for BigDye® terminator v3.1. 

Name of reagent Quantity 
Big-Dye v3.1 1 µL 
Sequencing buffer 3 µL 
Template 200 nga 
Primer 5 mM 1 µL 
Deionized water q.s. 
Total volume 20 µL 
aNanodrop was performed for quantification of the needed volume of template. 

	
Table 21: Set up for the thermocycler program with BigDye® terminator v3.1. 

Step Temperature/description Time 
1 96°C 5 min 
2  96°C 10 sec 
3 50°C 5 sec 
4 60°C 4 min 
5 Go to step 2 Repeat cycle 24 times 
6 4°C Forever 

The Sequencher® version 4.1 sequence analysis software (Gene Codes Corporation, Ann 

Arbor, MI USA) was used to assemble sequence reads and detect regions with sequence 

variation. The genom of the mutants was compared to the parental WTs when possible, or 

compared to E. coli MG1655.  
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4.11 Gram staining 

Gram staining was performed to see if the morphology of the mecillinam resistant mutants 

were different than that of the WT isolates. Morphology and growth of the cells were 

compared in pairs where mutants were compared to their parental WT.  

This is a common technique used to differentiate Gram-positive and Gram-negative groups 

based on their different wall constituents by coloring these cells red or violet (102). Gram-

positive bacteria stain violet due to the thick layer of peptidoglycan in their cell walls, which 

retains the crystal violet. While Gram-negative bacteria stain red because of the their thinner 

peptidoglycan wall. In the decoloring process the crystal violet will not retain in their cell 

walls.  

Overnight culture(s) of the isolate(s) of interest was prepared before staining (37°C with slow 

shaking, just enough for some motion in the media). The bacterial culture was picked up with 

a Pasteur pipette and placed onto the middle of a glass slide. The media were spread out, but 

not too thin. Thereafter the smear was allowed to air dry completely, and the samples were 

heat fixed to the slide by passing the slide, with smear side up, through the flame rapidly two-

three times. The bacterial smear was then completely covered with the primary stain, Crystal 

violet, and stained for 1 minute. Gently, the dye was washed off with ddH2O. The slide was 

then covered with the mordant, Gram’s iodine, for one minute. Again the slide was gently 

washed with ddH2O. The smear was cautiously rinsed with decolorizer, 96% alcohol, until the 

purple color no longer came off the smear in the alcohol, and then gently washed off with 

ddH2O. The slide was counterstained with safranin for about two minutes, and then gently 

washed with ddH2O. Finally the slide was carefully blotted dry with a paper towel. The slides 

were then investigated in a light microscope at 60X and 100X. 
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5 EXPERIMENTAL RESULTS 

5.1 Isolation of isolates clinically resistant to mecillinam 

Clinical E. coli isolates with different genetic backgrounds were evolved to become resistant 

to mecillinam. The results from the optimization of the static selection protocol and the 

isolation of resistant mutants are described and displayed below.  

 

5.1.1 Optimization of static selection for mecillinam resistant mutants 

From the static selection of mecillinam resistant mutants, we aimed to isolate mutants with 

MICs above 8 µg/mL, the clinical breakpoint. Initially, a concentration of 32 µg/mL of 

mecillinam in LBA was chosen for the selection (MIC >8 µg/mL). However, this frequently 

resulted in non-resistant mutants (false positives), as determined by MIC-testing (Table 22). 

Several reasons for this were considered, and for pinpointing the problem, some factors were 

investigated: 1) human error; tested by having an observer present during the experiments, 2) 

comparing MH II and LB with multiple concentrations of mecillinam (8, 16 and 32 µg/mL), 

3) retesting a strain that had previously given resistant mutants at 32 µg/mL and 4) rechecking 

drug concentration calculations and comparing two drug stocks prepared by different 

members of the lab.  
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Table 22: Mecillinam resistant mutants in different growth media. 

Selection 
medium 

Strain Mecillinam 
concentration 

(µg/mL) 

Mecillinam 
stock 

(1 mg/mL)a 

Dilution (1:10) or 
undilutedb 

CFU of MecR 
mutantsc 

 
 

LBA 
K56-5 32 M1 

1:10 5 
UD 119 

K56-16 32 M1 
1:10 1 
UD 14 

 

 

 

MHA 

K56-5 8 M1 
1:10 5 
UD 133 

16 M1 
1:10 0 
UD 50 

32 M2 
1:10 0 
UD 1 

K56-16 8 M1 
1:10 2 
UD 2 

16 M1 
1:10 0 
UD 1 

  32 M2 
1:10 0 
UD 1 

32 M1 
1:10 0 
UD 0 

a Mecillinam stock prepared by different lab members; M1=member 1, M2=member2. 
b Diluted (1:10) or undiluted (UD) bacterial overnight cultures which were plated on the selective plates with different media.  
c MecR=mecillinam resistant. CFU observed on the respective selective plates. 

	
Undiluted overnight cultures yielded more CFUs compared to diluted overnight cultures 

(1:10). This was shown for both LBA- and MHA plates, although for LBA plates they 

showed more CFUs than for MHA plates. The results showed prominent differences in 

bacterial growth between the two tested media, but no prominent differences were exhibited 

for the different mecillinam stocks. Based on these results, the frequency of resistant mutants 

varies with the type of growth media. 

 

 

5.2 Mutation frequency and MIC of mecillinam resistant mutants 

Mecillinam resistant isolates were generated from ten clinical strains of E. coli, originating 

from the ECO-SENS collection. Three different phenotypes of each strain were isolated, and 

at least one phenotype isolated for each strain was chosen for MIC-testing. Ten of the 15 

mecillinam resistant isolates obtained were selected for further analysis (Appendix A). The 

results are displayed in Table 23.  
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Table 23: Mutation frequency and MIC-values for mecillinam resistant isolates. The isolated mecillinam resistant 
mutants in bold were the ones selected for further analysis. See Appendix A for the complete results.  

Parental isolate Mutation frequency Isolated mutants MIC (µg/mL) 
  I ≥256 

K56-5 1,44x10-5 II ND 
  III ND 
  I 32 

K56-17 2,04x10-7 II 48 
  III 24 
  I 8 

K56-18 9,54x10-6 II 24 
  III 12 
  I ND 

K56-20 1,33x10-7 II 32 
  III 0,5 
  I 32 

K56-23 9,18x10-6 II ND 
  III ND 
  I 64 

K56-24 3,35x10-7 II ND 
  III ND 
  I 24 

K56-31 1,48x10-6 II ND 
  III ND 
  I ≥256 

K56-66 1,58x10-7 II ND 
  III ND 
  I ≥256 

K56-69 1,02x10-6 II 48 
  III 128 
  I 48 

K56-71 2,35x10-6 II ND 
  III ND 

ND = MIC not determined. 

 

The lowest mutation frequency was for strain K56-80 (7,28x10-8) and the highest was for 

strain K56-30 (6,91x10-5). The highest MIC-values above the clinical breakpoint were for 

strains K56-5, -30, -66 and -69 (≥256 µg/mL), and the lowest was strain K56-18 (12 µg/mL) 

(Table 23).  

All isolates were confirmed by MALDI-TOF as E. coli. The results showed scores over 2,0 

which indicated reliable identification on the species level (Appendix B). 
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5.3 Collateral sensitivity/cross-resistance networks  

Ten out of 15 strains were selected for further testing and determination of possible collateral 

sensitivity and collateral resistance networks. The antimicrobial concentration resulting in 

90% inhibition of growth (IC90) was determined for the selected isolates for eight 

antimicrobial agents; amoxicillin, chloramphenicol, ciprofloxacin, gentamicin, mecillinam, 

nitrofurantoin, tetracycline and trimethoprim. 

The IC90-values for the mutants were compared to the parental WTs. The results are displayed 

in Table 24 as a heat map, presenting the fold-changes in the IC90-values. The fold changes 

have been color coded according to the description below in the respective table. In this 

project, only 2-fold changes in collateral sensitivity were considered as relevant changes, thus 

only ≥2-fold changes have been assigned color codes. Red tones denote cross-resistance and 

blue tones denote collateral susceptibility. The largest decrease in IC90 between the parental 

WTs and the mutants, showing the highest tendency towards collateral sensitivity, was a 

0,125-fold change in amoxicillin susceptibility for isolates K56-23 and K56-66. Three-fold 

increases in the IC90 values to gentamicin and trimethoprim were observed for single isolates, 

demonstrating cross-resistance.  

The average fold changes across all ten isolates were calculated. On average, our mecllinam 

resistant mutants exhibited the highest tendency to cross-resistance with ciprofloxacin (1,307-

fold change), while the highest tendency for collateral sensitivity was to chloramphenicol 

(0,642-fold change).  
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Table 24: Collateral sensitivity profiles of mecillinam resistant mutants. A heat map displaying the fold changes for 
collateral sensitivity(CS)/cross-resistance(CR) for all ten strains that were compared to the parental WTs, and the average of 
the fold change values (Mecillinam Avg) were calculated for each antimicrobial. The blue coloring denotes CS, red coloring 
denotes CR and white coloring denotes 1-fold change, alias no fold changes, in CS/CR. For abbreviations see Table 11. 

Strain AMX CHL CIP GEN MEC NIT TET TMP 
K56-5 2 1 1 3 21 1 1 2 
K56-17 0,5 0,333 0,75 0,5 21 0,75 1 0,5 
K56-18 1 0,5 1 0,375 21 0,667 1 0,667 
K56-20 0,5 0,5 1,5 0,5 21 1,5 1 0,658 
K56-23 0,125 0,667 1,95 0,376 507 0,5 1,5 3 
K56-24 1 0,75 2 1 24 1 1,5 0,752 
K56-31 1 0,75 1,333 1 21 1 1 1 
K56-66 0,125 0,25 0,75 0,75 64 0,667 0,5 1 
K56-69 1 1 2,04 0,665 128 1,5 1 1,5 
K56-71 1 0,667 0,75 0,75 85 1 1 1 

Mecillinam Avg. 0,825 0,642 1,307 0,892 91,3 0,958 1,050 1,208 

 

      
 

            
0,125 0,25 0,5 1 2 4 8 16 32 64 

 

In order to graph the average susceptibility changes on the same axis it was necessary to log 

transform the fold changes as shown in Figure 11, the 95% confidence interval (CI 95%) is 

also shown. This figure allows for more general description of the collateral sensitivity profile 

in the collection of ten isolates. 

 
Figure 11: Distribution of collateral sensitivity(CS)/cross-resistance(CR). Showing the average fold change for 
mecillinam resistant mutants to eight different antimicrobial agents with CI 95%. Blue coloring denotes CS, and red coloring 
denotes CR.  
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In general, the mecillinam resistant mutants frequently displayed low-level collateral 

sensitivity (0,983-fold change in net result). During the experiments, we observed a couple of 

mecillinam resistant mutants from K56-23 and K56-24 that made small colonies and 

generally grew slower than their parental WTs (these observations were not performed 

systematically).  

 

 

5.4 Optimization of PCR 

In this project, we wanted to amplify and sequence certain of genes that are involved in 

mecillinam resistance. Initially, we struggled with contamination of the PCR reactions, which 

was evident by having bands in the negative control (mastermix and water). Finally, after 

switching to aerosol resistant tips and exchanging all buffers and nuclease-free water, the 

contamination was absent. DNA isolations were also repeated to obtain samples without 

possible EtOH and protein contaminants, which interfered with the PCR reactions. 

Several of the primers that were ordered or designed for this study showed unspecific binding, 

which caused multiple bands on the agarose gel, and others gave no amplified product at the 

annealing temperature indicated by the calculations. Gradient PCRs (50-60°C) were 

performed in an attempt to optimize the running conditions. An example of a gel from a 

gradient PCR setup is shown in Figure 12. Furthermore, problems with contaminated DNA 

templates were encountered.  

 
Figure 12: Gradient PCR for mrdA1. The whole gradient spanning from 50°C to 60°C. The area marked in red gave an 
annealing temperature approximately at 59°C. 
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The results from the gradient PCR performed for mrdA1 (wells from 1-12 contain samples of 

negative controls of ddH2O and wells from 13-24 contain samples of WT K56-24) showed 

amplified PCR products (bands) at approximately 50- and 59°C. Due two several bands at 

approximately 59°C, marked in red, a new annealing temperature at 59°C for mrdA1 was 

chosen. 

Finally, investigations for potential mutations were focused on mrdA gene, as it is the 

mecillinam drug target, due to time constraints. To amplify the whole gene, three primer sets 

were required. Two of these (mrdA1 and mrdA3) gave several bands even with optimization 

of the annealing temperature, and the amplicons were in the end primarily isolated from the 

agarose gel to obtain templates for sequencing. An example of such gel is shown in Figure 13. 

 
Figure 13: Multiple bands of PCR-products. Displayed is PCR with mrdA1 at 50°C for K56-23 WT (well 2), mutant (well 
3) and negative control with ddH2O (well 4).  

 

 

5.5 Genetic mutations in the mrdA gene 

To identify potential mutations in the mrdA gene, which may confer mecillinam resistance, 

the PCR-products were sequenced. The isolates with good quality DNA sequences were 

aligned to the E. coli MG1655 genome. The respective isolates were mutants of strain K56-5, 

-18, -23 and -66. Only parts of the mrdA gene were compared. The results are displayed in 

Table 25 and Figure 14. 
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Table 25: The different mutations detected for mecillinam resistant isolates compared to E. coli MG1655. The arrow 
indicates what kind of alteration in the amino acid sequence the mutation caused.  

Detected mutations Amino acid alteration  Detected mutations Amino acid alteration 
CAG498CAA Gln à Gln GGC427GGT Gly à Gly 
CCT481CCG Pro à Pro CCT430CCA Pro à Pro 
TAC533TAT Tyr à Tyr CAG436CAA Gln à Gln 
GCT535GCC Ala à Ala ACA459ACG Thr à Thr 
GGT594GGC Gly à Gly CCA462CCT Pro à Pro 
GGT595GGC Gly à Gly TTG483TTA Leu à Leu 
ACA602ACG Thr à Thr   
Ala=Alanine, Gln=Glutamine, Gly=Glycine, Leu=Leucine, Pro=Proline, Thr=Threonine and Tyr=Tyrosine. 

	
	

 
Figure 14: DNA alignment of the mutant and its parental WT. The red marked area is an example of a point mutations 
observed in the mecillinam resistant mutant (K56-66) compared to MG1655 of E. coli.  

 

The results showed 13 synonymous point mutations, in which the mutation in the respective 

codon still encodes for the same amino acid. Thus leading to no alteration in the amino acid 

sequence. 

 

 

 



EXPERIMENTAL	RESULTS	
	

	 58	

5.6 Chain growth effect of E. coli cells 

All parental WT isolates and their mecillinam resistant mutants were investigated under a 

light microscope after Gram staining.  

In general, observations showed that mutants were more spherical and smaller in size 

compared to their parental WTs. There were some color intensity differences as well, which 

in two out of ten cases the mutants showed higher color intensity than their parental WTs 

(isolates of K56-18 and -23). Observations through the light microscope also showed five out 

of ten mutants (isolates of K56-5, -18, -20, -24 and -69) grew more in pairs or slightly more in 

chains than their parental WTs. However, in general, the results showed no prominent 

differences between the mutants and their parental WTs (Figure 15). 

 

	
Figure 15: Cells of clinical isolates of E. coli. Comparison of mecillinam resistant isolate (A) of strain K56-5 and its 
parental WT (B). The observations show no prominent differences in chain growth tendency. 
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6 DISCUSSION 

The successful discovery of antimicrobial agents is unfortunately comprised by the inevitable 

emergence of AMR (1, 4). Since the first cases of AMR in the 1940s, it has been threatening 

the success, and modern management of infectious diseases (15), and worse leading to 

widespread fatalities and economic disruption globally (14). To tackle the bacterial 

development of AMR mechanisms novel treatment strategies are required to ensure effective 

treatment of infections. Translating collateral sensitivity networks into treatment-guidelines 

may retard the evolution of antimicrobial resistance by constraining the evolutionary paths 

towards resistance. The main focus in this project has been to expand the knowledge of this 

phenomenon through generating collateral sensitivity/cross-resistance networks. Hence may 

lay the scientific foundation to establish a novel treatment strategy for UTIs caused by E. coli 

and prevent further resistance development. We approached this by evolving resistant to 

mecillinam, a relevant antimicrobial in UTI treatment, in clinical strains of E. coli from UTIs. 

We further proceeded to explore the collateral sensitivity/cross-resistance networks of the 

resistant isolates and took a closer look at some of the mutants in an attempt to find the 

mechanisms behind our observations.  

 

 

6.1 Collateral sensitivity/cross-resistance networks 

The resulting collateral sensitivity/cross-resistance networks in our study are displayed in heat 

maps and a graph showing the distribution of antimicrobial susceptibilites to various agents. 

In this context, we are not using the terms “collateral sensitivity” and “cross-resistance” from 

a clinical point of view, but rather as changes in the antimicrobial susceptibility that we might 

be able to employ in order to control AMR development. Our results showed that both 

collateral sensitivity and cross-resistance occurred for mecillinam resistant isolates. However, 

a substantial tendency for collateral sensitivity frequently appeared compared to cross-

resistance (0,983-fold change in net result). This is in concurrence with previous unpublished 

preliminary results from our research group for other isolates from the ECO-SENS collection.  
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In Imamovic et al.’s study, CS drug cycling was demonstrated for various antimicrobial 

agents (38). However, mecillinam was not included in that study. Our results showed that 

across all antimicrobial agents tested the overall average fold change was below 1,0. Though, 

for amoxicillin, chloramphenicol and gentamicin collateral sensitivity was demonstrated for 

four out of ten strains. Hence at this point our data does not support that the collateral 

sensitivity patterns are general enough to employ mecillinam in CS drug cycling. However, 

there are several aspects of the study that should be highlighted. Ten diverse clinical isolates 

of E. coli from the ECO-SENS collection from patients with UTIs were used. Compared to 

previous studies, this is a substantial number of strains, giving a better description of what is 

to be expected on the population level (38, 39). Our IC90 results were very tight, with the two 

replicates giving very similar results in most cases. The statistical power of IC90-assay 

provides high validity and resilience in our data. Additionally, the most interesting finding in 

our results was the rare tendency of cross-resistance observed for mecillinam resistant 

mutants. Thus mecillinam might be a good candidate to be employed as the first drug of 

choice for UTIs. Our findings provide proof of principle for collateral sensitivity, which may 

be an important key to interfere with resistance development. The study also contributes 

scientific evidence to other previous works to which our comparisons show high consistency 

(38, 39). However, these assumptions are based on in vitro results. Thus further investigations 

should be tested in vivo and possibly in clinical trials as well. 

 

 

6.1.1 Comparison to previous works on collateral sensitivity 

Imamovic and Sommer, 2013 

Imamovic and Sommer demonstrated collateral sensitivity in E. coli MG1655 and suggested 

to use these CS-networks to inform drug cycling strategies (38). In their study, tendency of 

collateral sensitivity was frequent, where 17 of the 23 resistant E. coli isolates exhibit 

collateral sensitivity to at least one other microbial agent (38). Mecillinam was not included 

among the antimicrobial agents to which the bacterial isolates were evolved to become 

resistance to. Hence our comparison of the results is based on the data from the same 

chemical class as mecillinam (β-lactams).  
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Similar to this study, a heat map was used to display the collateral sensitivity profiles of 

antimicrobial resistant E. coli strains. According to our results, mecillinam resistant mutants 

displayed collateral sensitivity towards amoxicillin and chloramphenicol contrasting to their 

study where cross-resistance was more frequently observed (up to 32-fold change). Their data 

also show more cross-resistance interactions towards tetracycline (2-fold change increase for 

all β-lactam-resistant isolates except for one), and towards nitrofurantoin it shows both 

collateral sensitivity and cross-resistance to a similar extend, while our results exhibited 

almost no change in the antimicrobial susceptibility towards both agents. Nitrofurantoin 

affects several targets in the bacterial cell wall, which may partly explain the variation 

observed for collateral sensitivity and cross-resistance. Resemblances seen in both studies are 

towards ciprofloxacin and trimethoprim to which prominent cross-resistance is observed for 

all β-lactam-resistant isolates (up to 8-fold change increase).  

In general, we observed more collateral sensitivity for mecillinam-/β-lactam-resistant isolates 

in our study, especially towards chloramphenicol and amoxicillin in contrast to their study. 

The limited number of clinical strains they were using may cause the dissimilarities as 

displayed in our comparison.  

MG1655 strain of E. coli was selected for resistance to 23 different antimicrobial agents. Two 

clinical isolates were selected for resistance to a subset of eight of the original 23 

antimicrobials. Thus the resistant isolates have a limited variation in their genetic background.  

We used ten clinical isolates of E. coli, giving us more solid data to test the generality of the 

networks on the population level. As demonstrated in our experiments, both collateral 

sensitivity and cross-resistance can occur within one antimicrobial agent tested across various 

strains. Thus it is important to include isolates with various genetic backgrounds to observe if 

collateral sensitivity networks also exist on the population level.  

Lázár et al., 2013 

Lázár and co-workers also aimed to determine how frequently collateral sensitivity occurred 

as well as the underlying mechanisms (39). They noticed populations exposed to the same 

antimicrobial agent showed very similar antimicrobial susceptibility patterns. The results 

were charted to a network of collateral sensitivity interactions between several antimicrobial 

agents, which were grouped according to their mode of action(s). Our comparison is based on 

the data of cell wall-inhibitors; the same antimicrobial class as mecillinam (mecillinam and 

amoxicillin were excluded in their study).  
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Similarities seen in both studies are for instance the same tendency of collateral sensitivity 

towards gentamicin and nitrofurantoin when strains of E. coli develop resistance to 

antimicrobials with cell wall as their drug target. Based on their results, several major patterns 

were observed. One of them was that the distribution of interactions was strongly influenced 

by the mode of action(s) of the antimicrobial agents. The results from both studies may not be 

comparable since mecillinam was excluded in their study. However, based on this respective 

pattern, mecillinam resistant mutants might have exhibited the same collateral sensitivity and 

cross-resistance interactions as the other mutants with adaption to cell wall-inhibitor agents.  

The authors reported no collateral sensitivity interactions towards chloramphenicol. The 

results presented here suggest that in a broader collection of clinical isolates, more CS-

networks exist. In their study, the isolates were from the same one ancestral clone that was 

propagated to ten independent populations. As discussed earlier, this might not be 

representative on the population level. Furthermore, they were using another method to 

estimate collateral sensitivity. The sensitivity of each resistant isolate was tested against 

different antimicrobial agents and the growth in the liquid cultures was measured at half-

maximal effective concentration (EC50). EC50 and IC90 are both units that measure the drug’s 

potency to the isolate of interest. Though, different units of measurement might cause the 

dissimilarities in our comparisons.  

Lázár et al. observed that collateral sensitivity to other antimicrobial classes is uncommon for 

most of the classes. However, as same as for Imamovic and Sommer, they observed several 

major patterns in their study (one of them already mentioned above), including exhibition of 

high tendency of collateral sensitivity towards other classes when strains of E. coli develop 

resistance to aminoglycosides (38, 39).  

MicroPop, 2015 

In general, our comparison with MicroPop’s preliminary data displays high consistency 

(Figure 16).  
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Figure 16: Distribution of collateral sensitivity/cross-resistance. Showing the average log MIC for mecillinam resistant 
mutants with CI 95%, generated by MicroPop (to the left) and our project (to the right). Blue coloring indicates collateral 
sensitivity, and red coloring indicates cross-resistance. Permission obtained from: MicroPop research group at UiT – The 
Arctic University of Norway in Tromsø, unpublished preliminary data. 

 

The same tendency of collateral sensitivity/cross-resistance networks was observed for both 

studies. As described earlier, MicroPop performed gradient strip diffusion assays for MIC 

testing to investigate the antimicrobial susceptibility patterns, while we used IC90-assays. 

Despite using different methods, similar results for collateral sensitivity/cross-resistance for 

both studies provided comparable data even though only one replicate was performed in their 

study. In their work, mecillinam resistant mutants displayed collateral sensitivity towards 

nitrofurantoin, gentamicin, amoxicillin and chloramphenicol. In our study, mecillinam 

resistant mutants revealed prominently stronger collateral sensitivity towards gentamicin. 

Similar tendencies for cross-resistance were shown towards ciprofloxacin and trimethoprim. 
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Tetracycline was the agent that showed contradictory results. In our study, mecillinam 

resistant mutants showed weak cross-resistance interactions towards tetracycline. While the 

opposite is demonstrated for MicroPop’s study showing clear collateral sensitivity 

interactions. However, the CI 95%-values between the studies do overlap. CI is used to 

describe the amount of uncertainty associated with a sample method that includes an 

unknown population parameter. In other words, the calculated CI 95% shows a range of 

values where there is a likelihood of 95% that the next replicate performed will fall within the 

respective interval (103). Thus when the CI 95%-values for both studies include “0” on the x-

axis, the “next” mecillinam resistant isolate tested against tetracycline might show no change. 

Hence the differences for both studies are not considered significant. Ongoing replicate 

experiments will improve the statistical power in these analyses. 

 

6.1.2 Different strategies for CS cycling 

As mentioned in the section 1.3.5, the hypothesis behind conventional drug cycling is based 

on the assumption that resistance is accompanied by biological fitness cost, thus leading to 

eradication of resistant bacteria when absence of the selective pressure imposed by drug 

treatment (32, 43). However, bypass mechanisms may allow genetic adaption and 

maintenance of the resistance phenotype despite exclusion of antimicrobial agents 

deployment (32, 37). Furthermore, in clinical settings, eradication of all resistance pathogens 

is required so that reversibility can occur, even though the rate of reversibility is expected to 

be slow at the community level (32).  

Several studies have suggested CS cycling as a novel treatment strategy, which constrains 

evolutionary paths to AMR (38, 40).  

A study proposed a different approach to the conventional drug cycling (38). This was based 

on the findings that the development of resistance to one antimicrobial agent might alter the 

antimicrobial susceptibility profile for that respective bacterial cell. Hence resulting in 

collateral sensitivity and cross-resistance toward other antimicrobials. They called this novel 

treatment strategy for CS drug cycling (section 1.4) (38). However, in their experiments, not 

all antimicrobials could be used in two-drug cycles because use of agents with cross-

resistance will provide a selective advantage to the resistant strain over the WT leading to 

amplification of resistance. Therefore they suggested antimicrobials with collateral sensitivity 
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profiles could be included in the cycle leading to a change in antimicrobial susceptibility 

toward collateral sensitivity. However, this means that deployment of four to five drugs in one 

CS drug cycle would be required, making treatment more complicated. Additional, this 

strategy is dependent on complete eradication of all resistant strains, which may be 

challenging in real-life settings due to unknown evolutionary stability of collateral 

sensitivity/cross-resistance and other factors. 

Another study by Gonzales and co-workers suggests a combination therapy of three different 

β-lactams, all targeting cell wall synthesis (40). This synergistic, collateral sensitive β-lactam 

combination uses elements from three strategies; targeting multiple nodes (connection points) 

in the same cellular system, synergistic effect and collateral sensitivity. This combination 

therapy was suggested to combat methicillin-resistant Staphylococcus aureus (MRSA), a 

multidrug-resistant pathogen. Nevertheless, in their results, high resistance to one of the two 

β-lactams slightly reduces effectiveness of the synergistic, collateral sensitive β-lactam 

combination. Furthermore, HGT was not taken into account in their analysis, which can break 

the synergetic relationship between the β-lactams.  

 

6.1.3 CS cycling versus other antimicrobial treatment strategies 

A promising treatment strategy that may improve pathogen eradication and curb the evolution 

and spread of AMR, is combination therapy. As mentioned above, combination therapy has 

shown its success by taking advantage of synergistic effects of some drug combinations 

(section 1.3.2) (25). However, toxicity has been observed and the issue on whether 

combination therapy reduces mortality in infections with Gram-negative bacteria has been 

brought to light in a meta-analysis (26). According to the analysis, adverse effects are more 

common for patients receiving combination therapy. They also suggest that the survival 

benefit of combination therapy may be none. Moreover, other potential disadvantages 

including increased financial cost and increase in resistance prevalence associated with 

combination therapy. Hence collateral sensitivity cycling may be a more favorable solution to 

the rapidly growing crisis in AMR development. Other treatment strategy includes 

conventional antimicrobial cycling that was mentioned in previous section (section 1.3.5). 
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6.1.4 Potential impacts and challenges of CS/CR in clinical settings 

Mecillinam is primarily used in Northen Europe for treatment of UTIs (60). Furthermore, it is 

not available everywhere (e.g. Canada or the US) or not a drug of choice in the 

recommendations of UTIs treatment (section 1.7.2) (54, 55, 57). For instance, trimethoprim 

and nitrofurantoin are the recommended antimicrobials for treatment of acute lower UTI in 

Scotland (54). 

Our work may contribute to developing novel treatment guidelines for the treatment of 

infectious diseases (UTIs). Based on our results, mecillinam might be a good candidate to be 

employed as the first drug of choice for UTIs. Comparison of the results from the MicroPop 

group and our study has shown a clear tendency for collateral sensitivity for mecillinam 

resistant mutants. And, perhaps even more important, the collateral sensitivity profiles 

indicate that mecillinam resistance gives a fair probability of developing of collateral 

sensitivity and low probability of cross-resistance (Figure 16).  

CS/CR networks could be used as tools to inform the choice of primary and secondary 

therapies to ensure effective treatment options, based on drug cycling. Furthermore, several 

studies have anticipated that collateral sensitivity will contribute to the sustainable use of 

drugs in hospital setting by reducing the rate of resistance evolution (27, 40, 41).  

The results from MicroPop and our study are promising. However, more strains need to be 

explored to verify this. Nonetheless, the results from our study and others are from in vitro 

experiments performed in laboratory settings (38, 40). In Thulin et al.’s paper, their results 

show that the mutation frequency of mecillinam resistant mutants is much higher in vitro than 

in the clinical settings (12). Mutations were found for various resistance-conferring genes for 

mecillinam resistant laboratory-selected mutants and for -clinical isolates. However, one 

remarkable thing was that mutations in the cysB gene were found in all of the clinical isolates. 

Furthermore, mecillinam resistant mutants evolved in laboratory settings had severe fitness 

costs with lower growth rates compared to E. coli MG1655. This tendency has been observed 

in other studies, as well as in ours (34, 80). Thulin et al. implies that only a small subset of the 

mutants found in vitro are fit enough to become fixed in the bladder (12).  

These observations demonstrate the possibility that we might see a different result in real-life 

settings. In this study, mecillinam resistant mutants were evolved from isolates of E. coli from 
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clinical patients with UTIs. Though our observations might be limited to in vitro settings, the 

mecillinam resistant isolates are clinically relevant.   

Also, detection of pathogen species before choice of antimicrobial is not always possible in a 

clinical setting, such as when a patient is admitted for acute infections. Thus using CS in this 

context may be challenging if the first line drugs of choice is dependent on the bacterial 

species. Moreover, the influence of different factors on collateral sensitivity still remains 

unknown. Such factors are, for instance, acquisition of resistance genes through HGT and 

pathogens with MDR.  

 

6.1.5 Management of various deviations in our results 

The results from our collateral sensitivity/cross-resistance networks were displayed with fold 

changes. We performed two replicates for all twenty isolates, both mutants and WTs (section 

4.5.2). The first replicate was performed with 2-fold dilutions, covering a wide range of MIC-

values, to provide us an indication for in what range the IC90-value will be for the respective 

antimicrobial. The second replicate was performed with 1,5-fold dilutions. The results from 

the second replicate were used for the final interpretation due to its higher resolution. 

Furthermore, the results from both replicates were generally consistent. Regarding the more 

slow growing isolates (the mutants based on K56-23 and-24), which were incubated at 18-, 24 

- and 42 hours, the results from 18 hour incubations were used for the interpretation of the 

overall results. Although with 42 hours we achieved higher density, thus higher accuracy and 

confidence in our data, this caused difficulties for our interpretation due to the ATCC-values 

occasionally being out of range after 42 hours and the incubation time not being standardized. 

However, measurements from the various time points showed high similarities suggesting the 

antimicrobial potency was still the same.  

For the replicates to which the values of the ATCC control and K56-44 resistant isolates 

(internal quality control strains) were out of range, another replicate was performed. In our 

final results, ATCC- (for trimethoprim) and K56-44 resistant isolates (for nitrofurantoin) were 

slightly out of range once (Appendix C). We decided to accept the deviation of K56-44 resistant 

isolate since the range can vary for mutants, additionally that occurred in our first replicate (2-

fold change which MIC-value achieved was 4 µg/mL while the range was 6-24 µg/mL). The 

range is stricter for the ATCC (0,5-2 µg/mL) since it is defined by EUCAST (104). Therefore 
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two more replicates were performed for the concerning strains (K56-20 and K56-24). 

However, we continuously got MIC 0,38 µg/mL which equaled to a 1,5-fold lower than 

expected. This may be due to the bacteriostatic effect of trimethoprim, which caused 

difficulties for the range of the ATCC. Furthermore, the range of ATCC-values defined by 

EUCAST are based on standard microbroth dilution testing hence may cause the deviation 

(this matter will be discussed in the next section, 6.1.6). 

Despite these challenges, these defined values were still used in our study due to the lack of 

equally well-established values for IC90-assays. Therefore, in order to achieve a MIC-value 

for ATCC to be in range, the IC90-values calculated for the respective isolates were adjusted 

1,5-fold higher. E.g. initially, the WT of strain K56-20 got MIC 0,25 µg/mL which was 

adjusted to MIC 0,38 µg/mL.  

 

6.1.6 IC90-assessment vs. MIC-testing 

Micro broth dilution with IC90-assessment was chosen for the collateral sensitivity profiling. 

Although IC90-assessment is more time-consuming, there are many advantages regarding this 

method. For instance it is more cost-effective in which the consumables are cheaper compared 

to MIC-testing using the gradient strip method. However, the main reason for why micro 

broth dilution is the preferred method for us is due to the reproducibility. Thus providing us 

high validity and resilience in our results. We also compared our results from the IC90-

assessment with earlier MIC-testing results, which showed high consistency. Furthermore, 

reproducibility of MIC-testing has shown to be challenging, particularly for mecillinam. 

Determination of 100% inhibition zone of bacterial growth was difficult, since spontaneous 

mutants frequently appear. Also, the interpretations were done visually which may affect the 

results due to inter-variability of different interpreters. This manually readings were not a 

problem for IC90-assays since the reads were done automatically with a plate reader. 

Results from AST for mecillinam have shown to be difficult to reproduce in general (section 

1.8) (58). This is due to the high frequency of spontaneous mutations for mecillinam resistant 

isolates (80). The high mutation rate may be explained by in either of two ways; there are one 

or a few genes with high spontaneous mutation frequency, or there are many genes with a 

normal/low spontaneous mutation frequency (80). As mentioned earlier, the frequency of 

mutation to mecillinam resistance isolates is high in vitro due to the large amount of targets 
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for mutations that result in mecillinam resistance (Table 1) (12). Thus these isolates can easily 

be mutated further and make the IC90-assay/MIC-test interpreted level to be artificially high. 

 

 

6.2 Mecillinam resistance-encoding genes 

The second aim in our study was to investigate the underlying mechanisms of the reciprocal 

collateral sensitivity between antimicrobials agents. We approached this by investigating the 

potential mutations in mecillinam resistance-conferring genes. By exploring the resistant 

mechanism, we might find some answers in the underlying mechanisms of collateral 

sensitivity. Potential mutations in the mrdA gene were identified through PCR and DNA 

sequencing. DNA alignments of four mecillinam mutants (K56-5, -18, -23, and -66) were 

compared to the E. coli MG1655 genome. The results displayed 13 synonymous point 

mutations, meaning these point mutations leads to no alteration in the amino acid sequence. 

Thus there are no potential mutations in the respective amplicons that may confer resistance 

and alter the bacterial phenotype. However, our comparison was not optimal. Only part of the 

mrdA gene was compared and the genome of the parental WTs was not the reference genome. 

mrdA gene is one of the known genes that confer mecillinam resistance and shows high 

frequency of mutations in mecillinam resistant mutants (12, 68, 80). Based on our results, we 

can not conclude on the mechanism of the mecillinam resistance, and hence not the 

mechanism of collateral sensitivity observed.  

 

6.2.1 Challenges concerning PCR 

Initially, several genes were chosen for close scrutiny for potential mutations in the genomes 

of mecillinam resistant isolates (1.7.2). However, we experienced challenges regarding PCR, 

additional to the time limitation, which lead to the decision to focus on the mrdA gene only. 

Three primer sets were designed to cover the whole mrdA gene and DNA sequencing was 

supposed to be performed for the entire gene. However, we experienced various difficulties 

during our attempts to amplify the wanted sequence of the gene with PCR. Originally, an 

annealing temperature at 58°C was chosen for all three primer sets after analyzing the primers 

at the National Center for Biotechnology Information (NCBI) website with Basic Local 
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Alignment Search Tool (BLAST) and the OligoAnalyzer 3.1 software. The purpose was to 

detect whether the primer binding to the DNA was specific enough and to find the optimal 

annealing temperature for them respectively. 

The results from agarose gel electrophoresis frequently showed either no amplifications or 

multiple bands with the chosen annealing temperatures. Gradient PCR with 50-60°C were 

therefore performed for mrdA1- and mrdA3-primer sets, which gave us a specific band at 

59°C (for mrdA1) and 50°C (for mrdA3). 

Multiple bands still occurred after performing the agarose gel electrophoresis for mrdA2- and 

mrdA3 amplicons. These bands may be caused by unspecific binding of the primers to the 

genome of E. coli. To investigate this issue, analysis of all three primer sets were done 

through BLAST again to observe whether the primers bind to other microorganisms with 

higher matches than E. coli. The results for all three primer sets showed 100% match for the 

whole sequence of the primers (all 20 nucleotides) only for PBP 2 in E. coli. However, other 

binding-sites in the E. coli genome with partial similarity to the primers may have caused 

unspecific bands.  

Based on the gradient PCRs we adjusted the annealing temperature for the mrdA1 and mrdA3 

primer sets. Time limitation restricted us from further exploring the optimal running 

conditions for these PCRs. Other parts of the running conditions we could have adjusted 

would be to optimize enzyme concentration, lengthen extension time or increase cycle 

number (105). Designing of new primers could also be an option. 

 

 

6.3 Frequency of resistant mutants is depending on type of growth media 

To streamline the protocol of static selection of mecillinam resistant mutants to others used in 

the lab, LBA was exchanged with MHA. According to EUCAST, MH II using for MHA is 

the recommended medium for supplementation of antimicrobial agents (106). This is due to 

its defined contents of cation (calcium and magnesium ions) and thymidine, which are known 

to affect the activity of several agents, such as trimethoprim and trimethoprim-

sulfamethoxazole.  
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The results from the change of medium demonstrated that the two different growth media 

showed a clear difference in mutation frequency and the number of true resistant mutants 

(Table 22). Moreover a decrease in mecillinam concentration in MHA gave a clear increase in 

the mutation frequency. Based on these results, a concentration of 16 µg/mL mecillinam in 

MHA was chosen for the static selection of mecillinam resistant mutants. 

 

 

6.4 Patterns of cell growth for mecillinam resistant mutants  

Studies have shown that mecillinam resistant mutants are more spherical in shape as a 

consequence of PBP 2 inhibition (11, 12) and also have slower growth rate (34). The current 

thinking is that these phenomena and observations may lead and be due to the chain growth 

effect of the cells. According to our results from Gram staining experiment, there were no 

great differences between mecillinam mutants and their parental strains regarding the chain 

growth of the cells. Due to these findings we presume that the incomplete septation during 

cell division may not lead to chain growth effect. The slower growth of the mutants might be 

due to other fitness costs in the cell function. However, for our mecillinam resistant mutants 

the resistant mechanism is still unknown. Therefore further investigations are required to 

know if these phenomena have an association to the chain growth effect. 

 

 

6.5 Strengths and limitations in the project 

In our project, we included ten clinical E. coli isolates providing us strains with different 

genetic background, which increased our ability to generalize on the population level. 

Furthermore, the eight antimicrobial agents employed in our experiments have high clinical 

relevance since they are frequently used in treatment of UTIs. They also belong to distinct 

chemical classes and have different mode of actions (Table 11). 

Nonetheless, our project has only focused on a single species, meaning our understanding on 

the bacterial evolution globally remains unknown. The medium chosen for bacterial growth 

LB and MH II broth are very dissimilar to in vivo system. Hence, we can not confer our result 
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in living organisms. For instance in a clinical setting, we will probably get a urine sample 

from a patient which can vary in its constituents, e.g. level of proteins, hormones and 

metabolites. Also the anamnesis to a patient and whether the patient is using medicals are 

important factors to take into account. Furthermore, the immune system to a host plays a 

crucial part of the medical response, reflecting the state of health to a host. 

 

6.5.1 Improvements 

To see how conserved collateral sensitivity is across different species, various types of 

pathogens causing UTIs may also be included in our project. Also, in order to create a 

laboratory setting more biologically similar to a clinical setting, we could use urine as 

medium instead.  

Regarding PCR, it has been challenging to investigate the locations of the potential mutations 

in the mrdA gene that may confer resistance. PCR is generally sufficient as a method to 

identify potential mutations in a resistance-encoding gene. However, besides being a relative 

large gene (1902 bp), it is also a housekeeping gene (which the bacteria require for the 

maintenance of basic cellular functions). Thus mrdA gene is relatively conserved (68, 107). 

Hence on the population level the bacteria may allow low degree of mutations in the gene. A 

better way to investigate potential mutations is to perform WGS for all 20 clinical isolates of 

E. coli. Simultaneously, we can also search for mutations in other regions when knowing that 

there are at least 38 genes involved in mecillinam resistance (12). This is of course more 

costly and time-consuming, not to mention the knowledge we have to attain within 

bioinformatics for comparison of the amino acid variability. With WGS we have the 

opportunity to do DNA alignment for all known mecillinam resistance-encoding genes and 

accomplish more information about the mutational patterns. Ideally, we should also use the 

parental WTs as the reference genome for the DNA alignment regarding the differences in the 

genetic backgrounds for the clinical strains. This will provide us a more valid result.  

Finally, to increase the probability for finding mutations in the genome, genes with same 

functions could be included e.g. mrdA and mrdB genes (68). This is based on the assumption 

that mutations in one gene may also cause mutations in another gene with the same cellular 

functions. Furthermore, other resistant-conferring genes, which have shown high frequency of 

mutations found in mecillinam resistant mutants, should be investigated. Examples of such 



DISCUSSION	
	

	 73	

genes are thrS-, aspS- and gtlX genes, encoding threonyl-tRNA synthetase, aspartate tRNA 

ligase and glutamyl-tRNA-synthetase respectively (12). Nonetheless, according to Thulin et 

al.’s paper, mutations in the cysB gene are remarkably common for all clinical resistant 

isolates of E. coli. The CysB protein, encoded by the cysB gene, is the main positive regulator 

of cysteine biosynthesis. The mechanism behind this gene conferring resistance still remains 

unclear, but some suggest that this is partly due to the increased intracellular levels of ppGpp 

(84). Hence the cysB gene may be an interesting gene for further research. 
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7 CONCLUSION 

We suggest mecillinam could be a potential candidate for the first drug of choice in treatment 

of UTIs caused by E. coli. This suggestion is based on our findings as well as previous 

unpublished results from our group (MicroPop at UiT – The Arctic University of Norway in 

Tromsø) showing that collateral sensitivity interaction with other antimicrobial agents 

frequently occurs for mecillinam resistant mutants. Most strikingly, cross-resistance is rarely 

seen for mecillinam resistant mutants. We believe that these collateral sensitivity/cross-

resistance interactions will occur on the population level as well. Unfortunately, the 

underlying mechanism(s) of the reciprocal collateral sensitivity between antimicrobial agents 

still remains unclear.  

Furthermore, we insinuate reduction in growth rate for mecillinam resistant mutants found in 

laboratory selections may have an impact in clinical settings. Thulin et al. have also indicated 

this, based on reduced fitness cost, these mutants may have difficulties to maintain stable in a 

clinical setting (12).   
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8 FUTURE ASPECTS 

Since the introduction by the first pioneers, much progress in our knowledge of collateral 

sensitivity has been explored. However, there are several knowledge gaps that should be 

studied further concerning collateral sensitivity/cross-resistance patterns (CS/CR).  

Ø How conserved are the CS/CR patterns; regarding the diversity on species level, and 

even globally. Furthermore, will MDR lead to alteration in the CS/CR patterns?  

Ø What is the underlying mechanism(s) of collateral sensitivity; so far suggestions of 

different underlying mechanisms and factors may contribute to this matter; such as 

reduced activity of the efflux pumps and fitness cost. Although, there are many 

unanswered questions. 

Ø How stable are the CS/CR patterns; will the bacterial evolutionary adaption of 

antimicrobial agents also occur for CS as for CR, and will these patterns remain stable 

in in vivo settings.  
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10 APPENDIX 

Appendix A: Complete results from static selection of mecillinam resistant mutants. The isolated mecillinam mutants 
in bold were the ones selected for further analysis. 

Parental 
isolate 

CFU/mL 
inoculum 

CFU/mL 
mutants 

Mutation 
frequency 

Isolated 
mutants 

MIC (µg/mL) Species 
confirmation 
MALDI-TOF 

K56-5 3,20x107 460 1,44x10-5 I ≥256 X 
     II    
     III    
K56-17 5,40x108 110 2,04x10-7 I 32   
     II 48 X 
     III 24   
K56-18 8,70x107 830    9,54x10-6 I 8   
     II 24 X 
     III 12   
K56-20 4,50x108 60 1,33x10-7 I    
     II 32 X 
     III 0,5   
K56-23 1,46x108 1340 9,18x10-6 I 32 X 
     II    
     III    
K56-24 1,79x108 60 3,35x10-7 I 64 X 
     II    
     III    
K56-25 3,90x108 840 2,15x10-6 I    
     II 24 X 
     III    
K56-30 1,10x107 760 6,91x10-5 I ≥256   
     II    
     III    
K56-31 7,50x108 1110 1,48x10-6 I 24 X 
     II    
     III    
K56-66 5,70x108 90 1,58x10-7 I ≥256 X 
     II  X 
     III    
K56-69 1,66x108 170 1,02x10-6 I ≥256 X 
     II 48 X 
     III 128   
K56-71 2,43x108 570 2,35x10-6 I 48 X 
     II    
     III    
The table continues on the next page. 
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Parental 
isolate 

CFU/mL 
inoculum 

CFU/mL 
mutants 

Mutation 
frequency 

Isolated 
mutants 

MIC (µg/mL) Species 
confirmation 
MALDI-TOF 

K56-76 1,20x109 760 6,33x10-7 I 24 X 
     II    
     III    
K56-77 6,00x108 190 3,17x10-7 I 48 X 
     II  X 
     III    
K56-80 4,12x108 30 7,28x10-8 I 48 X 
     II  X 
        III     

 
 
 
 
 
 
	

Appendix B: An example of MALDI-TOF result for confirmation of species. 

Analyte 
name 

Analyte 
ID 

Organism (best 
match) 

Score 
value 

Organism (second best 
match) 

Score 
value 

A6 1 Escherichia coli 2,439 Escherichia coli 2,317 

A7 1 Escherichia coli 2,322 Escherichia coli 2,306 

A8 1 Escherichia coli 2,341 Escherichia coli 2,335 

A9 1 Escherichia coli 2,44 Escherichia coli 2,421 
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Appendix C: IC90-determination. Tested for eight different antimicrobial agents on ten parental WTs and their 
mecillinam resistant mutants. The table displays fold changes and MIC-values for the respective isolates. 

Amoxicillin 

 

Strains: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 

IC90 
2-fold 

IC90 
1,5-fold 

IC90 
2-fold 

IC90  
1,5-fold 

K56-5 WT 64 µg/mL 8 µg/mL 2 2 2 2 

K56-5 MEC 64 µg/mL 8 µg/mL 4 4 

K56-17 WT 64 µg/mL 8 µg/mL 2 2 0,5 0,5 

K56-17 MEC 64 µg/mL 8 µg/mL 1 1 

K56-18 WT 64 µg/mL 8 µg/mL 2 1,5 1 1 

K56-18 MEC 64 µg/mL 8 µg/mL 2 1,5 

K56-20 WT 64 µg/mL 8 µg/mL 2 2 1 0,5 

K56-20 MEC 64 µg/mL 8 µg/mL 2 1 

K56-23 WT 64 µg/mL 8 µg/mL 4 3 0,25 ≤0,125 

K56-23 MEC 64 µg/mL 8 µg/mL 1 ≤0,375 

K56-24 WT 64 µg/mL 8 µg/mL 2 1,5 1 1 

K56-24 MEC 64 µg/mL 8 µg/mL 2 1,5 

K56-31 WT 64 µg/mL 8 µg/mL 2 3 2 1 

K56-31 MEC 64 µg/mL 8 µg/mL 4 3 

K56-66 WT 64 µg/mL 8 µg/mL 4 4 0,125 0,125 

K56-66 MEC 64 µg/mL 8 µg/mL 0,5 0,5 

K56-69 WT 64 µg/mL 8 µg/mL 8 6 1 1 

K56-69 MEC 64 µg/mL 8 µg/mL 8 6 

K56-71 WT 64 µg/mL 8 µg/mL 4 4 1 1 

K56-71 MEC 64 µg/mL 8 µg/mL 4 4 

ATCC 64 µg/mL 8 µg/mL 8 or 4 6 or 4     

K56-44 MEC 64 µg/mL 8 µg/mL 8 or 4 4 or 3 
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Chloramphenicol 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 
IC90 
2-fold 

IC90 
1,5-fold 

IC90 
2-fold 

IC90  
1,5-fold 

K56-5 WT 32 µg/mL 32 µg/mL 4 3 1 1 

K56-5 MEC 32 µg/mL 32 µg/mL 4 3 

K56-17 WT 32 µg/mL 32 µg/mL 4 6 0,5 0,333 

K56-17 MEC 32 µg/mL 32 µg/mL 2 2 

K56-18 WT 32 µg/mL 32 µg/mL 4 4 1 0,5 

K56-18 MEC 32 µg/mL 32 µg/mL 4 2 

K56-20 WT 32 µg/mL 32 µg/mL 4 4 1 0,5 

K56-20 MEC 32 µg/mL 32 µg/mL 4 2 

K56-23 WT 32 µg/mL 32 µg/mL 8 4 0,5 0,5 

K56-23 MEC 32 µg/mL 32 µg/mL 4 2 

K56-24 WT 32 µg/mL 32 µg/mL 2 2 1 ≤0,75 

K56-24 MEC 32 µg/mL 32 µg/mL 2 ≤1,5 

K56-31 WT 32 µg/mL 32 µg/mL 4 8 2 0,75 

K56-31 MEC 32 µg/mL 32 µg/mL 8 6 

K56-66 WT 32 µg/mL 32 µg/mL 8 6 1 0,25 

K56-66 MEC 32 µg/mL 32 µg/mL 8 ≤1,5 

K56-69 WT 32 µg/mL 32 µg/mL 8 12 1 1 

K56-69 MEC 32 µg/mL 32 µg/mL 8 12 

K56-71 WT 32 µg/mL 32 µg/mL 8 6 1 0,667 

K56-71 MEC 32 µg/mL 32 µg/mL 8 4 

ATCC 32 µg/mL 32 µg/mL 4 3 or 4     

K56-44 MEC 32 µg/mL 32 µg/mL 4 3 
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Ciprofloxacin 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value  
(µg/mL) 

Fold change 

IC90  
2-fold 

IC90  
1,5-fold 

IC90  
2-fold 

IC90  
1,5-fold 

K56-5 WT 2 µg/mL 0,125 µg/mL 0,008 0,012 2 1 

K56-5 MEC 2 µg/mL 0,125 µg/mL 0,016 0,012 

K56-17 WT 2 µg/mL 0,125 µg/mL 0,016 0,016 0,5 0,75 

K56-17 MEC 2 µg/mL 0,125 µg/mL 0,008 0,012 

K56-18 WT 2 µg/mL 0,125 µg/mL 0,008 0,012 2 1 

K56-18 MEC 2 µg/mL 0,125 µg/mL 0,016 0,012 

K56-20 WT 2 µg/mL 0,125 µg/mL 0,008 0,008 1 1,5 

K56-20 MEC 2 µg/mL 0,125 µg/mL 0,008 0,012 

K56-23 WT 2 µg/mL 0,125 µg/mL 0,016 0,012 1,98 2,58 

K56-23 MEC 2 µg/mL 0,125 µg/mL 0,031 0,031 

K56-24 WT 2 µg/mL 0,125 µg/mL 0,008 ≤0,006 1 ≥2 

K56-24 MEC 2 µg/mL 0,125 µg/mL 0,008 0,012 

K56-31 WT 2 µg/mL 0,125 µg/mL 0,008 0,012 2 1,333 

K56-31 MEC 2 µg/mL 0,125 µg/mL 0,016 0,016 

K56-66 WT 2 µg/mL 0,125 µg/mL 0,016 0,016 1 0,75 

K56-66 MEC 2 µg/mL 0,125 µg/mL 0,016 0,012 

K56-69 WT 2 µg/mL 0,125 µg/mL 0,016 0,023 2 2,04 

K56-69 MEC 2 µg/mL 0,125 µg/mL 0,031 0,047 

K56-71 WT 2 µg/mL 0,125 µg/mL 0,008 0,016 2 0,75 

K56-71 MEC 2 µg/mL 0,125 µg/mL 0,016 0,012 

ATCC 2 µg/mL 0,125 µg/mL 0,008 0,008     

K56-44 MEC 2 µg/mL 0,125 µg/mL 0,016 0,016 
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Gentamicin 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 

IC90 
2-fold 

IC90  
1,5-fold 

IC90 
2-fold 

IC90  
1,5-fold 

K56-5 WT 32 µg/mL 1 µg/mL 0,125 0,125 2 3 

K56-5 MEC 32 µg/mL 1 µg/mL 0,25 0,375 

K56-17 WT 32 µg/mL 1 µg/mL 0,125 0,188 1 0,5 

K56-17 MEC 32 µg/mL 1 µg/mL  0,125 0,094 

K56-18 WT 32 µg/mL 1 µg/mL 0,5 0,25 0,25 0,375 

K56-18 MEC 32 µg/mL 1 µg/mL 0,125 0,094 

K56-20 WT 32 µg/mL 1 µg/mL 0,25 0,25 0,5 0,5 

K56-20 MEC 32 µg/mL 1 µg/mL 0,125 0,125 

K56-23 WT 32 µg/mL 1 µg/mL 1 0,375 0,25 ≤0,125 

K56-23 MEC 32 µg/mL 1 µg/mL 0,25 ≤0,047 

K56-24 WT 32 µg/mL 1 µg/mL 0,5 0,188 0,5 1 

K56-24 MEC 32 µg/mL 1 µg/mL 0,25 0,188 

K56-31 WT 32 µg/mL 1 µg/mL 0,25 0,25 1 1 

K56-31 MEC 32 µg/mL 1 µg/mL 0,25 0,25 

K56-66 WT 32 µg/mL 1 µg/mL 0,5 0,25 0,5 0,75 

K56-66 MEC 32 µg/mL 1 µg/mL 0,25 0,188 

K56-69 WT 32 µg/mL 1 µg/mL 0,25 0,188 0,5 0,665 

K56-69 MEC 32 µg/mL 1 µg/mL 0,125 0,125 

K56-71 WT 32 µg/mL 1 µg/mL 0,25 0,25 2 0,75 

K56-71 MEC 32 µg/mL 1 µg/mL 0,5 0,188 

ATCC 32 µg/mL 1 µg/mL 0,25 or 0,5 0,25 or 0,75      

K56-44 MEC 32 µg/mL 32 µg/mL 1 or 2 16 
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Mecillinam 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 
IC90 
2-fold 

IC90  
1,5-fold 

IC90 
2-fold 

IC90  
1,5-fold 

K56-5 WT 4 µg/mL 4 µg/mL 

4 µg/mL 

0,125 ≤0,188 ≥32 ≥21 

K56-5 MEC 4 µg/mL ≥4 ≥4 

K56-17 WT 4 µg/mL 4 µg/mL 

4 µg/mL 

0,125 ≤0,188 ≥32 ≥21 

K56-17 MEC 4 µg/mL ≥4 ≥4 

K56-18 WT 4 µg/mL 4 µg/mL 

4 µg/mL 

0,25 ≤0,188 ≥16 ≥21 

K56-18 MEC 4 µg/mL ≥4 ≥4 

K56-20 WT 4 µg/mL 4 µg/mL 

4 µg/mL 

0,125 ≤0,188 32 21 

K56-20 MEC 4 µg/mL 4 4 

K56-23 WT 4 µg/mL 1 µg/mL 

32 µg/mL 

0,125 0,063 ≥32 ≥507 

K56-23 MEC 4 µg/mL ≥4 ≥32 

K56-24 WT 4 µg/mL 1 µg/mL 

32 µg/mL 

0,063 0,063 ≥64 ≥24 

K56-24 MEC 4 µg/mL ≥4 24 

K56-31 WT 4 µg/mL 4 µg/mL 

4 µg/mL 

0,125 ≤0,188 ≥32 ≥21 

K56-31 MEC 4 µg/mL ≥4 ≥4 

K56-66 WT 4 µg/mL 1 µg/mL 

16 µg/mL 

0,125 0,094 16 ≥64 

K56-66 MEC 4 µg/mL 2 2 

K56-69 WT 4 µg/mL 1 µg/mL 

16 µg/mL 

0,25 0,125 ≥16 ≥128 

K56-69 MEC 4 µg/mL ≥4 ≥16 

K56-71 WT 4 µg/mL 1 µg/mL 

16 µg/mL 

0,25 0,188 ≥16 85 

K56-71 MEC 4 µg/mL ≥4 16 

ATCC 4 µg/mL 1 µg/mL 

16 µg/mL 

0,125 0,094     

K56-44 MEC 4 µg/mL ≥4 ≥12 
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Nitrofurantoin 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change  

IC90  
2-fold 

IC90  
1,5-fold 

IC90  
2-fold 

IC90  
1,5-fold 

K56-5 WT 64 µg/mL 32 µg/mL 8 6 1 1 

K56-5 MEC 64 µg/mL 32 µg/mL 8 6 

K56-17 WT 64 µg/mL 32 µg/mL 8 8 1 0,75 

K56-17 MEC 64 µg/mL 32 µg/mL 8 6 

K56-18 WT 64 µg/mL 32 µg/mL 16 12 0,5 0,667 

K56-18 MEC 64 µg/mL 32 µg/mL 8 8 

K56-20 WT 64 µg/mL 32 µg/mL 4 4 2 1,5 

K56-20 MEC 64 µg/mL 32 µg/mL 8 6 

K56-23 WT 64 µg/mL 32 µg/mL 8 8 0,5 0,375 

K56-23 MEC 64 µg/mL 32 µg/mL 4 3 

K56-24 WT 64 µg/mL 32 µg/mL 8 3 1 1 

K56-24 MEC 64 µg/mL 32 µg/mL 8 3 

K56-31 WT 64 µg/mL 32 µg/mL 16 12 1 1 

K56-31 MEC 64 µg/mL 32 µg/mL 16 12 

K56-66 WT 64 µg/mL 32 µg/mL 8 6 1 0,667 

K56-66 MEC 64 µg/mL 32 µg/mL 8 4 

K56-69 WT 64 µg/mL 32 µg/mL 16 8 1 1,5 

K56-69 MEC 64 µg/mL 32 µg/mL 16 12 

K56-71 WT 64 µg/mL 32 µg/mL 4 8 1 1 

K56-71 MEC 64 µg/mL 32 µg/mL 4 8 

ATCC 64 µg/mL 32 µg/mL 4 or 8 4 or 8     

K56-44 MEC 64 µg/mL 32 µg/mL 4 or 8 6, 8 or 12 
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Tetracycline 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 

IC90  
2-fold 

IC90  
1,5-fold 

IC90  
2-fold 

IC90  
1,5-fold 

K56-5 WT 16 µg/mL 4 µg/mL 1 0,75 1 1 

K56-5 MEC 16 µg/mL 4 µg/mL 1 0,75 

K56-17 WT 16 µg/mL 4 µg/mL 1 0,75 1 1 

K56-17 MEC 16 µg/mL 4 µg/mL 1 0,75 

K56-18 WT 16 µg/mL 4 µg/mL 1 0,75 1 1 

K56-18 MEC 16 µg/mL 4 µg/mL 1 0,75 

K56-20 WT 16 µg/mL 4 µg/mL 1 0,75 2 1 

K56-20 MEC 16 µg/mL 4 µg/mL 2 0,75 

K56-23 WT 16 µg/mL 4 µg/mL 1 0,75 2 1,333 

K56-23 MEC 16 µg/mL 4 µg/mL 2 1 

K56-24 WT 16 µg/mL 4 µg/mL 0,5 0,25 1 1,5 

K56-24 MEC 16 µg/mL 4 µg/mL 0,5 0,375 

K56-31 WT 16 µg/mL 4 µg/mL 1 0,75 2 1 

K56-31 MEC 16 µg/mL 4 µg/mL 2 0,75 

K56-66 WT 16 µg/mL 4 µg/mL 2 1 0,25 0,5 

K56-66 MEC 16 µg/mL 4 µg/mL 0,5 0,5 

K56-69 WT 16 µg/mL 4 µg/mL 2 1 1 1 

K56-69 MEC 16 µg/mL 4 µg/mL 2 1 

K56-71 WT 16 µg/mL 4 µg/mL 1 0,75 1 1 

K56-71 MEC 16 µg/mL 4 µg/mL 1 0,75 

ATCC 16 µg/mL 4 µg/mL 1 0,5 or 0,75     

K56-44 MEC 16 µg/mL 4 µg/mL 1 0,75 or 0,5 
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Trimethoprim 

 

Strain: 

2-fold highest 
tested 

concentration 

1,5-fold highest 
tested 

concentration 

MIC value (µg/mL) Fold change 

IC90 
2-fold 

IC90  
1,5-fold 

IC90 
2-fold 

IC90  
1,5-fold 

K56-5 WT 32 µg/mL 2 µg/mL 0,25 0,19 1 2 

K56-5 MEC 32 µg/mL 2 µg/mL 0,25 0,38 

K56-17 WT 32 µg/mL 2 µg/mL 0,5 0,38 0,5 0,5 

K56-17 MEC 32 µg/mL 2 µg/mL 0,25 0,19 

K56-18 WT 32 µg/mL 2 µg/mL 0,25 0,19 0,5 0,667 

K56-18 MEC 32 µg/mL 2 µg/mL 0,13 0,13 

K56-20 WT 32 µg/mL 2 µg/mL 0,25 0,38 1 0,658 

K56-20 MEC 32 µg/mL 2 µg/mL 0,25 0,25 

K56-23 WT 32 µg/mL 2 µg/mL 0,5 0,38 2 2 

K56-23 MEC 32 µg/mL 2 µg/mL 1 0,75 

K56-24 WT 32 µg/mL 2 µg/mL 0,25 0,25 1 0,752 

K56-24 MEC 32 µg/mL 2 µg/mL 0,25 0,188 

K56-31 WT 32 µg/mL 2 µg/mL 0,5 0,38 1 1 

K56-31 MEC 32 µg/mL 2 µg/mL 0,5 0,38 

K56-66 WT 32 µg/mL 2 µg/mL 1,0 0,38 0,5 1 

K56-66 MEC 32 µg/mL 2 µg/mL 0,5 0,38 

K56-69 WT 32 µg/mL 2 µg/mL 0,5 0,5 2 1,5 

K56-69 MEC 32 µg/mL 2 µg/mL 1,0 0,75 

K56-71 WT 32 µg/mL 2 µg/mL 0,25 0,375 1 1 

K56-71 MEC 32 µg/mL 2 µg/mL 0,25 0,375 

ATCC 32 µg/mL 2 µg/mL 0,5 0,38 or 0,5     

K56-44 MEC 32 µg/mL 2 µg/mL  0,25 or 0,5 0,25 
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Appendix D: Clinical breakpoints for various antimicrobial agents regarding Enterobacteriaceae. The values are 
defined by EUCAST (93). 

 
Drug 

Enterobacteriacea acceptable limits of MIC (µg/mL) 
EUCAST MIC ATCC 25922 

Susceptible Resistant QC Limits K56-44 MEC 

Amoxicillin ≤8 >8 2-8 4-16 
Chloramphenicol ≤8 >8 2-8 1,5-6 
Ciprofloxacin ≤0,5 >1 0,004-0,016 0,012-0,048 
Gentamicin ≤2 >4 0,25-1 1,5-6 
Mecillinam ≤8 >8 0,03-0,25 16-64 
Nitrofurantoin ≤64 >64 4-16 6-24 
Tetracycline ≤4 ≥16 0,5-2 0,38-1,5 
Trimethoprim ≤2 >4 0,5-2 0,25-1 
 



	

 

 


