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ABSTRACT 

Objective 

To study some aspects of fetal heart structure and function using ultrasonography at 11-20 

weeks of gestation with an emphasis on the distribution of cardiac output to the placenta and 

upper body including brain. 

Methods 

In a cross-sectional study of unselected pregnant population, the structure of the fetal heart 

was studied using transvaginal ultrasonography and feasibility of obtaining standard 

echocardiographic views and measuring different structures was evaluated in 584 fetuses at 

11+0-13+6 weeks of gestation. Reference ranges were established for the heart/ thorax 

circumference ratio, ventricular size and the diameters of the aorta and main pulmonary artery 

at the respective semilunar valve levels. 

The fetal cardiac function was studied in a prospective longitudinal study of 143 

pregnant women from an unselected population who were serially examined three times 

during 11-20 weeks of gestation. Blood flow velocities and diameters of the main pulmonary 

artery, aorta, aortic isthmus and umbilical vein were measured using pulsed-wave Doppler 

and B-mode ultrasonography, respectively and the reference ranges were constructed. The 

volume blood flow (Q) was calculated as a product of mean velocity and cross-sectional area 

of the vessel. Reference intervals were established for the umbilical vein (Quv) and aortic 

isthmus (Qai) volume blood flows and the left (LVCO), right (RVCO) and combined (CCO) 

ventricular cardiac outputs. The fraction of CCO distributed to the placenta was calculated as: 

Quv/CCO*100 and the fraction of CCO distributed to the upper body and brain was calculated 

as: (LVCO – Qai)/CCO*100. 

Results 

It was possible to study the fetal heart anatomy by obtaining standard echocardiograhic views 

using transvaginal ultrasonograpy in a majority of cases in the late first trimester. The cardiac 

ventricles and their outflow tracts showed a linear growth with advancing gestational age 

during 11-14 weeks of gestation. 

 The CCO increased 1.9-fold from 11 to 20 weeks of gestation and the placental 

volume blood flow almost tripled during the same period. The fraction of CCO diverted to the 

placenta increased from 14% at 11 weeks to 21% at 20 weeks. 

 Aortic isthmus had a positive forward flow during the whole cardiac cycle 

during 11-20 weeks of gestation. Aortic isthmus blood flow velocities as well as the diameter 
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increased with advancing gestation, resulting in a significant increase in Qai from 1.9 to 40.5 

ml/min during 11-20 weeks. However, the fraction of CCO directed to the upper body 

including brain remained relatively stable (approximately 13%) during this gestational period. 

Conclusion 

It appears feasible to study fetal heart anatomy in late first trimester using transvaginal 

echocardiography and to confirm normality. We have established references ranges for the 

evaluation of some cardiac structures at 11-14 weeks of gestation and for the serial 

measurement of Quv, Qai and cardiac ventricular outputs at 11-20 weeks of gestation. Placental 

volume blood flow and the fraction of CCO distributed to the placenta increases substantially 

during 11-20 weeks of gestation reflecting faster placental growth relative to fetal growth and 

establishment of low resistance circulation during the first half of pregnancy. The fraction of 

cardiac output directed to the upper body and brain is relatively small but fairly constant 

during 11-20 weeks of gestation. 
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INTRODUCTION 

The fetal circulation is characterized by the presence of low resistance placental and high 

resistance pulmonary circulations. During intrauterine life, the gas exchange takes place in the 

placenta rather than in the lungs. A significant volume of blood is contained extra-corporally 

(within the placenta). Additionally, the fetal circulation differs from the postnatal circulation 

due to the unique intrinsic characteristics of fetal myocardium, parallel arrangement of the 

ventricular pumps, and the presence of physiological “shunts” and “watershed” areas that 

allow appropriate mixing and adequate distribution of blood to the organs and tissues. 

Advances in ultrasound imaging technology have made it possible to study fetal circulation 

non-invasively in vivo under physiological conditions. This has allowed us to update the 

existing concepts derived from data obtained invasively from experimental animal models 

and previable human fetuses. While new observations have confirmed the previous findings 

in many cases, in some instances they have given a completely different insight into the 

human fetal circulatory physiology. The studies presented in this thesis were performed to 

investigate certain aspects of fetal cardiovascular physiology in human fetuses during the first 

half of pregnancy. 

 

NORMAL INTRAUTERINE DEVELOPMENT 

Heart 

Heart is formed in a fashion where components are added in a sequence to an initial primary 

structure, the cardiac crescent (Figure 1). The first step in the heart development is the 

formation of two heart fields of precardiac mesoderm, which are situated on opposite sides of 

the primitive foregut situated at the embryonic midline and contain endocardial as well as 

myocardial precursor cells. The first or the posterior heart field contributes to the bulk of the 

left ventricle and the secondary or the anterior heart field forms the right ventricle, outflow 

tracts, sinus venosus and atrial chambers (Bruneau, 2008). As the embryo develops, the heart 

fields fuse to form the primary heart tube, which connects at the cephalic end with the 

developing aortic arch system, and caudally with the vitelline and umbilical venous systems 

(Reller et al, 1991). The developing embryonic heart starts to contract about 20 days after 

conception (Bruneau, 2008) although the circulation is not yet established. Soon after the 

initiation of heart beat, the cardiac tube undergoes a process of looping and chamber 

formation (Sedmera & McQuinn, 2008). Gradual disappearance of cardiac jelly from the 

future cardiac chambers and accumulation in the atrioventricular junction and in the 
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developing outflow tract area leads to the formation of endocardial cushions (Wessels & 

Sedmera, 2003).  

 

 
Figure 1. Steps in the development of human heart in chronological order (embryo days 

represent number of days after conception): a) early development b) maturation.  FHF = first 

heart field, SHF = secondary heart field, V = ventricle, OT = outflow tract, RV = right 

ventricle, LV = left ventricle, SV = sinus venosus, A = atrium, RA = right atrium, LA = left 

atrium, CC = cardiac cushions, VS = ventricular septum, AS = atrial septum, PA = pulmonary 

artery, AO = aorta. Figure modified and reproduced with permission from Benoit G Bruneau. 

Nature 2008;451:943-8. 

Further the atrioventricular valves develop from the cardiac cushions, and the 

interventricular septum arises from the left and right ventricular myocardium. Atrial septation 

occurs by the growth of primary and secondary septa. The common outflow tract is separated 

into the right (pulmonary artery) and left (aorta) by septation. The pulmonary veins and the 
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vena cavae connect to the left and right atria, respectively. There are further additions from 

the cardiac neural crest that contribute to the aortic arches and coronary vasculature (Cook et 

al, 2004, Moorman et al, 2003). The development of major structures of the heart is complete 

by eight weeks of gestation but the maturation and growth continues throughout the 

pregnancy.  

Fetal heart is 8 mm long and positioned normally within the chest by 12 weeks, 

and by mid-gestation it is 24 mm in length (Cook, 2001). The size and weight of the heart 

relative to body size is higher in the fetus than in the adult. 

 

Brain 

Development of the fetal central nervous system starts two weeks after conception and 

continues beyond birth. The primordium of the central nervous system, the neural tube, 

develops from the ectodermal neural plate. Appearance of the neural plate 2-3 weeks after 

conception (Carnegie stage 8) is the first sign of neurulation. Neural folding starts at stage 9 

(3.5 weeks) and the folds fuse during stage 10 (4 weeks after conception) at the level of third 

to fourth somite, which corresponds to the future rhombocephalon. The openings between 

rostral and caudal neural folds are called the anterior and posterior neuropores, respectively. 

The rostral part of the neural tube develops into the brain and the rest of it develops into the 

spinal cord. Neural crest cells become the peripheral nervous system.  
The three major divisions of the brain i.e. the prosencephalon (forebrain), 

mesencepalon (midbrain) and rhombencephalon (hindbrain) appear in the walls of completely 

open neural groove three and half weeks after conception (Stage 9) (O´Rahilly & Muller, 

2008).  The anterior neuropore closure is completed during stage 11 (Yoon et al, 1997). The 

closure of the posterior neuropore takes place at the end of 4th postconceptional week (stage 

12). The final site of neural closure is at the future mid-lumber level.   

The process of encephalization occurs during the 5th postconceptional week 

(stage 13-15). The prosencephalon is divided into telencephalon (develops into the cerebral 

cortex, basal ganglia, amygdala, hippocampus and lateral ventricles) and diencephalon 

(develops into thalamus, hypothalamus, foramen of Monro and third ventricle).   The 

mesencephalon forms tectum, tegmentum and cerebral aqueduct. Rhombencephalon divides 

into metencephalon (cerebellum, pons and fourth ventricle) and myelencephalon (medulla 

oblongata and fourth ventricle). 
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The process of elongation of caudal neural tube through the formation of a 

lumen (canalization) occurs during stages 13-20 (5-9 weeks after fertilization), when the 

notochord and the caudal end of neural tube merge. 

Choroid plexuses differentiate during 8th postconceptional week (stage 18) 

(Muller & O´Rahilly, 2006) in the lateral ventricles and the roofs of the third and fourth 

ventricles and produce cerebro-spinal fluid. Foramina of Magendie and Luschka are formed 

around mid-gestation allowing the cerebro-spinal fluid to flow into the subarachnoid space. 

The growth of the brain is slower in the second and third trimester compared to 

first trimester. However, there is nearly a 40-fold increase in weight of the brain between the 

end of the embryonic period and birth (O´Rahilly & Muller, 2008). The fetal brain appears to 

grow in a relatively constant manner throughout the gestation. Brain constitutes about 15% of 

the body weight in the first half of pregnancy among fetuses weighing between 1g and 500g 

(Tanimura et al, 1971) and about 13% of body weight in the second half of pregnancy (Walsh 

et al, 1974) compared to ∼2% of body weight in adult humans (Dekaban 1978).  

 

Placenta  

Placenta and umbilical cord develop from trophoblasts and mesodermal chorion and allantois. 

Trophoblasts invade basal decidua and spiral arteries with subsequent destruction of the 

muscle and elastic elements. Trophoblast cells form the border between the mother and the 

fetus. Trophoblast cells grow together to form multinucleated syncytiotrophoblast cells and 

further placental villi. In the villi fetal blood vessels grow from the allantois. Placental villi 

arise secondary as a protrusion of cytotrophoblast into an already established syncytial 

network. Villus formation is completed by the 17th postconception day (Molteni et al, 1978). 

During the first half of pregnancy placenta undergoes some characteristic structural changes 

leading to a significant reduction in the size (from 140µ to 70µ) and increase in the number of 

chorionic villi. At term the chorionic villus has a size of approximately 50µ and the total villi 

surface area is about 13-14 m2, which is ten times greater than the human skin surface area 

(Walsh et al, 1974) 

The basic configuration of the placenta is formed by the end of the first trimester 

(Sariola et al, 2003), but it continues to grow until term. However, placental growth is slower 

than the fetal growth in the third trimester of pregnancy, where as the opposite is true for the 

first and second trimester. The ratio of placental weight to fetal weight decreases from 0.20 in 

the late second trimester to 0.15 at term (Walsh et al, 1974). Placenta grows linearly in 
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thickness during 8 to 20 weeks, from a mean thickness of 5.4 mm to 21 mm (Tongsong & 

Boonyanurak, 2004). The mean placental weight increases from 42g at 11 weeks to 157g at 

20 weeks and the umbilical cord length increases from 11 cm to 30 cm during the same 

gestational period (Gilbert-Barness & Debich-Spicer, 2004).  

  

SONOGRAPHIC ANATOMY 

Fetal heart  

Visceral situs and position of the heart 

Situs is the location that an organ occupies in a bilateral system of symmetry. In situs solitus, 

inferior vena cava lies to the right and anterior to the spine and aorta is to the left. The 

stomach is on the left side of the upper abdomen and the liver and portal veins are on the right 

side (Figure 2). 

Fetal heart is positioned in the chest more to the left side (levocardia). Between 

gestational age 8-11weeks fetal heart is actually positioned so that the right chamber is 

towards the right, left chamber to the left and apex pointing towards the sternum (Cook, 

2001). By the end of week 12, heart has rotated so that the right chamber is towards the 

sternum and the apex of the heart points approximately 45 degrees to the sagittal and coronal 

planes. At mid-gestation fetal heart is almost transversally positioned, due to large fetal liver 

which extends from left to right in the upper part of the abdominal cavity (Cook et al, 2004). 
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Figure 2. Transverse section of the abdomen (left) and chest (right) of a fetus in breech 

presentation demonstrating situs solitus and levocardia. Ao = Aorta, IVC = inferior vena cava, 

S = stomach. 

 

Atria 

It is important to establish the atrial situs and arrangement (the position of each atrium in 

relation to each other) during fetal echocardiography (Carvalho et al, 2005). Morphologically 

right atrium has a broad based triangular appendage. Left atrial appendage is tubular, hooked 

and has a narrow base. However, these characteristics may be difficult to demonstrate during 

fetal echocardiography, especially in early pregnancy. In usual atrial arrangement, inferior 

and superior vena cava drain to the right atrium and pulmonary veins drain to the left atrium. 

The coronary sinus is usually visible in the left atrioventricular groove and drains to the right 

atrium.  

 

Ao 
IVC 

S 

Ao 
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RV LV

laa
raa

PV
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Figure 3.  Ultrasound image of a fetal heart demonstrating two atria and their typical 

structures. RA=right atrium, raa= right atrial appendage (has a broad-based and is triangular), 

LA=left atrium, laa=left atrial appendage (has a narrow base and is tubular and hooked), 

pulmonary vein=PV drain into left atrium. FO = foramen ovale, RV=right ventricle, LV=left 

ventricle, arrow shows the left ventricular outflow tract.  

 

Ventricles 

The ventricles are normally equal-sized and are separated by an intact interventricular septum. 

The atria are connected to the ventricles via the atrioventricular valves.  An atrioventricular 

connection exists when the cavity of an atrial chamber is in continuity with a ventricular 

cavity. In a concordant atrioventricular connection right atrium connects to the 

morphologically right ventricle and left atrium connects to the morphologically left ventricle. 

 Morphologically the right ventricle has coarser apical trabeculations than the left 

ventricle and a typical muscular bar (moderator band) is commonly present in the right 

ventricle. The left ventricle has smoother trabeculations and two papillary muscles that give a 

different appearance compared to the right ventricle. 

 In the right ventricle, septal leaflet of the tricuspid valve, attaches the cordae and 

papillary muscles to the interventricular septum. On the right side the atrioventricular valve is 

slightly more apical than on the left side.  
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Figure 4. Four chamber view of a fetal heart demonstrating two equal sized atria and 

ventricles, (right ventricle is positioned anteriorly and has the moderator band), intact 

ventricular septum, two atrioventicular valves (the septal leaflet of the tricuspid valve is 

inserted more apically than that of the mital valve), crux of the heart with atrial septum, and 

foramen ovale.  

 

Great arteries 

The two great arteries are the aorta and the pulmonary artery. In concordant ventriculoarterial 

connection aorta is connected to the morphologically left ventricle and pulmonary artery is 

connected to the morphologically right ventricle. Two coronary arteries arise from the 

ascending aorta and the aortic arch gives three branches (brachiocephalic, left carotid and left 

subclavian arteries) that supply the head, neck and upper extremities. 

Pulmonary artery bifurcates into left and right pulmonary arteries and continues as the arterial 

duct to connect the descending aorta. Aortic isthmus is located between the origin of the left 

subclavian artery and the connection of the arterial duct to the aorta. 

 

LV 
RV 

RA 

LA 
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Figure 5. B-mode images of the cross-section of the fetal chest demonstrating the left (arrow-

head) and right (arrow) ventricular outflow tracts. 

 

 
Figure 6.  B-mode (left) and colour Doppler (right) images showing cross-sectional views of 

the fetal chest at the level of great arteries demonstrating the truncus pulmonalis (TP) and its 

continuation as the ductus arteriosus (DA) to join the descending aorta (Dao), the transverse 

aortic arch (AA) with aortic isthmus (AI) and the superior vena cava (SVC) in a so-called 

three-vessel view.  

TP 
AA SVC 

TP 

DA 

AA 

AI 

DAo 
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Figure 7.  B-mode ultrasound image of the aortic arch with a typically hooked “candy cane” 

appearance demonstrating the origin of head and neck vessels (left) and pulmonary-ductal 

arch with a appearance typical “hockey stick” appearance (right). Reproduced with 

permission from G. Acharya. Ultrasound Obstet Gynecol. 2009 28;33:628-33. 

 

Venous connections 

Superior and inferior vena cavae connect to the right atrium and four pulmonary veins 

connect to the left atrium.  
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Figure 8. Longitudinal view of the fetal chest and upper abdomen demonstrating the 

connection of superior and inferior vena cavae to the right atrium (left) and colour Doppler 

image of the fetal heart demonstrating one of the pulmonary veins (Doppler sample volume is 

positioned at its proximal part) draining into the left atrium (right). Typical pulsed-wave 

Doppler velocity waveforms are shown in the lower panel. 

 

Fetal brain 

The ultrasonographic appearance of the embryonic/fetal brain in the first and second 

trimesters has been extensively reviewed recently by Blaas & Eik-Nes (2009) and 

Monteagudo & Timor-Tritsch (2009), respectively. Brain cavities can be identified as 

hypoechogenic structures as early as 7 weeks of gestation. Embryonic movements can also be 

detected at this stage (O´Rahilly & Muller, 2007). At 8 weeks, choroid plexus can be 

identified within the lateral ventricles, and a wide third ventricle and mesencephalic cavity are 

readily identifiable using transvaginal approach. At 9 weeks, the lateral ventricles are larger, 

choroid plexuses are brightly echogenic and easily recognized also in the fourth ventricle, 

diencephalic cavity becomes narrow and the falx cerebri can be imaged.  A gap is seen 

between the rhombencephalic cavity and Sylvian aqueduct due to the growing cerebellum 

(Tanaka et al, 2000; Blaas & Eik-Nes, 2009). 

During 10-13 weeks the cerebellum enlarges and becomes readily identifiable at 

12 weeks with the two hemispheres joined at the midline. The lateral ventricles are filled with 

choroid plexus, and the cerebral hemispheres fill the anterior part of the head and conceal the 

diencephalic cavity. The third ventricle becomes increasingly narrow (Blaas & Eik-Nes, 

2009). The corpus callosum is still not visible at this stage.   

SVC 
IVC 
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The landmarks that are identified and commonly assessed during 

ultrasonography of the fetal brain are shown in Figure 9.  The cavum septi pallucidi, falx 

cerebri, anterior and posterior horns of the lateral ventricles with choroid plexuses, thalami, 

cerebellum, and cisterna magna are easily seen in the horizontal axial plane. The coronal and 

sagittal planes are better than the axial plane for studying median brain structures, such as 

interhemispheric fissure, corpus callosum, cavum septi pallucidi and frontal horns of the 

lateral venticles, choroid plexuses, third venticle, cerebellum and cerebral vermis.   

The diameter of the anterior and posterior horns of the lateral ventricles is 

relatively constant (~ 7 mm) in the second and third trimesters (Pilu et al, 1989), whereas that 

of the cavum septi pallucidi decreases slightly with advancing gestation (Jou et al, 1998). The 

transverse cereberal diameter in mm corresponds approximately to the weeks of gestation in 

the second trimester (Hill, 1990). The third ventricle is easy to visualize between the thalami 

in the second trimester, but narrows progressively further during pregnancy. The fourth 

ventricle is usually covered by the cerebeller vermis by 18 weeks and may not be visible 

during ultrasonography. The cisterna magna measures about 5±3mm in the second and third 

trimester (Mahony et al, 1984). 

 

 
 

Figure 9.  Cross-sectional image of the fetal head demonstrating falx cerebri (fc), cavum septi 

pallucidi (csp), thalamus (t), cerebellum (c), cisterna magna (cm) and the anterior (ah) 

posterior (ph) horns of the lateral ventricles. Figure by the courtesy of G. Acharya. 
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Placenta and umbilical cord 

The human placenta has discoid shape and hemochorial interface. The weight of a term 

placenta is 500 – 600 g (normally 15-20% of the fetal body weight). It is 20 - 25 cm in 

diameter, 3 - 4 cm in thickness, 420 – 490 cm3 in volume (Jackson et al, 1992) and has 15-25 

distinct cotyledons on the maternal surface (Molteni, 1984). The placental growth is difficult 

to measure in vivo. However, placental volume has been measured with three-dimensional 

ultrasound. The placental volume correlates well with the gestational age and estimated fetal 

weight. In a recent study, the placental volume was shown to increase from 83 cm3 at 12 

weeks to 181.5 cm³ at 20 weeks and 427.7 cm3 at 40 weeks (de Paula et al, 2008).  

Chorion frondosum that develops into definitive placenta can be identified as a 

thick echogenic structure as early as 6 weeks of gestation and is routinely identified for 

performing chorionic villus biopsy after 10 weeks of gestation in clinical practice. After 12 

weeks, three distinct structures, i.e. chorionic plate, substance of the placenta and the basal 

layer, can be identified with B-mode ultrasonography. Changes in these structures are 

evaluated to study placental maturity using ultrasonography (Grannum et al. 1979). 

The umbilical cord has two arteries and a single vein. Arteries are normally 

coiled around the vein (Figure 10). The length of the umbilical cord increases with gestation, 

from about 11 cm at 11 weeks to 30 cm at 20 weeks (Gilbert-Barness & Debich-Spicer, 2004) 

and   reaches an average length of 55 - 60 cm at term (Naeye, 1985).  
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Figure 10. Colour Doppler image of a loop of the umbilical cord freely floating in the 

amniotic fluid demonstrating two arteries (red) typically coiled around a vein (blue). Figure 

by the courtesy of G. Acharya. 

 

FETAL CARDIOVASCULAR PHYSIOLOGY 

Cardiac function  

Heart’s main function is to deliver oxygenated blood and substrates to the tissues (Braunwald, 

1977). The performance of the heart as a pump depends on intrinsic and extrinsic factors. The 

most important intrinsic factor is the contractile state of the myocardium. Extrinsic factors are 

heart rate, preload, afterload, ventricular interaction, extracardiac constraints and 

neurohumoral influences (Acharya et al, 2006). 

 Contractility is the ability of the myocardium to generate certain amount of 

pressure at a fixed amount of volume. At the cellular level contractility means Ca2+ mediated 

depolarization of the cardiomyocyte. The maximum force developed by a myocyte for a given 

length is representative of its contractility and the maximum pressure reflects the contractile 

performance of a ventricle at a given volume (Bers, 2002).  Compared to adult, fetal 

myocardium contains fewer sarcomeres per myocyte (Friedman, 1972), the calcium uptake in 

the sarcoplasmic reticulum is less efficient (Mahony & Jones, 1986) and the maximal force 

that can be generated by the fetal myocardium is lower.  First derivative of the maximal rate 

of ventricular pressure rise during the isovolumic period (dP/dtmax) is a commonly used index 

of contractility that can be assessed noninvasively in fetuses with atrioventricular valve 
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regurgitation using Doppler ultrasonography (Tulzer et al, 1991b, Huhta, 2004; Huhta, 2005). 

Normal dP/dtmax in human fetuses is approximately 1000 – 2000 mmHg/s. 

 Heart rate influences cardiac output linearly if stroke volume is held constant. 

An increase in heart rate can increase contractility and cardiac output, however the ventricular 

output decreases at heart rates >300-320/min. as the filling time decreases (Schmidt et al, 

1995, Anderson et al, 1986, Anderson et al, 1987). In normal pregnancy, the fetal heart rate 

decreases from 175-180 beats/min at 9-10 weeks to 145-150 beats/min at 15 weeks of 

gestation (Ursem et al, 1998). The baseline heart rate varies normally between 110 and 150 

beats/min during the last trimester of pregnancy. Fetal heart rate can vary significantly during 

fetal movements (Visser et al, 1982, Divon et al, 1985, Ball & Parer, 1992). 

 Preload is the amount of passive tension or stretch exerted on the ventricular 

walls just prior to the initiation of systole. In other words, it is the initial stretching of the 

myocardial fibres before contraction.  Preload determines end-diastolic sarcomere length and 

therefore, the force of contraction. Commonly used surrogate measures of preload are 

ventricular end-diastolic pressure and atrial pressure. Preload of the left ventricle is 

determined mainly by the flow through foramen ovale and to lesser degree to pulmonary 

venous return. Preload of the right ventricle is determined by the flow of the inferior and 

superior vena cava (Acharya et al, 2006). Venous Doppler derived preload indexes (Kanzaki 

& Chiba, 1990) have been purposed but are not appropriately validated. 

 Afterload is the load the muscle faces during active force development, and it 

determines the degree of shortening. In functioning heart it refers to the systolic load on the 

ventricles. It is influenced by the peripheral vascular resistance, arterial pressure and arterial 

compliance. Afterload is the main determinant of myocardial oxygen consumption 

(Braunwald, 1971).  In the fetal circulation, the afterload of the left ventricle is mainly 

determined by the resistance in the brachiocephalic circulation and that of the right ventricle 

in determined mainly by the resistance in the placenta and subdiaphragmatic circulation 

(Fouron, 2003; Acharya et al, 2006).  

 Although pressure measurements are used as surrogate indices of load, they may 

not be reliable as indicators of volume because ventricular compliance determines the volume 

at any particular pressure and the fetal myocardium is known to be less compliant than the 

adult (Rudolph, 2009). Additionally, the constraining effect of the pericardium, solid lungs 

and chest wall has a limiting effect on the stroke volume (Grant, 1999). Heart/chest 

circumference or area ratio measured using B-mode ultrasonography and ventricular 

shortening fractions measured by M-mode echocardiography can be used as noninvasive 
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surrogate measures of afterload in the fetus.  Increased afterload may lead to cardiomegaly 

and cause an increase in heart/chest circumference ratio, which is normally 0.50 (Huhta, 

2005). The mean heart/chest area ratio is shown to be 0.30 during the first half of pregnancy 

(Respondek et al, 1992). The shortening fractions of both ventricles remain constant (34±3%) 

throughout the second half of pregnancy (DeVore et al, 1984; Silverman & Schmidt, 1990). A 

reduction in right ventricular fractional shortening is seen in fetuses with increased afterload 

due to ductal constriction (Tulzer et al, 1991a) or placental insufficiency (increased placental 

vascular resistance) (Räsänen et al, 1989). Severely increased afterload may also cause 

tricuspid insufficiency, although prevalence of tricuspid regurgitation in normal fetuses is 4 - 

7% (Respondek et al, 1994; Falcon et al, 2006).  

Ratio between the ventricular inflow blood flow velocity during early filling and 

during the atrial contraction phase of the diastole (E/A ratio) have been used to assess the 

ventricular compliance (Tulzer et al, 1994). The E/A ratio increases with advancing gestation 

(Tulzer et al, 1994; Veille et al, 1999) mainly due to increase in E-wave velocity (Carceller-

Blanchard & Fouron, 1993). The E/A ratio is approximately 0.5 at 13 weeks to 0.8 -0.9 at 

term (Wladimiroff et al, 1992; van der Mooren et al, 1991).  

Other noninvasively measured parameters of cardiac function include 

volumetric flows (ventricular outputs), ventricular ejection force (Sutton et al, 1991; Rizzo et 

al, 1995), time intervals of the different phases of cardiac cycle and related indices, such as 

Tei index (Acharya et al, 2006). Ejection forces of both ventricles are equal and increase with 

gestation (Sutton et al, 1991; Rizzo et al, 1995; Räsänen et al, 1997). There is a significant 

increase in cardiac cycle length during 10 – 20 weeks of gestation. However, isovolumic 

contraction and relaxation times show a significant decrease (van Splunder & Wladimiroff, 

1996). The proportion of the isovolumic time of the cardiac cycle is relatively constant in the 

second and third trimester (Tulzer et al, 1994) and the mean Tei index varies between 0.3 - 

0.4 (Huggon et al, 2004; Hernandez-Andrade et al, 2007). The right ventricular ejection time 

is longer and the filling time shorter compared with the left ventricle. 
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Figure 11. Graphic representation of the human fetal circulation. Oxygen saturation (%) of 

blood in different vessels is indicated in parenthesis. Umbilical vein (UV) has the most 

oxygenated (oxygen saturation ∼85%) blood. CCA=common carotid artery, PA=pulmonary 

artery, RV = right ventricle, LV = left ventricle, SVC = superior vena cava, IVC =inferior 

vena cava, RA = right atrium, LA=left atrium, PV = pulmonary vein, FO = foramen ovale, 

DV = ductus venosus, RHV = right hepatic vein, MHV = middle hepatic vein, LHV = left 

hepatic vein, RP = right portal vein, LP= left portal vein, MP = main portal vein, DA = ductus 

aorteriosus, AO = aorta. The figure is reproduced with permission from Torvid Kiserud. 

Seminars in Fetal and Neonatal Medicine, 2005;10:493-503. 

 

Fetal blood circulation differs from the postnatal circulation in several aspects 

(Rudolph, 1985; Kiserud & Acharya, 2004; Kiserud, 2005; Acharya et al, 2006). Fetal heart 

chambers function in parallel fashion compared to the serial arrangement postnatally and the 

intra-atrial and intra-ventricular pressures on the left and right sides are similar (Johnson et al, 

2000). The heart rate of the fetus is two times faster than that of the adult. Right ventricle 

pumps blood to the pulmonary arteries, but the main portion of the ejected blood volume is 
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directed via the ductus arteriosus and the descending aorta to the lower body and placenta. 

Left ventricle pumps blood to the coronary circulation, upper body and brain. 

 

Cardiac output  

The stroke volume and cardiac output are positively associated with the gestational age. The 

stroke volume of the right ventricle has been reported to increase from 0.7 ml at 20 weeks to 

7.6 ml at 40 weeks, whereas the stroke volume of the left ventricle increases from 0.7 ml to 

5.2 ml during the same period (Kenny et al, 1986). There is a 10-fold increase in fetal cardiac 

output during the second half of pregnancy (Kenny et al, 1986; Räsänen et al, 1996; Kiserud 

et al, 2006), but the weight-indexed combined cardiac output remains relatively constant, 

approximately 400 - 425 ml/min/kg fetal weight (Kiserud et al, 2006; Mielke & Benda, 2001). 

The right ventricle has a slightly larger output (57% of the CCO) than the left ventricle (43% 

of the CCO) at 20 and 30 weeks of gestation. At 38 weeks the RVCO contributes to 60% of 

CCO (Räsänen et al, 1996). 

 

Blood volume  

The fetal blood volume is about 10-12% of the body weight compared to 7-8% in adults 

(Brace, 1983). The placenta contains a large pool of blood which constitutes around half of 

the total blood volume in the second trimester, although this amount decreases to 20% as 

pregnancy advances to term (Barcroft, 1946). The feto-placental blood volume increases with 

gestational age and has been shown to range between 18.5 to 81.4 ml (a mean blood volume 

of 16.2±2.06 ml/100 g fetal weight) at 16 -22 weeks in previable human fetuses with a body 

weight of 130 – 464 g (Morris et al, 1974) which is in accordance with the reported 

circulating fetal blood volume of 110-115 ml/kg (Brace, 1983, Yao et al, 1969). 

 

Blood pressure  

Systolic pressure of 30 - 46 mmHg, diastolic pressure of 22 - 27 mmHg and the mean arterial 

pressure of 28 -35 mmHg was recorded in the carotid artery of 5 human fetuses weighing 104 

– 225 g exteriorized via a hysterotomy during termination of pregnancy (Rudolph et al, 1971). 

A mean arterial blood pressure of 15.2 mmHg in the umbilical artery of 13 human fetuses was 

recorded invasively during fetoscopy at 18-21 weeks of gestation (Castle & Mackenzie et al, 

1986). In 30 fetuses undergoing cordocentesis at 19 -39 weeks, the mean umbilical arterial 

pressure was found to increase from approximately 23 mmHg at mid-gestation to 37 mmHg at 

term (Weiner, 1995). The fetus has a systolic ventricular pressure of 15-20 mmHg at 16 – 18 
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weeks of gestation, which increases to 35-40 mmHg at 26 - 28 weeks and the end-diastolic 

pressure is about 1-5 mmHg at 16-18 weeks, which increases slightly to 5-14 mmHg at 26 -28 

weeks (Johnson et al, 2000). Fetal blood pressure increases with gestational age. Recently, 

some investigators have attempted to estimate fetal arterial blood pressure non-invasively 

from simultaneously derived aortic blood flow and diameter waveform recordings applying 

the Womersley model in combination with two element Windkessel model (Struijk et al, 

2008) and found a mean arterial pressure of 28 mmHg at 20 weeks and 45 mmHg at 40 weeks 

of gestation. 

At 16 - 28 weeks, the mean pressure in the right atrium is 3.660 mmHg and in the left atrium 

3.357 mmHg (Johnson et al, 2000). The umbilical venous pressure varies between 4.5 - 6.0 

mmHg from 18 weeks of gestation to term (Ville et al, 1994; Weiner et al, 1989).  

 

Vascular resistance  

The total resistance to blood flow in the fetal circulation is determined by fetal systemic, 

pulmonary and placental vascular resistances. Vascular resistances in the main pulmonary 

artery, ductus arteriosus, pulmonary vascular bed, descending aorta with its branches, and 

placenta determine the right ventricular afterload. The left ventricular afterload is mainly 

determined by the resistance in the ascending aorta and brachio-cephalic circulation.  

 

Oxygen saturation  

Oxygen saturation of blood in different blood vessels during fetal life is shown in Figure 11. 

Fetus receives oxygen-saturated blood from the placenta via the umbilical vein. Part of it is 

directed through the ductus venosus, and left hepatic vein towards the inferior vena cava and 

right atrium and across the foramen ovale to the left atrium and to left ventricle via the mitral 

valve. The venous return from the lower body and viscera and from the upper body and brain 

has the most deoxygenated blood, which is drained to the right atrium by the inferior and 

superior vena cave and directed to the right ventricle via the tricuspid valve. 

In contrast to the adult circulation, oxygenated UV blood in the fetus mixes with 

deoxygenated systemic venous blood at several locations, although preferential streaming of 

blood via the ductus venosus separates well-oxygenated and poorly oxygenated blood. To 

some extent, oxygenated umbilical venous blood mixes along its path with systemic venous 

return in the right atrium and pulmonary venous return in the left atrium and the oxygen 

saturation decreases. Via dextra delivers blood to the lungs via two pulmonary arteries and to 

the lower body and placenta via ductus arteriosus and descending aorta. Via sinistra first 
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serves blood to the upper body (fetal head including brain, neck and upper extremities) but 

part of this blood is directed to the descending aorta across the aortic isthmus. The difference 

in oxygen saturation between the right and left ventricle is about 10% and between ascending 

and descending aorta even smaller (about 5%). 

 

Shunts 

Ductus venosus 

Ductus venosus is a trumpet like vessel connecting umbilical vein to the inferior vena cava 

directing highly oxygenated blood towards the heart. Due to the higher kinetic energy, blood 

through the DV is diverted to the left atrium via the foramen ovale without much mixing with 

the deoxygenated blood entering the right atrium via the superior and inferior vena cavae. The 

length of the vessel is 5mm at 18 weeks and 15mm at 34 weeks and the mean diameter of the 

inlet is 0.5mm at midgestaion hardly exceeding 2mm through the rest of pregnancy (Kiserud 

et al, 1994; Kiserud et al, 2000). In humans in normal pregnancies the ductus venosus shunt 

fraction is approximately 30% of the umbilical venous blood at 20 weeks and 20% after 30 

weeks until term (Kiserud et al, 2000; Haugen et al, 2004; Bellotti et al, 2000).  

 

  
Figure 12.  Colour directed and pulsed-wave Doppler recordings of ductus venosus blood 

flow (left) demonstrating the origin of ductus venosus (cursor) from the umbilical vein and 

typical flow velocity waveforms pattern at 12 weeks of gestation, and ductus arteriosus blood 

flow velocity waveforms (right) from a fetus at 18 weeks of gestation. Figure by the courtesy 

of G. Acharya. 
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Foramen ovale 

Foramen ovale is a connection between the two atria and functions as a dividing crest 

between two atria directing most oxygenated blood to the left side of the heart. The diameter 

of the foramen ovale increases from 3 mm at 18 weeks to 6 mm at 32 weeks and remains 

relatively stable during the last part of pregnancy (Kiserud & Rasmussen, 2001). The volume 

blood flow through the foramen ovale is difficult to measure directly due to the difficulties 

associated with measuring the CSA and uncertain velocity profile of the multiphasic blood 

flow pattern (Phillipos et al, 1994; Räsänen at al, 1996). However, it can be calculated by 

subtracting the volume blood flow of the both pulmonary arteries from the LVCO and the 

fraction of CCO crossing the foramen ovale decreases from 34% at 18 weeks to about 18% at 

30 weeks and beyond (Räsänen et al, 1996). 

 

Ductus arteriosus 

In the fetus, the ductus arteriosus is a large muscular vessel that connects pulmonary artery to 

the descending aorta. Prostaglandin E2 helps in maintaining its patency (Clyman et al, 1978). 

Normally 40-46% of the CCO is directed to the ductus arteriosus (Räsänen et al, 1996, Mielke 

& Benda, 2001), the amount diminishing after 30 weeks of the pregnancy while the 

pulmonary blood flow increases (Räsänen et al, 1996). The ductus arteriosus closes two days 

after birth (Huhta et al, 1984). The closure is triggered by the increase in arterial oxygen 

content (Coceani & Olley, 1988). 

 

Watersheds 

Aortic isthmus 

Aortic isthmus is positioned in the arterial circulation, between left subclavian artery and the 

connection of ductus arteriosus to the descending aorta. It is an arterial “watershed” between 

upper body (incuding brain) and lower body (including placenta) circulations (Kiserud & 

Acharya, 2004, Kiserud 2005; Acharya et al, 2006; Acharya, 2009). Under physiological 

conditions there is antegrade flow of blood in the aortic isthmus during most of the cardiac 

cycle. During diastole when the semilunar valves are closed, the direction of blood flow in the 

aortic isthmus reflects solely the downstream impedances of the right and left ventricles 

(Fouron 2003). Increased lower body or placental impedance (Sonesson & Fouron, 1997) or 

decreased upperbody impedance (Patton & Fouron, 1995) cause an increase in retrograde 

blood flow component in human fetuses. Studies in fetal lamb suggest that hypooxygenation 

leads to increased blood flow reversal in the aortic isthmus (Mäkikallio et 
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al, 2006) and when the fetus is unable to maintain cerebral oxygenation the net aortic isthmus 

blood flow is reversed (Fouron et al, 1999). Aortic isthmus volume blood flow has not been 

measured in human fetuses.  

 

Left portal vein 

Fetal liver receives 80-86% of umbilical venous return of most oxygenated blood and the 

portal vein accounts for approximately 14-20 % of its venous blood supply in the second half 

of pregnancy (Kessler et al, 2008) with a fairly stable distribution of venous blood flow 

between the left (40%) and right (60%) lobes (Kessler et al, 2008; Haugen et al, 2004). The 

portal blood flow increases during the second half of pregnancy from 5 to 41 ml/min, and 10 

to 13 ml/min/kg when normalized for estimated fetal weight (Kessler et al, 2007a). 

 

 
Figure 13. Colour Doppler (right) image of a cross-sectional view of the fetal abdomen 

demonstrating the umbilical vein (UV), left portal vein (LPV), ductus venosus (DV), right 

portal vein (RPV) and main portal vein (MPV). Figure by the courtesy of G. Acharya. 

DV MPV 

LPV 
UV 

RPV 



 

 

34 

In the fetus, the left portal vein connects the umbilical vein with the portal 

circulation (splanchnic venous return) and is a venous “watershed” between umbilical 

(placental) and splanchnic (systemic) circulations (Kilavuz et al, 2003). Normally, umbilical 

venous blood supplies the left liver lobe and shunts a fraction of oxygenated blood to the 

ductus venosus first, before supplying the right liver lobe mixing with from the main portal 

vein. The direction of blood flow in the left portal vein reflects the relative balance between 

the umbilical venous pressure and portocaval pressure gradient.  Blood flow in the left portal 

vein is generally orthograde towards the main portal stem and right liver lobe, but it may be 

reversed during fetal breathing (Kessler et al, 2007b). When the pressure in the umbilical vein 

is low, the ductus venosus shunt fraction increases but there may be cessation of umbilical 

venous blood flow to the left portal vein. In case of severe circulatory compromise, blood 

flow in the left portal vein may be reversed allowing splanchnic blood coming from the main 

portal stem to mix with the umbilical venous blood and enter the ductus venosus (Kiserud et 

al, 2003). 

 

Placental circulation 

Placenta is vital for the survival of the fetus, providing nutrition, oxygenation and waste 

exchange. It also has important endocrine, barrier and immunological functions. Placenta 

receives blood supply from the maternal and fetal side. On the maternal side about 83% of 

blood supply comes from two uterine arteries and 17 % from ovarian arteries (Wehrenberg et 

al, 1977). The fetal side of placenta is supplied by the two umbilical arteries. The mean 

volume blood flow to the placenta increases from 8.5 ml/min at 12 weeks to 80 ml/min at 28 

weeks among fetuses weighing 90 to 650g (Assali et al, 1960) and is known to increase 

throughout the second half of gestation. Using non-invasive Doppler ultrasonography to 

measure umbilical vein blood flow longitudinally, it is reported to increase from 37 ml/min at 

20 weeks to 263 ml/min at 40 weeks of gestation (Acharya et al, 2005a). Oxygenated blood 

returns from the placenta to the fetus via umbilical vein. The weight-indexed umbilical vein 

volume blood flow (Quv) has been reported to be 94 ml/kg/min at 12 weeks of gestation 

increasing to 123 ml/Kg/min at 26 weeks (Assali et al, 1960), and 90 ml/kg/min near term 

(Konje et al, 1996) using invasive (electromagnetic flow probe and ultrasonic transit-time 

flow probe, respectively) measurement techniques. A longitudinal study using Doppler 

ultrasonography in the second half of pregancy showed that the weight-indexed volume blood 

flow to the fetus increases to its maximum (117 ml/min/kg) at the end of second trimester and 
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thereafter decreases throughout the third trimester to approximately 66 ml/min/kg at 40 weeks 

(Acharya et al, 2005). 

Placental vasculature has no neural regulation and catecholamines have little 

effect on the placental vessels. Endothelin and prostanoids have a vasoconstrictive effect 

(Poston, 1997) and nitric oxide has vasodilatory effect (Sand et al, 2002). The placental blood 

flow has been found to be stable and is mainly determined by fetal arterial blood pressure 

(Rudolph, 1985). The blood flow velocity waveforms recorded by Doppler in the umbilical 

artery, reflect the down stream impedance of the placental vasculature (Alfirevic & Neilson, 

1995). The UA mean velocity increases and the pulsatility index decreases throughout the 

gestation (Mäkikallio et al, 2004; Acharya et al, 2005b; Acharya et al, 2005c). In the 

embryonic period the diastolic blood flow component is absent (Wloch et al, 2007) but 

becomes apparent after 12 weeks (Wladimiroff et al, 1991). A significant decrease in the 

number of small muscular arteries in the placental tertiary villi is associated with abnormal 

UA blood flow velocity waveforms (Giles et al, 1985). 

 

Cerebral circulation 

The fetal brain is supplied by two carotid and two vertebral arteries.  Branches of these 

arteries supplying the brain are interconnected at the base of the skull to form a vascular ring, 

the circle of Willis (Figure 14).  The venous return from the brain and upper body enters the 

heart via the superior vena cava. Most of the superior vena cava blood is directed to the right 

ventricle through the tricuspid valve via the right atrium. 

In adult human, brain receives about 15% of the cardiac output and 

approximately 50 ml/min/100g tissue (Kety, 1950; Harper, 1965; Vavilala et al, 2002). In 

exteriorised human fetuses at 10-20 weeks gestation, the average fraction of CCO distributed 

to the brain was reported to be 14% and the mean blood flow was approximately 

25ml/min/100g brain tissue among fetuses weighing 64-225g (Rudolph et al, 1971).  

The brain blood flow is regulated by several homeostatic mechanisms and is 

significantly influenced by metabolic activity, PCO2, PO2, blood viscosity, and blood pressure 

(cerebral perfusion pressure). Relatively low oxygen tension and higher PCO2 of the fetal 

blood may facilitate cerebral blood flow by reducing cerebrovascular resistance (Lucas et al, 

1966). However, under normal conditions, between wide ranges of perfusion pressure, the 

cerebral blood flow is maintained constant by autoregulation. Unique features of cerebral 

circulation provide brain with stable blood flow, oxygen and substrate delivery, biochemical 

composition and temperature during hemodynamic, metabolic and thermal stresses. 
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Figure 14.  Colour Doppler image of the circle of Willis (left) demonstrating the middle 

cerebral artery (the Doppler sample volume is positioned at its proximal part) and the 

corresponding typical blood flow velocity waveforms (right lower panel). Figure by the 

courtesy of G. Acharya. 

  

Distribution of cardiac output  

Fetal cardiac output is significantly higher than that of the adult (Severi et al, 2000). The high 

cardiac output in the fetus is mainly due to the higher heart rate and central shunting that 

allows ventricles to work in parallel rather than in series. The fetal cardiac output increases 

with advancing gestation (Räsänen et al, 1996, Mielke & Brenda, 2001, Kiserud et al, 2006). 

The weight-indexed CCO is reported to be 363 (range, 175 – 660) ml/min/kg (although this is 

likely to be an underestimation as the pulmonary venous return was excluded from the 

calculation) among fetuses weighing 64 – 225g during the first half of pregnancy (Rudolph et 

al, 1971) and approximately, 400-425 ml/min/kg during the second half of pregnancy 

(Kiserud et al, 2006, Mielke & Benda 2001).  

In the fetus, due to the parallel arrangement of circulation, blood distributed to 

various organs and placenta is derived from the systemic as well as the umbilical venous 

return (Rudolph, 2009). The outputs of the two ventricles are different with a clear right 
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ventricular dominance (Räsänen et al, 1996, Mielke & Benda, 2001, Kiserud et al, 2006) and 

blood to many organs is derived from both ventricles. The distribution of cardiac output 

varies with gestational age. Cardiac output distributed to the placenta in human pregnancies 

has been reported to increase during the first half of pregnancy. Using radionuclide-labelled 

microspheres in previable fetuses during legal abortion at 10-20 weeks of gestation, the 

fraction of CCO distributed to the placenta has been reported increase from 17% in fetuses 

weighing less than 50g to 33% in fetuses over 150g (Rudolph et al, 1971). Using non-invasive 

Doppler ultrasonography in the second half of pregnancy, this fraction has been shown to 

decrease from an average of 32% at 20 weeks to 21% after after 32 weeks of gestation 

(Kiserud et al, 2006). 

In human fetuses, the fraction of CCO distributed to the lungs increases from 

13% at 20 weeks to 25% at 30 weeks, decreasing thereafter to 21% at term (Räsänen et al, 

1996). Another study estimated the pulmonary fraction of CCO to be 11% irrespective of 

gestational age (Mielke & Benda 2001). However, the distribution of RVCO is affected 

significantly by pulmonary vascular impedance, which is known to decrease 1.5-fold between 

20 and 30 weeks of gestation and increase significantly thereafter (Räsänen et al, 1996). 

Hypoxia causes vasoconstriction (Lewis et al, 1976) and hyperoxia causes vasodilatation 

(Räsänen et al, 1998) of the pulmonary vasculature. 

 Due to large inter-species differences regarding the brain size relative to body 

size, it is most unreliable to extrapolate the finding from animal studies to human fetuses 

regarding the fraction of cardiac output distributed to the brain under physiological 

conditions. However, experimental studies have clearly provided useful information on 

relative changes in the distribution of blood flow that occur under pathological conditions 

(Jensen et al, 1999). Fraction of cardiac output distributed to the brain in human fetuses under 

physiological conditions is not known. A study on exteriorized fetuses during therapeutic 

abortion at 10-20 weeks reported this fraction to be approximately 14% (Rudolph et al, 1971).    

 The human fetus has different mechanisms to adjust its cerebral blood flow 

under different requirements. In acute hypoxia, the main mechanism is vasodilatation 

mediated by adenosine (it also diminishes oxygen consumption in neural tissues), nitric oxide 

and opioids. In chronic hypoxia, vasodilation resolves and energy conservation is prioritized 

(Pearce, 2006). The fetus can increase vascular resistance to diminish the brain blood flow if 

the oxygen availability is increased (Almstrom & Sonesson, 1996). 
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Oxygen delivery and consumption 

Major function of the heart is to pump blood to maintain adequate perfusion of the organs and 

tissue to meet their metabolic demand. High metabolic demand of the growing fetal tissue is 

maintained by high blood flow rates and efficient oxygen extraction. 

Analysis of blood samples obtained by cordocentesis from 208 normally grown 

fetuses has shown that the umbilical arterial and venous PO2 (from 35.4 to 45.8 mmHg and 

from 32.6 to 37.6 mmHg, respectively), oxygen saturation (from 70 to 62% and from 90 to 

75%, respectively) and pH (from 7.400 to 7.352 and 7.430 to 7.385, respectively) decrease, 

PCO2 increases (from 35.4 to 45.8 and 32.6 to 37.6 mmHg, respectively) and the lactate 

values remain relatively stable (approximately, 0.92 mmol/l and 0.99 mmol/l, respectively) 

during 18 -38 weeks (Nicolaides et al, 1989). The decrease in PO2 in UV blood with 

advancing gestational age is compensated by increasing hemoglobin concentration (from 10.8 

to 14.5 g/dl) to keep the oxygen content relatively constant at approximately 6.0-6.7 mmol/l 

(Nicolaides et al, 1989; Soothill et al, 1986). 

  The oxygen consumption of the pregnant human uterus is reported to increase 

from 4.8 ml/min at 10 weeks to 22 ml/min at 28 weeks using electromagnetic flow probe to 

record the uterine blood flow (Assali et al, 1960) and at term it is reported to be on average 

24.5 ± 12.7 ml/min using Fick principle (Metcalfe et al, 1955). Uterine oxygen consumption 

decreases to almost half following delivery ( Assali et al, 1953) which suggests that the feto-

placental unit is the main source of uterine oxygen consumption. The oxygen consumption of 

the human feto- placental unit is reported to be approximately 10.7 ml/min/kg (Bonds et al, 

1986). Fetal oxygen consumption is a product of Quv and the difference in umbilical venous 

and arterial blood oxygen content. Oxygen consumption of the normal human fetus at 14 to 

28 weeks of gestation varies between 3.0-5.4 ml/min/kg (Assali et al, 1960) and is 

approximately 6.6-6.8 ml/min/kg at term (Bonds et al, 1986; Acharya & Sitras, 2009). This 

value is higher than the consumption of the adult at rest, which is approximately 3.5 

ml/min/kg (Dehmer et al, 1982). When oxygen consumption is increased (e.g. due to stress, 

infection etc.) the fetus may increase cardiac output (for example by increasing its heart rate) 

to ensure that the demand is met. When supply fails to meet demand despite maximal oxygen 

extraction from blood, anaerobic metabolism and lactic acidosis may occur. 
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ULTRASONOGRAPHY 

Gray scale ultrasound 

Ultrasound has 500-1000 times higher frequency than the audible sound. Much of the 

information used to generate an ultrasound image is based on the precise measurement of 

time. The time, an ultrasound pulse is transmitted and an echo is returned, is measured and the 

depth of the interface that generated the echo can be calculated when the propagation velocity 

of sound in the tissue is known according to the equation: Distance (D) = ct/2, where c = 

speed of the sound through the tissue and t = trip time, i.e. the total time taken by the 

ultrasound signal to travel to the tissue and return back to the transducer. Assuming constant 

((∼1540 m/s) propagation speed of sound in soft tissues; D (in mm) = 0.77*t (in ms). 

 The conventional brightness-mode (B-mode) ultrasound imaging uses pulse-

echo transmission, detection, and display techniques. Brief pulses of ultrasound energy are 

emitted by the transducer. When ultrasound is reflected, the signal contains amplitude, phase 

and frequency information. B-mode ultrasound uses amplitude information to generate the 

image in varying shades of gray (the brightness of the dots displayed on the two-dimensional 

image is proportional to the amplitude of the returning echoes from the tissues). 

 Different tissues have different acoustic impedance, meaning that the ultrasound 

travels in different speed in different tissues. Acoustic impedance is determined by the density 

of the tissue and the propagation velocity of sound in the tissue. Part of the ultrasound is 

reflected and refracted as does light in different interfaces. As the acoustic energy passes 

through tissue it is also attenuated. Acoustic power means the amount of acoustic pressure 

energy produced in a unit of time and acoustic intensity means the spatial distribution of 

power. Attenuation depends on the frequency as well on the tissue. Higher frequencies are 

attenuated more rapidly than lower frequencies. 

 The transducer works as a transmitter of ultrasound and a receiver of the 

reflected sound waves. The transmitting units send and receive in sequence. Controlling the 

time and sequence the units are fired, the ultrasound can be steered in different directions as 

well focused at different depths. High frequency transducers give better resolution but less 

penetration.  

 

Spatial resolution 

Spatial resolution refers to the ability of the ultrasound to detect and display structures that are 

anatomically separate. The axial resolution (along the beam axis) depends on the length of the 
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pulses used to form the ultrasound beam (spatial pulse length, SPL), i.e. axial resolution = 

SPL/2. The SPL is calculated from the wavelength (λ) and number of cycles within the pulse 

(n) as: SPL=λn. Generally n is determined by the manufacturer (usually 2 - 4) and cannot be 

altered by the user. However, as λ is related to frequency (f) and propagation velocity (c) of 

sound (λ=c/f), spatial resolution can be improved by altering the wavelength by increasing the 

frequency of the transducer. Assuming that the pulse consists of 2 cycles (n = 2) and c = 1540, 

the axial resolution of a 5MHz transducer can be calculated to be:  0.31mm. Some advanced 

ultrasound systems have managed to almost double the axial resolution for a given transducer 

frequency by applying newer technologies, such as coded excitation to ultrasound imaging.  

Lateral resolution (perpendicular to the beam axis) equals to beam width and is controlled 

mainly by the number of transmitting elements. Lateral resolution can be improved by 

focusing the ultrasound beam to the region of interest. Therefore, best spatial resolution can 

be obtained by using the highest frequency of transducer that permits penetration to the depth 

of the region of interest and by optimizing the focal zone. 

   

Doppler ultrasonography 

When a moving target sends back an ultrasound wave, the reflected wave has a different 

frequency from the original. The frequency of the reflected waves is lower than the original if 

the target moves away from the transducer and vice versa. This Doppler phenomenon can be 

used to measure the properties of a moving target, e.g. velocity and direction of moving blood 

cells. The velocity of a moving target can be calculated by measuring the Doppler frequency 

shift as follows: 

V = (fd * c)/(2 f0 *Cos�), where c = velocity of sound, F0 = initial (transducer) frequency, � = 

angle of insonation, and Fd = Doppler frequency shift. 

The angle of insonation has an impact on the velocity measured. An angle of 

zero degrees gives (Cos0° = 1) the ideal measurement. Whenever this cannot be achieved, 

angle correction should be used. However, an erroneous angle correction of 30° may 

introduce 13% error in velocity measurement (Cos60° = 0.87) and an angle of 60°, an error of 

50% (Cos30° = 0.5). Therefore, for reasonably accurate velocity measurement, the angle of 

insonation should be kept <30°.   

Pulsed-wave Doppler is usually used for blood flow measurements. This allows 

sampling from selected depths, by processing signals that return to the transducer after 

precisely timed intervals. The flow of data can be controlled in terms of shape, depth, phase 
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shift and position. The direction of blood flow can be displayed with different colours for the 

flow towards and away from the transducer. 

 There are several sources of errors and artefact in Doppler imaging. Wall filters 

remove low frequency signals from moving blood vessel walls, and should be used properly, 

especially when measuring low velocity blood flow. The Doppler sample volume needs to be 

positioned correctly to obtain velocities from the desired segment of the vessel and the gate 

size (length of the sample volume) influences the velocities that are displayed. The pulse 

repetition frequency (PRF) determines the sampling rate. The maximum frequency that can be 

measured by pulsed-wave Doppler (Nyquist limit) equals to half the PRF. When the Nyquist 

limit is exceeded aliasing phenomenon (ambiguous display of velocities) occurs. This can be 

minimized by increasing the PRF, decreasing the transmitted frequency of ultrasound, or 

increasing the angle of insonation. A technique called high PRF uses more than one gate 

(multi-gating) on the image to analyse the flow (Rumack et al, 2008), but has a disadvantage 

of not knowing the exact location of the Doppler shift. 

 

Safety  

Current limits in the United States allow spatial-peak temporal-average intensities of  720 

mW/cm². American institute of Ultrasound in Medicine (AIUM) passed a consensus report on 

potential bioeffects of diagnostic Ultrasound in 2008 (Abramowicz et al, 2008). Its main 

conclusions were: 

1. Acoustic output from diagnostic ultrasound devices is sufficient to cause temperature 

elevations in fetal tissues. The temperature rise near bone increases with ossification 

development throughout gestation. Temperature elevations become greater from B-

mode to colour Doppler to pulsed-wave Doppler.  

2. The TI is an index of calculated or estimated temperature rise that correlates with 

temperature elevation (TIs is the thermal index for soft tissue and TIb for bone). 

Mechanical index (MI) expresses the relative risk of cavitation and streaming. 

3. Ultrasound exposure that elevates fetal temperature by 4ºC above normal temperature 

for 5 minutes or more has potential to cause severe developmental defects. Using 

commercially available equipment, it is unlikely that such thermal effect would occur. 

4. No congenital anomalies have been attributed to diagnostic ultrasound. 

5. Transducer self-heating can occur especially with vaginal probe, but no data is 

available for fetal temperature rise. 
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Epidemiological studies have not shown any significant adverse effects of clinical 

ultrasonography on the human fetus (Salvesen & Eik-Nes, 1999) but the safety continues to 

be a concern (Salvesen & Lees, 2009). International guidelines emphasize on responsible use 

of technology using ALARA (As Low As Reasonably Achievable) principle (Barnett et al, 

2000) and output display monitoring to keep the mechanical index (MI) and thermal index 

(TI) below 1.9 and TI below 1.5, respectively (Barnett & Maulik, 2001).  

 

AIMS OF THE STUDY 

The aim of this thesis was to investigate some aspects of the fetal cardiac structure and 

function in the first half of pregnancy. The specific objectives were to: 

1. Evaluate the feasibility of obtaining standard two-dimensional echocardiographic 

views of the fetal heart during routine first trimester screening using transvaginal 

ultrasonography. 

2. Construct reference ranges for the measurement of cardiac ventricles, their outflow 

tracts and cardiothoracic circumference ratio at 11+0 to 13+6 weeks of gestation. 

3. Establish longitudinal reference ranges for the a blood flow velocities and diameters of 

the ventricular outlets and measure serial changes in fetal cardiac output during 11-20 

weeks of gestation 

4. Establish reference ranges for the placental volume blood flow and measure the 

fraction of fetal cardiac output distributed to the placenta at 11-20 weeks of gestation. 

5. Establish longitudinal reference ranges for the aortic isthmus diameter, blood flow 

velocities and related indices at 11-20 weeks of gestation. 

6. Investigate serial changes in aortic isthmus volume blood flow and fraction of fetal 

cardiac output distributed to the upper body and brain at 11-20 weeks of gestation. 

 

MATERIAL AND METHODS 

First trimester transvaginal fetal echocardiography: A feasibility study (paper I) 

Design and setting  

This was a cross-sectional study of an unselected pregnant population attending the Central 

Maternity Unit, Health Centre of Tampere, Finland for routine first trimester ultrasound 

screening.  

A contraindication to transvaginal ultrasonography or an inability to perform measurements 

within allocated 20 minutes of examination time excluded participation. The study protocol 
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was reviewed and approved by the Tampere University Hospital Ethics Committee (R02109). 

All participating women gave written informed consent. All pregnancies were followed and 

the outcome was recorded. 

 

Study population 

A total of 584 viable intra-uterine fetuses with a crown-rump length (CRL) between 41 mm 

(11+0 weeks) and 78 mm (13+6 weeks) were included.  

 

Ultrasound equipment 

Hitachi EUB-6000 ultrasound system (Hitachi Medical Corporation, Tokyo, Japan) with a 5 – 

7.5MHz vaginal transducer was used. 

 

Ultrasound examination 

All examinations were performed by a single investigator (T. V.).  Each session lasted 

approximately 20 minutes. The mechanical and thermal indices were kept below 1.1 and 0.9, 

respectively. After confirming fetal viability, CRL and NT were measured. The visceral situs 

and position of the heart within the chest was confirmed. Circumferences of the fetal thorax 

and heart were measured.  

The fetal heart structures were assessed and measured by obtaining the 

following standard echocardiographic views: 

1. Four-chamber view of the heart was obtained showing equal size ventricles and atria, 

opening and closure of atrioventricular valves, crux of the heart and interventricular 

septum. Using cine loop facility the largest transverse diameters of both ventricles 

were measured in diastole. 

2. Longitudinal view of the aorta demonstrating its origin from the left ventricle and 

continuity with the interventricular septum was obtained. The diameter of the aorta at 

valve level was measured in systole. 

3. Longitudinal view of the pulmonary trunk arising from right ventricle was obtained 

and the diameter of the pulmonary artery at valve level was measured in systole. 

4. Crossing of the aorta and pulmonary artery was demonstrated and the three-vessel 

(pulmonary artery, aorta and superior vena cava) view was obtained. 

5. Longitudinal view of the aortic arch was identified with branching head and neck 

vessels. 
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6. The continuation of pulmonary trunk into the descending aorta (ductal arch) was 

demonstrated. 

 

Fetal cardiac output and its distribution to the placenta and brain (paper II & III) 

Design and setting 

This was a prospective longitudinal study pregnant women recruited from an unselected 

population attending the Central Maternity Unit, Health Centre of Tampere, Finland for 

routine first trimester nuchal translucency (NT) screening. Exclusion criteria were multiple 

pregnancy, smoking and history of medical illness that might have a significant effect on the 

course of pregnancy. 

 The study protocol was reviewed and approved by the Tampere University 

Hospital Ethics Committee (R06108). All participating women gave written informed 

consent. All pregnancies were followed and the outcome was recorded.  

 

Study population 

A total of 143 healthy pregnant women with singleton pregnancies and an uncomplicated 

obstetric history were included. 

 

Ultrasound equipment 

A Voluson 730 Expert (GE Medical Systems, Kretz Ultrasound, Zipf, Austria) ultrasound 

system equipped with RICS5-9H vaginal and RAB4-8L abdominal transducers was used. 

 

Ultrasound examination 

A single investigator (T. V.) performed all examinations. First examination was performed 

using a transvaginal probe at 11+0 - 13+6 weeks of gestation and subsequent examinations 

were performed transabdominally at approximately three-weekly intervals. Each session 

lasted a maximum of 30 minutes. The ALARA principle was applied and the MI and TI were 

kept below 1.5 and 1.9, respectively at all times. Biparietal diameter (BPD), head 

circumference (HC), abdominal circumference (AC) and femur length (FL) were measured on 

each visit and fetal weight was estimated using the Hadlock-1 equation. After routine survey 

of fetal anatomy, standard views of the fetal heart were obtained to confirm normality. Colour 

Doppler was used to identify and visualize the direction of blood flow. Blood flow velocity 

waveforms were obtained using pulsed-wave Doppler. 
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Measurement of umbilical vein volume blood flow 

Umbilical vein Doppler velocity waveform and inner diameter of the vessel were measured at 

the intra-abdominal straight portion (Figure 15). The blood flow velocity waveforms were 

recorded for 2-4 s and time-averaged maximum velocity (TAMXV) was measured. The 

umbilical vein volume blood flow (Quv) was calculated as: Quv (ml/min) = � * (diameter in 

cm/2)² * 0.5 * TAMXV in cm/s * 60 assuming a parabolic velocity profile (Acharya et al, 

2005, Kiserud et al, 2000) and circular cross-section of the vessel.  

 

   

   
 

Figure 15. Measurement of blood velocity (left) and diameter (right) of the umbilical vein at 

the intra-abdominal straight portion in a fetus at 13 weeks of gestation. The blood flow 

velocity waveform is displayed in the lower panel. 

 

Measurement of fetal cardiac output 

The inner diameters of the aorta and pulmonary artery were measured at the valve level in 

systole. The cine loop facility was used to identify systole. An average of three separate 

measurements was used for statistical analysis (Kiserud & Rasmussen, 1998).  

Doppler velocity waveforms were obtained from the aorta and pulmonary artery 

at the valve level. The angle of insonation was kept as low as possible and angle correction 
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was used when required. Blood flow velocity waveforms were recorded for 2-4 s during fetal 

quiescence. Three representative heart cycles were traced for the measurement of velocity 

time integral (VTI) and fetal heart rate (FHR). The TAMXV was calculated as the product of 

VTI and FHR. The volume blood flow (Q) through the aorta (LVCO) and the pulmonary 

artery (RVCO) was calculated separately as: Q (ml/min) = � * (diameter/2)² * TAMXV in cm/s 

* 60 assuming a flat velocity profile, i.e. velocity profile coefficient, h = 1.  The combined 

cardiac output (CCO) was obtained by summing the LVCO and RVCO. 

 

 
 

Figure 16. Blood flow velocity waveforms obtained from the aortic valve (top panel) and 

pulmonary valve (lower panel) of a fetus at 13 weeks of gestation. 

 

Measurement of aortic isthmus blood flow 

Doppler velocity waveforms were obtained from the aortic isthmus (AI) during fetal 

quiescence. The angle of insonation was kept as low as possible and angle correction was 

used as required. The inner diameter of AI was measured just after the origin of left 

subclavian artery in systole, and an average of three measurements was recorded. The cine 

loop facility was used to identify systole. Three representative heart cycles were traced for 

TAMXV and the average was used for volume blood flow (Qai) calculations. The Qai was 

calculated as: Qai (ml/min) = � * (diameter in cm/2)² * TAMXV in cm/s * 60.  
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The pulsatility index (PI) and resistance index (RI) of the AI were calculated as 

(peak systolic velocity – end-diastolic velocity)/ TAMXV and (peak systolic velocity – end-

diastolic velocity)/ peak systolic velocity, respectively. 

 

   
 

Figure 17. Measurement of aortic isthmus diameter (between the arrows) using B-mode 

ultrasonography distal of the exit of left subclavian artery and blood flow velocities using 

colour directed pulsed-wave Doppler in a fetus at 16 weeks of gestation. 

 

Distribution of cardiac output 

The placental fraction of the CCO was calculated as: Quv/CCO * 100. The fraction of CCO 

distributed to the upper body and brain calculated as: (LVCO-Qai)/CCO * 100, without 

accounting for the coronary blood flow.  

 

Reproducibility 

Intra-observer reproducibility was studied in 20 separate fetuses at 11-13 weeks and 18-20 

weeks of gestation. As all the measurements were performed by a single investigator using 

same ultrasound equipment, we calculated intraclass correlation coefficient (ICC) and 

repeatability coefficient with their 95% confidence intervals (Bartlett & Frost, 2008) to assess 

the reproducibility.  
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Statistical analysis 

Power calculation for the study I was performed assuming that approximately 20 observations 

per gestational day are required to construct reliable reference intervals. For a total of 21 days 

between 11+0 and 13+6 weeks the required number of observation was 420. Assuming a 

success rate of 60% for visualising the cardiac structures and obtaining reliable 

measurements, we calculated this number to be 588. Adding 23 more observations to account 

for dropouts and loss of follow-up we estimated a sample size of 611 fetuses.  

Cross-sectional data from the study I were analyzed using Statistical Package for 

Social Sciences for Windows version 14.0 (SPSS Inc., Chicago, IL, USA).  Assumption of 

normality was checked and data transformation was performed as required to achieve normal 

distribution. Reference percentiles were calculated according to the method described by 

Royston & Wright (1998). 

 For study II & III, power calculation was performed assuming that if 

approximately 20 observations per gestational week are required to construct reliable 

reference ranges in a cross-sectional study (i.e. 200 observations/participants for a period of 

10 weeks between 11 and 20 gestational weeks), the corresponding number of participants for 

a longitudinal study would be 200/2.3 (i.e. 87), where 2.3 is a design factor (Royston & 

Altmann, 1995). With a believe that it would be possible to obtain the desired measurements 

in at least 60% of cases, we calculated a sample size of 122 and added 21 extra to account for 

possible dropouts giving a total number of 143 participants. 

The longitudinal data were analyzed using SAS 9.0 (SAS Institute Inc., Cary, 

NC, USA). Assumption of normality was checked for each variable. Logarithmic or power 

transformations were performed as appropriate. The best transformation was obtained using 

Box-Cox regression. Fractional polynomials were used to obtain best fitting curves in relation 

to gestational age for each outcome variable analyzed. Multilevel modelling was used to 

estimate the reference percentiles (Royston, 1995). 

 

RESULTS 

General characteristics of the study population 

In study I, a total of 599 women were enrolled and 611 fetuses were studied. CRL and/or NT 

was not possible to measure from 22 fetuses, leaving 584 for final analysis. In study II and III 

143 women enrolled the study and total of 424 observations were made. The basic 

characteristics of the two study populations are described in table 1. 
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Table 1.  Characteristics of the study populations 

 

 

Age, years  

 

BMI Kg/m2 

 

Nulliparous 

 

Caesarean 

section rate 

Neonatal birth 

weight, g 

5min. Apgar 

score <7 

Study 1 28 (15-44) 25 (17-44) 50 % 13 % 3510 8 

Study II & III 29 (17-39) 24.5 (19-38) 51 % 13 % 3540 0 

 

Success rate of ultrasound examination 

Study I was performed to study the feasibility of the first trimester 

echocardiography in an unselected population. The success rate of complete visualization of 

different cardiac structures at gestational ages 11+0 to 13+6 ranged between 43 to 62%. 

In study 1, there were six cardiac malformations. One atrioventricular septal 

defect was diagnosed at 13 weeks. The karyotype was normal, but the fetus developed 

hydrops and died at 16 weeks of gestation. One fetus had hypoplastic left heart syndrome. 

Four-chamber view was not satisfactory at 13 weeks, NT was 3.1mm, and karyotype was 

normal. Follow-up examination at 18 weeks of gestation confirmed the diagnosis and the 

mother opted for termination of pregnancy. Four fetuses had ventricular septal defects, but 

none were diagnosed prenatally. One of the babies with ventricular septal defect had 

Goldenhair syndrome, the defect was subvalvular and was surgically closed at 5 months of 

age. The other three defects were in the muscular part of the septum and they closed 

spontaneously before one year of age. 

 In study II & III there were total of 424 observations. Table 2 presents the 

success rates of acquiring the volume blood flows at different gestational ages. 

 

Table 2.  Success rates (%) of acquiring combined cardiac output (CCO) and aortic isthmus 

volume blood flow (Qai) at different gestational ages 

 

Gestational age, weeks+days 11+0 - 13+6 14+0 -16+6 17+0 - 20+6 

study II (CCO) 46 61 71 

study III (Qai) 33 62 82 
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Reference values 

Study I 

We have established reference ranges for fetal heart left and right ventricular diameter, aorta 

and pulmonary artery diameter at the valve level and cardio-thoracic ratio in late first 

trimester.  

 

Study II 

Reference percentiles for the diameter of the aorta, pulmonary artery, and intra-abdominal 

portion of the umbilical vein are presented in Tables 3, 4 and 5, respectively. The TAMXV of 

the aorta, pulmonary artery and umbilical vein are presented in Tables 6, 7 and 8, 

respectively. Vessel diameters and blood flow velocities increased with advancing gestation. 

Reference ranges were established for the LVCO, RVCO, CCO, weight-indexed CCO, Quv, 

weight-indexed Quv and fraction of CCO distributed to the placenta during 11-20 weeks of 

gestation. The CCO increased from 9 ml/min to 121 ml/min and Quv from 1.9 ml/min to 25.3 

ml/min during 11-20 weeks of gestation. The weight-indexed combined cardiac output 

increased during 11-20 weeks from 183 ml/min/kg to 342 ml/min/kg, i.e. almost doubled. The 

weight-indexed umbilical vein volume flow increased from 24 ml/min/kg to 71 ml/min/kg, 

i.e. a 3-fold increase. Fetus directs 14% of CCO to the placenta at 11 weeks of gestation and 

21% at 20 weeks.  
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Table 3.  Reference intervals for the aortic diameter at the semilunar valve level (cm) 

 

Gestation, 
weeks 

2.5th 
centile 

5th 
centile 

10th 
centile 

25th 
centile 

50th 
centile 

75th 
centile 

90th 
centile 

95th 
centile 

97.5th 
centile 

11 0.06 0.07 0.07 0.08 0.10 0.11 0.12 0.13 0.14 

12 0.08 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 

13 0.09 0.10 0.10 0.11 0.12 0.14 0.15 0.16 0.17 

14 0.11 0.11 0.12 0.13 0.15 0.16 0.17 0.18 0.19 

15 0.12 0.13 0.14 0.15 0.16 0.18 0.19 0.20 0.21 

16 0.14 0.15 0.16 0.17 0.18 0.20 0.21 0.22 0.23 

17 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.24 0.25 

18 0.18 0.19 0.20 0.21 0.23 0.25 0.26 0.27 0.28 

19 0.21 0.21 0.22 0.24 0.25 0.27 0.29 0.30 0.31 

20 0.23 0.24 0.25 0.26 0.28 0.30 0.32 0.33 0.34 

 
Table 4. Reference intervals for the pulmonary artery diameter at the semilunar valve level 
(cm) 

 

Gestation, 
weeks 

2.5th 
centile 

5th 
centile 

10th 
centile 

25th 
centile 

50th 
centile 

75th 
centile 

90th 
centile 

95th 
centile 

97.5th 
centile 

11 0.07 0.07 0.08 0.09 0.10 0.11 0.13 0.13 0.14 

12 0.08 0.08 0.09 0.10 0.11 0.13 0.14 0.15 0.15 

13 0.09 0.10 0.10 0.12 0.13 0.14 0.16 0.16 0.17 

14 0.11 0.12 0.12 0.14 0.15 0.16 0.18 0.19 0.19 

15 0.13 0.13 0.14 0.15 0.17 0.18 0.19 0.20 0.21 

16 0.15 0.15 0.16 0.17 0.19 0.20 0.22 0.23 0.23 

17 0.17 0.17 0.18 0.19 0.21 0.22 0.24 0.25 0.26 

18 0.19 0.20 0.20 0.22 0.23 0.25 0.27 0.28 0.29 

19 0.21 0.22 0.23 0.24 0.26 0.28 0.30 0.31 0.32 

20 0.24 0.24 0.25 0.27 0.29 0.31 0.33 0.34 0.35 
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Table 5.  Reference intervals for the umbilical vein diameter at the intra-abdominal portion 
(cm) 
 
Gestation, 

weeks 
2.5th 

centile 
5th 

centile 
10th 

centile 
25th 

centile 
50th 

centile 
75th 

centile 
90th 

centile 
95th 

centile 
97.5th 
centile 

11 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 

12 0.08 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.14 

13 0.09 0.10 0.10 0.11 0.12 0.13 0.15 0.15 0.16 

14 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 

15 0.12 0.13 0.13 0.14 0.16 0.17 0.18 0.19 0.20 

16 0.14 0.15 0.15 0.16 0.18 0.19 0.20 0.21 0.22 

17 0.16 0.16 0.17 0.18 0.20 0.21 0.23 0.23 0.24 

18 0.18 0.18 0.19 0.20 0.22 0.23 0.25 0.26 0.27 

19 0.20 0.20 0.21 0.23 0.24 0.26 0.27 0.28 0.29 

20 0.22 0.23 0.23 0.25 0.27 0.28 0.30 0.31 0.32 

 
 
Table 6. Reference ranges for the time-averaged maximum blood flow velocity of the aorta 
(cm/s) 
 
Gestation, 

weeks 
2.5th 

centile 
5th 

centile 
10th 

centile 
25th 

centile 
50th 

centile 
75th 

centile 
90th 

centile 
95th 

centile 
97.5th 
centile 

11 5.7 6.1 6.6 7.5 8.5 9.7 10.8 11.6 12.3 

12 6.6 7.0 7.5 8.5 9.6 10.9 12.1 12.9 13.7 

13 7.4 7.9 8.4 9.5 10.7 12.1 13.4 14.3 15.1 

14 8.2 8.7 9.3 10.4 11.8 13.2 14.7 15.6 16.4 

15 8.8 9.3 9.9 11.1 12.4 14.0 15.5 16.4 17.3 

16 9.3 9.8 10.5 11.7 13.1 14.7 16.3 17.3 18.2 

17 9.7 10.3 11.0 12.2 13.7 15.4 17.0 18.0 18.9 

18 10.1 10.7 11.4 12.7 14.3 15.9 17.6 18.6 19.6 

19 10.5 11.1 11.8 13.1 14.7 16.4 18.1 19.2 20.2 

20 10.8 11.4 12.2 13.5 15.1 16.9 18.6 19.7 20.7 
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Table 7. Reference ranges for the time-averaged maximum blood flow velocity of the 
pulmonary artery (cm/s) 
 
Gestation, 

weeks 
2.5th 

centile 
5th 

centile 
10th 

centile 
25th 

centile 
50th 

centile 
75th 

centile 
90th 

centile 
95th 

centile 
97.5th 
centile 

11 6.8 7.2 7.6 8.4 9.4 10.5 11.6 12.3 12.9 

12 7.6 8.0 8.5 9.4 10.5 11.7 12.8 13.6 14.3 

13 8.5 8.9 9.4 10.4 11.6 12.8 14.1 14.9 15.6 

14 9.3 9.8 10.4 11.4 12.6 14.0 15.3 16.2 17.0 

15 9.8 10.3 10.9 12.0 13.3 14.7 16.1 17.0 17.9 

16 10.4 10.9 11.5 12.6 14.0 15.5 17.0 17.9 18.7 

17 10.8 11.4 12.0 13.2 14.6 16.1 17.7 18.6 19.5 

18 11.2 11.8 12.5 13.7 15.1 16.7 18.3 19.3 20.2 

19 11.6 12.2 12.9 14.1 15.6 17.2 18.8 19.8 20.7 

20 11.9 12.5 13.2 14.5 16.0 17.6 19.3 20.3 21.2 

 
 
Table 8. Reference ranges for the umbilical vein time-averaged maximum blood flow 
velocity (cm/s) 
 
Gestation, 

weeks 
2.5th 

centile 
5th 

centile 
10th 

centile 
25th 

centile 
50th 

centile 
75th 

centile 
90th 

centile 
95th 

centile 
97.5th 
centile 

11 2.7 3.0 3.4 4.1 5.0 6.1 7.2 7.9 8.6 

12 3.6 3.9 4.4 5.2 6.3 7.6 8.9 9.7 10.5 

13 4.5 5.0 5.5 6.5 7.7 9.2 10.7 11.6 12.5 

14 5.4 5.9 6.5 7.6 9.1 10.7 12.3 13.4 14.4 

15 6.3 6.8 7.5 8.7 10.2 12.0 13.8 15.0 16.1 

16 7.0 7.6 8.3 9.6 11.3 13.2 15.1 16.4 17.5 

17 7.7 8.3 9.1 10.5 12.3 14.3 16.3 17.6 18.8 

18 8.3 8.9 9.7 11.2 13.1 15.2 17.3 18.7 20.0 

19 8.8 9.5 10.3 11.9 13.8 16.0 18.2 19.7 21.0 

20 9.3 10.0 10.9 12.5 14.5 16.8 19.1 20.5 21.9 
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Study III 

Reference ranges were established for the aortic isthmus blood flow velocities, vessel 

diameter, PI, RI, Qai and the fraction of CCO distributed to the upper body and brain. Aortic 

isthmus diameter increased linearly during 11-20 weeks of gestation. PSV, EDV and TAmax 

increased from 30-63 cm/s, 1.7-5.4 cm/s and 11.9-22.2 cm/s respectively during 11-20 weeks 

of gestation. RI and PI stayed fairly stable (0.94-0.91 and 2.38-2.62, respectively) during 11-

20 weeks. Qai increased from 2.6 ml/min to 41.5 ml/min and the fraction from CCO delivered 

to the upper body was approximately 13%.  

 

DISCUSSION 

General considerations 

This study was conducted with the main purpose of measuring the serial changes in fetal 

cardiac output and its distribution to the placenta and upper body including brain during 11-20 

weeks of gestation under physiological conditions. At first we were compelled to explore the 

feasibility of performing fetal echocardiography recognising different structures and obtaining 

images of adequate quality to be able to measure the structures in the late first trimester (study 

I). The feasibility of performing fetal echocardiography to diagnose congenital heart defects 

in high-risk populations has been demonstrated previously by other investigators (Dolkart & 

Reimers, 1991; Gembruch et al, 1993; Gembruch et al, 2000; Haak et al, 2002; Johnson et al, 

1992). We wished to do this in a non-selected population to create reference ranges for vessel 

diameter, especially for the aorta and pulmonary artery, which is required for the 

measurement of feta cardiac output. We also measured the ventricular diameters and the 

cardio-thoracic ratio, which is a useful measurement for evaluating heart function (Hofstaetter 

et al, 2006; Huhta, 2004; Mäkikallio et al, 2008), as cardiomegaly is a consistent feature of 

congestive heart failure. Doppler velocimetry was not performed in this cross-sectional study 

to minimize fetal exposure to ultrasound energy. 

It was feasible to assess and measure fetal heart structures in approximately 2/3 

of cases within the time frame used for routine nuchal translucency screening. Our success 

rate was slightly lower than reported in some previously published studies (Gembruch et al, 

1993; Gembruch et al, 2000; Haak et al, 2002; Johnson et al, 1992; Dolkart & Reimers, 

1991), which was perhaps due to the rigid time frame allowed for each examination. Although 

the consensus and recommendation to date is to perform routine screening echocardiography 

in the second trimester (IUSOG Statement Lee et al, 2008), our results indicate that it is 
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possible confirm normality in the late first trimester in a majority of cases. Therefore, a policy 

of performing fetal echocardiography in the first trimester in high-risk groups and if required, 

repeating in the second trimester to confirm the findings (Allan, 2003) may be reasonable. 

Study I gave valuable training in performing the measurements for study II & III. Although 

we did not collect data to measure the learning curve, but it can be speculated that the 

examinations became more successful as experience accumulated (Allan, 2006; Tegnander & 

Eik-Nes, 2006). Several studies have shown an increased incidence of cardiac malformations 

in fetuses with increased nuchal translucency (Haak et al, 2002; Makrydimas et al, 2003; Clur 

et al, 2008; McAuliffe et al, 2004; Hyett et al, 1997) and there may be a rationale for 

evaluating the fetal heart structure as well as function routinely during first trimester 

ultrasound screening. 

 Volume blood flows were measured in the aorta, pulmonary artery, aortic 

isthmus and umbilical vein to study serial changes in fetal cardiac output and its distribution 

to placenta and upper body including brain (Study II & III). We chose longitudinal design to 

establish reference ranges for serial measurements with advancing gestation. Temporal 

changes cannot be studied with cross-sectional design. Longitudinal reference ranges can be 

useful in clinical practice as Doppler parameters are often measured serially. Additionally, 

longitudinal data allow for the calculation of conditional reference intervals based on previous 

measurements (Royston, 1995). 

The volume blood flow to the placenta has been previously examined 

noninvasively in human fetuses cross-sectionally (Sutton et al, 1990; Barbera et al, 1999; 

Kiserud et al, 2000) and longitudinally (Acharya et al, 2005a) in the second half of pregnancy. 

However, in the first half of pregnancy this has been measured only invasively in exteriorised 

human fetuses during termination of pregnancy by hysterotomy using radionucleotide 

microspheres (Rudolph et al, 1971). We provide Doppler derived reference ranges for the UV 

diameter, blood flow velocity and Quv during 11-20 weeks of gestation that may be useful for 

evaluating feto-placental circulation in the first half of pregnancy.  

The weight-indexed CCO almost doubled (183 to 342 ml/min/kg) whereas the 

weight-indexed Quv tripled (24 to 71 ml/min/kg) during 11-20 weeks of gestation. The 

fraction of CCO delivered to placenta increased from 14 % to 21 % during the same 

gestational period whereas the fraction of CCO delivered to the upper body including brain 

was relatively constant at approximately 13%.  Blood flow to an organ is usually a function of 

growth and metabolic activity. Placental growth is faster than the fetal growth during the 

second trimester whereas the opposite is true for the third trimester of pregnancy (Molteni et 
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al, 1978). Our finding of increased Quv normalized for estimated fetal weight during 11 to 20 

weeks is consistent with this concept despite the insecurity of fetal weight estimation using 

ultrasound biometry during the first half of pregnancy.  

Different organs of the fetus grow at different rates during pregnancy. Liver, 

heart, thyroid gland and brain appear to grow at a relatively constant rate. Brain constitutes 

about 15% of body weight in the human fetuses weighing 1-500g (Tanimura et al, 1971). 

Brain weight expressed as percentage of body weight shows essentially no change until birth 

and the main change occurs after birth with an absolute increase in brain mass of nearly 600g 

during the first year of life (Walsh et al, 1974). The rate of cerebral blood flow in the human 

fetus under physiological conditions is not known. Our finding of an almost constant fraction 

of CCO diverted to upper body and brain during 11-20 weeks fits well with the relatively 

constant growth of fetal brain during this period of gestation. 

When the amount of blood flow directed to the upper body including brain and 

heart was subtracted from the LVCO we found that approximately 3/4th of LVCO is diverted 

to the descending aorta during 11-20 weeks of gestation. A little less than 80% of RVCO 

reaches the descending aorta through the ductus arteriosus (Mielke & Benda, 2001). In this 

respect, the general concept that the left heart delivers blood to the upper body and brain and 

the right heart to the lungs, lower body and placenta may not be quite accurate. Right heart 

does deliver most of its output to the lower body and placenta, but the left ventricle also 

appears to contribute quite significantly, at least during 11-20 weeks gestation, under 

physiological conditions. The fetal heart has been shown to have right ventricular dominance 

in the second half of the pregnancy and it increases as the gestation progresses (Räsänen et al, 

1996). We found the right heart dominance to be present also at 11-20 weeks of gestation but 

it decreased from 13% at 11 weeks to 8% at 20 weeks of gestation. 

Placental volume blood flow is shown to be reduced earlier than demonstrable 

changes in umbilical artery Doppler waveform pattern (Ferrazi et al, 2002) and the fraction of 

fetal CCO distributed to the placenta is lower in intrauterine growth restriction (Kiserud et al, 

2006). Changes in aortic isthmus blood flow velocity indices seem to occur earlier than the 

changes in umbilical artery (Sonesson & Fouron, 1997) and ductus venosus (Rizzo et al, 

2008; Figueras et al, 2009). Studying the distribution of fetal CCO to the placenta, upper body 

and brain by measuring volume blood flows may provide valuable information on fetal 

adaptive mechanisms related to suboptimal in utero conditions. 
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Methodological aspects and limitations 

The position and the size of Doppler gate (sample volume) are operator controlled. A large 

sample volume increases the chance of covering the whole cross-section of the blood vessel 

and detecting all the velocities, but may result in sampling the adjacent vessels and spectral 

broadening. Additionally, one has no control over the lateral extension of the sample volume. 

To avoid this we adjusted the sample volume according to the size of blood vessel studied. 

The angle of insonation was kept as low as possible and angle correction was used when 

required while measuring the blood flow velocities.  

To avoid variations in the velocity and diameter measurement we sampled the 

umbilical vein at the intra-abdominal portion rather than the free-loop of the umbilical cord. 

Furthermore, our intra-abdominal UV diameter measurements correspond well with the 

reported measurements performed on the pathological specimens (Malas et al, 2003). We 

used TAMXV and corrected it by the spatial velocity profile coefficient rather than using the 

time-averaged intensity weighted mean velocity (TAV) for the calculation of Quv. Use of 

TAV avoids the need for correction for the spatial velocity profile, but it is affected by 

machine settings, e.g. Doppler gain, wall filter etc. and is more software dependent. Although, 

the velocity profile of the umbilical vein varies along the length of the umbilical cord (Pennati 

et al, 2004), it is likely to be parabolic (has spatial velocity profile coefficient of 0.5) at the 

intra-abdominal portion (Acharya et al, 2005a). 

Velocity and diameter measurements of the aorta and pulmonary artery were 

performed at the valve level, which is a clear anatomical landmark. While measuring the 

velocity and diameter of the aortic isthmus we chose longitudinal aortic arch view rather than 

the cross-sectional three-vessel view, as it is easier to indentify the origin of left subclavian 

artery in that view (Acharya, 2009) allowing accurate identification of aortic isthmus and 

calliper and cursor placement. Other physiological aspects of aortic isthmus blood flow 

waveform pattern (Figure 18) were taken into account to identify and ensure that the 

waveforms were not from adjacent vessels.  
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Figure 18. Doppler blood flow velocity waveforms recorded simultaneously from the aortic 

isthmus and ductus arteriosus of a 20-weeks fetus using a large sample volume demonstrating 

that blood flow in the aortic isthmus starts and peaks earlier than in the ductus arteriosus. 

Note the brief late systolic reversal of blood flow in the aortic isthmus. Figure by the courtesy 

of G. Acharya. 

 

Vessel diameter is an important factor for the volume blood flow calculations 

and an error can cause significant differences in results. We used modern ultrasound 

equipment with high-resolution capability, performed measurements on zoomed images and 

used an average of three measurements to improve measurement precision (Kiserud & 

Rasmussen, 1998; Kiserud et al, 1999).  The velocity profile of the aorta, pulmonary artery 

and the aortic isthmus was assumed to be flat, i.e. a spatial velocity profile coefficient of 1.0 

while calculating the volume blood flow. 

Methods other than B-mode ultrasonography, such as M-mode ultrasound, 

power Doppler angiography, B-flow, may be used for measuring vessel diameter. However, 

their accuracy has not been validated. Recently, fetal CO measurements using newer 

technologies such as four-dimensional echocardiography with STIC (spatio-temporal image 

correlation) and VOCAL (virtual organ computer-aided analysis) (Rizzo et al, 2007; Messing 

et al, 2007; Molina et al, 2008) have been shown to be feasible, but their accuracy remains to 

be further investigated. 
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Safety issues 

We strictly adhered to the ALARA principle while performing ultrasonography. In 

study I, fetuses were exposed to B-mode ultrasonography only. A vaginal transducer was 

used, and an Ispta of 720 mW/cm² was the upper output limit of the ultrasound machine. The 

data collection was performed in a setting of routine first trimester screening for chromosome 

defects using nuchal translucency measurement and the entire session lasted a maximum of 

20 minutes.  

 In study II and III, the examination sessions lasted approximately 30 minutes.  A 

vaginal transducer with a central frequency of about 7.5 MHz was used during the first 

examination at 11 – 14 weeks. An abdominal probe with a central frequency of 

approximately, 3.5 MHz was used during the subsequent visits. An Ispta of 720 mW/cm² was 

the upper output limit of the ultrasound machine. We used colour Doppler to identify the 

direction of blood flow, but it was applied for a few seconds at time. Pulsed-wave Doppler 

was used for very short periods to obtain representative blood flow velocity waveforms only 

from the desired blood vessels and the fetal head was not exposed to Doppler at any time.  

 

Validity 

It is important to establish the reliability of a measurement technique and show that it 

measures something in a consistent manner. Furthermore, for a measurement to be clinically 

useful, its validity has to be confirmed by demonstrating that it measures what is intended to 

measure. The accuracy of fetal cardiac output (Shiraishi et al, 1993) and placental volume 

blood flow measurements using ultrasonography have been validated in animal (Schmidt et 

al, 1991; Sokol et al, 1996; Barbera et al, 1999) and in vitro (Rasmussen, 1987) experiments. 

Reproducibility of cardiac output (Räsänen et al, 1996) and Quv measurements (Figueras et al, 

2008) in human fetuses has been shown to be reasonably good. Results of intra-observer 

reproducibility of volume blood flow measurements in our studies were within the acceptable 

range.  

The reference intervals were constructed using data obtained from an unselected 

but homogenous Finnish population. Therefore, it could be argued that our results may not be 

valid outside the Nordic population and the external validity may be questioned.  However, 

the ethnicity is unlikely to be an important factor as volume blood flows were normalized by 

the fetal weight. 
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CONCLUSIONS 

Fetal heart structures can be examined reliably in a majority of cases in the late first trimester 

using transvaginal ultrasonography. We have established cross-sectional references ranges for 

the evaluation of some cardiac structures at 11-14 weeks of gestation.  Furthermore, we have 

established references ranges for the serial measurement of Quv, Qai and cardiac ventricular 

outputs at 11-20 weeks of gestation. Placental volume blood flow and the fraction of CCO 

distributed to the placenta increases substantially during 11-20 weeks of gestation reflecting 

faster placental growth relative to fetal growth and establishment of a low resistance placental 

circulation during the first half of pregnancy. The fraction of cardiac output directed to the 

upper body and brain is relatively small but fairly constant during 11-20 weeks of gestation. 

  

FUTURE ASPECTS 

Significant advances have been made in the last two decades in the field of fetal cardiology 

with steadily improving detection rates for congenital heart defects. The main focus in recent 

years has been early screening and detection of structural anomalies, but not so much 

emphasis has been put on the physiological aspects. Even the gestational age related 

physiological changes in fetal cardiovascular system are not well defined yet. Experimental 

animal studies using invasive methods are useful in validating ultrasound techniques 

(Acharya et al, 2004; Acharya et al, 2007; Acharya et al, 2008; Kiserud et al, 1999; Schmidt 

et al, 1990; Schmidt et al, 1991; Shiraisi et al, 1993). However, inter-species differences 

restrict direct application of physiological data obtained from animal fetuses to humans.  

Despite limitations, non-invasive volume blood flow measurements may provide better 

insight into human fetal circulatory physiology. It could be desirable to use this simple non-

invasive method together with other commonly used qualitative and semi-quantitative 

Doppler indices in the assessment of fetal wellbeing and management of high-risk 

pregnancies. Whether such an approach would help improving perinatal and long-term 

outcomes, merits further investigation.  



 

 

61 

REFERENCES 

1. Abramowicz JS, Barnett SB, Duck FA, Edmonds PD, Hynynen KH, Ziskin MC (2008) 

Fetal thermal effects of diagnostic ultrasound. J Ultrasound Med 27: 541-59  

2. Acharya G (2009) Technical aspects of aortic isthmus Doppler velocimetry in human 

fetuses. Ultrasound Obstet Gynecol 33: 628-633  

3. Acharya G, Erkinaro T, Mäkikallio K, Lappalainen T, Rasanen J (2004). Relationships 

among Doppler-derived umbilical artery absolute velocities, cardiac function, and 

placental volume blood flow and resistance in fetal sheep. Am J Physiol Heart Circ 

Physiol 286: H1266-72 

4. Acharya G, Räsänen J, Kiserud T, Huhta JC (2006) The fetal cardiac function. Current 

Cardiology Reviews 2: 41-53  

5. Acharya G, Räsänen J, Mäkikallio K, Erkinaro T, Kavasmaa T, Haapsamo M, Mertens 

L, Huhta JC (2008) Metabolic acidosis decreases fetal myocardial isovolumic velocities 

in a chronic sheep model of increased placental vascular resistance. Am J Physiol Heart 

Circ Physiol 294: H498-504 

6. Acharya G and Sitras V (2009) Oxygen uptake of the human fetus at term. Acta Obstet 

Gynecol Scand 88: 104-109  

7. Acharya G, Sitras V, Erkinaro T, Mäkikallio K, Kavasmaa T, Päkkilä M, Huhta JC, 

Räsänen J (2007) Experimental validation of uterine artery volume blood flow 

measurement by Doppler ultrasonography in pregnant sheep. Ultrasound Obstet Gynecol 

29: 401-406 

8. Acharya G, Wilsgaard T, Rosvold Berntsen GK, Maltau JM, Kiserud T (2005a) 

Reference ranges for umbilical vein blood flow in the second half of pregnancy based on 

longitudinal data. Prenat Diagn 25: 99-111  

9. Acharya G, Wilsgaard T, Berntsen GK, Maltau JM, Kiserud T (2005b). Reference 

ranges for serial measurements of umbilical artery Doppler indices in the second half of 

pregnancy. Am J Obstet Gynecol 192 :937-944 

10. Acharya G, Wilsgaard T, Berntsen GK, Maltau JM, Kiserud T (2005c). Reference ranges 

for serial measurements of blood velocity and pulsatility index at the intra-abdominal 

portion, and fetal and placental ends of the umbilical artery. Ultrasound Obstet Gynecol 

26: 162-169 



 

 

62 

11. Alfirevic Z and Neilson JP (1995) Doppler ultrasonography in high-risk pregnancies: 

systematic review with meta-analysis. Am J Obstet Gynecol 172: 1379-1387  

12. Allan L (2006) Screening the fetal heart. Ultrasound Obstet Gynecol 28: 5-7  

13. Allan LD (2003) Cardiac anatomy screening: what is the best time for screening in 

pregnancy? Curr Opin Obstet Gynecol 15: 143-146 

14. Almstrom H and Sonesson SE (1996) Doppler echocardiographic assessment of fetal 

blood flow redistribution during maternal hyperoxygenation. Ultrasound Obstet Gynecol 

8: 256-261 

15. Anderson PA, Glick KL, Killam AP, Mainwaring RD (1986) The effect of heart rate on 

in utero left ventricular output in the fetal sheep. J Physiol 372: 557-573  

16. Anderson PA, Killam AP, Mainwaring RD, Oakeley AE (1987) In utero right ventricular 

output in the fetal lamb: the effect of heart rate. J Physiol 387: 297-316  

17. Assali NS, Rauramo L, Peltonen T (1960) Measurement of uterine blood flow and 

uterine metabolism. VIII. Uterine and fetal blood flow and oxygen consumption in early 

human pregnancy. Am J Obstet Gynecol�79: 86-98 

18. Assali NS, Douglas RA,Jr, Baird WW, Nicholson DB, Suyemoto R (1953) Measurement 

of uterine blood flow and uterine metabolism. IV. Results in normal pregnancy. Am J 

Obstet Gynecol 66: 248-253  

19. Ball RH and Parer JT (1992) The physiologic mechanisms of variable decelerations. Am 

J Obstet Gynecol 166: 1683-1688  

20. Barbera A, Galan HL, Ferrazzi E, Rigano S, Jozwik M, Battaglia FC, Pardi G (1999) 

Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am J 

Obstet Gynecol 181: 174-179  

21. Barcroft J (1946) Researches on pre-natal life. Blackwell Scientific Publications: Oxford  

22. Barnett SB (2000) Biophysical aspects of diagnostic ultrasound. Ultrasound Med Biol 26 

Suppl 1: S68-70  

23. Barnett SB, Maulik D, International Perinatal Doppler Society (2001) Guidelines and 

recommendations for safe use of Doppler ultrasound in perinatal applications. J Matern 

Fetal Med 10: 75-84  

24. Bartlett JW and Frost C (2008) Reliability, repeatability and reproducibility: analysis of 

measurement errors in continuous variables. Ultrasound Obstet Gynecol 31: 466-475  

25. Bellotti M, Pennati G, De Gasperi C, Battaglia FC, Ferrazzi E (2000) Role of ductus 

venosus in distribution of umbilical blood flow in human fetuses during second half of 

pregnancy. Am J Physiol Heart Circ Physiol 279: H1256-263  



 

 

63 

26. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415: 198-205  

27. Blaas HG and Eik-Nes SH (2009) Sonoembryology and early prenatal diagnosis of 

neural anomalies. Prenat Diagn 29:312-25  

28. Bonds DR, Crosby LO, Cheek TG, Hagerdal M, Gutsche BB, Gabbe SG (1986) 

Estimation of human fetal-placental unit metabolic rate by application of the Bohr 

principle. J Dev Physiol 8: 49-54  

29. Brace RA (1983) Fetal blood volume responses to acute fetal hemorrhage. Circ Res 52: 

730-734  

30. Braunwald E (1977) Determinants and assessment of cardiac function. N Engl J Med 

296: 86-89  

31. Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and 

clinical considerations. Am J Cardiol 27: 416-432  

32. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451: 

943-948 

33. Carceller-Blanchard AM and Fouron JC (1993) Determinants of the Doppler flow 

velocity profile through the mitral valve of the human fetus. Br Heart J 70: 457-460  

34. Carvalho JS, Ho SY, Shinebourne EA (2005) Sequential segmental analysis in complex 

fetal cardiac abnormalities: a logical approach to diagnosis. Ultrasound Obstet Gynecol 

26: 105-111 

35. Castle B and Mackenzie IZ (1986). In vivo observations on intravascular blood pressure 

in the fetus during mid-pregnancy. Fetal Physiological Measurements. Edited by P. 

Rolfe,. London, Butterworths. pp. 65-69 

36. Clur SA, Mathijssen IB, Pajkrt E, Cook A, Laurini RN, Ottenkamp J, Bilardo CM (2008) 

Structural heart defects associated with an increased nuchal translucency: 9 years 

experience in a referral centre. Prenat Diagn 28: 347-354 

37. Clyman RI, Mauray F, Roman C, Rudolph AM (1978) PGE2 is a more potent 

vasodilator of the lamb ductus arteriosus than is either PGI2 or 6 keto PGF1alpha. 

Prostaglandins 16: 259-264  

38. Coceani F and Olley PM (1988) The control of cardiovascular shunts in the fetal and 

perinatal period. Can J Physiol Pharmacol 66: 1129-1134  

39. Cook AC (2001) The spectrum of fetal cardiac malformations. Cardiol Young 11: 97-

110  

40. Cook AC, Yates RW, Anderson RH (2004) Normal and abnormal fetal cardiac anatomy. 

Prenat Diagn 24: 1032-1048  



 

 

64 

41. Dehmer GJ, Firth BG, Hillis LD (1982) Oxygen consumption in adult patients during 

cardiac catheterization. Clin Cardiol 5: 436-40. 

42. Dekaban AS (1978) Changes in brain weights during the span of human life: relation of 

brain weights to body heights and body weights. Ann Neurol 4: 345-356  

43. de Paula CF, Ruano R, Campos JA, Zugaib M (2008) Placental volumes measured by 3-

dimensional ultrasonography in normal pregnancies from 12 to 40 weeks' gestation. J 

Ultrasound Med 27: 1583-1590  

44. Del Rio M, Martinez JM, Figueras F, Bennasar M, Olivella A, Palacio M, Coll O, Puerto 

B, Gratacos E (2008) Doppler assessment of the aortic isthmus and perinatal outcome in 

preterm fetuses with severe intrauterine growth restriction. Ultrasound Obstet Gynecol 

31: 41-47  

45. DeVore GR, Siassi B, Platt LD (1984) Fetal echocardiography. IV. M-mode assessment 

of ventricular size and contractility during the second and third trimesters of pregnancy 

in the normal fetus. Am J Obstet Gynecol 150: 981-988  

46. Divon MY, Zimmer EZ, Platt LD, Paldi E (1985) Human fetal breathing: associated 

changes in heart rate and beat-to-beat variability. Am J Obstet Gynecol 151: 403-406  

47. Dolkart LA and Reimers FT (1991) Transvaginal fetal echocardiography in early 

pregnancy: normative data. Am J Obstet Gynecol 165: 688-691  

48. Falcon O, Faiola S, Huggon I, Allan L, Nicolaides KH (2006) Fetal tricuspid 

regurgitation at the 11 + 0 to 13 + 6-week scan: association with chromosomal defects 

and reproducibility of the method. Ultrasound Obstet Gynecol 27: 609-612  

49. Ferrazzi E, Bozzo M, Rigano S, Bellotti M, Morabito A, Pardi G, Battaglia FC, Galan 

HL (2002) Temporal sequence of abnormal Doppler changes in the peripheral and 

central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet 

Gynecol 19: 140-146 

50. Figueras F, Benavides A, Del Rio M, Crispi F, Eixarch E, Martinez JM, Hernandez-

Andrade E, Gratacós E (2009). Monitoring of fetuses with intrauterine growth 

restriction: longitudinal changes in ductus venosus and aortic isthmus flow. Ultrasound 

Obstet Gynecol 33: 39-43. 

51. Figueras F, Fernandez S, Hernandez-Andrade E, Gratacos E (2008) Umbilical venous 

blood flow measurement: accuracy and reproducibility. Ultrasound Obstet Gynecol 32: 

587-591 

52. Fouron JC (2003) The unrecognized physiological and clinical significance of the fetal 

aortic isthmus. Ultrasound Obstet Gynecol 22: 441-447  



 

 

65 

53. Fouron JC, Skoll A, Sonesson SE, Pfizenmaier M, Jaeggi E, Lessard M (1999). 

Relationship between flow through the fetal aortic isthmus and cerebral oxygenation 

during acute placental circulatory insufficiency in ovine fetuses. Am J Obstet Gynecol 

181: 1102-1107. 

54. Friedman WF (1972) The intrinsic physiologic properties of the developing heart. Prog 

Cardiovasc Dis 15: 87-111  

55. Gembruch U, Knopfle G, Bald R, Hansmann M (1993) Early diagnosis of fetal 

congenital heart disease by transvaginal echocardiography. Ultrasound Obstet Gynecol 

3: 310-317 

56. Gembruch U, Shi C, Smrcek JM (2000) Biometry of the fetal heart between 10 and 17 

weeks of gestation. Fetal Diagn Ther 15: 20-31  

57. Gilbert-Barness and Debich-Spicer (2004) Abnormalities of the placenta. In Embryo & 

Fetal Pathology. Colour Atlas with Ultrasound Correlation. Edited by E. Gilbert-

Barness and D. Debich-Spicer, Cambridge University Press. Pp. 150-79 

58. Giles WB, Trudinger BJ, Baird PJ (1985) Fetal umbilical artery flow velocity waveforms 

and placental resistance: pathological correlation. Br J Obstet Gynaecol 92: 31-38  

59. Grannum PA, Berkowitz RL, Hobbins JC (1979) The ultrasonic changes in the maturing 

placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol 133: 915-922  

60. Grant DA (1999) Ventricular constraint in the fetus and newborn. Can J Cardiol 15: 95-

104  

61. Haak MC, Bartelings MM, Gittenberger-De Groot AC, Van Vugt JM (2002) Cardiac 

malformations in first-trimester fetuses with increased nuchal translucency: ultrasound 

diagnosis and postmortem morphology. Ultrasound Obstet Gynecol 20: 14-21 

62. Harper AM (1965) Physiology of Cerebral Bloodflow. Br J Anaesth 37: 225-235  

63. Haugen G, Kiserud T, Godfrey K, Crozier S, Hanson M (2004) Portal and umbilical 

venous blood supply to the liver in the human fetus near term. Ultrasound Obstet 

Gynecol 24: 599-605  

64. Hernandez-Andrade E, Figueroa-Diesel H, Kottman C, Illanes S, Arraztoa J, Acosta-

Rojas R, Gratacos E (2007) Gestational-age-adjusted reference values for the modified 

myocardial performance index for evaluation of fetal left cardiac function. Ultrasound 

Obstet Gynecol 29: 321-325  

65. Hill LM, Guzick D, Fries J, Hixson J, Rivello D (1990) The transverse cerebellar 

diameter in estimating gestational age in the large for gestational age fetus. Obstet 

Gynecol 75: 981-985  



 

 

66 

66. Hofstaetter C, Hansmann M, Eik-Nes SH, Huhta JC, Luther SL (2006) A cardiovascular 

profile score in the surveillance of fetal hydrops. J Matern Fetal Neonatal Med 19: 407-

413 

67. Huggon IC, Turan O, Allan LD (2004) Doppler assessment of cardiac function at 11-14 

weeks' gestation in fetuses with normal and increased nuchal translucency. Ultrasound 

Obstet Gynecol 24: 390-398 

68. Huhta JC (2005) Fetal congestive heart failure. Semin Fetal Neonatal Med 10: 542-552 

69. Huhta JC (2004) Guidelines for the evaluation of heart failure in the fetus with or 

without hydrops. Pediatr Cardiol 25: 274-286 

70. Huhta JC, Cohen M, Gutgesell HP (1984) Patency of the ductus arteriosus in normal 

neonates: two-dimensional echocardiography versus Doppler assessment. J Am Coll 

Cardiol 4: 561-564  

71. Hyett JA, Perdu M, Sharland GK, Snijders RS, Nicolaides KH (1997) Increased nuchal 

translucency at 10-14 weeks of gestation as a marker for major cardiac defects. 

Ultrasound Obstet Gynecol 10: 242-246 

72. Jackson MR, Mayhew TM, Boyd PA (1992) Quantitative description of the elaboration 

and maturation of villi from 10 weeks of gestation to term. Placenta 13: 357-370  

73. Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to 

hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol 84: 155-172 

74. Jensen A, Roman C, Rudolph AM (1991) Effects of reducing uterine blood flow on fetal 

blood flow distribution and oxygen delivery. J Dev Physiol 15: 309-323  

75. Johnson P, Maxwell DJ, Tynan MJ, Allan LD (2000) Intracardiac pressures in the 

human fetus. Heart 84: 59-63  

76. Johnson P, Sharland G, Maxwell D, Allan L (1992) The role of transvaginal sonography 

in the early detection of congenital heart disease. Ultrasound Obstet Gynecol 2: 248-251 

77. Jou HJ, Shyu MK, Wu SC, Chen SM, Su CH, Hsieh FJ (1998) Ultrasound measurement 

of the fetal cavum septi pellucidi. Ultrasound Obstet Gynecol 12: 419-421 

78. Kanzaki T and Chiba Y (1990) Evaluation of the preload condition of the fetus by 

inferior vena caval blood flow pattern. Fetal Diagn Ther 5: 168-174  

79. Kenny JF, Plappert T, Doubilet P, Saltzman DH, Cartier M, Zollars L, Leatherman GF, 

St John Sutton MG (1986) Changes in intracardiac blood flow velocities and right and 

left ventricular stroke volumes with gestational age in the normal human fetus: a 

prospective Doppler echocardiographic study. Circulation 74: 1208-1216  



 

 

67 

80. Kessler J, Rasmussen S, Godfrey K, Hanson M, Kiserud T (2008) Longitudinal study of 

umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is 

associated with preferential supply to the fetal left liver lobe. Pediatr Res 63: 315-320  

81. Kessler J, Rasmussen S, Kiserud T (2007a) The fetal portal vein: normal blood flow 

development during the second half of human pregnancy. Ultrasound Obstet Gynecol 

30: 52-60 

82. Kessler J, Rasmussen S, Kiserud T (2007b) The left portal vein as an indicator of 

watershed in the fetal circulation: development during the second half of pregnancy and 

a suggested method of evaluation. Ultrasound Obstet Gynecol 30: 757-764  

83. Kety SS (1950) Circulation and metabolism of the human brain in health and disease. 

Am J Med 8: 205-217  

84. Kilavuz O, Vetter K, Kiserud T, Vetter P (2003) The left portal vein is the watershed of 

the fetal venous system. J Perinat Med 31: 184-187,  

85. Kiserud T (2005) Physiology of the fetal circulation. Semin Fetal Neonatal Med 10: 493-

503 

86. Kiserud T and Acharya G (2004) The fetal circulation. Prenat Diagn 24: 1049-1059  

87. Kiserud T, Ebbing C, Kessler J, Rasmussen S (2006) Fetal cardiac output, distribution to 

the placenta and impact of placental compromise. Ultrasound Obstet Gynecol 28: 126-

136  

88. Kiserud T, Hellevik LR, Eik-Nes SH, Angelsen BA, Blaas HG (1994) Estimation of the 

pressure gradient across the fetal ductus venosus based on Doppler velocimetry. 

Ultrasound Med Biol 20: 225-232  

89. Kiserud T, Kilavuz O, Hellevik LR (2003) Venous pulsation in the fetal left portal 

branch: the effect of pulse and flow direction. Ultrasound Obstet Gynecol 21: 359-364  

90. Kiserud T and Rasmussen S (2001) Ultrasound assessment of the fetal foramen ovale. 

Ultrasound Obstet Gynecol 17: 119-124  

91. Kiserud T and Rasmussen S (1998) How repeat measurements affect the mean diameter 

of the umbilical vein and the ductus venosus. Ultrasound Obstet Gynecol 11: 419-425 

92. Kiserud T, Rasmussen S, Skulstad S (2000) Blood flow and the degree of shunting 

through the ductus venosus in the human fetus. Am J Obstet Gynecol 182: 147-153  

93. Kiserud T, Saito T, Ozaki T, Rasmussen S, Hanson MA (1999) Validation of diameter 

measurements by ultrasound: intraobserver and interobserver variations assessed in vitro 

and in fetal sheep. Ultrasound Obstet Gynecol 13: 52-57 



 

 

68 

94. Konje JC, Taylor DJ, Rennie MJ (1996) Application of ultrasonic transit time flowmetry 

to the measurement of umbilical vein blood flow at caesarean section. Br J Obstet 

Gynaecol 103: 1004-1008  

95. Lee W, Allan L, Carvalho JS, Chaoui R, Copel J, Devore G, Hecher K, Munoz H, 

Nelson T, Paladini D, Yagel S, ISUOG Fetal Echocardiography Task Force (2008) 

ISUOG consensus statement: what constitutes a fetal echocardiogram? Ultrasound 

Obstet Gynecol 32: 239-242  

96. Lewis AB, Heymann MA, Rudolph AM (1976) Gestational changes in pulmonary 

vascular responses in fetal lambs in utero. Circ Res 39: 536-541  

97. Lucas W, Kirschbaum T, Assali NS (1966) Cephalic circulation and oxygen 

consumption before and after birth. Am J Physiol 210: 287-292  

98. Mahony BS, Callen PW, Filly RA, Hoddick WK (1984) The fetal cisterna magna. 

Radiology 153: 773-776  

99. Mahony L and Jones LR (1986) Developmental changes in cardiac sarcoplasmic 

reticulum in sheep. J Biol Chem 261: 15257-15265  

100. Mäkikallio K, Erkinaro T, Niemi N, Kavasmaa T, Acharya G, Päkkilä M, Räsänen J 

(2006). Fetal oxygenation and Doppler ultrasonography of cardiovascular 

hemodynamics in a chronic near-term sheep model. Am J Obstet Gynecol 194: 542-550 

101. Mäkikallio K, Räsänen J, Mäkikallio T, Vuolteenaho O, Huhta JC (2008) Human fetal 

cardiovascular profile score and neonatal outcome in intrauterine growth restriction. 

Ultrasound Obstet Gynecol 31: 48-54 

102. Mäkikallio K, Tekay A, Jouppila P (2004) Uteroplacental hemodynamics during early 

human pregnancy: a longitudinal study. Gynecol Obstet Invest 58: 49-54 

103. Makrydimas G, Sotiriadis A, Ioannidis JP (2003) Screening performance of first-

trimester nuchal translucency for major cardiac defects: a meta-analysis. Am J Obstet 

Gynecol 189: 1330-1335  

104. Malas MA, Sulak O, Gökçimen A, Sari A (2003) Morphology of umbilical vessels in 

human fetuses: a quantitative light microscope study. Eur J Morphol 41: 167-74 

105. McAuliffe FM, Hornberger LK, Winsor S, Chitayat D, Chong K, Johnson JA (2004) 

Fetal cardiac defects and increased nuchal translucency thickness: a prospective study. 

Am J Obstet Gynecol 191: 1486-1490 



 

 

69 

106. Messing B, Cohen SM, Valsky DV, Rosenak D, Hochner-Celnikier D, Savchev S, Yagel 

S (2007) Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D 

ultrasound using STIC combined with inversion mode. Ultrasound Obstet Gynecol 30: 

142-151  

107. Metcalfe J, Romney SL, Ramsey LH, Reid DE, Burwell CS (1955) Estimation of uterine 

blood flow in normal human pregnancy at term. J Clin Invest 34: 1632-1638 

108. Mielke G and Benda N (2001) Cardiac output and central distribution of blood flow in 

the human fetus. Circulation 103: 1662-1668  

109. Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH (2008). Heart stroke volume 

and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet 

Gynecol 32:181-187 

110. Molteni RA (1984) Placental growth and fetal/placental weight (F/P) ratios throughout 

gestation--their relationship to patterns of fetal growth. Semin Perinatol 8: 94-100  

111. Molteni RA, Stys SJ, Battaglia FC (1978) Relationship of fetal and placental weight in 

human beings: fetal/placental weight ratios at various gestational ages and birth weight 

distributions. J Reprod Med 21: 327-334  

112. Monteagudo A and Timor-Tritsch IE (2008) Normal sonographic development of the 

central nervous system from the second trimester onwards using 2D, 3D and transvaginal 

sonography. Prenat Diagn 29:326-39 

113. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH (2003) Development of the 

heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89: 806-814  

114. Morris JA, Hustead RF, Robinson RG, Haswell GL (1974) Measurement of 

fetoplacental blood volume in the human previable fetus. Am J Obstet Gynecol 118: 927-

934  

115. Muller F and O'Rahilly R (2006) The amygdaloid complex and the medial and lateral 

ventricular eminences in staged human embryos. J Anat 208: 547-564  

116. Naeye RL (1985) Umbilical cord length: clinical significance. J Pediatr 107: 278-281 

117. Nicolaides KH, Economides DL, Soothill PW (1989) Blood gases, pH, and lactate in 

appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 161: 996-1001  

118. O'Rahilly R and Muller F (2008) Significant features in the early prenatal development 

of the human brain. Ann Anat 190: 105-118  

119. O'Rahilly R and Muller F (2007) The development of the neural crest in the human. J 

Anat 211: 335-351 



 

 

70 

120. Patton DJ and Fouron JC (1995) Cerebral arteriovenous malformation: prenatal and 

postnatal central blood flow dynamics. Pediatr Cardiol 16: 141-144  

121. Pearce, W. (2006) Hypoxic regulation of the fetal cerebral circulation. Journal of 

Applied Physiology 100: 731-738 

122. Pennati G, Bellotti M, De Gasperi C, Rognoni G (2004) Spatial velocity profile changes 

along the cord in normal human fetuses: can these affect Doppler measurements of 

venous umbilical blood flow? Ultrasound Obstet Gynecol 23: 131-137  

123. Phillipos EZ, Robertson MA, Still KD (1994) The echocardiographic assessment of the 

human fetal foramen ovale. J Am Soc Echocardiogr 7: 257-263  

124. Pilu G, Reece EA, Goldstein I, Hobbins JC, Bovicelli L (1989) Sonographic evaluation 

of the normal developmental anatomy of the fetal cerebral ventricles: II. The atria. 

Obstet Gynecol 73: 250-256  

125. Poston L (1997) The control of blood flow to the placenta. Exp Physiol 82: 377-387  

126. Räsänen J, Debbs RH, Wood DC, Weiner S, Weil SR, Huhta JC (1997) Human fetal 

right ventricular ejection force under abnormal loading conditions during the second half 

of pregnancy. Ultrasound Obstet Gynecol 10: 325-332 

127. Räsänen J, Kirkinen P, Jouppila P (1989) Right ventricular dysfunction in human fetal 

compromise. Am J Obstet Gynecol 161: 136-140  

128. Räsänen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC (1998) Reactivity of the 

human fetal pulmonary circulation to maternal hyperoxygenation increases during the 

second half of pregnancy: a randomized study. Circulation 97: 257-262  

129. Räsänen J, Wood DC, Weiner S, Ludomirski A, Huhta JC (1996) Role of the pulmonary 

circulation in the distribution of human fetal cardiac output during the second half of 

pregnancy. Circulation 94: 1068-1073  

130. Rasmussen K (1987) Precision and accuracy of Doppler flow measurements. In vitro and 

in vivo study of the applicability of the method in human fetuses. Scand J Clin Lab 

Invest 47: 311-318  

131. Reller MD, McDonald RW, Gerlis LM, Thornburg KL (1991) Cardiac embryology: 

basic review and clinical correlations. J Am Soc Echocardiogr 4: 519-532  

132. Respondek M, Respondek A, Huhta JC, Wilczynski J (1992) 2D echocardiographic 

assessment of the fetal heart size in the 2nd and 3rd trimester of uncomplicated 

pregnancy. Eur J Obstet Gynecol Reprod Biol 44: 185-188  



 

 

71 

133. Respondek ML, Kammermeier M, Ludomirsky A, Weil SR, Huhta JC (1994) The 

prevalence and clinical significance of fetal tricuspid valve regurgitation with normal 

heart anatomy. Am J Obstet Gynecol 171: 1265-1270  

134. Rizzo G, Capponi A, Cavicchioni O, Vendola M, Arduini D (2007) Fetal cardiac stroke 

volume determination by four-dimensional ultrasound with spatio-temporal image 

correlation compared with two-dimensional and Doppler ultrasonography. Prenat Diagn 

27: 1147-1150  

135. Rizzo G, Capponi A, Rinaldo D, Arduini D, Romanini C (1995) Ventricular ejection 

force in growth-retarded fetuses. Ultrasound Obstet Gynecol 5: 247-255  

136. Rizzo G, Capponi A, Vendola M, Pietrolucci ME, Arduini D (2008) Relationship 

between aortic isthmus and ductus venosus velocity waveforms in severe growth 

restricted fetuses. Prenat Diagn 28: 1042-1047 

137. Royston P (1995) Calculation of unconditional and conditional reference intervals for 

foetal size and growth from longitudinal measurements. Stat Med 14: 1417-1436  

138. Royston P and Altman DG (1995) Design and analysis of longitudinal studies of fetal 

size. Ultrasound Obstet Gynecol 6: 307-312  

139. Royston P and Wright EM (1998) How to construct 'normal ranges' for fetal variables. 

Ultrasound Obstet Gynecol 11: 30-38 

140. Rudolph AM, Heymann MA, Teramo K, Barrett C, Räihä N (1971) Studies on the 

circulation of the previable human fetus. Pediatr Res 5: 452-465  

141. Rudolph AM (2009) The fetal circulation. In Congenital diseases of the Heart: Clinical-

Pathological Considerations. 3rd edition. Wiley-Blackwell. Chapter 1. Pp. 1-24 

142. Rudolph AM (1985) Distribution and regulation of blood flow in the fetal and neonatal 

lamb. Circ Res 57: 811-821  

143. Rumack CM, Wilson SR, Charbonneau JW (2008) Diagnostic Ultrasound, 3rd edition. 

Mosby  

144. Salvesen KA and Eik-Nes SH (1999) Ultrasound during pregnancy and subsequent 

childhood non-right handedness: a meta-analysis. Ultrasound Obstet Gynecol 13: 241-

246 

145. Salvesen KA and Lees C (2009) Ultrasound is not unsound, but safety is an issue. 

Ultrasound Obstet Gynecol 33: 502-505  

146. Sand AE, Andersson E, Fried G (2002) Effects of nitric oxide donors and inhibitors of 

nitric oxide signalling on endothelin- and serotonin-induced contractions in human 

placental arteries. Acta Physiol Scand 174: 217-223  



 

 

72 

147. Sariola H, Frilander M, Heino T, Jernvall J, Partanen J, Sainio K, Salminen M, Thesleff I 

(eds) (2003) Kehitysbiologia, solusta yksilöksi. Duodecim  

148. Schmidt KG, Di Tommaso M, Silverman NH, Rudolph AM (1991) Doppler 

echocardiographic assessment of fetal descending aortic and umbilical blood flows. 

Validation studies in fetal lambs. Circulation 83: 1731-1737 

149. Schmidt KG, Silverman NH, van Hare GF, Hawkins JA, Cloez, JL, Rudolph AM (1990) 

Two-dimensional echocardiographic determination of ventricular volumes in the fetal 

heart. Validation studies in fetal lambs. Circulation 81: 325-333 

150. Schmidt U, Hajjar RJ, Gwathmey JK (1995) The force-interval relationship in human 

myocardium. J Card Fail 1: 311-321  

151. Sedmera D and McQuinn T (2008) Embryogenesis of the heart muscle. Heart Fail Clin 

4: 235-245 

152. Severi FM, Rizzo G, Bocchi C, D'Antona D, Verzuri MS, Arduini D (2000) Intrauterine 

growth retardation and fetal cardiac function. Fetal Diagn Ther 15: 8-19  

153. Shiraishi H, Silverman NH, Rudolph AM (1993) Accuracy of right ventricular output 

estimated by Doppler echocardiography in the sheep fetus. Am J Obstet Gynecol 168: 

947-953  

154. Silverman NH and Schmidt KG (1990) Ventricular volume overload in the human fetus: 

observations from fetal echocardiography. J Am Soc Echocardiogr 3: 20-29  

155. Sokol GM, Liechty EA, Boyle DW (1996) Comparison of steady-state diffusion and 

transit time ultrasonic measurements of umbilical blood flow in the chronic fetal sheep 

preparation. Am J Obstet Gynecol 174: 1456-1460  

156. Sonesson SE and Fouron JC (1997) Doppler velocimetry of the aortic isthmus in human 

fetuses with abnormal velocity waveforms in the umbilical artery. Ultrasound Obstet 

Gynecol 10: 107-111 

157. Soothill PW, Nicolaides KH, Rodeck CH, Gamsu H (1986) Blood gases and acid-base 

status of the human second-trimester fetus. Obstet Gynecol 68: 173-176  

158. Struijk PC, Mathews VJ, Loupas T, Stewart PA, Clark EB, Steegers EA, Wladimiroff 

JW (2008) Blood pressure estimation in the human fetal descending aorta. Ultrasound 

Obstet Gynecol 32: 673-681 

159. Sutton MS, Gill T, Plappert T, Saltzman DH, Doubilet P (1991) Assessment of right and 

left ventricular function in terms of force development with gestational age in the normal 

human fetus. Br Heart J 66: 285-289  



 

 

73 

160. Sutton MS, Theard MA, Bhatia SJ, Plappert T, Saltzman DH, Doubilet P (1990) 

Changes in placental blood flow in the normal human fetus with gestational age. Pediatr 

Res 28: 383-387  

161. Tanaka H, Senoh D, Yanagihara T, Hata T (2000) Intrauterine sonographic measurement 

of embryonic brain vesicle. Hum Reprod 15: 1407-1412  

162. Tanimura T, Nelson T, Hollingsworth RR, Shepard TH (1971) Weight standards for 

organs from early human fetuses. Anat Rec 171: 227-236  

163. Tegnander E and Eik-Nes SH (2006) The examiner's ultrasound experience has a 

significant impact on the detection rate of congenital heart defects at the second-

trimester fetal examination. Ultrasound Obstet Gynecol 28: 8-14 

164. Tongsong T and Boonyanurak P (2004) Placental thickness in the first half of pregnancy. 

J Clin Ultrasound 32: 231-234 

165. Tulzer G, Gudmundsson S, Rotondo KM, Wood DC, Yoon GY, Huhta JC (1991a) Acute 

fetal ductal occlusion in lambs. Am J Obstet Gynecol 165: 775-778 

166. Tulzer G, Gudmundsson S, Rotondo KM, Wood DC, Cohen AW, Huhta JC (1991b). 

Doppler in the evaluation and prognosis of fetuses with tricuspid regurgitation. J Matern 

Fetal Invest. 19991;1:15-18. tricuspid regurgitation. J Matern Fetal Invest 1:15-18 

167. Tulzer G, Khowsathit P, Gudmundsson S, Wood DC, Tian ZY, Schmitt K, Huhta JC 

(1994) Diastolic function of the fetal heart during second and third trimester: a 

prospective longitudinal Doppler-echocardiographic study. Eur J Pediatr 153: 151-154  

168. Ursem NT, Struijk PC, Hop WC, Clark EB, Keller BB, Wladimiroff JW (1998) Heart 

rate and flow velocity variability as determined from umbilical Doppler velocimetry at 

10-20 weeks of gestation. Clin Sci (Lond) 95: 539-545  

169. Walsh SZ, Meyer WW, Lind J (1974). The human fetal and neonatal circulation: 

Function and structure. Charles C Thomas Publishers, Springfield, Illinois, USA. 

170. van der Mooren K, Barendregt LG, Wladimiroff JW (1991) Fetal atrioventricular and 

outflow tract flow velocity waveforms during normal second half of pregnancy. Am J 

Obstet Gynecol 165: 668-674  

171. van Splunder IP and Wladimiroff JW (1996) Cardiac functional changes in the human 

fetus in the late first and early second trimesters. Ultrasound Obstet Gynecol 7: 411-415 

172. Vavilala MS, Lee LA, Lam AM (2002) Cerebral blood flow and vascular physiology. 

Anesthesiol Clin North America 20: 247-64 



 

 

74 

173. Wehrenberg WB, Chaichareon DP, Dierschke DJ, Rankin JH, Ginther OJ (1977) 

Vascular dynamics of the reproductive tract in the female rhesus monkey: relative 

contributions of ovarian and uterine arteries. Biol Reprod 17: 148-153  

174. Veille JC, Smith N, Zaccaro D (1999) Ventricular filling patterns of the right and left 

ventricles in normally grown fetuses: a longitudinal follow-up study from early 

intrauterine life to age 1 year. Am J Obstet Gynecol 180: 849-858  

175. Weiner CP (1995). Intrauterine pressure: amniotic and fetal circulation. In Ludomirski 

A, Nicolini U, Bhutani UK (eds) Therapeutic and Diagnostic Interventions in Early Life. 

Chapter IV. Futura Publishing Co Inc. New York, USA. 

176. Weiner CP, Heilskov J, Pelzer G, Grant S, Wenstrom K, Williamson RA (1989) Normal 

values for human umbilical venous and amniotic fluid pressures and their alteration by 

fetal disease. Am J Obstet Gynecol 161: 714-717  

177. Wessels A and Sedmera D (2003) Developmental anatomy of the heart: a tale of mice 

and man. Physiol Genomics 15: 165-176  

178. Wladimiroff JW, Huisman TW, Stewart PA (1991) Fetal and umbilical flow velocity 

waveforms between 10-16 weeks' gestation: a preliminary study. Obstet Gynecol 78: 

812-814  

179. Wladimiroff JW, Huisman TW, Stewart PA, Stijnen T (1992) Normal fetal Doppler 

inferior vena cava, transtricuspid, and umbilical artery flow velocity waveforms between 

11 and 16 weeks' gestation. Am J Obstet Gynecol 166: 921-924  

180. Wloch A, Rozmus-Warcholinska W, Czuba B, Borowski D, Wloch S, Cnota W, 

Sodowski K, Szaflik K, Huhta JC (2007) Doppler study of the embryonic heart in 

normal pregnant women. J Matern Fetal Neonatal Med 20: 533-539 

181. Ville Y, Sideris I, Hecher K, Snijders RJ, Nicolaides KH (1994) Umbilical venous 

pressure in normal, growth-retarded, and anemic fetuses. Am J Obstet Gynecol 170: 487-

494  

182. Visser GH, Goodman JD, Levine DH, Dawes GS (1982) Diurnal and other cyclic 

variations in human fetal heart rate near term. Am J Obstet Gynecol 142: 535-544  

183. Yao AC, Moinian M, Lind J (1969) Distribution of blood between infant and placenta 

after birth. Lancet 2: 871-873  

184. Yoon H, Shin YS, Lee KC, Park HW (1997) Morphological characteristics of the 

developing human brain during the embryonic period. Yonsei Med J 38: 26-32  



 



 

 

 

 

 

 

 

 

 

PAPER I 

 

Vimpeli T, Huhtala H, Acharya G. Fetal echocardiography during routine first-trimester 

screening: A feasibility study in an unselected population. Prenat Diagn. 2006;26:475-82. 

 



 



 

 

 

 

 

 

 

 

 

PAPER II 

 

Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal cardiac output and its distribution to 

the placenta at 11-20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33:265-271. 

 

 



 



 

 

 

 

 

 

 

 

 

PAPER III 

 

Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal aortic isthmus blood flow and the 

fraction of cardiac output distributed to the upper body and brain at 11-20 weeks of gestation. 

Ultrasound Obstet Gynecol. 2009;33:538-44. 

 



 



 



 

 


	Forside Tommi Vimpeli.pdf
	Side 1 +2 + Innholdsfortegnelse.pdf
	Tommi Vimpeli Final Thesis 240809.pdf
	Skilleark Paper I.pdf
	Paper I.pdf
	Skilleark Paper II.pdf
	Paper II.pdf
	Paper II Supplementary material.pdf
	Skilleark Paper III.pdf
	Paper III.pdf
	Paper III Supplementary material.pdf
	Reference interval
	Peak systolic velocity, PSV




