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HIGHLIGHTS

e Improved methodology for assess-
ment of airborne exposure to chlori-
nated paraffins.

e Lower detection limits and sampling
variation with optimized sampler
design.

e No saturation for gas and filter pha-
ses after 7 days of continuous
sampling.

e Separation of gas and particle phases
avoids  over/underestimation in
quantification.

e Presence of vSCCPs in indoor air
represent an emerging human inha-
lation risk.
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ABSTRACT

An optimized low volume sampler was developed to determine both gas- and particle bound concen-
trations of short and medium-chain chlorinated paraffins (S/MCCPs). Background contamination was
limited by the sampler design, providing method quantification limits (MQLs) at least two orders of
magnitude lower than other studies within the gas (MQL: 500 pg (=SCCPs), 1.86 ng (SMCCPs)) and
particle (MQL: 500 pg (=SCCPs), 1.72 ng (EMCCPs) phases. Good repeatability was observed between
parallel indoor measurements (RSD < 9.3% (gas), RSD < 14% (particle)) with no breakthrough/saturation
observed after a week of continuous sampling. For indoor air sampling, SCCPs were dominant within the
gas phase (17 + 4.9 ng/m>) compared to MCCPs (2.7 + 0.8 ng/m>) while the opposite was observed in the
particle bound fraction (0.28 + 0.11 ng/m? (SSCCPs) vs. 2.7 + 1.0 ng/m> (SMCCPs)). Only SCCPs in the gas
phase could be detected reliably during outdoor sampling and were considerably lower compared to
indoor concentrations (0.27 + 0.10 ng/m?). Separation of the gas and particle bound phase was found to
be crucial in applying the appropriate response factors for quantification based on the deconvoluted S/
MCCP sample profile, thus avoiding over- (gas phase) or underestimation (particle phase) of reported
concentrations. Very short chain chlorinated paraffins (vSCCPs, C5-Cg) were also detected at equal or
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higher abundance compared to SCCP congener groups (Cy0-Cq13) congener groups, indicating an addi-
tional human indoor inhalation risk.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chlorinated paraffins (CPs) have emerged as a significant
research area due to the growing recognition of the (potential)
hazards they pose to both human and environmental health (Chen
et al,, 2019). Produced by radical chlorination of n-alkanes from
petroleum distillation, they consist of complex mixtures of poly-
chlorinated n-alkanes (>100,000s congeners) of varying carbon
chain length and degree of chlorination. Hence, the physical-
chemical properties vary widely among the different congeners
making them desirable for many applications (e.g., additives,
paints, coatings, plasticizers and flame retardants). They can be
classified according to their carbon chain length in short- (C19-Cy3),
medium- (C14-Cy7) or long- (C>1g) chain or degree of chlorination
(30—70%) (van Mourik et al., 2015).

Their high production (global production of >1 million tonnes/
year) (Gliige et al., 2016) and presence in remote sites have driven
the need for greater awareness and investigation towards their fate
in the environment. Short-chain chlorinated paraffins (SCCPs) were
nominated for persistent organic pollutant (POP) candidacy in 2006
but have only recently been added to Annex A (elimination) of the
Stockholm Convention on POPs (UNEP, 2017). Meanwhile, medium-
and long-chain CPs (MCCPs and LCCPs) are still under evaluation
due to knowledge gaps about their environmental transport and
fate (Gliige et al., 2018). Delay in regulation of CPs is attributed to
the analytical challenges of accurately measuring these substances
to provide data for regulators to evaluate (Chen et al., 2019;
Schinkel et al., 2018).

Levels of SCCPs are expected to decline with adoption of recent
regulations, although exposure will continue to occur through
emission from materials still in use. In addition, greater exposure of
MCCPs and LCCPs is expected as they replace SCCPs as alternative
chemicals (Dick et al,, 2010; Zeng et al., 2017). Based on their
physical chemical properties, SCCPs and MCCPs can be emitted to
air and remain in the gas and/or particle phase, posing a human
inhalation risk, particularly within indoor environments (Fridén
et al., 2011). However, trace analysis is difficult due to high back-
ground contamination and variation resulting in elevated detection
limits and hampering results. Previous studies have investigated
SCCPs and MCCPs within indoor air using active sampling tech-
niques but have combined gas and particle phase extracts to report
total airborne exposure (Fridén et al., 2011; Sakhi et al., 2019) or
collected particulate matter only (Zhou et al., 2018), losing infor-
mation on the congener group profile distribution across the gas
and particle phases. For assessment of outdoor atmospheric con-
centrations of CPs, high volume samplers are often used to obtain
sufficient mass of analyte to overcome background contamination.
However, polyurethane foam (PUF) is often used as a sampling
media which can introduce a significant co-extracted matrix into
samples, potentially hindering analytical performance. PUF may
also possibly contribute to higher background levels of CPs and thus
larger volumes need to be collected (>200 m?) to obtain concen-
trations over detection limits (Wang et al., 2012, 2019).

In this study, we describe the optimization of a simple but
innovative low volume sampler design capable of conducting
simultaneous measurements of CPs within the gas and particle
phase fractions. The developed sampler performance was assessed

for both indoor and outdoor environments monitoring S/MCCPs to
study congener group profiles between gas and particle phase
exposure and improve upon data accuracy in reporting airborne
concentrations.

2. Methods and materials
2.1. Preparation of active air sampler

The active air sampler was developed and modified based on a
previous design published by Warner et al. (2020). Collection of air
samples were carried out in parallel using 25 mL SPE cartridges
packed with ABN Express sorbent (120 mg, 50 um particle diam-
eter, Biotage, Sweden) equipped with a filter template, constructed
by Innovation Norwegian Institute for Air Research (NILU) AS, to
collect both the gas and particle phase fractions for CP analysis
(Fig. 1). A glass microfiber filter (Whatman Grade GF/C, 90 mm
diameter, 1.2 um particle retention) was installed into the filter
template to collect and separate the particle fraction.

The filter template consists of three stainless-steel metal sup-
port rings, a metal mesh filter to support the glass microfiber filter
and a metal top plate equipped with a Teflon-O-ring to ensure an
airtight seal during transport. The surface area of the filter exposed
to air is +8.55 cm?.

Sampler preparation and extraction work was performed in an
ISO class 6 clean room facility equipped with both gas- and particle
filtration to avoid or minimize background contamination. All
glassware (as well as the glass microfiber filters) were heated to
450 °C overnight, rinsed with n-hexane and left to dryness. All
stainless-steel components of the filter template were sonicated in
DCM/n-hexane (1:1) for 10 min and allowed to dry before use.

The SPE sorbent cartridges were packed and prepared using the
same protocol described by Warner et al. (2020). The glass micro-
fiber filters were cleaned using a Biichner funnel filtration set-up
connected to a vacuum pump. The Biichner funnel was pre-rinsed
with n-hexane before the filter was placed on the plate. The filters
were washed using 15 mL of DCM followed by 15 mL of n-hexane.
The solvents were allowed to drain through the filter under ambient
pressure. Subsequently, vacuum was applied to the filter flask for
2 min to dry the filters. The air samplers were pre-assembled inside
the clean room facility and sealed with the stainless-steel top plate
fitted with a Teflon O-ring and luer tip to ensure an airtight seal and
prevent contamination during transport. Further details about the
materials are provided in the Supporting Information (SI).

2.2. Sample deployment and collection

Indoor- and outdoor sampling was performed in parallel to
evaluate repeatability and quality assurance of the active air
sampler (AAS) for both gas and particle bound fractions. Samples of
the gas- and particulate phase were collected both inside the
atrium of the Fram Centre (Tromse, Norway (69°38'37.3”"N
18°56'54.3”E)) and outside approximately 50 m away from Fram
Centre using the same sampling design described by Warner et al.
(2020) (Fig. S1). Parallel samplers were mounted at a consistent
height (~1.2 m above ground), allowing air to circulate freely
around them. Two parallel samplers were installed in a downwards
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Fig. 1. Active air sampler used to collect both the gas and particle phase of the CPs. Left the modified sampler and right the schematic overview of the sampler template.

facing direction with plastic rain shields used to protect the sam-
plers from precipitation and wind to avoid precipitation from
entering the template during outdoor sampling (schematic set-up
shown in Fig. S1). Indoor sampling design was carried out in a
manner similar to outdoor set-up to remain consistent for data
comparison. For every sample, one field blank was collected by
deploying a clean SPE cartridge and glass microfiber filter installed
the same sampling height for 30 s without turning on the pump.
After sample collection, the top plate containing the Teflon O-ring
and PE luer tip were reinstalled at the inlet and outlet ends of the
sampler, respectively, and transported to the clean room. The glass
microfiber filters were removed from the filter template and stored
in a clean 15 mL glass test-tube and closed with a PTFE lined cap
while the SPE cartridge inlets were sealed with a clean PE cork.
Both SPE cartridges and glass microfiber filters were stored
at —20 °C until extraction.

Air sampling was collected over time ranges varying from 18h to
168h to determine its performance regarding sampling break-
through, repeatability, and saturation point (details described in SI).
The sampling rate for the AAS was 1.02 + 0.06 m®> hour!
(245 + 1.4 m> day™ ).

2.3. Extraction and clean-up

Before extraction of the sorbent cartridges, all samples were
spiked to the upper frit with 50 puL of the CP internal standard 3C-
hexachlorodecane (92 pg/uL). The sorbent was eluted slowly using
an optimized volume (Cioni et al., 2018) of 5 mL of hexane and
collected into a glass test-tube. The extract was reduced to 1 mL
using a miVac centrifugal vacuum concentrator (SP Scientific, PA,
USA) and purified through a column with 0.7 g of acidified silica (33%
w/w) and 0.3 g anhydrous Na,SO4 (heated at 600 °C for 8h). The

column was precleaned with 15 mL DCM and 15 mL n-hexane. After
loading the extract, the sample was eluted with 10 mL of 15% DCM/
n-hexane. The eluent was concentrated to approximately 150 pL and
quantitatively transferred with isooctane into a crimped cap GC vial
with micro insert. The extract was concentrated further to approx-
imately 50 pL isooctane under a gentle nitrogen stream and 20 pL of
the TCN (1, 2, 3, 4 — tetrachloronapthalene) was added as a syringe
standard (7.2 pg/uL) prior to analysis. The vials were stored at —20 °C
until instrumental analysis. The glass microfiber filters were
extracted in the same test tube in which they were stored. Prior to
extraction, the sample was spiked with 50 pL of the CP internal
standard 3C-hexachlorodecane (92 pg/uL) followed by 10 mL of 1:1
DCM/n-hexane. The tubes were sonicated for 15 min followed by
shaking on the orbital shaker for 1 h. The extracts were centrifuged
for 10 min and the supernatants were transferred into new clean test
tubes. The extracts were concentrated to 1 mL and cleaned up using
the same procedure as described for the sorbent cartridges.

The recoveries of the >C-hexachlorodecane ranged from 51 to
56% and were consistent over all experiments, thus independent of
the sampling duration. All samples (sorbent and filter) were cor-
rected with their obtained recovery factor. Due to the lack of
commercially available labelled standards for MCCPs, concentra-
tions of MCCPs detected on both the sorbent and filter were cor-
rected by the same factor to be compared to SCCP concentrations
for discussion purposes.

2.4. Instrumental analysis and quantification

The analysis was performed on a Q Exactive GC Orbitrap MS
coupled with a TRACE 1310 GC and was equipped with a TriPlus
RSH autosampler (ThermoFisher Scientific, Waltham, MA, USA) and
a programmable temperature vaporization (PTV) injector (Agilent
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Technologies, Santa Clara, CA, US). Samples were analyzed on a
Thermo Scientific TG-5SILMS (15 m x 0.25 mm x 0.25 pm) with an
integrated safeguard (10 m) column with helium as carrier gas. The
MS was operated in ECNI (70 eV) with methane as reagent gas
having a flow rate of 1.4 mL/min. The analysis was performed in full
scan over the m/z range of 250—750 at a mass resolution of 60,000.
Sample injection volume of 1 pL at 90 °C using programable tem-
perature vaporization (PTV) using a temperature program previ-
ously published procedure by Kratschmer et al. (2019). Extracted
analyte response was determined using TraceFinder 4.1 (Thermo-
Fisher Scientific) with a mass accuracy of 5 ppm.

Quantification was performed based on the procedure reported
by Bogdal et al. (2015), where all samples showed goodness of fit
values of R? = 0.75—0.99. All samples were blank corrected and
their concentrations were calculated using the same sample
contribution derived from the Lawson and Hanson algorithm
(Bogdal et al., 2015). Six commercially available technical formu-
lations (SCCP 51.5%, 55%, 63% Cl and MCCP 42%, 52%, 57% Cl) (Dr.
Ehrenstorfer GmbH’s laboratory; Augsburg, Germany) and two
additional single-chain length standards (Cyp and Cy3, 50.18% and
50.21% Cl, respectively) (LGC Standards; Wesel, Germany) were
used to construct four-point calibration curves ranging from 0.5 ng/
uL to 5 ng/uL with linear response observed (R* > 0.99) for both
SCCPs and MCCPs (Fig. S2).

A total of 28 SCCP congener groups (expressed as CpCly,
C10-13Cl5-12), 22 MCCP (C14-17Cl5-19) and vSCCP (Cs.9Cl5.19) congener
groups were monitored. The most abundant signal of the [M-Cl]" or
[M-HCI] isotope cluster were extracted from the full-scan spectra.
The isotope cluster selected for evaluation was congener group
dependent; the lower chlorinated paraffins tend to lose HCI rather
than Cl resulting in greater abundances for the [M-HCI]" cluster. The
exact m/z values of the most abundant ion for each congener group
are listed in Table S1-2 and were used consistently between the
reference standards and samples.

3. Results and discussion
3.1. Sampler performance

3.1.1. Detection limits

Field blanks (n = 16) observed for the ZSCCPs were mainly
attributed to random electrical signal with concentrations <0.01%
compared to the lowest sample concentration measured (100 pg/
m?) in both gas and particle phase and therefore considered
negligible. Based on the integrated chemical/instrumental noise
observed in the blanks, a threshold of 500 pg (30 pg/m>) was set
based on a signal/noise ratio equal to 10 of our lowest sampled
volume (18 m?) to avoid any contribution from the background
signal. The field blank (n = 14) concentrations of the SMCCPs were
<3% of the detected samples for the gaseous and particle bound
MCCPs, respectively. As blank contribution was removed from the
sample, the method detection limit (MDL) and quantification
(MQL) limit for the ZMCCPs were calculated as three and ten times,
respectively, the standard deviation observed in the blanks, shown
in Table S4. The MQL were 1.86 and 1.72 ng (0.011-0.103 and
0.010—0.096 ng/m> when volumes of 18—169 m> were collected)
for the gaseous and particle bound MCCPs, respectively. For
analytical performance comparison, we have also calculated our
detection/quantification limits for MCCPs in a similar manner
defined in previous studies (average blank response plus three
times the standard deviation) investigating CPs within air. The
MQLs were 2.10 and 1.92 ng (0.012—0.116 and 0.011—-0.107 ng/m>
when volumes of 18—169 m> were collected) for the gaseous and
particle bound MCCPs, respectively. Detection/quantification limits
reported here are at least two orders of magnitude lower compared
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to previous studies using low volume samplers (Table S5). Blank
values reported by Ma et al. (2014) using high volume sampling
(i.e., 2.6 ng/PUF, 1.2 ng/GFF for S/MCCPs) were comparable to MQLSs
presented in this study for MCCPs. However, it should be noted that
comparison of concentrations and detection limits using different
quantification strategies should be done with caution (van Mourik
et al,, 2018). Lower MDL/MQL levels reported in our study can be
attributed to sampler design and the use of a clean room facility for
the sample preparation and extraction to avoid exposure sources
within indoor environments. This highlights the importance that
suitable precautions for both controlling and monitoring back-
ground contamination are necessary to ensure data accuracy.

3.1.2. Sampling Repeatability

The percent relative standard deviation (%RSD) for replicate
samples in indoor- and outdoor environments were assessed to
evaluate the AAS. The indoor CP concentration adsorbed to the
sorbent provides good repeatability with RSD ranging from 0.5 to
5.3% for the ZSCCPs and 4.1-9.3% for the MCCPs at sampling ex-
periments of 18—72h (Fig. 2). Due to sample loss during the
extraction procedure, the %RSD of the 69h filter experiment could
not be assessed. However, the remaining measurements of the
particle bound CPs are in acceptable agreement (<15%) with RSD
ranging from 2.2 to 6.1% for the SCCPs and from 3.4 to 14% for the
>MCCPs.

Comparable RSDs (2.2—10%) were observed for the ZSCCPs on
the sorbent during outdoor experiments. The gaseous XMCCPs and
the particle bound ZSCCPs were both below detection limits and
therefore not used for the evaluation. The RSDs of the ZMCCPs on
the filter were higher than those observed during indoor mea-
surements (RSDs >30%). This is likely due to environmental con-
ditions (i.e., precipitation, wind) potentially affecting particle
distribution between parallel samplers. As the sorbent is protected
by the filter template, it will be less affected by those factors, which
may explain the lower %RSD on the sorbent between replicate
samplers.

3.1.3. Breakthrough and Saturation assessment

Sorbent breakthrough was assessed indoors by connecting two
SPE cartridges in tandem with continuous sampling over a 5-day
period. The =SCCP and =MCCP concentrations on the back SPE
cartridge (0.04 ng/m> and <MDL, respectively) were negligible
compared to the concentrations observed on the front SPE cartridge
(12 ng/m® and 1.3 ng/m>). Breakthrough assessment of the indi-
vidual chain lengths can be found in Table S6. Breakthrough of the
=SCCPs and =MCCPs was 0.32%, and 1.1%, respectively, indicating
that breakthrough of SCCPs and MCCPs within the gas phase was
minimal. We performed saturation assessment to support the
breakthrough experiment by determining the analyte mass
behavior on the sorbent and filter over time. As acceptable RSDs
(<15%) for gas and particle phases were obtained for SCCPs and
MCCPs, one sample was collected for every time point. Fig. 3A
shows the =SCCPs and SMCCPs profiles observed on the sorbent
after 7 days (168 h) of sampling. The mass of both =SCCPs and
SMCCPs follow a linear (R? of 0.99 and 0.98, respectively) trend
over the 7-day sampling period. The air collection of day 5 (119 h)
and 7 (168 h) were affected by high MCCP blank levels (sorbent and
filter masses of 48 and 75 ng and 23 and 14 ng, respectively:
Table S4). The MCCP blanks were averaged and corrected for the
two collection points as they were extracted on the same day. Their
levels were, however, not included in the quality assurance and
control after being determined as outliers (Grubb’s test; o. = 0.05;
n = 16, Fig. S3). For all detectable S/MCCP congener groups, a linear
relationship was observed during the sampling period of 7 days
(168 h), indicating that no saturation on the sorbent occurred
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Fig. 2. Indoor air measurement repeatability between parallel samplers on the sorbent (gas phase (A, B)) and filter (particle phase (C, D)) for SCCPs (left) and ¥MCCPs (right),
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Fig. 3. Mass =SCCPs and SMCCPs observed on the sorbent (A) and filter (B) after 69,
119- and 168-h air sampling collections to evaluate holding capacity.

(Fig. S4). These results support the breakthrough assessment as we
would expect uptake by the sorbent to remain constant (with all
other sampling variables remaining constant) until the sorbent
capacity has been reached. Linear uptake observed over the entire
sampling period shows that accurate measurements can be

obtained up to 7 days without loss due to breakthrough. Percentage
breakthrough of the filter could not be determined and, therefore,
saturation of the filter capacity was assessed. Fig. 3B shows the
SMCCPs and =SCCPs measurements on the particle bound fraction
with both a linear trend up to the sampling period of 7 days (168 h).
Both profiles show good linearity (R? of 0.99 for both the SMCCPs
and =SCCPs), indicating that the filter had not reached its capacity
and reliable filter measurements can be obtained after a week of
continuous sampling.

This finding was further confirmed by comparison of the CPs
patterns on both phases. Generally, the particle bound MCCPs show
a different composition to that of the gaseous MCCPs. The gaseous
MCCP congener groups show only contribution of the 42% Cl
technical formulation, whereas the particle bound MCCP congener
groups show a divided pattern between the MCCP 42%, 52% and
57% Cl technical standards. The observed contributions were
derived from the Lawson and Hanson algorithm (Bogdal et al.,
2015) and are shown in Fig. 4.

The MCCPs on the filter display an average contribution of 43%,
56% and 1% for the MCCP 42%, 52% and 57% Cl technical standards
while the gaseous MCCPs show a 100% contribution of the MCCP
42% Cl standard (n = 16). The individual MCCP chain lengths of the
gaseous and particle bound fractions were also compared. In both
the gas- and particle phase, the Cy4 chain lengths are the most
predominant (91% + 2.1% and 77% + 2.9%, respectively; n = 16).
However, their distributions differ from one to another. The Cyi4
chain lengths on the gaseous phase are shifted towards the lower
chlorinated congener groups which can be explained by the higher
volatility of the lower congener groups, thus, their greater presence
within the gas phase. This distribution shift of the Cy4 chain lengths
between the gas and particle bound phases was also observed for
the breakthrough experiment, as shown in Fig. 5. Contribution and
the distribution of the MCCP profiles in both the gas and particle
phases show clear differences, indicating that filter breakthrough
has not occurred and impacted the sorbent after the 5-day
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Particle bound phase
57% Cl

Fig. 4. MCCP contribution of the Dr. Ehrenstorfer GmbH’s technical formulations observed on the gaseous and particle bound phase of the samples. Composition of the MCCPs on
the sorbent (left) and filter (right). Contributions were obtained from the Lawson and Hanson algorithm (Bogdal et al., 2015) (n = 16).

sampling period. The composition and distribution of the SCCPs
was also examined (Figs. S4-5). Previous studies have shown Cyg.11
to be the most abundant in the atmosphere (Section 3.2) due to
their high volatility. Within our study, these chain lengths repre-
sent 94% and 60% of the ¥SCCP within the gaseous and particle
bound phase, respectively. The gas phase consists of 68% (+1.5%) of
the C1p homologue, whereas the C;; homologue is most abundant
in the particle bound phase (34% + 1.3%). As shown in the pie chart
(Fig. S6), the composition of the particle bound phase is a divided
pattern between all the SCCP chain lengths with the Cl;-g as
dominant congener groups. This is not unexpected as a shift to-
wards the higher chlorinated congener groups on the particle
bound phase can be explained by their physical-chemical proper-
ties and lower vapor pressures.

It is of importance to emphasize that comparison of CP
composition can provide essential information, adding more value
to statistical evaluation. In addition, distinguishing the CP profiles
present in the gas and particle separately is required to determine
the accurate concentrations and source elucidation as CPs present
in both phases exhibit differences in physical-chemical properties,
affecting their environmental fate and decomposition processes.
Most CP studies investigating air have combined both phases,
losing information regarding sources of exposure to SCCPs and
MCCPs or estimation of inhalation intake (gaseous vs particle)
which can be crucial for inhalation risk assessment for indoor en-
vironments. In addition, the composition of the environmental
samples strongly affects quantification as most methodologies
depend on the response factor (RF) values. Recent study by Méziere
et al. (2020) revealed differences in homologue response patterns

40

30 M Particle bound phase

Gaseous phase

20
10

C14cI5 Ci4cle c14c17 C14ci8 c14ci9 C14ci10

Normalized abudnance (%)

Fig. 5. Distribution of the Cy4 chain lengths observed on the gaseous and particle
bound phase for the breakthrough assessment.

between different instrument platforms using quantification
methodologies with RF values strongly dependent on %Cl and
might require corrections when reporting data. Combination of the
gas and particle phases will affect quantification as the CPs of
higher chlorination degree on the particle bound phase will in-
crease the RF value, leading to underestimation of the gas phase
concentrations. Using the same reasoning, the measurements of
the particle bound phase will be overestimated. Thus, the outcomes
are often unreliable. Separating the two phases improves compar-
ison with analytical and modelling studies and more importantly,
improve data accuracy.

3.2. Challenges of CP data comparison

In this study, the indoor gaseous sample concentrations varied
from 11 to 24 ng/m> (mean of 17 ng/m?>) and 2.1—4.1 ng/m> (mean
of 2.7 ng/m?) for the SCCPs and SMCCPs, respectively. Indoor
concentrations of the particle bound fractions ranged from 0.15 to
0.42 ng/m> (mean of 0.28 ng/m®) and 1.5—4.1 ng/m> (mean of
2.7 ng/m>) for the £SCCPs and SMCCPs, respectively. Concentration
observed outdoors of the Fram Centre building ranged between
0.16 and 0.35 ng/m> (mean of 0.27 ng/m?) for the gaseous SSCCPs
being one to three orders of magnitude lower compared to indoor
measurements. The ZSCCPs concentration on the sorbent were on
average 6-fold greater than the MCCPs concentration (Fig. 2). This
is not surprising considering the higher volatility of the SCCPs,
therefore prone to partition to the gas phase. Concentration
>MCCPs on the filter is significantly higher (T-test; one tailed
p < 0.05) compared to the ZSCCPs. This is likely due to SCCPs higher
vapor pressures and greater presence in the gas phase. Remarkably,
the concentration of the MCCPs between the gas and particle
phases is equally distributed, even though they were detected in
higher abundance on the filters. This phenomenon is caused by the
strong dependence of chlorination degree on response factors (RFs)
using negative chemical ionization. Steeper slopes were observed
for technical formulation with increasing degrees of chlorination
(Fig. S2), which have also been observed and explained by several
other studies (Li et al., 2017; Reth et al., 2005; Yuan et al., 2017; Zou
et al., 2018). MCCP congener groups detected on the sorbent were
represented by congeners of lower degree of chlorination (42% Cl),
thus lower response slopes. More than 50% of the MCCPs found on
the particles was represented by congeners of higher degree of
chlorination (52 and 57% Cl, Fig. 4). Thus, concentration levels
within the gas phase appear comparable to those observed on the
filter (due to the abundance normalized by lower response slope)
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even though their overall abundance is much lower. As the
composition of the CPs in environmental samples can change
spatially and temporally, obtaining accurate and comparable
measurements on a ¥SCCPs or XMCCPs basis remains a challenge. In
addition, comparison of concentrations should be performed with
caution as the concentrations also vary depending on the sample-
and quantification methodology (van Mourik et al.,, 2018), the
sample type (e.g. gaseous samples, particle bound samples or
combined), building space (e.g. office, floor or open indoor spaces)
and/or instrumentation ((Kratschmer and Schachtele, 2019);
Méziere et al., 2020).

Higher levels of CP within indoor environment found by Gao
et al. (2018) and Huang et al. (2017) are not unexpected as China
has the largest CP production of any country and thus, a greater
emission and exposure to CPs is expected (Gliige et al., 2016).
However, the reported concentrations by Gao et al. (2018)
(9.77-966 ng/m> (mean of 181 ng/m°) and <0.13—613 ng/m>
(mean of 41.9 ng/m?®) for the SCCPs and MCCPs, respectively)
represent the sum of both gas and particle phase as particles were
not filtered during collection, thus gaseous concentrations will be
underestimated based on the contribution from the particle bound
fraction. This can result in inaccurate concentrations for regulation
assessments as it causes a shift in distribution and should be
avoided. Interestingly, Huang et al. (2017) detected higher partic-
ulate phase (PMjo) concentrations of SCCPs (38.3—87.7 ng/m>
(mean of 61.1 ng/m?3)) compared to MCCPs (3.2—9.6 ng/m> (mean of
6.9 ng/m>)), despite MCCPs being expected to be more dominant in
the particle bound phase due to their lower vapor pressures. This
could indicate different sources of CPs to particulate matter or
greater exposure to SCCPs present in China. Indoor air studies be-
tween household buildings resulted in gaseous sample concen-
trations ranging from <5 to 210 ng/m> for S/MCCPs (mean of
69 ng/m?>) (Fridén et al., 2011) and from 1.7 to 54 ng/m> (mean of
8.9 ng/m>) and <0.35—13 ng/m> (mean of 1.4 ng/m?>) for the £SCCPs
and ZMCCPs, respectively, (Yuan et al., 2021). The wide concen-
tration ranges could be attributed to differences in core materials
(e.g., building materials or lubricants) between sampling sites. As
the concentrations of the gas and particle bound phase in the study
of Fridén et al. (2011) were combined, no evident observation can
be drawn concerning the CP contribution to each phase.

Previous outdoor reports in Norway by Borgen et al. (2002)
reported higher $SCCP concentrations (1.8—10.6 ng/m?) which is
not unexpected as the study was performed prior to the SCCP re-
striction (Stockholm Convention, 2017) and could be the reflection
to greater SCCP usage and sources. However, differences could also
be attributed to different analytical and quantification methodol-
ogies as mentioned earlier.
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Composition of the CPs could also differ between laboratories as
shown in interlaboratory comparison studies (Kratschmer and
Schachtele (2019)). Studies by van Mourik et al. (2020) and
Huang et al. (2017) reported carbon chain lengths of C1p-11 (SCCPs)
and Cy4 (MCCPs) with Cls-g groups to be the highest in air samples
which is in good agreement with the observations within this
study. Similar profiles were observed by Ma et al. (2014) with
fractions of XCls-g-SCCPs describing 74.7% and 58.4% for the
gaseous and particle bound phase, respectively. The Cq4.15-MCCP
fractions were 93.6% (particle bound phase) and 77.2% (gas phase),
contrary to our findings (Section 3.2) and expectations as those
homologues are considered more volatile. Other studies (Li et al.,
2012; Wang et al, 2012) observed shifts among the seasons
which could indicate differences in half-lives between the CPs.
Hence, more research should be devoted to both quantitative and
qualitative analysis of the CPs.

3.3. Detection of vSCCPs within indoor air

Studies on CPs in air with carbon chain lengths <10 is limited or
not available at all. Recent study by van Mourik et al. (2020),Xia
et al. (2019) and Yuan et al. (2021) detected the very short CPs
(vSCCPs) in their air samples during indoor- and outdoor sampling.
Within this study, vSCCPs as low as Cs could easily be detected on
the sorbent during indoor air collection. Fig. 6 shows the normal-
ized abundances of the C5-Cg-CPs and SCCPs extracted from the full
spectra with the isotope clusters listed in Table S3. Congener
groups < Cip were not detected in the field blanks nor in the Dr.
Ehrenstorfer and the LGC reference standards. Interestingly, Xia
et al. (2019) and Yuan et al. (2021) detected the vSCCPs in their
standard mixtures, which warrants further investigation. The
shorter chain CPs were particularly abundant on the sorbent,
empathizing their high volatility. Some of congener groups of the
Cs and Cy chain lengths were detected in proportions of equal or
greater abundances than congener groups of the Cy; and Cy3 chain
lengths. We assume that those congener groups are produced in
processes where mixtures of CPs are used without any restrictions
of carbon chain lengths. However, recent findings have shown the
formation of vSCCPs through metabolism of CPs via human liver
microsomes (He et al., 2020). This indicates that humans will not
only undergo exposure to vSCCPs via inhalation (Yuan et al., 2021),
but also metabolism, representing a greater exposure risk. As new
and more sensitive techniques are available, more attention should
be given to these vSCCPs and the need of commercially available
standards for quantification. Evaluation regarding their environ-
mental fate (LRTP and degradation) and bioaccumulation and
toxicity potential is needed as some of the chain lengths are more
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Fig. 6. Congener group abundance profiles of the Cs-C9 and SCCP detected in an indoor air sampling experiment.
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abundant than certain SCCP congener groups.

The developed active air sampler is highly suitable for simul-
taneous determination of SCCP and MCCP concentrations within
indoor gas and particle phase fractions with robust performance
after 7 days of continuous sampling. Separation of the gas and
particle bound phase reveals differences in congener group profiles
and prevents reporting inaccurate concentrations by using
response factors reflective of the phase congener profile. Very short
chain chlorinated paraffins (vSCCPs: C5-Cg) within indoor envi-
ronments were detected in proportions equivalent or greater than
some of the SCCP congener groups, which might pose additional
inhalation exposure risks or other implications towards human
health.
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