
Faculty of Science and Technology

Department of Physics and Technology

Towards Unsupervised Domain Adaptation for Diabetic Retinopathy

Detection in the Tromsø Eye Study

Magnus Størdal

FYS-3900 Master’s thesis in physics - 60 ECTS - May 2021

Abstract

Diabetic retinopathy (DR) is an eye disease which affects a third of the
diabetic population. It is a preventable disease, but requires early detection
for efficient treatment. While there has been increasing interest in applying
deep learning techniques for DR detection in order to aid practitioners make
more accurate diagnosis, these efforts are mainly focused on datasets that
have been collected or created with ML in mind. In this thesis, however,
we take a look at two particular datasets that have been collected at the
University Hospital of North-Norway - UNN.

These datasets have inherent problems that motivate the methodological
choices in this work such as a variable number of input images and domain
shift.

We therefore contribute a multi-stream model for DR classification. The
multi-stream model can model dependency across different images, can take
in a variable of input of any size, is general in its detection such that the
image processing is equal no matter which stream the image enters, and is
compatible with the domain adaptation method ADDA, but we argue the
model is compatible with many other methods.
As a remedy for these problems, we propose a multi-stream deep learning
architecture that is uniquely tailored to these datasets and illustrate how
domain adaptation might be utilized within the framework to learn efficiently
in the presence of domain shift.

Our experiments demonstrates the models properties empirically, and
shows it can deal with each of the presented problems. The model this paper
contributes is a first step towards DR detection from these local datasets
and, in the bigger picture, similar datasets worldwide.

2

Contents

I Introduction 10

1 The prevalence of diabetic retinopathy 11
1.1 The obesity pandemic . 11
1.2 The dataset . 15

1.2.1 Dataset Challenges . 16
1.3 Contributions . 19
1.4 Thesis outline . 20

II Theory and Related Work 21

2 Notation 22

3 What is Machine Learning 24

4 Risk minimization and Classification 26
4.1 Loss functions . 27

4.1.1 Cross Entropy Loss . 29
4.1.2 Focal Loss . 30

5 Gradient Decent 32

6 Perceptrons 36
6.1 Activation function . 37

6.1.1 The sigmoid function 38
6.1.2 The ReLU activation function 40

6.2 Multilayer Perceptrons . 42
6.3 Calculating the MLP gradient 45

3

7 Convolutional Neural Networks 47
7.1 The Convolution Operation 48

7.1.1 Sparse Interactions . 49
7.1.2 Parameter Sharing . 50
7.1.3 Equivariant Representation 50

7.2 Convolution Examples . 51
7.3 Pooling . 53
7.4 A basic convolution layer . 54
7.5 Calculating the gradient in a CNN 55

7.5.1 Gradient over the pooling operation 57
7.6 ResNet . 58

8 Regularization 60
8.1 Batch Norm . 60

8.1.1 The case for landscape smoothing 62
8.1.2 The case for CSI . 62

8.2 Weight decay . 63
8.2.1 L1-regularization . 63

8.3 Dropout . 64
8.4 Data augmentation . 66

9 Domain Adaptation 68
9.1 Annotation . 69
9.2 General DA theory . 69
9.3 Key technical approaches . 70

9.3.1 Discrepancy-based DA 71
9.3.2 Adversarial-based DA 71
9.3.3 Reconstruction-based DA 72

9.4 ADDA . 73
9.5 DA in the medical field . 76

III Materials and Methods 78

10 Diabetic retinopathy detection 79
10.1 The Eye . 79

10.1.1 Diabetic Retinopathy 79
10.2 Diabetic Retinopathy dataset 81

4

11 Methods 85
11.1 The multi-stream architecture 86
11.2 The Model . 88

11.2.1 Model intuition . 89
11.2.2 How the model works 89
11.2.3 Fusion functions . 91

11.3 ADDA . 93

IV Experiments and Results 95

12 Experiments 96
12.1 Proof of concept . 96
12.2 MNIST and SVHN datasets 97
12.3 Diabetic Retinopathy classification 98

13 Results 100
13.1 Effects of noisy data on Multistream model 100
13.2 Multistream DA onto single network 107
13.3 DR data . 111

V Discussion and future work 114

14 Discussion and Future directions 115
14.1 Dealing with imbalance in DR datasets 115
14.2 Attention as a fusion function 115
14.3 Explainability and Interpretability 116

15 Conclusion 117

5

List of Figures

1.1 Visualisation of the massive class imbalance found in both the
T6 and the T7 datasets . 18

6.1 A simple visualisation of a basic perceptron 36
6.2 The leftmost image shows how the sigmoid output changes

based on input value. The visualisation is only for the range
x ∈ [−5, 5]. The rightmost image shows the sigmoid derivative
value for input values in the same range 39

6.3 Visualisation of vanishing gradient. Here we assume an initial
loss of 1. The x-axis shows how the gradient is affected by a
number of sigmoid activation functions 40

6.4 Visualisation of the ReLU activation function. The leftmost
image shows the activation of any value in the range of x ∈
[−5, 5]. The rightmost image shows the derivative of the ReLU
function over the same range of values. 41

6.5 (a) XOR problem visualised. Red and Blue represents two dif-
ferent classes for which we want to find a line which separates
the classes perfectly. (b) and (c) shows possible solutions a
single perceptron would output. Both with a minimum of one
missclassified datapoint. 43

6.6 Example of a network capable of solving the XOR problem by
stacking two perceptrons in a single layer 43

7.1 Simple convolution example using valid convolution 51
7.2 A simple convolution example using same convolution. The

input and output sizes are equal 52
7.3 A simple convolution example using full convolution. The

output size has increased by two rows and columns 52

6

7.4 An example of some of the 2× 2 window pooling methods we
have today (a) is an example of maxpooling, (b) is an example
of minpooling, and (c) is an example of average pooling 53

7.5 Caption . 54
7.6 A visual guide to calculating the weight gradient for Figure 7.1 56
7.7 An implied forward pass through pooling, and the gradient

being propagated . 57
7.8 A residual block. The main component found in the ResNet

architecture . 58

8.1 Examples of how different subnetworks looks like during training 65
8.2 Comparison of some different data augmentation, and the

standard image before augmentation 66

9.1 The basic idea of the ADDA method. 73
9.2 Figure showing the three main steps of the ADDA method as

proposed by Tzeng et.al [87] 75

10.1 Artistic rendition of the human eye. 80
10.2 A piechart figure showing the class imbalance in the datasets

T6 and T7 . 82
10.3 How multiple images combined constitutes the entire backside

of the eye. Image is used with permission from Geir Bertelsen
and is sourced from Prosedyrebok Øyestasjon Tromsø 6, an
instruction manual for the usage of the Fundusfoto Visucam
500 machine. 83

10.4 One example from each class. Images taken from the public
APTOS 2019 dataset. (a) No DR class example. No visi-
ble lesions present. (b) Mild DR class example. Has what
seems like a lesion down left. (c) Moderate DR class example.
Has a small ischemic spot, and what seems like some micro
aneurysms. (d) Severe DR class example. Has some cotton
wools spots going on, and a small hemorrhage. (e) Proliferate
DR class example. Has a massive case of cotton wool spot,
and potentially some retinal detachment 84

11.1 Illustration of the network architecture 88
11.2 Visualisation of how the network process dependent images . . 90

7

12.1 Examples from all classes for both MNIST (Left) and SVHN
(RIght) . 98

13.1 Confusion matrices for 0-5 noisy SVHN images (source data) . 102
13.2 . 104
13.4 tSNE plots of SVHN (Source), and MNIST (Target) together.

Source is shown as a circle, and target as a square. These
images are from the structured noise experiments 105

13.5 tSNE plots of SVHN (Source), and MNIST (Target) together.
Source is shown as a circle, and target as a square. These
images are from the structured noise experiments 105

13.6 tSNE plots of SVHN (Source), and MNIST (Target) together.
Source is shown as a circle, and target as a square. These
images are from the structured noise experiments 106

13.7 Loss for structural noisy image 107
13.9 tSNE plot showing the alignment between a multi-stream source

model, and a single-stream target model. Source (circles), tar-
get (squares) . 109

13.10 . 111
13.11Some additional figures for the DR classification experiment . 112

8

List of Tables

10.1 A table showing the number of class-wise examples and the
percentage of the dataset they represents. 82

12.1 Dataset splits . 98
12.2 Number of examples per class. The DR class is a combination

of the mild, moderate, severe, and proliferate class. 99

13.1 Accuracy on MNIST and SVHN data when introduced to
same-class noisy data. 100

13.2 Accuracy on MNIST and SVHN data when introduced to
random-class noisy data. 101

13.3 Accuracy from multi-stream SVHN model and single-stream
MNIST. 108

13.4 Accuracies achieved on binary DR dataset 111

9

Part I

Introduction

10

Chapter 1

The prevalence of diabetic
retinopathy

1.1 The obesity pandemic

Since 1975 the world has seen a massive increase of obese adults. According
to a study covering about 19.2 million subjects in 186 countries over the
period 1975-2014, we have seen an increase from 105 million (3.2% of the
1975 world population) to 641 million (10.8% of the 2014 world population)
obese adults [12]. We have naturally seen a correlated increase in cardiovas-
cular diseases, some types of cancers, and diabetes. According to the WHO’s
global report on diabetes [93], we have seen a likewise massive increase in
reported diabetes cases. In 1980 there were 108 million reported cases (4.7%
of the adult population) compared to 422 million in 2014 (8.5% of the adult
population). Diabetes brings a lot of health risks and unique problems for
the affected, one of these being diabetic retinopathy.

Diabetic retinopathy (DR) is an eye disease which affect about 34.6%
(146 million) of the diabetic population according to the WHO [59]. This
disease can lead to loss of vision, retinal detachment and glaucoma. The
disease is however treatable, quite so in-fact. The key to proper treatment
is early detection of the disease. This is not an easy task however, as early
symptoms are easily missed by the human eye. Furthermore, according to
the Association of American Medical Colleges there is an expected shortage
of between 21400 - 55200 primary care practitioners, and 33700 - 86700 non-

11

primary care practitioners by 2033 in the US alone if current trends hold [4].
This is not a US specific trend as global projections seem to come to the
conclusion that the demand for healthcare workers will outgrow the number
of healthcare workers [46, 44]. Given a reduction in capacity, and an almost
guaranteed increase in DR cases, we need to develop tools to lessen the bur-
den on practitioners and increase diagnosis accuracy. Automatic systems and
analytical tools are the immediately obvious solution to solve this problem.
These kinds of automated systems would be categorised as clinical decision
support systems, or CDS for short.

Automatic systems based on machine learning have been used for many
years in the medical field [65, 47], and are showing more and more promise
recently. The first machine learning based CDS system dates back to the
1970’s with the GOFAI1 models. These systems made use of image process-
ing techniques, and mathematical modelling and applied a simple rule-based
decision system. Due to new and better suited hardware, and a lack of sig-
nificant progress, symbolic approaches to AI where made more irrelevant as
models relying on neural networks became prominent [25]. In more recent
times such neural network based approached have been quite successful as
CDS systems. For example, Richens et.al [65] made a model which placed
in the top 25% of general practitioners in the London area when diagnosis
realistic patient cases. Others have found that having models assisting pro-
fessional health workers improves their diagnostically accuracy and reduces
under-diagnosing patients [68, 21].

One subfield of machine learning that is emerging in particular in the
medical field is deep learning. Deep learning has already had, and will most
likely have a large role in our future healthcare systems[42, 61]. There are
several benefits to using deep learning models as CDS systems. Deep learning
systems have the ability to uncover patterns, correlations, and features that
might be either invisible, or incomprehensible to humans. These systems are
therefore invaluable when acting as a second pair of eyes for any professional
health worker. Compared to most alternative machine learning methods,
deep learning methods also avoids the hand crafting of features, and rather
relies on the models being able to craft these themselves. There are several
benefits to this, one being the process is much more automated versus having

1Good old-fashioned artificial intelligence systems

12

computer scientists, and medical experts handcrafting each potential useful
feature.

One particular common data modality in the medical field are images,
which is also the focus of this thesis. Within the deep learning field, one
method in particular has found extensive use for image data, that being the
convolutional neural network (CNN). CNN models are flexible to suit most
grid-like data, which most often means image data. Medical diagnostics heav-
ily rely on manual analysis of images, be they retina images, x-ray images,
CT images, etc. As such the field is ripe for the application of CNN models
and methods. CNNs work by extracting features which are all summarised
by a feature vector. These vectors are often robust representations of the
original input, and are comparatively easy to classify through simple neural
networks. Due to the CNNs ability to extract important features and pat-
terns, they are excellent in detecting lesions such as hemorrhages, ischemic
tissue, and other defects. This in turn makes them excellent for DR detection.

There has been an increase in interest in applying deep learning models
and methods in DR detection in the last decade [68, 21, 2, 90, 53, 62]. This
specific topic has seen, and continues to see a huge diversity of models, and
method combinations in an attempt to solve the tedious task of DR classifi-
cation. Most published models tend to focus on the big public DR datasets;
These being Messidor-2, EyePacs, APTOS 2019, etc. These datasets come
fully labeled with thousands of images. This, however, does not always rep-
resent the practical setting. Labeling images is costly, and single labeled
images are often not available. Retina screening is often performed by tak-
ing multiple images at different angles through the pupil to get a full image
of the eyes interior. While the eye is labeled, the images are not which is
an important distinction as labeling the images according to the eye grad-
ing would lead to images without visible symptoms often being labeled as
diseased. Simply adopting such a simple approach would therefore lead to er-
roneous labels, leading to unstable training, and degradation in performance.

While there exists a few public DR datasets, the models trained with
these datasets are not always directly applicable to real life cases. Ignoring
the multiple image per eye problem, there is also something called domain
shift to take into consideration. Domain shift refers to a shift in the un-
derlying data distribution. A domain shift between two datasets can be

13

brought about due to the datasets not using the same equipment, camera
settings, illumination, pose, image quality and more [96, 92]. In more prac-
tical terms, a domain shift between two datasets mean a model trained on
the first dataset, will not perform as well, or not at all on the other. This is
due to the model using the first datasets distribution, which does not align
with the second datasets distribution. The field of domain adaptation (DA)
specialize in methods which either reduce, or negates the effects of domain
shift. A model which is compatible with domain adaptation could in theory
apply its labeled knowledge on any new, and unlabeled dataset. DA tend to
differentiate between datasets as source, and target. Source is often a fully
labeled dataset, and target is either unlabeled, or has a few examples from
each class to aid in the domain adaptation process. DA is just one of many
approaches to classification with unlabeled data, as the field of unsupervised
learning deals with classification without the need for a ground-truth. This
is generally achieved through clustering or similar approaches.

This thesis has been given two realistic diabetic retinopathy datasets
from the university hospital of Tromsø, UNN. The details, challenges, and
our solution for this dataset will be explained in the sections to come.

Unlike prior studies that mostly consider the standard datasets (Messi-
dor, EyePacs, APTOS, etc), we consider a locally collected dataset. Note
that this dataset, as many medical datasets, is not collected with machine
learning in mind, leading to several challenges. In the following sections, we
will describe the dataset detail the particular challenges and describes our
proposed solutions.

14

1.2 The dataset

The following sections will detail in short how the dataset is built up, and
some challenges that comes with the dataset.

This thesis deals with DR image classification on data provided by the
Universitetssykehuset Nord-Norge HF (UNN for short). The data is split into
two datasets. The first dataset was collected in relation to Tromsø Studien
6 [17], where the first Tromsø øyestudie 1 [7] took place. The second dataset
was collected in relation to Tromsø Studien 7 2, where the second Tromsø
øyestudie 2 3 took place. The latter studies are as of this thesis not yet
published. From this point out we’ll refer to these two datasets as T6 and
T7 respectively.

The datasets are built up of multiple unique eyes. T6 has a total of
n = 13080 unique graded eyes, while T7 has a total of n = 14211 unique
graded eyes. Each eye has a number of images attached to it. This number
varies, but should in theory be six. These images are taken at different angles
through the pupil in order to visualize as much of the eyes interior as possible.

The T6 dataset is taken from a population of adults within the age group
of 38 − 87 years old. The T7 dataset is not yet released, but it is assumed
the age group will be relatively similar.

Each unique eye is graded between 0 and 4, or five unique grades. Each
grade correlated to how far the degradation of the eye has come. These five
classes are as follows

• Grade 0: No DR

• Grade 1: Mild DR

• Grade 2: Moderate DR

• Grade 3: Severe DR

• Grade 4: Proliferate DR

We will go deeper into the symptoms and visual cues each stage exhibit in
the materials and methods section (Section III).

2The Tromsø Study 7 is a combination of ongoing projects, and a list of publications
can be found here: https://uit.no/research/tromsostudy

3The timeline for the second eye study can be found here: https://app.cristin.no/
projects/show.jsf?id=543079

15

https://uit.no/research/tromsostudy
https://app.cristin.no/projects/show.jsf?id=543079
https://app.cristin.no/projects/show.jsf?id=543079

There are some significant challenges to these datasets. Multiple images
per eye, huge imbalance, and different data gathering methods lead to some
interesting problems which will be explained in the next section.

1.2.1 Dataset Challenges

This section aims to outline some of the challenges we faced with when
performing DR classification with the given dataset, and some challenges
with DR in general.

One hurdle for the provided datasets is how they are structured. Each
of the datasets is collected on an eye-to-eye basis. For each eye observed, a
number of images are taken. All of these images share a ground truth which
corresponds to the diagnosis of the entire eye.

Why is this a problem? Given that each eye consists of several images, all
under a single ground truth; It is important to realise that conventional CNN
architectures will not aid us here. CNN architectures makes the assumption
that each individual image is independent from each other. That is, the
images are self containing, and all the information needed to correctly classify
an image is all encompassed in a single image. This is not possible with this
dataset however. Diabetic retinopathy as a disease slowly degrades the retina,
meaning one image which shows a single region in the eye might not display
any symptoms. In the case where an image displays what looks like a healthy
eye, but the ground-truth is diseased, one would consider this image a noisy
image. Training a CNN as normal on this data would thus lead to the model
trying to learn both on useful and noisy data. This in turn will make the
model unstable at best, and at worst useless.

• Challenge #1: The first challenge of these datasets is to make a model
which can model dependence between different images which have been
taken from the same eye. The idea being that we want to classify the
eye, which we have labels for, and not for individual sections of the eye,
which we don’t have labels for.

One of the main challenges for this thesis is to construct a model which
can deal with multiple images representing the same eye, and allow for fea-
ture information from all of the eyes to aid in the final classification. By
default each eye should consist of six images. This is confirmed by a manual
for Tromsø’s eye clinic named ”Prosedyrebok Øyestasjon Tromsø 6”. The

16

dataset however consists of eyes with varying amounts of images. Some sub-
jects did not want to go on with the screening after a couple of images, while
some images where not up to standard, leading to more than six images be-
ing taken. How these images are collected exactly will be explained in detail
later in the thesis, but sufficient to say a specialized camera is used to take
images through the pupil. Unlike normal image classification task, there is no
off-the-shelf model which can be used for this task. As no previous model can
be directly applied to this problem, it is necessary to build a model which
is fit for this task. It is desirable to construct a model which can take in
any given number of images, and give a collective classification using useful
information from all input images.

• Challenge #2: The second challenge of these datasets is a varying
amount of images per eye. Our model must be able to process multiple
images in parallel, and combine this together with the problem shown
in the first challenge.

• Challenge #3: The third challenge comes from the fact that the eye
images are not in any particular order. This meaning what region of
the eye which was loaded first one time, might not be the same region
loaded first the next time. Our model must be able to accommodate
for this fact.

DR screening is heavily reliant on equipment such as cameras. Just in the
UK there are 30 accepted different retina screening cameras approved for use
[1]. This is going to lead to some domain shift occurring between datasets,
and ours are no different. The provided T6 and T7 datasets are taken with
different cameras and settings. Training the same model on both datasets
might prove detrimental to performance as the underlying distribution might
be rather complex. However, this problem is also a golden opportunity. If the
model which is created for these datasets is also compatible with different DA
methods, then there is nothing to stop a single baseline model being created,
and distributed world wide to be tuned to unlabeled data in the clinic where
the model will be applied. This is all to say the constructed model for this
thesis must also be compatible with current DA methods.

• Challenge #4: The final challenge is a more practically minded one.
The model which can deal with the first and second challenge should
also be compatible with DA methods. The two datasets are collected in

17

such a manner that a domain shift has occured. Having the capability
of adapting to new data allows for a base model to adapt onto new
data from different clinics.

DR data in general struggles heavily with the problem of class imbalance.
In the case of the Tromsø Eyestudy data this imbalance comes from the
fact that they surveyed a sample of the general population in the Tromsø
area[7]. This means that the No DR classification contains images from
the non-diabetic population as well as parts of the diabetic population. This
massively inflates the No DR class. This imbalance favours the No DR
grade so heavily to the point where data for the other four classes simply
may not be enough. Figure 1.1 shows the class imbalance found in dataset
T6 and T7.

Figure 1.1: Visualisation of the massive class imbalance found in both the
T6 and the T7 datasets

There are several ways of addressing this imbalance. This is however
outside the scope of While there are several ways of addressing this imbalance,
however this a challenge for DR classification in general, and not something
we address in this thesis.

18

1.3 Contributions

This section aims to give the reader an idea of the contributions made in this
thesis. The main focus of this thesis is medical image classification, especially
diabetic retinopathy classification. Most diabetic retinopathy classification
that has been done up to this point has been done on the larger public
datasets (EyePacs, Messidor, APTOS 2019, etc) [68, 2, 21]. These datasets
consists of thousands of fully labeled retina images. This thesis instead con-
siders data provided by UNN from two local studies, Tromsø øyestudie 1 [7],
and Tromsø øyestudie 2 (To be released later this year). This data consists
of eyes with a single label, but multiple images. In order to address the chal-
lenges mentioned in the previous section, we propose a novel multi-stream
architecture for the task of DR classification. In particular, we address the
challenges as follows:

The contribution of this thesis is a novel specially constructed multi-
stream model fit to analyse and classify the provided DR data. The network
is capable of processing multiple dependent images in parallel to address
Challenge #2, and fuse the individual feature vectors into a feature vector
representing the eye as a whole, and creating dependency which addresses
Challenge #1. The only practical limit for this network is the GPU mem-
ory, but theoretically the proposed network can take a number of inputs
between [1,∞]. The model is also shown to be compatible with DA meth-
ods, specifically ADDA which directly addresses Challenge #4. We further
argue that the model is compatible with other DA methods. The retina
region the images are taken is also not provided. We therefore construct a
multi-stream where each stream is equally capable of detecting lesion, ad-
dressing Challenge #3

To the authors knowledge there are no previous publications of multi-
stream diabetic retinopathy classification which deals with multiple depen-
dent images and domain adaptation.

In summary, we propose a novel network architecture that is particularly
tailored to the challenges inherited in our local dataset.

19

1.4 Thesis outline

This thesis is split up into multiple parts. These parts being The introduction
I, Theory and Related Work II, Materials and Methods III, Experiments and
Results IV, and Discussion and future work V

The following part of the thesis will explain the relevant theory for this
thesis, going into detail on the basic concepts of machine learning, CNNs, and
domain adaptation. The theory is set up such that anyone with sufficient
background in mathematics, or machine learning should be able to follow
along. There will be a red thread from the beginning, where each part will
motivate the next; accumelating in a complete theory behind CNNs, DA,
and multistream structures. Each part will build further upon the preceding
sections, all accumulating into the final model used in this thesis which will
be explained in detail in the materials and methods section.

The materials and methods section will go through the dataset used in
this thesis. This part will describe what diabetic retinopathy is, and the
structure of the datasets. This will motivate the presented model for this
classification task.

The experiment and result section will describe the experiments done in
this thesis, their purpose, and other relevant information needed to under-
stand the results presented in the results chapter within this part. This will
illustrate the ability of our model to address the aforementioned challenges.

The thesis ends with the discussion and future work, and conclusion sec-
tion. The discussion chapter will expand upon some of the ideas in this
thesis, and give pointers into how the model could be improved. The thesis
will conclude with a summary of the thesis.

20

Part II

Theory and Related Work

21

Chapter 2

Notation

This part of the thesis will go in depth into the underlying theory which
the experiments, and the thesis builds upon. Starting from the fundamen-
tal statistical theory, this part will build into the basic building blocks of a
modern neural network, and transition into CNN theory, domain adaptation
and multistream neural network theory. At the end the reader should have
the theoretical understanding to follow the methodology, experiments and
discussion which will follow in the next parts of the thesis.

The notations found in machine learning literature are not consistent.
This might be due to the researchers backgrounds, localization etc. It’s
therefore important that for clarity we define what each symbol means to
reduce misinterpretations. This thesis will be using the same notations found
in the book ”Deep Learning”[27], and the used notations will be reiterated
in this section.

22

General symbols

a Any scalar

a Any vector

ai i-th element of vector a

A Any matrix

Ai,j Element of matrix A found on the i-th row and j-th column

φ(·) A mapping function

p(x) A probability density function

P (A) Probability of event A

Specific symbols

θ The set of parameters for a given function

L A undefined loss

D A domain

23

Chapter 3

What is Machine Learning

Machine learning is a branch of computer science which heavily leans itself
upon statistical principles. The field of machine learning is considered a
sub-field of AI [85]. The main goal of machine learning can be described as
the analysis of data. Machine learning algorithms have shown to be able to
detect visual cues, patterns, and trends which humans have not been able
to pick up on [18]. This is done by letting the network learn from data.
Within the field of machine learning is the field of deep learning [85], and
the relevant deep learning techniques will be discussed from section 7. Deep
learning networks often have millions of parameters which all contribute to
effectively making a complex mapping function into a high dimension. In
the ideal case, this mapping will reveal some complex structure in the data
which can be discriminated. This is all achieved through the introduction of
learning examples, giving the network an update scheme which allows it to
reduce the mistakes it makes, and then let the model optimize towards that
specific goal. This is the essence of deep learning.

Within the field of machine learning we can define three main learning
schemes. They are defined by how the data is annotated, and depending
on how much of the data has a ground-truth, we need to adapt different
methods for discrimination.

• Supervised learning : In the supervised setting all data comes with a
ground truth, mostly referred to as a ”label”. These labels are mea-
sured against the networks prediction for its data pair, and through a
loss function we can compare the predictions against the labels and up-
date the network to reduce miss classification. The case of supervised

24

learning is often seen as the best way to get a model which gives solid
predictions, but due to the time-consuming task of labeling data it is
often not possible to use this form of training scheme.

• Unsupervised learning : In the unsupervised setting we have no labels
attached to the data points. There are no ground truth to compare
the output of the model with, so loss functions which do not rely on a
label are used in this setting. It’s up to the designer of the algorithm
to choose how the model should update itself in this case. Arguably
the most common way to analyse unlabeled data is by designing loss
functions that encourage clustering of similar examples, where each
cluster tends to be a unique classification.

• Semi-supervised learning : The semi-supervised setting is a mix of both
unsupervised and supervised learning. In this setting we have a couple
of data-label pairs from each class whereas the rest of the data is unla-
beled. A loss combining both the supervised information (e.g. through
a classification loss), and the unsupervised information.

• Reinforcement learning : In the reinforcement learning setting an agent
learns by trial and error to maximize some reward. By letting the
agent interact with an environment it can learn patters which lets it
achieve its goal with the most reward. The input for such models is
the environment itself, and often the environment itself might try to
push the model into a non-ideal/non-rewarding state and the model
”pushes” back.

25

Chapter 4

Risk minimization and
Classification

This section aims to give an understanding of the underlying fundamental
statistics which describe how classifications in machine learning are made.

While statistics and probability theory plays an important part in ma-
chine learning, one of the most important principles is arguably Risk mini-
mization. Risk minimization is the most extensively used framework when it
comes to design, construction and analysis of machine learning algorithms[18,
32, 70].

Risk and Bayes classification rule are heavily intertwined, sand provides
a natural starting point for the following discussion. Assuming a binary
classification problem, the feature space will contain a region where the first
class (C0) is found, and another region where the second class (C1) lies.
These regions are denoted as R0 and R1. The ideal regions would be regions
which minimize the classification error. The probability of missclassifying a
datapoint is found as

P (error) = P (C0)

∫
R1

p(x|C0)dx + P (C1)

∫
R0

p(x|C1)dx (4.1)

=

∫
R1

P (C0|x)p(x)dx +

∫
R0

P (C1|x)p(x)dx (4.2)

Note that the above expression assumes that error in either class is equal.
This however is not always the case. Sometimes one might want less error

26

for a single class, which comes at the cost of the other classes. This is not
uncommon when working with medical data where one might want to have
more false-positives rather than false-negatives. It is possible to weight the
terms of the risk to adjust the rate of getting either false-positives or false-
negatives. With λi, i ∈ [0, 1] denoting the individual classification weights,
the probability of missclassification now becomes

P (error) = λ0

∫
R1

P (C0|x)p(x)dx + λ1

∫
R0

P (C1|x)p(x)dx (4.3)

Due to the complex nature of most data distributions, it is near impossible
to find the risk analytically. Finding it empirically however is much more
plausible. This can be done in a few different ways, such as with Monte
Carlo Estimation. The estimated risk for a class k, in a classification task
with N classes can be written as

rk =
N∑
i=1

λk

∫
Ri

p(x|Ck)dx (4.4)

Where the average risk can be found with

r =
N∑
i=1

rkP (Ck) =
N∑
i=1

∫
Ri

(
N∑
i=1

λkip(x|Ck)P (Ck)

)
(4.5)

With a knowledge of what risk is, it is now time to find ways of reducing
it. Risk is not something anyone wants. No matter what a model does in
real life, high risk only brings about miss classifications, and a model with
high risk is generally useless. This realization is important as it shows why a
model should choose the prediction which minimizes risk. Furthermore, this
leads us to a way of defining a classification rule which will be described in
the next section.

4.1 Loss functions

Most machine learning and deep learning algorithms attempts to maximize
the models ability to provide predictions for the data which the model has
never observed. So when the model during training makes a mistake, our
model needs to understand how it’s wrong, and how to modify itself as to

27

not make the same mistake later. But to do this the model needs to somehow
quantify ”wrongness”. The term loss is used to quantify the wrongness of a
model. A loss function helps penalizing a bad decision made by the model,
and minimizing loss equates directly to minimizing risk [18, 70].

Lets tie risk together with loss. For any action αi which assign a class
to some example x, there is an underlying expected risk [18]. The action of
assigning class Ci to x incur some loss λin. The expected risk can be defined
as

R(αi|x) =
N∑
n

λinP (Cn|x) (4.6)

Where λin is defined as the binary value

λin =

{
0 if i = n
1 if i 6= n

The action αi is generally to assign the example to the highest probable class,
that is

αi : x→ Ci if P (Ci|x) > P (Cn|x) ∀i 6= n

λin makes sure that no risk is incurred for assigning the proper class to an
example. When a classification is wrong however we can see that the risk
incurred is higher the more confident the model is in its wrong decision. We
now have a tangible way of quantifying a models wrongness, though some-
what primitive. Note that while this loss might work, it has its downsides. If
say a model is confident in its prediction, say p(C1|x) = 0.9, it’s still slightly
uncertain. It’s desirable to ”punish” the model for not being sure as to make
it approximate the underlying distribution better. The following sections will
go into detail on methods which incorporate loss for such cases.

The loss function is also known as the objective function [27]. There exists
quite a few different losses, where we either try to minimize or maximize said
loss value. One common way to use the loss for optimization is to take the
derivative with respect to each component of the model to figure out how
much each component influenced the error (read. the loss) and the model
is updated. This is known as back propagation. The loss is essentially a
function that depends on all the weights and variables in a network and we
wish to find the set of parameters that minimizes/maximizes the loss. The
most well known method for this is by gradient decent.

28

4.1.1 Cross Entropy Loss

One of the most commonly used loss functions is the cross entropy loss. Cross
entropy loss punishes models for not classifying confidentially, but the loss
also implicitly punishes the approximated data distribution for not matching
the true data distribution.

Cross entropy stems from information theory which is a field that seeks
to quantify information in communication [18, 81]. Information is defined as

h(x) = −log(p(x)) (4.7)

Where p(x) is the probability of some event. Information theory uses different
names for the information quantity depending on the log base, e.g. a base-2
log quantifies its information in bits, while log-e based information has the
units nats. The output from this formula will tell us how many bits (or
units) are needed to convey the observed result of some event. Another way
of measuring information is entropy. Entropy is a measure of the average
information a random variable contains. Entropy for a random variable X
with n possible states can be calculated as [18, 81, 70]

H(X) = −
∑
n

p(n)log(p(n)) (4.8)

Note that the entropy is highest when all classes are equally probable for a
given datapoint, and lowest when a single state has a probability of ∼ 1.0,
making entropy a reasonable loss function in and off itself. Moving on to
cross entropy. Cross entropy measures the difference between two probability
distributions for a random variable. [18, 70]

H(P,Q) = −
∑
x∈X

P (x)log(Q(x)) (4.9)

While not immediately intuitive for most people, cross entropy is a measure-
ment of the average number of bits required to identify an event. This is
equivalent to saying ”how many questions must you ask on average to find
the correct classification?”. Asking questions which leads to highly probable
classifications first leads of course to the quickest classifications, and if all
questions are of equal probability, then the cross entropy is equal to entropy.
This relation is easier seen in the reformulation of the cross entropy equation
which relates it directly to entropy and the Kullback-Leibler divergence [27].

H(P,Q) = H(P) +DKL(P ||Q) (4.10)

29

where DKL is the Kullback-Leibler (KL) divergence, which becomes zero
when the distributions p, q are equal, that is to say when there is a equal
chance for an observation to come from either distribution. KL divergence is
the expected difference between two distributions. So how do these concepts
fit so well as loss functions.

One attribute which is desired from a loss function is for it to be high when
predictions are bad, and low when predictions are good. This is solved mostly
by using the negative log likelihood as a loss. Cross entropy is derived from
this concept (through entropy), but has the additional term of KL divergence.
Assume p is the distribution a model has learned, and q is some assumed true
underlying distribution our data follows, then not only is the model punished
for guessing wrong. It is also punished for learning dissimilar distributions to
the true underlying distribution. For a multiclass problem, the cross entropy
loss is written as

LCE = −
C∑
c=1

yclog(pc(x)) (4.11)

where

yc =

{
1 if x belongs to class c
0 otherwise

and pc(x) is the probability for observation x belonging to class c.

4.1.2 Focal Loss

Diabetic retinopathy is plagued with class imbalance. As seen in the intro-
duction section, some classes are barely represented, while the ”No DR” class
dominates. While it is not always possible to simply get more data, one can
attempt to put the less represented classes into focus. In cross entropy loss
this is done by a simple scalar weighing of the class-specific losses. Focal loss
modifies the cross entropy loss in such a way that less represented classes are
scaled in a way that is proportional to the uncertainty behind the classifica-
tion. This allows for less confidential predictions to modify the networks the
most so their predictions becomes confidential.

Focal loss is a relative recent addition to the machine learning field. Focal
loss builds on the popular cross entropy loss, and seeks to address the problem
of extreme class imbalances [39]. It’s not uncommon to reduce the effects
of class imbalance in a dataset by weighing the loss of a class by its inverse

30

frequency. Using the notation for the paper [39], cross entropy loss for a
binary class problem is defined by the following terms

pt =

{
p if y = 1

1− p otherwise

Which makes the cross entropy function look like

LCE(pt) = −αtlog(pt) (4.12)

Where αt is a hyper parameter that corresponds to the class weight, if any.
αt is normally set to be the inverse of the class frequency in an attempt to
balance out the loss propagated by each class. The problem focal loss seeks
to address with this approach to imbalance is the fact that a αt needs to be
defined for each class, and in many cases it’s desired to push forward some
classes more than the others. The focal loss takes away individual weights
for each class, and replaces it with a modulating factor with a single tuneable
parameter. The resulting loss for a two class problem is expressed as

LFL(pt) = (1− pt)γlog(pt) (4.13)

for all γ ≥ 0. The focal loss will weight examples that are missclassified
(read. small pt) much more than correctly classified examples. When the
model correctly classifies an example, and is certain in its prediction, the
modulating factor will go towards zero, minimizing the loss. The γ variable
is called the focusing parameter. This variable effectively determines how
fast the effects of the modulating factor should fall off. At high values of γ
the modulating factors scaling effect disappears much earlier than for lower
values.

31

Chapter 5

Gradient Decent

When a loss has been found for a batch of examples, there must be some
way of using this quantity to modify the network in a way which reduces
the miss classification. This is done by back propagating the loss to find a
gradient for each element in the model. How these gradients are calculated
will be detailed in later sections, but sufficient to say it is found by calculating
∂L
∂θ

. This is done for all elements in θ by applying the chain rule repeatedly.

By changing the parameters in the direction of the negative gradient the
model is guided towards a loss minima, which means a minimization of loss
is achieved, and by extension a minimization of classification error. This is
an iterative method which is fairly simple in its implementation. For a given
parameter θi we have the following update scheme [18, 70, 27]

θi+1 ← θi − α∇θL(f(x|θ),y)

Where α is the step size, ∇θL(x|θ) is the gradient of the parameter and θi
being the parameter at the i-th step. With enough iterations it is expect
of that model to reach a minimum (global or local) where the gradient is
zero and the updates come to an end. However there are a few undesired
cases where the gradient is also zero. A model might be unlucky enough to
initialize a start on a maxima of sorts. The update scheme simply will not
work as there is no gradient. The solution to this is fairly simple however, and
it’s to run the training more than once as too even initialize on a maxima is
extremely unlikely and the deeper the network, the more unlikely it becomes
due to all the dimensions the gradient has to be zero in. The chances of
initializing all parameters on a maxima is effectively zero.

32

The second case are saddle points. These are more likely to be encoun-
tered during training and in rare cases can slow the training down to a crawl
or stop it completely. This is mostly just a problem in the most basic of
gradient decent techniques and in the smaller networks. Most SotA1 tech-
niques implements momentum which allows for updates even when there is
currently no gradient present. Much like a ball rolling down a hill we don’t
expect it to immediately stop as the slope flattens.

The last case is local minima. During training we wish to find the global
minima of the loss landscape, that is to find the set of parameter values in
which the classification error is small as the network allows it to be. This
case is more tricky than the other cases as we have no way of knowing if
we’ve reached the global minima or not. Momentum can in some cases help,
but it’s far from guaranteed. The best way to deal with this case is the
rather arduous task of simply training the network over and over again with
different initialization, and then choosing the best performing network as the
one that reached the global minima.

There are a number of different gradient decent schemes. Here is a short
description of the most well known ones.

Momentum: Momentum is not an exact gradient decent implementa-
tion, but more of a tool which most gradient decent schemes implement. It
is therefore valuable to know the concept before tackling the more advanced
gradient decent ideas. Momentum helps the optimization algorithm to get
out of local minimas and reduces oscillation when performing gradient de-
cent [18, 70]. Momentum is simply adding a fraction (usually some number
around 0.9) of the previous gradient to the current gradient. The update
scheme is modified as follows

vi = α∇θL(f(x|θ),y) + γvi−1

θi+1 ← θi − vi
(5.1)

where γ is the fraction of the previous gradient that passes onward. Intu-
itively one might think of a ball rolling down a hill, which does not immedi-
ately stop when reaching elevated ground due to its inertia.

SGD: Stochastic Gradient Decent (SGD) is much like the normal gra-
dient decent, except the steps are done batchwise [18]. A batch refers to a
subset of the dataset. Gradient decent calculate the gradient for the entire

1State of the Art

33

training dataset, then does a single step. This is extremely inefficient for
large datasets. SGD does a step for each batch which massively speeds up
training, and while the steps will not be in the optimal gradient direction,
we can expect over a number of iterations for it to be reasonably similar.
The less optimal optimization is a good trade off for the massively increased
training speed.

Nestrov: Nestrov accelerated gradient stands out from the other opti-
mization methods in that is uses its ”to be” position to find out if the next
step is to great or in some way sub-optimal [8, 27]. The way this is done is
to modify the standard momentum term to approximate two updates ahead
and adjusting before making an update. The adjusted update scheme for
SGD with nestrov accelerated gradient becomes

vi = γvi−1 + α∇θi−γvi−1
L(f(x),y)

θi+1 ← θi − vi
(5.2)

This will result in a larger step in the ”normal” update direction, and a
smaller step in the approximated next step. This allows the Nestrov algo-
rithm to avoid climbing up from steep ravines as can easily happen with the
momentum algorithm.

AdaGrad: Adagrad is a gradient optimization scheme in which the learn-
ing rate for different parameters is scaled them inversely proportional to the
accumilated square gradient [14, 27]. By scaling the learning rate by the
inverse of the accumulated square gradient less important features will get
larger updates, while the more important features gets smaller updates as
they come into play more frequently. The scheme can be written as the
following three steps

g← 1

N
∇θL(f(x|θ),y)

G← G + g� g

θt+1 ← θt −
α

ε+
√

G
g

(5.3)

where � is the pairwise multiplication, and ε is there to ensure numeric
stability. AdaGrad has its uses as in convex optimization it has some desired
theoretical properties [27]. However due to the accumulated square gradient
becoming larger and larger over the course of training, AdaGrad experiences
what is called dimensional death. This can lead to the model not learning
anymore as the stepsize will effectively be zero along some dimensions.

34

Adam: Adaptive Moment Estimation [31, 27] is arguably one of the more
popular optimization schemes to date. The Adam optimization algorithm
uses two decaying averages. The idea resembles that of AdaGrad, but due to
how Adam uses averages in its adaptive parameters, it also avoids the dying
dimension problem. The two decaying averages is defined as

mi = β1mi−1 + (1− β1)gi
vi = β2vi−1 + (1− β2)g2i

(5.4)

where g is calculated in the same way as Adagrad, and (β1, β2) is two hyper
parameters often set to (0.9, 0.999) respectively by default. m0 and v0 are
initialized as zero. Due to this initialization, the expressions will be biased
towards zero (because of the beta values being close to one). The Adam
algorithm deals with this problem by bias correcting the two values as follows

m̂i =
mi

1− βi1
v̂i =

vi
1− βi2

(5.5)

With these two values accounted for, the Adam update scheme is calculated
as

θi+1 ← θi −
α√
v̂i − ε

m̂i

Where m̂i and v̂i will contain the gradients. Adam has shown to work ex-
tremely well. Unlike SGD which applies momentum separately, the adam
update scheme incorporates it into the update by default.

35

Chapter 6

Perceptrons

The perceptron is the most basic building block of any neural network. A
perceptron consists of a set of weights, w, which are used to weigh each
feature in an input example, x. The set of weights also incorporates a bias
b. The weights and bias are learnable with the learning schemes which was
discussed in the previous section. Figure 6.1 shows visually how a single
perceptron works

Figure 6.1: A simple visualisation of a basic perceptron

36

The perception output (also known as potential) is calculated as

v = wTx =
∑
i

wixi + b (6.1)

The potential is denoted as v as this is not the final output of the perceptron,
just the weighted sum. In Figure 6.1 there is a function f(·) between the
weighted sum of the perceptron and the output. This function is known as
the activation function. This is a concept that will be discussed, but suffi-
cient to say this function applies a non-linearity to the output. This ensures
the perceptron is more than just a simple linear-remapping of the original
input.

Visually a perceptron can be thought of as a single line in some abstract
high-dimensional space. The weight vector will correspond to a line/planes
normal vector, and the resulting dot-product seen in equation 6.1 will be
positive or negative depending on which side of the plane a datapoint x is
relative to the normal vector w. That is, the datapoints on the side of the
plane to which the weight vector is pointing will be positive, and on the other
side they’ll be negative.

6.1 Activation function

Activation functions are a set of functions which sole purpose is to introduce
nonlinearity, which is helpful when the perceptron is tied into larger models.
These functions are applied to the output of perceptrons or similar opera-
tions. As seen in equation 6.1, the output of a single perceptron is calculated
as

v = wTx⇔ v =
∑
i

wixi + b (6.2)

Note that the output v is defined for all real values, v ∈ R. The output
value not being constrained has several problems. Due to the possible large
values, the calculated gradients might follow suit in sheer size. This leads to
huge update steps, making the models performance unstable. Large values
can also lead to ”dominant” values which by themselves can determine the
output of the network, making other information irrelevant. While it will
first be relevant in the next section, there is also the consideration that this
is nothing but a simple identity mapping. This is a problem, as stacking

37

multiple perceptrons with identity mappings is equivalent to a single layer of
perceptrons.

Activation functions as non-linearities works because over multiple layers,
the network can approximate any non-trivial continuous function [10]. The
non-linearities does not allow the multiple linear layers to be simplified into a
single one. This in turn is what allows us to approximate the underlying dis-
tribution of any given training data. Consider the sequential layers without
non-linearities

ŷ = wT
l (wT

(l−1)(w
T
(l−2).....(w

T
0 x))) (6.3)

This can be approximated as

ŷ = wT
l (wT

(l−1)(w
T
(l−2).....(w

T
0 x))) = w’Tx (6.4)

This simplification cannot be done with the introduction of non-linearities.

The backpropagation also tends to see massive instability if not con-
strained properly by non-linearities. Activation functions works as a non-
linear mappings, often with hard constrains. The functions being non-
linear is important for the network to learn high degree polynomials for
discrimination[58]. Activation functions also allows us to determine if we
want the neuron to ”fire”, and to what degree it should be allowed to do
so[13].

6.1.1 The sigmoid function

One of the most well known activation functions is the sigmoid function.
The sigmoid function is fairly simple, and its derivative can be expressed as
a product of itself.

f(x) =
1

1 + e−x
(6.5)

∂

∂x
f(x) = f(x)(1− f(x)) (6.6)

Visualising the functions for values between x ∈ [−5, 5] we get the plots
seen in figure 6.2

38

Figure 6.2: The leftmost image shows how the sigmoid output changes based
on input value. The visualisation is only for the range x ∈ [−5, 5]. The
rightmost image shows the sigmoid derivative value for input values in the
same range

Figure 6.2 shows how the sigmoid function squeezes values into the range
y ∈ [0, 1]. Higher output values will allow a neuron to fire more strongly than
lesser output values. The possible derivative values shown in the Figure 6.2
shows us the sigmoid only has possible values in the range y ∈ [0, 0.25].

The range of valid values in the sigmoids derivative leads us to a problem
known as vanishing gradients. Vanishing gradients appear due to how we
calculate the gradient. A network with multiple instances of the sigmoid
activation function will have to take this activation into account multiple
times during backpropagation. Due to the multiplication done in the chain
rule the gradient propagated furthest back into the network will start to
vanish as sigmoid gradient is at most 0.25, which in turn is multiplied with
itself several times.

39

Figure 6.3: Visualisation of vanishing gradient. Here we assume an initial
loss of 1. The x-axis shows how the gradient is affected by a number of
sigmoid activation functions

Figure 6.3 gives us a good visualisation of how a number of sigmoid
functions can affect the gradient during backpropagation. The figure is a
representation of how the gradient vanishes over multiple sigmoid activations.
This leads us to the question ”What if the activations derivative is more than
1?”. This case is called explosive gradient. Unlike with vanishing gradients
where the begining of a network would see barley any gradient for gradient
decent, now we see a too large of a gradient. This problem is however much
simpler to address than vanishing gradients. Exploding gradients can be
addressed by gradient clipping [27]. Gradient clipping works as the gradient
does not specify the optimal step, but rather the optimal direction to make
a step in.

6.1.2 The ReLU activation function

The problem of vanishing and exploding gradients comes from the simple fact
that the derivative of the activation functions has valid values that are not

40

one. If an activaiton function’s derivative have possible values less than one,
the gradient vanishes. If the activation functions derivative have possible
values of greater than one, the gradient explodes. Ideally we would like
an activation function which gives the network the non linearity it needs
for optimal learning, and a function which derivative is one. A category of
functions which contains possible functions which satisfy these criterions are
what’s called non-saturated functions [97]. A non-saturating function must
fulfill the requirement

lim
x→∞

f(x) = +∞ (6.7)

Sigmoid is a saturated function as it’s limited to finite values. The Recti-
fied Linear Unit (ReLU) is however a non-saturated function which fulfill the
desired criterions[56, 97]. The ReLU in its basic form is quite simple. The
activation function does not allow for negative values to propagate further by
zeroing them out. Positive values are however allowed to propagate further
unchanged. The logic of the ReLU is as follows

ReLU(x) =

{
x if x > 0
0 otherwise

∂

∂x
ReLU(x) =

{
1 if x > 0
0 otherwise

Figure 6.4: Visualisation of the ReLU activation function. The leftmost
image shows the activation of any value in the range of x ∈ [−5, 5]. The
rightmost image shows the derivative of the ReLU function over the same
range of values.

41

This zeroing out of values makes the activations sparse.

ReLU


−1
2
0
−5
4
7

 =


0
2
0
0
4
7

 (6.8)

Sparsity is desired for a number of reasons. This topic will be tackled
more extensively later in the thesis, but its sufficient to know that sparsity is
desired as it allows for quicker computation, and works as a form of feature
selection mechanism for the network.

The rectified linear unit has some variants. Leaky ReLU (LReLU) is
one of the more well known variants. Introduced in 2013 [51], it proposes
that due to the basic ReLU’s zeroing of negative activations, neurons which
initially fires negative activations might not see any updates through training
as no gradient is propagated over the zeroes out activations. Maas et.al [51]
rather proposed letting a tiny piece of negative activations to flow onwards,
ensuring all the weights found in the network would get some update. The
leaky ReLU activation follows the logic

LReLU(x) =

{
x if x > 0

0.01x otherwise
,

∂

∂x
LReLU(x) =

{
1 if x > 0

0.01 otherwise

Where it should be clear that negative LReLU activations does propagate
parts of the gradient backwards.

6.2 Multilayer Perceptrons

A single perceptron has some glaring weaknesses however as was shown as
early as 1969 by Minsky and Papert [52]. This weakness can be shown
through the fairly simple, intuitive, and well known XOR problem. How this
problem is classicaly portrayed is shown in figure 6.5a, and two solutions a
standard single perceptron will output is found in figure 6.5b and 6.5c

42

(a) (b) (c)

Figure 6.5: (a) XOR problem visualised. Red and Blue represents two dif-
ferent classes for which we want to find a line which separates the classes
perfectly. (b) and (c) shows possible solutions a single perceptron would
output. Both with a minimum of one missclassified datapoint.

As mentioned earlier, the perceptron can be interpreted as checking which
side of a line/plane a given example finds itself. A single line/plane is not
sufficient in more practical cases where data follows complex distributions,
and cannot simply be separated by a straight line.

The solution to the XOR problem is fairly simple however. What if a
model combined the solutions showed in Figure 6.5b and 6.5c? Then it
would be a simple case to check if a datapoint is contained within the region
defined by the two lines, or outside it. This can be achieved by combining
multiple perceptrons.

Figure 6.6: Example of a network ca-
pable of solving the XOR problem by
stacking two perceptrons in a single
layer

Perceptrons can be stacked to
map out complex areas such as the
one shown in the XOR problem.
Figure 6.6 shows a network which is
capable of solving the XOR problem.
By analysing the output pair (v1, v2)
the decision function will depend on
their combined signs. It’s described
as follows

v1 / v2 Positive Negative
Positive Red Blue
Negative Blue Red

43

But following such a decision
function is unwanted. A more de-
sired network would spit out a classi-
fication, not more data which needs
to be interpreted. This can be
solved by adding a second layer
which would learn to do the classi-
fication in the table above. The out-
put would maybe be binary, representing the two classes.

Each layer added onto a perceptron network adds more complexity to the
mapping it can do. It also makes the discrimination process more abstract.
The forward pass is still quite simple when put into matrix form. Assume a
layer l contains i unique perceptrons, or nodes as its more normally refer to.
Each node in layer l has its own weight vector, w

(l)
i , which put into matrix

form makes the W(l) matrix. The W(l) is defined as

W
(l)
i =

[
w

(l)
0 w

(l)
1 ... w

(l)
i

]
Where each w

(l)
i is a columns vector which also contains the nodes respective

bias term b
(l)
i . If it’s not clear how a weight vector can incorporate a bias

term, it’s done by adding a extra feature to both the weight, and activation
vector. The weight vectors new feature is the bias term, and the activation
vectors new feature is a 1. This is equal to adding the term manually when
doing the dot product with unmodified vectors.

wi =


w1

w2

...
wn
b

 , z =


z1
z2
...
zn
1

 (6.9)

The forward pass for a layer l is then be calculated as

v(l+1) = W(l)Tz(l) =


w

(l)T
0 z(l)

w
(l)T
1 z(l)

...

w
(l)T
i z(l)

 =


∑

j w
(l)
0,jzj + b

(l)
0∑

j w
(l)
1,jzj + b

(l)
1

...∑
j w

(l)
i,jzj + b

(l)
i

 (6.10)

44

where
W(l) ∈ Rj×i, z(l) ∈ Rj×n, v(l+1) ∈ Ri×n

Note that the input z(l) can have multiple column vectors as input, each
being their own datapoint. The column dimension n defines this, where n is
defined for all positive integers n ∈ [1,∞]. However for the sake of simplicity
we’ll continue with the vector input example.

All the notation might make this seem messy, but it should be obvious
that each node outputs a single value as they are all individual perceptrons.
The final layer output is the elementwise application of the activation func-
tion a(·)

z
(l+1)
i = a(v

(l+1)
i) (6.11)

z(l+1) =


a(v

(l+1)
0)

a(v
(l+1)
1)
...

a(v
(l+1)
i)

 (6.12)

Note that there are two special values for z. For the first layer we have
z0 = x, where x is the input examples, and the final layer zfinal = ŷ which
is the networks predictions.

To summarise: for any layer l with an arbitrary number of nodes, the
layer output is calculated as

z(l+1) = a
(
W(l)Tz(l)

)
(6.13)

6.3 Calculating the MLP gradient

Lets consider a MLP network of l total layers, which takes an input x, and
predicts a classification y making the network effectively mapping the exam-
ples φ : X ⇒ Y . The predictions are used to calculate some loss L, which we
want to propagate backwards into the network, and calculate some change
to the parameters. For aesthetic reasons, we’ll use ŷ = z(l). For a weight
vector w in layer k in node i, the gradient can be found by the chain rule as

∂L
∂w

(k)
i

=
∂L
∂z(l)

∂z(l)

∂a

∂a

∂v(l)

∂v(l)

∂z(l−1)
∂z(l−1)

∂a
...
∂v

(k)
i

∂w
(k)
i

(6.14)

45

Where the pattern found in the first few factors repeats until the desired
layers is reached, in this case layer (k). Analyzing some of these derivations,
we find for any layer

z = a(v)→ ∂z

∂a
= 1 (6.15)

∂a

∂v
= a′(v) (6.16)

v
(l)
i = w

T (l−1)
i z

(l−1)
i → ∂v

(l)
i

∂z
(l−1)
i

= w
(l−1)
i (6.17)

∂v
(l)
i

∂z
(l−1)
i

= z
(l−1)
i (6.18)

Inserting into Equation 6.14, the gradient for a weight vector in layer k
is found as follows

∂L
∂w

(k)
i

=
∂L
∂z(l)

a′(v(l))w(l−1)...z
(k)
i (6.19)

Now recall the update equation for gradient decent, Equation 5. For each
weight vector in the network the following update will take place

w
(k)
i,t+1 ← w

(k)
i,t − α

∂L
∂w

(k)
i

(6.20)

46

Chapter 7

Convolutional Neural Networks

Convolutional neural networks, or CNN for short, is a type of neural network
which attempts to mimic the multilayer perceptron algorithm, but through
the application of the convolution operator [27]. Much like a MLP network, a
CNN networks output depends on the preceding input as well as the ”nodes”
weights. Unlike the MLP network, where each node had a unique weight
attached to eac h input feature, the weights of a CNN network is contained
solely within the convolution filter, and is applied to the input through the
convolution operation. The application of weights onto activations via the
convolution operator has some benefits. The number of parameters in a CNN
network is massively decreased relative to that of a MLP network. The most
commonly used filter in CNN literature tends to be 3 × 3 filters, whereas a
single node in a MLP requires a number of weights equal to the inputsize.
The usage of the convolution operator also makes the network architecture
excellent at working with grid-like datastructures like images, time series, etc.

A small detail to note is no deep learning engineer/scientist use convolu-
tion operations, but rather cross-correlation. This is not because of a con-
scious choice the engineer or researcher makes, but rather its a choice made
for them. Most large machine learning frameworks (Pytorch, TensorFlow)
has implemented it in this way. This does not really matter however, as in
practice networks achieve the same results weather using cross-correlation
or convolution. The weight matrices that are learned will contain the same
values, but be flipped relative to the other operation.

This chapter will go into detail of how a convolution is done, how this

47

can be applied to a neural network setting, how to train such a network, and
a CNNs benefits and shortcomings.

7.1 The Convolution Operation

The convolution operator is one of the most effective operations to use when
dealing with grid-like data. Convolutions are therefore commonly used in
image data, text, video etc. This makes a method based on the convolution
operation a natural choice for the work done in this thesis. Mathematically a
convolution operation can be interpret as how two functions combined creates
a new third function. Consider two matrices. Input matrix I of size NI ×MI

and matrix W of size NW ×MW . The convolution between matrix I and W
is written as

(I ∗W)(x, y) =
∑
i

∑
j

I(x− i, y − j)W(i, j) (7.1)

The W matrix in this case is what is referred to as the kernel or a filter,
and the output is referred to as a feature map. In a convolution neural
network this kernel will contain the networks weights. This thesis will from
here on out refer to these weight-matrices as kernels. The variables (i, j) is
restricted on the size of the kernel. The valid indices for any convolution
operation can be said to be indexes where each kernel weight is matched
up with an input value. These indices will always be those where all the
following are true

1 ≤ x− i ≤ NI and 1 ≤ y − j ≤MI

1 ≤ i ≤ NW and 1 ≤ j ≤MW

With these restrictions placed on the operator, naturally one might imag-
ine that all convolutions ends with a output that is smaller than the input.
While this is technically correct, it is possible to manipulate the input in
such a way that the output is either the same size or larger than the input.
How the input is manipulated is differentiated between weather one wish for
the output convolution to be smaller, equal, or larger than the input in the
spatial dimension (height and width). These methods go by the names valid,
same, and full.

48

• Valid: The valid convolution is the ”natural” convolution. The input
has not been manipulated and as such the output will be smaller than
the input. The output dimension will be of size (NI−NW +1)× (MI−
MW + 1) when considering eq. 7.1.

• Same: The same convolution type adds zero-padding to the input in
order to make the number of valid indices equal to the number of input
indices. The required zero-padding in each dimension can be written

as pN =
NW − 1

2
, pM =

MW − 1

2
. If the kernel is not odd-sized in

each dimension one might experience a small shift in the output. This
assumes a stride of one

• Full: It is possible to apply the convolution operator to some input to
increase the size of the dimensions in the output. When doing a full
convolution we zero-pad with pN = NW −1, pM = MW −1 on all sides.
This will in turn increase the dimension of the output relative to the
input. This assumes a stride of one.

There are other ways of manipulating the output size resulting from a
convolution [15]. These three represents decreasing, same, and increasing the
dimension of the input. A much more general formulation of the resulting
dimensions from a given convolution operation would be

dout =
din + 2 ∗ paddingd − dilationd ∗ (kernelsized − 1)− 1

strided
+ 1 (7.2)

Where d represents the dimension, either height or width, and the subscript
denotes the effect in that dimension (e.g. zero-padding height wise might be
2, but in the width dimension it might be 1). It’s possible to mix and match
padding, dilation, kernelsize and stride to achieve a wide range of output
dimension.

CNNs have some desirable properties which was touched on earlier. CNNs
leverages three main ideas. Sparse interactions, parameter sharing, and
equivariant representation [27], which will be detailed in the following section.

7.1.1 Sparse Interactions

Sparse interactions (also often referred to as sparse weights or sparse connec-
tivity) is an effect of the kernel is smaller than the input image [27]. Sparse

49

interaction leads to a more localized feature detection, such as edges, lesions
or other smaller features one might detect only when looking at a small re-
gion of the image, and not the image as a whole. This improves the models
statistical efficiency. Sparse interactions also has the advantageous property
of reducing the amount of parameters needed for an operation. Having as
few weight parameters as possible is hugely beneficial as it saves memory,
and makes the output require fewer computations.

7.1.2 Parameter Sharing

Parameter sharing refers to how a convolution kernels parameter is used on
the entire input, and is therefore ”shared”[27]. Unlike a MLP structure where
each input value is associated with a number of weights equal to the number
of input features, a kernel is applied to a specific region, then never again.
This ensures the trained kernel cannot simply learn to detect for a singular
input, but must be more general than what the weights of a MLP structure
must. This tend to lead to weights which detect certain features within the
small region it’s applied to, e.g. edges.

7.1.3 Equivariant Representation

That something is equivariant simply refers to how a change to the input
leads to a equal change in the output. This is to say that a function f is
equivariant to a function g if f(g(x)) = g(f(x)). For a CNN this means a
transformation of the data (e.g. apply more contrast to an image) can be
done either before or after passing through the CNN network, and both are
equivalent.

50

7.2 Convolution Examples

Figure 7.1: Simple convolution example using valid convolution

Figure 7.1 shows a simple valid type convolution. While formula 7.1 shows us
the mathematical formulation of a convolution, it corresponds the operation
as sliding the filter over the input matrix. We then multiply the aligning
factors and sum to get our output. The output value in figure 7.1 would look
like this

v0,0 =
2∑
i=0

2∑
j=0

wi,jxi,j + b

Recall the formulation for calculating the potential for a single perceptron
in eq. 6.1. While this sum is over two dimensions, it is effectively the same.
Below are similar examples, but for same and full convolutions.

51

Figure 7.2: A simple convolution example using same convolution. The input
and output sizes are equal

Figure 7.3: A simple convolution example using full convolution. The output
size has increased by two rows and columns

The examples presented in this section have been in 2D, however most
deep learning works with 3D convolutions. However the process of convolu-

52

tion is effectively the same, just applying a cube kernel instead of a square
kernel.

7.3 Pooling

The pooling operation summarises a rectangular neighbour hood into a sin-
gle value. This value depends on which pooling operation one chooses to
use. The pooling operation is generally used after the activation function is
performed on the layers potential. This is done mostly for computational
gain and not because of some theoretical advantage, any operation on sparse
matrices is generally a good idea.

(a) (b)

(c)

Figure 7.4: An example of some of the 2 × 2 window pooling methods we
have today (a) is an example of maxpooling, (b) is an example of minpooling,
and (c) is an example of average pooling

Pooling makes a model approximately invariant to small translation in
the input [27]. Translation invariance means that the model is not affected

53

by small shifts, or displacements in the input image. The output is approxi-
mately the same for equal images with small translations.

Pooling also works as a ”summariser”. By summarising a neighbour-
hood of values into a single value, the effective perceptive region of a kernel
increases. A kernel in the early layers might only be able to detect small
features which fits into a 3× 3 region. This region is effectively 24× 24 after
just three standard pooling operations, allowing for detection of much more
global features.

Pooling referrs to a multitude of function which abstracts a set of values
into a single value. Some different pooling methods are seen in Figure 7.4.
The most used pooling function however is the maxpool. It is standard
implimentation in several large networks such as VGG [76], ResNet [22]1,
Inception V3 [82], and more. The reason for using maxpool is due to its
potential of picking up on high frequency features and suppress unimportant
features such as constant value regions.

7.4 A basic convolution layer

Figure 7.5: Caption

A CNN network learns multiple kernels per layer. Each kernel contains mul-
tiple weights which all are learnable. Each kernel is applied to the input
via the convolution operation which outputs 2D matrix of potentials. Each
potential is subjected to an activation function, such as ReLU, which was
discussed in Section 6.1. When a activation matrix is calculated for each

1When downsampling

54

kernel, a pooling operation is applied to the activations. This downscales the
data, which is then outputted from the layer, and sent into the next one.

Figure 7.5 shows a slightly different ending however. A CNN summarises
the important features of the input, and condenses it into just a few values,
spread across multiple channels. Simply flattening these matrices into a
vector is a good approximation for a feature, which is what Figure 7.5 shows.

7.5 Calculating the gradient in a CNN

Just how doing a forward pass for a CNN resembles a forward pass in a MLP
network, so does the gradient calculation resemble each other. Consider a
simple 2D convolution operation as shown in Figure 7.1. Ignoring activations
and pooling for the moment, and just considering the example. The weight
gradient is calculated as

∂L
∂wi,j

=
∑
a,b,i,j

∂L
∂va,b

∂va,b
∂wi,j

(7.3)

Where the sum over (a, b, i, j) is really a double sum over all valid values,
but written as it is for simplicity sake. The valid values are (a, b) ∈ [0, 1],
(i, j) ∈ [0, 2] for this specific example. If we now insert for the sum va,b
represents in the second factor, an interesting fact appears

∂ya,b
∂wi,j

=
∂

∂wi,j

∑
i,j,m,n

wi,jxm,n = xm,n (7.4)

where again the sum is for all valid values, and for specific example we would
have (i, j) = (m,n), but (m,n) is used to make the derivation more general.
We insert this back into eq. 7.3 and get

∂L
∂wi,j

=
∑
a,b,i,j

∂L
∂va,b

∂va,b
∂wi,j

=
∑
a,b,m,n

∂L
∂va,b

xm,n (7.5)

It should now be possible to see that calculating the gradient over a convo-
lution operation can itself be expressed as a convolution.

55

Figure 7.6: A visual guide to calculating the weight gradient for Figure 7.1

We can also express eq. 7.5 over three dimensions as

∂L
∂wi,j,k

=
∑

(a,b),(i,j,k)

∂L
∂va,b

∂va,b
∂wi,j,k

=
∑

(a,b),(m,n,o)

∂L
∂va,b

xm,n,o (7.6)

va,b does not add another dimension as this formula only considers a single
kernel at the time. The sums again is over all valid values for the operation.

56

7.5.1 Gradient over the pooling operation

Figure 7.7: An implied forward pass through pooling, and the gradient being
propagated

This section will explain how the gradient is propagated over the pooling
operation. Consider a maxpool operation case as shown in Figure 7.7. The
forward pass outputs four activations, where only one (z0,0) is allowed to
pass onwards after the pooling operation. All other activations might as well
be zeroed out, and do not contribute to the final prediction. So when the
loss is propagated backwards, only the max activation aids in the update of
previous weights, biases, and further gradient calculation.

57

7.6 ResNet

This section sets out to explain the residual network architecture, or more
widely known as ResNet. This is the network used in this thesis. ResNet
was introduced to combat a degradation problem in deep networks where
accuracy would get saturated and and degrade rapidly [22].

Figure 7.8: A residual block. The
main component found in the ResNet
architecture

At the time of the paper, the au-
thor had noticed a decrease in ac-
curacy when adding layers onto a
deep model. This decrease in ac-
curacy was attributed to the ”mud-
dying” of the gradient as it prop-
agated backwards into the net-
work. He et.al [22] solved this
problem by creating the residual
block which allows for the input
to accompany the the feed-forward
stream through a skip-connection
which bypasses the convolution
blocks. This skip-connection per-
forms an identity mapping of the
input, and is shown in Figure
7.8.

The skip-connection is the key to the ResNet architecture. As they
showed during their experiments with an 1202-layer network [22], there was
little-to-no optimization difficulty. The skip-connection allows for this by
preserving the gradient when propagating the loss back into the network.
Lets consider the residual block as shown in Figure 7.8. The gradient over
the block is calculated as

∂L
∂x

=
∂L
∂y

∂y

∂x
(7.7)

=
∂L
∂y

∂

∂x
(F(x) + x) (7.8)

=
∂L
∂y

∂F(x)

∂x
+
∂L
∂y

(7.9)

Carrying the gradient further back without ”muddying” it, lets the earlier

58

layers learn lower semantic features. This would not be possible without the
skip-connection as the gradient would be to abstract.

As clearly shown by Li et.al [37], the skip-connection is not too relevant
for shallower networks, but as depth increases it becomes invaluable to keep
the loss-landscape from turning non-convex and chaotic.

The residual block is the building block of the resnet architecture. Dif-
ferent resnets tend to have a number associated with them, e.g. ResNet18,
ResNet34, and ResNet101. These numbers refer to the number of convolu-
tion layers found within the model, or weight layers as shown in Figure 7.8.

For the experiments in this thesis we will the ResNet network, with vary-
ing depth. Which specific network beings used will be detailed in the ex-
periment section. It is however used as the backbone of our proposed multi-
stream model.

59

Chapter 8

Regularization

A key challenge in deep learning is for the model to not only perform well on
the training and validation data, but also perform well on new data [27]. The
ability to perform well on previously unseen data is known as generalization.
Generalization is said to be high when the model approximates the true
underlying data distribution. Deep learning models consists of potentially
millions of learnable parameters which can easily overfit to less complex data.
It’s therefore important to constrain the model in order to make this harder.
This is called regularization, and this section will explain some common
regularization techniqes.

8.1 Batch Norm

Batch normalization is not strictly a methods for regularization. It was
originally introduced as a way to reduce internal covariate shift (ICS)[28],
but that they found it to both enable the usage of higher learning rates and
that it helped the network regularize somewhat.

Batch normalization works by transforming the output of a layer by nor-
malizing it. Assume a CNN layer outputs some data X ∈ RN×C×H×W . Over
a minibatch B = {x1, ..., xm} the batchwise mean and variance is calculated

60

as

µB =
1

m

m∑
i=1

xi (8.1)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (8.2)

(8.3)

over the channel (C) dimension for the entire mini-batch. The batch mean
and variance is used to normalize the inputs as such

x̂i =
xi − µB√
σ2
B + ε

(8.4)

The normalized data is finally scaled and shifted to find the output of the
batchnorm layer

yi = γx̂i + β (8.5)

The output is scaled and shifted with two parameters (γ, β) which are learn-
able during training. The idea behind this is to allow some leeway for the
network. It should not be forced to normalize the data, but can instead learn
a spectrum ranging from completely normalized output to a non-affected out-
put. Note that if γ =

√
σ2
B + ε and β = µB the batchnorm layer becomes

an identity mapping. This should in theory allow for the network to dynam-
ically find the best form for normalization for each of the layers. This seems
to be the case to an extent. Muhammad Awais et.al [5] experimented with
fixed (γ, β) values, and found very little in terms of this affecting the network
in any way. They showed however that these two hyperparameters tend to
stay close to their initial values after completed training. 95% of values fell
within the ranges (γ ∈ [0.68, 0.93], β ∈ [−0.02, 0.45]), and the initial value
being γ = 1, β = 0.

Since the release there has been some debate on weather the original au-
thors where right in their finding as later a paper was released by Shibani
Santurkar et. al [67] which attributed the effectiveness of batch normalization
to a smoothing in the optimization landscape rather than reducing ICS. This
paper did not find the strong evidence for reduction of ICS as Sergey Ioffe
et.al [28] found. This paper was refuted by Muhammad Awais et.al [5] which

61

reaffirmed the theory that batch normalization reduces ICS and refuted the
hypthesis of Santurkar et. al [67]. This thesis will not try to show which
side of this ongoing debate is right. The main idea which should be taken
from this section is that batchnorm help models regularize, and increase per-
formance. The exact reason for batch norm working is not exactly known
as there is an ongoing debate about the effects of batch norm during training.

The two next subsections will give some more insight to the two main
hypothesis to why batchnorm works.

8.1.1 The case for landscape smoothing

This position was originally proposed by Shibani Santurkar et.al [67]. They
showed that adding noise from unique distributions for each batchnorm oc-
currence they would see a severe covariate shift. Their results showed that
while covariance shift occurred, they saw an almost non-existent reduction
in performance against normal batchnorm, while the noisy batchnorm model
still outperformed a normal network significantly. While not finding satisfy-
ing results for the original hypothesis put forth by Sergey Ioffe et.al [28], they
observed a smoothing in the loss landscape. The paper concluded that the
reparameterization of the underlying optimization lead to an stabilization in
said optimization.

8.1.2 The case for CSI

The original batchnorm paper by Sergey Ioffe et.al [28] defined Internal Co-
variance Shift as the change in distribution of network activation’s due to
a change in network parameters during training. This paper as we know
showed that the network trained faster by allowing higher training rates, gen-
eralized better, and generally increases performance. This paper attributed
this to the reduction in Internal Covariance Shift which leads to more be-
haved gradients. However, as the previous section stated; They tested this
hypothesis and found it lacking. Their tests where put into question however
by Muhammad Awais et.al [5] as they found if you push the noise into distri-
butions with higher values of standard deviation you see not only a reduction
in performance, but a crippling effect on the networks performance.

62

8.2 Weight decay

Machine learning algorithms tends to be quite complex. Models need to have
a degree of complexity as real life data tends to be comparatively complex.
Complex models are prone to overfitting however, making the model useless.
A solution to this can be to make the model less complex, that is to reduce the
number of parameters. This has the consequence of limiting the capabilities
of our network to properly learn and represent data. This will likely make
the model underfit rather than overfit. One solution to this problem is weight
decay [27, 33], also known as L2-regularization to some.
Weight decay regularizes the model by favouring small weights over larger
ones. The idea being that large/dominant weights should not exists, rather
the model in its entirety should be used. The technique itself modifies the
loss term as

Ltot = Lpred + α
n∑
i=1

w2
i (8.6)

Where Lpred is the loss from predictions on training data, and α is a hy-
perparameter that weights the weight decay term. If this is set to high we
can expect to see under fitting. Optimizing an algorithm based on this loss
is also known as ”Ridge regression”. When minimizing the loss, the added
term will only be minimized when there are no dominant weights. In an ideal
case, the weight would be as small as possible and all parameters would be
in use.

Calling weight decay and L2-regularization is generally not a problem as
the methods are equivalent. This is not the case for the Adam optimizer [49].
For SGD this is no problem, but due to a

8.2.1 L1-regularization

There is also a regularizer called L1-regularization, but also known as LASSO
[27]. Similarly to the L2 version, the L1 adds a penalizing term to the loss
function that will enhance features that stand out, and reduce the weights
of unimportant features. The modified loss function is written as

Ltot = Lpred + α
n∑
i=1

|wi| (8.7)

63

When minimizing this loss, the ideal would be for the weights to become
sparse. This would minimize the sum of the absolute value of the weights.
Sparsity is desired for computational gains mostly.

8.3 Dropout

There is a strategy in machine learning known as model averaging [27]. The
idea is to train ensembles of models in parallel and have them all give opinion
on the final prediction on some test data. This works well as one can reason-
ably assume different models will not make the same error when predicting
on test data. So if the first model has some problems when predicting class
Ci, the other models can make up for the lackluster predictability of the first
model in this specific area. This strategy does not scale well however as the
computational cost massively increases with each network added. Srivastava
et. al [80] provided a computationally inexpensive alternative which achieves
the same effect; This method is called dropout.

Dropout is a regularization technique that adds a random chance to drop
a node in a given network. Dropping a node in practical terms means mul-
tiplying the output by zero. No output/activation from a node is equivalent
to the node not being a part of the network at all. A node has a chance to be
dropped each minibatch during training. But why drop nodes in a network?
There are several benefits to doing so. Dropout prevents overfitting by mak-
ing sure different nodes does not become dependent on the input of a few, or
a singular preceding node. This allows for greater useage of the parameters in
the network, and better generalization. Dropping nodes is also analogous to
training multiple smaller networks, also called sub-networks. Each minibatch
we sample a sub-network by dropping nodes, where the drop-probability p
is user defined. Figure 8.1 shows an example of a main network, and some
different subnetworks that might be sampled during training.

64

Figure 8.1: Examples of how different subnetworks looks like during training

During testing we do not perform dropout however as we want the best
possible results which should in theory come from using the entire network.
We instead scale the weights with the probability of retaining the node. This
is done so the expected value between training and testing time stays the
same.

65

8.4 Data augmentation

One way of improving a ML model is to introduce more data. Annotating
data is expensive, both in time and cost, so there is motive to find some way
around not having enough data. Data augmentation is a way of creating false
data from the already existing data through augmenting certain aspects if
the input data [27, 74]. It’s often desirable for the model to become invariant
of the transformation applied to the data (e.g. rotation, vertical/horizontal
flip, etc). This also helps a network not learn undesirable or unintended fea-
tures which might not immediately be obvious.

Figure 8.2: Comparison of some different data augmentation, and the stan-
dard image before augmentation

66

Its important to keep in mind what transformation one applies to the
data however. Rotating numbers for example can lead to a 9 looking like a
6. There is also the possibility of transforming the data to a point where the
model might start to learn on plain bad data.

Due to data augmentation effectively ”adding” new data one already have
the label for, this is technically adding prior knowledge (adding training
data), thereby decreasing the models variance, which is what regularization
techniques do [27].

67

Chapter 9

Domain Adaptation

This section will explain domain adaptation, its purpose, some DA tech-
niques, and go indepth of the ADDA method which will be used in the
experiments to solve one of the main challenges of the provided dataset.

The field of domain adaptation seeks to address the problem known as
domain shift [92, 96, 32, 94]. Domain shift can be described as a shift in the
underlying data distribution. This shift is relative to the underlying training
data distribution. A shift in dataset can come from a whole range of sources.
Illumination, pose, image quality, resolution and more [92, 32].

Domain adaptation is generally used as an information transfer tool. Of-
ten one will have two datasets of the same task, but some feature in the
datasets differ to the point were a network trained on one dataset does not
perform well on the other. This is due to domain shift. The working theory
is that if one could remove, or significantly reduce the domain shift, it is pos-
sible to use the label information from one domain on the other. There is no
shortage of methods which address this problem, and there is a section later
(Section 9.3) which goes into some of the many methods within the field later.

DA differentiates between two domains, named the source and target do-
main. The source domain refers to the dataset which has the labeled infor-
mation. The labeled information is then transferred onto the target domain
data. The target domain data is the data which is shifted relative to the
source domain. The target domain is usually not labeled, or has a few labels
per class.

68

Much like normal end-to-end training, the DA field uses the ideas of super-
vised, semi-supervised, and unsupervised to describe different DA techniques.
Note that these terms refers to the target domain data in this context. An
unsupervised DA task has no labels for the target data, but usually have a
fully labeled source domain.

9.1 Annotation

This thesis denotes a domain as D. A domain spans some feature space X ,
with a specific data distribution P (X), where X = {x1, ..., xn} ∈ X . A do-
main will have an associated task T , which consists of some feature space Y
and a predictive function f(·) for the specific task.

Domain adaptation mainly differentiate between two domains. The data
which is labeled and which was used to train the model in the first place is
known as the source domain. We use the subscript s to denote that something
belongs in the source domain, e.g. Ds = {(xs, ys)}. The second domain is
the target domain. The data which the model is intended for is found in
the target domain. The data is mostly unlabeled, but some DA methods
require a few labeled examples from this domain. We therefore differentiate
between unlabeled target data with the subscript ut, Dut = {(xut)}, and
labeled target data with the subscript lt Dlt = {(xlt, ylt)}.

9.2 General DA theory

Domain adaptation (generally) makes the assumption that the primary task
in the source and target domain is equal, that is Ts = Tt. The word task
in this case refers to what classification a network makes. If there are two
different dataset with images of numbers between 0− 9 where each number
is considered a separate class, and two networks are made to classify each
image into said classes, then those two networks are performing the same task.

We separate domain adaptation into what we call Homogeneous DA and
Heterogeneous DA [92]. The homogeneous DA case refers to the case where
the feature domains for both source and target are equal. The domain shift
stems either explicitly or mostly from a change in the marginal distribution

69

of the source and target. The opposite case to homogeneous DA is the
heterogeneous case. The feature spaces for the source and target are not
equal any longer, that is Xs 6= Xt. The number of dimensions in the feature
space might also vary, that is dXs 6= dXt .

9.3 Key technical approaches

The field of domain adaptation is vast. This section should be viewed as a
short summary of the field, with examples of methods and work done in some
of the approaches. The intention behind this being to show the vastness of
the DA field without going into too much detail with methods irrelevant to
this thesis.

DA can be divided into two categories. Multistep, and singlestep. When
the source and target distribution does not relate much to each other there is
incentive to go through a intermediate domain [92]. This is called multi-step
domain adaptation, and is aimed at transfering knowledge between seemingly
unrelated data. This works by employing intermediate domains. The model
mapping is then transfered onto this domain, which results in greater distri-
bution overlap with the actual target domain. This overlap is important to
achieve so discrepancy-based losses can be employed. Some known methods
which employees multi-step DA are the Distant Domain Transfer Learning
(DDTL) [83], and Deep Learning from Domain Adaptation by Interpolating
between Domains (DLID). The DDTL method uses an encoder-decoder func-
tion to add and remove instances to and from the source domain until it has
reached the target domain. The DLID method creates its intermediate do-
main by sampling from both source and target domain, then replacing the
source examples over time.

Single step DA is by far the most used and published form of DA [92, 94],
and is what we will be using through this thesis. The single step DA does
not rely on any intermediate information. Rather it assumes there is a dis-
crepancy between two overlapping distributions which can be reduced. The
idea behind this being that when the discrepancy is reduced, the labeled
source information is directly transferable onto the target domain. No spe-
cific methods will be presented here as all methods discussed from here will
be single-step DA methods.

70

9.3.1 Discrepancy-based DA

Discrepancy-based DA methods refer to methods which attempts to reduce
some discrepancy measure [92]. The discrepancy in question is that of the
difference between the source and target distributions. This can come in the
form of distance between two defined points (usually mean) in the distribu-
tions, alignments, or other metrics in which difference can be measured.

Some of the more well known measures are the Maximum Mean Discrep-
ancy (MME) which estimated the difference in distribution by the distance
between the mean source and target feature mapping. Other discrepancy
measures that are being used are the H-divergence [6, 66, 64], Kullback-
leibler divergence [64], and many more ways of measuring discrepancy be-
tween domains.

Some examples of discrepancy-based DA methods are the Minimax En-
tropy method, a semi-supervised clustering based DA approach which utilize
prototypes with pulls features closer to itself. the CAT (Cluster Alignment
with a Teacher) [11] method which uses a ”teacher” to force cluster align-
ment in feature space; and lastly Invariant Latent Space methods such as the
one presenter in [23] where the goal is not to align the feature regions, but
rather find a latent space where the goal is to minimize the notion of domain
variance all together.

9.3.2 Adversarial-based DA

Adversarial-based DA methods refers to a group of methods which funda-
mentally builds on the GAN method [92]. By having a network attempt to
discriminate between features from separate domains, and having the target
feature extractor trying to trick this discriminator network it forces the tar-
get feature extractor to align its features with the source domain to achieve
its given goal.

The adversarial-based approach takes its core idea from the following
min-max criterion [92, 94]

min
G

max
D

V (G,D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]

(9.1)

71

where D is the domain discriminator, and G is the generator or the target
feature extractor.

A well known method is the Adversarial Discriminative Domain Adapta-
tion (ADDA) method [87], which we’ll go into much more detail in the follow-
ing section; The Domain Adversarial Training of Nerual Network (DANN)
[19] which utilises a single network for both source and target data. This net-
work is trained supervised on labeled source data, as well as being trained
adversarial on domain labels to force domain alignment in the feature space.
The Conditional Adversarial Domain Adaptation (CDAN) [48] method con-
ditions the features on the classifier output in order to perform DA, and
bound the target risk to the source risk. This method can add entropy
to make the CDAN+E method which simulates a semi-supervised learning
scheme in its assumed unsupervised setting. Lastly the Graph Convolutional
Adversarial Netowrk (GCAN) [50] method. The GCAN employs a graph
neural network architecture which utilises a Data Structure Analyzer (DSA)
to generate structure scores. These scores, as well as the features, are then
combined to create densely connected instance graphs. This is also combined
with a class, and domain criterion to create a solid DA method.

9.3.3 Reconstruction-based DA

Reconstruction-based DA methods refer to methods which utilises data re-
construction in order to improve the DA performance [92]. Such methods
tend to ensure that semantic features are kept, while manipulating the input
in order to adapt it onto the source domain.

One of the most well known reconstruction-based DA methods is the
Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [24]. CyCADA
utilises autoencoders which reconstruct target images in the source domain,
and vice versa. By enforcing that the reconstructed image has the same fea-
ture representation, and that going from target to source to target again does
not change anything in the image, CyCADA can ensure a doamin-invariant
feature representation is achieved by the model among other methods Cy-
CADA utilizes. Another reconstruction-based DA approach is the Fourier
Domain Adaptation for Semantic Segmentation (FDA) [99]. FDA utilises
the fourier transform, and replaces the low frequencies of the labeled source
images with the low frequencies of the target images. The idea being that
training on this transformed data should yield a network which can confi-

72

dently classify target images without ever introducing a true target image.
Switching out the low frequency components keeps the larger semantic fea-
tures of the image, but ”stylizes” the source image in the target image style.

9.4 ADDA

The adversarial disciminative domain adaptation [87] (or ADDA for short)
is one of the most well known adversarial approaches to DA. It can be said
to be one of the most ”pure” implementations of the approach, as it follows
the GAN [20] model quite closely. This is an unsupervised DA model, so we
have no labels for the target domain. The model takes advantage of the fact
that the source and target feature spaces are shared, and their mapping is
just shifted relative to each other.

Figure 9.1: The basic idea of the ADDA method.

ADDA is an unsupervised DA technique. This means the target dataset
does not have labels available for training. Classification of this data is

73

therefore impossible without the introduction of some outside information.
The source dataset is fully labeled, is used for the same task which is digit
classification, but is different in how the data is collected. The source dataset
consists of street number digits, while the target dataset consists of greyscale
handwritten digits. This difference in data leads to a domain shift.

With the source data fully labeled, our task becomes to somehow trans-
fer the trainable knowledge of the source labels onto the target dataset. The
ADDA method starts with training a network on the source data. This net-
work learns a mapping of the data onto a feature space, denoted as
Ms : (Xs,θs) ⇒ fs; where M denotes the source mapping function, Xs de-
notes source data, θs denotes the source networks parameters, and fs denotes
the source features outputted by the function Ms.

After finishing training on the source data, the next step is to transfer
the source parameters onto an target network of equal architecture. That
is θs = θt. Due to the difference in data, it is a fair assumption that the
mapping onto the feature space will not be the same. One can of course
check this after training, but it’s well documented in the DA literature that
domain shift will cause a drop in performance. We show this multiple times
in the result section (Section 13).

The goal is to make the target network map its features onto the source
mapping region, and align with the source features. This will allow the source
classifier to work on the target data without ever introducing some target
labels.

The method of achieving this goal is inspired by the GAN method [20]
of adversarial training. This method can be described by a ”cat and mouse”
allegory due to the adversarial nature of the method. We introduce a dis-
criminator network. The discriminator is given a single job, which is to
discriminate between the domains. Ideally it should be able to tell a feature
from the source data from a feature from the target data. This objective is
mathematically described by the loss

min
D
Ladv D(Xs,Xt,Ms,Mt) = −Exs∼Xs [log(D(Ms(xs)))]

−Ext∼Xt [log(1−D(Mt(xt)))]
(9.2)

Next we want to train the target mapper to ”trick” the discriminator.
Ideally it wants to map features onto the source mapping region, which makes

74

it impossible for the discriminator to

min
Ms,Mt

Ladv M(Xs,Xt, D) = Ext∼Xt [log(D(Mt(xt))] (9.3)

When the mapping of target features completely overlap the source map-
ping region, the discriminator will have a minimum of 0.5 which is equal to
simply wild guessing. The domain adaptation process is now complete, and
the source classifier can be used successfully on the target data.

(a) Training of the model in a supervised
manner on the source data.

(b) Domain adaptation step. The source
model and data is used, but the source
model is not updated in anny way

(c) Final step. The target model should now be usable with the source classifier

Figure 9.2: Figure showing the three main steps of the ADDA method as
proposed by Tzeng et.al [87]

Adda is part of a generalized DA framework proposed by Tzeng et.al [87].
Figure 9.1 illustrates this framework where models can be designed on a few
main choices. Weather to use tied/untied weights, and generative/discrimi-
native models. For the generative or discriminative model question; Up until
now only the discriminative network has been explained. It should however,
according to Tzeng et.al[87] be possible to use a generative model as to gen-
erate samples from the source mapping. This would in many ways resemble
the GAN[20] very closely, and it’s therefore not a topic this thesis will explore
further. The second question posed is weather to use tied or untied weights.
Up until now it has been assumed that untied weights have been used due

75

to it being simpler to grasp the idea behind the ADDA method in this way.
Using tied weights simply means that the source model must also be trained
further. Now the goal does not become to map target onto the source map-
ping region, but to rather find some shared mapping M = Mt = Ms. This
would be something akin to the DANN method [19], which was mentioned
in the last section.

9.5 DA in the medical field

The medical field is a prime scene to apply DA to. Domain shift can occur
between different equipment, different settings, and just how the data is col-
lected will lead to some bias which shifts the data. It also reduces the labeled
training data needed as models can be adapted to local data. The deep learn-
ing community has recently taken an interest into DR classification. It would
seem that most of the work until now has been on supervised classification,
model explainability, and data collection. As this problem gains traction the
domain shift problem between instruments have become more apparent [98].
While not a whole lot of work has been done yet on DR domain adaptation,
there are a few published studies which shows promise in the application of
DA [98, 77, 91, 72]

To the authors knowledge there are two ways of approaching general DR
classification. Using optical coherence tomography (OCT) images, and retina
images. DA has shown to work on OCT [91]; however this is not relevant
for the thesis’ experiments. This is due to DR screening images being im-
ages of the retina, and OCT being a form of tissue analysis which obtain
sub-surface images inside the eye. We are interested in the former. Retina
image classification has shown potential for real life applications [90, 21, 68].
As mentioned however there is equipment differences which Yang et.al [98]
approached by taking a reconstruction-based approach to the problem, and
showed that performance can be improved by adapting the models to the
equipment it would have been used on. Shen et.al [72], and Song et.al took
a different approach by analysing both retina image, and separate regions of
the image. We cannot use these methods for our dataset however, as these
methods are all single stream, and cannot model dependency between mul-
tiple retina images.

76

All these methods uses images where the entire retina is fit onto a single
image. This is how the large public datasets of diabetic retinopathy images
presents their data, but it’s not quite how the data is collected for our dataset.
A practitioner will take multiple images through the pupil at different angles,
and these images will be ”stitched” together which will be presented later
in the experiment section (See Figure 10.3). Due to having multiple images
for a single eye, it’s important to adapt a model which can accommodate for
this. The model developed for this thesis is a multi-stream architecture that
supports domain adaptation while at the same time addresses the challenges
in the intro.

77

Part III

Materials and Methods

78

Chapter 10

Diabetic retinopathy detection

This section aims to describe the material this thesis works with. Beginning
with an in-depth dive into what diabetic retinopathy is, how it affects the
eye, and a presentation of the dataset.

10.1 The Eye

To understand diabetic retinopathy it’s important to have an understanding
of the eye, and how diabetic retinopathy affects the eye.

The iris/pupil and lens area of the eye is of no concern as DR does not
affect these areas directly. Inside the eye we have this clear gel-like substance
called ”vitreous gel”. This substance fills the entire inside of the eye and
keeps the eyeball in a spherical shape. The wall of the eye is called the
retina. This is where the photo receptor cells are located. These cells absorb
the light coming into the eye, and reform it into an electrical signal which is
sent through the optical nerve into the brain. In the back of the retina there
are retinal blood vessels which supply the retina with oxygen rich blood. An
illustration of the eye with the elements described here is seen in Figure 10.1.

10.1.1 Diabetic Retinopathy

Diabetic retinopathy is a diabetic complication which affects the eye. It af-
fects roughly one-third of the diabetic population (34.6%) [93], which comes
out to about 146 million cases world wide. Vision loss from DR is absolutely
preventable. Early detection is however important for practitioners to guide

79

Figure 10.1: Artistic rendition of the human eye.

the patient in the right direction and prevent further degradation. As obesity
rises, so do diabetes [93], and we expect there will be more frequent cases of
DR appearing. Additionally the world is predicted to lack a vast quantity of
health workers in the coming years [46, 44]. This is a huge motivation for cre-
ating algorithms to aid in detection of DR, as this will increase diagnostical
accuracy, and reduce workload of practitioners [68, 21]. Due to the process
of diagnosing DR being mainly though image interpretation, applying deep
learning techniques is perfect for this task.

DR is categorised into five different stages. The stages vary from no
DR present in the eye, to proliferate DR which is the worst stage of the
condition. Each stage has symptoms of varying degrees of severity, but it
has been shown that deep learning models can pick up on these symptoms
[68]. The five stages, and relevant symptoms are as follows

• No DR: This category shown no signs, or the utmost early signs of
DR.

• Mild non-proliferate DR: The mild non-proliferate DR stage (or
Mild DR for short) is the first stage of an eye developing proliferate
DR. Non-proliferate simply means there are no new rapidly growing

80

blood vessles. In this stage we can see the development of microa-
neurysms. Microaneurysms are small bulges and abnormalities in the
already existing blood vessels and can be seen on retinal images as
small red dots. During this time, the symptoms tend to cluster and
not spread around the eye too much. The amount of microaneurysms
can vary from 3 to 30 before the condition worsens.

• Moderate non-proliferate DR: During the moderate DR stage parts
of the blood vessels can get blocked, and leaks / hemorrhages can occur
in the eye. Due to this, some parts of the retina might experience a
lack of fresh blood and oxygen. When parts of the retina is starved
for oxygen, we say the tissue is ischemic. This ischemic tissue appears
white, and due to it looking like balls of cotton we tend to call this area
”Cotton wool spots”.

• Severe non-proliferative DR: In the severe DR stage we might see
small irregular blood vessels appearing. This signals the beginning of
the proliferate DR stage.

• Proliferate DR: The proliferate DR stage is also known as the neo-
vascular DR stage; Neo-vascular meaning that new blood vessels are
forming. This is considered the end stage of DR. During this stage we’ll
see an increase in newly formed blood vessels (therefore proliferate).
The problem with new blood vessels forming is the fact that they are
extremely weak, and will rupture. This causes fluid and blood to spew
out into the eye. This might cause scaring, which when dries up can
pull on the retina to the point where we experience what is known as
retinal detachment. The newly formed blood vessels can also spew fluid
into the vitreous, causing what’s known as vitreous hemorrhage. This
can at worst hinder light from hitting the retina, impairing the vision
of the patient.

Visual examples of these stages is given in Figure 10.4

10.2 Diabetic Retinopathy dataset

The diabetic retinopathy dataset has been provided by Universitetssykehuset
Nord-Norge HF (UNN). The two datasets provided where collected in relation

81

to the sixth and seventh Tromsø Study [17]. The sixth study collected the
data used for the first Tromsø Eye Study [7], and the seventh study collected
the data for a new eye study which had not been published as of this thesis.
The two datasets are differentiated by T6 (Data from the sixth study), and T7
(Data from the seventh study). The T6 dataset is collected from a random,
but representive, population within the municipality of Tromsø with the age
group 38−87. The information of collection for the T7 dataset is not released
yet as of this thesis, but it’s reasonable to assume the data has been collected
in a likewise fashion.

The distribution of the datasets are as follows

Figure 10.2: A piechart figure showing the class imbalance in the datasets
T6 and T7

Dataset No DR Mild Moderate Severe Proliferate
T6 11915 (91.1%) 986 (7.5%) 128 (1.0%) 28 (0.2%) 23 (0.2%)
T7 13154 (92.6%) 973 (6.8%) 58 (0.4%) 8 (0.1%) 18 (0.1%)

Table 10.1: A table showing the number of class-wise examples and the
percentage of the dataset they represents.

The datasets with information such as if the eye is the patients left or
right eye. Each eye consists of several images. The amount of images vary,
but should technically be six images. Some data points are immediately cut

82

from the used dataset on the basis that they have five or fewer examples.
Figure 10.3 shows how images are taken in the retina. Each circle is put into
its own image.

Figure 10.3: How multiple images combined constitutes the entire backside
of the eye. Image is used with permission from Geir Bertelsen and is sourced
from Prosedyrebok Øyestasjon Tromsø 6, an instruction manual for the usage
of the Fundusfoto Visucam 500 machine.

Images 1-5 are taken at a 45◦ through the pupil, while image 6 is taken
at a 30◦ through the pupil in the same region as image 5.

83

(a) (b) (c)

(d) (e)

Figure 10.4: One example from each class. Images taken from the public
APTOS 2019 dataset. (a) No DR class example. No visible lesions present.
(b) Mild DR class example. Has what seems like a lesion down left. (c)
Moderate DR class example. Has a small ischemic spot, and what seems
like some micro aneurysms. (d) Severe DR class example. Has some cotton
wools spots going on, and a small hemorrhage. (e) Proliferate DR class
example. Has a massive case of cotton wool spot, and potentially some
retinal detachment

84

Chapter 11

Methods

This section describes the proposed model that has been designed as part of
this thesis to address the challenges presented in the ”Dataset challenges”
section (Section 1.2.1). To summarise the challenges: The datasets provided
contains retina images. Each retina consists of multiple images as shown
in the previous section. Standard CNNs cannot model dependency between
the same-retina images, so we must construct a model capable of this. Each
retina should consist of six images, but due to subjects breaking off the DR
screening early, or the practitioners taking multiple images due to blurry/bad
images, there are some retinas with a lack or excess of images. The images
from differing regions of the eye are not structured in any way either, so out
model must accommodate for the fact it can have any region as an input.
Finally, the datasets is expected to have experienced a domain shift, moving
from T6 to T7, and as such we wish to make sure our model is compatible
with domain adaptation techniques. To be more precise, the ADDA method
has been chosen for this thesis.

To deal with the challenges listed, we’ve constructed a multi-stream net-
work for DR detection. This network is capable to take as an input a variable
number of images for each eye. The inputs are processed individually, and
then their features are fused to create a feature vector representing the eye
as a whole. This network is constructed in such a way that it should be
compatible with most domain adaptation methods.

The coming sections will go into details on the network, how its compo-
nents address the different challenges, and how ADDA is applied with this

85

model in mind.

11.1 The multi-stream architecture

The theory presented in this thesis has up until now really only consid-
ered single-stream architectures. Single-stream architectures refer to a set of
methods which takes in a single type of data (e.g. images, text, audio, etc),
and output some result for that specific input, and are by far the most com-
monly type of architecture. To this end, there is no real dependency between
images. One image cannot affect the results of another during prediction.
This works for a lot of tasks such as DR detection on single retina images
as discussed in section 9.5. This thesis, however, considers multiple images
for a single eye, where cross-image dependency is important for a proper
classification of the entire eye. For this problem we’ve chosen to construct
a multi-stream model which has the desired properties to classify multiple
images, and model dependency across images.

The main body of theory surrounding multi-stream networks is gener-
ally done on action recognition tasks [101, 95, 86, 75]. Action recognition is
a video detection task where the objective is to figure out which action is
taken from a video. In 2014 Simonyan et.al [75] found that paying attention
to the temporal component lead to their network learning important con-
text clues, compared to still images. An example is an image of someone
seemingly sitting down can also seem like someone getting up from the chair.
Adding the temporal component will make weather someone sitting down or
getting up much more trivial than when analyzing a still image.

Multi-stream models are models where data is processed in parallel through
multiple streams. The information extracted from each stream is often fused
together to model dependence between the separate data. This fusion of
features creates a final representation which represents the data as a whole.
In practice there are few multi-stream models which are alike. They tend to
be built-for-purpose. Either made for a specific set of data, a specific task,
etc. where such a model is useful.

In order to address challenge #1, a multi-stream architecture is a natural
solution for the UNN datasets. There are multiple images representing the

86

same eye. Each image might hold important semantic information which can
aid in the construction of a final feature vector representing the entire eye.
In the next section we outline the proposed multi-stream model to deal with
the UNN datasets.

87

11.2 The Model

This section sets out to explain the constructed multi-stream model. The
model constructed for the task of DR classification is a multi-stream CNN
model. It was made with the presented challenges in mind, and is capable of
solving said challenges. The flow of the model is shown in the figure below,
Figure 11.1.

Figure 11.1: Illustration of the network architecture

The figure shown is rather general. The CNN structure, the fusion func-
tion, and the classifier are all important components, but can be changed
to fit new datasets, needs, etc. In our case we’ve chosen ResNet, the model
discussed in Section 7.6, as the CNN structure.

The model structure reflects the DR dataset. It is build for purpose
unlike most off-the-shelf networks which are more generalized in the regard

88

that they are applicable over multiple tasks.
The network is able to take in multiple separate images, and extract

important semantic features from each image. Each stream is fused together
through a fusion function, which is classified through a MLP network.

11.2.1 Model intuition

The network adapted for this task is not hard to understand, and the intu-
ition should come easy. This section will also explain the network in terms
of the DR dataset as this is the purpose for it being constructed.

The first part of the network sends the data through a CNN in order to
obtain image-level features that summarizes the information in one partic-
ular image. Assuming the network is trained, the output will be a feature
vector which represents the important features in the image. This is then
done for each image for a single eye. Each of the individual features vectors
contains information that we desire to summarise into a single vector. To
obtain our eye-level features that can be used to classify the eye according to
our provided label. The independently extracted information is summarised
through a fusion function, which we will explain in detail in a later section.
This feature vector is classified through a MLP network, and the classifica-
tion is compared to the eyes ground-truth using the CE1 classification loss
described in Section 4.1.1.

11.2.2 How the model works

This section is meant to give the reader a more practical understanding of
how the presented network works. The motivation behind giving this un-
derstanding is to strengthen the argument that this network is theoretically
compatible with most, if not all domain adaptation techniques. The model
presents itself with different streams. However as those who are familiar with
training ensembles of networks will know, this is a memory heavy task, due
to the fact that we have variable number of images, potentially taken in dif-
fering order, and no information of which of the six locations in the eye (see
Figure 10.3) corresponds to, each CNN must be able to detect symptoms
equally. This in turn effectively makes all the CNN networks share the same

1Cross entropy

89

weights, and the multi-stream network can be achieved with some dimension
manipulation (Challenge #3)!

Consider a datapoint X ∈ RN×M×C×H×W . The dimensions here can
be interpreted as N unique eyes with M corresponding images, where each
image has C channels, H rows, and W columns.

Figure 11.2: Visualisation of how the network process dependent images

In the figure above it’s assumed that N = M = 3. The spatial dimensions
are of no concern to understand the model. The separate eyes are color coded
as to make the visualisation easier to follow. The input is flattened across the
M × N dimensions, where images from the same eye are kept next to each
other. The data now has the dimensions X ∈ R(N∗M)×C×H×W , which a single
CNN network is more than capable of extracting features from. Each image
will have their feature extracted separately by the CNN model. Assuming
the feature vectors have l features, the output features will have dimensions
Xf ∈ R(N∗M)×l. The features will have the order in-which the images where
inputted. Knowing this, it is possible to expand the feature vectors into
three dimensions. The dimensions will have the dimensions Xf ∈ RN×M×l.
In practice it is possible to apply a fusion over the M dimension, and collapse
it. In Figure 11.2 this is shown as isolating the eye-wise feature vectors, but
this is just an illustration, and in practice most fusion functions will leave
the M dimension being M = 1, which is easily collapsible. This will give
us one feature vector per eye (N features), which can then be classified and
the results can be compared against the eye-wise labels from the dataset. To
summarise, let S = C×H×W , then the change in the data dimensions over
the model should be as follows

90

RN×M×S F latten−−−−→ R(N∗M)×S CNN−−−→ R(N∗M)×l Expand−−−−→ RN×M×l Fusion−−−−→ RN×l Classify−−−−−→

What has been shown here is that the multi-stream model is in fact a
normal CNN structure with a flattening process before inputting the data,
and a fusion step between the output features, and classifying the features.
Additionally we have shown the network is capable of taking in any number
of images per eye, as long as the amount of images (M) is equal2 (Challenge
#2)! This is turn can allow for the network to be applied to a multitude
of different DA methods, as well as other beneficial deep learning techniques
and methods, addressing Challenge #4. This will be further detailed in
Section 11.3. Applicable methods which is of particular interest to the medi-
cal imaging field is that of explainability and interpretability methods. This
is a topic which will be discussed further in the discussion section (Section V).

11.2.3 Fusion functions

A core part of the proposed model is the choice of fusion function. Any
method of combining multiple vectors into a single vector is applicable here,
and the choice of fusion can lead to some interesting behaviours in the net-
work. This section will present a few fusion functions, their expected be-
haviour and pros / cons. The choice of fusion function is directly related
to challenge #2. Recall that challenge #2 requires the development of
a model that can handle a variable number of input images. As both the
feature extractor (CNN) and the classifier are considering the individual im-
age level features and the eye level features, respectively, the fusion function
presents the bottleneck with regards to this challenge.

The concatenate fusion

The concatenate fusion function is one of the most non-compromising fu-
sion functions. While other fusion functions will sacrifice some information
in order to create a more total view of the complete data, the concatenate

2Note, this is just an implementation choice for ease of implementation, the model
generalized to an arbitrary number of images.

91

simply stacks each feature vector on top off one another. This seems rea-
sonable initially. No information is lost, and all features are considered on
equal footing. However there is a scaleability problem. As the number of
inputs increases, so must the first classification layer. This directly impacts
Challenge #2, as a change in the classification layer will mean that the
model will not scale to an arbitrary number of images. Dimension-wise, this
fusion can be described as

RN×M×l concatenate−−−−−−→ RN×(M∗l)

Another important moment for the concatenate fusion is how susceptible
it is to noisy data. Unlike the fusions we will present next, the append fusion
has no way of dealing with noisy data being propagated forward with the
healthy feature vectors. We can imagine that in some cases this will lead to
low confidence in predictions, if not wrong predictions all together.

The mean fusion

The mean function is another intuitive fusion function. This fusion regard
each individual feature as equally important, allowing all of them an equal say
in the construction of the final feature vector. Depending on the number of
streams, this fusion function allows for the creating of a fusion function which
is more robust against noise. It is also able to scale to an arbitrary number of
images, thus addressing Challenge #2. This fusion function however relies
on a majority clean images to be effective, as we provide evidence for in the
results section. If this is used with multiple feature vectors from noisy data
3, the noise can, and most likely will drown out the features of the healthy
data. In a DR setting, this means that patients where one image is mild DR
and the remaining No DR, the model might lean towards the majority class
position, No DR in this case.

Max fusion

The max fusion is a way to combine only the most prominent features into
a representative feature for the combined feature vector. The idea behind
this is somewhat more complex than the previous two, but still simple. In

3Noisy in this case means data which either is, or appears to be from a different class.
This can be a healthy eye image which is part of a diseased eye, an explicit diseased eye
inputted as a healthy eye.

92

computer vision, the extracted features will have high activation’s for areas
where important semantic features have been detects, such as edges, lesions,
and such. Unlike the mean fusion which might muddy out these detected
features, the max fusion wishes to extract only the highest feature for a
given position over all the feature vectors. Take the following toy example
with four individual feature vectors. The final output feature is found by
taking the max value over the rows

Max(F) = max





0
8
1
8




4
2
8
4




1
3
7
3




9
3
6
3



 =


9
8
8
8


In some regards, this fusion function acts much in the same way as a

maxpool operation. One of the downsides to this is the potential lack of
gradients being propagated backwards to a non-max position in the feature
vector, potentially leading to less effective training, due to most features
effectively being zeroed out.
The max fusion scales to an arbitrary number of images, and thus addresses
Challenge #2.

11.3 ADDA

This section explains how the ADDA [87] algorithm is merged with the pro-
posed multi-stream network. Due much in part to the arguments put forth
in section 11.2.2, this model should be compatible with domain adaptation
methods, and most importantly for us ADDA.

To be more specific, the CNN, which is the feature extractor part of the
proposed network can be viewed from both a multi-stream and a single-
stream perspective. As many DA approaches, among others the ones dis-
cussed in Section 9.3, rely on adapting the feature representation from the
target domain to the source domain. We can perform domain adaptation
from the single-stream perspective. For ADDA in particular, given the two
multi-stream architectures, one for the source, and one for the target domain,
we can train the source model in a supervised manner.

We can then take one of the CNN streams (Remember we use shared
weights in the streams, making the individual streams identical) from the

93

target network and align its distribution with the source feature distribution
using a discriminator as described in in Section 9.4. Again, the source fea-
tures can be obtained from a single CNN of the multi-stream source CNN
due to the shared weights. Once the target feature extractor has been up-
dated to provide aligned distribution, we can replicate it in our multi-stream
architecture and classify target eyes (Consisting of an arbitrary number of
images) by feeding the features to the source multi-stream architecture. This
all leads into solving Challenge #4.

94

Part IV

Experiments and Results

95

Chapter 12

Experiments

This section aims to justify and explain why and how the experiments where
done. The results of the experiments will be presented in the Results section.

12.1 Proof of concept

The DR data was not collected with machine learning, in mind, and due
to noisy1 labels it is difficult to analyze the various properties of the model
efficiently. We, therefore, wish to test the model independently of the UNN
datasets. We have therefore employed the well known MNIST and SVHN
datasets to show how the network can perform in a simple setting. This
experiment also sets out to show that the model is compatible with the
ADDA method (Challenge #4).

There are two main experiments that we do with the SVHN and MNIST
datasets. First we show that a multi-stream can domain adapt onto another
multi-stream network, where we use SVHN as the source data, and MNIST
as the target data. The main goal of this experiment is to show a gen-
eral multi-stream model can be domain adapted onto another multi-stream
model. This experiment also incorporates a model test of robustness against
noise. This is done by artificially adding a wrong image to the input stream.
We utilise the same implementation as we will use for the DR dataset, and
experiment with how the performance degrades going from no noisy inputs,

1Noisy in this case means data which either is, or appears to be from a different class.
This can be a healthy eye image which is part of a diseased eye, an explicit diseased eye
inputted as a healthy eye.

96

to five noisy inputs. This is done both with noise from the same, but wrong
class, and noise from a random wrong class.

The second experiment using SVHN and MNIST is adapting the multi-
stream model onto a single-stream network. While the method section ex-
plained why this is theoretically possible, we desire to show it empirically
too. This is also done in order to further cement that this model has met
the criteria to solve Challenge #4. The hypothesis being if we can adapt
a multi-stream model onto a multi-stream model, and a multi-stream model
onto a single-stream model, then the proposed multi-stream model can be
adapted onto a network of arbitrary inputsize, which further shows the model
can deal with Challenge #2.

These experiments uses the same multi-stream architecture as we will
use for the DR classification. This is the multi-stream network shown in the
methods section. The only difference is we use a simpler ResNet18 architec-
ture as the CNN network when dealing with the SVHN and MNIST datasets.
This is mostly due to these datasets being much less complex than the DR
datasets. Furthermore the only data augmentation which was performed
on the SVHN and MNIST datasets where normalization. MNIST normal-
ized with the mean and standard deviation (µ = 0.5, σ = 0.5), while SVHN
used ImageNets means and standard deviation (µ = [0.485, 0.456, 0.406], σ =
[0.229, 0.224, 0.225]).

12.2 MNIST and SVHN datasets

MNIST and SVHN are two well known datasets containing number between
zero and nine. The MNIST dataset is composed of 60000 training images of
handwritten digits. The SVHN dataset consists of 73257 images of real-life
house digits. Examples from each datasets can be seen in Figure 12.1.

MNIST and SVHN are two well known datasets containing numbers be-
tween zero and nine. The MNIST dataset is composed of 60000 training
images, and 10000 test images. The training images where split into a train-
ing set of 50000 images, and a validation set of 10000 images. The validation
set is used for tuning the hyperparameters. The SVHN dataset consists of
73257 training images, and 26032 test images. The training set is split into

97

50000 training images, and 23257 validation images. These dataset splits can
be seen in Table 12.1. For all experiments with MNIST and SVHN, we use
SVHN as source data, and MNIST as target data.

(a) Ten MNIST examples from each class.
(b) Ten MNIST examples from each
class.

Figure 12.1: Examples from all classes for both MNIST (Left) and SVHN
(RIght)

Split/Dataset MNIST SVHN
Training 50000 50000

Validation 10000 23257
Test 10000 26032

Table 12.1: Dataset splits

12.3 Diabetic Retinopathy classification

The main experiment for this thesis is to classify DR images, and perform
domain adaptation on the two datasets provided by UNN. There is an ex-
pected domain shift between the datasets due to different equipment used.
The before and after domain adaptation performance will be shown in the
result section, denotet as ”Pre DA” and ”Post DA” respectively.

The DA method chosen for the experiment is the ADDA method which
was explained in detail in section 9.4. This method was chosen as it is fairly

98

common, robust, and well understood.

Due to the size of the dataset, and limitations on storage capacity the
dataset has been pruned. Some datapoints do not have six images attached
to them, and some have more. To create uniformity in the dataset, the eyes
with less or equal to five images associated with it where not used for train-
ing or validation. For images consisting of more than six images, a random
selection of six images where chosen to represent the eye. Due to the authors
lack of medical expertise this was chosen as a simpler, quicker, and probably
equal solution to manually attempt to choose the images. However, note that
this is solely an implementation inspired choice, as the model generalizes to
a variable number of images.

The main experiment for this thesis is DR image classification, and per-
form domain adaptation between the two datasets. For this task the T6 has
been chosen as the source domain, and the T7 has been chosen as the target
domain. This thesis mainly concern itself with an balanced and binary DR
classification task to reduce the imbalance, decribed in Section 1.2.1, which
is considered out of the scope of this thesis. The binary classification setting
combines all classes from mild to proliferate into a class we will call DR. The
second class is the No DR category.

Dataset / Class No DR examples DR examples
T6 1165 1165
T7 1057 1057

Table 12.2: Number of examples per class. The DR class is a combination
of the mild, moderate, severe, and proliferate class.

Completing this final experiment successfully will be our final proof of
the models capability to solve challenge #1 - challenge #4

99

Chapter 13

Results

13.1 Effects of noisy data on Multistream model

The following section presents the finding for the first MNIST and SVHN
experiment. This experiments adapts a multi-stream model onto another
multi-stream model with the ADDA method, where we provide evidence
supporting our models capabilities of addressing Challenge #4. To even
perform ADDA, we have to train the multi-stream model in a supervised
setting which addresses Challenge #1. We also show the models ability to
learn under artificially inserted noisy1 data.

Dataset / Nr noisy images 0 1 2 3 4 5
SVHN 0.9998 0.9994 0.9899 0.5117 0.7885 0.1959

MNIST (Pre DA) 0.3263 0.3243 0.1284 0.1031 0.1235 0.1135
MNIST (Post DA) 0.9970 0.9814 0.9188 0.4964 0.5777 0.1134

Table 13.1: Accuracy on MNIST and SVHN data when introduced to same-
class noisy data.

1Noisy in this case means data which either is, or appears to be from a different class.
This can be a ”1” written so badly it looks like a ”7”, or deliberately inputting wrong
data, e.g labeling a ”0” an ”8”

100

Dataset / Nr noisy images 0 1 2 3 4 5
SVHN 0.9998 0.9838 0.9762 0.9134 0.4113 0.1821

MNIST (Pre DA) 0.3544 0.1356 0.1284 0.1356 0.1119 0.0911
MNIST (Post DA) 0.8089 0.7817 0.7689 0.7341 0.3071 0.1241

Table 13.2: Accuracy on MNIST and SVHN data when introduced to
random-class noisy data.

Table 13.1 shows results for structured noisy input. With structured noise
we mean noise which is sampled from the same wrong class. The accuracy
scores are calculated on the MNIST and SVHN test set after training com-
pleted and the hyper parameters had been tuned by observing the validation
set. In Figure 13.1a to 13.1f, we also provide confusion matrices for all per-
mutations of the input.

The fusion function used for this experiment is a simple mean of all the
individual features. The more detailed results will be presented below. The
results in Table 13.1 are the final test data results, while the confusion ma-
trices and tSNE plots below shows data from the validation set, as the test
set performed significantly better than the validation set. This trend was
seen across the board. The test set performed better than the validation set
overall.

101

(a) Source confusion matrix for 0 noisy
images

(b) Source confusion matrix for 1 noisy
images

(c) Source confusion matrix for 2 noisy
images

(d) Source confusion matrix for 3 noisy
images

(e) Source confusion matrix for 4 noisy
images

(f) Source confusion matrix for 5 noisy
images

Figure 13.1: Confusion matrices for 0-5 noisy SVHN images (source data)

102

Lets consider the results of the source data to begin with.

No noise: The zero noise experiment showed excellent results. Both
zero noise experiments, shown in Table 13.1 and 13.2, performs almost per-
fectly. There is a difference in the post DA MNIST accuracies however, but
this is most likely due to a bad initialization. We can reason this as there
is no difference in the experiments at this time, no noisy data. Just this
experiment gives us empirical evidence that the model is capable of dealing
with Challenge #4. The following paragraphs will analyse the models noise
robustness.

One and two noisy images: In the one and two noise experiments we
observe a small degradation. The input noise structure differs between the
two experiments. Whereas Table 13.1 shows results where all noisy input im-
ages are from the same class, Table 13.2 shows results where the input noise
is randomly sampled from wrong classes. The solid performance in light of
input noise can be attributed to the fusion function for the random noise at
least. However, we still expect the problem to get more difficult with the
addition of more noise.

Three to five noisy images: The results for the three, four, and five
noisy images are rather interesting, and somewhat revealing to how one
should interpret the mean fusion function. Observe in Table 13.1 how the
performance falls significantly for three, and five noisy images. Meanwhile
the performance for four noisy images are reasonably good.

This good performance can be attributed to the noisy data always being
from the same class. As a simplified illustrative example, consider a two-
dimensional feature space where the extracted features from each class is
always a unit vector, f1 = [1, 0], f2 = [0, 1]. For a case of three clean, and
three noisy input images the feature vectors will always map onto the same
feature region. For a case where the number of clean and noisy images are
not equal however, the combination of feature vectors will map onto different
regions, assuming no feature vector is equal, which can then be separated by
the classifier. The two cases discussed here is visualised in Figure 13.2

103

(a) How three clean and three noisy im-
ages might map onto the same region

(b) How two clean and four noisy images
can map onto different regions

Figure 13.2

This hypothesis is strengthen when considering Table 13.2. When random
class noise is introduced there is a steady decline in performance which is
more in line with our intuition of how one expects the noise to affect the
model. One can also observe the performance of three noisy / three clean
images has improved for the random noise experiment, as the features are
not mapped onto the same region. At least not frequently enough for the
classifier to pick up on.

104

(a) No noisy image (b) One noisy image

Figure 13.4: tSNE plots of SVHN (Source), and MNIST (Target) together.
Source is shown as a circle, and target as a square. These images are from
the structured noise experiments

(a) Two noisy images (b) Three noisy images

Figure 13.5: tSNE plots of SVHN (Source), and MNIST (Target) together.
Source is shown as a circle, and target as a square. These images are from
the structured noise experiments

105

(a) Four noisy images (b) Five noisy images

Figure 13.6: tSNE plots of SVHN (Source), and MNIST (Target) together.
Source is shown as a circle, and target as a square. These images are from
the structured noise experiments

The main result to take away from this experiment is that the multi-
stream structure presented in section 11.1 is compatible with DA methods,
specifically the ADDA method for this experiment. This provides further
proof of the models ability to deal with challenge #4. With the exception
of five noisy input images, Table 13.1 and 13.2 shows an improvement of
performance after domain adaptation has occurred.

The difference in post DA MNIST for the structured noise, Table 13.1,
and the random noise, Table 13.2, is most likely due to a bad initialization
for the model which dealt with the random noise insertion. There is also the
possibility off a slight miss-alignment during the DA process. If we go by the
first hypothesis however, it stands to reason that if one network has had a
bad initialization, then all the other must also have had it as the networks
where trained in sequence on the same random seed.

Finally for this experiment, let us discuss Figure 13.6b. Here we see a
clear case of the domains not aligning. However as we can clearly see in Table
13.1, the four noisy image case could achieve alignment. It is most likely the
case that the five noisy image case could also achieve alignment, and a good
accuracy. However if we take a look at the average losses over training in
Figure 13.7

106

Figure 13.7: Loss for structural noisy image

If we look closely, we can see a slight downwards trend for the five noisy
image loss (the grey line). We can imagine that if trained for long enough,
the network could learn all the feature regions for all the different clean plus
noisy label combinations. It is off no interest to actually train a network
which takes this ling to barely go down in loss value. But this is all to say
that the five noise experiment failed to align not because of the DA method,
but because the network had not yet finished training.

13.2 Multistream DA onto single network

This section presents the results for the second MNIST and SVHN experi-
ment. Here we perform domain adaptation with a source multi-stream model,
and a target single-stream model. The DA method used here is also ADDA.
This section provides further support for our models capabilities of address-
ing Challenge #4. The results from this experiment in combination with
the previous experiment provides evidence for our models capability of ad-
dressing Challenge #2.

107

Dataset Accuracy
SVHN 1.000

MNIST (Pre DA) 0.3485
MNIST (Post DA) 0.7116

Table 13.3: Accuracy from multi-stream SVHN model and single-stream
MNIST.

(a) Source confusion matrix (b) Target confusion matrix

The fusion function used in these experiments is also a mean of all output
feature vectors from the CNN networks.

Table 13.3 shows the main result of this section which is that a multi-
stream model can be adapted onto a single-stream model. The increase in
performance shows that a significant alignment between source and target
has occurred. The adaptation is not perfect, and comparing to multi-stream
to multi-stream DA showed in Table 13.1 there is a significant discrepancy
of 0.2854. One explanation for this discrepancy might be due to the multi-
stream network being more used to ”solid” features. As the multi-stream
takes the mean of image-level features, it is reasonable to assume the feature
vector outputted from the fusion function will often be close to the mean
of their class distribution, especially for these types of experiments. If the
discriminator learns on these stronger features it might start to learn a more
narrow class distribution which makes the classifier more volatile when it
comes to the hard examples.

108

Figure 13.9: tSNE plot showing the alignment between a multi-stream source
model, and a single-stream target model. Source (circles), target (squares)

A high accuracy is not what is important here however. The important
take away from these results are that if it’s possible to domain adapt onto
a single network, then it is possible to perform domain adaptation onto a
multi-stream model of any size; from single-stream to n-sized multi-stream
models. These results show it should be possible to train a model on the
labeled knowledge of the Tromsø eye study data which can be transfered
onto data collected from any clinic.

109

(a) Target confusion matrix for 0 noisy
images

(b) Target confusion matrix for 1 noisy
images

(c) Target confusion matrix for 2 noisy
images

(d) Target confusion matrix for 3 noisy
images

(e) Target confusion matrix for 4 noisy
images

(f) Target confusion matrix for 5 noisy
images

110

13.3 DR data

This section provides the results achieved when training, and testing on the
UNN DR datasets. The parameters, and other settings are detailed in the
experiment section. The best results from the DA experiments are listed be-
low in Table 13.4. These results shows us our model addressing all challenges
mentioned in Section 1.2.1

Dataset / Accuracy Binary Class
T6 0.5949

T7 (Pre DA) 0.4786
T7 (Post DA) 0.5357
Discriminator 0.4964

Table 13.4: Accuracies achieved on binary DR dataset

(a) Source domain confusion matrix (b) Target domain condusion matrix

Figure 13.10

While these results are not as well as hoped, we see a definitive improve-
ment between the pre and post DA step. The supervised trained model
has also learned something which is obvious from its +9.5% above random
guessing accuracy. As stated earlier the considered dataset comes with se-
vere challenges and these results need to be considered as a first step towards
designing DR detection models.

111

(a) ROC-curve and AUC

(b) tSNE plot for DR. Source (Circles),
and Target (Crosses) are displayed class-
wise. Class 0 being ”No DR”, and class
1 being ”DR”

Figure 13.11: Some additional figures for the DR classification experiment

From the tSNE plot shown in Figure 13.11b shows us what seems to be a
a domain alignment. This makes sense, as the discriminators accuracy, seen
in Table 13.4, is close to random guessing. It would seem that if the super-
vised setting had performed better, a proper alignment could have occured.

These results might not be as well as we hoped for, but it could have
been expected. Back in the DR method section there was a figure showing
the class imbalance, Figure 10.2. Note that the two prominent classes are
the No DR class, and the Mild class. The difference between these classes
is small spots barely the size of a few pixels. These classes are so similar it
doesn’t come as a surprise that they overlap as much. If this doesn’t make
sense, have a look at Figure 10.4a, and 10.4b and try to spot the difference.

The model has shown that it can deal with the challenges presented in the
introduction when applied to the benchmark datasets. We also see that these
challenges have been addressed in these results, yet on a small scale. With
these results, in combination with the previous experiments and everything
outlined in the methods Section 11, we can confidently state out model has
addressed all challenges stated in Section 1.2.1.

112

The first challenge, being to make a model which can model dependence
between images is the challenge with the most proof to back it up at this
time. We have shown this addressed in all three experiments; Twice in the
first SVHN and MNIST experiment, one in the second SVHN and MNIST
experiment, and once in the final DR classification experiment. This chal-
lenge even stands out the most in the final DR classification results seen in
Table 13.4. The solution to this challenge is the fusion function, which takes
image-level features, and combines them into a feature which addresses the
overarching structure.

The second challenge, being to make a model which can take in an ar-
bitrary number of input images, has been addressed in all experiments too.
It saw the most empirically support for it being addressed in the second
SVHN and MNIST experiment. There we showed the possibility of varying
input sizes. This is also the challenge with the most mathematical backing
as shown in Section 11.2.2. We have given solid arguments for the model be-
ing general for any inputsize, only limited by memory in the practical setting.

The third challenge, being that we cannot expect data to be inputted
in a specific order, has been addressed both theoretically in Section 11.2.2,
and shown to work empirically in this experiment. This was addressed by
manipulating dimensions in such a way our model simulates a multi-stream
model containing multiple CNNs with shared weights, but just containing a
single CNN in the practical setting. This forces the CNN to learn to detect
features on a general basis, making input order irrelevant.

The forth and final challenge was more practically motivated. The con-
structed model should have the capabilities of performing domain adapta-
tion. Due to the single shared weight CNN, we have argued the capabilities
of applying ADDA in Section 11.3. But the same argument can be made for
many other domain adaptation structures which relies on a single, or mul-
tiple CNNs. This network should be capable of performing most, if not all
DA methods. The challenge has also been addressed in all experiments, with
clear results of domain alignment achieved totally, or partially.

113

Part V

Discussion and future work

114

Chapter 14

Discussion and Future
directions

14.1 Dealing with imbalance in DR datasets

This thesis has experimented with binary DR classification. Some side ex-
perimentation was done on unbalanced five class DR, but to no satisfactory
results. This experimentation was mainly done with weighted cross entropy
loss. Even this makes training on the unbalanced DR data hard, as some
classes are just too rare to properly learn from. The author was however
made aware of a loss known as focal loss [39], which might do the job in
helping the model learn from the few severe or proliferate examples there
are. The focal loss was discussed in the theory section (Section 4.1.2) and
provided a good alternative for to the cross entropy loss when faced with
imbalanced data.

14.2 Attention as a fusion function

The fusion functions that have been described in the method section have
mainly been static fusion functions. This however can be detrimental, and
lead to unfortunate or unforeseen network behaviours which was displayed
in the structured noisy data results. Initially it was not expected for the
network to be able to learn all permutations of the clean data and the noisy
data, but it was an interesting find and gave insight to the fusion function.

115

The fusions presented in this thesis are simple, and intuitive in nature,
but some advanced fusion function could improve performance. A dynamic
fusion function which could change depending on the task would be a good
fit for the model. For future work we recommend looking into attention
networks which can learn weights to create a weighted sum fusion of the
feature vectors instead [89]. This allows for the focus on important features,
instead of the more static versions.

14.3 Explainability and Interpretability

In a practical setting any medical imaging system should be compatible with
deep learning explainability and interpretability methods. While it was not
part of this thesis, we argued in the method section for our multi-stream
model effectively having a single view interpretation To this end, we see no
reason for the network to not be compatible with methods such as GRADcam
[69], guided backpropagation [79], etc, and encourage further investigation
into this direction.

116

Chapter 15

Conclusion

This thesis set out to classify never before seen diabetic retinopathy data
provided by UNN. This data was not collected with machine learning in mind,
and to this end we constructed a multi-stream model for DR detection that
addresses the challenges inherent to the data. In particular the multi-stream
architecture allows the processing of multiple dependent input images. Our
carefully designed fusion mechanism further allows us to fuse multiple feature
vectors extracted from different parts of the retina, into a feature vector
which represents the eye as a whole. Due to differing number of inputsizes,
our model was designed to take in an arbitrary number of dependent images
as input, only limited by memory. The datasets we worked with was chaotic,
and the retina region of each eye was not provided. The model therefore had
to be able to detect DR lesions in general, as any retina images from any part
could enter any of the models streams. Finally, for practical reasons when it
comes to real life deployment, it’s important that out model can deal with
the changing data distributions. To this end we made our model compatible
with the ADDA domain adaptation method, and argued for its applicability
also to other DA methods. Thereby addressing our main challenges.

Experimental evaluation was performed on benchmark datasets to explore
the properties of the model as a whole, and its advantages. These evaluations
highlight the models potential to address the presented challenges. Finally
we experimented on two realistic datasets which where provided by UNN.
The datasets were not collected for the purpose of machine learning, and
therefore provided a unique opportunity to address real life problems. Our
proposed solution lets us take a first step towards automatic DR detection
based on retina images from the population of Tromsø.

117

Bibliography

[1] Diabetic eye screening: guidance on camera approval, Jan 2014.

[2] Deep image mining for diabetic retinopathy screening. Medical Image
Analysis, 39:178–193, 2017.

[3] Ryo Asaoka, Hiroshi Murata, Kazunori Hirasawa, Yuri Fujino, Masato
Matsuura, Atsuya Miki, Takashi Kanamoto, Yoko Ikeda, Kazuhiko
Mori, Aiko Iwase, et al. Using deep learning and transfer learning to ac-
curately diagnose early-onset glaucoma from macular optical coherence
tomography images. American journal of ophthalmology, 198:136–145,
2019.

[4] Association of American Medical Colleges. The Complexities of Physi-
cian Supply and Demand: Projections From 2018 to 2033. Technical
report, Washington, D.C., June 2020.

[5] Muhammad Awais, Md. Tauhid Bin Iqbal, and Sung-Ho Bae. Revisit-
ing internal covariate shift for batch normalization. IEEE Transactions
on Neural Networks and Learning Systems, pages 1–11, 2020.

[6] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan. A theory of learning from
different domains. Machine Learning, 79(1-2):151–175, 2009.

[7] Geir Bertelsen, Maja Erke, Therese Hanno, Ellisiv Mathiesen, Tünde
Petö, Anne Sjølie, and Inger Njølstad. The tromsø eye study: Study
design, methodology and results on visual acuity and refractive errors.
Acta ophthalmologica, 91, 09 2012.

118

[8] Aleksandar Botev, Guy Lever, and David Barber. Nesterov’s acceler-
ated gradient and momentum as approximations to regularised update
descent, 2016.

[9] Gabriela Csurka, Fabien Baradel, Boris Chidlovskii, and Stephane Clin-
chant. Discrepancy-based networks for unsupervised domain adapta-
tion: A comparative study. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV) Workshops, Oct 2017.

[10] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314, 1989.

[11] Zhijie Deng, Yucen Luo, and Jun Zhu. Cluster alignment with a teacher
for unsupervised domain adaptation. CoRR, abs/1903.09980, 2019.

[12] Mariachiara Di Cesare, James Bentham, Gretchen Stevens, Bin Zhou,
Goodarz Danaei, Yuan Lu, Honor Bixby, Melanie Cowan, Leanne Riley,
Kaveh Hajifathalian, Lea Fortunato, Cristina Taddei, James Bennett,
Nayu Ikeda, Young-Ho Khang, Catherine Kyobutungi, Avula Laxma-
iah, Yanping Li, Hsien-Ho Lin, and Julio Cisneros. Trends in adult
body-mass index in 200 countries from 1975 to 2014: A pooled anal-
ysis of 1698 population-based measurement studies with 19·2 million
participants. The Lancet, 387:1377–1396, 04 2016.

[13] Bin Ding, Huimin Qian, and Jun Zhou. Activation functions and their
characteristics in deep neural networks. In 2018 Chinese Control And
Decision Conference (CCDC), pages 1836–1841, 2018.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
machine learning research, 12(7), 2011.

[15] Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning, 2018.

[16] Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning, 2018.

[17] Anne Elise Eggen, Ellisiv B. Mathiesen, Tom Wilsgaard, Bjarne K.
Jacobsen, and Inger Njølstad. The sixth survey of the tromsø study
(tromsø 6) in 2007–08: Collaborative research in the interface between

119

clinical medicine and epidemiology: Study objectives, design, data col-
lection procedures, and attendance in a multipurpose population-based
health survey. Scandinavian Journal of Public Health, 41(1):65–80,
2013. PMID: 23341355.

[18] Alpaydın. Ethem. Introduction to machine learning. MIT Press, 3
edition, 2014.

[19] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky. Domain-adversarial training of neural networks, 2016.

[20] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

[21] Varun Gulshan, Lily Peng, Marc Coram, Martin C. Stumpe, Derek
Wu, Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi
Widner, Tom Madams, Jorge Cuadros, Ramasamy Kim, Rajiv Raman,
Philip C. Nelson, Jessica L. Mega, and Dale R. Webster. Development
and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. JAMA, 316(22):2402–2410,
12 2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. CoRR, abs/1512.03385, 2015.

[23] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Learning an in-
variant hilbert space for domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[24] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola,
Kate Saenko, Alexei A. Efros, and Trevor Darrell. Cycada: Cycle-
consistent adversarial domain adaptation. CoRR, abs/1711.03213,
2017.

[25] Sara Hooker. The hardware lottery, 2020.

120

[26] Zilong Hu, Jinshan Tang, Ziming Wang, Kai Zhang, Ling Zhang, and
Qingling Sun. Deep learning for image-based cancer detection and
diagnosisa survey. Pattern Recognition, 83:134–149, 2018.

[27] Goodfellow. Ian, Bengibl Yoshua, and Courville Aaron. Deep learning.
MIT Press, 2016.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift, 2015.

[29] Ashish K. Jha, Catherine M. DesRoches, Peter D. Kralovec, and
Maulik S. Joshi. A progress report on electronic health records in u.s.
hospitals. Health Affairs, 29(10):1951–1957, 2010. PMID: 20798168.

[30] Nour Eldeen M Khalifa, Mohamed Loey, Mohamed Hamed N Taha,
and Hamed Nasr Eldin T Mohamed. Deep transfer learning models
for medical diabetic retinopathy detection. Acta Informatica Medica,
27(5):327, 2019.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[32] Wouter M. Kouw. An introduction to domain adaptation and transfer
learning. CoRR, abs/1812.11806, 2018.

[33] Anders Krogh and John A Hertz. A simple weight decay can improve
generalization. In Advances in neural information processing systems,
pages 950–957, 1992.

[34] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A
large video database for human motion recognition. In 2011 Interna-
tional Conference on Computer Vision, pages 2556–2563, 2011.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[36] Cindy S. Lee, Paul G. Nagy, Sallie J. Weaver, and David E. Newman-
Toker. Cognitive and system factors contributing to diagnostic errors
in radiology. American Journal of Roentgenology, 201(3):611–617, Sep
2013.

121

[37] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the
loss landscape of neural nets. CoRR, abs/1712.09913, 2017.

[38] Xiaogang Li, Tiantian Pang, Biao Xiong, Weixiang Liu, Ping Liang,
and Tianfu Wang. Convolutional neural networks based transfer learn-
ing for diabetic retinopathy fundus image classification. In 2017 10th
international congress on image and signal processing, biomedical en-
gineering and informatics (CISP-BMEI), pages 1–11. IEEE, 2017.

[39] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. CoRR, abs/1708.02002,
2017.

[40] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen
A. W. M. van der Laak, Bram van Ginneken, and Clara I. Sanchez.
A survey on deep learning in medical image analysis. CoRR,
abs/1702.05747, 2017.

[41] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I.
Sanchez. A survey on deep learning in medical image analysis. Medical
Image Analysis, 42:60 – 88, 2017.

[42] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I.
Sánchez. A survey on deep learning in medical image analysis. Medical
Image Analysis, 42:60–88, 2017.

[43] Fang Liu, Zhaoye Zhou, Alexey Samsonov, Donna Blankenbaker, Will
Larison, Andrew Kanarek, Kevin Lian, Shivkumar Kambhampati, and
Richard Kijowski. Deep learning approach for evaluating knee mr im-
ages: Achieving high diagnostic performance for cartilage lesion detec-
tion. Radiology, 289(1):160–169, 2018. PMID: 30063195.

[44] Jenny X Liu, Yevgeniy Goryakin, Akiko Maeda, Tim Bruckner, and
Richard Scheffler. Global health workforce labor market projections
for 2030. Policy Reaserch Working Paper, 7790, 2016.

122

[45] Xiaoxuan Liu, Livia Faes, Aditya Kale, Siegfried Wagner, Dun Fu,
Alice Bruynseels, Thushika Mahendiran, Gabriella Moraes, Mohith
Shamdas, Christoph Kern, Joseph Ledsam, MD Schmid, Konstanti-
nos Balaskas, Eric Topol, Lucas Bachmann, Pearse Keane, and Alas-
tair Denniston. A comparison of deep learning performance against
health-care professionals in detecting diseases from medical imaging: a
systematic review and meta-analysis. The Lancet Digital Health, 1, 09
2019.

[46] Jenny X Liua, Yevgeniy Goryakin, Akiko Maeda, Tim Allen Bruck-
ner, and Richard M. Scheffler. Global health workforce labor market
projections for 2030. Policy Research Working Paper Series 7790, The
World Bank, August 2016.

[47] Shih-Chung Lo, S.-L.A. Lou, Jyh-Shyan Lin, Matthew Freedman,
Minze Chien, and Seong Mun. Artificial convolution neural network
techniques and applications for lung nodule detection. Medical Imag-
ing, IEEE Transactions on, 14:711 – 718, 12 1995.

[48] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan.
Domain adaptation with randomized multilinear adversarial networks.
CoRR, abs/1705.10667, 2017.

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regulariza-
tion, 2019.

[50] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan: Graph con-
volutional adversarial network for unsupervised domain adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[51] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3. Citeseer, 2013.

[52] Seymour A. Papert Marvin Minsky. Perceptrons: An Introduction to
Computational Geometry. The MIT Press, Cambridge, expanded edi-
tion, 1987.

[53] Sarfaraz Masood, Tarun Luthra, Himanshu Sundriyal, and Mumtaz
Ahmed. Identification of diabetic retinopathy in eye images using

123

transfer learning. In 2017 International Conference on Computing,
Communication and Automation (ICCCA), pages 1183–1187, 2017.

[54] Sarfaraz Masood, Tarun Luthra, Himanshu Sundriyal, and Mumtaz
Ahmed. Identification of diabetic retinopathy in eye images using
transfer learning. In 2017 International Conference on Computing,
Communication and Automation (ICCCA), pages 1183–1187. IEEE,
2017.

[55] Tanya Nair, Doina Precup, Douglas L. Arnold, and Tal Arbel. Explor-
ing uncertainty measures in deep networks for multiple sclerosis lesion
detection and segmentation. Medical Image Analysis, 59:101557, 2020.

[56] Vinod Nair and Geoffrey Hinton. Rectified linear units improve re-
stricted boltzmann machines vinod nair. volume 27, pages 807–814, 06
2010.

[57] Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, Jeffrey De Fauw,
Clemens Meyer, Ćıan Hughes, Harry Askham, Bernardino Romera-
Paredes, Alan Karthikesalingam, Carlton Chu, Dawn Carnell, Cheng
Boon, Derek D’Souza, Syed Ali Moinuddin, Kevin Sullivan, Deep-
Mind Radiographer Consortium, Hugh Montgomery, Geraint Rees,
Ricky Sharma, Mustafa Suleyman, Trevor Back, Joseph R. Ledsam,
and Olaf Ronneberger. Deep learning to achieve clinically applica-
ble segmentation of head and neck anatomy for radiotherapy. CoRR,
abs/1809.04430, 2018.

[58] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. CoRR, abs/1811.03378, 2018.

[59] World Health Organization. World report on vision. World Health
Organization, 2019.

[60] Craig A. Pedersen, Philip J. Schneider, and Douglas J. Scheckelhoff.
ASHP national survey of pharmacy practice in hospital settings: Pre-
scribing and transcribing—2016. American Journal of Health-System
Pharmacy, 74(17):1336–1352, 09 2017.

124

[61] Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore
Cuomo, and Giancarlo Fortino. A survey on deep learning in medicine:
Why, how and when? Information Fusion, 66:111–137, 2021.

[62] Sehrish Qummar, Fiaz Gul Khan, Sajid Shah, Ahmad Khan, Shaha-
boddin Shamshirband, Zia Ur Rehman, Iftikhar Ahmed Khan, and
Waqas Jadoon. A deep learning ensemble approach for diabetic
retinopathy detection. IEEE Access, 7:150530–150539, 2019.

[63] Hariharan Ravishankar, Prasad Sudhakar, Rahul Venkataramani, She-
shadri Thiruvenkadam, Pavan Annangi, Narayanan Babu, and Vivek
Vaidya. Understanding the mechanisms of deep transfer learning for
medical images. In Deep learning and data labeling for medical appli-
cations, pages 188–196. Springer, 2016.

[64] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and
Younès Bennani. A survey on domain adaptation theory. CoRR,
abs/2004.11829, 2020.

[65] Jonathan Richens, Ciaran Lee, and Saurabh Johri. Improving the ac-
curacy of medical diagnosis with causal machine learning. Nature Com-
munications, 11:3923, 08 2020.

[66] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate
Saenko. Semi-supervised domain adaptation via minimax entropy.
CoRR, abs/1904.06487, 2019.

[67] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Madry. How does batch normalization help optimization?, 2019.

[68] Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz,
Naama Hammel, Jonathan Krause, Arunachalam Narayanaswamy,
Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph,
Michael Shumski, Jesse Smith, Arjun B. Sood, Greg S. Corrado, Lily
Peng, and Dale R. Webster. Using a deep learning algorithm and inte-
grated gradients explanation to assist grading for diabetic retinopathy.
Ophthalmology, 126(4):552 – 564, 2019.

[69] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam,
Michael Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why

125

did you say that? visual explanations from deep networks via gradient-
based localization. CoRR, abs/1610.02391, 2016.

[70] Theodoridis. Sergios and Koutroumbas. Konstantinos. Pattern Recog-
nition. Elsevier, 4 edition, 2009.

[71] K Shankar, Yizhuo Zhang, Yiwei Liu, Ling Wu, and Chi-Hua Chen.
Hyperparameter tuning deep learning for diabetic retinopathy fundus
image classification. IEEE Access, 8:118164–118173, 2020.

[72] Yaxin Shen, Bin Sheng, Ruogu Fang, Huating Li, Ling Dai, Skylar
Stolte, Jing Qin, Weiping Jia, and Dinggang Shen. Domain-invariant
interpretable fundus image quality assessment. Medical Image Analysis,
61:101654, 2020.

[73] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu,
Isabella Nogues, Jianhua Yao, Daniel Mollura, and Ronald M Sum-
mers. Deep convolutional neural networks for computer-aided detec-
tion: Cnn architectures, dataset characteristics and transfer learning.
IEEE transactions on medical imaging, 35(5):1285–1298, 2016.

[74] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[75] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos, 2014.

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2015.

[77] Ruoxian Song, Peng Cao, Jinzhu Yang, Dazhe Zhao, and Osmar R
Zaiane. A domain adaptation multi-instance learning for diabetic
retinopathy grading on retinal images. In 2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 743–
750. IEEE, 2020.

[78] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101:
A dataset of 101 human actions classes from videos in the wild, 2012.

[79] Jost Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. Striving for simplicity: The all convolutional net. 12 2014.

126

[80] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 06 2014.

[81] James V. Stone. Information theory: A tutorial introduction. CoRR,
abs/1802.05968, 2018.

[82] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for com-
puter vision, 2015.

[83] Ben Tan, Yu Zhang, Sinno Pan, and Qiang Yang. Distant domain
transfer learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1), Feb. 2017.

[84] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. CoRR, abs/1905.11946, 2019.

[85] Teknologiraadet. Kunstig intelligens - muligheter, utfordringer og en
plan for norge. 2018.

[86] Zhigang Tu, Wei Xie, Qianqing Qin, Ronald Poppe, Remco C.
Veltkamp, Baoxin Li, and Junsong Yuan. Multi-stream cnn: Learning
representations based on human-related regions for action recognition.
Pattern Recognition, 79:32–43, 2018.

[87] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adver-
sarial discriminative domain adaptation. CoRR, abs/1702.05464, 2017.

[88] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

[89] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. CoRR, abs/1706.03762, 2017.

[90] IV Walton, O. Bennett, Robert B. Garoon, Christina Y. Weng, Jacob
Gross, Alex K. Young, Kathryn A. Camero, Haoxing Jin, Petros E.
Carvounis, Robert E. Coffee, and Yvonne I. Chu. Evaluation of Auto-
mated Teleretinal Screening Program for Diabetic Retinopathy. JAMA
Ophthalmology, 134(2):204–209, 02 2016.

127

[91] Jing Wang, Yiwei Chen, Wanyue Li, Wen Kong, Yi He, Chuihui Jiang,
and Guohua Shi. Domain adaptation model for retinopathy detection
from cross-domain oct images. In Tal Arbel, Ismail Ben Ayed, Marleen
de Bruijne, Maxime Descoteaux, Herve Lombaert, and Christopher
Pal, editors, Proceedings of the Third Conference on Medical Imaging
with Deep Learning, volume 121 of Proceedings of Machine Learning
Research, pages 795–810. PMLR, 06–08 Jul 2020.

[92] Mei Wang and Weihong Deng. Deep visual domain adaptation: A
survey. CoRR, abs/1802.03601, 2018.

[93] World Health Organisation (WHO). Global Report on Diabetes. Work-
ing Papers id:10553, eSocialSciences, April 2016.

[94] Garrett Wilson and Diane J. Cook. A survey of unsupervised deep
domain adaptation. ACM Trans. Intell. Syst. Technol., 11(5), July
2020.

[95] Zuxuan Wu, Yu-Gang Jiang, Xi Wang, Hao Ye, Xiangyang Xue, and
Jun Wang. Fusing multi-stream deep networks for video classification.
CoRR, abs/1509.06086, 2015.

[96] Xifeng Guo, Wei Chen, and Jianping Yin. A simple approach for un-
supervised domain adaptation. In 2016 23rd International Conference
on Pattern Recognition (ICPR), pages 1566–1570, 2016.

[97] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical eval-
uation of rectified activations in convolutional network. CoRR,
abs/1505.00853, 2015.

[98] Dalu Yang, Yehui Yang, Tiantian Huang, Binghong Wu, Lei Wang, and
Yanwu Xu. Residual-cyclegan based camera adaptation for robust dia-
betic retinopathy screening. In Anne L. Martel, Purang Abolmaesumi,
Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou,
Daniel Racoceanu, and Leo Joskowicz, editors, Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2020, 2020.

[99] Yanchao Yang and Stefano Soatto. FDA: fourier domain adaptation
for semantic segmentation. CoRR, abs/2004.05498, 2020.

128

[100] Yinsheng Zhang, Li Wang, Zhenquan Wu, Jian Zeng, Yi Chen, Ruyin
Tian, Jinfeng Zhao, and Guoming Zhang. Development of an auto-
mated screening system for retinopathy of prematurity using a deep
neural network for wide-angle retinal images. IEEE Access, 7:10232–
10241, 2019.

[101] Mohammadreza Zolfaghari, Gabriel L. Oliveira, Nima Sedaghat, and
Thomas Brox. Chained multi-stream networks exploiting pose, mo-
tion, and appearance for action classification and detection. CoRR,
abs/1704.00616, 2017.

129

	I Introduction
	The prevalence of diabetic retinopathy
	The obesity pandemic
	The dataset
	Dataset Challenges

	Contributions
	Thesis outline

	II Theory and Related Work
	Notation
	What is Machine Learning
	Risk minimization and Classification
	Loss functions
	Cross Entropy Loss
	Focal Loss

	Gradient Decent
	Perceptrons
	Activation function
	The sigmoid function
	The ReLU activation function

	Multilayer Perceptrons
	Calculating the MLP gradient

	Convolutional Neural Networks
	The Convolution Operation
	Sparse Interactions
	Parameter Sharing
	Equivariant Representation

	Convolution Examples
	Pooling
	A basic convolution layer
	Calculating the gradient in a CNN
	Gradient over the pooling operation

	ResNet

	Regularization
	Batch Norm
	The case for landscape smoothing
	The case for CSI

	Weight decay
	L1-regularization

	Dropout
	Data augmentation

	Domain Adaptation
	Annotation
	General DA theory
	Key technical approaches
	Discrepancy-based DA
	Adversarial-based DA
	Reconstruction-based DA

	ADDA
	DA in the medical field

	III Materials and Methods
	Diabetic retinopathy detection
	The Eye
	Diabetic Retinopathy

	Diabetic Retinopathy dataset

	Methods
	The multi-stream architecture
	The Model
	Model intuition
	How the model works
	Fusion functions

	ADDA

	IV Experiments and Results
	Experiments
	Proof of concept
	MNIST and SVHN datasets
	Diabetic Retinopathy classification

	Results
	Effects of noisy data on Multistream model
	Multistream DA onto single network
	DR data

	V Discussion and future work
	Discussion and Future directions
	Dealing with imbalance in DR datasets
	Attention as a fusion function
	Explainability and Interpretability

	Conclusion

