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As temperatures rise, motile species start to redistribute to more suitable
areas, potentially affecting the persistence of several resident species and
altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot
for global warming, marine fish from boreal regions have been increasingly
found in the more exclusive Arctic region. Here, we show that this shift in
species distribution is increasing species richness and evenness, and even
more so, the functional diversity of the Arctic. Higher diversity is often inter-
preted as being positive for ecosystem health and is a target for conservation.
However, the increasing trend observed here may be transitory as the traits
involved threaten Arctic species via predation and competition. If the
pressure from global warming continues to rise, the ensuing loss of Arctic
species will result in a reduction in functional diversity.
1. Introduction
In the Arctic, shifts in species distribution driven by climate warming are
rapidly changing the composition of marine fish communities [1–4]. Whereas
marine species are lost at higher rates in the tropics [5–7], they are gained in
the Arctic due to southerly species range expansion [2,3,8]. With Arctic warm-
ing, an increase in water temperature and sea-ice loss [9] induce changes in
habitat and resource availability [10], favouring the colonization by species
that differ in resource requirement and traits from the endemic species [1,3].
As the Arctic communities have low functional diversity, incoming species
are expected to broaden the distribution of functional traits, increasing func-
tional diversity [11] and influencing adaptive capacity and ecosystem
functioning. However, shifts in species range and changes in habitat conditions
may trigger local extinctions of Arctic species due to ecological interactions and
habitat loss, with subsequent reduction in functional diversity. The net effect of
warming on Arctic functional diversity is, therefore, unknown.

The northern Barents Sea is one of the most rapidly warming places on
Earth [12], with the strongest temperature increases of the lower atmosphere,
the greatest winter sea-ice loss and a rapidly warming ocean [9], hence it is a
sentinel region for climate change. Like other Arctic marine ecosystems, it is
cold, stratified and ice covered. It has a colder, fresher Arctic water layer that
protects the sea-ice cover from a deeper layer of warm and saline Atlantic
water. But, after approximately 2005, the stratification has weakened, resulting
in a dramatic warming of the Arctic layer and rapidly diminishing sea-ice
cover [9], modifying the habitat characteristics relevant for the demersal fish
community and leading to its reorganization.
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Figure 1. Change in ecosystem functional characterization in the Barents Sea. Community-weighted mean trait values (CWM) (a,b) and community-weighted trait
variance (CWV) (c,d) estimated from observations of demersal fish during ecosystem surveys in two subregions of the Barents Sea (blue, Arctic; red, boreal), in the
first and last years of the ecosystem survey data, 2004 (a,c) and 2017 (b,d). Circles refer to sampled sites and are coloured in two colour gradients. For CWM, colours
range from blue, indicating dominance of Arctic-like traits, to red, indicating dominance of boreal-like traits. For CWV, colours range from yellow, indicating low trait
variance (low heterogeneity), to green, indicating high trait variance (high heterogeneoity). (Online version in colour.)
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Here, we use an extensive dataset of over 4000 stations
sampled during 2004–2017 [13] to investigate changes in
fish biodiversity and apply a community-wide multi-trait
analysis that allows the assessment of the magnitude and
character of functional diversity. The high rates of environ-
mental and ecological change experienced in this Arctic
warming hotspot—one of the best-observed marine ecosys-
tems in the world—provide a unique opportunity to
investigate the influence of climate change on assembly
processes and their ecosystem implications.
2. Material and methods
The taxonomic and functional properties of fish communities
were assessed based on 14 years of detailed information on the
abundance of 49 demersal fish species found in the Barents
Sea. Sampling was done using standardized shrimp bottom
trawls (Campelen 1800) at every 60 km (35 nm, towed at
approx. 3 km for 15 min) and covered the entire shelf sea (surface
area approx. 1 400 000 km2) from the boreal region north of
Norway and the Kola peninsula in Russia, to the Arctic archipe-
lagos of Svalbard, Franz Josef and Novaya Zemlya, totalizing
4223 sampled fish communities [13].

Comprehensive information of 15 functional traits, including
habitat affinity, life history, body size, feeding ecology and food-
web characteristics [1] were used to estimate functional
characterization and complementary measures of functional
diversity—functional richness, functional dispersion and func-
tional variance (electronic supplementary material, table S1).
The chosen traits provide information on species characteristics
that are involved in assembly processes (life history, habitat
affinity and feeding ecology), and ecosystem functions (feeding
ecology and foodweb characteristics) [14]. Together with taxo-
nomic diversity, the above-mentioned functional diversity
indices provide an assessment of magnitude and character of
changes in biodiversity. Species richness is the count of unique
species found in each sampling location (individual hauls) and
species evenness was measured following Pielou’s index, as:
Shannon index/(log(richness) + 1). Functional richness, calcu-
lated with the R software [15] package FD [16], was
measured on a dendrogram of fish functional traits as the
sum of branch length connecting all species in a community.
This measure yields the functional distance between species
in a community, and increases as species with differing trait
values are added [17]. Functional dispersion, measured as
Rao’s Q [18], was calculated using R package FD [16], and indi-
cates the spread of species in trait space and is affected by both
the trait distance and abundance distribution of the species in a
community [19,20]. Changes in functional dispersion may be
due to the gain or loss of traits or stem from changes in species
evenness and richness [20]. Disentangling the relative contri-
butions of functional richness, species evenness and species
richness to functional dispersion helps to infer which are the
candidate ecological explanations for the observed trends in
functional diversity. For this purpose, we used a general
mixed effect linear model applied to all sampling locations
across the entire Barents Sea, with years as random effect,
and spatial-autocorrelation structure nested by region. We
further analysed the contribution of the three indices to the
trend in functional dispersion within each region using
region-specific mixed effect models. Mixed effect models
were run with the R package nlme [21].

To identify the traits responsible for changes in functional
diversity, we computed the community-weighted variance of
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Figure 2. Observed changes in fish functional diversity estimated from common diversity measures. Common functional diversity metrics averaged over the Arctic (in
blue) and boreal (in red) regions of the Barents Sea (polygons shown in figure 1), showing (a) functional dispersion, (b) functional richness, (c) species evenness and
(d ) species richness. Solid lines are smoothed averages and dotted lines connected the mean values taken after pooling all stations found in each region. (Online
version in colour.)
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trait values (CWV), using multiple traits simultaneously, thus
extending previous single-trait approaches [22]. For this, traits
were scaled and fuzzy coded and the multivariate analysis
was done with the R package vegan [23]. The variance of each
individual trait within sampling units was weighted by the rela-
tive abundance of all species characterized by that trait. We then
investigated the CWV of the 15 traits simultaneously by com-
puting a principal component analysis (PCA). The principal
components of the CWV PCA provide the basis for metrics of
functional variance, allowing the simultaneous assessment of
the magnitude (by means of the CWV scores on the principal
components) and character (by inspecting the CWV factor load-
ings on the principal components) of functional variance. Thus,
the functional variance approach proposed here provides a
good candidate metric and can replace traditional indices of
functional diversity (e.g. functional dispersion, functional rich-
ness or functional evenness) that lack information on which
functional traits are responsible for the functional diversity.
Hence, we name the values obtained from the first principal
component as functional variance PC1, to distinguish them
from the other components. We also extended previous ana-
lyses of community-weighted mean trait values (CWM) [1] to
include data from 2014 to 2017. Together, the main components
of the CWV and CWM PCA provide a summary of functional
traits distributions. The R script for calculating CWV for mul-
tiple traits simultaneously is provided in the electronic
supplementary material.

We analysed the temporal development of biodiversity and
functional traits related to key ecosystem functions (see more
explanation in the Results and discussion section) in two distinct
climatic and zoogeographic regions of the Barents Sea, a north-
eastern Arctic and a southwestern boreal region (figure 1). For
these analyses, we use the mean values within each region and
year (figures 2 and 3), but we provide a complementary analysis
of the temporal development of functional variance using all
individual sampling stations in each region, corrected for spatial
autocorrelation, in the electronic supplementary material. For
taxonomic diversity indices, variation in sampling effort within
regions may bias the estimates. The two regions have good
sampling coverage during the study period with the exception
of the low sampling effort in 2014 in the Arctic region, caused
by extensive sea-ice coverage limiting survey sampling. The
regions have been analysed in previous publications for species
distribution [2], food web metrics [24] and CWM values [1], pro-
viding important ecological background information for
this study. We also map changes in biodiversity across the
entire Barents Sea (electronic supplementary material, figures
S1 and S2).
3. Results and discussion
We found that functional dispersion in the Arctic region was
low in 2004, but increased rapidly to levels comparable with
the boreal region by 2012, maintained thereafter until at least
2017 (figure 2a). This major increase in functional dispersion
in the Arctic and its levelling with the boreal region is unpre-
cedented and predates by several years the expected
convergence in CWM of Arctic and boreal regions based on
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Figure 3. Observed changes in the variance of fish functional traits. Mean CWV values pooled in the Arctic (in blue) and boreal (in red) regions of the Barents Sea
(polygons shown in figure 1). (a) Functional variance, measured as the first principal component of the community-weighted trait variance analysis; (b–d) the
variance of individual traits in each region: community-weighted variance of (b) benthivory, ( feeding ecology) (c) age at maturity (life history) and (d ) foodweb
links to fish prey (foodweb-related characteristics). Solid lines are smoothed averages and dotted lines connected the mean values taken after pooling all stations
found in each region. CWV of all functional traits is shown in electronic supplementary material, figure S3. (Online version in colour.)
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recent estimates [1]. The increase in functional dispersion
may be due to the addition of novel boreal traits or stem
from changes in species evenness in the Arctic region.
Together, species richness (slope: −0.29 ± 0.01, p< 0.001), species
evenness (slope: 7.02 ± 0.1, p< 0.001) and functional richness
(slope: 0.06 ± 0.001, p< 0.001) accounted for 58% of the
spatio-temporal variation in functional dispersion across the
Barents Sea (electronic supplementary material, figure S3).
Region-specific analyses indicate that the three variables
(species richness, species evenness and functional richness)
explain the variance in functional dispersion better in the
boreal than in the Arctic region (r2 = 0.78 and 0.50, respect-
ively). Thus, although functional richness, species richness
and evenness increased faster in the Arctic than in the
boreal region, their rate of increase does not explain the
higher rate of change in functional dispersion observed in
the Arctic (figure 2a–d).

Our approach using CWV on multiple traits can help
explain the rapid increase in functional dispersion seen in
the Arctic. The first principal component (PCI) of the
multiple-trait CWV—our functional variance PC1—accounted
for 56% of variation in the data (electronic supplementary
material, figure S4). The functional variance PC1 was a
good indicator of functional dispersion, being highly corre-
lated with that metric (r2 = 0.83). The functional traits
associated with the functional variance PC1 were foraging-
related traits, specifically traits that describe the number of
trophic links to fish prey, and to bird and mammal predators
(electronic supplementary material, figure S5). Functional
traits that describe somatic growth capacity and temperature
affinity were also positively associated with functional
variance PC1. The variance of functional traits associated
with PC1 was lower in the Arctic than in the boreal region
in 2004, but increased rapidly in the Arctic region, converging
to boreal levels by 2012 (figure 3). The PC1 of the Arctic
CWM also increased rapidly, but did not reach boreal
values due to the persistence of Arctic species in the region
(figure 4). Our CWV analysis of multiple traits provides an
alternative to measures of functional dispersion with the
added benefit of characterizing the traits involved in changes
in functional diversity. Such characterization is crucial to
infer assembly processes and understand community
responses to environmental change.

The strong increase in functional variance of the Arctic
Barents Sea region is driven by the incoming boreal species,
whose traits differ from those of Arctic species that still
persist in the region (electronic supplementary material,
figure S6). These incoming boreal species enter the Arctic
region at different times, and the increased importance of
boreal traits observed in the Arctic region is due to coloniza-
tion by several boreal species throughout the study period
(electronic supplementary material, figures S5–S9). Our
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findings are consistent with expectations from the commu-
nity assembly process, which predicts that, in order to
establish in the Arctic, boreal species must cope with the
environmental conditions and ecological interactions with
resident Arctic species [25]. The increasing water tempera-
tures in the northern Barents Sea facilitate the establishment
of boreal species, such as cod, haddock and redfish, which
are better suited for warmer waters than the cold-adapted
Arctic species. Further, the boreal species entering the
Arctic differ from the resident species in terms of resource
use, by either feeding on different prey or on the Arctic fish
species themselves, thereby being able to cope with compe-
tition. The fish species typically found in the Arctic are
generally smaller and more specialized on benthic invert-
ebrate prey than the incoming boreal species [1,11]. The
latter can also feed on pelagic prey, including fish (e.g.
polar cod), and are thereby advantaged by the climate-
driven increase in pelagic productivity due to poleward
expansion of Atlantic waters [26] and reduced Arctic ocean
stratification [27]. The primary role of foraging traits in fuel-
ling the increase in Arctic functional variance strongly
suggests the importance of ecological interactions in the
assembly process determining which incoming boreal species
may successfully establish.

The incoming boreal traits can further change ecosystem
functions and food web configurations in the Arctic [28].
The fish species moving rapidly northward in the Barents
Sea are mostly motile, large, piscivorous generalists. This con-
trasts with findings from other North Atlantic seas, where
small pelagic fish are observed to move northwards
[29–31]. The increase in functional variance promotes
adaptive capacity [32] of Arctic communities, but if the
trend in climate-driven habitat modification persists, these
communities might lose the benthivore fish component,
leading to biodiversity loss and, therefore, reduction in adap-
tive capacity. A homogenization of fish communities is
already observed across many parts of the Barents Sea due
to the increase in cod abundance, a motile top predator
with potential for wide-spread top-down effects [33,34]. As
our results show, the Arctic ecosystem is gaining fish species
occupying higher trophic levels than the resident ones, and
relying both on pelagic and benthic resources. The increased
importance of piscivory will trigger top-down effects, redu-
cing the number of secondary consumers and releasing
their prey from predation pressure. Thus, the widened
resource usage to include pelagic prey will influence the
degree of bentho-pelagic coupling and the importance of
pelagic productivity in sustaining the fish community in
the Arctic.

Our results on functional variance documenting the mag-
nitude and character of recent changes in functional traits
provide a measure of the ongoing ecological transition in
Arctic marine ecosystems and are an early warning of
impact to come if the pressure from global warming con-
tinues to rise. Further warming and reduction in sea-ice
coverage will most likely continue to negatively affect the
Arctic fish species whose food availability largely depends
on the coupling between sea-ice cover and the benthic
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production [35], and whose vulnerability to natural enemies
will be challenged by new incoming predators.
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