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Inquiry-based mathematics education (IBME) is an increasingly important ingredient of the 

mathematics education in the Nordic countries. The central principle of IBME is that the students are 

to work in ways similar to how professional mathematicians work. In this qualitative case study, we 

investigate whether mathematical pathologies induce students to work like mathematicians, and thus 

if pathologies are suitable starting points for IBME. We based our investigations on a little-known 

pathology: multiplication problems that can be mirrored about the equal sign without altering the 

answer.  
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The national curricula are essential to the so-called Nordic model of education, and in the new 

national mathematics curriculum of Norway the Norwegian equivalent of the term inquiry is used 

repeatedly (69 times, to be exact). This is an indication of the rising popularity of IBME: a form of 

teaching whose guiding principle is that the students are supposed to work in ways similar to how 

professional mathematicians work (Artigue & Blomhøj, 2013; Council, 2000; Dorier & Maass, 2014). 

But what kind of tasks can be relied upon to impose questions on the student and thus form suitable 

starting points for IBME? In this paper, we suggest that one answer to that question lies in the realm 

of pathological objects. 

A mathematical pathology is “an example specifically cooked up to violate certain almost 

universally valid properties.”1 The history of mathematics abounds with pathological objects, many 

of which were of crucial importance to the development of one branch or another. Sriraman and 

Dickman (2017) argue that pathologies can be pathways to divergent thinking and creativity. The 

chief pedagogical value of pathologies, they claim, lies in  

their ability to challenge our perception and intuition, and the resulting advances as we equilibrate. 

Whether dealing with a space-filling Peano curve in the plane or a misapplied cancellation law 

sporadically holding among fractions, we are discontent to remain stationary in response to these 

phenomena. Instead, we mobilize and investigate how to reconcile our worldviews with the novel 

pathologies now recognized as co-occupying the same mathematical spaces in which we had long 

operated. (p. 141) 

It seems reasonable to expect that these same question-inducing qualities make pathologies 

promising starting points for inquiry. In this qualitative case study, we investigate whether 

mathematical pathologies are suitable as starting points for inquiry-based mathematics teaching. To 

this end, we developed and tried an inquiry-activity around the little-known pathology of 

multiplication problems like 12 ∗ 63 that can be reversed (36 ∗ 21) without altering the answer. The 

 

1 http://mathworld.wolfram.com/Pathological.html 
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main purpose of our study is to draw attention to a hitherto perhaps underused resource in 

mathematics education: the mathematical pathology. 

Our main concern shall be whether using pathologies as starting points for inquiry induces students 

to work in ways similar to professional mathematicians. A source of information on how 

mathematicians work is introspective accounts from professional mathematicians, and we shall 

largely rely on such in our discussion. 

Methods 

The following research question was addressed in this study: Are mathematical pathologies suitable 

as starting points for inquiry-based mathematics teaching? The study followed a qualitative case 

study design. 

Pathological palindromes 

It is a little-known fact that for certain multiplication problems one may mirror the digits about the 

equal sign without altering the answer. Thus, while it is to be expected that 12 ∗ 63 = 63 ∗ 12, it is 

more surprising that we also have 12 ∗ 63 = 36 ∗ 21. To the best of our knowledge, the only 

previously published paper on this pathology in English is Manheim (1979), where (amongst other 

things) the author identifies all such two-digit “palindromes”. The most straightforward way of 

investigating the palindromes is through algebraizing: 
(10𝑎 + 𝑏)(10𝑐 + 𝑑) = (10𝑑 + 𝑐)(10𝑏 + 𝑎). 

This leads to the necessary and sufficient criterion for being a palindrome that 𝑎𝑐 = 𝑏𝑑. For more on 

the palindromes see Manheim (1979) or Roksvold (2018). 

Participants and setting 

The participants in this study were convenience sampled and were either teacher students (n=40) or 

upper secondary school students (n=7). Two of the upper secondary students are referred to by 

pseudonyms (Alma and Leo) as they were equipped with a GoPro camera and thus followed more 

closely. Upper secondary and teacher students are different in many respects, but we do not think that 

these differences are of much consequence to our research question. Accordingly, such differences 

shall not play a part in the discussion, and we shall occasionally refer to the students or the 

participants without further specification.  

The teacher students all took a course that the first author instructed. The upper secondary students 

were recruited through their teacher, who is a participant in the SUM-project (Haavold & Blomhøj, 

in press), in which both authors are involved as researchers. The upper secondary students were in 

their last year of school, in what would correspond to grade 12 in the K12 system (it is the 13th school 

year in Norway).2  

The first two sessions, involving the teacher students, took place at a university in Norway. The 

third session, involving the upper secondary school students, took place at an upper secondary school 

in Norway.  

Procedure 

All three sessions followed the same basic outline, and each had a duration of 1-2 hours. First, the 

students were divided into groups of 2-4. Then, the instructor wrote 12 ∗ 63 in the upper left corner 

of the blackboard (or whiteboard) and 36 ∗ 21 in the lower right corner. It was up to the students to 

take it from there; no further instruction was given, no question was posed, and no direction was 

suggested. 

 

2 The students had R2-mathematics, which is geared towards future studies in the “hard sciences”. 



 

 

We recorded audio from four of the groups of teacher students. In addition, these sessions were 

observed by the second author, and we collected the teacher students’ worksheets. We recorded audio 

from all three groups of upper secondary students. In addition, their classroom was filmed, and one 

of the upper secondary students (Leo) had a GoPro camera attached to his head.3  

Results 

An inductive content analysis (in accordance with Elo & Kyngas, 2008) was performed on the entire 

corpus of data. The audio and video recordings were transcribed and coded; the codes were then 

distilled into content-related themes that each relate to the research question. These themes were 

engagement and familiarization through examples; collaboration, contingencies and alternative 

solutions; and conjectures and refutations. 

Engagement and familiarization through examples 

The teacher’s task in the initiation phase is restricted to somehow displaying 12 ∗ 63 and 36 ∗
21 (preferably with good spacing between them). Some of the students initially seemed unsure about 

what was probably an unfamiliar situation: 

Teacher student 1:  What are we supposed to do? 

Any hesitation was typically short lived, however, as the two multiplication problems triggered the 

participants’ curiosity: 

Teacher student 2:  Ok, so these are opposite numbers. I mean … it’s the same numbers only in 

reverse order. We should just calculate both and find the answers.  

Seeing that the multiplication problems are mirror images of each other and that they have the same 

answer raised some questions: 

Teacher student 3:  We should see if this is true for other numbers as well. Two-digit ones. Let’s 

try 28 times 73.” And a bit later on: “This is not right; it’s not the same. 

Teacher student 4:  So then we know it’s not true in general … 

Early on in all three sessions, the students discovered palindromes such as 11 ∗ 33 = 33 ∗ 11 and 

27 ∗ 72 = 27 ∗ 72 and classified these as special cases fundamentally distinct from the initial 

example 12 ∗ 63 = 36 ∗ 21. Having identified these degenerate cases, the students typically 

continued either by trying to find more non-trivial examples (by chance, even) or by trying to detect 

some underlying mechanism or pattern in the examples already at hand. Several of the groups focused 

on factorization and primes, suspecting that a multiplication problem being a palindrome (the students 

typically did not use this word) had something to do with the factors involved.  

Collaboration 

The participants of a session collaborated across the groups of 2-4 by sharing new palindromes, 

approaches or observations with the rest of the “class”. New palindromes would help other groups by 

enabling them to further test their conjectures. The following discussion, between upper secondary 

students Alma and Leo, illustrates a typical case of the collaboration that took place within the groups: 

 

3 It was our experience that the unobtrusiveness of these cameras made participants less self-conscious about being filmed. 

Another methodological advantage that the cameras offer is bringing the researcher close to the action, thus perhaps 

increasing their chances of noticing details. Being attached to the forehead, the camera also conveys the direction of focus 

of its wearer.  



 

 

Alma:  We need to look for what these [palindromes] have in common.  

And, after some trying and failing: 

Alma: I think we need to start with one number and then multiply that number with four, 

for example. If you see what I mean …?  

She then explained her idea algebraically by writing 𝑎 ∗ 4𝑏 = 4𝑎 ∗ 𝑏 on the whiteboard and said that 

they needed to “insert numbers a and b.”  

Leo:  What if we just insert something, like 𝑎 equals fifteen … well, that becomes fifty-

one, so that’s wrong …  

Alma:  But we still need the answers to equal each other after the multiplications are 

mirrored. 

Leo:  If it’s supposed to be four, then we can’t have an odd factor.  

Alma: Yes, I agree.  

Leo:  What if we take twenty-four … well, if we mirror that, it’s forty-two, so that’s no 

good …  

Alma:  But it doesn’t have to be four [pointing at the equation 𝑎 ∗ 4𝑏 = 4𝑎 ∗ 𝑏], it can also 

be two here, see? And twenty-four times two …  

Contingencies and alternative solutions 

The authors, who thought they knew these palindromes, were faced with three surprises. First and 

foremost, one of the teacher students discovered a new layer of hidden symmetry: In the palindrome 

12 ∗ 63 = 36 ∗ 21, the differences 63 − 12 = 51 and 36 − 21 = 15 are mirror images of each 

other. The students were clearly satisfied with having found something that the teacher (in this case 

the first author) did not even know was there, and proceeded by inquiring: “Is this always the case?” 

and, conversely, “Does having this symmetry of differences imply that the multiplication problem is 

a palindrome?” Testing these newly formed hypotheses on other examples (previously found by the 

groups’ combined efforts), the teacher students soon discovered that the double layer of symmetry 

unfortunately fails in the case 63 ∗ 24 = 42 ∗ 36.  

Second, a group of teacher students found empirically that the equality 𝑎 ∶ 𝑑 = 𝑏 ∶ 𝑐 seems to 

always hold and realized that this should enable them to produce new palindromes. The same students 

did not proceed to prove the equality algebraically, but it is tempting to suggest that this was a 

question of having too little time. The relation is equivalent to the product of the “ones” being equal 

to the product of the “tens”.  

Third, shortly after the discussion that we reproduced in the previous subsection Alma seemed to 

have an epiphany and eagerly wrote 12 followed by a multiplication sign on the whiteboard while 

exclaiming “Twelve! Twelve is a good number.” Directly underneath the number twelve she writes 

its double, 24, along with another multiplication sign on its right. She then goes back up again and 

writes 42 – the mirror image of 24 – on the right side of the equal sign. Finally, underneath 42 and to 

the right of the lower multiplication sign she writes 21, the half of 42.  

Alma:  This should work!  

She starts calculating 12 ∗ 42 and 21 ∗ 24 on the blackboard, using the standard algorithm. 

Leo:  But do we have a general rule for this? 

Alma: Ha, ha. No! But look, it works … twelve times forty-two is equal to twenty-four 

times twenty-one! 

Leo:  We found a pattern … 

Alma:  This should work on other numbers too. Let’s try with … 



 

 

At this point, the teacher initiated a class discussion summarizing the class’ findings so far. Alma’s 

discovery was unfortunately not included in the summary, as she seemed reluctant to share it. That 

was a pity, because she had (with the help of Leo) just discovered a simple and game-like algorithm 

that was unknown to us: 

1. Start with a number, let’s say 41,  

2. Double it: 82. 

3. Then mirror the result: 28.  

4. And finally, divide this last number by two: 14. 

It turns out; you have just found the palindrome 41 ∗ 28 = 82 ∗ 14. If the students or the teacher had 

fully realized this, and had been given more time, it would have been very much in the spirit of IBME 

to pursue the matter further: “Can you start with any number and end up with a palindrome?” (No.) 

“Do we get all two-digit palindromes this way?” (Sort of.4) And, moreover, “Why does it work?” 

Conjectures and refutations 

Having seemingly forgotten their recent breakthrough, or not recognized it as such, Alma and Leo 

began forming a series of conjectures based on the growing set of examples that the three groups of 

upper secondary students had found between them. They tested these conjectures against the 

examples, and the trials that did not end well led to the formation of a new conjecture through a 

modification of the old one.  

The first in this series of conjectures was that for palindromes the digit sums on each side of the 

equal sign must be the same. This initial conjecture was not long-lived. 

Leo:  But … if we are to be completely honest with ourselves … if we just take any 

product and mirror it, let’s say thirty-four times fifty-one and its mirror image 

fifteen times forty-three, these are not equal to each other, but the digit sums are 

still the same.  

Adapting to this temporary setback and motivated by their own previously found example 12 ∗ 42 =
24 ∗ 21, they form a new conjecture: The digit sum of one of the numbers must equal three while the 

other one’s must be divisible by three. They write this conjecture on the whiteboard and then go about 

trying to falsify it, by way of counterexamples. 

Leo:  But forty-eight times forty-two [an example discovered by one of the other groups] 

does not have any digit sum equal to three – it has digit sums six and twelve.  

Alma:  But those are both divisible by three!  

Alma then alters their conjecture by adding the sign “%”. The conjecture now reads: Digit sums must 

be % 3 - meaning that all digit sums must be divisible by three. Leo then notices that in both 12 ∗
63 = 36 ∗ 21 and 42 ∗ 12 = 21 ∗ 24 one of the numbers has 7 as a factor.  

Leo:  And it changes from one number to the other [i.e. the seven is not a factor of sixty-

three mirrored, but rather of twelve mirrored]. This I believe is important! 

Once again, they alter their conjecture, this time by appending and there must be a 7 which changes 

place. At this point they are interrupted, since one of the other two groups of upper secondary students 

has discovered a promising pattern which the teacher encourages them to share, namely that the 

 

4 To produce all but three of the 14 non-trivial two-digit palindromes one must sometimes multiply by 3 or 4 in step two 

of Alma’s algorithm (and divide by that same number in step four). Permitting multiplication and division by 3/2 and 4/3 

yields the final three as well. 



 

 

product of the ones is equal to the product of the tens. Leo immediately starts calculating 13 ∗ 93, 

etc., on the whiteboard, and soon exclaims “Wow! That actually works!” and drops the calculator to 

the floor. 

Discussion  

The first finding was that the pathology seemed to be effective at triggering the students’ curiosity 

and led them to pose both questions and conjectures. Typically, the students’ initial investigation was 

a familiarization through examples. The groups tended to alternate their efforts between looking for 

new examples and searching for patterns in the examples at hand; this seems to also be the way of 

professional mathematicians. The late Hungarian mathematician Paul Halmos expressed it like this: 

A good stack of examples, as large as possible, is indispensable for a thorough understanding of 

any concept, and when I want to learn something new, I make it my first job to build one. (1985, 

p. 63)  

According to Halmos, “the examples should include, whenever possible, the typical ones and the 

extreme degenerate ones” (1985, p. 62). In the case of two-digit palindromes, the extreme degenerate 

examples are palindromes such as 11 ∗ 33 = 33 ∗ 11 and 74 ∗ 47 = 74 ∗ 47, which participants of 

all three sessions found early on. 

The examples that the groups had at hand at any given time were prodded in the search for different 

kinds of pattern. Some groups investigated patterns in the prime factorizations, other groups looked 

at patterns in the digit sums, others again considered patterns of ratio, and so on. The search for and 

description of patterns is such a significant part of the work of a professional mathematician that 

mathematics itself is often referred to as the “science of patterns” (see e.g. Devlin, 2000, pp. 7, 72). 

The British mathematician Andrew Wiles, famous for proving Fermat’s Last Theorem, once 

described this inductive phase of discovery in an interview: 

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark 

mansion. One goes into the first room, and it's dark, completely dark. One stumbles around 

bumping into the furniture, and gradually, you learn where each piece of furniture is. […] I never 

use a computer. I sometimes might scribble. I do doodles. I start trying to find patterns, really.5 

Students engaging the material and pursuing their own questions are two of the pillars of IBME 

(Dorier & Maass, 2014, pp. 301-302). A possible explanation as to why the palindromes triggered the 

participants’ investigative spirit is that pathologies in and of themselves pose questions and problems 

(thus making it less necessary for the teacher to do so); besides, there is something slightly 

provocative about a mathematical pathology, is it not?  

The second finding was that all three sessions were characterized by near constant collaboration, 

both on a class-level across groups and within each group. This is reminiscent of two levels of 

collaboration found in professional mathematics.6 The collaboration that took place on class-level 

mimics the collaboration of the mathematics community as a whole: When a group discovers and 

shares a new palindrome that fails to conform to another groups’ conjecture, it is similar to what is 

happening when a counterexample to a mathematician’s conjecture is found and published by an 

unknown colleague on the other side of the world. Likewise, the within-group collaboration mimics 

mathematicians knowingly collaborating on the proof of a theorem, for example at a congress. 

 

5 https://www.pbs.org/wgbh/nova/transcripts/2414proof.html 

6 For a description of the mathematics community see e.g. Davis, Hersh, and Marchisotto (2012, pp. 9-12). A personal 

account by a current mathematician is https://cameroncounts.wordpress.com/2009/10/28/collaboration-in-mathematics/. 



 

 

Amongst professional mathematicians this type of direct collaboration is the rule rather than the 

exception. A vivid illustration of this is the collaboration graph,7 the study of which has uncovered 

that in the period 1985-2009 the average number of mathematicians per paper was 1.75 (Brunson et 

al., 2014). Students collaborating is another pillar of IBME (Dorier & Maass, 2014, pp. 301-302).  

The third finding was that several groups formulated conjectures, which they subsequently tested 

against the examples at hand. Representative of the collaboration that took place within the different 

groups was the chain of conjectures and refutations that Leo and Alma engaged in. Their dialogue is 

reminiscent of the fictitious classroom discussion on the Eulerian characteristic of polytopes found in 

Lakatos’s classic Proofs and Refutations. Leo and Alma making repeated adjustments to their 

conjecture to rule out nasty counterexamples is precisely what Lakatos referred to as “monster-

barring” – a phenomenon he saw as crucial to the progress and growth of informal mathematics.  

On several occasions, students responded with enthusiasm to the ideas and findings of their fellow 

students – on their own group or otherwise. The learning environment deemed most suitable for 

IBME is one that values mistakes and contributions (Dorier & Maass, 2014, pp. 310-302).  The 

professional mathematician’s appreciation of the necessity of making mistakes is implicit in the words 

of George Pólya: “Mathematics presented with rigor is a systematic deductive science but 

mathematics in the making is an experimental inductive science” (1990, p. 117).  

The fourth finding was that using pathologies as starting points is likely to increase the number of 

contingencies, especially so if the pathology is a peripheral one such as the palindromes. The 

problems most suitable for IBME are open problems with multiple solution strategies: problems that 

are experienced as real and/or scientifically relevant (Dorier & Maass, 2014, pp. 301-302). 

Contingencies, although slightly terrifying to the teacher, must be said to add authenticity to the 

students’ mathematical experience. We suggest that students discovering something that the teacher 

did not know, as was the case on two different occasions with the palindromes, are the ones most 

likely to feel as if they are doing “real” science.  

Limitations 

We did not interview any of the students. How would they have described the way in which they 

tackled the palindromes? And did they perceive the palindromes as being – in some sense –  

pathological? Answers to these questions and others would have contributed a new perspective to our 

study. 

Conclusions 

Two conclusions can be drawn from this study. The first conclusion is that pathologies can form the 

basis of teaching that corresponds to the characteristics of IBME as these are described in Dorier and 

Maass (2014). Most importantly, the pathology induced students to pose and pursue their own 

questions.  

The second conclusion is that pathologies seem to have qualities that help students work in ways 

similar to those of professional mathematicians. Thus, using pathologies as a starting point is one way 

to lend an aura of authenticity to the students’ endeavor. The students are faced with something that 

simultaneously awakens their curiosity and causes a cognitive conflict, which they will try to 

equilibrate from. 

The chief practical implication of these conclusions is that teachers doing IBME might have a 

useful and largely unmined resource in the mathematical pathology. Useful because what constitutes 

 

7 See https://oakland.edu/enp/ for information on the The Erdös Number Project and the collaboration graph. 



 

 

a pathology partly depends upon one’s mathematical sophistication (see Sriraman & Dickman, 2017, 

p. 138), which means that mathematical pathologies are plentiful at every level of mathematics.   

On the theoretical level, this could call for an investigation into the scope of using pathologies in 

the inquiry-based teaching of specific topics; for example, it does not seem unreasonable to hope that 

IBME starting from a suitable pathology could play a role in dealing with specific student 

misconceptions. It is also possible that using pathologies as starting points for IBME can strengthen 

the students’ cognitive flexibility by inducing them to circumscribe and (re)consider the 

characteristics of the pathology at hand, thereby providing an opportunity to overcome what Haylock 

(1997) refers to as content-universe fixation.     

References 

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 

45(6), 797-810. doi:10.1007/s11858-013-0506-6 

Brunson, J. C., Fassino, S., McInnes, A., Narayan, M., Richardson, B., Franck, C., . . . Laubenbacher, 

R. (2014). Evolutionary events in a mathematical sciences research collaboration network. 

Scientometrics, 99(3), 973-998. doi:10.1007/s11192-013-1209-z 

Council, N. R. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching 

and Learning. Washington, DC: The National Academies Press. 

Davis, P. J., Hersh, R., & Marchisotto, E. A. (2012). The Mathematical Experience, Study Edition. 

Boston: Birkhäuser Boston, Boston. 

Devlin, K. (2000). The math gene : how mathematical thinking evolved and why numbers are like 

gossip. New York: Basic Books. 

Dorier, J.-L., & Maass, K. (2014). Inquiry-Based Mathematics Education. In S. Lerman (Ed.), 

Encyclopedia of Mathematics Education (pp. 300-304). Dordrecht: Springer Netherlands. 

Elo, S., & Kyngas, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 

62(1), 107-115. doi:10.1111/j.1365-2648.2007.04569.x 

Haavold, P., & Blomhøj, M. Coherence through inquiry based mathematics education. Proceedings 

of the Eleventh Congress of the European Society for Research in Mathematics Education.   

Halmos, P. R. (1985). I want to be a mathematician : an automathography. New York: Springer. 

Haylock, D. (1997). Recognising mathematical creativity in schoolchildren. ZDM, 29(3), 68-74. 

doi:10.1007/s11858-997-0002-y 

Manheim, J. H. (1979). Mirror Multiplication. The Mathematics Teacher, 72(3), 213-216.  

Pólya, G. (1990). How to solve it : a new aspect of mathematical method (2nd ed. ed.). London: 

Penguin Books. 

Roksvold, J. (2018). Speilprodukt. Tangenten, 29(3), 31-33.  

Sriraman, B., & Dickman, B. (2017). Mathematical pathologies as pathways into creativity. ZDM, 

49(1), 137-145. doi:10.1007/s11858-016-0822-8 

 


