
Faculty of Science and Technology
Department of Computer Science

Authentication and Authorization in Blind Data Miners

Morten Myrland
Master Thesis in Computer Science - INF-3981

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

69° 40’ 53.7" N
18° 58’ 37.1" E

“Bad decisions make good stories.”
–Ellis Vidler

“If no one comes from the future to stop you from doing it, then how bad of a
decision can it really be?”

–Unkown

Abstract
Chronic pain is defined as pain that lasts for at least 12 weeks. People with
chronic pain conditions can have difficulties getting through daily tasks because
the pain can limit their mobility, strength, and endurance.

As of 2021, there is no universal treatment that works for all cases of chronic
pain. A tool that can give personalized treatment alternatives for each patient
can benefit this group of patients significantly.

This thesis is a part of the chronic pain research project at the Norwegian Centre
for E-health Research,where theymake a privacy-preserving distributed storage
system called blind data miners. This system will store and compute statistics
on patient-reported outcomes and experiences from treatments on chronic
pain. The data is collected directly from patients via a mobile app and Fitbit.
The data can then be used by health workers to give personalized treatments
to chronic pain patients.

Several reports and studies have shown that almost every health app on the
market is vulnerable to API attacks in some way. Health apps store highly
sensitive data, so this data must be protected from unauthorized access.

This thesis is looking at a decentralized alternative for authentication and au-
thorization in blind data miners. This alternative is implemented and evaluated
according to a set of requirements. Based on this, the thesis concludes with a
discussion on whether the proposed alternative is viable for use in blind data
miners.

Acknowledgements
Dear everyone,

I would like to thank my supervisors Professor Randi Karlsen and Professor
Johan Gustav Bellika. Your feedback on this thesis has been invaluable.

To my family. Thank you for giving me unconditional support on whatever I
do.

To my friends at office A122. Isak, Joakim, Magnus and Eric. Thank you for all
discussions we have had. Both meaningful and less meaningful. This would
have been impossible without you.

To all my other friends at the university. Thank you for keeping me sane
throughout this process. No names mentioned, but you know who you are.
Thank you for being you.

With love,
Morten

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Project Requirements . 2
1.2 Goal . 4
1.3 Contribution . 4
1.4 Method . 4
1.5 Thesis Outline . 5

2 Background 7
2.1 Chronic Pain Project . 8
2.2 Blind Data Miners . 8
2.3 Identity and Access Management 8
2.4 Merkle Hash Tree . 9
2.5 Certificate Transparency . 10

2.5.1 Certificate Transparency Overview 10
2.5.2 Monitor . 13
2.5.3 Auditor . 13
2.5.4 Merkle Consistency Proof 13
2.5.5 Merkle Audit Proof 14

2.6 WAVE: A Decentralized Authorization Framework with Tran-
sitive Delegation . 15
2.6.1 Usage scenarios . 16
2.6.2 Terminology . 16
2.6.3 WAVE Overview . 17
2.6.4 Unequivocable Log Derived Map 19

2.7 Keycloak . 20
2.8 Keycloak vs. WAVE . 21

vii

viii contents

3 Method 23

4 Design 25
4.1 Introduction . 26
4.2 Traditional authentication and authorization 27
4.3 Keycloak . 28

4.3.1 One Centralized Keycloak Server 28
4.3.2 Multiple Keycloak Servers 30

4.4 WAVE . 31
4.4.1 WAVE Recap . 31
4.4.2 Authentication . 33
4.4.3 Authorization . 36
4.4.4 Authorization Sharing 40

5 Implementation 45
5.1 Language and libraries . 46
5.2 Communication Protocol 47
5.3 Authentication . 47

5.3.1 BDM Authentication 47
5.3.2 Client authentication 48

5.4 Authorization . 50
5.4.1 WAVE CLI . 50
5.4.2 WAVE Module . 51

5.5 BDMClient . 52
5.6 BDM Server . 53

5.6.1 Handling requests 54
5.7 CLI Client . 55

6 Evaluation 57
6.1 Test Environment . 58
6.2 Registration and Authentication 58
6.3 User access their own data 59
6.4 Accessing Unauthorized URIs 59
6.5 Access Sharing . 60
6.6 Revocations . 60

7 Discussion 61
7.1 WAVE Advantages . 62

7.1.1 Fully Distributed . 62
7.1.2 Public Key Authentication 62

7.2 WAVE Limitations . 63
7.2.1 WAVE in production 63
7.2.2 WAVE is not for Authentication 64
7.2.3 Loss of Private Key 64

contents ix

7.2.4 BDM as Namespace Authority 64
7.2.5 Problems with Persistent Connection 65

7.3 Future Work . 65
7.3.1 Revisit Authentication Protocol 65
7.3.2 BDM and Mobile Integration 65
7.3.3 Private Key Backup 66
7.3.4 Proof caching . 66
7.3.5 Batch processing and Multi-threading 67

7.4 Benchmarking . 67
7.5 Keycloak or WAVE? . 68

8 Conclusion 71

List of Figures
1.1 U.S mHealth Market Size 2016 - 2028[23] 2

2.1 Merkle Tree [30] . 10
2.2 Certificate Transparency Ecosystem[14] 12
2.3 Merkle Consistency Proof A[10] 14
2.4 Merkle Consistency Proof B[10] 14
2.5 Merkle Audit Proof[10] . 15
2.6 Reverse-Discoverable Encryption[3] 18
2.7 An Unequivocable Log Derived Map (ULDM) built from two

Merkle tree logs and a Merkle tree map[4] 20

4.1 Token-based Authentication/Authorization 27
4.2 Architecture of the currently chosen solution at NSE[16] . . 29
4.3 Proposed design with multiple Keycloak servers 30
4.4 Public key authentication flow 36
4.5 WAVE Graph with a single patient 38
4.6 BDM Request Flow . 40
4.7 WAVE graph with delegation 41
4.8 WAVE graph with two patients and delegation 42
4.9 WAVE graph with several indirections 42

5.1 Client startup flowchart . 56

7.1 Proof build/verification time [4] 68

xi

List of Tables
2.1 WAVE vs. Keycloak Comparison 21

7.1 Object operation times (ms) [4] 67

xiii

1
Introduction
A recent document from the Norwegian Directorate of Health looks at the
potential that mHealth apps has. The data collected by mHealth apps has
clinical value and are useful for healthcare professionals and for research. The
COVID-19 pandemic has shown the importance of having safe and effective
digital tools to be able to check up on patients remotely[12][23].

The global mHealth apps market size was valued at around 40 billion U.S
dollars in 2020 and is expected to grow at a compound annual growth rate
(CAGR) of 17.7% from 2021 to 2028 according to a report by Grand View Re-
search[23]. This means the market size in 2028 is estimated to be 149 billion U.S
dollars[23]. Figure 1.1 shows the U.SmHealth appsmarket size from 2016 - 2028.

There are over 327,000 mHealth apps on the global market. Patients and
healthcare professionals mostly rely on reviews made by other users when
deciding whether they should use one of these apps[12]. ORCHA, an indepen-
dent company located in London, does extensive reviews of mHealth apps,
and according to them, 85% of mHealth apps found in app stores does not
meet their minimum quality requirements which includes security require-
ments[12].

1

2 chapter 1 introduction

Figure 1.1: U.S mHealth Market Size 2016 - 2028[23]

Data stored by health apps can be very sensitive, and it is therefore crucial that
security is highly prioritized by the developers of these apps.

From 2009 to 2013 there were close to 27 million individuals in the U.S af-
fected by data breaches involving personal health data[29]. A recent study
published by cybersecurity firm Approov tested 30 of the leading mHealth apps
and found that all of them were vulnerable to API attacks which could allow
unauthorized individuals to gain access to full patient records[17]. We need
to address the lack of security in mHealth and e-Health in general if we are
going continue going forward with the adoption of these technologies.

1.1 Project Requirements

The Chronic Pain project is an ongoing project at the Norwegian Center for
E-Health Research (NSE) where the goal is to build a system that can compute
statistics on patient reported outcomes and experiences from pain treatments
without learning any personal details about individual patients. Healthcare
workers can then give personalized treatments to patients based on the symp-
toms that the patient is exhibiting and the statistics from similar cases.

The patients’ data are stored in Blind Data Miners (BDM). BDMs are servers
that store data that has been split using Shamir’s secret sharing, a technique
that split data in such a way that the data can only be read when you have all
shares from a split. BDMs will be hosted by independent organizations.

1.1 project requirements 3

The data stored in these blind data miners are very sensitive and must not be
open to the public. Patients are the owner of this data, and they should be the
ones deciding who has access to their data.

Access control in computer systems are managed by an identity and access
management (IAM) system.

One of the ideas of using BDMs is that it distributes the data so that attackers
must breach all servers that are hosted by different organizations to get the
shares that are needed to reconstruct the original data. To avoid having a
centralized point of attack, the IAM system should ideally be distributed. A
centralized IAM server that gets attacked or accidentally leak usernames and
passwords could compromise all patients that store their data in BDMs.

In centralized IAM servers, the server administrators can see every permission
that every user has. They can also edit, delete or add permissions as they
please. To keep the privacy-preserving properties of BDMs throughout the
whole system, the IAM system should only reveal permission policies to those
who need them, and only those who grant a permission should be allowed to
edit or remove it.

Patients can not be expected to be online at all times. The system must allow
offline participants to discover permissions that were delegated to them when
they were offline. This is trivial to solve in a centralized system, but not in a
decentralized one.

It is also important that the IAM system is highly available. Without it, data
will not be accessible. It must also be scalable to handle an increasing number
of users. Finally, the system must be fast and responsive or else it will be
frustrating to use.

Below is a list that summarizes the requirements.

• Decentralized.

• Authorization delegation.

• Fast, scalable and highly available

• Private permission policies.

• Offline participants.

The chronic pain project is currently in developmentwith a centralized Keycloak

4 chapter 1 introduction

server for IAM.

1.2 Goal

The goal of this thesis is to look for a decentralized alternative for identity and
access management that will be used with blind data miners in the chronic
pain project.

When a suitable alternative has been found, a prototype will be designed,
implemented and evaluated according to the requirements specified in section
1.1

1.3 Contribution

This thesis has identified requirements for a decentralized IAM system for use
in blind data miners in the chronic pain project. Based on these requirements,
relevant literature has been investigated to find a suitable alternative to the
centralized solution with Keycloak that is currently in development.

The alternative solution is demonstrated via an implementation. Finally, the
solution is evaluated to see if it is a feasible alternative to Keycloak. This
will help the researchers make an informed decision when choosing an IAM
system.

1.4 Method

It is essential to have a structured plan when conducting academic research
to achieve proper, correct, and well-founded results. The work of [11] presents
methods and methodologies for research projects and degree projects, and
help define a path for what methods to use.

This thesis present a qualitative research by investigating an alternative to
the currently chosen IAM system used with BDMs. This alternative will be
implemented and evaluated to see if it is a better option than the one in
development today.

The researchmethod adopted will be an appliedmethod,which involves solving
a known and practical problem. The design and implementation of an IAM

1.5 thesis outline 5

system is such a problem. The thesis builds on existing research on cryptography
and privacy[26][31][24].

1.5 Thesis Outline

• Chapter 2 covers necessary background theory for this thesis.

• Chapter 3 describes the research methods used.

• Chapter 4 describes a centralized IAM design that is currently in de-
velopment for the chronic pain project. It also proposes an alternative
decentralized design.

• Chapter 5 describes the implementation of the decentralized design
proposed in chapter 4

• Chapter 6 evaluates the implemented decentralized design.

• Chapter 7 discusses advantages, limitations, and future work of the
implemented design. It also discusses the design’s viability compared the
the centralized solution that is in development by NSE.

• Chapter 8 concludes the thesis.

2
Background
This chapter covers concepts and technologies necessary to understand the
thesis.

Chapter Outline

• Section 2.1 gives a short description on the chronic pain project. This is
the project that the design and implementation is intended for.

• Section 2.2 describes blind data miners. Blind data miners are at the
core of the chronic pain project.

• Section 2.3 gives a short explanation on what an identity and access
management system is, and why it is needed.

• Section 2.4 describes Merkle hash trees. This is an important prerequisite
for understanding how certificate transparency works.

• Section 2.5.1 describes certificate transparency. This is described because
WAVE, an authorization framework used in this thesis, has developed a
storage solution that is an extension of certificate transparency.

• Section 2.6 describes WAVE, which is an authorization framework that
the proposed alternative solution for IAM is built around.

7

8 chapter 2 background

2.1 Chronic Pain Project

The Norwegian Center for e-Health Research (NSE), is currently working on
a project where the goal is to provide personalized treatment decisions to
patients suffering from chronic pain. The project will provide patients with
a Fitbit for automatic data collection, and a mobile app where patients can
manually report the outcome and experiences from different treatments[5].
This data is distributed across a number of blind data miner(BDM, see section
2.2) servers. The BDMs enable an analyst to execute statistical queries on the
data without learning anything about individual patients[31]. The idea is that
these statistics will be used to create personalized treatments based on patients’
symptoms

2.2 Blind Data Miners

This section will be a short description of blind data miners. The technical bits
and pieces that make them work are beyond the scope of this thesis. This is
just a general overview.

Blind data miners uses an algorithm developed by Adi Shamir in 1979 which has
later become known as Shamir’s Secret Sharing. It is a technique for splitting
data into shares that, by themselves, does not reveal anything about the original
data. The data is split by utilizing some properties of polynomials that allow
the original data to be reconstructed with the help of Lagrange Interpolation.
To reconstruct the data, a specified threshold number of shares are needed.
Details on the algorithm can be found in the original paper by Adi Shamir[26],
but it is not necessary to know for this thesis.

A blind data miner is a server that stores shares of data that has been split using
Shamir’s Secret Sharing. Each server only holds one share of the data and is
therefore blind to the original data, hence the name blind data miner[31].

2.3 Identity and Access Management

Identity and Access Management (IAM) is about defining and managing roles
and privileges of users in a computer system. Users can be customers, employ-
ees, or even other computer systems. The core objective of IAM systems is to
provide a digital identity per individual, and give those individuals access to
the right resources in the right context.

2.4 merkle hash tree 9

Typically, administrators of IAM systems have tools to change a user’s role,
track user activities, and enforce policies on an ongoing basis.[19]

Authentication

The identity management in an IAM system is an authentication concern.
Authentication is the determination of the identity or role that someone has.
This determination can be done in a number of different ways, but it is usually
based on a combination of three factors. These authentication factors are
something you are (e.g finger print and/or iris), something you have (e.g
keycard), and something you know (e.g a password) [21][27].

Authorization

Authorization is about access management. Authorization determines if a
person or system is allowed access to resources, based on an access control
policy. Such authorizations should prevent an attacker from bypassing the
system entirely, or tricking it into giving them access [21].

2.4 Merkle Hash Tree

A Merkle tree or hash tree is a tree where leaf nodes are the hash of some data.
Non-leaves are the hash of its children nodes concatenated. Merkle trees are
used to verify the contents of large amounts of data efficiently. Figure 2.1 shows
a Merkle tree for data blocks L1, L2, L3 and L4. If this is data in a distributed
system with replica databases, it is important that these databases contain the
same data. If all replicas have their own Merkle tree, a simple comparison
between the root nodes of the trees would be enough to detect inconsistencies.
A single corrupt bit in one data block would result in a different hash value for
that block which would propagate to the root node.[20].

10 chapter 2 background

Figure 2.1: Merkle Tree [30]

If root nodes does not match, we can start traversing the tree to find, in O(log
n) time, exactly which block has been corrupted.

2.5 Certificate Transparency

Certificate Transparency(CT) is an open framework designed to prevent Certifi-
cate Authorities(CA) from maliciously or mistakenly issuing digital certificates.
DigiNotar, a former Dutch CA, was hacked in 2011 and issued over 500 fake
certificates for multiple domains[33][18]. With CT, fake certificates can be
detected almost immediately[15].

2.5.1 Certificate Transparency Overview

Figure 2.2 shows how it works. (1) A domain owner requests a certificate from
a CA. (2a) The CA sends a precertificate to the log provider. Precertificates
are like regular certificates except that they contain an extension so that user
agents (typically browsers) will not accept it. Precertificates help break a dead-
lock in CT. Before a CA can log a certificate, the certificate needs an SCT
(Signed Certificate Timestamp). But for the certificate to get an SCT, it needs
to have been submitted to a log. (2b) The certificate is created and appended

2.5 certif icate transparency 11

to a Merkle hash tree, which is the log that enables transparency. (2c) The log
responds with a SCT which is a promise that the certificate will be included
within a certain timespan (usually 24 hours). (3) The certificate is sent to the
domain owner. (4,5) The certificate is presented to visitors as it is in regular
non-transparent PKI[14].

(6) Monitors continuously check the logs for suspicious activities. If a log
provider is caught trying to manipulate the logs they are permanently removed
as an approved log provider[22].

12 chapter 2 background

Figure 2.2: Certificate Transparency Ecosystem[14]

2.5 certif icate transparency 13

2.5.2 Monitor

Monitors are publicly run servers that watches the certificate logs for suspi-
cious certificates. They watch for certificates that have unusual extensions or
permissions, such as certificates that have CA capabilities. They also check and
prove that all certificates has been consistently appended to the log. It can be
proved with a Merkle consistency proof.[18]

2.5.3 Auditor

Auditorsmakes sure that logs are consistent and appendonly. Today’s log should
contain everything from yesterday’s log. They can also check that a particular
certificate is present in the log. Monitors can also be auditors.[18]

2.5.4 Merkle Consistency Proof

A Merkle consistency proof lets you verify that a later version of a log contains
all entries from a previous version plus the new entries. No certificates have
been back-dated and inserted into the log, no certificates have been modified,
and no certificates have been deleted.

Let us say we want to append two new certificates, d4 and d5 to the log
in figure 2.3a. The consistency proof is worked out as followed. First, we need
to verify that the old Merkle tree hash is a subset of the new one. Then we need
to verify that the new Merkle tree hash is the concatenation of the old one plus
all the intermediate hashes of the newly added certificates. The consistency
proof is the minimum number of intermediate node hashes needed to compute
these two tings.

In this case we only need m and k. m proves that the old log is a subset of the
new one, and with m and k we can prove that the new log is a concatenation
of the old log plus the newly added certificates[6][10].

14 chapter 2 background

(a) Original log

(b) New log with appended certificates

Figure 2.3: Merkle Consistency Proof A[10]

If you append two more to this (figure 2.3b), the Merkle consistency proof
would in this case be three nodes (m, k and l) as shown in figure 2.4

Figure 2.4: Merkle Consistency Proof B[10]

2.5.5 Merkle Audit Proof

An audit proof lets us verify that a specific certificate has been appended to the
log. Audit proofs are important because clients should reject any certificates
that do not appear in a log.

An audit proof is the minimum node hashes required to compute all of the
nodes between the leaf and the tree root. If the tree root we compute matches
the log’s advertised tree root, then the certificate is in the log.

2.6 wave: a decentralized authorization framework with transit ive
delegation 15

Let us say that we want to verify that certificate d3 exists in the log (fig-
ure 2.5). We already know d because that is the hash of the certificate we want
to check. To compute the root hash, we need leaves i, c and n.

Figure 2.5: Merkle Audit Proof[10]

2.6 WAVE: A Decentralized Authorization
Framework with Transitive Delegation

WAVE is an authorization framework where, unlike Keycloak, there is no cen-
tral authority responsible for issuing access to resources. It is fully distributed,
and any participant can delegate portions of their permissions autonomously.

WAVE uses a graph-based authorization model such as in SDSI/SPKI[25][32]
where proof of authorization is a path through the graph[4]. See section 2.6.3
for more.

WAVE was chosen over other solutions like SDSI/SPKI and Macaroons[7]
because they do fulfill the requirement of offline participants.

16 chapter 2 background

2.6.1 Usage scenarios

WAVE has been deployed in over twenty small to medium-sized commercial
and residential buildings. The main focus has been securing distributed IoT
devices and services to monitor and control these buildings. WAVE is not limited
to IoT devices. It provides general-purpose delegable authorization and can,
for example, be used in place of OAuth to remove the risk of the centralized
token-issuing server and allow for richer delegation semantics. Smart buildings
are used as a running example and provide an intuitive understanding of the
framework[4].

2.6.2 Terminology

A short explanation of the terminology used in WAVE.

Entity

An entity is a collection of private and public keypairs and can correspond to a
user, service, or group.

Policy

A policy is one or more permissions along with a description of the resources
for which the permissions are granted and the expiry of the grant.

Attestation

An attestation is a signed certificate containing a policy. Each edge in the graph
is an attestation.

Namespace authority

The namespace authority is an entity who is the root of authorization for a
resource. It is the entity who has permissions without having received it from
someone else.

2.6 wave: a decentralized authorization framework with transit ive
delegation 17

Proof

A path from an entity to another entity through the graph grants access to
the intersection of the policies on that path. Entities can prove they have
some permission P by revealing a path through the graph from a namespace
authority to themselves where all edges have the same permission P. This path
is a proof.

2.6.3 WAVE Overview

Global Authorization Graph

The global authorization graph in WAVE consists of entities and attestations.
Nodes in the graph are entities, and edges are attestations that represent the
permission grants between two entities. The client (representing a user, device,
or service) interacts through the WAVE service with the global authorization
graph. Clients can use the WAVE service to grant permissions to other entities.
The WAVE service constructs an attestation signed by the granting entity
containing a policy. An attestation consists of:

• Issuer: The entity granting the permission.

• Subject: The entity receiving permissions.

• Subject: A description of the permissions (e.g read), and a URI to the
resource the attestation gives access to.

• A signature from the issuer.

When accessing a service, clients request a proof from the WAVE service. This
proof is verified by the entity providing the service that is requested. The
proofs are generated using a protocol called reverse-discoverable encryption
(RDE)[4].

Reverse-Discoverable Encryption

Attestations are encrypted to make sure that they are private. The encryption
layer is transparent to the clients. The WAVE service discovers and decrypts
the relevant portions of the graph required to form a proof automatically.

Each entity has an additional public/private keypair used for encrypting and
decrypting attestations. This keypair is separate from the one used to sign

18 chapter 2 background

attestations. When an entity grants a permission, it attaches its private key
to the attestation and encrypts the attestation (including the attached private
key) using the receiving entity’s public key.

Figure 2.6: Reverse-Discoverable Encryption[3]

Figure 2.6 illustrates how this is done. Recall that WAVE is not limited to IoT
devices. In this example, there is a heating, ventilation, and air conditioning
(HVAC) controller, which has been granted permission to floor three by the
floor three manager (F3 Manager). The F3 manager has been given access to
floor three by the company CEO, which has received access from the building
owner. When the HVAC controller wants to prove that it has access to floor 3,
it has to find a path in the graph from the building owner to itself.

Attestations do not have to be created in order, but for simplicity, the fig-
ure’s description will be as if they were granted in order. The building owner
creates an attestation that contains a policy giving access to floor 3 to the
CEO. The attestation is encrypted using the CEO’s public key (illustrated by the
pink padlock). The CEO then gives access to floor 3 to the F3 Manager. This
attestation is encrypted using the F3 managers public key (light blue padlock),
and the CEO’s private key is also added to the attestation (pink key). Finally the
F3 manager gives access to floor 3 to the HVAC controller where the attestation
contains F3 manager’s private key and is encrypted with the HVAC controller’s
public key.

When the HVAC controller wants to prove that it has access to floor 3, it
uses its private key to decrypt the attestation from F3 manager, and at the
same time discovers the key to decrypt the next upstream attestation given to
the F3 manager by the CEO. This continues until it reaches the building owner,
which is where the permissions originate from. Also known as the namespace
authority.

2.6 wave: a decentralized authorization framework with transit ive
delegation 19

Simply finding a path that through the graph is not secure enough. The RDE
has to be policy-aware, meaning proving entities should only be able to decrypt
attestations that contain intersecting policies. For example, figure 2.6 shows
that the building owner has granted access to floor 4 to the CEO. This attes-
tation is on the path to the HVAC controller, but the permissions on this path
do not intersect. WAVE uses a policy-aware RDE with the help of wildcarded
identity-based encryption(WIBE)[1] where key-pairs are generated using the
policy as input to a function generating the keys[3][4].

Untrusted Scalable Storage

When a client creates an entity, the WAVE service places the entity’s public
key into the scalable untrusted storage. For attestations, it places the RDE
ciphertext into the storage. As with RDE, the placement and retrieval of this
data are transparent to the client since the WAVE service handles this.

This storage is decentralized: it is spread over multiple servers owned by
different parties. The servers are only trusted to maintain availability, but
not integrity or privacy. Integrity is enforced by a Unequivocable Log Derived
Map(See section 2.6.4), which is an extension of a Certificate Transparency log
and enables efficient proof of non-existence necessary for revocations. Privacy
is achieved by RDE (section 2.6.3). Users and services can thus interact with any
storage server without trusting the servers’ operators, except for availability[4].

2.6.4 Unequivocable Log Derived Map

Since storage is decentralized and untrusted, there has to be a system to prevent
dishonest parties from forging or removing attestations and revocations. One
of the requirements of this storage is that it is append-only. A blockchain
is a natural candidate for this. WAVE was originally implemented using the
Ethereum blockchain. However, this solution was inadequate due to the fact
that classical blockchains using proof-of-work are too slow when adding new
attestations. They also lack an efficient way of proving non-existence which is
needed for revocations[22]. Certificate Transparency solves the performance
issue, but it also lacks proof of non-existence. Because of this, the people behind
WAVE developed a transparency log they call an Unequivocable Log Derived
Map(ULDM) which solves the issue of proving non-existence.[4].

20 chapter 2 background

Figure 2.7: An Unequivocable Log Derived Map (ULDM) built from two Merkle tree
logs and a Merkle tree map[4]

The ULDM consists of three Merkle trees. As shown in figure 2.7, the first tree
is the Operation Log, which stores every insert operation. The Operation Log
works just like a Certificate Transparency log[22][6], and is there to ensure
that the ULDM is append-only. The second tree is the Object Map. The Object
Map contains sorted hashes of the data added in the Operation Log. Since
it is sorted it can be used to efficiently provide a proof of existence and non-
existence. When something is added to the Object Map, the new Merkle tree
root of the Object Map is added to the third and last Merkle tree, the Map Root
Log. The Map Root Log is a blockchain of all the Object Map roots and is used
for auditing (checking consistency between replicas of the ULDM).

2.7 Keycloak

Keycloak is an open source IAM solution aimed at modern applications and
services. It makes it easy to secure applications and services with little to no
code [2].

2.8 keycloak vs. wave 21

Users authenticate via a username and password, and in return get an autho-
rization token that can be used to access protected resources. Resource servers
(the server hosting the protected resource) will validate the token against the
Keycloak server.

Unlike Firebase Authentication and Amazon Cognito, Keycloak is not a cloud
based service. Keycloak servers can be hosted by anyone,and this removes

2.8 Keycloak vs. WAVE

Table 2.1 shows a comparison between WAVE and Keycloak based on the
requirements specified in section 1.1.

Table 2.1: WAVE vs. Keycloak Comparison

WAVE Keycloak
Authentication No Yes
Authorization Yes Yes
Authorization
Delegation Yes Yes

Decentralized
Storage Yes No

Private
Permissions Yes No

Offline
Participants Yes Yes

Unlike WAVE, Keycloak is centralized. All user-data is stored on a centralized
server. Also, permission policies are visible to the administrators of the Keycloak
server, and they can view, edit or delete these permissions if they want.

In WAVE, permission policies they are stored encrypted in the ULDM storage
which can be hosted by anyone, anywhere. Users only have to trust the ULDM
storage providers for availability.

It is not possible for anyone to view these policies unless they are the issuer
or subject of the policy. Modifying the ULDM is not possible without it being
detected by auditors.

If a Keycloak server becomes unavailable, the entire system becomes unavail-
able. WAVE allows several replicas of the ULDM. These can be hosted at

22 chapter 2 background

different locations. Consistency is ensured by auditors that check and compare
the map root log.

An IAM system is not complete if it does not handle authentication. WAVE is
an authorization framework, and does not handle authentication. However,
if we build an authentication system on top of WAVE it can be a suitable
decentralized alternative to Keycloak. Chapter 4 proposes an IAM design using
WAVE for authorization.

3
Method
This thesis will investigate an alternative to Keycloak for authentication and
authorization in blind data miners. To find a suitable solution, I have to figure
out if there are any problems that arise with Keycloak, and if so, look for
alternatives in relevant literature that mitigates these issues. The most suitable
solution will then be implemented and the implementation will be evaluated
to see if they meet the requirements for use with blind data miners. Following
Anne Håkonson’s path on methods and methodologies[11], this thesis will
conduct a qualitative research.

Since this is a known practical problem that needs to be solved, the research
method that best fits in this situation is an appliedmethod. The thesis builds on
existing research on cryptography and privacy. Primarily cryptography[26][24]
and privacy[31].

There will be an abductive approach to the problem. The design and imple-
mentation will be based peer-reviewed solutions for similar problems, and
the implementation will be evaluated to see if it is a suitable alternative to
Keycloak.

Carrying out research requires a research strategy. An action research strategy
is chosen for this thesis. There are actions performed to contribute to the
practical problem of authenticating and authorizing users that has data stored
on blind data miners.

23

4
Design
This chapter will look at three designs for authentication and authorization
in blind data miners(BDM). Two of which uses Keycloak, and one with WAVE
for authorization with a custom public key protocol on top for authentica-
tion.

Chapter Outline

• Section 4.1 explains the chronic pain project and why BDMs are used.

• Section 4.2 covers how authentication and authorization are typically
done today using tokens. This is a prerequisite for understanding the
following section about Keycloak.

• Section 4.3 describes the current centralized IAM design used in the
chronic pain project and why it might not be a suitable solution. Then,
another Keycloak design that is semi-centralized is proposed in the same
section. This second design aims to mitigate the problem with the cur-
rently adopted design, but also has some issues of its own.

• Section 4.4 describes a design that aims to mitigate the issues with cen-
tralized IAM systems. This design is built around the fully decentralized
authorization framework WAVE, and is the core of this thesis.

25

26 chapter 4 design

4.1 Introduction

The idea behind the chronic pain project is to take patient-reported outcomes
and experiences from treatments and use this data to make a tool that can
be used to suggest treatments to patients with similar symptoms. The hope is
that with enough data, it will be possible to see what kind of treatment works
for different types of pain. So instead of trying to find a universal treatment
for all chronic pain patients, the system used in the chronic pain project will
hopefully be able to suggest personalized treatments based on information
gathered from similar cases [5].

The designs described in this chapter are authentication and authorization
solutions for the system with BDMs used in the chronic pain project. Since this
is sensitive data, it is important that the data is not accessible to anyone other
than those it is intended for. Data must be stored and protected according to
data privacy laws such as GDPR[9] in Europe and HIPAA[13] in the US.

Patients are the data owners and should have full access to their own data,
meaning they should be able to read, edit and delete data they have stored in
the system. To give patients personalized treatments, healthcare professionals
might have to look at their patients’ data. Therefore, patients should be able
to share data with others.

In the chronic pain project, patients will report their pain intensity and char-
acteristics three times a day. This will be done with a mobile app. Patients will
also be fitted with a Fitbit that automatically collects health metrics such as
heart rate and sleep quality. This data is stored across three blind data min-
ers(BDM), where each BDM is holding one share created by splitting the data
using Shamir’s secret sharing[26]. There are two main reasons for using BDMs.
First, BDMs can be instructed by an analyst to privately compute statistics on
all the data using their multiparty computation protocol described in [31]. The
analyst can, in theory, be anyone since the protocol does not reveal anything
about individual patients. The output is only aggregated statistics. However,
the protocol should probably be limited to only a handful of researchers to not
overload the BDMs with heavy computation tasks. Another reason for using
BDMs is that it is far less likely that data will be stolen or accidentally leaked.
Recall that BDMs are hosted at different independent organizations, so an
attacker would have to breach all of them to steal the data. It is also unlikely
that three independent organizations would accidentally leak data at the same
time.

There needs to be an identity and access management system in place for all
of this to work. There will be an assumption that the chronic pain project is on
an invite-basis. It is only possible to register if you either get invited, or actively

4.2 tradit ional authentication and authorization 27

contact them to join the project.

4.2 Traditional authentication and authorization

The most common way of authentication is username/password authentication.
Figure 4.1 shows how it is typically done. The user provides a password and
unique username to an identity provider. In return the user gets an access token
that can be used to access protected resources. Access tokens contain signed
information about the user’s permissions. User sends the token along with a
request to a resource. Server validates the token with the identity provider,
and fulfills the request if everything is fine.

Figure 4.1: Token-based Authentication/Authorization

Application server and authentication server can be the same server. Using a
traditional protocol with BDMs, the user would authenticate using a username
and password, and get a token that it would send to all BDMs. Each BDMwould
then validate the token with the authentication provider. This is how it is done
in the currently chosen solution in the chronic pain project. The authentication
provider is a Keycloak server.

28 chapter 4 design

4.3 Keycloak

Keycloak is an open source token-based IAM solution. Keycloak is currently the
chosen IAM solution in the chronic pain project. This section quickly covers two
different designs using Keycloak with BDMs. The first design (section 4.3.1) is
the one used in the chronic pain project. The second design (section 4.3.2) is a
proposed design that aims to mitigate the problems with the first design.

Keycloak servers are independently run IAM servers. Authentication and token
issuing are entirely separated from the application, so application developers do
not have to deal with login forms, authenticating users, and storing users.

Communication between client, BDMs and Keycloak servers is done overHTTPS.
Therefore, the Keycloak server and BDMs need to get a digital certificate signed
by a trusted certificate authority(CA) like Google. Self-signed certificates is an
option since the chronic pain project is not open to the public. If the project is
open to the public it will be more difficult for users to trust the project since the
majority of users will most likely never be in contact with the people behind
the project. The mobile app can be shipped with a list of trusted self-signed
certificates for Keycloak server and BDMs. If someone else try to create another
self-signed certificate for those domains names or IP-addresses, they will not
be in the list of trusted certificates and will therefore be rejected. However,
obtaining a digital certificate signed by a trusted third-party is neither difficult
nor expensive. There are even free options like Let’s Encrypt[8]. CA-signed
certificates is probably the best option, because it can, for example, prevent
malware from injecting their own self-signed certificate to the list in the mobile
app.

4.3.1 One Centralized Keycloak Server

This section describes the design for authentication and authorization that is
currently used in the chronic pain project. It is comprised of a single Keycloak
server issuing access tokens to the mobile app.

Figure 4.2 shows the architecture for this design. The BDM Data Integrator’s
job is to assemble shares to reconstruct the original data from the BDMs, which
will be sent to the TSD (Tjeneste for Sensitive Data). TSD is a service for
collecting and storing sensitive data[28]. This data can be accessed at the TSD
or similar services by researchers.

4.3 keycloak 29

Figure 4.2: Architecture of the currently chosen solution at NSE[16]

When connecting to the BDMs, the mobile app is directed to the Keycloak
server where the user logs in with his/her username and password. Upon
successful login, the Keycloak server gives the client a token that is presented
to the BDMs on each request. When BDMs receive a request with a token, they
will check with the Keycloak server that the token is valid. The Fitbit integrator
is responsible for getting the patients Fitbit-data from the Fitbit-cloud, and
will put this data on the BDM after getting a valid token from the Keycloak
server.

Why this might not be suitable with BDMs

Remember that one of the ideas of using BDMs is that it distributes the data
so that leaking sensitive data is less likely. By using a traditional token-based
authentication system with a centralized authentication server like the one
described above, we introduce a vulnerable point in the system. An attack on
the Keycloak server can compromise all users and their data.

30 chapter 4 design

4.3.2 Multiple Keycloak Servers

A possible mitigation for the problem that arises with a single Keycloak server
is to have a Keycloak server for every BDM as illustrated in figure 4.3. This
is a simpler figure where the BDM Data Integrator, Fitbit integrator, and TSD
has been left out as it is not really relevant for understanding the difference
between the two. The important thing to notice here is that every BDM is
assigned their own Keycloak server, and will only accept tokens issued by that
Keycloak server.

Figure 4.3: Proposed design with multiple Keycloak servers

The Keycloak servers should be hosted on different networks so that a breach
in one of the networks does not affect the other servers. They could be hosted
by the same organization that hosts the corresponding BDM server. Each BDM
requires a different authorization token to respond to a request. Upon receiving
a request, the BDMs validate the token with their Keycloak server.

If one of the Keycloak servers is compromised, it can lead to the leakage of
every users’ data from the corresponding BDM, but because of secret sharing,

4.4 wave 31

this data is useless without the shares stored in the other BDMs. A problem
with this design is that if one of the servers go down, patients will not be able
to access their data. There would have to be backup Keycloak servers to get
around this issue.

Another problem with this design is that the user need to authenticate with
multiple Keycloak servers. The user would have to have a different password
for every one of them, or else the leakage of passwords from one of the servers
would compromise all of them.

4.4 WAVE

This section describes a design for authentication and authorization that is built
around the fully distributed authorization framework WAVE. WAVE does not
rely on a traditional centralized token-based scheme. The goal of this design
is to mitigate the problems from both of the Keycloak designs described in
section 4.3

Section outline:

• 4.4.1 is a quick recap of WAVE which is described in more detail in section
2.6.

• 4.4.2 describes a protocol for authentication that will be used together
with WAVE authorization. It also covers user registration.

• 4.4.3 describes how authenticated users are authorized to access re-
sources on the BDMs using WAVE. The section also describes how a
request is done from start to finish.

• 4.4.4 describes how data access is shared with other users.

4.4.1 WAVE Recap

WAVE is an authorization framework offering decentralized trust. There is no
centralized authority that handles permissions. Everything is stored in publicly
auditable storage known as a Unequivocable Log Derived Map(ULDM) that, with
the help of Merkle trees, can not be modified without anyone noticing[4]. This
means that you do not need to trust the storage provider because if itmisbehaves
it will be detected and can be permanently removed as a storage provider.
Like certificate transparancy logs, it is possible to have several independent

32 chapter 4 design

ULDM storage providers, and the consistency between them are guaranteed
by auditors that compare the map root hash (see Figure 2.7)

Terminology

A quick recap on WAVE terminology

• Entity. An entity in WAVE are bundles of public/private keypairs and
correspond to a user, server or group.

• Authorization Graph. WAVE is a graph-based authorization framework.
nodes represent entities and edges represent permission grants from one
entity to another.

• Entity hash. A unique hash that is used for identifying entities in WAVE.

• Attestation. Attestations are signed certificates that contain a description
of permissions that has been granted to an entity.

• Proof. A proof is a signed concatenation of decrypted attestations. It is
used to prove access to resources.

• WAVE Service. The WAVE service makes attestations, builds proofs, ver-
ifies proofs, and handles communication with the ULDM(Unequivocable
Log Derived Map) storage. It is a background process that runs on each
device.

Entities in the chronic pain project are BDMs, patients, administrators, health-
care workers and researchers.

RTree Policy and Namespaces

An RTree policy manages permissions on a hierarchically organized set of
resources. Resources are denoted by a URI pattern such as BDM1/entity-
hash/pain-level. The first element of a URI (e.g.BDM1) is called the namespace
authority or just namespace, which specifies the entity who is the root of au-
thorization for that resource (the entity who has permission on that policy
without having received permission from someone else).

4.4 wave 33

4.4.2 Authentication

Authentication is typically done using a username and password. Since WAVE
is a framework for distributed authorization, it is natural to go for an authenti-
cation scheme that does not rely on a centralized authentication server.

When setting up a secure communication channel, both sides must know with
whom they are communicating, so they do not send sensitive data to someone
they did not intend to send it to. Therefore, the BDMs need to prove their
identity to the user, and the user must prove its identity to the BDMs.

This section proposes a solution that uses public key authentication for au-
thenticating both servers and clients. While regular X.509 digital certificates
are useful for server authentication, it is not feasible to expect every user to
obtain their own certificate signed by a trusted certificate authority (CA) since
it requires a bit of effort to get one. It needs to be an easy and intuitive process
for users with no technical background. Therefore, client authentication is done
slightly different from server authentication.

BDM Authentication

Secure connection and server authentication are done using SSL/TLS(Secure
Sockets Layer/Transport Layer Security), which are protocols for secure com-
munication over the internet. The BDMs have a digital certificate that contains
their public key and additional information about who they are. The authentic-
ity of these certificates can be vouched for by a trusted third-party certificate
authority, or they can be self-signed.

As discussed in the Keycloak-solution (section 4.3), it should be enough to ship
the app with a list of trusted self-signed certificates for BDM authentication,
but again, obtaining a certificate signed by a trusted CA is neither difficult nor
expensive.

BDM Administrator

To explain client authentication, we must first know what kind of data is
involved, how it is generated, and how and where it is stored. The client
authenticates with a public key protocol. Client sign some data with their
private key, which can only be verified with the corresponding public key. This
proves that a client is in possession of certain private key. To avoid usernames
and passwords, there has to be an administrator that handles user registration.
For example, when setting up public key authentication on remote servers via

34 chapter 4 design

SSH, you have to log in with a username and password before registering your
public key. BDM administrators will be able to upload public keys and entity
hashes to the BDMs.

When a BDM server is set up at an organization, it must be initialized with some
entities that act as administrators. Administrators are given special permissions.
Most notably, the ability to register users. They are not given access to anyone’s
data. Data permissions can only be delegated by the data owner.

User Registration

While SSL/TLS authentication could work for authenticating clients, it was
deemed easier to avoid setting up digital certificates for every client.

To avoid a lot of garbage data in the BDMs, the system should probably not be
open to everyone. To restrict access, user registration will be done through an
administrator.

When someone decide to use this system, the user downloads the app. During
initial setup, the app generates an RSA key pair used for authentication and a
WAVE entity that will represent the user. Recall that WAVE entities are bundles
of private/public keypairs. These keys are only used for authorization and
are not part of the authentication system. The app then generates a QR-code
containing the entity hash and public key. The administrator uses his app to
scan the QR-code and sends this data to each BDM for registration. At the same
time, the system generates the WAVE-attestations, which gives the new user
access to their own data, and the possibility to delegate this access to others.
This process will be described in a later section. The corresponding private key
is stored securely on the patients’ phone, encrypted with a password chosen
by the patient during the initial setup. The entity hash is used as a unique
identifier in the system.

Data needed for authentication

BDMs must store the data used for authentication without splitting them into
secret shares, so this data can not contain any sensitive information. The only
thing needed is the entities’ authentication public keys and their WAVE entity
hash. It does not matter if this data leaks or is stolen because both key and
hash are public anyways, and is useless if you do not have the corresponding
private keys.

4.4 wave 35

Client Authentication Flow

This section explains how authentication is done on one BDM server. The pro-
cess is identical on all servers.

First, the server must authenticate itself for the client and set up a secure
connection. This is done using SSL/TLS with either a CA-signed or self-signed
certificate.

Next, the client must provide its identity to the server. This process is loosely
based on SSH and SSL/TLS handshakes. It is a simple public key authentication
protocol that is only intended to be used in this specific environment after a
SSL/TLS handshake has been executed successfully. The protocol works as
follows (See also figure 4.4):

1. The client sends an authentication message with its entity hash and
public key.

2. Server checks if a user with this hash and public key exist. If not, authen-
tication fails.

3. Server sends a random string to the client.

4. Client uses its private key to sign the random string and sends this back
to the server.

5. Server verifies the signature using the client’s public key, proving that
the client is in possession of the corresponding private key.

6. Client is authenticated and can send requests to authorized services.

36 chapter 4 design

Figure 4.4: Public key authentication flow

4.4.3 Authorization

Authorization is done using WAVE. WAVE is a decentralized authorization
framework. The decentralization is the main reason why WAVE was chosen.
There is no centralized storage that can be attacked and compromise all users.
WAVE also offers transitive delegation which is useful when a patient wants
to share access to their data with others. Another property that WAVE offers
is the ability to delegate permissions to offline participants. While this is
trivial to do in centralized authorization, other decentralized solutions (e.g.
SDSI/SPKI[25][32] and Macaroons[7]) does not offer this property. We can
not expect patients or healthcare workers to be online at all times.

Namespace Authority

Each BDM is the authority entity in their own namespace. They will have
access to all data. Recall that each BDM only holds one share from a secret
sharing split, so a single BDM can not see any personal information about its
users.

When an entity is registered in a BDM by an administrator, the BDM will
create an attestation that gives this entity full access(read, write, edit, delete)
to all data stored under their entity hash. They will also be given permission
to share their access rights with other entities.

Patients can access their data from BDM1 using the following RTree policy

4.4 wave 37

URIs: BDM1/entity-hash/*. This will give the patient the share from BDM1. To
get all shares a request must be sent to all BDMs to the same URI except that
the namespace authority (which BDM server) must be different. Figure 4.5
shows how each BDM is the authority of their own namespace illustrated by
being the first nodes in the graph, and they have all granted the patient access
to their data.

The figure only shows read rights, but in reality they have full access.

Requesting Resource

Here we will describe the entire process for retrieving and displaying patient
data stored on BDMs. All of the technical bits are transparently handled by the
app, WAVE client and BDMs.

Requests are done via the patient’s mobile app. First, the client must decrypt
the private key stored on their device used for authentication on the BDMs (this
key was created when the user first registered as described in section 4.4.2). To
do this, the patient has to enter a password or use biometrics like a fingerprint.
The password/biometric data is the secret that is used to decrypt the key. There
is no network connections involved in this step. Everything happens locally on
the patient’s device and the purpose is only to decrypt the private key.

Next, the app connects to all BDMs, which authenticate themselves using
their digital certificates and at the same time exchange encryption keys for
secure communication. Next, the patient authenticate using their public key as
described in section 4.4.2. After this, the patient has established a secure and
authenticated connection to all BDMs. The next step is to provide something
to the BDMs that proves the patient is allowed to access the requested data.
This is done by using the WAVE service to create what they call a proof, which
will be sent to the BDMs for them to validate.

To explain how this proof is made, we must first look at the relevant portion of
the WAVE authorization graph. Figure 4.5 shows this. The BDMs has previously
(section 4.4.2) created attestations containing policies that gives the patient
access to all data that is stored under the patient’s entity hash. The attestations
are represented as the edges between the BDMs and patient node. The different
colored padlocks means that the attestation is encrypted using a public key of
key-pairs that are generated specifically for this attestation using wildcarded
identity-based encryption(WIBE). The patient has the corresponding private
key to decrypt these attestations to form proofs. WIBE is necessary for the
reverse-discoverable encryption (RDE) to be policy aware as discussed in section
2.6.3.

38 chapter 4 design

Figure 4.5: WAVE Graph with a single patient

RDE is used when access rights has been shared with someone else as de-
scribed in section 2.6.3. This will become more clear later when data sharing
is described.

The patient’s app generates the proof using the WAVE service, which decrypts
the attestations between BDM and patient using the WIBE private key. De-
crypted attestation is illustrated with colored padlocks, and the colored keys
illustrate the private keys for decrypting them. Decrypted attestations are con-
catenated and signed by the proving entity, which in this case is the patient
that want to prove that it has access to the resource. The WAVE service handles
this. These signed, concatenated attestations are the proof and can be verified
by anyone.

Requests are done using a protocol specifically designed for this environment.
Request messages are JSON objects with the request type, the URI for the
requested resource, and the WAVE proof file that act as an access token except
that it was generated without the use of a centralized authorization server. This
JSON object is sent to every BDM.

4.4 wave 39

The BDMs receiving the request uses the WAVE service to verify that the
provided proof is real, belongs to the authenticated user(entity hash), and has
not been tamperedwith. If successful, theWAVE service outputs the information
shown below

• Referenced attestations: A list with the hash of all attestations that are
used to form the proof. The hashes are given a number which is used in
for the paths field.

• Paths: The attestation path from the granting entity to the receiving
entity.

• Subject: The entity hash of the subject that this proof belongs to.

• Expires: The date when these permissions expires.

• Permissions: The permissions that this proof proves. e.g read, write,
delete.

• URI: The resource that the subject has access to with this proof.

If everything is valid, the BDM responds with the requested resource. In this
case the shares that are stored under the request URI. All steps described above
are illustrated in Figure 4.6.

40 chapter 4 design

Figure 4.6: BDM Request Flow

Reconstruct data

The patient’s app request data from all BDMs simultaneously and then re-
constructs the original data using lagrange interpolation. This happens on
the patient’s device, so there is never fully reconstructed sensitive data being
transmitted over the network. After reconstruction, the data can be displayed
to the patient.

4.4.4 Authorization Sharing

An entity can share their access rights with other entities. In the chronic pain
project it will typically be patients sharing their data with their doctor. WAVE
allows the granting entity to specify how many re-delegations is allowed.

To share data with someone else, they need the recipient entity’s hash. There
are many ways this can be done, all with their own pros and cons. For now,
assume that entities meet physically and share hash via QR-code like it is
done in user registration discussed in section 4.4.2. The granting entity scans
the QR-code with their app, selects which data they want to share and the

4.4 wave 41

type of access they share (e.g. read, write, delete). The app will then use the
WAVE service to create attestations and updates the global authorization graph
with the newly granted permissions. Figure 4.7 shows how the authorization
graph looks when access has been shared. It is the same as before (Figure 4.5)
between BDMs and patient. When patient shares access through the WAVE
service, it creates attestations that are encryptedwith newWIBE keys generated
for the doctor. Included in the attestations are the keys necessary to decrypt
upstream attestations. In this case, it is the keys that the doctor need to decrypt
attestations between BDMs and patient to form a proof of authorization when
accessing the patient’s data.

Figure 4.7: WAVE graph with delegation

Figure 4.8 shows two patients that has shared data with their doctor. This
is where the reverse-discoverable encryption mentioned previously in section
4.4.3 using WIBE keys is necessary. Doctor 2 should not and can not decrypt
any attestations on the path from BDMs through patient 1 because he/she does
not possess the necessary keys to do so, and can therefore not form a proof of
authorization to patient 1’s data. WIBE generated keys are necessary for policy
aware encryption. Remember that patients also has write-access to their data.
If the RDE used keys generated based only on the patient ID, the key included
in the attestation between patient and doctor could also be used to discover
write-access policies. The keys are therefore generated using the patient ID
and policy.

42 chapter 4 design

Figure 4.8: WAVE graph with two patients and delegation

Finally, a doctor might have to share access with someone else (e.g. specialists).
If the patient has given the doctor permission to delegate access, the doctor
can do so in the same way as the patient did using the app and QR codes.
Figure 4.9 shows the WAVE graph after this. There are still three attestations
between the entities, but has been compressed to one line in this figure to
make it cleaner.

Figure 4.9: WAVE graph with several indirections

4.4 wave 43

When specialist1 creates a proof of authorization to patient1’s data, it is done
by decrypting the attestations on the path from specialist1 to the namespace
authorities (in this case BDM1, BDM2, and BDM3). In Figure 4.9 you can see
that specialist1 is able to discover all keys (through RDE) needed to do this, but
specialist3 can not create a proof for patient1’s data because the keys discovered
will not be able to decrypt those attestations.

5
Implementation
To demonstrate the capabilitiess of WAVE, the design described in section 4.4
has been implemented. This chapter describes this implementation. A simple
command-line interface (CLI) has also been implemented to interact with
the system. The design describes a mobile application, but that application
has not been implemented. However, the implementation described here is
independent of the method of user input (e.g a mobile app). Reconstruction
of secret shares has also not been implemented because that is not important
part in an identity and access management (IAM) system.

The blind data miner(BDM) side of the implementation only handles authen-
tication and authorization and does not implement any of the BDMs’ core
functionality (e.g. secure statistical computation). When a client request to read-
/write/delete/modify data on a BDM, the BDM will only call mock-methods
for doing so. Data is accessed using URIs, and the implementation handles
granting and checking access to URIs, but exactly how data should be stored
is outside the scope of this thesis.

Chapter Outline

• Section 5.1 covers the choice of language and libraries used in the
implementation.

• Section 5.2 describes how communication between BDM and client is

45

46 chapter 5 implementation

implemented.

• Section 5.3 describes how the authentication protocol in figure 4.4 is
implemented.

• Section 5.4 describes how authorization is implemented using WAVE.

• Section 5.5 describes the BDMClient-class which is responsible for com-
municating with a single BDM.

• Section 5.6 describes the implementation of BDM servers.

• Section 5.7 describes the CLI Client which is placeholder for the mobile
app described in chapter 4. This is what the user uses to interact with
the system.

5.1 Language and libraries

The original BDM implementation is done in Java, and this implementation
also started out as a Java implementation, but Java proved to be very complex
when dealing with SSL networking and especially confusing with RSA.

Therefore this implementation is done in Python. Another reason for why
Python was chosen is because it is a very high-level language which makes it
easy to quickly implement a proof-of-concept in a short amount of time.

These are the libraries used which are worth mentioning.

• json1 - A JSON encoder and decoder that converts dictionaries to JSON
strings and vica versa. Request to BDMs are done using JSON objects.

• PyCryptodome2 - A library for low-level cryptographic primitives. Used
for digital signatures and handling of private/public keys.

• sqlite33 - A lightweight disk-based database that does not require a
separate server process. Used for storing users.

1. https://docs.python.org/3/library/json.html
2. https://www.pycryptodome.org/en/latest/
3. https://docs.python.org/3/library/sqlite3.html

5.2 communication protocol 47

• ssl⁴ and socket⁵ - For networking and access to TLS/SSL.

• subprocess⁶ - A library for starting new processes. Used to start and
interact with the WAVE CLI.

5.2 Communication Protocol

A REST API would have been a natural candidate for communication between
BDM and client. However, REST and HTTP is stateless, and this implementation
is dependent on a stateful protocol. FTP was considered, but it was difficult
to do authentication with FTP. Therefore, communication is done over plain
TCP sockets with a custom JSON-structure. To avoid having to authenticate
between every request, the socket connection is kept open and state (mainly
who the user on the other side of the socket is) is preserved between requests.
The BDMs are not designed with web browsers in mind, so it has not been
considered important to use protocols that support web browsers.

5.3 Authentication

5.3.1 BDM Authentication

BDM authentication is done using SSL. Each BDM has its own digital certificate.
In this implementation, they are self-signed. The client has these certificates in
a list of trusted self-signed certificates. If someone else tries to authenticate with
another self-signed certificate for those domain names, they will be rejected.
Using Python’s SSL-library that uses OpenSSL⁷, BDM authentication is achieved,
and an encrypted communication channel is established between client and
BDM.

The code below shows how this is done on the server(BDM) side. self.context.

load_cert_chain() takes as argument the server’s digital certificate, the server’s
private key, and the password for the private key since it is encrypted on
disk.

1 self. context = ssl. SSLContext (ssl. CERT_REQUIRED)
2 self. context . load_cert_chain (certfile = certificate , keyfile =key ,

password =pw)

4. https://docs.python.org/3/library/ssl.html
5. https://docs.python.org/3/library/socket.html
6. https://docs.python.org/3/library/subprocess.html
7. https://www.openssl.org/

48 chapter 5 implementation

3

4 self. serversock = socket . socket ()
5 self. serversock .bind ((host , port))
6

7 newsocket , fromaddr = self. serversock . accept ()
8 sslsoc = self. context . wrap_socket (newsocket , server_side =True)

Client side is shown below. self.context.load_verify_locations() takes as ar-
gument a path to all trusted server certificates. verify_mode=ssl.CERT_REQUIRED

makes sure that if the other side of the socket does not send a certificate, the
connection will be terminated immediately. On both sides, when the socket
is passed to self.context.wrap_socket(), the SSL handshake takes place and a
new SSL socket is returned. The original non-SSL socket is closed.

1 self. context = ssl. create_default_context ()
2 self. context . verify_mode = ssl. CERT_REQUIRED
3 self. context . load_verify_locations (capath =" client /

trusted_certificates ")
4

5 self.sock = socket . create_connection ((self.HOST , self.PORT))
6 self.ssock = self. context . wrap_socket (self.sock ,

server_hostname =self.HOST)

5.3.2 Client authentication

SSL can also do client authentication if clients have a certificate of their own.
However, a custom authentication algorithm has been implemented for client
authentication. It is very similar to regular public key authentication with digital
certificates. It uses a digital signature to prove that the client is in possession of
a private key that corresponds to a known public key tied to a unique username.
The username is the entity hash of theWAVE entity belonging to a user (patient,
health care worker, BDM, or administrator). Entity hashes are stored in each
BDM’s database together with the entities’ public key.

The client sends an auth message over the SSL socket created previously,
containing its entity hash and public key. The BDM will then check its database
to see if this entity hash and public key are registered. If it does, the BDM
will return the same message but with an added, randomly generated string.
The client uses its private key to sign this returned message. The signature
is sent to the BDM, which verifies the signature with the public key stored
in the database for that entity’s hash. The verification checks that decrypting
the message with the public key yields the message sent previously with the
random string. If it does, it means that the client on the other side of the socket
has the corresponding private key.

5.3 authentication 49

Code below is the server-side of client authentication. Signing and signa-
ture verification is handled by the RSA module from the Python-library Py-
Cryptodome.

1 def authenticate_client (cli_sock , db):
2 try:
3 auth_msg = json.loads(recv_all (cli_sock))
4

5 username = auth_msg [" username "]
6 public_key = auth_msg [" pubkey "]
7

8 retrieved_pubkey = retrieve_user_pubkey (username , db)
9 except JSONDecodeError :

10 raise AuthenticationError (" Broken auth message ")
11 except IndexError :
12 raise AuthenticationError ("User not found")
13

14 if public_key == retrieved_pubkey :
15 response_msg = {
16 " username ": username ,
17 " pubkey ": public_key ,
18 " server_random ": str(uuid.uuid4 ())
19 }
20

21 resp_msg_encoded = json.dumps(response_msg). encode ()
22 send_all (cli_sock , resp_msg_encoded)
23

24 signature = recv_all (cli_sock)
25

26 response_msg = json.dumps(response_msg)
27 pub_key = get_public_key_from_string (retrieved_pubkey)
28

29 if(verify (response_msg , signature , pub_key)):
30 resp = {
31 " status ": "OK"
32 }
33

34 send_all (cli_sock , json.dumps(resp). encode ())
35 return username
36 else:
37 resp = {
38 " status ": " FAILED ",
39 " error_msg ": " Authentication failed ! Invalid

signature ."
40 }
41

42 send_all (cli_sock , json.dumps(resp). decode ())
43 raise AuthenticationError (" Client provided invalid

signature ")
44

45 raise AuthenticationError (" Public Key does not match stored
key")

50 chapter 5 implementation

Client-side of the authentication protocol is shown below.

1 def authenticate (server_sock , entity_hash , priv_key):
2 pub_key = get_public_key (priv_key). decode ()
3 auth_msg = {
4 " entity_hash ": entity_hash ,
5 " pubkey ": pub_key
6 }
7

8 send_all (server_sock , json.dumps(auth_msg). encode ())
9

10 resp = recv_all (server_sock). decode ()
11 signature = sign(resp , priv_key)
12

13 send_all (server_sock , signature)
14

15 resp = recv_all (server_sock)
16 resp = json.loads(resp)
17

18 if resp[" status "] == ’OK’:
19 return
20 else:
21 error = resp[" error_msg "]
22 raise AuthenticationError (f" Authentication failed .

Error: {error}")

5.4 Authorization

Authorization is done using WAVE. In the current WAVE version, the interaction
with the WAVE service is done with a command-line interface (CLI). To use
this CLI, the user needs to know WAVE, but we can not expect users of this
system to possess this knowledge. The client implemented is also a CLI, but
a more user-friendly CLI that is an abstraction layer that hides the technical
bits of the WAVE CLI that is not important for the user to know. This thesis
does not focus on the visual design of the mobile app, but on a protocol for
authentication and authorization.

The front-endCLI will run theWAVE CLI using Python’s subprocess library.

5.4.1 WAVE CLI

The most important features of the WAVE CLI is creating an entity, granting
permissions, creating proofs, and verifying proofs.

./wv mke will create a new entity. The CLI will ask for a password that is used

5.4 authorization 51

to encrypt the keys that belong to this entity. The entity hash for the newly
created entity is returned.

./wv rtgrant --subject <entity_hash> --attester <entity_hash> --indirections

<number> <permission_set>:<permissions>@<namespace>/<uri> will grant permis-
sions to the entity under --subject. The --attester entity hash is the one
giving the permissions, and must provide its password to be able to grant
these permissions. --indirections says how many redelegations is allowed. <

permission_set> identifies the meaning of a set of permission strings. This is so
that one person’s idea of what read means does not accidentally get confused
with another person’s idea. <namespace> and <uri> is the resource that is being
granted access to under the provided namespace

./wv rtprove --subject <entity_hash> <permission_set>:<permissions>@<namespace

>/<uri> generates a signed proof that the subject has permissions to the provided
resource. The subject’s password must be provided to generate this proof.

Finally, ./wv verify <proof> verifies that the provided proof is valid. The output
is

The WAVE CLI can also be used to revoke permissions, but this functionality
has not been implemented in the front-end CLI.

5.4.2 WAVE Module

A Pythonmodule that runs theWAVE CLI as a subprocess has been implemented.
It contains a set of functions that hides some of the complexity of running the
WAVE CLI. The module implements the functionality to create new entities,
grant permissions, generate proofs, verifying proofs, and parsing a proof to
easier check what the proof is actually proving.

1 def generate_proof (entity_hash , permission , uri , pw)
2 def grant_permission (issuer , subject , policy , pw)
3 def create_entity (pw)
4 def verify_proof (proof , namespace , entity_hash)
5 def parse_proof (proof)

These functions run the commands described above in section 5.4.1. We can
take a closer look at grant_permission() to see how it is implemented.

1 def grant_permission (issuer , subject , policy , pw):
2 permission = policy [" permission "]
3 indirections = policy [" indirections "]
4 URI = policy ["uri"]

52 chapter 5 implementation

5

6 p = subprocess .Popen (["./wv", " rtgrant ", "--subject ",
subject , "--attester ", issuer , "--indirections ",
indirections ,f" patientdata :{ permission }@{URI}"], stdin=
subprocess .PIPE)

7

8 pw = pw + ’\n’
9 p. communicate (pw. encode ())

The function takes as input the entity hash of the one issuing permissions,
the entity hash of the subject receieving permissions, a policy that contains
permissions, indirections, and URI to a resource, and finally the password for
the entity issuing the permissions. As we can see, simply running this function
is a lot easier than having to manually run the WAVE CLI every time.

The implementation is similar for the other functions. They run the WAVE CLI
as a subprocess with the required input.

5.5 BDMClient

BDMClient is a class that is responsible for talking to a single BDM. When a
BDMClient-object is created, it takes as argument a BDM IP address and port
number, the namespace for the BDM, the WAVE entity hash that the client
represents, and the private authentication key for this entity.

During initialization, the BDMClient loads a list of trusted BDM certificates from
the devices’ filesystem and sets up a SSL context. There is a separate method
for connecting to the BDM, so the one who creates the object must explicitly call
connect() to connect. connect() will execute the BDM authentication procedure
described in section 5.3.1. Next, client will initiate the client authentication
procedure described in section 5.3.2. If everything succeeds, a secure and
authenticated socket connection is kept open until the disconnect() method is
called.

At this point, the BDMClient can send requests through the socket with a set
of methods listed below.

1 def store_data (self , data , uri , password)
2 def read_data (self , uri , password)
3 def delete_data (self , uri , password)
4 def modify_data (self , uri , data , password)

These methods will run the WAVE module functions to generate a proof for
the requested URI (read-permission for store_data() etc.)

5.6 bdm server 53

Requests are JSON-objects that contain the information necessary for the server
to handle the request. Below are examples of a read and a write request.

1 {
2 "type": "read",
3 "uri": "<entity_hash >/ pain_level /30 -05 -2021",
4 "proof": <proof >
5 }
6

7 {
8 "type": "write",
9 "data": <data >,

10 "uri": "<entity_hash >/ pain_level /30 -05 -2021",
11 "proof": <proof >
12 }

<proof> is the bytes from a proof that proves access to the URI. The proof, of
course, also contains the subject that has this access. The server holds the
connection open and keeps the state between request, so it already knows and
has authenticated the subject that sends these request. <data> is the data that
should be stored in a write or modify request

5.6 BDM Server

BDM servers are also implemented as a class. Like with BDMClients, the
initialization takes a set of arguments. These are the BDMentity hash,hostname
and port number, its digital certificate and the private key that belongs to the
certificate, and a password that is used to decrypt this private key and the
password used for the WAVE service. Initialization will set up a SSL context,
create a TCP-socket and bind it to the hostname and port. This is the socket
that listen for incoming connections. This class has a run() method that starts
listening for connections. When a client connects, a new socket for that client
is created and wrapped in the SSL context. Then the SSL handshake happens
and the BDM authenticates itself for the client using its digital certificate. This
creates a secure connection between client and BDM. Now the client can
authenticate using the procedure described in section 5.3.2. If authentication
succeeds, the BDM server will wait for a request from the client. The socket is
kept open until the client disconnects.

It is implemented so that it should be easy to start several BDMs. A config-file
is used to configure the BDM

1 {
2 " bdm_id ": "BDM1",

54 chapter 5 implementation

3 " hostname ": " localhost ",
4 "port": 5050,
5 "cert": "bdm1.pem",
6 "key": " bdm1_key .pem",
7 "db": " bdm1_db .db",
8 " key_pw ": "bdm1"
9 }

Key password should probably be stored as an environment variable or entered
manually when the BDM is started. For now, it is stored in the config-file.

5.6.1 Handling requests

A request is received over the SSL socket. The first thing that happens is that
the BDM will use the verify_proof() method from the WAVE module that
runs the WAVE CLI to verify that the proof is valid and that it belongs to the
authenticated user. It will also check that the proof belongs to the namespace
that the receiving BDM is the namespace authority for. If something is wrong,
a response with an error message is returned to the client, and the connection
is terminated.

If the proof is successfully verified, the next step is to check the contents
of the proof. BDM will check that request type (e.g. read) is in the proof ’s
list of permissions. and that the URI requested is in the proof. Proofs can
contain wildcarded URIs. For example, a request can be sent to the URI shown
below

1 "uri": "<entity_hash >/ pain_level /30 -05 -2021"

and the proof URI can be as the one shown below. This would be a valid proof
for the requested URI.

1 "uri": "<entity_hash >/*"

Typically a patient would be granted all types of permission to the URI shown
above because they should have full access to all data they store. A patient can
chose to share access to only the data stored under pain_level. They would
create an attestation encrypted with the receiving entity’s public key that
contains the following URI.

1 "uri": "<entity_hash >/ pain_level /*"

If the user is authorized to do the request, the BDM will call mock-methods for
reading, writing, deleting or modifying data. Nothing will be stored or read.

5.7 cli cl ient 55

As mentioned before, what happens next is outside the scope of the thesis. An
OK message is sent back to the client saying that the request was successfully
fulfilled

5.7 CLI Client

The CLI client is a placeholder for the mobile app in this implementation. As
discussed earlier, the method of input should not matter for the core of the
implementation.

The CLI client’s main job is to create and manage all BDMClient objects. The
CLI client will, on startup, create a BDMClient object for every BDM that is part
of the system and run their connect() method, which will open up a connection
to the BDMs and run the authentication protocol once for every BDM.

Before the objects can be created, the userwill be prompted to enter a username,
which will be used to find a config-file containing the user’s entity hash and
the alias for the public and private key used for client authentication. The alias
is just the filename for the keys. The user must also provide a password to
decrypt the keys. The decrypted private key, the password, and the entity hash
are needed when creating the BDMClient objects.

If a config file for this username does not exist, the client will run a procedure
for creating a new user. First, a username must be chosen. This username will
be used to find the config file and will also be the alias for the keys. Then
the user must select a password that will be used to encrypt the public and
private key. After a username and password have been chosen, the client will
first generate a key pair and store it encrypted on the device. Next, it will use
the create_entity() function from the WAVE module, which uses the WAVE CLI
to create a new WAVE entity with the same password as chosen earlier. Finally,
the entity hash of the newly created entity is stored in the config file along
with the key alias.

This newly created user will be present in the WAVE system, but its entity hash
and public key have not yet been registered in the BDMs. Client authentication
will fail if the user tries to connect to the BDMs before the user has been
registered. An administrator must do this registration. Administrators will be
pre-registered in the BDM databases with write-permissions to a special URI
for registering users. Figure 5.1 shows flowchart of what happens after the
client is started.

56 chapter 5 implementation

Figure 5.1: Client startup flowchart

6
Evaluation
The purpose of this evaluation is to test and demonstrate that authentica-
tion and authorization works as intended. To do this, it helps to list some
requirements.

• Users must register and authenticate with the blind data miners to get
access.

• Users should have access to their own data.

• Users should not have access to other users’ data unless access has
explicitly been shared.

• Users should be able to share access to their data with other users.

• Users should be able to revoke the access they have shared with others.

Chapter Outline

• Section 6.1 descibes the environment that has been set up to test the
implementation.

• Section 6.2 describes how registration and authentication was tested.

57

58 chapter 6 evaluation

• Section 6.3 describes the test and results for when users try to access
their own data.

• Sectiion 6.4 describes the test that demonstrates that a user can not
request data from a URI that it is not authorized for.

• Sectiion 6.5 describes the test that demonstrates access sharing.

• Sectiion 6.6 describes the test that demonstrates access revocations.

6.1 Test Environment

The implementation has been tested using three BDM servers. All three BDMs
are initialized with a WAVE entity that acts as an administrator to register new
users. The idea is that this should be the initial state of the system once it
has been set up at different organizations. All BDMs are running on the same
machine. There are two reasons for this. First, it is more convenient, and it will
not affect the functionality of the system. Second, there are no Unequivocable
Log Derived Map(ULDM) storage present for reasons that are discussed in
section 7.2 about limitations. Therefore, BDMs must share filesystem to have
access to attestations and entities. The lack of ULDM means that auditing is
not tested.

6.2 Registration and Authentication

First, we demonstrate that newly created users that has not been registered
by an administrator yet will not be able to authenticate. We create a new user
and immediately try to connect to the BDMs. The BDMs responds as expected
with an error message saying they were unable to authenticate the user. This
is because the users entity hash and public key does not exist in the BDMs’
databases. The connection is then terminated.

Logging in with the administrator account, we will register this user. We have
to manually input the entity hash and public key of the user with this client,
but recall that the idea is that this will be read from a QR code. In this test they
are copied and pasted it into the command line. The client generates a proof
and sends a write request to the /users URI with the new user. BDM validates
the proof and stores the new user. Client gets a confirmation message that the
request was successful.

6.3 user access their own data 59

Now when trying to connect to the BDMs with the new user, the authentication
succeeded and the user is shown a simple menu for doing storage operations.
The user is also shown the option to register users, but when trying to do so,
the WAVE module will raise an exception when attempting to generate the
proof because this user has not been given write-permissions to the /users URI.
In this case, the client will not send the request at all, thus saving the BDM
from using resources to evaluate an invalid request. Even if a request is sent,
the BDM will not receive a valid proof, and the request is rejected.

6.3 User access their own data

Users must have access to their own data. In this section, the system for
authorizing users to access their own data is tested. The user that was created
in the previous Section 6.2 is used.

This test is very simple. When the user was registered, the BDMs should have
used the WAVE module to give full access to a unique URI like the one shown
below containing all the data for this specific user.

1 "uri" : "<entity_hash >/*"

The client has the entity hash of the locally logged in user and this hash is
automatically added to the beginning of the URI when the user tries to access
data. A proof for this URI is generated by the client and sent with the request.
All types of requests (read, write, delete and modify) were tested and all of
them succeeded.

6.4 Accessing Unauthorized URIs

Users should not have access to other users’ data. To test this, an additional
user is created and registered. These users will be refered to as user #1 and
user #2. We will try to make user #1 access user #2’s data. Logging in with
user #1, we enter the entity hash of user #2 we try to read data from. The
client CLI has an option to manually enter the full URI without adding the hash
of the logged in user to the beginning of the URI. Similarily to when trying
to register users with a regular account, the WAVE module failed to create a
proof and the client does not send the request.

60 chapter 6 evaluation

Stealing Proof

We also try to simulate a situation where user #1 has been able to steal a
proof that belongs to user #2, and use this to try to get access to user #2’s
data. Since the client does not store proofs on disk in this implementation, this
had to be tested manually by creating the proof using the WAVE CLI which
outputs the proof as a file that get stored locally. The code had to be modified
to read this file and add it as a proof to the request. The request was sent to
the URI for user #2. The BDM sees that this is a valid proof for the requested
URI. However, the proof also contains the entity hash of the user that the proof
belongs to. The authenticated user #1 that is sending this request is not in the
proof, and therefore the BDMs respond with an error message saying that the
proof belongs to a different user.

User #1 can not modify the proof because it is signed by the user #2’s private
key. The WAVE CLI will detect if the proof has been modified.

6.5 Access Sharing

Now user #2 will share access to his/her data and we run the same test as
we did in section 6.4. This time the client is able to generate the proof and a
request is sent. This time the request succeeeds.

6.6 Revocations

Users can also revoke shared permissions at any time. This is the final test in this
evaluation. The access delegation from section 6.5 is revoked and once again
we run the same test from section 6.4. As expected, the request fails.

7
Discussion
This chapter will discuss advantages and limitations of the design and imple-
mentation done in this thesis.

There will also be a section on future work, the performance of WAVE, and a
conclusion on whether or not WAVE is a viable alternative to Keycloak.

Chapter Outline

• Section 7.1 discusses advantages of WAVE and public key authentication.

• Section 7.2 discusses the limitations of WAVE and design and implemen-
tation done in this thesis.

• Section 7.3 discusses some future work for this thesis. Some are essential
before the system can be used.

• Section 7.4 discusses the performance of WAVE.

• Section 7.5 discusses if the system designed in this thesis is something
that should be considered by the chronic pain project, or if they should
continue using Keycloak.

61

62 chapter 7 discussion

7.1 WAVE Advantages

This section will discuss the advantages of the design and implementation with
WAVE done in this thesis.

7.1.1 Fully Distributed

One of the most considerable advantages of WAVE is that it is fully decen-
tralized. There is even no need for peer-to-peer communication to generate
and verify proofs. The only time there has to be communication between two
entities is when sending a proof. The proving entity must send the proof to the
verifying entity. Everything else happens through the WAVE service, which gets
attestations and entities from the Unequivocable Log Derived Map(ULDM). At
first glance, the ULDM might look like a centralized point of attack. The ULDM
stores attestations and entity public keys and nothing that an attacker can use
to grant themself permission to anyone’s data. Attestations could, theoretically,
be modified by an attacker to reference themselves instead. However, they
are encrypted with public keys, so only those who have the private key can
decrypt it. Even if an attacker could modify or delete an attestation, it would
immediately be detectable since the ULDM Merkle trees would no longer be
valid. Auditors have a copy of the latest map root head that is derived from
previous versions. Suppose a storage provider modifies or removes anything
from their ULDM and recalculates all the hashes. In that case, the map root
will not be consistent with the auditors’ version, and the storage provider can
be permanently removed. As long as the majority of auditors are honest, the
integrity of the system is ensured.

As discussed in chapter 4, the problem with Keycloak is that there is a single
centralized point for attackers to exploit. There is no way for anyone to get
hold of all users’ credentials in WAVE because they are distributed across all
users and stored encrypted on their devices. Even if an attacker can get access
to a user’s device, they would also need to crack the password used to encrypt
the private key. Bruteforcing this encryption would take so much time that it
is unreasonable to think that this is a real issue.

7.1.2 Public Key Authentication

The implementation uses public key authentication for both BDMs and clients.
BDMs use the PKI(public key infrastructure) framework with X.509 certificates
to authenticate, which is a system that has existed for decades and is by many
considered the backbone of the internet.

7.2 wave limitations 63

Client authentication in this thesis does not rely on PKI. Instead, it is more
similar to how public key SSH authentication is done. Approved public keys
are stored on the BDMs, and clients prove that they have the corresponding
private key by signing a random message generated by the BDM during the
authentication procedure.

Public key authentication provides a cryptographic strength that extremely
long passwords can not match. Traditional password-based authentication, like
the one used by Keycloak, is prone to attacks like dictionary attacks where
millions of common passwords are listed in a dictionary, and an attacker can
quickly try all these passwords.

Usually, passwords are not stored in plaintext on the authentication server.
Instead, the password is hashed, and the hash is what gets stored. If these hashes
leak, an attacker can perform a rainbow table attack where pre-computed
hashes and passwords appear in a table. These tables can have millions of
passwords and their corresponding hashes, leading to passwords being cracked
almost immediately. Passwords must be complicated enough to not appear in
a dictionary or rainbow table to prevent this attack. These attacks are not a
problem with public key authentication. There are no hashes involved, and it
is practically impossible to derive a private key from a public key.

In addition, public key authentication frees the user from having to remember
complicated passwords. One problemwith the proposed solution usingmultiple
Keycloak-servers is that users should ideally have different passwords for every
Keycloak-server, which alone can be a reason for users not to use the system.
I argue that due to the strength of public key encryption, the same key pair
can be used for all BDMs to authenticate. However, it would not make it more
difficult for the user to have different key pairs for every BDM since they do
not have to remember them.

7.2 WAVE Limitations

7.2.1 WAVE in production

The implementation done in this thesis uses the latest version of WAVE (version
3)1, which is not yet ready for production according to the developers. The
documentation is lacking. Exactly how one sets up the ULDM storage and
auditing is unclear. The WAVE CLI will output the attestations and entities
as files that are stored locally, so it is only really usable in a system where

1. https://github.com/immesys/wave

64 chapter 7 discussion

processes share a filesystem or if entities or attestations are sent between
devices. With thousands of users and permission delegations, it will quickly
become unmanageable. If an entity that holds an attestation required by
someone to form a proof is offline or decides not to send an attestation, the
proving entity will not be able to form its proof. The ULDM storage is essential
for this system to work, both because of availability and auditing that ensures
the integrity of the WAVE graph.

Prior versions of WAVE that is in production uses an Ethereum blockchain for
storage. This would not work here because it takes up to a minute to add an
object to storage with Ethereum. Also, participating in a blockchain requires
constant network bandwidth and CPU time, something a user should not be
expected to provide.

7.2.2 WAVE is not for Authentication

WAVE is a framework for authorization and not a fully-fledged identity and
access management system like Keycloak. Therefore, there had to be an inde-
pendent authentication protocol on top of WAVE.

7.2.3 Loss of Private Key

The private key used for authentication is stored on the user’s device. If the
phone is stolen, lost, or if the user switches to a new device, the private key
is gone, and the user will not be able to authenticate with the BDMs, and
therefore loses access to all their data. Also, if the user loses its password for its
private key or WAVE entity, there is no way to recover this password. Private
key and WAVE entity will be gone forever, and access to data is lost. There has
to be a system in place to recover users, or this system is too risky to put in
production.

7.2.4 BDM as Namespace Authority

Having BDMs as the namespace authority can be an issue. It practically gives
the organization that hosts the BDM the ability to grant permissions to anyone’s
data or revoke a patient’s permission. If a patient’s permission is revoked, then
all downstream permissions will, in practice, also be revoked because it will not
be possible to form a proof if the proving entity can not decrypt all attestations
from itself to the namespace authority. Therefore, a solution where the patient
is the namespace authority for its own data would be better.

7.3 future work 65

7.2.5 Problems with Persistent Connection

The connection between client and BDM is always open as long as the client
is running. This will probably not scale very well. With thousands of users
online at the same time, there will be thousands of sleeping threads waiting
for requests in the background. Sleeping threads does not consume any CPU
time in most operating systems, but they do use memory. So some testing on
whether this memory usage will be a problem should be done. Another thing
to keep in mind is that there are only around 60 000 available port numbers in
TCP, so a single BDM will not be able to have more than 60 000 clients online
simultaneously even if it has infinite memory and processing power. 60 000
is a lot. It is unlikely that port numbers will be an issue in the chronic pain
project, and it can easily be solved by having replica BDMs, but it is a limitation
that must be considered.

7.3 Future Work

Before any further work on the system in this thesis is considered, it is crucial
to figure out if WAVE version 3 will ever be ready for production or if the project
has been abandoned. It has been over two years since the GitHub repository
was updated. Perhaps it would be an idea to reach out to the researchers and
developers to ask what their plan is. Assuming that a production-ready version
will be released, a few things need more work before the implementation in
this thesis can be put into production. This section will look at the most notable
ones.

7.3.1 Revisit Authentication Protocol

The authentication protocol implemented is loosely based on SSH authenti-
cation. It has been implemented from scratch and may contain significant
security holes that have not been considered. Before using it for the highly
sensitive data that will be stored on BDMs, security experts should take a look
at it. There are also probably some pre-developed solutions available that can
be used instead. Perhaps the client authentication capabilities of SSL can be
used.

7.3.2 BDM and Mobile Integration

The real BDMs have been implemented in Java. However, the implementation
done in this thesis is written in Python, so if this is to be taken into production,

66 chapter 7 discussion

the code must either be ported to Java, the BDMs ported to Python, or an API
must be created to connect the two implementations.

Also, there have been no investigations on how to run the client on a mobile
device. Kivy2 is an open-source library for Python to develop cross-platform
applications, but its capabilities have not been looked into. It is unclear whether
the WAVE CLI and WAVE Service can be run on Android/iOS. WAVE is open-
source and is written in Go3, so further investigations on whether it is possible
to compile it to run on Android/iOS must be done.

7.3.3 Private Key Backup

Public key authentication is, as discussed, a very secure authentication method.
However, the loss of the private key will have significant consequences for the
patient in the chronic pain project. He/she loses access to all data without the
possibility to recover it. The BDMs’ user database only stores an entity hash
and public key, so there is nothing there to identify the owner of data if he/she
does not have the private key.

Some way of securely backing up the private key should be implemented, or
something that can tie the data to a patient other than the public key so that it is
possible to create a new key pair for the patient if the private key is lost.

7.3.4 Proof caching

In this implementation, the client creates new proofs every time a request is
sent. It takes about one second to create a proof, and the client must create
one for every BDM it is connected to. If proofs can be cached by the client and
reused, it would dramatically increase the client’s performance. Technically it
is not difficult to do this, but more investigations on whether it is safe must be
done. As discussed in section 6.4, proofs are signed and can not be modified
without being detected by the WAVE Service, so storing them should not be a
problem. Also, the proof verification process detects if an attestation has been
revoked after the proof was generated.

2. https://kivy.org/
3. https://golang.org/

7.4 benchmarking 67

7.3.5 Batch processing and Multi-threading

The BDMs are single-threaded in this implementation, which means that they
can only handle one user at a time. To handle more users, the BDMs must be
multi-threaded.

The client is also single-threaded. To increase client performance, the BDM
communication could be handled by a separate thread running in the back-
ground. Also, to decrease the load on the BDMs, an idea is to process write-,
modify- and write-requests in batches.

7.4 Benchmarking

There has been no formal benchmarking of the implementation because by
simply observing the performance, WAVE performed much worse than what
their paper claimed [4]. This can have something to do with how it has been set
up and used here. As mentioned previously, the documentation is almost non-
existent. It may still be interesting to discuss the results that the researchers
of WAVE got when benchmarking.

In the real world, this would run on mobile phones and not on a laptop as
was done in the evaluation. The original paper tested WAVE on devices that
are on both ends of the performance spectrum. Table 7.1 shows some of the
results.

Table 7.1: Object operation times (ms) [4]

Operation AMD64 ARMv8
Create attestation 43.7 445
Create entity 8.9 88.5
Decrypt attestation as verifier 0.48 4.44
Decrypt attestation as subject 3.87 44.0
Decrypt delegated attestation 6.22 67.9

The interesting column here is ARMv8, which is benchmarks done on a Rasp-
berry Pi 3. A Raspberry Pi 3 is not a very powerful platform, and a mobile
phone can be expected to perform better. Also, if Apple ever put their M1-chip⁴
in an iPhone, it will most likely even outperform the Intel i7-8650U that was
used for the AMD64 benchmark since the M1 is much more powerful.

4. https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

68 chapter 7 discussion

Figure 7.1 shows the time it took to build and verify proofs of different
length.

Figure 7.1: Proof build/verification time [4]

The vertical red line is the expected maximum proof length of a common
application. It is reasonable to think that for most patients in the chronic pain
project, it would not be much longer than 5. Therefore, around 14ms to build a
proof and half of that to verify a proof should be fast enough to not cause any
frustration by users even if the client can not cache proofs.

7.5 Keycloak or WAVE?

While the centralized design with Keycloak has some drawbacks, Keycloak is
at least production-ready.

As it stands now, I would not go forWAVE. On paperWAVE looks very promising,
but as long as the implementation is not production ready, and if it is unclear
whether it will ever be, the best option is to continue using Keycloak for
now. Keycloak is built around several proven industry standard technologies
and protocols like OpenID Connect, OAuth 2.0, SSO and LDAP to mention a
few.

Also, Keycloak servers can be hosted by anyone, and in the chronic pain project
it would be hosted by the Norwegian Centre for E-health Research (NSE)
behind their firewall. It is not a cloud-based solution like Firebase or AWS, so
nobody outside NSE would have access to the data stored on the Keycloak
server.

7.5 keycloak or wave? 69

WAVE has a production ready version⁵, but this uses a modified version of the
Ethereum blockchain which is too slow (up to a minute to add something to
storage). This version does not meet the requirement of a fast and responsive
system as specified in section 1.1.

The proposed design with multiple Keycloak servers could possibly be used
with a single password to authenticate with all servers if the client appends
a random salt (which would be different for every Keycloak server) to the
password when registering and also later every time the user logs in. A salt
in this context is extra characters added to the password by the application
before it is hashed and stored on the authentication server.

However, this raises the question of how to generate this salt. An idea could be
to do something like the key-generation in identity-based encryption, where
cryptographic keys are derived from a unique identifier. Salts could be gener-
ated similarly by having a known identifier as the seed to a salt generator. This
way, the salts would available without having to back them up if they switch
to another device.

5. https://github.com/immesys/bw2

8
Conclusion
To conclude we repeat the goal from section ??

The goal of this thesis is to look for a decentralized alternative for
identity and access management that will be used with blind data
miners in the chronic pain project. When a suitable alternative has
been found, a prototype will be designed, implemented and evaluated
according to the requirements specified in section 1.1

WAVE was discovered when reading through literature on authentication and
authorization. WAVE is a decentralized authorization frameworkwith transitive
delegation and it looked like a promising framework as a base for an IAM system
in BDMs since it does not rely on a centralized server like Keycloak.

A prototype systemwas designed and successfully implemented that uses public
key authentication for both BDM and client authentication. Authorization is
handled by WAVE, which is also based on asymmetric encryption, to delegate,
prove, and verify permissions. The system allows patients to share access to
their data with other authenticated users. The evaluation of the system showed
that it works as intended.

The conclusion, however, is that while WAVE is a very promising technology, it
is not yet ready to be used in a production setting. The system implemented in
this thesis was not able to get close to the performance that was stated in the
WAVE researchers’ paper [4], and therefore it does not meet the requirement

71

72 chapter 8 conclusion

of being a fast and responsive system. So for the time being, the chronic pain
project should stick to using Keycloak until WAVE gets a proper release and
documentation.

Bibliography
[1] Michel Abdalla et al. “Wildcarded Identity-Based Encryption.” In: Jour-

nal of Cryptology 24.1 (Jan. 2011), pp. 42–82. doi: 10.1007/s00145-010-
9060-3. url: https://doi.org/10.1007/s00145-010-9060-3.

[2] About Keycloak. url: https://www.keycloak.org/about (visited on
06/10/2021).

[3] Michael P Andersen. WAVE Presentation. url: https://www.usenix.
org/conference/usenixsecurity19/presentation/andersen (visited
on 04/03/2021).

[4] Michael P. Andersen et al. “WAVE: A Decentralized Authorization Frame-
workwith Transitive Delegation.” In: Proceedings of the 28th USENIX Con-
ference on Security Symposium. SEC’19. Santa Clara, CA, USA: USENIX
Association, 2019, pp. 1375–1392. isbn: 9781939133069.

[5] Johan Gustav Bellika. Decision support for personalized chronic pain care.
url: https://ehealthresearch.no/en/projects/decision-support-
for-personalized-chronic-pain-care (visited on 04/24/2021).

[6] A. Langley Ben Laurie and E. Kasper. RFC 6962 - Certificate Trans-
parency. 2013. url: https://tools.ietf.org/html/rfc6962 (visited
on 04/03/2021).

[7] Arnar Birgisson et al. “Macaroons: Cookies with Contextual Caveats for
Decentralized Authorization in the Cloud.” In: Network and Distributed
System Security Symposium. 2014.

[8] Let’s Encrypt. A nonprofit Certificate Authority providing TLS certificates.
url: https://letsencrypt.org/ (visited on 05/02/2021).

[9] GDPR. url: https://gdpr.eu/ (visited on 05/09/2021).
[10] Google. How Log Proofs Work. url: https://sites.google.com/site/

certificatetransparency/log-proofs-work (visited on 04/12/2021).
[11] Anne Håkansson. “Portal of Research Methods and Methodologies for

Research Projects and Degree Projects.” In: Proceedings of the Inter-
national Conference on Frontiers in Education : Computer Science and
Computer Engineering FECS’13. QC 20131210. CSREA Press U.S.A, 2013,
pp. 67–73. isbn: 1-60132-243-7. url: http://www.world-academy-of-
science.org/worldcomp13/ws.

[12] Norwegian Directorate of Health. Tryggere helseapper. 2021.

73

https://doi.org/10.1007/s00145-010-9060-3
https://doi.org/10.1007/s00145-010-9060-3
https://doi.org/10.1007/s00145-010-9060-3
https://www.keycloak.org/about
https://www.usenix.org/conference/usenixsecurity19/presentation/andersen
https://www.usenix.org/conference/usenixsecurity19/presentation/andersen
https://ehealthresearch.no/en/projects/decision-support-for-personalized-chronic-pain-care
https://ehealthresearch.no/en/projects/decision-support-for-personalized-chronic-pain-care
https://tools.ietf.org/html/rfc6962
https://letsencrypt.org/
https://gdpr.eu/
https://sites.google.com/site/certificatetransparency/log-proofs-work
https://sites.google.com/site/certificatetransparency/log-proofs-work
http://www.world-academy-of-science.org/worldcomp13/ws
http://www.world-academy-of-science.org/worldcomp13/ws

74 BIBLIOGRAPHY

[13] HIPAA. url: https://www.hhs.gov/hipaa/index.html (visited on
05/09/2021).

[14] HowCT fits into the widerWeb PKI ecosystem. url: https://certificate.
transparency.dev/howctworks/ (visited on 04/03/2021).

[15] Sara Jelen. What Are Certificate Transparency Logs? 2018. url: https:
//securitytrails.com/blog/what- are- certificate- transparency-
logs (visited on 04/12/2021).

[16] Per Atle Bakkevoll Johan Gustav Bellika Elisa Salvi. Data management
plan. Decision support for personalized chronic pain care. 2021.

[17] Hipaa Journal. 100% of Tested mHealth Apps Vulnerable to API Attacks.
url: https://www.hipaajournal.com/100-of-tested-mhealth-apps-
vulnerable-to-api-attacks/ (visited on 04/23/2021).

[18] Ben Laurie. “Certificate Transparency.” In: Commun. ACM 57.10 (Sept.
2014), pp. 40–46. issn: 0001-0782. doi: 10.1145/2659897. url: https:
//doi.org/10.1145/2659897.

[19] James A. Martin and CSO John K. Waters. What is IAM? Identity and
access management explained. 2018. url: https://www.csoonline.com/
article/2120384/what- is- iam- identity- and- access- management-
explained.html (visited on 02/21/2021).

[20] Ralph C. Merkle. “A Digital Signature Based on a Conventional En-
cryption Function.” In: Advances in Cryptology — CRYPTO ’87. Ed. by
Carl Pomerance. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988,
pp. 369–378. isbn: 978-3-540-48184-3.

[21] Roberto Tamassia Michael Goodrich. Introduction to Computer Security:
Pearson New International Edition. First Edition. Pearson, 2014. isbn:
1-292-02540-9.

[22] Raluca Popa. WAVE: A Decentralized Authorization Framework from
Transparency Logs. 2019. url: https://simons.berkeley.edu/talks/
wave-certificate-transparency-and-key-transparency (visited on
04/06/2021).

[23] Grand View Research. mHealth Apps Market Size, Share Trends Analysis
Report By Type (Fitness,Medical), By Region (North America, APAC, Europe,
MEA, Latin America), And Segment Forecasts, 2021 - 2028. 2021.

[24] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems.” In: Commun. ACM 21.2 (Feb.
1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342.
url: https://doi.org/10.1145/359340.359342.

[25] Ronald Rivest and Butler Lampson. “SDSI – A Simple Distributed Secu-
rity Infrastructure.” In: See the SDSI web page at http://theory.lcs.mit.edu/ cis/s-
dsi.html (Aug. 1996).

[26] Adi Shamir. “How to Share a Secret.” In: Commun. ACM 22.11 (Nov.
1979), pp. 612–613. issn: 0001-0782. doi: 10.1145/359168.359176.
url: https://doi.org/10.1145/359168.359176.

https://www.hhs.gov/hipaa/index.html
https://certificate.transparency.dev/howctworks/
https://certificate.transparency.dev/howctworks/
https://securitytrails.com/blog/what-are-certificate-transparency-logs
https://securitytrails.com/blog/what-are-certificate-transparency-logs
https://securitytrails.com/blog/what-are-certificate-transparency-logs
https://www.hipaajournal.com/100-of-tested-mhealth-apps-vulnerable-to-api-attacks/
https://www.hipaajournal.com/100-of-tested-mhealth-apps-vulnerable-to-api-attacks/
https://doi.org/10.1145/2659897
https://doi.org/10.1145/2659897
https://doi.org/10.1145/2659897
https://www.csoonline.com/article/2120384/what-is-iam-identity-and-access-management-explained.html
https://www.csoonline.com/article/2120384/what-is-iam-identity-and-access-management-explained.html
https://www.csoonline.com/article/2120384/what-is-iam-identity-and-access-management-explained.html
https://simons.berkeley.edu/talks/wave-certificate-transparency-and-key-transparency
https://simons.berkeley.edu/talks/wave-certificate-transparency-and-key-transparency
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

BIBLIOGRAPHY 75

[27] DawnM. Turner. Digital Authentication - the basics. 2016. url: https://
www.cryptomathic.com/news-events/blog/digital-authentication-
the-basics (visited on 02/27/2021).

[28] UiO. Tjenester for Sensitive Data. url: https://www.uio.no/tjenester/
it/forskning/sensitiv/ (visited on 06/02/2021).

[29] S. B. Wikina. “What caused the breach? An examination of use of
information technology and health data breaches.” In: Perspect Health
Inf Manag 11 (2014), 1h.

[30] Wikipedia. Merkle Tree. url: https : / / en . wikipedia . org / wiki /
Merkle_tree (visited on 04/19/2021).

[31] K. Y. Yigzaw, A. Michalas, and J. G. Bellika. “Secure and Scalable Statis-
tical Computation of Questionnaire Data in R.” In: IEEE Access 4 (2016),
pp. 4635–4645. doi: 10.1109/ACCESS.2016.2599851.

[32] Tatu Ylonen et al. SPKI Certificate Theory. RFC 2693. Sept. 1999. doi:
10.17487/RFC2693. url: https://rfc-editor.org/rfc/rfc2693.txt.

[33] Kim Zetter. DigiNotar Files for Bankruptcy in Wake of Devastating Hack.
2011. url: https://www.wired.com/2011/09/diginotar-bankruptcy/
(visited on 04/06/2021).

https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://www.uio.no/tjenester/it/forskning/sensitiv/
https://www.uio.no/tjenester/it/forskning/sensitiv/
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Merkle_tree
https://doi.org/10.1109/ACCESS.2016.2599851
https://doi.org/10.17487/RFC2693
https://rfc-editor.org/rfc/rfc2693.txt
https://www.wired.com/2011/09/diginotar-bankruptcy/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Requirements
	1.2 Goal
	1.3 Contribution
	1.4 Method
	1.5 Thesis Outline

	2 Background
	2.1 Chronic Pain Project
	2.2 Blind Data Miners
	2.3 Identity and Access Management
	2.4 Merkle Hash Tree
	2.5 Certificate Transparency
	2.5.1 Certificate Transparency Overview
	2.5.2 Monitor
	2.5.3 Auditor
	2.5.4 Merkle Consistency Proof
	2.5.5 Merkle Audit Proof

	2.6 WAVE: A Decentralized Authorization Framework with Transitive Delegation
	2.6.1 Usage scenarios
	2.6.2 Terminology
	2.6.3 WAVE Overview
	2.6.4 Unequivocable Log Derived Map

	2.7 Keycloak
	2.8 Keycloak vs. WAVE

	3 Method
	4 Design
	4.1 Introduction
	4.2 Traditional authentication and authorization
	4.3 Keycloak
	4.3.1 One Centralized Keycloak Server
	4.3.2 Multiple Keycloak Servers

	4.4 WAVE
	4.4.1 WAVE Recap
	4.4.2 Authentication
	4.4.3 Authorization
	4.4.4 Authorization Sharing

	5 Implementation
	5.1 Language and libraries
	5.2 Communication Protocol
	5.3 Authentication
	5.3.1 BDM Authentication
	5.3.2 Client authentication

	5.4 Authorization
	5.4.1 WAVE CLI
	5.4.2 WAVE Module

	5.5 BDMClient
	5.6 BDM Server
	5.6.1 Handling requests

	5.7 CLI Client

	6 Evaluation
	6.1 Test Environment
	6.2 Registration and Authentication
	6.3 User access their own data
	6.4 Accessing Unauthorized URIs
	6.5 Access Sharing
	6.6 Revocations

	7 Discussion
	7.1 WAVE Advantages
	7.1.1 Fully Distributed
	7.1.2 Public Key Authentication

	7.2 WAVE Limitations
	7.2.1 WAVE in production
	7.2.2 WAVE is not for Authentication
	7.2.3 Loss of Private Key
	7.2.4 BDM as Namespace Authority
	7.2.5 Problems with Persistent Connection

	7.3 Future Work
	7.3.1 Revisit Authentication Protocol
	7.3.2 BDM and Mobile Integration
	7.3.3 Private Key Backup
	7.3.4 Proof caching
	7.3.5 Batch processing and Multi-threading

	7.4 Benchmarking
	7.5 Keycloak or WAVE?

	8 Conclusion

