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Abstract
Herbivory by barnacle geese (Branta leucopsis) alters the vegetation cover and reduces ecosystem productivity in high-Arctic 
peatlands, limiting the carbon sink strength of these ecosystems. Here we investigate how herbivory-induced vegetation 
changes affect the activities of peat soil microbiota using metagenomics, metatranscriptomics and targeted metabolomics in a 
comparison of fenced exclosures and nearby grazed sites. Our results show that a different vegetation with a high proportion 
of vascular plants developed due to reduced herbivory, resulting in a larger and more diverse input of polysaccharides to the 
soil at exclosed study sites. This coincided with higher sugar and amino acid concentrations in the soil at this site as well as 
the establishment of a more abundant and active microbiota, including saprotrophic fungi with broad substrate ranges, like 
Helotiales (Ascomycota) and Agaricales (Basidiomycota). A detailed description of fungal transcriptional profiles revealed 
higher gene expression for cellulose, hemicellulose, pectin, lignin and chitin degradation at herbivory-exclosed sites. Further-
more, we observed an increase in the number of genes and transcripts for predatory eukaryotes such as Entomobryomorpha 
(Arthropoda). We conclude that in the absence of herbivory, the development of a vascular vegetation alters the soil polysac-
charide composition and supports larger and more active populations of fungi and predatory eukaryotes.

Keywords  Arctic peat soils · Predation · Saprotrophic fungi · Metagenomics · Metatranscriptomics · Vascular plants · 
Herbivory

Introduction

Arctic terrestrial peatlands store 30–40% of the world`s soil 
organic carbon (SOC) (Tarnocai et al. 2009), the fate of 
which is determined by the balance between plant growth, 
herbivory and microbial decomposition (Ping et al. 2015). 
Herbivory has a large impact on the composition of plant 

communities (Zacheis et al. 2001; Maron and Crone 2006), 
which in turn affects the quality of litter input to the soil 
(Bardgett and Wardle 2003; Wardle et al. 2004; Van der Hei-
jden et al. 2008; Fivez et al. 2014). Plant cell wall polymers, 
such as cellulose, hemicelluloses, pectins and lignin, are 
the major constituents of photosynthetically fixed organic 
carbon in peatlands (Chesworth et al. 2008; Gilbert 2010) 
and the cell walls of different plant lineages have character-
istic macromolecular organization and polymer composi-
tion (Sarkar et al. 2009). Thus, the vegetation is assumed 
to determine the SOC composition and its decomposability 
(Davidson and Janssens 2006; Ping et al. 2015).

Our knowledge of soil ecosystem functioning is largely 
based on studies that focus on one or a few components of 
these complex ecosystems, but in order to thoroughly under-
stand processes like decomposition it is important to study 
the microbial food web structures and linkages (Crotty et al. 
2014). Fungi degrade detritus organic matter, consisting of a 
variety of plant polysaccharides and lignin (Thormann 2006). 
Bacterial communities in soils are known to be involved in 
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numerous activities including degradation of detritus poly-
mers (Tveit et al. 2013), microbial necromass (Müller et al. 
2018) and active predation (Davidov et al. 2006; Morgan et al. 
2010). Groups of non-fungal eukaryotes are involved in both 
predation and degradation of microbial and plant polymers 
(Crotty et al. 2011). The numbers of omnivorous eukaryotes 
such as Collembola (orders: Entomobryomorpha, Poduro-
morpha, Symphypleona) have been shown to positively and 
negatively correlate with microbial biomasses (Sabais et al. 
2011; Thakur et al. 2015), making it difficult to reconstruct 
the linkages of microbial food webs based on abundances of 
taxa alone. Geisen et al. (2016) described different groups of 
protists and arthropods, so far believed to be bacteriovorous, 
as facultative mycophagous, refining our understanding of pro-
tists and arthropods as key players that control the biomass of 
both bacteria and fungi in soil food webs.

In a productive ecosystem, herbivory can lead to higher 
productivity by maintaining the dominant plant species 
while excluding less productive species (Bardgett et al. 
1998; Bardgett and Wardle 2003). In less productive ecosys-
tems, herbivory can lead to decreased plant and root biomass 
like shown for a high-Arctic peatland, Svalbard (Sjögersten 
et al. 2011) or in the coastal marshes of Hudson Bay, Canada 
(Jefferies et al. 2006). The effect of increased plant species 
richness and productivity resulted in larger microbial bio-
masses and rates of respiration (Zak et al. 2003; Zak and 
Kling 2006), and an overall increase in the density and diver-
sity of microorganisms (Eisenhauer et al. 2013). In western 
Svalbard, increased peatland herbivory by barnacle geese 
(Branta leucopsis) has led to a suppression of vascular plant 
growth and dominance of mosses within the family Amb-
lystegiaceae (brown mosses) (Kuijper et al. 2006), possibly 
changing these peatlands from carbon sources into carbon 
sinks (Sjögersten et al. 2011).

Here we compared peat protected from grazing for 
18 years (exclosure; experimental condition) with grazed 
peat (grazed sites; natural condition), studying the differ-
ences in soil, soil polysaccharide composition, microbial 
community composition and microbial activities directed at 
polysaccharide decomposition, targeting all three domains 
of life. For this, we have sequenced eight metagenomes and 
eight metatranscriptomes, and performed targeted metabo-
lomics, antibody staining of polysaccharides and extracel-
lular enzyme assays in addition to describing the peat soil 
and the vegetation.

Materials and methods

Study site and sampling

The fieldwork was carried out in the high-Arctic peat-
land Solvatn, situated close to the research settlement 

Ny-Ålesund, Svalbard (78° 55′ N, 11° 56′ E), in August 
2016. In the Solvatn peatland, experimental exclosures had 
been maintained since 1998 by 0.5-m tall fences prohibiting 
Barnacle geese grazing from areas of 0.7 × 0.7 m (Sjöger-
sten et al. 2011) (Fig. 1). A total of four replicates from the 
grazed areas and four replicates for the exclosed areas were 
collected for DNA and RNA extractions, enzyme assays and 
plant polymer profiling while 12 replicates from each con-
dition were collected for pore water amino acid and sugar 
measurements. Samples were collected at 1–2 cm depth 
and immediately frozen in liquid nitrogen or processed for 
pore water extraction and filtration; 400 µl of pore water was 
filtered with Whatman™ Mini-UniPrep™ G2 Syringeless 
Filters (GE Healthcare, Buckinghamshire, UK). The O2 [%] 
and temperature T [°C] of the sites were measured at four 
different depths using an optical O2 sensor and thermometer 
(Fibox 4, PreSens Precision Sensing GmbH, Regensburg, 
Germany) (Table S1—online resource 2). The water [%] 
and total organic matter (TOM) contents were estimated as 
described in Tveit et al. (2013) (Table S2—online resource 
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Fig. 1   Sampling sites and sample collection. a In the picture one of 
the exclosures, EX1, and grazed sites, GR1, are shown, displaying the 
different vegetation. b The top peat layer at 1–2 cm below the living 
vegetation was sampled as indicated by the boxes across the peat pro-
file figures. c Location of the Solvatn peatland, within the settlement 
Ny-Ålesund, Svalbard
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2). The pH was measured in pore water using a portable field 
pH meter (Multi 350i, WTW, Weilheim, Germany). Plant 
material was collected for plant species characterizations.

Analysis of pore water amino acids and sugars

Free amino acids in the pore water samples were analyzed 
using a Thermo UPLC system consisting of an Accucore 
HILIC column (150 mm × 2.1 mm, 2.6 μm particle size) 
coupled to an Orbitrap Exactive mass spectrometer. The sep-
aration was carried out using a gradient from 95% eluent B 
(acetonitrile, 0.1% v/v formic acid) to 40% eluent A (water, 
0.1% v/v formic acid) (Hu et al. 2017). The mass resolu-
tion was set to 50.000 and the injection volume was 25 μL. 
Sugar concentrations in pore water were measured with an 
HPLC (Dionex ICS-5000) using a Thermo CarboPac col-
umn (0.4 mm × 150 mm; pre-column 0.4 mm × 35 mm) and 
an electrochemical detector. The eluent was 3 mM KOH and 
samples were processed at 30 °C at a flow rate of 9 µl min−1, 
with an injection volume of 40 μL. All of the peaks were 
integrated by Xcalibur 2.2.

Comprehensive microarray polymer profiling 
(CoMPP)

The polysaccharide composition of Arctic peat soils and of 
three different plant types were measured using Comprehen-
sive Microarray Polymer Profiling (CoMPP) at the Univer-
sity of Copenhagen as described in Moller et al. (2008). For 
further details, see supplementary materials and methods 
section 1 (online resource 1).

Enzyme assays

Polysaccharide degradation enzyme assays were carried out 
using the GlycoSpot™ technology (Copenhagen/Denmark). 
The substrates used were xylan (beechwood), arabinoxylan 
(wheat), 2HE-cellulose (synthetic), arabinan (sugar beet), 
pectic galactan (lupin), galactomannan (carob), xyloglucan 
(tamarind) and rhamnogalacturonan (soy bean). For further 
details, see supplementary materials and methods section 2 
(online resource 1).

Nucleic acids extraction and rRNA depletion

Nucleic acids were extracted and quantified as described 
previously (Urich et al. 2008; Tveit et al. 2013). Total RNA 
samples were processed with the Ribo-Zero Magnetic Kit for 
Bacteria from Illumina (San Diego, CA/USA) to remove 16 
and 23S rRNA molecules and enrich the mRNA fraction of 
the metatranscriptome. For further details, see supplemen-
tary materials and methods section 3 (online resource 1).

Sequencing and sequence preprocessing

Sequencing was performed at the “Norwegian High 
Throughput Sequencing Centre” NSC Oslo, Norway (http://​
www.​seque​ncing.​uio.​no). DNA samples were prepared for 
sequencing with the TruSeq Nano DNA Library Prep Kit 
(Illumina, San Diego, CA/USA), with an input mass of 
100 ng DNA. RNA samples were prepared with the TruSeq 
Stranded mRNA Library Prep Kit (Illumina, San Diego, CA/
USA) with random primers and an input mass of 10 ng RNA. 
Single reads were sequenced using the HiSeq 4000 with a 
read length of 150 bp, resulting in approximately 38–55 Mio 
reads per library. Trimmomatic (Bolger et al. 2014) was used 
for an initial quality filtering of the sequences to remove low 
quality reads. Sequences were further processed with Sort-
MeRNA v. 2.0 to separate reads into SSU rRNA, LSU rRNA 
and non-rRNA (Kopylova et al. 2012).

Analysis of SSU rRNA coding reads

Blastn searches against the SILVA SSU reference data-
base (v. 128) were performed to taxonomically classify the 
SSU rRNA gene reads (-evalue 10–1—num_alignments 50—
num_descriptions 50). The Blast outputs were analyzed 
using MEGAN (Huson et al. 2011) v. 6.13.1 (parameters: 
min bit score  100.0; top percent  2.0; min support per-
cent 0.01, 25 best hits) as described previously (Söllinger 
et al. 2018).

Taxonomic and functional annotation of mRNA 
and mRNA coding genes

Randomly selected subsamples of 5 million nucleotide reads 
from the non-RNA datasets were taxonomically and func-
tionally classified using NCBI nr (as of March 2017) and 
KEGG (v. 81.0) databases, respectively. NCBI nr was used 
for taxonomic annotation with DIAMOND v. 0.9.17 (Buch-
fink et al. 2015) applying an e-value threshold of 10–3. The 
output was uploaded in MEGAN v. 6.13.1 (parameters: min 
score 50.0; top percent 2.0; min support percent 0.01, 25 
best hits), as described previously (Söllinger et al. 2018). 
Reads that had been taxonomically classified using the 
NCBI nr database were used as queries in a blastx search 
against the KEGG database with e-value threshold 10–10 as 
described previously (Tveit et al. 2015).

Functional and taxonomic annotation of CAZyme 
encoding genes and transcripts

Randomly selected subsamples of 5 million nucleotide reads 
from each of the DNA and non-rRNA datasets (for non-
rRNA the same subsets were used as above) were translated 
into open reading frames (ORFs) of 30 amino acids or longer 
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by the program Open Reading Frame (ORF) finder (Wheeler 
et al. 2003). The ORFs were screened for Protein families 
using the Pfam (protein family) database (v. 31) (Finn et al. 
2014) and HMMsearch, a tool within the hidden markov 
models (HMMs) package (v 3.1b2) (Finn et al. 2015). All 
database hits with e-values below a threshold of 10−4 were 
counted. The resulting Pfam annotations were screened 
for CAZymes using Pfam models of previously identified 
CAZymes (Tveit et al. 2015; Söllinger et al. 2018) including 
starch, cellulose, hemicellulose, pectin and lignin degrad-
ing enzymes. Translated reads assigned to the selected 
CAZymes were extracted, followed by blastp against the 
NCBI nr database with an e-value threshold of 10–1 to obtain 
taxonomic information (as of March 2017) and analyzed 
using MEGAN (parameters: min score 50; top percent 2.0; 
min support percent 0.01; 25 best hits). In order to provide 
more depth in the analysis of the eukaryotic taxa, the full 
datasets were taxonomically annotated and reads assigned 
to Helotiales, Agaricales and Entomobryomorpha were 
extracted and functionally annotated as described above.

Statistical analyses and data visualization

Significance testing was performed with the Wilcoxon rank 
sum test using the R package (R Core Team 2014). The 
results from statistical tests are summarized in Table S3 
(online resource 2). Correspondence analyses (Greenacre 
2017) were performed as described previously (Tveit et al. 
2015). The R packages ggplot2 and heatmap3 were used 
for plotting. Spearman correlation analysis was performed, 
using the function cor() in R. The geographical map of Sval-
bard was created using QGIS (v. 3.18.0), the base map was 
provided by the Norwegian Polar Institute (https://​geoda​ta.​
npolar.​no).

Results

The effects of herbivore grazing on peat vegetation 
and soil O2 availability

The exclosures (EX) were established 18 years prior to 
sampling, preventing the access of herbivores to the vegeta-
tion (Fig. 1a). During this time, a vascular plant community 
dominated by Poa arctica (up to 90% coverage) and Car-
damine pratensis (up to 20% coverage) had developed. The 
vascular plants Ranunculus hyperborus, Saxifraga cernua 
and Saxifraga cespitosa were also present. Eight moss spe-
cies within the brown moss family Amblystegiaceae were 
identified, making up the entire moss community within the 
exclosures (Table 1). At the grazed sites (GR), a total of 
seven moss species dominated the vegetation (up to 100% 

coverage), while two vascular plant species were detected 
(P. arctica and R. hyperborus) (Table 1).

Due to the higher coverage of vascular plants in the 
exclosures, these sites contained much higher root densi-
ties, previously quantified by Sjögersten et al. (2011) to be 
12 times higher. The O2 [%] within the first two centimeters 
of peat was ~ 20% in both the exclosures and grazed sites. 
The O2 concentration decreased with depth, being ~ 19–20% 
at 5 cm depth within the exclosures and 13–16% in the 
grazed sites (Table S1—online resource 2). We observed 
surface temperatures in the range of 10.4–10.8 °C (EX) and 
8.3–14 °C (GR), while at 10 cm soil depth the temperature 
was approximately 5–6 °C in both sites (Table S1—online 
resource 2). The water content of the peat soils was lower 
in the exclosures (mean: 84.5%) compared to the grazed 
sites (mean: 92.4%) (Table S2—online resource 2). The 
total soil organic matter percentage of the fresh weight was 
higher in the exclosures (mean EX: 13.0%; mean GR: 6.5%) 
(Table S2—online resource 2). The pH of the upper soil 
layer in both the exclosures and grazed sites was between 
7.0 and 7.1.

Soil polysaccharide, sugar and amino acid content 
vary between exclosures and grazed sites

To identify the relationship between vegetation and soil 
polysaccharide composition we mapped the polysaccharide 
content in three different plant types—P. arctica, S. cespi-
tosa and a mixture of Amblystegiaceae mosses. The same 
polysaccharide identification was done for the peat soil from 
the exclosures and grazed sites. A correspondence analy-
sis confirmed that all three plant polysaccharide profiles 
were distinctly different from one another (Figures S1a and 
S1b—online resource 3). Saxifraga cespitosa was richer in 
the pectins homogalacturonan, rhamnogalacturonan and ara-
binan as well as cellulose and the hemicelluloses xyloglu-
can, mixed linkage glucans (MLG) and xylan. Poa arctica 
was richer in glucan, arabinoxylan and the glycoprotein AGP 
(arabinogalactan protein), while the mosses were richer in 
mannan-containing hemicelluloses, homogalacturonan (HG) 
with an intermediate degree of methyl esterification (DE) 
and galactan (Table S4—online resource 2).

Correspondingly we found that cellulose, glucan, xylo-
glucan, arabinoxylan and rhamnogalacturonan were more 
abundant in the soils from the exclosures while homogalac-
turonan was equally abundant at both sites. For arabinan and 
mannan-containing hemicelluloses, only some tested anti-
bodies had significantly higher abundances in the exclosures 
(Table 2 and Figure S1c and S1d—online resource 3).

The pore water concentrations of sugars, including glu-
cose, fructose, mannose, xylose and galactose, were signifi-
cantly higher in the peat soils from the exclosures (Fig. 2a). 
Glucose was the most abundant sugar in the pore water of 

https://geodata.npolar.no
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the exclosures (mean: 40.3 µM) and the grazed sites (mean: 
9.9 µM), followed by fructose (EX mean: 18.3 µM and 
grazed site mean: 5.4 µM). There was less mannose, xylose 
and galactose in the peat, but the concentrations were always 
higher in the exclosures (mean EX: mannose 5.8 µM, xylose 
2.2 µM, galactose 0.4 µM) than the grazed sites (mean GR: 
mannose 0.8 µM, xylose b.d., galactose 0.02 µM).

We also observed significantly higher concentrations 
of a broad range of amino acids in the exclosures (Fig. 2b 
and Table S3—online resource 2). Aspartic acid and ala-
nine had the highest concentrations with mean values of 
10.5 and 13.2 µM, respectively, in the exclosures, while 
the concentrations in the grazed sites were much lower 
(0.9 and 2.3 µM). The amino acids glycine, leucine, proline, 
serine and threonine ranged from 4.0 to 6.8 µM in the exclo-
sures and 0.6 to 1.3 µM in the grazed sites. Only glutamic 
acid was found at lower concentrations in the exclosures 
(mean EX: 0.9 µM) compared to the grazed sites (mean GR: 
2.0 µM). The other amino acids were below 1.8 µM (mean 
values) but always at higher concentrations in the exclosures 
than the grazed sites.

Microbial activities in the peat soil

To study the link between the vegetation, soil chemistry and 
the composition and activity of the microbial community 

we extracted total nucleic acids for the analysis of DNA 
and RNA from four replicate samples of the upper 2 cm 
oxic layer of peat soil in the exclosures and four from the 
grazed sites. As depicted in Fig. 2c we observed higher DNA 
amounts in the exclosures than the grazed sites (mean: EX 
92.5 µg DNA gDW peat−1, GR 58.3 µg DNA gDW peat−1), 
while the amount of RNA per gram dry weight was equally 
high at the two sites (mean: EX 71.2 µg RNA gDW peat−1, 
GR 69.6 µg RNA gDW peat−1) (Fig. 2c and Table S5—
online resource 2). Next, we investigated the potential 
enzyme activities for decomposition of some of the most 
common plant polysaccharides—cellulose, mannan, xylo-
glucan, xylan, arabinoxylan, galactan, arabinan and rham-
nogalacturonan (Sarkar et al. 2009). This confirmed that the 
potential for polysaccharide degradation was significantly 
higher in the exclosures than the grazed sites (Fig. 2d and 
Table S3—online resource 2).

In order to study the microbial communities and their 
patterns of gene transcription, we removed ribosomes from 
the total RNA by ribodepletion and sequenced the remaining 
RNA as well as the total DNA from four replicates collected 
in the exclosures, and four in the grazed sites, giving eight 
metatranscriptomic and eight metagenomic libraries in total. 
Each of the 16 libraries contained ~ 38–55 million sequence 
reads with a length of ~ 150 bp. The ribodepleted RNA 
libraries contained 48–83% non-rRNA sequences, ~ 30% 

Table 1   Vegetation description 
of the Solvatn peatland

Comparison of the coverage (%) of vascular plants, mosses and lichens at exclosed and grazed sites. The 
coverage is estimated at different heights. Thus, the vascular plants that are growing above the mosses can 
have a 100% coverage while the mosses growing below the vascular plants in the same site can simultane-
ously reach a 100% coverage

Exclosure 1 Exclosure 2 Grazed 1 Grazed 2

Vascular plants
 Poa arctica 90 15 15  < 1
 Cardamine pratensis  < 1 20
 Ranunculus hyperboreus  < 5 1  < 1
 Saxifraga cernua 5
 Saxifraga cespitosa 1

Mosses
 Sanonia type 30 50 40 40
 Plagiomnium type 5 10 1
 Polytrichum type 1
 Pohlia/Bryum type 3 4 5 5
 Mnium type 10 5 2
 Aulacomnium palustre 1 1 1
 Calliergon richardsonii 40 25 50 40
 Paludella squarrosa 10 5 2

Lichens
 Cetraria islandica 1 3
 Stereocaulon  < 1

Mushroom  < 1
Bare ground/dead mosses 14



904	 Polar Biology (2021) 44:899–911

1 3

of which could be taxonomically classified and 10–15% of 
which could be functionally classified (Table S6—online 
resource 2). The microbial community composition based 
on taxonomic annotation of mRNA was overall similar in 
the exclosures and grazed sites, but notable differences were 
also observed (Figs. 3 and S2—online resource 3). Bacte-
rial genes and transcripts comprised approximately 90% of 
total mRNA and 92% of total rRNA genes at exclosed sites, 
compared to approximately 96% of total mRNA and 95% of 
total rRNA genes at grazed sites. Correspondingly, the abun-
dances of reads assigned to eukaryotic kingdoms (fungi, 
Protista and Metazoa) were particularly high in the exclo-
sures relative to the grazed sites (Figs. 3 and S3—online 
resource 3). However, the 16S rRNA gene abundance and 

transcriptional activity were dominated by Actinobacteria, 
followed by Alpha-, Beta-, Delta- and Gamma-proteobacte-
ria, Chloroflexi, Acidobacteria, Verrucomicrobia and Bac-
teriodetes in both grazed sites and exclosures. There were 
also considerable numbers of reads assigned to Ciliophora, 
fungi and Nematoda (Figs. 3 and S2—online resource 3). 
Overall, the most abundant taxa (SSU rRNA gene abun-
dance) were the transcriptionally (mRNA abundance) most 
active (r = 0.86–0.94; only the taxa displayed in the boxes 
considered: Fig. 3a and b).

To identify which microbial taxa were responsible for pol-
ymer degradation we extracted from the metagenomes and 
metatranscriptomes genes and transcripts encoding enzymes 
for polysaccharide and lignin degradation (Table S7—online 

Table 2   Polysaccharide 
composition of the peat soils

The table lists the mean values (± —the standard deviations) of binding signals (for dry weight soil; gDW) 
for polysaccharides in the peat soils. The mean values are derived from four replicates from the exclosures 
and four replicates from the grazed sites. The polysaccharide composition of the soil matrix was deter-
mined using Comprehensive Microarray Polymer Profiling (CoMPP). In cases where there are several anti-
bodies for the same polysaccharide, these are antibodies with different binding properties, e.g., for different 
numbers of backbone repeats. All polysaccharides marked with an ‘*’ show a significant difference of the 
grazed and the exclosed. For statistical testing the Wilcoxon rank sum test was used with R (v3.6.1), values 
can be found in Table S3
mAb monoclonal antibody, MLG mixed linkage glycan, DE degree of methyl esterification

Polysaccharide (antibody ID) Exclosure Grazing
Mean value ± sd (n = 4) Mean value ± sd (n = 4)

Cellulose (mAb CBM3a) 1.50E−03 ± 1.63E−04 5.70E−04 ± 1.58E−04*
(1 → 3)-β-d-glucan (mAb BS-400–2) 2.58E−04 ± 3.12E−05 1.15E−04 ± 3.72E−05*
(1 → 3)(1 → 4)-β-d-glucan (mAb BS-400–3) 5.61E−03 ± 2.12E−03 8.20E−04 ± 4.19E−04*
Xyloglucan (mAb LM15) 2.60E−03 ± 7.33E−04 1.38E−04 ± 9.97E−05*
Xyloglucan (mAb LM24) 2.40E−04 ± 2.09E−05 7.89E−05 ± 1.89E−05*
Xyloglucan (mAb LM25) 2.58E−03 ± 2.48E−04 5.29E−04 ± 2.63E−04*
(1 → 4)-β-d-xylan (mAb LM10) 1.09E−03 ± 3.02E−04 4.50E−04 ± 2.06E−04*
(1 → 4)-β-d-xylan/arabinoxylan (mAb LM11) 2.45E−03 ± 1.18E−03 3.25E−04 ± 2.16E−04*
(1 → 4)-β-d-(galacto)mannan (mAb BS-400–4) 3.40E−03 ± 9.71E−04 1.15E−04 ± 5.08E−04
(1 → 4)-β-d-(galacto)(gluco)mannan (mAb LM21) 2.96E−03 ± 6.60E−04 1.18E−03 ± 2.78E−04*
(1 → 4)-β-d-(gluco)mannan (mAb LM22) 7.80E−04 ± 1.44E−04 4.22E−04 ± 1.88E−04
Non-acetylated xylosyl residues (mAb LM23) 1.27E−03 ± 4.54E−04 3.74E−04 ± 7.14E−05*
Anti callose/MLG like binding (mAb JIM6) 4.90E−04 ± 1.24E−04 2.61E−04 ± 2.28E−04
Arabinogalactan protein (mAb LM2) 1.49E−03 ± 8.74E−04 1.08E−04 ± 4.54E−05*
Homogalacturonan (Low DE) (mAb JIM5) 2.11E−04 ± 1.48E−04 2.46E−04 ± 9.68E−05
Homogalacturonan (Intermediate DE) (mAb LM7) 1.86E−04 ± 1.17E−04 4.36E−05 ± 1.39E−05
Homogalacturonan (High DE) (mAb JIM7) 8.48E−04 ± 6.13E−04 2.42E−04 ± 8.83E−05
Homogalacturonan (mAb LM18 MUC2) 3.94E−04 ± 4.41E−04 3.53E−04 ± 1.21E−04
Homogalacturonan (mAb LM19 XGA2) 4.73E−04 ± 6.01E−04 3.49E−04 ± 1.35E−04
Xylogalacturan (mAb LM8) 6.08E−05 ± 1.60E−05 2.69E−05 ± 7.94E−06
(1 → 4)-β-d-galactan (mAb LM5) 2.16E−03 ± 1.02E−03 5.37E−04 ± 3.65E−04
(1 → 5)-α-l-arabinan (mAb LM6) 1.07E−03 ± 2.58E−04 3.00E−04 ± 7.65E−05
(1 → 5)-α-l-arabinan (mAb LM13) 1.66E−05 ± 6.75E−06 3.52E−06 ± 1.95E−06*
(1 → 5)-α-l-arabinan (mAb LM16) 4.88E−05 ± 2.69E−05 2.11E−05 ± 1.01E−05
Rhamnogalacturonan (mAb INRA-RU1) 2.26E−03 ± 3.82E−04 5.94E−04 ± 2.53E−04*
Rhamnogalacturonan (mAb INRA-RU2) 8.94E−04 ± 3.74E−04 1.13E−04 ± 6.08E−05*
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resource 2). In the exclosures, the microbial transcription 
for cellulose degradation was highest (0.40%), followed by 
hemicellulose (0.36%), pectin (0.24%) and lignin (0.16%) 
(Fig. 4a). In the grazed sites, the transcription for hemicellu-
lose degradation was highest (0.31%), followed by cellulose 
(0.21%), pectin (0.07%) and lignin (0.04%). Corresponding 
to the higher abundance of fungi (Figs. 3 and S3—online 

resource 3), a larger fraction of the genes and transcripts 
for polymer decomposition were assigned to fungi in the 
exclosures (18.95%) than the grazed sites (1.38%) (Fig. 4a). 
The majority of these transcripts were assigned to the fungal 
phyla Basidiomycota (6.32% EX & 0.60% GR) and Asco-
mycota (10.56% EX & 0.48% GR). Actinobacteria (30.92% 
EX & 20.14% GR), Proteobacteria (11.28% EX & 14.51% 
GR) and Bacteriodetes (8.46% EX & 13.82% GR) were 
the most transcriptionally active bacterial polysaccharide 
degraders, while the majority of transcripts for lignin deg-
radation were assigned to Proteobacteria (28.15% EX & 
33.03% GR) (Fig. 4b). The taxonomic distribution of genes 
for polymer degradation was similar at exclosed and grazed 
sites, with the exception that the transcript to gene ratio was 
much higher for fungal than bacterial taxa (Fig. 4b).

Taxa that had different transcriptional activities in the 
exclosures and grazed sites were identified by correspond-
ence analysis (Figure S4a—online resource 3). The tran-
scriptional profiles from the exclosures were separated 
from the grazed sites along the first axis, explaining 42.7% 
of the inertia. By their contribution to the first axis inertia 
we identified the major eukaryotic and prokaryotic orders 
with different transcriptional activities in the exclosures and 
grazed sites. Out of the 20 taxa contributing most to iner-
tia in each direction (Figure S4b—online resource 3; and 
Table S8—online resource 2), 15 taxa had higher numbers 
of transcripts in either the exclosures or the grazed sites, and 
an average relative abundance of mRNA transcripts above 
0.5%. Among these, three eukaryotic (Agaricales, Helotiales 
and Entomobryomorpha) and seven bacterial orders (Lacto-
bacillales, Chitinophagales, Burkholderiales, Sphingobacte-
riales, Nakamurellales, Corynebacteriales, Micrococcales) 
were more active in the exclosures, whereas five bacterial 
orders (Methylococcales, Anaerolineales, Solibacterales, 
Thiotrichales, Desulfobacterales) were more active in the 
grazed sites. These 15 orders accounted for 7 to 18% of the 
total number of microbial mRNA transcripts. We then com-
pared the transcriptional activity and relative abundance 
of SSU rRNA genes for these 15 taxa (Figure S4b—online 
resource 3), finding similar patterns in the SSU rRNA genes 
and the mRNA for some of the taxa. Particularly interesting 
were the much higher relative abundances of the three eukar-
yotic orders in the exclosures: Agaricales was on average 
7.7-fold (SSU rRNA genes) and 71.4-fold (mRNA) higher, 
Helotiales was 29.8-fold (SSU rRNA genes) and 46.9-fold 
(mRNA) higher, while Entomobryomorpha was 20.4-fold 
(SSU rRNA genes) and 11.8-fold (mRNA) more abundant 
and transcriptionally active (Fig. 5).

The number of polymer degradation transcripts 
assigned to Helotiales (of fungal transcripts: 21.5% EX, 
4.0% GR) and Agaricales (of fungal transcripts: 37.6% 
EX, 4.3% GR) show that these are the major fungal poly-
saccharide degraders in the exclosures. Their profiles 
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Fig. 2   Sugar and amino acid concentrations, masses of nucleic acids 
and polysaccharide degrading enzyme rates in peat soil samples 
exclosures (red) and grazed sites (blue). a Pore water concentrations 
[µM] of the sugars glucose, fructose, mannose, xylose and galactose. 
b Pore water concentrations [µM] of amino acids. c Masses of DNA 
and RNA in micrograms per gram of dry peat soil [µg gDW−1 peat]. 
d Enzymatic potential for polysaccharide degradation on eight poly-
saccharide substrates. Individual dots show the signal strength rela-
tive to the sum of measured signal strength for each substrate. The 
values thus indicate the potential enzyme activity in the eight sam-
ples relative to each other. The rates were normalized by dry weights 
(DW). All compounds marked with an ‘*’ show a significant differ-
ence of the grazed and the exclosed. For statistical testing the Wil-
coxon rank sum test was used with R (v3.6.1), values can be found in 
Table S3
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included transcripts for cellulose, xylans, glucans, man-
nans, pectins, lignin, chitin and bacterial cell walls 
(Fig. 5a and Table S9—online resource 2). Helotiales 
expressed genes for a broader range of substrates than 
Agaricales (Table S9—online resource 2), but for both 
fungal orders the relative abundance of transcripts for 
most polymers were higher in the exclosures (Fig. 5a). 
Similarly, the transcriptional activity of the arthropod 
order Entomobryomorpha was much higher in the exclo-
sures (Fig. 5b). It had a narrower substrate range than 
the fungi, lacking transcripts for xylan, pectin and lignin 
decomposition (Table S9—online resource 2). However, 

Entomobryomorpha transcripts for bacterial cell wall, 
chitin, cellulose and oligosaccharide degradation were 
present, and consistently more abundant in the exclo-
sures than the grazed sites (Fig. 5b). Finally we assessed 
whether the above patterns of transcription for polymer 
degradation were reflected in the transcription for central 
metabolisms in these three orders. We functionally anno-
tated the Agaricales, Helotiales and Entomobryomorpha 
transcripts using KEGG (Kyoto encyclopedia of genes and 
genomes). This revealed that the transcript abundances for 
central metabolisms were highest in the exclosures for all 
three taxa (Figure S5—online resource 3), but with consid-
erable variation between samples, especially for the fungi.

Fig. 3   Microbial commu-
nity composition a based on 
mRNA sequences and therefore 
representing the transcription-
ally active microbial commu-
nity. b Based on SSU rRNA 
gene sequences reflecting the 
potential microbial community 
in peat soil from exclosures 
and grazed sites. The size of 
the boxes reflect the relative 
abundances of taxa. Tax-
onomy profiles are displayed 
at phylum-level (class-level for 
Proteobacteria) and are gener-
ated by averaging data sets from 
four replicates

Exclosed
Bacteria

Protists

Fungi

Metazoa

Archaea
Grazed
Bacteria

Protists

Fungi

Archaea

Metazoa

Metazoa

Archaea

Metazoa

Fungi
Fungi

Protists
Protists

Exclosed Grazed

mRNA

SSU rRNA gene

a

Bacteria Bacteria

b
Acidobacteria
Bacteroidetes

Betaproteobacteria

Actinobacteria

Cyanobacteria

Alphaproteobacteria

Deltaproteobacteria

Chlamydiae

Verrucomicrobia

Chloroflexi

Firmicutes

Planctomycetes

Gemmatimonadetes

Gammaproteobacteria

Other 

Ascomycota
Basidiomycota

Fungi

Other 

Nematoda
Arthropoda
Tardigrada

Metazoa

Other 

Ciliophora

Euglenozoa
Amoebozoa

Protists

Other 

Bacteria

Archaea

Apicomlexa

Chordata

Legend

10 
20 
30 
40 
50 
60 
70 
80 

100 

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

Fungi
Basidiomycota
Ascomycota
Archaea
other Bacteria
Firmicutes
Chloroflexi
Actinobacteria

Verrucomicrobia
Planctomycetes
Proteobacteria
Bacteroidetes
Acidobacteria

90 

0.000

0.001

0.002

0.003

0.004

0.005

Fr
ac

tio
n 

of
 a

ll 
re

ad
s 

as
si

ng
ed

 to
 P

FA
M

s

EX EX 
GR GR

mRNA gDNA

Terrabacteria group

ba total transcripts fungal transcripts

0

C
el

lu
lo

se

H
em

i-
ce

llu
lo

se
s

P
ec

tin
s

Li
gn

in

C
el

lu
lo

se

H
em

i-
ce

llu
lo

se
s

P
ec

tin
s

Li
gn

in

EXGREXGREXGREXGREXGREXGREXGREXGR

C
el

lu
lo

se

H
em

i-
ce

llu
lo

se
s

P
ec

tin
s

Li
gn

in

Fig. 4   Genes and transcripts for polysaccharide and lignin degrada-
tion in prokaryotes and eukaryotes. a Number of transcripts for cellu-
lose, hemicellulose, pectins and lignin degradation relative to the total 
number of reads assigned to a function for all microorganisms (left) 
and fungi (right). b Taxonomic assignment of metatranscriptomic 

(mRNA) and metagenomic (gDNA) sequences encoding enzymes 
involved in polysaccharide and lignin degradation. The functional 
annotation is at phylum-level, comparing exclosures (EX) and grazed 
(GR) sites



907Polar Biology (2021) 44:899–911	

1 3

Discussion

In this study we have compared the microbial communities 
in soils below high-Arctic peat vegetation exposed to graz-
ing and soils below peat vegetation protected from graz-
ing for 18 years. The investigation of both the above- and 
belowground biology has allowed us to study the relation-
ship between the vegetation and the soil microorganisms. 
Our comparison of the two soil treatments demonstrated that 
the removal of herbivores and altered vegetation leads to a 
different soil polysaccharide composition, lower potential 
extracellular enzymatic activities and a different microbial 
community with lower abundances and activities of fungi 
and putative predatory eukaryotes.

Reduced herbivore grazing alters the vegetation, 
soil structure and soil composition

We observed that a different vegetation with an 8 times larger 
coverage of vascular plants had established after 18 years of 

protection inside the exclosures. This shift, primarily caused 
by increased abundance of P. arctica, was already observed 
some years earlier as evidenced by a 12 times larger root 
biomass and 28 times larger vascular plant biomass in the 
exclosures than the grazed sites (Sjögersten et al. 2011). The 
vascular vegetation was associated with reduced soil water 
contents and higher oxygen levels in deeper layers, presum-
ably due to the increased root formation. Similar observa-
tions were made in a study of a temperate peatland, where 
lower water table heights were observed in areas with greater 
vascular plant biomass (Murphy et al. 2009). The lowering 
of the water table and the diffusion of gases through the 
roots of vascular plants might be the reasons for the higher 
oxygen availabilities (Colmer 2003). However, at the sur-
face (top ~ 0–2 cm) sampled for our molecular and chemical 
analyses, the oxygen levels were the same in exclosures and 
grazed sites, suggesting that oxygen limitation is mostly rel-
evant in deeper layers.

The increased input of organic matter from P. arctica and 
other vascular plants to the soil inside the exclosures can 
explain the higher organic matter content and abundance of 
polysaccharides compared to the grazed sites. Previously, 
geese grazing and grubbing were found to reduce carbon 
stocks in Arctic wetlands from Svalbard and Canada (Van 
der Wal 2006; Speed et al. 2010; Sjögersten et al. 2011). In 
particular, we identified higher soil content of xyloglucan, 
arabinoxylan and pectins in the exclosures, matching the 
higher concentrations of monosaccharides. However, deter-
mining the exact origin of the monosaccharides in soils is 
challenging, as they might be root exudates (Bertin et al. 
2003; Bais et al. 2006), polysaccharide hydrolysis products 
(Tveit et al. 2013) or both. The release of low-molecular 
weight compounds like sugars through root exudation varies 
e.g. with the plant type, its age and environment (Uren 2000; 
Bertin et al. 2003; Bais et al. 2006; McNear 2013). Mono-
saccharide stocks also depend on the kinetics of their usage, 
for which we do not have estimates. Nevertheless, the occur-
rence of more roots, more polysaccharides and higher poten-
tial rates of extracellular polysaccharide degrading enzymes 
suggests a combination of root exudation and polysaccharide 
hydrolysis as sources for the monosaccharides.

Increased input from vascular plants supports 
a more abundant and active microbiota

The higher availability of carbohydrates fueled a more 
abundant and active microbiota in the exclosures, judging 
by the amount of DNA per gram of dry soil. Although not 
a direct measure of total microbial biomass or the number 
of cells, nucleic acids provide good estimates for relative 
differences in the size of the microbiota between samples 
with similar properties for nucleic acids extraction (Tveit 
et al. 2015; Söllinger et al. 2018). Considering the higher 
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organic matter content in the exclosures, the more abundant 
microbiota might be the result of higher substrate availabil-
ity. This could explain the higher rates for extracellular poly-
saccharide degradation in the exclosures as more organisms 
generally would produce more enzymes. We also observed 
a considerably higher relative abundance of transcripts for 
extracellular polymer degrading enzymes in the exclosures, 
supporting the view that increased substrate availabilities 
leads not only to increased number of microorganisms but 
also to larger investments into extracellular polymer decom-
posing enzymes by microorganisms (Zak and Kling 2006; 
Wallenstein and Weintraub 2008). The altered organic mat-
ter quality may also be the reason for the increased relative 
abundance of fungi as they are believed to be specialists for 
the decomposition of, e.g., lignocellulose (Baldrian 2008). 
The effect of substrate quality on microbial activities was 
also seen in the higher potential enzyme rates for degrada-
tion of multiple different polysaccharides, in the exclosures, 
matching the higher abundances of these polysaccharides in 
the exclosures.

Altered structure and activity of the microbial 
communities

In line with the considerable changes in vegetation and soil 
chemistry we observed two-fold higher eukaryote to prokar-
yote gene ratios and five-fold higher transcript ratios in the 
exclosures than the grazed sites. A handful of taxa were 
instrumental to this shift; saprotrophic fungi of the orders 
Helotiales (Ascomycota) and Agaricales (Basidiomycota), 
and microbial predators and plant litter consumers of the 
order Entomobryomorpha (Arthropoda). In previous stud-
ies, fungal abundances were shown to be positively correlat-
ing with root exudation (Broeckling et al. 2008) and more 
generally the availabilities of easily degradable compounds 
like sugars (Edgecombe 1938; Thormann 2006) or increased 
nitrogen availability (Koranda et al. 2014). Increased mono-
saccharide concentrations could also be products of fungal 
degradation of polysaccharides. Thus, in our case, it is not 
possible to conclude on the causality between monosaccha-
ride concentrations and fungal abundances. Nevertheless, 
Helotiales and Agaricales have very broad substrate ranges 
that includes cellulose and all major hemicelluloses and 
might thus have benefitted from the altered substrate qual-
ity and contributed to a variety of carbon decomposition 
activities once established in the exclosures.

Geisen et al. (2016) found that many protists and arthro-
pods are facultative mycophagous, making them key players 
in soil microbial food webs. Hence, the higher fungal abun-
dances in the exclosures might have supported the increase 
in protists and metazoan taxa abundances.

Overall, the vascular vegetation seems to sustain a more 
complex food web of prokaryotic and fungal detritivores 

that are food sources for predatory eukaryotes. Whether 
this is what sustains the larger amino acid pools observed 
in the exclosures is unclear, but if the transcriptional activ-
ity and relative abundance of putative predators reflects 
predation rates, it may, as bacterial and fungal cells consist 
of 10–70% protein (Ritala et al. 2017). Our results suggest 
that Entomobryomorpha are able to degrade bacterial cell 
walls but also plant and fungal polymers. By regulating 
microbial turnover, Entomobryomorpha have previously 
been shown to enhance nutrient mineralization rates and 
increase nitrogen availability in soils (Cragg and Bardg-
ett 2001; Thakur et al. 2015). Additionally, amino acids 
may be released through root exudations (Canarini et al. 
2019), offering an alternative explanation for the amino 
acid pools. The origin of the nitrogen needed to support a 
larger microbial biomass and amino acid pool cannot be 
directly identified with our data. However, Solheim et al. 
(1996) showed that nitrogen fixation in Svalbard soils pro-
tected from grazing is limited compared to grazed soils 
where it was supported by epiphytic cyanobacteria. This 
indicates that nitrogen is lost from grazed systems and 
regained through fixation, while in the absence of herbi-
vores the microbiota are able to recycle the nitrogen in 
decaying plants, supporting larger plant and microbial 
biomasses, and pools of free amino acids.

Low molecular weight nitrogen sources, like amino 
acids, are important for several microbial processes, hence 
fueling the microbial community in soils (Schimel and 
Weintraub 2003; Jones et al. 2004), but also the vegeta-
tion (Jones et al. 2004, 2005; Sauheitl et al. 2009). Thus, 
in the absence of herbivory, feedback effects between an 
increasingly active microbial community and vegetation 
might have accelerated the establishment of a new eco-
system state. An important future task will be to identify 
the fluxes of amino acids, sugars and other metabolites 
between plants and microorganisms during this ecosystem 
transition from a grazed to non-grazed state.

Conclusion

The establishment of a larger vascular plant biomass in the 
absence of herbivores led to higher soil concentrations of 
polysaccharides, monosaccharides and amino acids. We 
found that this corresponded with larger and more active 
populations of saprotrophic fungi and putative predatory 
eukaryotes. This study establishes a fundament for target-
ing molecular and microbial mechanisms that control the 
interactions between above and below ground biology in 
high-Arctic peatlands.
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