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Abstract. In this paper we derive a sufficient condition for the existence of a unique solution of a
Cauchy type q-fractional problem (involving the fractional q-derivative of Riemann-Liouville type) for
some nonlinear differential equations. The key technique is to first prove that this Cauchy type q-fractional
problem is equivalent to a corresponding Volterra q-integral equation. Moreover, we define the q-analogue
of the Hilfer fractional derivative or composite fractional derivative operator and prove some similar new
equivalence, existence and uniqueness results as above. Finally, some examples are presented to illustrate
our main results in cases where we can even give concrete formulas for these unique solutions.

1. Introduction

Nonlinear fractional differential equations play important roles due to their numerous applications and
also for the important role they play not only in mathematics but also in other sciences. In particular, they
arise naturally in real world phenomena related to physics, chemistry, biology, signal-and image processing.
Moreover, they are equipped with social sciences such as food supplement, climate and economics, see e.g.
[1, 9]. Therefore during the last twenty years, there has been a significant development in ordinary and
partial differential equations involving fractional derivatives and a huge amount of papers and also some
books devoted to this subject in various spaces have appeared, see e.g. the monographs of T. Sandev and
Z. Tomovski [7], A.A. Kilbas et al. [8], R. Hilfer [9], K.S. Miller and the B. Ross [10], the papers [11], [12],
[13], [14], [15], [16], [17], [18], and [19] and the references therein.

The origin of the q-difference calculus can be traced back to the works in [20, 21] by F. Jackson and R.D.
Carmichael [22] from the beginning of the twentieth century, while basic definitions and properties can be
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found e.g. in the monographs [23, 25]. Recently, the fractional q-difference calculus has been proposed by
W. Al-salam [27] and R.P. Agarwal [26]. Today, maybe due to the explosion in research within the fractional
differential calculus setting, new developments in this theory of fractional q-difference calculus have been
addressed extensively by several researchers. For example, some researchers obtained q-analogues of the
integral and differential fractional operators properties such as the q-Laplace transform and q-Taylor’s
formula [28], q-Mittag-Leffler function [27] and so on.

We also pronounce that up to now much attention have been focused on the fractional q-difference equa-
tions. There have been some papers dealing with the existence and uniqueness or multiplicity of solutions
for nonlinear fractional q-difference equations by the use of some well-known fixed point theorems. For
some recent developments on the subject, see e.g. [29], [30], [31], [32] and the references therein. In Section
3 of this paper we continue such research by proving some new results with focus on uniqueness. The main
result in this Section is Theorem 3.2 but in order to prove this result we need to prove two results (Theorem
3.1 and Lemma 2.6) of independent interest.

The notations used in this introduction are explained in our Section 2 below. In this paper, we also focus
more on the q-analogue of the Hilfer fractional derivative or composite fractional derivative operator (see
Definition 4.1 and Definition 4.2) and we derive a sufficient conditions for the existence of a unique solution
of a Cauchy type q-fractional problem:(

Dα,β
q,a+y

)
(x) = f

(
x, y(x)

)
, n − 1 < α ≤ n; n ∈N, 0 ≤ β ≤ 1, (1)

lim
x→a+

(
Dk

qI(n−α)(1−β)
q,a+ y

)
(x) = bk, bk ∈ R, k = 0, 1, 2, . . .n − 1, (2)

and as a particular case of this nonlinear model we have(
D
α,β
q,a+y

)
(x) = f

(
x, y(x)

)
, 0 < α ≤ 1; 0 ≤ β ≤ 1, (3)

lim
x→a+

(
D

k
qI(1−α)(1−β)

q,a+ y
)

(x) = bk, bk ∈ R, k = 0, 1, 2, . . .n − 1, (4)

where Dα,β
q,a+ and Dα,β

q,a+ are the Hilfer fractional q-derivative or composite fractional q-derivative operators
and f (., .) : [a, b]×R→ R, 0 < a < b < ∞ (see Theorem 4.6). Moreover, for the proof of this theorem we prove
an equivalence theorem (Theorem 4.5) of independent interest. In the case when β = 0 this is the generalized
Riemann–Liouville fractional q-derivative ( see Definition 2.2) and in case when β = 1 it corresponds to the
Caputo fractional q-derivative (see [34]). We also prove a Lemma (Lemma 4.4) of independent interest.

The paper is organized as follows: The main results are presented and proved in Section 3 and Section 4
and the announced examples are given in Section 5. In order to not disturb these presentations we include
in Section 2 some necessary Preliminaries. In particular, we state and prove a necessary lemma (Lemma
2.6) of independent interest.

2. Preliminaries

First we recall some elements of q-calculus, for more information see e.g. the books [23], [25] and [29].
Throughout this paper, we assume that 0 < q < 1 and 0 ≤ a < b < ∞.

Let α ∈ R. Then a q-real number [α]q is defined by

[α]q :=
1 − qα

1 − q
,

where lim
q→1

1−qα

1−q = α.

We introduce for k ∈N:

(a; q)0 = 1, (a; q)n =

n∏
k=0

(
1 − qka

)
, (q; a)∞ = lim

n→∞
(a, q)n

q , and (a; q)α =
(a; q)∞

(qαa; q)∞
.
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The q-analogue of the power function (a − b)αq is defined by

(a − b)αq :=aα
( a

b ; q)∞
(qα a

b ; q)∞
.

Notice that (a − b)αq = aα( a
b ; q)α .

The q-analogue of the binomial coefficients [n]q! are defined by

[n]q! :=
{

1, if n = 0,
[1]q × [2]q × · · · × [n]q, if n ∈ N,

The gamma function Γq(x) is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1 − q)1−x,

for any x > 0. Moreover, it yields that

Γq(x)[x]q = Γq(x + 1). (5)

The q-analogue differential operator Dq f (x) is

Dq f (x) :=
f (x) − f (qx)

x(1 − q)
,

and the q-derivatives Dn
q ( f (x)) of higher order are defined inductively as follows:

D0
q( f (x)) := f (x), Dn

q ( f (x)) := Dq

(
Dn−1

q f (x)
)
, (n = 1, 2, 3, . . . )

Notice that

Dq

[
(x − b)αq

]
= [α]q(x − b)α−1

q (6)

and

Dq

[
(a − x)αq

]
= −[α]q(a − qx)α−1

q . (7)

The q-integral (or Jackson integral)
b∫

a
f (x)dqx is defined by

a∫
0

f (x)dqx := (1 − q)a
∞∑

m=0

qm f (aqm) (8)

for a = 0 and

b∫
a

f (x)dqx =

b∫
0

f (x)dqx −

a∫
0

f (x)dqx, (9)

for 0 < a < b. Notice that

b∫
a

Dq f (x)dqx = f (b) − f (a) (10)
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and

b∫
a

x∫
a

f (x)1(t)dqtdqx =

b∫
a

b∫
qt

f (x)1(t)dqxdqt. (11)

Moreover, the multiple q-integral
(
In
q,a+ f

)
(x) is

(
In
q,a+ f

)
(x) :=

x∫
a

t∫
a

tn−1∫
a

· · ·

t2∫
a

dqt1dqt2. . .dqtn−1dqt

=
1

Γq(n)

x∫
a

(x − qt)n−1
q f (t)dqt. (12)

Definition 2.1. The Riemann-Liouville q-fractional integrals Iαq,a+ f of order α > 0 are defined by

(
Iαq,a+ f

)
(x) :=

1
Γq(α)

x∫
a

(x − qt)α−1
q f (t)dqt. (13)

Definition 2.2. The Riemann-Liouville fractional q-derivative Dα
q,a+ f of order α > 0 is defined by(

Dα
q,a+ f

)
(x) :=

(
D[α]

q,a+I[α]−α
q,a+ f

)
(x).

Notice that(
Iαq,a+(t − a)λq

)
(x) =

Γq(λ + 1)
Γq(α + λ + 1)

(x − a)α+λ
q , (14)

for λ ∈ (−1,∞).
For 1 ≤ p < ∞we define the space Lp

q = Lp
q[a, b] by

Lp
q[a, b] :=

 f : [a, b]→ R :


b∫

a

| f (x)|pdqx


1
p

< ∞

 .
Lemma 2.3. a) Let α > 0, β > 0 and 1 ≤ p < ∞. Then the q–fractional integrals has the following semigroup
property (

Iαq,a+Iβq,a+ f
)

(x) =
(
Iα+β
q,a+ f

)
(x),

for all x ∈ [a, b] and f (x) ∈ Lp
q[a, b].

b) Let α > β > 0, 1 ≤ p < ∞ and f (x) ∈ Lp
q[a, b]. Then the following equalities(

Dα
q,a+Iαq,a+

)
(x) = f (x),

(
Dβ

q,a+Iαq,a+ f
)

(x) =
(
Iα−βq,a+ f

)
(x),

hold for all x ∈ [a, b].

Proof. a) The proof for the case p = 1 can be found in [28, Theorem 5]. The proof for the case p > 1 is
completely similar so we leave out the details.

b)This statement was proved in [28, Lemma 9].
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Definition 2.4. A function f : [a, b]→ R is called q-absolutely continuous if ∃ϕ ∈ L1
q[a, b] such that

f (x) = f (a) +

x∫
a

ϕ(t)dqt, (15)

for all x ∈ [a, b].

The collection of all q-absolutely continuous functions on [a, b] is denoted ACq[a, b]. For n ∈ N := 1, 2, 3, . . .
we denote by ACn

q [a, b] the space of real-valued functions f (x) which have q-derivatives up to order n − 1
on [a, b] such that Dn−1

q f (x) ∈ ACq[a, b]:

ACn
q [a, b] :=

{
f : [a, b]→ R; Dn−1

q f (x) ∈ ACq[a, b]
}
.

Lemma 2.5. a) A function f : [a, b]→ R belongs to ACn
q [a, b] if the following equality holds

f (x) =
1

[n − 1]q!

x∫
a

(x − qt)n−1
a ϕ(t)dt +

n−1∑
k=0

ck(x − a)k
q, (16)

where ϕ(x) := Dn
q f (x) and ck =

Dk
q f (a)

Γq(k) , k = 0, 1, 2, . . . ,n − 1, are constants.

b) Let f (x) ∈ L1
q[a, b] and

(
In−α
q,a+ f

)
(x) ∈ ACn

q [a, b] with n = [α], α > 0. Then the following equality holds:

(
Iαq,a+Dα

q,a+ f
)

(x) = f (x) −
n−1∑
k=0

(
Dα−k

q,a+ f
)

(a)

Γq (α − k + 1)
(x − a)α−k

q ,

while for [a] = n ∈N, it yields that(
In
q,a+Dn

q,a+ f
)

(x) = f (x) −
n−1∑
k=0

Dα−k
q f (a)

[k]q!
(x − a)k

q

= f (x) −
n−1∑
k=0

bk

[k]q!
(x − a)k

q.

Proof. a) The proof follows directly from the definition of ACn
q [a, b], (15) and (10) (c.f. also [23, Theorem

20.2]) so we leave out the details.
b) This statement was proved in [29, Lemma 4.17] when a = 0, but the proof is the same for a , 0.

We also need the following result of independent interest:

Lemma 2.6. Let α > 0 and 1 ≤ p < ∞. Then the fractional integration operator Iαq,a+ is bounded in Lp
q[a, b]:

‖Iαq,a+ f ‖Lp
q[a,b] ≤ K‖ f ‖Lp

q[a,b], (17)

where K :=
(b−qa)αq
Γq(α+1) .

Proof. For p > 1, p′ is as usual defined by 1
p + 1

p′ = 1. Then, using the Hölder-Rogers inequality, Definition
2.1 and (6), (7), (10) and (11), we obtain that

‖Iαq,a+ f ‖Lp
q[a,b] ≤

 b∫
a

[ x∫
a

(x − qt)α−1
q

∣∣∣ f (t)
∣∣∣ dqt

]p

dqx


1
p

Γq(α)

≤

 b∫
a

[ x∫
a

(x − qt)α−1
q dqt

] p
p′

[ x∫
a

(x − qt)α−1
q

∣∣∣ f (t)
∣∣∣p dqt

]
dqx


1
p

Γq(α)
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≤


b∫

a


x∫

a
Dq,t[(x−qt)αq ]dqt

−[α]q


p
p′ [ x∫

a
(x − qt)α−1

q

∣∣∣ f (t)
∣∣∣p dqt

]
dqx


1
p

Γq(α)

≤

[
(b−a)αq

[α]q

] 1
p′

 b∫
a

∣∣∣ f (t)
∣∣∣p b∫

qt
(x − qt)α−1

q dqxdqt


1
p

Γq(α)

≤

[
(b−a)αq

[α]q

] 1
p′

Γq(α)


b∫

a

∣∣∣ f (t)
∣∣∣p b∫

qt
Dq,x

[
(x − qt)αq

]
dqxdqt

[α]q



1
p

≤

[
(b−qa)αq

[α]q

] 1
p′

[
(b−qa)αq

[α]q

] 1
p

Γq(α)
‖ f (t)‖Lp

q[a,b]

≤ K‖ f (t)‖Lp
q[a,b],

where (b − a)αq ≤ (b − qa)αq for α > 0. The proof is complete.

3. On the solutions of some fractional q-differential equations with the Riemann-Liouville fractional
q-derivative.

In this section we will consider the nonlinear model with Riemann-Liouville fractional q-derivative:

(
Dα

q,a+y
)

(x) = f
(
x, y(x)

)
, n − 1 < α ≤ n; n ∈N, (18)(

Dα−k
q,a+y

)
(a+) = bk, bk ∈ R, k = 0, 1, 2, . . . ,n − 1. (19)

In the classical case the investigations in this direction involve the existence and uniqueness of solutions
to fractional differential equations with the Riemann-Liouville fractional derivative. Several authors have
considered such problems even in nonlinear cases, see e.g. [8, Section 3] and the references therein. Here
we use another approach and first prove an equivalence theorem of independent interest.

3.1. Equivalence of the Cauchy type q-fractional problem and a q-Volterra integral equation.
Theorem 3.1. Let n − 1 < α ≤ n; n ∈ N, G be an open set in R and f (., .) : (a, b] × G→ R be a function such that
f (x, y(x)) ∈ L1

q(a, b) for any y ∈ G. If y(x) ∈ L1
q(a, b), then y(t) satisfies a.e. the relations (18)-(19) if and only if y(x)

satisfies a.e. the integral equation

y(x) :=
n−1∑
k=0

bk

Γq (α − k + 1)
(x − a)α−k

q +
[
Iαq,a+ f (t, y(t))

]
(x). (20)

Proof. Necessity. Let n − 1 < α ≤ n; n ∈ N and y(x) ∈ L1
q(a, b) satisfy a.e. the relations (18)-(19). Since

f (t, y) ∈ L1
q(a, b) and (20) we find that ∃

(
Dα

q,a+y
)

(x) ∈ L1
q(a, b). Then, by using Definition 2.2 we have that(

Dα
q,a+y

)
(x) = Dn

q

[
In−α
q,a+ y

]
(x) and

x∫
a

Dn
q

[
In−α
q,a+ y

]
(x)dqx = Dn−1

q

[
In−α
q,a+ y

]
(x) −Dn−1

q

[
In−α
q,a+ y

]
(a).
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Hence, according to Lemma 2.5 (a),
(
In−α
q,a+ y

)
(x) ∈ ACn

q [a, b]. Thus, we can apply Lemma 2.5 (b) and (19)
to conclude that

(
Iαq,a+Dα

q y
)

(x) = y(x) −
n−1∑
k=0

(
Dα−k

q,a+y
)

(a)

Γq (α − k + 1)
(x − a)α−k

q

= y(x) −
n−1∑
k=0

bk

Γq (α − k + 1)
(x − a)α−k

q . (21)

Moreover, by Lemma 2.6, the integral
[
Iαq,a+ f (., .)

]
(x) ∈ L1

q[a, b]. Finally, by applying the operator Iαq,a+ to
both sides of (18) and using (21) and (10), we obtain the equation (20), and hence the necessity is proved.

Sufficiency. Let y(x) ∈ L1
q(a, b) and assume that it satisfies the equation (20). Then, by applying the

operator Dα
q,a+ to both sides of (20), we have that

(
Dα

q,a+y
)

(x) =

n−1∑
k=0

bk

Γq (α − k + 1)

(
Dα

q,a+(t − a)α−k
q

)
(x)

+
[
Dα

q,a+Iαq,a+ f (t, y(t))
]

(x). (22)

From (14) it follows that
(
In−α
q,a+(t − a)α−k

q

)
(x) =

Γq(α−k+1)
Γq(n−k+1) (t − a)n−k

q . Furthermore, it yields that(
Dα

q,a+(t − a)α−k
q

)
(x)

Γq (α − k + 1)
=

(
Dn

q In−α
q,a+(t − a)α−k

q

)
(x)

Γq (α − k + 1)

=

(
Dn

q (t − a)n−k
q

)
(x)

Γq (n − k + 1)
= 0. (23)

Consequently, combining (22) and (23) and by using Lemma 2.3 (b) we arrive at the equation (18).
Now we show that the relations in (19) also hold. By Definition 2.2 and (6) and (14) we get that[

Dα−m
q,a+ (t − a)α−k

q

]
(x) =

[
Dn−m

q In−α
q,a+(t − a)α−k

q

]
(x)

=
Γq (α − k + 1)
Γq (n − k + 1)

[
Dn−m

q (t − a)n−k
q

]
(x)

=
Γq (α − k + 1)
Γq (n − k + 1)

[
Dn−m

q (t − a)n−k
q

]
(x)

=
Γq (α − k + 1)
Γq (m − k + 1)

(x − a)m−k
q . (24)

Next we apply the operators Dα−m
q,a+ with m = 1, . . . ,n − 1) to both sides of (20) and Lemma 2.3 (b) and

(24) to conclude that

(
Dα−m

q,a+ y
)

(x) =

n−1∑
k=0

bk

[
Dα−m

q,a+ (t − a)α−k
q

]
(x)

Γq (α −m + 1)
+

[
Dα−m

q,a+ Iαq,a+ f (t, y(t))
]

(x)

=

n−1∑
k=0

bk

Γq (m − k + 1)
(x − a)m−k

q +
[
Im
q,a+ f (t, y(t))

]
(x).

Finally, by taking the limit of (20) when x→ a+, we obtain the relations in (19). The proof is complete.
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3.2. Existence and uniqueness of a unique global solution to the Cauchy type q-fractional problem (18)-(19) in
L1
α,q[a, b].

In this subsection we give conditions for a unique global solution to the Cauchy type problem (18)-(19)
in the space L1

α,q[a, b] defined for α > 0 by

L1
α,q[a, b] :=

{
y ∈ L1

q[a, b] : Dα
q,a+ ∈ L1

q[a, b]
}
.

The proof of the following existence and uniqueness theorem depends heavily on Theorem 3.1 and the
Banach fixed point Theorem (see e.g. [33]).

Theorem 3.2. Let n − 1 < α ≤ n; n ∈ N and G ⊂ R be an open set and f (., .) : [a, b] × G → R be a function such
that f (x, y(x)) ∈ L1

q[a, b] for any y ∈ G and satisfies a Lipschitz condition in the following form:∣∣∣ f (x, y1(x)) − f (x, y2(x))
∣∣∣ ≤ C

∣∣∣y1(x) − y2(x)
∣∣∣ , (25)

where C > 0. Then there exists a unique solution y(x) ∈ L1α, q[a, b] to the Cauchy type problem (18)-(19).

Proof. According to Theorem 3.1, it is sufficient to study the existence of a unique solution y(x) ∈ L[a, b] to
the q-integral equation (20). Consequently, the equation (20) can be written in the operator form y = Fy
such that(

Fy
)

(x) := y0 +
[
Iαq,a+ f (t, y(t))

]
(x), (26)

where y0 :=
n−1∑
k=0

bk
Γq(α−k+1) (x − a)α−k

q .

Let [a, ξ] ⊂ [a, b] be such that it holds that

ω := C

(
a − qξ

)α
q

Γq (α + 1)
≤ 1. (27)

From (26), (27) and Lemma 2.6 it follows that

‖Fy1 − Fy2‖L1
q[a,ξ] ≤ C‖Iαq,a+

(
y1 − y2

)
‖L1

q[a,ξ] ≤ ω‖y1 − y2‖L1
q[a,ξ].

Hence, according to the Banach fixed point theorem (see e.g.[33]), there exists a unique solution y′ ∈
L1

q[a, ξ] such that Ty′ = y′.
Moreover, in view of this theorem, the solution y′ is obtained as a limit of a convergent sequence{(

Fmy′0
)

(x)
}

in the space L1
q[a, ξ], i.e. that

lim
m→0
‖Fmy′0 − y′‖L1

q[a,ξ] = 0,

where y0 is any function in L1
q[a, ξ].

If at least one bk , 0 in the initial condition (19), then we can take y′0 = y0. By (27), the sequence{(
Fmy′0

)
(x)

}
is defined by (

Fmy′0
)

(x) := y0 +
[
Iαq,a+ f (t,Fm−1y′0(t))

]
(x),

for m ∈N. Let
(
ym(x) := Fmy′0

)
(x). Then ym(x) = y0 +

[
Iαq,a+ f (t, ym−1(t))

]
(x) and

lim
m→0
‖ym − y′‖L1

q[a,ξ] = 0.

This means that we actually applied the method of successive approximations to find a unique solution
y′(x) to the integral equation (20). Thus, there exists a unique solution y(x) = y′(x) ∈ L1

q[a, b] to the equation
(22) and hence to the Cauchy type problem (18)-(19). This fact completes the proof of Theorem 3.2.
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4. On the solutions of some fractional q-differential equations with the composite fractional q-derivative

In this section we define the q-analogue of the composite fractional operator or Hilfer derivative operator
(see [9], [11]). Moreover, the existence and uniqueness theorems for nonlinear fractional q-differential
equations with Hilfer fractional q-derivatives types will be proved, which are the q-extensions of the main
results given in [12, Proposition 1, Proposition 2 and Theorem 1] (see also [7, Proposition 3.1, Proposition
3.2 and Theorem 3.1]).

Definition 4.1. We define the Hilfer fractional q-derivative Dα,β
q,a+ f of order 0 < α < 1 and type 0 ≤ β ≤ 1 with

respect to x by(
D
α,β
q,a+ f

)
(x) :=

(
Iβ(1−α)
q,a+ Dq

(
I(1−β)(1−α)
q,a+ f

))
(x). (28)

Note that in case when β = 0 the generalized fractional q-derivative (28) would correspond to the the
Riemann-Liouville fractional q-derivative in Definition 2.2 and in case when β = 1 it corresponds to the
Caputo fractional q-derivative

(
cDα

q,a+ f
)

(x) defined by (see [34]):

(
cDα

q,a+ f
)

(x) :=
(
I1−α
q,a+Dq f

)
(x) =

1
Γq(1 − α)

x∫
a

(
x − qt

)−α
q f (t)dqt.

Definition 4.2. Let n − 1 < α ≤ n,n ∈ N and 0 ≤ β ≤ 1. We define the generalized fractional q-derivative Dα,β
q,a+ f

as follows:(
Dα,β

q,a+ f
)

(x) :=
(
Iβ(n−α)
q,a+ Dn

q

(
I(1−β)(n−α)
q,a+ f

))
(x)

=
(
Iβ(n−α)
q,a+ Dα+βn−αβ

q,a+ f
)

(x). (29)

For the proof of our main results in this section we also need two lemmas of independent interest.

Lemma 4.3. Let α > 0, n = [α] and f ∈ ACn
q [a, b]. Then

Dα
q,a+ f =

n−1∑
k=0

lim
x→a

Dk
q f (x)

Γq (k − α + 1)
(x − a)k

q +

k∫
a

(
x − qt

)n−α−1
q Dk

q f (t)

Γq(n − α)
dqt (30)

for all x ∈ [a, b].

Proof. Since f ∈ ACn
q [a, b] we have that

f (x) =

n−1∑
k=0

lim
x→a

Dk
q f (x)

Γq (k + 1)
(x − a)k

q + In
q,a+Dn

q f (x), (31)

for all x ∈ [a, b]. By using Definition 2.2, (6) and (14) we get that

Dα
q,a+

[
(x − a)k

q

]
=

(
Dα

q In−α
q,a+ (t − a)k

q

)
(x)

=
Γq(k + 1)

Γq(k + n − α + 1)

(
Dn

q (t − a)k+n−α
q

)
(x)

=
Γq(k + 1)

Γq(k − α + 1)
(t − a)k−α

q . (32)



S. Shaimardan et al. / Filomat 34:13 (2020), 4429–4444 4438

Applying the operator Dα
q,a+ to both sides of (31) and using (32) and Lemma 2.3 b) we have that

(
Dα

q,a+ f
)

(x) =

n−1∑
k=0

lim
x→a

Dk
q f (x)

Γq (k + 1)

(
Dα

q,a+ (t − a)k
q

)
(x) + Dα

q,a+

(
In
q,a+Dn

q f
)

(x)

=

n−1∑
k=0

lim
x→a

Dk
q f (x)

Γq (k − α + 1)
(x − a)k−α

q +
(
In−α
q,a+Dn

q f
)

(x),

so (30) follows from (13).

Lemma 4.4. Let y ∈ L1
q(a, b), n − 1 < α ≤ n,n ∈N, 0 ≤ β ≤ 1, γ = (n − α)(1 − β) and Iγq,a+y ∈ ACn

q [a, b]. Then the
following equality holds:(

Iαq,a+Dα,β
q,a+y

)
(x) = y(x) − yq,α,β(x), (33)

where

yq,α,β(x) :=
n−1∑
k=0

(x − a)k−γ
q

Γq
(
k − γ + 1

) lim
x→a+

(
Dk

qIγq,a+y
)

(x).

Proof. From Lemma 2.3 a) and Definition 2.2 it follows that(
Iαq,a+Dα,β

q,a+y
)

(x) =
(
Iαq,a+Iβ(n−α)

q,a+ Dα+βn−αβ
q,a+ y

)
(x)

=
(
Iα+β(n−α)
q,a+ Dα+β(n−α)

q,a+ y
)

(x)

=
(
In−γ
q,a+Dn

q Iγq,a+y
)

(x). (34)

We define ỹ := Iγq,a+y ∈ ACn
q [a, b]. Then, according to Lemma 4.3 and Lemma 2.3 b) (32) and (34), we find

that

y(x) =
(
Dγ

q,a+ ỹ
)

(x)

=

n−1∑
k=0

lim
x→a

(
Dk

q ỹ
)

(x)

Γq
(
k − γ + 1

) (x − a)k−γ
q +

(
In−γ
q,a+Dn

q ỹ
)

(x)

=

n−1∑
k=0

lim
x→a

(
Dk

qIγq,a+

)
(x)

Γq
(
k − γ + 1

) (x − a)k−γ
q +

(
In−γ
q,a+Dn

q Iγq,a+y
)

(x)

= yq,α,β(x) +
(
Iαq,a+Dα,β

q,a+y
)

(x),

which completes the proof.

4.1. Equivalence of the Cauchy type q-fractional problem and a Volterra q-integral equation

Theorem 4.5. Let G be an open set in R, f (., .) : (a, b] ×G→ R be a function such that f (x, y(x)) ∈ L1
q(a, b) for any

y ∈ G, n − 1 < α ≤ n,n ∈ N, 0 ≤ β ≤ 1, γ = (n − α)(1 − β) and assume that Iγq,a+y ∈ ACn
q [a, b]. Then y(t) satisfies

a.e. the relations (1)-(2) if and only if y(x) satisfies a.e. the integral equation

y(x) :=
n−1∑
k=0

bk

Γq
(
k − γ + 1

) (x − a)k−γ
q +

(
Iαq,a+ f (t, y(t))

)
(x). (35)
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Proof. Necessity. Let y(x) ∈ L1
q[a, b] satisfy a.e. the relations (1)-(2) and f (x, y(x)) ∈ L1

q(a, b) for any y ∈ G.

Then
(
Dα,β

q,a+y
)

(x) exists and belongs to L1
q[a, b] and, by Lemma 2.6, we find that

(
Iαq,a+ f (t, y(t))

)
(x) ∈ L1

q[a, b].
By now applying the integral operator Iαq,a+ to both sides of (1) and using the relation (33) we obtain the
equation (35). The necessity is proved.

Sufficiency. Let y(x) ∈ L1
q[a, b] satisfy the equation (35). Then, by applying the operator Dα,β

q,a+ to both sides
of (35), we have that

(
Dα,β

q,a+y
)

(x) =

n−1∑
k=1

bk

Γq
(
k − γ + 1

) (
Dα,β

q,a+(t − a)k−γ
q

)
(x)

+
(
Dα,β

q,a+Iαq,a+ f (t, y(t))
)

(x).

Hence, by using Definition 4.2, (7) and (14), we find that
(
Dα,β

q,a+(t − a)k−γ
q

)
(x) = 0, for k−γ = k− (n−α)(1−

β) = k − n + α + βn − αβ < α + βn − αβ, 0 ≤ k ≤ n − 1. Furthermore, it yields that(
Dα,β

q,a+y
)

(x) = f (x, y(x)).

Now we show that the relations (2) also hold. For this we apply the operator Iγq,a+ to both sides of (35)
and use Lemma 2.3 and (3.5) to conclude that

(
Iγq,a+y

)
(x) =

n−1∑
k=1

bk

Γq
(
k − γ + 1

) (
Iγq,a+(t − a)k−γ

q

)
(x) +

(
Iγq,a+Iαq,a+ f (t, y(t))

)
(x)

=

n−1∑
k=1

bk

[k]q!
(t − a)k

q +
(
In−nβ+αβ
q,a+ f (t, y(t))

)
(x). (36)

Let 0 ≤ m ≤ n − 1. Then, by using Definition 4.2, (7), (14) and (2), we obtain that

Dm
q

(
Iγq,a+y

)
(x) =

n−1∑
k=1

bk

[k −m]q!
(t − a)k−m

q

+
1

Γq
(
n − nβ + αβ −m

) x∫
a

(x − qt)n−nβ+αβ−m−1
q f (t, y(t))dqt. (37)

Taking in (37) the limit x → a+ a.e., we obtain the relations in (2). Thus also the sufficiency is proved,
which completes the proof.

4.2. The existence and uniqueness of solutions to the Cauchy type q-fractional problem (1)-(2) in L1
α,β,q[a, b].

In this subsection we give conditions for a unique global solution to the Cauchy type problem (1)-(2) in
the space L1

α,β,q[a, b] defined for α > 0 by

L1
α,β,q[a, b] :=

{
y ∈ L1

q[a, b] : Dα,β
q,a+y ∈ L1

q[a, b]
}
.

Theorem 4.6. Let a > 0, G ⊂ R be an open set and f (., .) : [a, b]×G→ R be a function such that f (x, y(x)) ∈ L1
q[a, b]

for any y ∈ G and satisfying the condition (25). If n − 1 < α ≤ n,n ∈ N, 0 ≤ β ≤ 1, γ = (n − α)(1 − β),
Iγq,a+y ∈ ACn

q [a, b], then there exists a unique solution y(x) ∈ L1
α,β,q[a, b] to the Cauchy type problem (1)-(2).
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Proof. We begin to prove the existence of a unique solution y ∈ L1
q[a, b]. According to Theorem 4.5, it is

sufficient to prove the existence of a unique solution y ∈ L1
q[a, b] to the nonlinear Volterra integral equation

(35). Consequently, the equation (35) can be written in the operator form y = Fy such that(
Fy

)
(x) := y0 +

[
Iαq,a+ f (t, y(t))

]
(x), (38)

where y0 :=
n−1∑
k=0

bk

Γq(k−γ+1) (x − a)k−γ
q .

Let [a, ξ1] ⊂ [a, b] be such that

ω := C

(
a − qξ1

)α
q

Γq (α + 1)
≤ 1. (39)

First we prove the following: If y ∈ L1
q[a, ξ1], then (Ty)(x) ∈ L1

q[a, ξ1]. Indeed, since y0 ∈ L1
q[a, ξ1],

f
(
x, y(x)

)
∈ L1

q[a, ξ1], the integral on the right-hand side of (38) also belongs to L1
q[a, ξ]. Hence, (Ty)(x) ∈

L1
q[a, ξ1].

From (38), (39) and Lemma 2.6 it follows that

‖Fy1 − Fy2‖L1
q[a,ξ1] ≤ C‖Iαq,a+

(
y1 − y2

)
‖L1

q[a,ξ1] ≤ ω‖y1 − y2‖L1
q[a,ξ1],

and the proof of our first claim is done. Since L1
q[a, ξ1] is Banach space we are according to the Banach fixed

point theorem (see e.g.[33]), there exists a unique solution y′ ∈ L1
q[a, ξ1] such that Ty′ = y′.

Moreover, in view of this theorem, the solution y′ is obtained as a limit of a convergent sequence{(
Fmy′0

)
(x)

}
lim
m→0
‖Fmy′0 − y′‖L1

q[a,ξ1] = 0,

in the space L1
q[a, ξ1], where y0 is any function in L1

q[a, ξ1].

If at least one bk , 0 in the initial condition (2), then we can take y′0 = y0. By (39), the sequence
{(

Fmy′0
)

(x)
}

is defined by (
Fmy′0

)
(x) := y0 +

[
Iαq,a+ f (t,Fm−1y′0(t))

]
(x),

for m ∈N. Let
(
ym(x) := Fmy′0

)
(x). Then ym(x) = y0 +

[
Iαq,a+ f (t, ym−1(t))

]
(x) and

lim
m→0
‖ym − y′‖L1

q[a,ξ1] = 0.

This means that we actually used the method of successive approximations to find a unique solution
y′(x) to the integral equation (35) on [a, ξ1]. Next we consider the interval [ξ1, ξ2], where ξ1 = ξ2 + h1, h1 > 0
is such that ξ2 < ∞. Rewrite the equation (35) in the form

y(x) = y0(x) +
(
Iαq,a+ f (t, y(t))

)
(ξ1) +

(
Iαq,ξ1+ f (t, y(t))

)
(x). (40)

Since the function y(t) is uniquely defined on the interval [a, ξ1], the last integral can be considered as
the known function, and we can rewrite the last equation as(

Fy
)

(x) := y10 +
[
Iαq,ξ1+ f (t, y(t))

]
(x), (41)

where y10 := y0(x) +
(
Iαq,a+ f (t, y(t))

)
(ξ1).

In a similar way as above, we get that there exists a unique solution y′ ∈ L1
q[ξ1, ξ2] for (35) on the interval

[ξ1, ξ2]. Taking the next interval [ξ2, ξ3], where ξ3 = ξ2 + h2, h2 > 0,ξ3 < ∞, and repeating the procedure,
we conclude that there exists a unique solution y′ ∈ L1

q[a, b] for (35) and hence to the Cauchy type problem
(1)-(2).
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Finally, we must show that such a unique solution y ∈ L1
q[a, b] belongs to the space L1

α,β,q[a, b]. According
to the above proof, the solution y ∈ L1

q[a, b] is a limit of the sequence
{
ym

}
∈ L1

q[a, b]:

lim
m→∞

‖ym − y‖L1
q[a,b] = 0, (42)

with the choice of certain ym on each [a, ξ1], [ξ1, ξ2], . . . , [ξL−1, b]. Since

‖Dα,β
q,a+ym −Dα,β

q,a+y‖L1
q[a,b] = ‖ f

(
x, ym

)
− f

(
x, y

)
‖L1

q[a,b] ≤ A‖ym − y‖L1
q[a,b],

by (42), we obtain that

lim
m→∞

‖Dα,β
q,a+ym −Dα,β

q,a+y‖L1
q[a,b] = 0,

and hence Dα,β
q,a+ ∈ L1

q[a, b]. This completes the proof.

Corollary 4.7. Let G be an open set in R and f (., .) : (a, b] ×G→ R be a function such that f (x, y(x)) ∈ L1
q(a, b) for

any y ∈ G. If 0 < α ≤ 1, 0 ≤ β ≤ 1, γ = (1− α)(1− β), Iγq,a+y ∈ ACn
q [a, b], then y(t) satisfies a.e. the relations (3)-(4)

if and only if, y(x) satisfies a.e. the integral equation

y(x) := b
(x − a)k−γ

q

Γq
(
k − γ + 1

) +
(
Iαq,a+ f (t, y(t))

)
(x). (43)

Corollary 4.8. Let a > 0, G ⊂ R be an open set and f (., .) : [a, b]×G→ R be a function such that f (x, y(x)) ∈ L1
q[a, b]

for any y ∈ G and satisfies the condition (25). If 0 < α ≤ 1, 0 ≤ β ≤ 1, γ = (n − α)(1 − β), Iγq,a+y ∈ ACn
q [a, b]. Then

there exists a unique solution y(x) ∈ L1
α,β,q[a, b] to the Cauchy type problem (3)-(4).

5. Examples

In this section we present some examples and discuss these examples in connection with the results
obtained in Sections 3 and 4. Our examples are q-analogues of examples given in [8, Examples 3.1-3.2].

Example 5.1. Let λ, α ∈ R+, 0 ≤ β ≤ 1 and γ ∈ R be such that −2α − γ + 1 > 0. Then we consider

f (x, y(x)) := λ
(x − q−α−γ+1a)α+γ

q

(x − q−2α−γ+1a)αq
y2(x),

and assume that n − 1 < α ≤ n,n ∈N, 0 ≤ β ≤ 1, γ = (n − α)(1 − β) and Iγq,a+y ∈ ACn
q [a, b].

Moreover, we choose G so that

(x, y) ∈ [qa, b] × G :=
{
qa ≤ x ≤ b;

∣∣∣y(x)
∣∣∣ < M < ∞

}
.

We note that f (x, y(x)) satisfies (25) since, for −2α − γ + 1 > 0, x ∈ [qa, b] and y1; y2 ∈ G,

∣∣∣ f (x, y1(x)) − f (x, y2(x))
∣∣∣ = λ

∣∣∣∣∣∣∣ (x − q−α−γ+1a)α+γ
q

(x − q−2α−γ+1a)αq
y2

1(x) −
(x − q−α−γ+1a)α+γ

q

(x − q−2α−γ+1a)αq
y2

2(x)

∣∣∣∣∣∣∣
≤ λ

(b − q−α−γ+1a)α+γ
q

(a − q−2α−γ+1a)αq

∣∣∣y1(x) + y2(x)
∣∣∣ ∣∣∣y1(x) − y2(x)

∣∣∣
≤ λ

(b − q−α−γ+1a)α+γ
q

(a − q−2α−γ+1a)αq
2M

∣∣∣y1(x) − y2(x)
∣∣∣ ,

which proves that f satisfies the Lipschitz condition (25) in Theorem 4.6.
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Hence,

b∫
qa

∣∣∣ f (x, y(x))
∣∣∣ dqx = λ

b∫
qa

(x − q−α−γ+1a)α+γ
q

(x − q−2α−γ+1a)αq

∣∣∣y(x)
∣∣∣2 dqx

≤ λ
(b − q−α−γ+1a)α+γ

q

(a − q−2α−γ+1a)αq
M2,

which means that f (x, y(x)) ∈ L1
q[qa, b]. We can conclude that, according to Theorem 4.6, the equation

(
Dα,β

q,qa+y
)

(x) = λ
(x − q−α−γ+1a)α+γ

q

(x − q−2α−γ+1a)αq
y2(x), (44)

lim
x→a+

(
I(1−α)(1−β)
q,a+ y

)
(x) = 0, (45)

has a unique solution. Note also that in this case, according to Lemma 2.3 the condition (2) with bk = 0, k = 0, 1, ..n−1
coincides with (45).

Moreover, in this special case 2α + γ < 1 we claim that this unique solution is given by

y(x) =
1
λ

Γq
(
1 − α − γ

)
Γq

(
1 − 2α − γ

) (
x − qa

)−α−γ
q . (46)

In fact, by applying the operator Dα,β
q,qa+ and using in order (29), (14), (6), (5) and (14), we get that

Dα,β
q,qa+

[(
t − qa

)−α−γ
q

]
(x) =

(
Iβ(1−α)
q,a+ DqI(1−β)(1−α)

q,a+ (t − qa)−α−γq

)
(x)

=

(
Iβ(1−α)
q,a+

(
Dq

)
(t − qa)1−2α−β+αβ−γ

q

)
(x)

Γq(2−2α−β+αβ−γ)
Γq(1−α−γ)

=

(
Iβ(1−α)
q,a+ (t − qa)−2α−β+αβ−γ

q

)
(x)

Γq(2−2α−β+αβ−γ)

[1−2α−β+αβ−γ]qΓq(1−α−γ)

=

(
Iβ(1−α)
q,a+ (t − qa)−2α−β+αβ−γ

q

)
(x)

Γq(1−2α−β+αβ−γ)
Γq(1−α−γ)

=

Γq(1−2α−β+αβ−γ)
Γq(1+β−αβ−2α−β+αβ−γ) (x − qa)β−αβ−2α−β+αβ−γ

q

Γq(1−α−γ)
Γq(1−2α−β+αβ−γ)

=
Γq

(
1 − α − γ

)
Γq

(
1 − 2α − γ

) (
x − qa

)−2α−γ
q ,

for 2α + γ < 1. Therefore,

Dα,β
q,qa+

[
y(x)

]
=

1
λ

[
Γq

(
1 − α − γ

)
Γq

(
1 − 2α − γ

) ]2 (
x − qa

)−2α−γ
q , (47)

Hence, by using the well-known formulas

(x − q−α−γ+1a)α+γ
q (x − qa)−α−γq = 1 and (x − qa)−α−γq = (x − qa)−2α−γ

q (x − q−2α−γa)αq ,
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in q-analysis (see [[23], formula (3.7)]) we have that

f (x, y(x)) = λ
(x − q−α−γ+1a)α+γ

q

(x − q−2α−γ+1a)αq
y2(x)

=
1
λ

[
Γq

(
1 − α − γ

)
Γq

(
1 − 2α − γ

) ]2

×
(x − q−α−γ+1a)α+γ

q

(x − q−2α−γ+1a)αq

[
(x − qa)−α−γq

]2

=
1
λ

[
Γq

(
1 − α − γ

)
Γq

(
1 − 2α − γ

) ]2

(x − qa)−2α−γ
q = Dα,β

q,qa+

[
y(x)

]
, (48)

i.e. y(x) defined by (46) satisfies (44).
Now, by combining (47) and using that (48) and lim

x→qa

(
x − qa

)−α−γ
q = 0 for x ∈ [qa, b], we see that y(x) defined by

(46) satisfies (44)-(45). The proof of our claim is complete.

Example 5.2. Let α, λ ∈ R+ and 0 ≤ β ≤ 1. Then we consider the following differential equation:

(
Dα

q,qa+y
)

(x) = λ

[
(x − qa)2α+2β

q

] 1
2

(x − qα+2β+1a)αq

[
y(x)

] 1
2 , (49)

Dα−k
q,qa+y(qa+) = 0, (50)

where n − 1 < α ≤ n, n ∈ N, k = 0, 1, 2, ...,n − 1.

Let f (x, y(x)) := λ

[
(x−qa)2α+2β

q

] 1
2

(x−qα+2β+1a)αq

[
y(x)

] 1
2 and assume n − 1 < α ≤ n,n ∈ N, 0 ≤ β ≤ 1, γ = (n − α)(1 − β) and

Iγq,a+y ∈ ACn
q [a, b].

Moreover, let G be such that

(x, y) ∈ [qa, b] × G :=
{
a ≤ x ≤ b; M1 < y(x) < M2, 0 < M1,M2

}
.

Then, for x ∈ [a, b] and y1, y2 ∈ G we have that

| f (x, y1(x)) − f (x, y2(x))| ≤ λ

[
(b − qa)2α+2β

q

] 1
2

(a − qα+2β+1a)αq

∣∣∣∣y 1
2
1 (x) − y

1
2
2 (x)

∣∣∣∣
= λ

[
(b − qa)2α+2β

q

] 1
2

(a − qα+2β+1a)αq

∣∣∣y1(x) − y2(x)
∣∣∣

y
1
2
1 (x) + y

1
2
2 (x)

≤
λ

2M1

[
(b − qa)2α+2β

q

] 1
2

(a − qα+2β+1a)αq

∣∣∣y1(x) − y2(x)
∣∣∣ ,

which proves that f satisfies the Lipschitz condition (25) in Theorem 4.6.
Moreover,

b∫
qa

∣∣∣ f (x, y(x))
∣∣∣ dqx ≤ λ

[
(b − qa)2α+2β

q

] 1
2

(a − qα+2β+1a)αq
M

1
2 ,

which means that f (x, y(x)) ∈ L1
q[qa, b]. Therefore, by using Theorem 4.6, we conclude that (49)-(50) has a unique

solution in L1
q[qa, b]. By using similar argument as in our Example 5.1 we can in fact prove that this exact solution is:

y(x) =

[
λ

Γq
(
α + 2β + 1

)
Γq

(
2α + 2β + 1

) ]2 (
x − qa

)2α+2β
q .
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Remark 5.3. By arguing as in our Examples 5.1 and 5.2 we can also derive a similar q-analogue of Example 3.3 in
[8].
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[25] T. Ernst, A new method of q-calculus, Doctoral thesis, Uppsala university, 2002.
[26] R.P. Agarwal, Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66 (1969), 365-370.
[27] W. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15 (1966/1967), 135-140.
[28] P.M. Rajkovic’, S.D. Marinkovic’, and M.S. Stankovic’. Fractional integrals and derivatives in q–calculus, Applicable Analysis

and Discrete Mathematics, 1 (2007), 311-323.
[29] M.H. Annaby and Z.S. Mansour, q-fractional calculus and equations. Springer, Heidelberg, 2012.
[30] Y. Zhao, H.Chen and Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary condi-

tions. Adv. Differ. Equ. 48 (2013), (https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-48).
[31] R.A.C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61

(2011), 367-373.
[32] R.A.C. Ferreira, Nontrivials solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ.

70 (2010), 1-10.
[33] A.N. Kolmogorov and S.V. Fomin, Fundamentals of the theory of functions and functional analysis, Nauka, Moscow, 1968.
[34] P.M. Rajkovic’, S.D. Marinkovic’, and M.S. Stankovic’, On q–fractional derivatives of Riemann–Liouville and Caputo type,

September 2009; arXiv: arXiv:0909.0387.
[35] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals and derivatives: theory and applications, Cordon and Breach

Publishers, 1993.


