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Summary 

 

Background 

The main cause to chronic myeloid leukemia (CML) is a translocation between 

chromosome 9 and 22, resulting in the Philadelphia chromosome, containing a BCR-ABL 

fusion-gene that encodes a constitutively active tyrosine kinase. Imatinib, a selective 

inhibitor of the tyrosine kinase, is the first-line treatment for CML-patients. However, 

drug-resistance is an increasing problem, and the most important reasons for this are 

point mutations within the BCR-ABL kinase domain. More than 40 such mutations are 

described, and because the mutations can have a great impact on clinical decision-

making, early detection is important. With new tyrosine kinases developing, the 

resistance problem seems to be diminished, as some of the new drugs are less prone to 

resistance. Only the important T315I-mutation seems to remain a problem, which is why 

this particular mutation should be in focus for developing a more sensitive detection 

method.   

 

Materials and methods 

Plasmids and patient-samples containing wild-type and mutated BCR-ABL sequences 

were used in an effort to design a sensitive and specific, biased assay for detection of the 

T315I-mutation in BCR-ABL alleles. By comparing a single-step versus a nested 

approach, the amplification of long versus short templates, TaqMan versus SYBR Green 

Master Mixes, and ASO versus LNA and ARMS-primers, a patient-test for detection of 

the T315I-mutation was developed.  

 

Results 

A nested PCR approach using SYBR Green Master Mix and a BCR-ABL-specific primer 

pair with a LNA-nucleotide incorporated in the mutation-specific reverse primer provided 

the greatest improvements in sensitivity and specificity for detection of the T315I-

mutation in samples from CML-patients.  
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 1 Introduction  

 

1.1 Leukemia 

Leukemia is a group of neoplastic disorders that arises in the hematopoietic cells of the 

bone marrow and leads to an uncontrolled proliferation and accumulation of immature 

blood cells. This excessive production of blood cells can lead to overcrowding of the 

bone marrow, and spreading into the peripheral blood and to other organs. The lack of 

functional blood cells can lead to symptoms like anemia, infections and bleedings. If left 

untreated, leukemia is fatal, often due to complications resulting from the leukemic 

infiltration of the bone marrow and replacement of normal hematopoietic precursor-cells 

(Herfindal et al. 2000).  

 

Traditionally, leukemia was classified as chronic or acute by how fast the disease 

progressed to a fatal clinical outcome. This has later found to correlate well with the 

degree of maturation of the predominant malignant cell. The disease is further classified 

into lymphoid or myeloid leukemia according to the predominant cell-type involved 

(Henderson et al. 2002).  

 

1.1.1 Acute lymphocytic leukemia 

Acute lymphocytic leukaemia (ALL) is the malignant transformation and uncontrolled 

growth of a B- or T-lineage lymphocytic precursor. The disease usually progresses fast, 

and immediate treatment is necessary. Symptoms can be bruising, fever, fatigue, loss of 

appetite, anemia, bone-pain and lymphadenopathy, and there are more than 25 to 30 

percent lymphoblasts in the bone marrow (Henderson et al. 2002). In 2003 in Norway, 

227 persons were diagnosed with acute leukemia, and approximately 30 of these had 

ALL (Kreftregisteret 2003; Kreftforeningen 2006).  
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1.1.2 Chronic myelogenous leukemia 

Chronic myelogenous leukemia (CML) predominately affects the granulocytic cell-line. 

There is often an increased proliferation of granulocytes, but their differentiation is 

relatively normal. About 50 people in Norway are diagnosed with CML each year, 

primarily older adults (Kreftforeningen 2006). The disease can be discovered on routine-

controls and develops gradually over time. Patients can survive years after the diagnosis, 

even without treatment, because the maturation-arrest occurs in later differentiation steps. 

This way, the blood cells are relatively mature and retain much of their normal functions, 

compared to those of acute leukemia. Over time, the disease progresses to more 

aggressive forms that are less responsive to treatment (Herfindal et al. 2000).  

 

In the first, chronic phase of CML there is a marked granulocytic expansion, but the 

differentiation is relatively unaffected. The blood cells still have normal functions, and 

the symptoms are only mild. After an average of four to five years, the disease progresses 

to an accelerated phase where the symptoms are more pronounced, and the response to 

treatment is lower. The blast cells proliferate faster and are less mature. When more than 

30 percent of the cells in the blood or bone marrow are leukemic, CML has developed 

into the blast-phase or blast-crisis. In this phase, the cells are predominantly immature, 

and the disease can be indistinguishable from an acute leukemia (Henderson et al. 2002).  
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1.2 The Philadelphia chromosome 

A reciprocal translocation between the ABL-gene on chromosome 9 and the BCR-gene 

on chromosome 22 is the hallmark of CML, since it can be found in more than 95 percent 

of patients with the disease. This abnormality was first described by a Philadelphia-based 

group, more than 40 years ago, and is therefore called the Philadelphia chromosome 

(Nowell et al. 1960; Nowell et al. 1960). The translocation results in the formation of a 

BCR-ABL fusion-gene on chromosome 22, encoding a constitutive active non-receptor 

tyrosine kinase (figure 1). CML was the first human cancer to be associated with a 

chromosomal abnormality, and its discovery was a breakthrough in cancer biology 

(Sawyers 1999).  

 

 
Figure 1. The Philadelphia chromosome. A translocation between chromosome 9 and 22 generates the 

abnormal Philadelphia chromosome containing the BCR-ABL fusion-gene (Waalen 2001). 

 

The fusion-protein can vary in size from 185 kd to 230 kd, dependent on the breakpoint 

location in the BCR-gene. In typical chronic phase CML, the 210 kd protein is the most 

common (Sawyers 1999). Figure 2 describes important features of the most frequent 

BCR-ABL transcripts. Important mutation sites found in imatinib-resistant patient will be 

discussed in the following chapters.  
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Figure 2. Different breakpoint locations in the BCR- and ABL- genes, and the fusion-proteins 

derived from them.  The most common fusion-protein, the P210BCR-ABL, is derived from breakpoints 

between exons 13 and 14 (b2) or 14 and 15 (b3) of in the major breakpoint cluster region, producing BCR-

ABL fusion-genes that transcribe b2a2 or b3a2 mRNA  (Salesse et al. 2002).  

 

The increased activity of the tyrosine kinase results in phosphorylation and activation of 

several substrates involved in signal pathways leading to malignant transformation. 

Among the cellular processes interfered by this are proliferation, differentiation, adhesion 

and apoptosis. (Salesse et al. 2002).  

 

1.3 Imatinib 

The phenylaminopyrimidine compound imatinib mesylate (Gleevec), seen in figure 3, 

acts as a potent inhibitor of the tyrosine kinases ABL, PDGFR, c-Kit and ARG. It 

represents the first selective protein kinase-inhibitor to be developed for targeted cancer 

therapy (Druker et al. 1996; Deininger et al. 1997), and its superior clinical efficacy was 

first shown in the treatment of CML (O'Brien et al. 2003). On the molecular level, 

imatinib acts by binding the catalytic domain of the ABL-protein in its inactive 

conformation, thereby preventing ATP-binding. Thus, it keeps substrates involved in 

BCR-ABL downstream signal transduction pathways from phosphorylation and 

activation (Druker et al. 2002).  
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Figure 3. Imatinib mesylate. 

 

1.4 Imatinib-resistance 

Patients with CML, especially those in advanced phases, treated with imatinib often 

experiences relapse due to drug-resistance. The main reason to this is point mutations 

within the BCR-ABL kinase domain (Gorre et al. 2001; Shah et al. 2002). The mutations 

induce substitutions of amino acids that either directly interfere with imatinib in the 

binding pocket (gatekeeper residues), or that are involved in establishing a distinct 

conformation, which imatinib is unable to bind. Imatinib exclusively binds the inactive 

conformation of the ABL kinase domain. Thus, if the conformational change of the 

kinase is hampered by an amino acid change, imatinib-binding may be drastically 

reduced.  

 

The mutations are, as seen in figure 4, mainly found in four regions of the ABL-kinase 

domain. The phosphate binding loop (P-loop) that normally surrounds a phosphate group 

in the depth of the binding pocket, the activation loop (A-loop) that is crucial for the 

conformation of the kinase, the gatekeeper residues that are directly in contact with 

imatinib, and other more downstream located residues in the catalytic domain, which may 

participate to stabilize the A-loop in a certain conformation, like the methionin residue in 

position 351.  
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Figure 4. Mutations in the BCR-ABL kinase domain that are associated with imatinib-resistance. The 

mutations are mainly found in the P-loop, at amino acid residues in direct contact with imatinib, close to the 

catalytic domain or at the activation loop (Martinelli et al. 2005).  

 

More than 40 different mutations are described in association with imatinib-resistance 

(Hochhaus et al. 2004; Martinelli et al. 2005; Hughes et al. 2006). It seems that the 

majority of mutations target amino acid residues involved in conformational change, and 

only a few residues seem to directly contact the drug in the ABL binding pocket, like the 

315 and 317 residues. The T315I-mutation seems to be particularly important since it is 

frequently detected and confers resistance also to new drugs developed particularly for 

imatinib-resistance subjects (Shah et al. 2004; Weisberg et al. 2005). Figure 5 shows the 

ABL kinase domain complexed with imatinib, and illustrates some of the most important 

mutations associated with resistance.  
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Figure 5: Ribbon illustration of the ABL kinase domain in complex with imatinib. Imatinib is shown 

in yellow, and the numbers represent amino acid residues involved in resistance. Red spheres (1-3) 

symbolize mutations that directly affect the binding of imatinib, green spheres (4-8) are P-loop mutations 

and blue spheres (9-13) are mutations close to the activation loop. The amino acid residues are: 1 F317L; 2 

T315I; 3 F359; 4 M244; 5 G250; 6 Q252; 7 Y253; 8 E255; 9 M351; 10 E355, 11 V379; 12 L387; 13 H396 

(Shah et al. 2003). 
 

According to a well-established model (Roche-Lestienne et al. 2003), mutations may pre-

exist imatinib treatment in a single cell, conferring a selective advantage as soon as 

imatinib treatment is initiated. If these cells then are able to proliferate, e.g. as part of the 

stem cell pool, a new clone of imatinib-resistant cells may be selected during treatment, 

and after a while induce relapse. Interestingly, some of these mutations have a more 

unfavorable clinical impact, and it has recently been shown that patients with P-loop 

mutations die earlier than imatinib-resistant patients with mutations outside the P-loop 

(Branford et al. 2003; Soverini et al. 2005). Because of this, recent CML treatment 

programs recommend immediate stop of imatinib-treatment if P-loop mutated clones are 
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detected (Hjorth-Hansen et al. 2004). Other mutations, like the M351T, have been shown 

to respond to a dose-escalation in vitro. More recent drugs are also on the way into 

clinical use, and many of the mutated imatinib-resistant BCR-ABL isoforms are sensitive 

to these, as recently shown in in vitro experiments (Burgess et al. 2005). Considering the 

latest developments in CML-monotherapy and the introduction of new drugs, detection of 

mutations in the ABL kinase domain is getting more important. Some of the methods 

used for detection of mutations are described in the following sections.  

 

1.5 Methods for detection of mutations in the ABL kinase domain  

 

1.5.1 Polymerase chain reaction 

Polymerase chain reaction (PCR) is a process used for amplification of specific DNA 

sequences, and in CML-patients it can be used to confirm the existence of the BCR-ABL 

gene, to quantify the level of BCR-ABL transcripts and to detect mutations in the ABL 

kinase domain. The process includes a thermostable DNA polymerase that adds 

deoxynucleotides (dNTPs) to the free 3`-OH group of an oligonucleotide primer. By 

repeating the process for several cycles in a thermal cycler, the number of copies of the 

amplified gene grows exponentially. Real-time PCR (RQ-PCR), as opposed to regular 

end-point PCR, allows for continuously monitoring of the amplification, thereby giving 

an opportunity to perform quantitative analysis. If the PCR was 100 percent effective, it 

would generate about 106 copies of each template molecule, but usually the efficiency is 

only 60 to 80 percent (McPherson et al. 2000). The sensitivity and specificity of the 

reaction can however be increased in several ways, e.g. by using nested approaches, or 

primers of ASO-, ARMS- or LNA-type as described in the following.  

 

Nested PCR is an approach used to increase the sensitivity by adding a PCR-step. The 

product from the first PCR is used as template for a second PCR, with primers within the 

region of the original amplified product. An estimated 104-fold increase in sensitivity of 

detection of the true product over non-specific products can be expected with this method 
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(McPherson et al. 2000). However, because a nested approach consists of several steps, 

the probability of contamination of the samples and detection of false positive results 

increases.  

 

Allele-specific oligonucleotide (ASO) primers are used to detect single nucleotide 

polymorphisms (SNPs), and is based upon matching the 3´-base of a PCR-primer with a 

SNP-allele and mismatching it with the other allele (Gibbs et al. 1989; Bottema et al. 

1993). The mismatched primer-template complex has a lower melting temperature than 

the perfectly matched complexes, and this promotes selective amplification of the 

correctly matched primer-templates. When using a DNA polymerase that lacks 5´ → 3´ 

exonuclease activity, such as Taq polymerase, the mismatch cannot be repaired, and the 

polymerase will be unable to extend the mismatched primer with the same efficiency as 

the matched primer (Ayyadevara et al. 2000; Logan et al. 2004).  

 

Even though the 3´-terminal base is mismatched, amplification in some cases still 

proceeds. By using the amplification refractory mutation system (ARMS), additional 

mismatches are included near the 3´-terminal mismatched primer, and the specificity and 

discrimination-power of the primer can be increased (Newton et al. 1989; Logan et al. 

2004). This is because the additional mismatch makes the already mismatched primer too 

destabilized for extension by the polymerase. The effect of the destabilization will 

increase the closer to the 3´-terminus the additional mismatch is (Newton et al. 1989). As 

with ASO-primers, the DNA polymerase cannot have any 3´-exonucleolytic proofreading 

activity.  
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Another way of increasing the sensitivity and specificity of PCR is by replacing one of 

the DNA-nucleotides in the primer with a locked nucleic acid (LNA) as seen in figure 6. 

The LNA-base is a nucleic acid analog with a 2´-O, 4´-C methylene bridge that locks the 

ribose moiety into a C3´-endo conformation. Suggested mechanisms for the increased 

specificity LNA-primers have for SNP-alleles, are that LNA-primers bind with higher 

thermal stability to their targets (Kumar et al. 1998) and that they are superior substrates 

for the Taq DNA polymerase (Latorra et al. 2003; Latorra et al. 2003). The slower 

degradation by the 3´→5´ proofreading exonuclease activity of the DNA polymerase can 

also help explain why LNA-primers discriminate better between matched and 

mismatched templates, compared to DNA-primers (Di Giusto et al. 2004).  

 

 
Figure 6. The molecular structure of DNA and LNA.  The LNA-nucleotide have a 2´-O, 4´-C methylene 

bridge that locks the ribose moiety into the C3`-endo conformation. 

 

DNA LNA
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1.5.2 Biased versus unbiased approaches 

Sequencing of PCR products has been the method of choice for detection of mutations in 

BCR-ABL, since the first description of a mutation causing imatinib-resistance (Gorre et 

al. 2001). Several different sequencing approaches have been described, but all 

mutational screening by sequencing have actually been done using a nested PCR 

approach for selective amplification of the BCR-ABL allele. Differences between the 

different strategies comprise the length of the sequenced fragment. There is an increasing 

body of evidence suggesting that, in addition to the main cluster of mutations between 

amino acids 244 and 396, substitutions of a few residues down to position 580 might also 

be involved in causing imatinib resistance (Branford et al. 2006; Hughes et al. 2006). An 

appropriate sequencing strategy for detection of imatinib-resistance associated mutations 

should therefore cover a DNA fragment including at least amino acid residues 244 until 

600.  

 

Though sequencing is conducted BCR-ABL-specific, the procedure is hampered by low 

sensitivity and a high workload. Alternatively, mutations could be detected by denaturing 

high performance liquid chromatography (D-HPLC) elution of PCR products (Deininger 

et al. 2004; Soverini et al. 2004) where mutations appear as additional peaks in the 

chromatogram due to formation of thermally less stable heteroduplices (Premstaller et al. 

2002). Several protocols have been described over the last few years, and this procedure 

has shown to be around 10 times more sensitive than sequencing. However, in case of a 

positive finding, the actual type of mutations has to be confirmed by sequencing. Both 

sequencing and D-HPLC are unbiased approaches, able to identify new mutations as well 

as known mutation located in the area of interest.  

 

Other, more sensitive methods have been developed primarily to increase the sensitivity 

of mutation-detection. Many of these techniques target only known mutations and are 

therefore biased, e.g. they just find what they are looking for. Most of these procedures 

combine the PCR-principle with strategies to selectively increase the detection of the 

mutated allele versus the wild-type allele. Recent examples are as seen in table 1 
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pyrosequencing that detects the light from the reaction cascade after pyrophosphate is 

released during nucleotide incorporation (Ronaghi et al. 1998; Khorashad et al. 2006), 

Double-Gradient-Denaturing-Gradient Gel Electrophoresis (DG-DGGE) where mutations 

are visualized in a double-gradient denaturing gel due to wild-type/mutant heteroduplex 

formation (Sorel et al. 2005), the PCR clamping technique where PNA-binding prevents 

amplification of either the wild-type or the mutated allele (Kreuzer et al. 2003), 

Restriction Fragment Length Polymorphism (RFLP) where an introduced Taq I 

restriction site ensures amplification of mutated sequences only (Liu et al. 2003), and 

variations of ARMS-PCR (Gruber et al. 2005; Willis et al. 2005).  

 
Table 1. Some of the technologies available for identification and quantification of mutations in the 

BCR-ABL kinase domain. A biased technology is designed to only detect specific mutations (Hughes et 

al. 2006).  

Technology Sensitivity Bias 

Direct sequencing 15-25% No 

Subcloning and sequencing 9% No 

Denaturing high performance liquid 

chromatography (D-HPLC) 

0.1-10% No 

Pyrosequencing 5% No 

Double gradient denaturing electrophoresis 5% No 

Fluorescence PCR and PNA clamping 0.2% Yes 

Allele specific oligonucleotide PCR (ASO-PCR) 0.01% Yes 

.  

 

1.6 Basis for quantitative assessment of patient-samples 

Real-time PCR, as described earlier, can be used in quantitative assays. Figure 7 shows a 

typical real-time PCR amplification profile for amplification of a mutated template, using 

a non-discriminating (ND) and a discriminating (D) primer. The template that is perfectly 

hybridized to the D-primer is called the matching template (MAT), and the template that 

is mismatched with the 3´-end of the D-primer is called the mismatching template (MIS). 

The ND-primer does not discriminate between MAT- and MIS-templates, and if the same 
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amount of each template is used, the amplification plots of MAT and MIS will be 

identical. The D-primer will delay the amplification of mismatching templates, because 

the 3´-end mismatch will interfere with primer extension by the DNA polymerase. The 

threshold is defined as the cycle where a threshold level of PCR product is detected. The 

amplification curve of the matching (often the mutated) template can give a measure of 

the sensitivity of the mutation-detection. The earlier this curve appears in the plot, the 

more sensitive the mutation-detection is. This curve, together with the curve of the 

mismatching template, decides the specificity of the mutation-specific approach for 

amplification of the mutated template. The bigger the difference between the 

amplification curves of MAT and MIS is, the greater the specificity is (expressed as ∆Ct) 

(Thomassin et al. 2004).  

 

 
Figure 7. A typical real-time PCR amplification profile.  The amplification of a matching (MAT) and a 

mismatching (MIS) template using a non-discriminating (ND) and a discriminating (D) primer is shown in 

an amplification profile where the logarithm of the fluorescence (amount of PCR product) is plotted as a 

function of the number of cycles. As seen, ND/MAT is identical to ND/MIS because the primer does not 

discriminate between the templates, whereas D/MIS is shifted to the right, giving rise to the ∆Ct between 

MIS and MAT (Thomassin et al. 2004).  



 20

1.7 Future direction of CML-treatment 

The development of new tyrosine kinase-inhibitors will certainly influence the resistance 

field, since early in vitro data indicates that each substance might have its distinct 

mutational resistance profile. There is a clear trend in current papers showing that the 

group of Src/ABL inhibitors is less prone to resistance. Dasatinib and AMN107 seems to 

be resistant to only a few mutations, and if a combination of imatinib and dasatinib is 

used, only the important T315I-substitution will be able to make resistant clones (Burgess 

et al. 2005). These data are at present only based on in vitro experiments and will have to 

be confirmed in clinical studies, but combination-treatment has already been pronounced 

as the future treatment of CML (Burgess et al. 2005; O'Hare et al. 2005).  

 

In this scenario, much of the workload and costs actually spent on mutational screening 

should rather be spent on strategies to increase the detection of the T315I-mutation, since 

the other described clones will probably not appear during combination-treatment. 

Several groups have recently identified a third generation of drugs targeting the T315I 

BCR-ABL isoform (Gumireddy et al. 2005; Young et al. 2006), therefore early detection 

of this mutation would be important for clinical decision making.  
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1.8 Aim of the study 

Examples of biased mutation-detection have been published before, as described in table 

1 (Hughes et al. 2006). In particular, assays based on the use of primer-sets manipulated 

with mismatching mutations have shown to selectively detect mutated templates (Gruber 

et al. 2005; Willis et al. 2005). In those experiments, weak mismatches located 2 to 3 

nucleotides from the 3´-end of the primer conferred maximal sensitivity and selectivity 

(Gruber et al. 2005). However, the described assay is based on TaqMan chemistry, 

allowing template fragment length of up to 150 base pairs. In the case of T315I, the target 

mutation is located more than 800 bp from the BCR-ABL breakpoint, meaning that the 

TaqMan-based assay could not be designed for specific amplification of BCR-ABL 

templates. In this project, the primary aim was to design a sensitive, biased assay for 

detection of the T315I-associated mutation of the BCR-ABL allele. Therefore, we tried to 

expand the described ARMS-assay (Gruber et al. 2005) to a selectively BCR-ABL 

targeting assay. In addition to the ARMS-principle, LNA-nucleotides were also used in 

order to increase the selectivity of mutation-specific primers. As illustrated in figure 8, 

the following approaches were tested:  

• The use of long PCR assays, which render the targeted mutation-detection 

BCR-ABL-specific.  

• Different Master Mixes for detection of the amplification during the PCR 

(SYBR Green, FullVelocity).  

• Different approaches of primer-manipulation to increase the amplification 

of mutated alleles.  

• The use of a pre-amplification step in combination with targeted detection.  

 

According to our hypothesis, the application of the described techniques would increase 

the detection of the targeted mutation. To test the hypothesis, appropriate dilutions of 

plasmids were used, and in addition, the experiences from the plasmid system were 

directly transferred into a patient test for detection of the T315I BCR-ABL isoform.  
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2 Materials  

 
Table 2. Reagents used in method 3.2 (Amplification of cDNA by PCR). The primers are written in the 5´ 

to 3´ direction.  

Reagents Specifications Producer 

TOPO  TA Cloning kit Catalog no. K4520-01 Invitrogen 

Template cDNA  

BCR-ABL 

From CML-patient - 

Template cDNA T315I  

BCR-ABL 

From CML-patient - 

Template cDNA wild-type 

BCR-ABL  

From plasmid - 

10× PCR Buffer From the kit 

100 mM Tris-HCl (pH 8.3) 

500 mM KCl 

25 mM MgCl2  

0,01 % gelatine 

Invitrogen 

50 mM dNTP mix From the kit 

12,5 mM of each nucleotide (pH 8.0) 

Invitrogen 

Primer BCR(13)-F TGTGAAACTCCAGACTGTCCACA Eurogentec 

Primer A7- AGACGTCGGACTTGATGGAGAACT Eurogentec 

Sterile water From the kit Invitrogen 

HotStarTaqTM  

DNA Polymerase  

5 U/µl QIAgen 
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Table 3 Reagents used in method 3.3 (Gel electrophoresis) 

Reagents Specifications Producer 

SeaKem  LE Agarose Product number 50005 MedProbe 

1× TBE buffer 108 g Tris base 

55 g boric acid 

40 ml 0.5 M EDTA (pH 8.0) 

Sterile water adjusted to a volume of 10 l  

- 

Ethidium bromide 10 mg/ml Sigma 

6× loading buffer 0.25 % bromophenol blue 

0.25 % xylene cyanol FF 

40 % sucrose in H2O 

1 ml 1M Tris-HCl (pH 8.0) 

- 

100 bp DNA Ladder Cat. no. 15628-019 (figure 10A) Invitrogen 

1 kb DNA Ladder Cat. no. 15615-016 (figure 10B) Invitrogen 

1 kb Plus DNA Ladder Cat. no. 10787-018 (figure 10C) Invitrogen 

 

Table 4. Reagents used in method 3.4 (Cloning) 

Reagents Specifications Producer 

Salt solution 1.2 M NaCl,  

0.06 M MgCl2 

Invitrogen 

pCR2.1-TOPO vector 10 ng/µl plasmid DNA in buffer Invitrogen 
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Table 5. Reagents used in method 3.5 (Transformation) 

Reagents Specifications Producer 

One Shot DH5αTM-T1 

competent E. coli cells 

From the cloning kit Invitrogen 

SOC medium 2 % Tryptone 

0.5 % Yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2   

10 mM MgSO4  

20 mM glucose  

Invitrogen 

LB+ medium with  

50 mg/ml ampicillin  

Per 1000 ml: 

10 g tryptone 

5 g Yeast extract 

10 g NaCl  

1.1 g Glucose  

50 mg/ml ampicillin 

Adjust pH to 7.0 with 5 N NaOH  

Sterile water adjusted to a volume at 1 l 

- 

X-gal Catalog no. 15520-034 Invitrogen 

 
Table 6. Reagents used in method 3.6 (Isolation of plasmids) 

Reagents Specifications Producer 

QIAprep Spin Miniprep kit Catalog no. 27106 QIAgen 

Buffer P1 Resuspension buffer QIAgen 

Buffer P2 Lysis buffer QIAgen 

Buffer N3 Neutralizing buffer QIAgen 

Buffer PE Washing buffer QIAgen 

Buffer EB Elution buffer QIAgen 
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Table 7. Reagents used in method 3.8 (Sequencing PCR). The primers are written in the 5´ to 3´ direction. 

Reagents Specifications Producer 

BigDye Terminator v3.1 

Cycle Sequencing Kit 

Part number 4337455 Applied 

Biosystems 

BigDye  Terminator v3.1 

5× Sequencing Buffer 

From the kit Applied 

Biosystems 

Terminator Ready Reaction 

Mix (BigDye v3.1) 

From the kit Applied 

Biosystems 

Primer M13F  GTAAAACGACGGCCAG Eurogentec 

Primer M13R CAGGAAACAGCTATGAC Eurogentec 

Primer AN4+ TGGTTCATCATCATTCAACGGTGG Eurogentec 

 
Table 8. Reagents used in method 3.9 (Linearization) 

Reagents Specifications Producer 

BamHI 20 000 U/ml 

Catalog number R01365 

New England 

BioLabs 

10× NEBuffer for BamHI 1× NEBuffer (pH 7.9) contains: 

10 mM Tris-HCl  

150 mM NaCl 

10 mM MgCl2 

1 mM dithiothreitol  

New England 

BioLabs 

100× BSA 100 µg/ml New England 

BioLabs 

HindIII 20 000 U/ml 

Catalog number R0104S 

New England 

BioLabs 

NEBuffer 2 1× NEBuffer 2 (pH 7.9) contains: 

10 mM Tris-HCl 

50 mM NaCl 

10 mM MgCl2 

1 mM dithiothreitol  

New England 

BioLabs 

 



 26

Table 9. Reagents used in method 3.10 (Purification of plasmids) 

Reagents Specifications Producer                       

GFX PCR DNA and Gel 

Band Purification Kit  

Product code 27-9602-01 Amersham Biosciences 

Capture buffer From the kit Amersham Biosciences 

Wash buffer From the kit Amersham Biosciences 

Elution buffer From the kit Amersham Biosciences 

 
Table 10. Reagents used in method 3.11 (Standard curves). The primers are written in the 5´ to 3´ 

direction. 

Reagents Specifications 
A/T/C/G: Mismatch 

Producer 

TaqMan Universal 

PCR Master Mix 

With ApliTaq Gold DNA Polymerase 

Part number 4304437 

Applied Biosystems 

Probe 315 pro ACCCTAACCTAGTGCAGCTCCTT Eurogentec 

Primer 315 F TGCAGTCATGAAAGAGATCAAA Eurogentec 

Primer A315 mut TCCCGTAGGTCATGAATTCAA Eurogentec 

Primer T315I ND CCGTAGGTCATGAACTCA Eurogentec 

 

 
Table 11. Reagents used in method 3.12 (Detection of mutated BCR-ABL). The primers are written in the 

5´ to 3´ direction. 

Reagents Specifications  

A/T/C/G: LNA nucleotide 

A/T/C/G: Mismatch 

Producer 

TaqMan Universal PCR 
Master Mix 

With ApliTaq Gold DNA Polymerase 

Part number 4304437 

Applied 

Biosystems 

2× Brilliant SYBR 

Green QPCR Master Mix 

Includes SureStart Taq DNA polymerase 

and SYBR Green I dye 

Stratagene 

2× FullVelocity QPCR 

Master Mix 

Contains an optimized PCR buffer, MgCl2, 

nucleotides and stabilizers. 

Stratagene 
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HotStarTaqTM DNA 

Polymerase  

5 U/µl QIAgen 

10× PCR Buffer 200 mM Tris-HCl (pH 8.4) 

500 mM KCl 

15 mM MgCl2 

Invitrogen 

50 mM dNTP mix 12.5 mM of each nucleotide (pH 8.0) Invitrogen 

FullVelocity enzyme 2.5 U/µl Stratagene 

Template BCR-ABL  Plasmid derived from method 3.1-3.9 - 

Template T315I BCR-

ABL  

Plasmid derived from method 3.1-3.9  - 

Template RG04 Shorter BCR-ABL plasmid with exon 1-6 of 

BCR and exon 2-7 of ABL 

- 

Template cDNA BCR-

ABL 

From CML-patients  -  

Probe 315 pro ACCCTAACCTAGTGCAGCTCCTT Eurogentec 

Probe ABL 2 pro CCCTTCAGCGGCCAGTAGCATCTGA Eurogentec 

Primer BCR(13)-F TGTGGAAACTCCAGACTGTCCACA Eurogentec 

Primer BCR13F TCCGCTGACCATCAAYAAGGA Eurogentec 

Primer A7- AGACGTCGGACTTGATGGAGAACT Eurogentec 

Primer T315I mut TCCCGTAGGTCATGAACTCAA Eurogentec 

Primer T315I ND CCGTAGGTCATGAACTCA  Eurogentec 

Primer A315 mut TCCCGTAGGTCATGAATTCAA Eurogentec 

Primer ABL-R CACTCAGACCCTGAGGCTCAA Eurogentec 

Primer T315I-1R CGTAGGTCATGAACTCAA Eurogentec 

Primer T315I-2R CGTAGGTCATGAACTCAA Eurogentec 

Primer T315I-3R CGTAGGTCATGAACTCAA Eurogentec 

Primer T315I-xR CGTAGGTCATGAACTCAA Eurogentec 

Primer T315I-1xR CGTAGGTCATGAACTCGA Eurogentec 

Primer T315I-2xR CGTAGGTCATGAACTTAA Eurogentec 

Primer T315I-3xR CGTAGGTCATGAACCCAA Eurogentec 



 28

Primer T315I-4xR CTGAGGTCATGAATTCAA Eurogentec 

Primer G250E-xR ACCTCCCCGTACTGGCCCT  Eurogentec 

Primer Y253H-xR CCTCGTACACCTCCCCGTG Eurogentec 

Primer Q252Hc-xR CTCGTACACCTCCCCGTAG Eurogentec 
Primer M351T-xR TTTCTTCTCCAGGTACTCCG Eurogentec 

Primer E255K-xR ACACGCCCTCGTACACCTT Eurogentec 
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3 Methods 
 

 
Figure 8: The study procedures. 

Make templates for PCR analysis 
 
Procedure:    Verify by: 
 - Amplification     - Gel electrophoresis 
 - Cloning and transforming   - Sequencing 
 - Linearizing     - Gel electrophoresis 

Single-step PCR for detection of the T315I-mutation 
 

a) BCR-ABL non-specific assay (TaqMan) vs. 
BCR-ABL-specific assay (SYBR Green) 

b) Primer evaluation:  
 - ND-primer 
- ARMS-primer 
 - LNA-primers 
 - ARMS/LNA-primers 

c) Master Mix evaluation:  
 - TaqMan  
 - SYBR Green  
 - FullVelocity  

Nested PCR for detection of the T315I-mutation 
 

a) BCR-ABL non-specific assay (TaqMan) vs. BCR-ABL-specific 
assay (SYBR Green) 

b) PCR conditions:  
 - DNA concentration and number of cycles in the first PCR
- DNA concentration in the second PCR 

c) Primer evaluation 
 - ND-primer 
 - ARMS-primer 
 - LNA- primers 
 - ARMS/LNA-primers 

d) Master Mix evaluation 
 - TaqMan 
 - SYBR Green 

Plasmids containing wild-
type and mutated BCR-
ABL sequences 

Plasmids 
containing wild-
type and mutated 
BCR-ABL 
sequences 

Patient -
samples 

Patient-
samples

Design a 
patient-test 
for T315I 

Translate the patient-test to other mutations 
 
Use the best primer combination, Master Mix and 
PCR conditions from the patient-test for T315I for 
other mutations 

Mixtures of long and 
short templates 
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3.1 Primers used for detection of the T315I-associated mutation 

Figure 9 gives an overview of primers and probes used for detection of the T315I-

mutation. The primer BCR(13)-F was used in combination with A7- for cloning of the 

plasmids containing wild-type sequences and the mutation coding for T315I. A recently 

published article described an ARMS-based TaqMan assay for detection of the T315I-

mutation (Gruber et al. 2005), where the primer 315F was used in combination with the 

probe 315pro and A315 mut. In this study, the ARMS-assay was compared with several 

other primer combinations, using mutation-specific primers destabilized by incorporation 

of ARMS- and LNA-nucleotides (T315I-xR, -1R, -2R, -3R, -1xR, -2xR, -3xR and -4xR). 

These primers were used both in a TaqMan-based assay together with the 315F-primer 

and 315pro, amplifying templates of 101 bp, and in a SYBR Green assay in combination 

with the primer BCR(13)-F, amplifying BCR-ABL-specific templates of 882 bp.  

T

T315I-ND
A315mut
T315I-xR

T315I-1R

BCR(13)F

A7-

T315I-2R
T315I-3R

315F
315 PRO

T315I-1xR
T315I-2xR
T315I-3xR
T315I-4xR

1293 bases

882 bases

101 bases

BCR ABL

Figure 9: Primers used in the experiments. The figure shows the BCR-ABL allele, the primers used in 

the study, the relative positions where the primers anneal, and the length of the amplified templates. The 

LNA-nucleotides in the reverse primers are marked with white boxes, while the additional mismatches in 

the ARMS-primers are marked with grey boxes. The primers BCR(13)-F and A7- were used for cloning of 

the plasmids with wild-type and T315I-mutated sequences, creating templates of 1293 bp. The primer 315F 

and the probe 315pro were used in combination with the ARMS- and LNA-primers in TaqMan-based 

assays, creating templates of 101 bases. The primer BCR(13)-F was used together with the ARMS- and 

LNA-primers in BCR-ABL-specific SYBR Green based assays, creating templates of 882 bp.  
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3.2 Amplification of complementary DNA by PCR 

The cDNA containing the gene to be cloned had to be amplified before recombination. 

This was done by using the TOPO  TA Cloning kit from Invitrogen, including a 

HotStarTaqTM DNA Polymerase with terminal transferase activity that adds a 

deoxyadenosine to the 3´-ends of PCR products to create 3´-A overhangs in the PCR 

product (Invitrogen 2005). In addition to patient-samples with wild-type and mutated 

BCR-ABL, a plasmid containing wild-type sequences was also amplified as a control.  

 

PCR reaction: 

cDNA template (10-100 ng)       2 µl 

10× PCR buffer        5 µl 

50 mM dNTPs      0.5 µl 

Primers BCR(13)-F and A7-           5 µl (100 ng) of each 

Sterile water         to a final volume of 49 µl  

HotStarTaqTM DNA Polymerase      1 µl 

Total volume       50 µl 

 

PCR conditions: 

• Initial denaturing at 94°C for 15 minutes to activate the polymerase 

• 2 cycles of: Denaturing at 94°C for 1 minute 

Annealing at 50°C for 30 seconds  

Extension at 72°C for 30 seconds 

• 43 cycles of: Denaturing at 94°C for 1 minute 

Annealing at 60°C for 30 seconds 

Extension at 72°C for 30 seconds 

• Final extension at 72°C for 7 minutes 

• 4°C ∞ 
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3.3 Gel electrophoresis 

To verify that the PCR was successful, a gel electrophoresis was done. This method 

separates, identifies and purifies DNA-fragments on the basis of physical properties that 

influence how rapidly an electric current move them through the pores of a gel matrix. 

Small, charged molecules move more easily through the gel, and migrate longer towards 

the positive pole than larger ones. By applying a loading buffer in the samples, the 

migration can be followed on the gel. Ethidium bromide incorporated in the gel binds to 

the DNA-fragments, and fluorize when exposed to ultraviolet light. The size of the DNA-

fragments can be determined by comparing them to DNA-ladders with fragments of 

known size (figure 10).  

 

 

          
Figure 10: The DNA Ladders used in the experiments. A) The 100 bp DNA Ladder; B) The 1 Kb DNA 

Ladder; C) The 1 Kb Plus DNA Ladder. All the ladders were from Invitrogen (Invitrogen 2006).  

 

A) B) C) 
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Preparation of a 0.7 percent agarose gel: 

1. 0.7 g of agarose was dissolved in 100 ml 1× TBE buffer, by boiling in a 

microwave oven.  

2. The solution was cooled a few minutes, and 10 µl ethidium bromide (10 mg/ml) 

was added.  

3. The solution was poured into a gel rack, and allowed to polymerize further for 30 

minutes.  

4. The gel was placed in a chamber filled with 1× TBE, and a DNA ladder and the 

samples were added.   

5. The electrophoresis ran for 30 minutes at 90 V.  

 

DNA bands were visualized in the gel by the use of a UV lamp, and a picture was taken. 

When necessary, the bands of the correct size was cut out from the gel and purified with a 

gel band purification kit.  

 

3.4 Cloning of the PCR product into a pCR2.1-TOPO vector 

The Taq polymerase-amplified PCR products of the two patient-samples were cloned into 

the plasmid vector pCR2.1-TOPO, seen in figure 11. The vector contains genes for 

ampicillin and kanamycin resistance that make it possible to select for transformed 

bacteria. The M13 primer site in the LacZα fragment makes it easy to sequence inserts. 

The linear vector contains a 3´-T overhang complementary to the 3´-A overhang of the 

Taq-amplified PCR product which allows PCR inserts to ligate efficiently with the vector 

(Invitrogen 2005). The energy from the broken phosphodiester backbone is conserved by 

a reversible covalent binding of the enzyme Topoisomerase I.  
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Figure 11. The pCR2.1-TOPO vector from Invitrogen (Invitrogen 2005). 

 

The cloning reaction: 

PCR product  4 µl 

Salt solution  1 µl 

TOPO vector  1 µl 

Total volume  6 µl 

 

The reaction was set up, mixed and incubated at room temperature for 5 minutes, then 

placed on ice until transformation.  
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3.5 Transformation of the pCR2.1-TOPO construct into bacterial cells 

To be able to produce large quantities of the plasmid, it was transformed into One Shot 

DH5αTM-T1 competent Escherichia coli cells with high transformation efficiency. By 

using the chromogenic substrate X-gal, colonies with the insert could be separated from 

colonies without an insert by blue-white screening. Insertion of foreign DNA inactivates 

α-complementation, the formation of a functional β-galactosidase that cleaves X-gal, and 

produces a stable blue compound (Sambrook et al. 2001). The blue colonies of vectors 

without the insert are easily recognizable from the white colonies with vectors containing 

the insert.  

 

Transformation reaction: 

1. 2 µl of the TOPO cloning reaction was added to a tube with One Shot 

DH5αTM-T1 competent E. coli cells from Invitrogen, and mixed gently. 

2. The reaction was incubated on ice for 5 to 30 minutes. 

3. The cells were heat-shocked for 30 seconds at 42°C without shaking. 

4. The tubes were immediately transferred to ice. 

5. 250 µl of room tempered S.O.C. medium was added.  

6. The tubes were capped and shaken horizontally at 200 rpm and 37°C for 1 hour. 

7. 10 to 50 µl from each transformation was spread on preheated selective plates 

with 50 mg/ml ampicillin and 40 µl X-gal, and incubated overnight at 37°C.  

8. Plates with colonies were stored at 4°C.  

 

3.6 Isolating the plasmids using QIAprep Spin Miniprep kit from 

QIAGEN: 

The procedure is based on lysis of bacterial cells under alkaline conditions in NaOH/SDS 

(Buffer P2), leading to opening of the cell wall, denaturing and release of the cell 

contents. Optimal lysis time is important to allow maximum release of plasmid DNA, 

without release of chromosomal DNA. Addition of Buffer N3 neutralizes the lysate, and 
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adjusts it to high-salt binding conditions. Chromosomal DNA, denatured proteins, SDS 

and cellular debris will precipitate, and leave only plasmid DNA in solution to adsorb to 

the membrane of the QIAgen columns. The final step in the procedure is washing with 

Buffer PE, and elution of plasmid DNA with Buffer EB.  

 

1. Four white colonies from the two agar plates were transferred to a Falcon tube 

each (A, B, C and D), containing 2 ml LB-medium with 50 mg/ml ampicillin, and 

incubated overnight at 37°C.  

2. 1.5 ml of the overnight culture was centrifuged for 30 seconds at 12000 rpm in a 

MiniSpin microcentrifuge from Eppendorf.  

3. The supernatant was removed and the bacterial cells were resuspended in 250 µl 

Buffer P1. 

4. 250 µl Buffer P2 was added and the tube was gently inverted 4 to 6 times to mix, 

then left for 2 to 5 minutes in room temperature.  

5. 350 µl Buffer N3 was added, and the tube was inverted immediately 4 to 6 times. 

6. The tube was centrifuged for 10 minutes at 13000 rpm and the supernatant 

transferred to a QIAprep spin column. 

7. The tube was centrifuged for 30 to 60 seconds at 13000 rpm, and the flow-through 

discarded.  

8. The column was washed by adding 0.75 ml Buffer PE, and centrifuged for 30 to 

60 seconds at 13000 rpm. 

9. The flow-through was discarded, and the tube centrifuged for 1 minute at 13000 

rpm to remove residual wash buffer. 

10. The column was placed in a clean 1.5 ml microcentrifuge tube. 50 µl Buffer EB 

was added to the centre of the column, incubated for 1 minute, and then 

centrifuged 1 minute at 13000 rpm.  

11. The eluted DNA was kept on ice until further use.  
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3.7 Determining the DNA copy number 

The DNA content or copy number of the plasmids was determined by measuring their 

absorbance at 260 nm with the NanoDrop® ND-1000 Spectrophotometer from NanoDrop 

Technologies. An absorbance of 1 at 260 nm equals a concentration of dsDNA of 

approximately 50 µg/ml (Sambrook et al. 2001).  

1) The sample pedestals were cleaned with water. 

2) A water sample was loaded onto the lower pedestal and by pressing �start�, the 

measuring initiated.   

3) 1 µl of water was measured as a blank. 

4) 1 µl of the sample was pipetted onto the lower measurement pedestal, the 

sampling arm was closed, and the sample measured.  

5) The upper and lower pedestals were wiped with a soft laboratory wipe between 

each measuring to remove the last sample.  

6) The number of copies of DNA per µl was then calculated by the formula:  

Copies/µl = OD260   × 5.302×1013 

    bp 

OD260 is the absorbance measured at 260 nm, bp is the number of base pairs in 

the template, and the number 5.302×1013 is a factor derived from the molecular 

mass of an average base pair, the concentration of the template from the OD260-

measurement, and the Avogadro constant (Fronhoffs et al. 2002).  

 

A stock solution of 1×108 copies/µl was made using the formula:  

C0 ×V0 = C1 × V1 

C0 is the measured concentration, V0 is the start volume, C1 is the wanted concentration 

and V1 is the volume after the dilution.  
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3.8 Sequencing  

To verify that the plasmids were correct, their nucleotide sequence was determined by 

PCR-sequencing. This method uses both regular deoxynucleotides (dNTPs) and a small 

proportion of fluorescent dideoxynucleotides (ddNTPs) labelled with fluorescent dyes. 

When a ddNTP is incorporated, the DNA replication is terminated because the absence of 

a 3´-OH group prevents the formation of a phosphodiester bond. The incorporation of a 

ddNTP can occur at any position in the template strand, and with several cycles there will 

be fragments of all possible lengths of the plasmid (Sambrook et al. 2001). The 

sequencing lab at the University separates the fragments by length, and determines the 

DNA sequence by measuring the fluorescent colour from the ddNTPs using a 3130xl 

Genetic Analyzer from Applied Biosystems.   

 

Sequencing PCR:  

 5x sequencing buffer   4.0 µl 

 Premix (Big Dye v3.1)  2.0 µl 

 Primer (M13F, M13R and AN4+) 3.4 µl 

 Purified template (45 ng)  1.0 � 1.5 µl 

 Sterile water    9.1 � 9.6 µl 

 Total volume    20.0 µl 

 

PCR conditions: 

• Initial denaturing at 95°C for 15 minutes to activate the polymerase 

• 25 cycles of:  Denaturing at 95°C for 10 seconds 

Annealing at 50°C for 5 seconds 

Extension at 60°C for 4 minutes 

• Final extension at 60°C for 4 minutes 

• 4°C ∞ 
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3.9 Linearization with BamHI and HindIII 

Because PCR analysis of linear templates is more efficient than using circular templates, 

the plasmids were digested with the two restriction enzymes HindIII and BamHI. After 

restriction, the results were confirmed on an agarose gel.  

 

1. The two reaction mixtures: 

A. Sterile water     41.0 µl 

  NEBuffer for BamHI      5.0 µl 

  Bovine serum albumine (BSA)    0.5 µl 

  BamH1         0.5 µl 

  Circular template DNA (1×108 copies/µl)   3.0 µl 

  Total volume     50.0 µl 

B. Sterile water     41.5 µl 

  1× NEBuffer 2      5.0 µl 

  HindIII       0.5 µl 

  Circular template DNA (1×108 copies/µl)   3.0 µl 

Total volume     50.0 µl 

2. The mixtures were incubated one hour at 37°C. 

3. An agarose gel was made as describes in method 3.2, but with 1.6 g agarose in the 

first step, giving a final concentration of 1.6%. The samples run for 60 minutes at 

90 V.  
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3.10 Purification of plasmids  

The plasmids on the gel that were cut with HindIII were purified with GFX PCR DNA 

and Gel Band Purification Kit from Amersham Biosciences following the protocol 

(Amersham Biosciences 2004): 

1. An empty 1.5 ml microcentrifuge tube was weighed to the nearest 10 mg. 

2. The agarose containing the DNA band to be purified was cut out, cut into several 

smaller pieces, and then transferred to the pre-weighted microcentrifuge tube. 

3. The tube with the agarose was weighed to the nearest 10 mg, and the weight of 

the empty tube subtracted.  

4. 10 µl of capture buffer was added for each 10 mg gel.  

5. The tube was closed and then mixed by vortexing. It was incubated at 60°C until 

the agarose was completely dissolved (5 to 15 minutes).  

6. The tube was centrifuged in a MiniSpin microcentrifuge from Eppendorf to 

collect the sample at the bottom of the tube. 

7. The sample was transferred to a GFX column in a collection tube, and incubated 

at room temperature for 1 minute before 30 seconds of centrifuging at full speed. 

8. The flow-through was discarded, and the column placed back in the tube. 

9. 500 µl of wash buffer was added, and the tubes centrifuged for 30 seconds.  

10. The collection tube was discarded, and the column transferred to a clean 1.5 ml 

microcentrifuge tube.  

11. 50 µl of elution buffer was applied, and then incubated at room temperature for 1 

minute before centrifuging at full speed for 1 minute. 

 

After elution, the DNA copy number of the plasmids was determined by NanoDrop as 

described in method 3.7, and a stock solution of 1×108 copies/µl of each plasmid was 

made and aliquoted in smaller bathes stored at -20°C. Before each analysis, a new batch 

was thawed and diluted 10-fold in sterile water to the proper concentration.  
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3.11 Standard curves 

To see if the PCR was efficient, and in case quantification of unknown samples was to be 

done later, standard curves were made. The T315I BCR-ABL plasmid was analyzed by 

single step real-time PCR with TaqMan Master Mix in a series of 10-fold dilutions from 

1×106 to 1×101 copies/µl with 315F, 315 pro and A315 mut as discriminating primer and 

T315I ND as non-discriminating primer.  

 

The reaction setup:  

TaqMan Universal PCR Master Mix   12.5 µl  

Primers 315F and A315 mut or T315I ND (2 µM)   2.5 µl of each 

Probe 315 pro (2 µM)       2.5 µl  

Sterile water             to 23.0 µl  
Template DNA (dilution series)     2.0 µl  
Total volume      25.0 µl  

 

After filling the vessels and closing the plate with the appropriate caps or foil, the plate 

was centrifuged for about 1 minute at 4000 rpm in the 5810R centrifuge from Eppendorf. 

The analysis was performed on an ABI Prism® 7900HT Fast Real-Time System from 

Applied Biosystems.  

 

PCR conditions: 

• 50°C for 2 minutes 

• 95°C for 10 minutes 

• 40-45 cycles of:  95°C for 15 seconds 

60°C for 1 minute 

 



 42

3.12 Detection of mutations in BCR-ABL  

 

3.12.1 Single step real-time PCR  

The real-time PCR system is based upon detection and quantification of a fluorescent 

reporter that increases proportionally to the total nucleic acid concentration. The 

fluorescent reporter can be in the form of a TaqMan hydrolysis probe that anneal to an 

internal sequence within the DNA fragment. As the Taq DNA polymerase replicates the 

template, its 5´ → 3´ exonuclease activity cleaves the probe, separates the fluorophore on 

the 5´ end from the quencher on the 3´ end, and fluorescence is released (Stratagene 

2002; Logan et al. 2004). One can also use SYBR Green, a fluorescent dye that 

specifically binds the minor groove of double stranded DNA (dsDNA). The binding 

triggers a conformational change that results in greatly increased fluorescence, and 

accumulated PCR product can be detected at the end of each elongation step in the PCR. 

Since the dye binds all dsDNA and there are no target-specific probes, the specificity of 

the reaction is determined only by the specificity of the primers (Logan et al. 2004; 

Stratagene 2004).  

 

• The wild-type and the mutated plasmids were diluted tenfold in sterile water to a 

concentration of 105 copies/µl and analyzed by single-step real-time PCR.  

• The reactions were set up the same way as in method 3.11.  

• The following reverse primers were used:  

o T315I-ND  

o The ARMS-primer A315 mut  

o The LNA-primers T315I-xR, -1R, -2R and -3R  

o The ARMS/LNA-primers T315I-1xR, -2xR, -3xR and -4xR.  

• When using the TaqMan Universal PCR Master Mix, the primer 315F, which 

anneals to the ABL-part of the template and creates short amplicons, and the 

probe 315 pro was used, and the analysis was performed on the ABI Prism® 
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7900HT Fast Real-Time System from Applied Biosystems with the same PCR-

conditions that were used in method 3.11. 

• When using the 2×Brilliant® SYBR® Green QPCR Master Mix, the BCR(13)-F 

primer that anneals to the BCR-part of the template and creates long BCR-ABL-

specific amplicons was used. No probe was added, and the amount of water was 

adjusted accordingly. The analysis was performed on the Mx3000P® QPCR 

System from Stratagene.  

 

Temperature profile SYBR Green: 

• Initial denaturing at 95°C for 10 minutes 

• 40-50 cycles of:  Denaturing at 95°C for 30 seconds 

Annealing at 55°C for 1 minute  

Extension at 72°C for 30 seconds 

• 1 cycle of:   Denaturing at 95°C for 1 minute 

Annealing at 55°C for 30 seconds 

Extension at 95°C for 30 seconds 

 

3.12.2 FullVelocity PCR  

The FullVelocity technology from Stratagene uses a DNA polymerase that allows for 

shorter PCR-steps and that tolerates temperature changes better than the Taq DNA 

polymerase. This makes it possible to reduce the amplification-time considerably 

(Stratagene 2004). The reaction was set up similar to method 3.10, with the 2× 

FullVelocityTM QPCR Master Mix and 0.5 µl FullVelocityTM enzyme per vessel, and run 

on an ABI Prism® 7900HT Fast Real-Time System from Applied Biosystems.   

 

Primer/probe combinations: 

1. BCR13F , ABL-R and ABL 2 pro  

2. BCR(13)-F, T315I-ND and 315 pro  

3. BCR(13)-F, A315 mut and 315 pro 
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PCR temperature profiles:  

A. The conventional profile as used in method 3.11 (TaqMan).   

B. Fast PCR program: 95°C for 5 minutes, then 40 cycles of 95°C for 10 seconds and 

60°C for 30 seconds.  

C. Very fast PCR program: 95°C for 2 minutes, then 40 cycles of 95°C for 1 second 

and 60°C for 20 seconds.  

 

3.12.3 Template mixtures  

To make a more complex mixture, the T315I BCR-ABL template was mixed with a 

shorter BCR-ABL template (RG04) that only contained exon 1 to 6 of BCR and exon 2 to 

7 of ABL. Since RG04 lacked the exon where the primer BCR(13)-F bound in the long 

assay, the amplification would be further specific towards the T315I BCR-ABL template.  

 

• The shorter BCR-ABL template RG04 was OD-measured and diluted to 5×108 as 

in method 3.7, then further diluted to 5×107 copies/µl.  

• 10 µl of the T315I-template (1×108 copies/µl) was diluted in 90 µl of the RG04-

template (5×107 copies/µl), and the mixture was further diluted 10-fold in the 

RG04-template, to a concentration of 1×101 copies/µl of the T315I-template.  

• The dilution series of the mixture were analyzed by real-time PCR, as in method 

3.12.1.   

• Primer/probe combinations:  

o SYBR Green: BCR(13)-F, A315 mut, T315I-1R and T315I-2R (long, 

BCR-ABL-specific amplicons) 

o TaqMan: 315F, 315 pro, A315 mut, T315I-1R and T315I-2R (short, BCR-

ABL non-specific amplicons) 

• The SYBR Green assay was used with the same PCR-conditions as in method 

3.12.1.  

• Temperature profile TaqMan: 

o Initial denaturing at 95°C for 10 minutes 
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o 40-50 cycles of:  Denaturing at 95°C for 30 seconds 

Annealing at 60°C for 1 minute  

Extension at 72°C for 30 seconds 

 

3.12.4 Nested PCR  

To improve the sensitivity of the detection of the T315I mutation, a nested approach was 

used. The first PCR amplified the BCR-ABL templates, before the mutation specific PCR 

was done. Several different setups were done to find the optimal template concentration 

and number of cycles in the first PCR.  

 

First PCR: 

 10× PCR buffer        5 µl 

 2 mM dNTP-mix      5 µl 

 2 µM Primers (BCR(13)-F and A7-)     5 µl of each 

 Template (1×104-5 copies/µl)      5 µl 

 Sterile water                   24.5 µl 

 HotStarTaqTM DNA polymerase           0.5 µl 

 Total volume                         50 µl 

 

PCR conditions:  

• Initial denaturing at 95°C for 10 minutes 

• 2 cycles of:   Denaturing at 94°C for 1 minute  

Annealing at 50°C for 30 seconds 

Extension at 72°C for 30 seconds 

• 18-38 cycles of:  Denaturing at 94°C for 1 minute 

Annealing at 60°C for 30 seconds 

Extension at 72°C for 30 seconds 

• Final extension at 72°C for 7 minutes 

• 4°C ∞  
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Some of the PCR product was analysed by gel electrophoresis as in method 3.3, while the 

rest was purified as in method 3.6. The DNA copy number was determined by NanoDrop, 

and the plasmids diluted as in method 3.7. The plasmids were then analyzed by real-time 

PCR with TaqMan and SYBR Green I chemistry as in method 3.12.1.  

 

3.12.5 Creating a patient-test for detection of the T315I-mutation 

Since mutation-detection in patient-samples can be different than in plasmids, several 

samples from CML-patients containing wild-type and T315I BCR-ABL were analysed by 

some of the earlier used methods. In the single-step procedures, both the TaqMan and the 

SYBR Green Master Mix were used, with primers creating short and long amplicons, 

respectively. In the nested approach, only the SYBR Green Master Mix was used, due to 

the results from the plasmids, where this Master Mix combined with primers creating 

long BCR-ABL-specific amplicons seemed to give the greatest sensitivity and specificity.  

 

The single-step procedure (as in method 3.12.1):  

• Two different samples, one with wild-type BCR-ABL and one with T315I BCR-

ABL were analysed undiluted, with the same primer pairs as in method 3.12.1.  

 

The nested SYBR Green procedure (as in method 3.12.4):  

• Three patient-samples containing T315I BCR-ABL and one containing wild-type 

BCR-ABL were used in this nested approach.  

• Dilution of the samples to 100%, 10%, 1% and 0.1% BCR-ABL before the first 

PCR indicated that the undiluted samples gave best results.  

• The number of cycles in the first PCR was varied from 20 to 40, and 40 cycles 

seemed to give the best results.  

• After gel electrophoresis and purification of the PCR product, it was diluted to a 

concentrations of 1×107 templates/µl. The second PCR was performed with 

SYBR Green master mix and the primers BCR(13)-F, A315 mut, T315I-xR, -1R, 
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-2R and -3R. The primers with combined LNA- and ARMS-technology were 

excluded because of the poor sensitivity shown in earlier tests.   

 

3.12.6 Translating the patient-test to other mutations than T315I 

To see if the results derived from detection of the T315I-mutation in patient-samples 

could be used for detection of other mutations, samples from CML-patients with different 

mutations were analyzed in a nested approach like in method 3.12.4. As in method 

3.12.5, using undiluted samples and 40 cycles in the first PCR gave the best results.  

• The first PCR was carried out with undiluted samples, and with 40 cycles.  

• The first PCR product was analyzed by gel electrophoresis as in method 3.3 and 

purified as in method 3.6, before dilution to 1×107 copies/µl.  

• The second PCR was performed with SYBR Green Master Mix with the primers 

G250E-xR, Q252Hc-xR, Y253H-xR, E255K-xR and M351T-xR.  

• All the primers had a LNA-nucleotide in 3`-position and no additional 

mismatches, because this primer (T315I-xR) gave the greatest sensitivity and 

specificity in method 3.12.5.  
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4 Results 

 

4.1 Amplification of cDNA by PCR and cloning of the PCR product 

In order to obtain templates for PCR cloning of BCR-ABL fragments, cDNA-samples 

from two patients were amplified. Samples from patient A contained wild-type BCR-

ABL sequences, whereas samples B contained BCR-ABL with the C → T mutation 

encoding T315I. As positive control a plasmid containing BCR-ABL was used. The PCR 

products were then analyzed on an agarose gel to confirm that the lengths of the 

fragments were correct. Figure 12 shows that all the samples were amplified, giving 

bands of the expected size, 1293 bp.  

 

 
Figure 12: Gel electrophoresis of the first PCR product confirmed that the correct products of 1293 

bp had been amplified. L) The 100 bp DNA Ladder; 1) sample A with wild-type BCR-ABL; 2) sample B 

with T315I BCR-ABL; 3) positive control, a BCR-ABL plasmid. The PCR primers BCR(13)-F and A7- 

(table 2) were used, creating products of 1293 bp. The PCR products were run for 30 minutes at 90 V on a 

0.7% agarose gel.  

 

After the PCR products were verified by gel electrophoresis, sample 1 (from patient A) 

and 2 (from patient B) were cloned into the pCR®2.1-TOPO® vector by T/A cloning and 

transformed into the bacteria E. coli DH5α. Because the vector contained genes for 

600 bp 

1300 bp 
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ampicillin-resistance, only bacteria with the vector inserted grew on agar plates with 

ampicillin. The use of X-gal made it easy to separate colonies containing vector with 

insert (white) from colonies containing a vector without insert (blue). Four white colonies 

from each of the two plates were picked and cultivated in LB+ medium, then purified by 

the QIAprep Spin Miniprep Kit from QIAGEN. The plasmids were OD-measured at 260 

nm to determine their DNA content (table 12). To confirm that they had the BCR-ABL 

inserts, they were in addition sequenced with M13F, M13R and AN4+ primers. Figure 13 

shows critical parts of the correct sequence of the wild-type and the T315I BCR-ABL 

template.    

 
Table 12: The results from the OD-measuring of the plasmids. Samples 1A - 1D contain the wild-type 

sequence from patient A, and samples 2A - 2D contain the T315I-mutated sequence from patient B.  

Sample Absorption 

at 260 nm 

Content of  

dsDNA (µg/ml) 

Copy count/µl 

1A 0.232 232 8.21×109 

1B 0.208 208 7.36×109 

1C 0.370 370 1.31×1010 

1D 0.388 388 1.37×1010 

2A 0.334 334 1.18×1010 

2B 0.372 372 1.32×1010 

2C 0.376 376 1.33×1010 

2D 0.357 357 1.26×1010 
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Figure 13: Critical parts of the sequence of the BCR-ABL templates. The figure shows the sequence 

where the pCR 2.1 Topo vector goes over into the BCR-ABL insert, the sequence where the BCR(13)-F 

primer binds, a part of BCR exon 13, and the part of exon 6 in ABL where the important C→T substitution 

in base number 1308 can occur, inducing the T315I-mutation. A) Sequences of the wild-type plasmid 1A. 

As seen in the box in the ABL exon 6 sequence, the base 1308C is un-substituted. B) Sequences of the 2A-

plasmid containing the T315I-mutation. Base number 1308 is substituted with a T, as seen in the box in the 

ABL exon 6 sequence, giving rise to the T315I-mutation.  

 

4.2 Linearization of the plasmids with BamHI and HindIII  

The polymerase chain reaction is more efficient when using linear templates rather than 

circular ones, therefore the plasmids made from patient samples A and B had to be 

linearized. The restriction enzymes HindIII and BamHI were used to linearize the 

plasmids. Gel electrophoresis (figure 14) showed that the cutting with HindIII was 

successful, creating one band of approximately the expected size of 4600 bp, while 

BamHI had not cut all of the plasmids. Faster migrating bands below the bands of the 

linear plasmid indicated that some of the plasmids were uncut and perhaps supercoiled.  

 pCR 2.1 
Topo 
vector 

BCR(13)
F 
Primer 
sequence

BCR exon 13 
seq ences

Abl exon 6 
sequences 

pCR 2.1 
Topo 
vector 

BCR(13)F 
Primer 
sequence 

BCR exon 13 sequences 

C >T 

Abl exon 6 
sequences 

A) 

B) 
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Figure 14: The linearization of the plasmids was confirmed with gel electrophoresis. Lane 1 contains 

the 1 kb DNA Ladder. The single bands in lane 2 to 5 represent plasmids cut with HindIII (plasmid 1A, 1B, 

2A and 2B) giving a band of approximately 4600 bp, and the double bands in lane 6 to 9 represent plasmids 

cut with BamHI (plasmid 1A, 1B, 2A and 2B). The faster migrating bands in lane 6 to 9 could be un-cut 

plasmids in supercoils. The linearization products were run on a 1.6 % agarose gel for 60 minutes at 90 V.  

 

The gel-signals derived from PCR products digested with HindIII were cut out and 

purified using the GFX PCR DNA and Gel Band Purification Kit from Amersham 

Biosciences. The resulting batch of linearized plasmid was again measured for OD260 

and the copy number was calculated as described in method 3.7. The linear plasmids 

were in the following used as templates for T315I-mutation targeted assays.  

 

4.3 Standard curves  

To find out if the PCR was efficient, and in case later quantifying should be necessary, 

standard curves were made (figure 15). A series of 10-fold dilutions from 1×106 to 1×101 

copies/µl for the mutated template were used in a real-time PCR assay using a 

discriminating (D) and a non-discriminating (ND) primer.  

 

Pl
as

m
id

s 
di

ge
ste

d 
w

ith
 

H
in

dI
II

 

Pl
as

m
id

s 
di

ge
ste

d 
w

ith
 

Ba
m

H
I 

La
dd

er
 

   1     2    3    4    5    6    7   8   9

1636 bp 

5090 bp 



 52

If the PCR was 100 percent effective, the number of templates would double each cycle, 

and it would take approximately 3.3 cycles to increase the number of templates by a 

factor of ten. The slope of the standard curve should therefore ideally be -3.3.  Figure 15 

shows that these standard curves had a slope of -3.6, indicating that the PCR was close to, 

but not 100 percent efficient.  

 

 
 

 
Figure 15: Standard plots. The T315I BCR-ABL template was used in concentrations from 1×106 to 

1×101 copies/µl to make standard curves. A) the standard curve using the discriminating primer A315 mut; 

B) the standard curve using the non-discriminating primer T315I-ND. If the PCR was 100 percent efficient, 

the slope of the curves would have been -3.3. Both the curves in this experiment had a slope of -3.6, 

indicating that the PCR was not completely efficient.  

A) 

B) 
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4.4 Detection of the T315I-mutation in plasmids 

To increase the sensitivity and the specificity of a real-time PCR approach for detection 

of BCR-ABL mutations, different types of primers were tested in an evaluation system 

based on the linear plasmids containing wild-type and mutated sequences. As illustrated 

figure 16, CTMAT, CTMIS and ∆Ct were used as primary endpoints in the study. The goal 

was to maximize the difference in amplification of the matching versus the mismatching 

template (∆Ct). Primer combinations resulting in maximal ∆Ct were evaluated as to be 

best suited for an assay for detection of the T315I-mutated allele. As a secondary 

endpoint, different amplicon lengths and PCR Master Mixes, and their influence on the 

discriminating effect of primer combinations was tested. For further improvement of the 

sensitivity, a nested approach including an additional PCR step was also tested.  

 

 
Figure 16. Amplification plot illustrating the primary endpoints in the study. MAT, the amplification 

curve of the matching template; MIS, the amplification curve of the mismatched template; threshold cycle 

(Ct), the cycle where fluorescence is statistically above the background; CtMAT, the cycle where 

amplification of the matching template reaches Ct; CtMIS, the cycle where amplification of the mismatching 

template reaches Ct; ∆C, the difference between amplification of the matching and the mismatching 

templates (CtMIS - CtMAT).  
 

CtMAT 
CtMIS 

∆Ct

MAT

MIS 
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4.4.1 The single-step approach 

The plasmids were analysed by real-time PCR with different primer-combinations and 

Master Mixes. The TaqMan Master Mix was used together with primers pairs that created 

short amplicons, whereas the SYBR Green Master Mix was used with primer pairs that 

created long and BCR-ABL-specific amplicons (see figure 9). Table 13 shows the results 

from the single-step procedures using TaqMan and SYBR Green Master Mixes, with the 

Ct-values of the matching (MAT, T315I-mutated sequence) and the mismatching (MIS, 

wild-type sequence) template, as well as the difference between them (∆Ct, also shown in 

figure 17). A high ∆Ct indicates that the primer has great discrimination capacity between 

the templates, whereas a negative value indicates that the mismatching template was 

amplified before the matching template.   

 

When using the TaqMan Master Mix, the A315 mut primer gave the best sensitivity. 

Moving the mismatch closer to the 3´-end of the primer or introducing a LNA-nucleotide 

in most cases deteriorated the sensitivity, but the specificity (∆Ct) increased, meaning 

that the modified primers could better discriminate between the mutated and wild-type 

sequences. When using the SYBR Green Master mix, the sensitivity was reduced 

compared to the TaqMan Master Mix, but the selectivity was increased for most of the 

primers.  
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Table 13: Results from the primer evaluation using the single-step PCR in plasmids. The table gives 

the Ct value for the matching (MAT, T315I-BCR-ABL) and the mismatching (MIS, wild-type BCR-ABL) 

templates, and the difference between them (∆Ct). In the TaqMan (BCR-ABL non-specific) assay, the 

forward primer 315F and the probe 315pro were used. In the SYBR Green (BCR-ABL-specific) assay, the 

forward primer BCR(13)-F was used. As well as a non-discriminating (ND) reverse primer, several types of 

discriminating primers were used; LNA-primers, ARMS-primers, and combinations of the two. The PCR 

was run with a template concentration of 1×105 copies/µl for 40 cycles. Each value is the average of two 

parallels. � indicates that no amplification was detected, and a blank cell indicates that the primer was not 

used in the particular experiment.  

  Single-step TaqMan Single-step SYBR Green 

Pr
im

er
 

ty
pe

  
Primer 

 
CtMAT 

 
CtMIS 

 
∆Ct 

 
CtMAT 

 
CtMIS 

 
∆Ct 

N
D

 

T315I-ND    24.8 21.5 -3.3 

A
R

M
S 

A315 mut 18.9 29.6 10.7 25.1 35.1 10.0 

T315I-xR 27.2 37.3 10.1 35.5 -  -  

T315I-1R 25.5 38.8 13.3 24.6 37.2 12.6 
T315I-2R 19.1 29.2 10.1 25.5 38.8 13.3 L

N
A

 

T315I-3R 22.7 32.7 10.0 28.3 -  -  
T315I-1xR 27.9 38.9 11.0 - - - 
T315I-2xR - - - - - - 
T315I-3xR 28.1 38.8 10.7 36.8 -  -  

A
R

M
S 

+ 
L

N
A

 

T315I-4xR - - - - - - 
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Single-step TaqMan
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Figure 17: ∆Ct values from the primer evaluation with plasmids in a single-step approach. The figure 

shows the difference in amplification (∆Ct) of the matching (T315I BCR-ABL) and the mismatching (wild-

type BCR-ABL) template when using a single-step approach (see table 13). A) The ∆Ct-values for the 

primers when using the TaqMan Master Mix and BCR-ABL non-specific primer pairs, where the LNA-

primer T315I-1R gave the highest ∆Ct; B) The ∆Ct-values for the primers when using SYBR Green Master 

Mix and BCR-ABL-specific primer pairs, where the LNA-primers T315I-2R, -1R and -3R gave the highest 

∆Ct. A high ∆Ct indicates that the primer has great discrimination capacity between the templates. The 

primer with highest ∆Ct is shown in black. A negative value means that the mismatching template was 

amplified before the matching one, as with primer T315I-ND, which is a non-discriminating primer.  

 

A) 

B) 
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4.4.2 The nested approach 

In an effort to increase the sensitivity, a nested approach with two PCR-steps was tested, 

with different primer-combinations, amplicon lengths and Master Mixes. The results are 

shown in table 14, with the Ct-values for the matching (MAT, T315I BCR-ABL) and the 

mismatching (MIS, wild-type BCR-ABL) templates, and the difference between them 

(∆Ct, also shown in figure 18). The primer-evaluation showed that the ARMS- and LNA-

primers decreased the sensitivity and increased the specificity compared to the A315 mut 

primer. The SYBR Green Master Mix with the BCR-ABL-specific primer pairs gave a 

slightly better sensitivity than the TaqMan Master Mix, and the specificity (∆Ct) 

increased greatly, especially for the LNA-primers.  

 
Table 14: Results from the primer evaluation using the nested approach in plasmids. The table gives 

the Ct value for the matching (T315I BCR-ABL) and the mismatching (wild-type BCR-ABL) templates, 

and the difference between them (∆Ct). A template concentration of 1×105 copies/µl and 40 cycles was 

used in the first PCR, with the primers BCR(13)-F and A7-. In the second PCR of 50 cycles, a template 

concentration of 1×107 copies/µl was used with the forward primers 315F creating short amplicons 

(TaqMan) and BCR(13)-F creating BCR-ABL-specific amplicons (SYBR Green). � indicates that no 

amplification was detected.  

  Nested PCR TaqMan Nested PCR SYBR Green 

Pr
im

er
 

ty
pe

  
Primer 

 
CtMAT 

 
CtMIS 

 
∆Ct 

 
CtMAT 

 
CtMIS 

 
∆Ct 

N
D

 

T315I-ND 18.6 17.7 -0.9 17.0 18.6 1.6 

A
R

M
S 

A315mut 19.6 33.3 13.7 19.8 29.9 10.1 

T315I-xR 27.6 38.3 10.7 25.9 42.0 16.1 
T315I-1R 25.0 38.1 13.1 23.0 36.3 13.3 
T315I-2R 18.7 28.5 9.8 21.3 35.5 14.2 L

N
A

 

T315I-3R 23.0 36.6 13.6 22.5 39.4 16.9 
T315I-1xR 27.0 37.3 10.3 35.7 - - 
T315I-2xR 47.0 - - 43.7 - - 
T315I-3xR 27.1 38.4 11.3 28.1 41.5 13.4 

A
R

M
S 

+ 
L

N
A

 

T315I-4xR - - - 43.4 - - 
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Figure 18: ∆Ct values from the primer-evaluation with plasmids in a nested approach. The figure 

shows the difference in amplification (∆Ct) of the matching (T315I BCR-ABL) and the mismatching (wild-

type BCR-ABL) template, when using a nested approach (see table 14). A) The ∆Ct-values when using the 

TaqMan Master Mix and primer pairs creating short amplicons, where the ARMS-primer A315 mut and the 

LNA-primers T315I-3R and -1R gave the highest ∆Ct; B) The ∆Ct-values when using the SYBR Green 

Master Mix and primer pairs creating BCR-ABL-specific amplicons, where the LNA-primers T315I-3R 

and �xR gave the highest ∆Ct. The primer with highest ∆Ct is shown in black. A negative value means that 

the mismatching template was amplified before the matching one, as with primer T315I-ND, which is a 

non-discriminating primer.  

 

4.4.3 Comparison between the single-step and the nested approach 

To compare the specificity of the single-step and the nested approach, the ∆Ct for each 

primer analysed by single-step PCR was subtracted from the ∆Ct for the primers analysed 

by nested PCR. The resulting number was called ∆∆Ct, and describes what can be gained 

(or loss) by using a nested PCR instead of a single-step PCR (figure 19). A negative 

A) 

B) 
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∆∆Ct indicates that the single-step procedure was more specific than the nested approach. 

The LNA-primer T315I-3R and the ARMS-primer A315 mut gained the most in 

specificity when changing to a nested approach with the TaqMan assay. The greatest 

improvement was observed when using the SYBR Green Master Mix. The LNA-primer 

T315I-xR and the ARMS/LNA-primer T315I-3xR gained the most in specificity when 

changing to a nested approach with this Master Mix.  

 

Single step vs. nested (TaqMan)

T315I-1xR

T315I-2R

T315I-1R
T315I-xR

T315I-3xR

A315 mut
T315I-3R

-1 0 1 2 3 4

∆∆Ct

 

Single step vs. nested (SYBR Green)

A315 mut

T315I-1R

T315I-2R

T315I-3R

T315I-3xR

T315I-xR

0 5 10 15

∆∆Ct

 
Figure 19. The difference in ∆Ct values (∆∆Ct) between the single-step and the nested approach for 

plasmids. ∆∆Ct, the difference in ∆Ct from the single-step to the nested approach (see tables 13 and 14), 

describes what can be gained in specificity when changing to a nested approach. A) The ∆∆Ct values with 

the TaqMan Master Mix and primer pairs creating short amplicons.; B) The ∆∆Ct values with the SYBR 

Green Master Mix and primer pairs creating BCR-ABL-specific amplicons. The primer with the greatest 

∆∆Ct is shown in black. A negative ∆∆Ct indicates that the single-step procedure was more specific than 

the nested approach.  

 

B) 

A)
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4.5 Designing a patient-test for detection of the T315I-mutation 

Patient-samples were used as templates for detection of the T315I-mutation, to find out if 

the methods used on plasmids also could be used for patient-samples. Table 15 shows 

that the single-step BCR-ABL non-specific procedure using TaqMan Master Mix gave an 

inadequate sensitivity, whereas the single-step BCR-ABL-specific SYBR Green approach 

gave a better sensitivity, but no improvement in specificity compared to the TaqMan 

assay. Including an additional step with the nested approach improved both the sensitivity 

and the specificity greatly, and gave the best results. Since the BCR-ABL-specific assay 

with SYBR Green Master Mix had given better specificity in patient-samples and 

plasmids earlier, and because there was not enough patient-material, the short TaqMan 

assay was not used for analysing patient-samples.  

 

Figure 20 shows the specificity (∆Ct) of the primers in the different experiments. The 

ARMS-primer A315 mut and the LNA-primer T315I-2R gave the highest ∆Ct values in 

the single-step approaches, while the LNA primers T315I-xR and -3R was gave the best 

∆Ct with the nested approach.   
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Table 15: Results from the primer evaluation with patient-samples. The table gives the Ct values for 

the matching (MAT, T315I BCR-ABL) and the mismatching (MIS, wild-type BCR-ABL), and the 

difference between them (∆Ct). The forward primers used were 315F for the TaqMan assays, creating short 

amplicons, and BCR(13)-F for the SYBR Green assays, creating long BCR-ABL-specific amplicons. The 

single-step PCR was performed with undiluted patient-samples, while the nested PCR was performed with 

undiluted samples in the first step of 40 cycles, and 2 µl template of 1×107 copies/µl in the second step. 

Each value is the average of two parallels. � indicates that no amplification was detected, and a blank cell 

indicates that the primer was not used in the particular experiment.  

  Single-step  
TaqMan 

Single-step  
SYBR Green 
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 T315I-
ND 24.9 24.4 -0.5 15.5 15.1 -0.3    

A
R

M
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Figure 20: ∆Ct values from the primer evaluation using the nested approach in patient-samples. The 

figure shows the difference in amplification (∆Ct) of the matching (T315I BCR-ABL) and the mismatching 

(wild-type BCR-ABL) template (template 15). A) The primers A315 mut and T315I-2R gave the highest 

∆Ct values with the single-step TaqMan (BCR-ABL non-specific) approach; B) The primers T315I-2R and 

A315 mut gave the greatest ∆Ct with the single-step SYBR Green (BCR-ABL-specific) approach; C) The 

LNA-primers T315I-xR and -3R gave the highest ∆Ct values with the nested SYBR Green (BCR-ABL-

specific) approach. The primer with highest ∆Ct is shown in black. A negative value means that the 

mismatching template was amplified before the matching one.  

A) 

B) 

C) 
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4.5 FullVelocity PCR  

To reduce the amplification-times of the PCR, so that more samples could be analyzed in 

shorter time, the FullVelocityTM QRT-PCR Master Mix kit from Stratagene was tested 

under different PCR-conditions and with different primer combinations. The kit is 

designed for high-speed, one-step PCR, and promises a more than 40 percent reduction of 

overall run times (Stratagene 2004). Table 16 shows however, that the FullVelocity kit 

only gave amplification during conventional PCR-conditions, and not during the faster 

programs. The reason for this could be that the templates were too long, 1293 bp, when 

the recommended template length was 90 to 300 bp.  

 
Table 16: Results from PCR using the FullVelocity kit with different PCR-conditions. Amplification 

was only detected when using the conventional PCR-program, and not with the faster times recommended 

for the FullVelocity kit. The plasmids were used in concentrations of 1×105 copies/µl. � indicates that no 

amplification could be detected.  

Primer/probe 

combination 
Template PCR conditions Ct value 

BCR(13)-F, 

315pro, T315I-ND 

T315I-BCR-ABL Conventional PCR program 
18.1 

BCR13F, ABL 2 

pro, ABL-R 

T315I-BCRABL Conventional PCR program 
19,3 

T315I-BCR-ABL Fast PCR program - BCR(13)-F, 315 

pro, T315I-ND Wild-type BCR-ABL Fast PCR program - 

T315I-BCR-ABL Fast PCR program - BCR(13)-F, 315 

pro, A315 mut Wild-type BCR-ABL Fast PCR program - 

T315I-BCR-ABL Very fast PCR program - BCR(13)-F, 315 

pro, T315I-ND Wild-type BCR-ABL Very fast PCR program - 

T315I-BCR-ABL Very fast PCR program - BCR(13)-F, 315 

pro, A315I mut Wild-type BCR-ABL Very fast PCR program - 
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4.6 Detection of the T315I-mutation in mixed templates 

To mimic the in vivo situations, a mixture of templates was made in order to create a 

background in the amplification plots, and to make the samples more complex. This was 

done by mixing the mutated plasmid with a shorter template, RG04, and analysing 

dilution series of the mixture with different primer combinations and Master Mixes. The 

TaqMan Master Mix was used together with the forward primer 315F, which anneals to 

the ABL-part of the template (see figure 9). In combination with the mutation-specific 

reverse primers, this will create short and BCR-ABL non-specific amplicons. When the 

forward primer BCR(13)-F, which anneals to the BCR-part of the template (see figure 9), 

was used in combination with mutation-specific reverse primers, long and BCR-ABL 

specific amplicons were produced. In this case, the SYBR Green Master Mix was used, 

due to the inability of the TaqMan Master Mix to create such long templates. The reason 

for this is that the exonucleolytic activity of the DNA polymerase on the TaqMan probe 

would be too slow to complete the amplification before the next step in the PCR starts.  

 

Figure 21 illustrates that the amplification curves of the short amplicons are overlapping, 

while the amplification curves for the first two concentrations of the long amplicons can 

be separated from the background. This indicates that by making the amplification BCR-

ABL-specific, the sensitivity could be increased by a 2-log factor.  
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Figure 21. Amplification plots of mixtures of long and short templates.  Amplification plots of a 10-

fold dilution series of the T315I BCR-ABL template (1×106 to 1×101 copies/µl) in the RG04 template 

(1×107 copies/µl) using the three different reverse primers A315 mut, T315I-1R and -2R. A) Amplification 

of short templates with a BCR-ABL non-specific assay using TaqMan Master Mix, the three reverse 

primers and 315F forward primer that anneals to the ABL-allele. The amplification curves are overlapping, 

indicating that there is a mis-amplification of non-mutated templates; B) Amplification of long templates 

with a BCR-ABL-specific assay using SYBR Green Master Mix, the three reverse primers and the 

BCR(13)-F forward primer that anneals to the BCR-allele. There is a specific amplification of mutated 

templates at the concentrations 1×106 and 1×105 copies/µl, indicating that the sensitivity can be increased 

by a 2-log factor when using a BCR-ABL specific primer pair and SYBR Green technology.  

 

A) BCR-ABL non-specific assay 

A315 mut 
A315 mut

T315I-1R T315I-1R

T315I-2R T315I-2R

B) BCR-ABL-specific assay 

106 copies/µl 

105 copies/µl

105 copies/µl

106 copies/µl 

105 copies/µl 

106 copies/µl 
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4.7 Detection of other mutations than T315I   

The procedure that detected the T315I-mutation with the highest sensitivity and 

specificity in patient-samples, a nested BCR-ABL-specific approach with a primer 

containing a LNA-nucleotide in 3` position (see table 15), was also tested in samples 

containing other mutations. Suitable primer was ordered (E255K-xR, G250E-xR, 

Q252Hc-xR, Y253H-xR and M351T-xR), and the test was set up with a panel of five 

unknown patient-samples. The samples were amplified undiluted in the first PCR of 40 

cycles, and a part the PCR products was analyzed on an agarose gel seen in figure 22. 

The rest of the PCR products were purified and diluted to a concentration of 1×107 

copies/µl. Each sample was then analyzed by real-time PCR with BCR(13)-F, SYBR 

Green Master Mix and each of the LNA-primers (table 17).  

 

 

 

 

 

 

 

 
Figure 22: Gel electrophoresis of the patient-samples after the first PCR. Each sample was amplified 

for 40 cycles with the primers BCR(13)-F and A7- creating amplicons of 1293 bp. Some of the PCR 

product was run for 30 minutes on a 0.7 % agarose gel at 90 V.  Sample 1, 2, 4 and 5 could be seen as 

single bands of approximately 1293 bp. Sample 3 contained no BCR-ABL and was not amplified. 
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The results from the second PCR are expressed in table 17 showing the Ct-values for 

each template-primer combination. The primers differed greatly in their ability to detect 

the mutation. The G250E-xR primer could detect the G250E-mutation in sample number 

five, with a ∆Ct of 9.5 to the background, given by the other reverse primers used. The 

E255K-xR primer could barely separate the E255K-mutation from the first of the 

background curves. The Q252Hc-xR primer was unable to separate the Q252Hc-mutated 

sequence from the background, suggesting that this type of primer is unsuitable for 

detecting this particular mutation. No mutations were detected in sample number 4, 

which contained a wild-type BCR-ABL sequence. Sample 3 had no BCR-ABL gene, 

seen by the missing band in the gel electrophoresis (figure 22), and the absorbance at 260 

nm, measured by NanoDrop, was very low (0.012). The second PCR gave some 

amplification, but only at high Ct-values, indicating some mis-amplification.   

 
Table 17: Results from the analysis of different patient-samples with LNA-primers. The samples were 

analyzed undiluted in the first PCR of 40 cycles, and diluted to a concentration of 1×107 copies/µl before 

the second PCR. Each value is the average of two parallels. The values in bold writing represent the correct 

primer-template combination, where the primer ideally should detect the mutation.  

Patient- 

sample 

Ct  

E255K-xR 

Ct  

G250E-xR 

Ct 

Y253H-xR 

Ct 

Q252Hc-xR 

Ct 

M351T-xR 

1 (E255K) 21.9 24.2 25.0 42.7 33.5 

2 (Q252Hc) 25.8 22.4 23.9 26.1 33.2 

3 (No BCR-

ABL) 
41.3 39.7 37.0 - - 

4 (wild-type 

BCR-ABL) 
26.3 24.7 25.6 39.7 31.6 

5 (G250E) 26.5 15.7 25.2 41.2 33.7 

 

To summarize, the BCR-ABL-specific assay with SYBR Green Master Mix deteriorated 

the sensitivity of the PCR. However, the specificity of the mutation-detection could be 

increased, especially with LNA-primers in the second step. By adding a PCR-step in a 

nested approach, both the specificity and the sensitivity was increased.  
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5 Discussion  

Drug-resistance and relapse can be critical for CML-patients treated with imatinib, 

therefore it is important to be able to detect mutations in the BCR-ABL gene as early as 

possible. This is especially crucial when it comes to the T315I-mutation that is 

unresponsive to both dose-escalation of imatinib and many of the recently developed 

tyrosine kinases (Walz et al. 2006). The T315I-mutation will probably be an even greater 

problem as new tyrosine kinases, less prone to all mutations but T315I, are developed. 

Therefore, it was chosen as the main target for detection in this study, where plasmids 

containing sequences of wild-type and T315I BCR-ABL were used in different 

approaches, in an attempt to increase the sensitivity and specificity of a real-time PCR-

based assay for detection of the T315I-mutation. Primer manipulation was one of the 

methods used to achieve this, by using ASO-primers with 3´-ends complementary to the 

mutated sequence, ARMS-primers with an additional mismatch close to the 3`-end, LNA-

primers with a LNA-nucleotide incorporated, and combinations of ARMS- and LNA-

primers. A non-discriminating (ND) primer that is unable to distinguish the wild-type 

from the mutated plasmid was also used. The different reverse primers were tested with 

both TaqMan and SYBR Green master mixes, which uses different methods to detect the 

PCR amplification. By using different forward primers, the amplification of long, BCR-

ABL-specific templates could be compared to the amplification of shorter BCR-ABL 

non-specific templates. The tests were, in addition to a single-step procedure, also 

performed in a nested approach with two PCR steps in an attempt to increase the 

sensitivity. Using patient-samples with wild-type and mutated BCR-ABL, a patient-test 

for detection of the T315I-mutation was developed.  

 

5.1 Detection of the T315I-mutation in BCR-ABL 

Direct sequencing, the traditional method for detecting mutations in the BCR-ABL gene 

has several drawbacks. With its multiple steps it is time-consuming and the risk for 

contamination increases. The sensitivity of the method is about 20 percent (Branford et 

al. 2003), which means that mutations will not be detected in the early phase of clonal 

evolution of mutated cells. Subcloning and sequencing, or D-HPLC gives a somewhat 
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better sensitivity (Shah et al. 2002; Soverini et al. 2004), but not as good as ASO-PCR 

(Roche-Lestienne et al. 2002; Willis et al. 2005). In addition to good sensitivity, ASO-

PCR also has a low contamination-risk and is relatively easy and quick to perform. 

Therefore, it is an excellent method for detecting mutations during imatinib-treatment. 

Besides, real-time PCR is also the recommended procedure for monitoring BCR-ABL 

levels in CML-patients treated with tyrosine kinase inhibitors, and it would be convenient 

to carry out the mutation-detection with the same technique.   

 

The ASO-PCR method can be further improved by adding mismatches close to the 3`-end 

of the primer (ARMS) or introducing a LNA-nucleotide close to the 3`-end of the primer 

(Newton et al. 1989; Latorra et al. 2003). This can improve the sensitivity and specificity 

of the PCR, so that mutations can be detected earlier. The major disadvantage with these 

methods is that they are biased, and will only find the mutations included in the test. 

Because one primer is needed for each mutation, the number of mutations to screen for 

has to be limited to the most important ones, like the T315I-mutation.  

 

The plasmids used in this study were made by cloning a PCR product, and transforming 

into bacterial cells. After linearization, the plasmids were quantified, and stock solutions 

were made. For each new experiment, a batch from this stock solution was diluted to the 

proper concentration and analysed. Two different approaches (single-step and nested 

PCR) were tested with primer combinations creating short BCR-ABL non-specific and 

long BCR-ABL-specific amplicons. Three different Master Mixes were tested (TaqMan, 

SYBR Green and FullVelocity), together with different types of modified reverse primers 

(ARMS, LNA and combinations of the two).   

 

The forward primer 315F, which was used in the experiments with the TaqMan Master 

Mix, anneals to the ABL-part of the template, and creates short amplicons. Plasmids 

amplified with this primer showed a better sensitivity compared to plasmids amplified 

with the forward primer BCR(13)-F, used in experiments with the SYBR Green Master 

Mix. The latter primer anneals to the BCR-part of the template, thereby amplicating 

longer, BCR-ABL-specific sequences. The longer templates made the PCR less efficient, 
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which could be a reason for the poorer sensitivity. However, by making the amplification 

BCR-ABL-specific, the specificity, hence the discrimination-power between mutated and 

non-mutated alleles, was increased. Especially the LNA-primers offered good results 

when using the BCR-ABL-specific approach. By combining this with the SYBR Green 

Master Mix, the PCR-setup was easier and faster, because there was no need for addition 

of a probe. This would be more important if many samples were to be analysed, to save 

time and costs.  

 

Real-time PCR analysis of the plasmids showed that, independent of the Master Mix and 

PCR approach used, modification of primers with LNA and ARMS gave a poorer 

sensitivity compared to the ARMS-primer used today (A315 mut), but the modification 

increased the specificity (∆Ct) so that mutations could be detected easier. The LNA-

primers generally provided better results than the combination of LNA and ARMS, both 

for sensitivity and specificity. Some of the ARMS/LNA-primers (T315I-2xR and -4xR 

gave no amplification in any of the experiments, indicating that they probably were too 

destabilized.  

 

The nested approach was favourable both for specificity and sensitivity, compared to the 

single-step PCR, independent of what Master Mix that was used. This is due to the first 

amplification step where the BCR-ABL sequence was amplified before the second PCR 

with mutation-specific primers was done. The nested approach however, increases the 

contamination-risk due to the extra PCR step and the need for purification between the 

steps.  

 

In these experiments, the FullVelocity kit did not give any amplification with the faster 

PCR programs, probably because the plasmids were too long, 1293 bp compared to the 

recommended 90 to 300 bp. When using the conventional amplification-times, some 

amplification could be seen, but considering that the FullVelocity technology is supposed 

to reduce the amplification-time, there would be no benefits using this for such long 

templates compared to the TaqMan Master Mix.  
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5.2 The transferability of the method from plasmids to patient-samples 

The methods that worked well for mutation-detection in plasmids were also tried out in 

patient-samples, to make a patient-test for detection of the T315I-mutation. The best 

results were achieved with the nested BCR-ABL-specific PCR with SYBR Green Master 

Mix and the LNA-primer T315I-xR in the second PCR-step. This procedure improved 

both the sensitivity and the specificity of the mutation-detection. The patient-test was 

then translated to other mutations, but this gave variable results. One of the mutations 

(G250E) was detected with great sensitivity and specificity, while others could not be 

detected at all. As each mutation seems to require different conditions for optimal 

detection, a new primer evaluation probably needs to be done for each mutation.   

 

5.3 Clinical importance of mutation-detection 

Identifying mutations in the BCR-ABL tyrosine kinase domain can be important for 

decision-making about further treatment of CML-patients. As earlier mentioned, the 

different mutations can have quite a different impact on the disease, and the detection of 

certain mutations implies that the imatinib treatment must be stopped immediately to 

prevent selection of the mutated clone and progression of the disease (Branford et al. 

2003; Hjorth-Hansen et al. 2004). Screening of all CML-patients for all known mutations 

would neither be practical nor efficient. Besides, the finding of a mutant clone does not 

necessarily mean that it will expand and cause relapse (Willis et al. 2005). It should rather 

be concentrated on screening patients at high risk, like the ones with inadequate response 

to treatment or with rising BCR-ABL transcripts (Hughes et al. 2006), and on detecting 

the most important mutations, like the P-loop and the gatekeeper mutations. By using a 

sensitive method like ASO-PCR, mutations can be detected early, and the proper 

precautions can be initiated. As shown in these experiments, a nested approach using a 

LNA-primer could further increase the sensitivity and specificity for detection of the 

T315I-mutation.  

 

The knowledge of the mechanisms of imatinib-resistance has helped create new drugs 

that are more potent and more effective against imatinib-resistant BCR-ABL clones. 
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Many of these are in an early state of clinical studies, and more time is needed to 

determine the effects in vitro, but the results so far have been promising. AMN107, a 

derivative of imatinib has more than 10-fold increased potency as a BCR-ABL inhibitor, 

probably because it has higher affinity to the ABL-kinase pocket. It is thought to inhibit 

several imatinib-resistant BCR-ABL mutations, except for T315I that is resistant even at 

high doses (Weisberg et al. 2005). Dasatinib (BMS-354825), an inhibitor of the SRC-

family kinases, has an increased activity against the ABL-kinase compared to imatinib. 

The only imatinib-resistant BCR-ABL mutation known to be resistant to this new drug is 

the T315I-substitution (Shah et al. 2004; Martinelli et al. 2005). The drug is able to bind 

both the active and inactive conformation of ABL with fewer contact points between it 

and the kinase (Walz et al. 2006). ON012380 targets the substrate-binding site, in 

contrast to the ATP-binding site. Due to the different binding site, it can function as an 

effective agent against imatinib-resistant BCR-ABL proteins, including the T315I-

mutant, and together with imatinib the drugs act synergistically (Gumireddy et al. 2005).   

 

5.4 Factors of uncertainty with the method  

Several factors of uncertainties could have affected the results in these experiments and 

contributed to variety. The PCR amplification process itself can actually be a source of 

variety, since small variations during the early stages in the PCR can greatly influence the 

final yield of the amplified product (Bustin 2000). It is therefore important that the PCR 

is consistent and optimized concerning reagent concentration, primer and probe design, 

and temperature program among other things, to be able to produce accurate and 

reproducible results.  

 

The OD-measuring, done by NanoDrop, is a factor that could give rise to uncertain 

results. The absorbance of a sample could be different if it was measured several times, 

which means that the true absorbance would be different from the measured one. This 

also means that there is an uncertainty in the calculation of copy number. The dilution-

series are another factor contributing to uncertainty, because variations in the early 

dilutions would have a great impact further down in the dilution-series.  
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Each PCR was performed with two parallels of each template-primer combination. This 

could have contributed to uncertainty since more parallels would help discover any 

outliers, and make the results less variable and more reliable.   

 

A no-template control to screen for contamination of reagents or false amplification was 

not used. Internal or external standards could have been included to control for false 

negatives that could have occurred through failure of a reagent or the thermal cycling 

process, or through the presence of inhibitors (Logan et al. 2004). The reference dye 

provided in the different kits for providing a stable baseline was not used either, meaning 

that any non-PCR related variations in fluorescence could not have been compensated 

for.  

 

5.5 Future perspectives  

In these experiments, the T315I-mutation was detected in three patient-samples with the 

nested procedure and in two patient-samples with the single-step procedure, as well as in 

the plasmid-system created. The results indicated that the nested BCR-ABL-specific 

approach using SYBR Green Master Mix and a LNA-primer was the most sensitive and 

specific procedure, but to be able to confirm the results, the method should be carried out 

with more samples. The methods could also be used for detection of other important 

mutations, like the P-loop mutations, but as the last experiment in this study showed, a 

new primer evaluation is necessary for each mutation. In future experiments, there should 

also be a greater focus on quantifying, so that the sensitivity could be calculated more 

precisely, and for monitoring the presence of mutated clones in patients.  
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Conclusion  

The experiments were performed in order to make a real-time ARMS-PCR based method 

for detection of the T315I mutation, specific for the BCR-ABL allele, and more sensitive 

and specificity. The method that seemed to work best for detection of this mutation, both 

in plasmids and patient-samples, was the approach that included a pre-amplification step, 

combined with SYBR Green Master Mix and a LNA-primer with the LNA nucleotide in 

3`-position. These results are in accordance with recently published, detecting mutant 

alleles using LNA-nucleotide-containing primers and pre-amplification with high 

sensitivity (Thomassin et al. 2004).  
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