

Faculty of Science and Technology
Department of Computer Science

How to use an app to Nudge people to choose more green
transportation?

—
Ingvild Kristiane Myrvang
INF-3990 Master's Thesis in Computer Science - October 2021

 2

Abstract
Making green transport choices are more important than ever to save the environment. To

accomplish this there must be a reduction in emissions of greenhouse gases and other

pollutants. How to make people choose green transportation, when it is inconvenient, is an

interesting challenge. Most would rather take the easy way out to avoid the extra planning

and estimation of how to reach their destination. Thus, they take the car, because they know

how long it will take, no need for planning. What if instead there was an app that did the

planning for you? Telling you when you had to leave to reach the bus, get on your bike or to

be on time walking. What if it could tell you the weather too so that you would know what to

take with you? What if you could tell the app that you need more or less time to walk to that

bus stop based on the last time you walked there. This thesis will be about solving such

problems through the design and the implementation of an app that will make travel planning

easier.

 3

Acknowledgments
A special thanks to Øystein S. Jacobsen for helping me with everything while working on this

thesis.

I´m also thankful to thank Kristian Mikalsen and Sean Bakaitis for reading through my thesis

I would like to thank my supervisor Anders Andersen for introducing this project to me and

his feedbacks on this thesis.

Lastly, thanks to student organization Imladris for being a place to discuss and be social and

to all of my friends and family for their support along the way.

 4

Table of Contents
Abstract .. 2
Table of tables: .. 6

Table of figures: .. 7
1 Introduction .. 9

1.1 Problem definition ... 10
1.2 Goal ... 10

1.3 Approach .. 11
1.4 Method .. 12

1.5 Contribution .. 12
1.6 Outline .. 13

2 Technical background ... 14
2.1 Nudge .. 14

2.2 Swift .. 16
2.1.1 Xcode .. 16

2.3 API .. 17

2.4 HTTP and HTTPS .. 17
2.5 CocoaPods .. 17

2.5.1 Alamofire .. 18
2.5.2 SwiftyJSON ... 19

2.6 Google Maps .. 19

3 Design ... 22
4 Implementation .. 33

4.1 How this app was made .. 33
4.1.1 Designing the app in storyboard .. 34

4.2 Making the files and the classes for the controllers and connecting things from
storyboard ... 40
4.3 Implementing the app in ViewController ... 42

4.3.1 Setting up the view to the controller and locations ... 43
4.3.2 Implementing the function for the search button .. 45
4.3.3 Implementing the function to the map button ... 46
4.3.4 Implementing the function to the change travel mode button ... 47
4.3.5 Implementing the calendar and notification feature .. 47
4.3.6 Implementing the autocomplete feature to the textfields .. 51

4.4 Implementing the app in MapsViewController .. 54
4.4.1 Setting up the view and location ... 55
4.4.2 Setting up the map ... 56
4.4.3 Implementing the function to the button pick location ... 58
4.4.4 Implementing so the marker moves when the user click somewhere on the map 58
4.4.5 Making the information about the business show up the label ... 59

4.5 Implementing the app in RoutesViewController ... 60
4.5.1 Setting up the view and the location ... 61

 5

4.5.2 Setting up the map ... 62
4.5.3 Getting the distance and duration about route and displaying it in the label 64
4.5.4 Setting up the function for getting the stored time the user put in last time 66
4.5.5 Setting up the function for drawing up the route .. 67
4.5.6 Setting up so the user can click the other polylines and make it more visible than the others 69
4.5.7 Managing the textfields in the extension ... 70

4.6 Libraries and programming language .. 71

4.7 Problems ... 71
4.7.1 Problems with Google´s API ... 72
4.7.2 Problem´s with CocoaPods ... 73
4.7.3 Problem´s with Alamofire and SwiftyJSON ... 73

4.8 Error Handling .. 75

4.9 The Choice between Google Maps and Apple´s own maps 75
5 Discussion .. 76

5.1 How the app was tested ... 78
5.3 Why Tromsø? .. 80

5.4 The choice of colors for the app ... 80
5.5 Should nudges be uses by both business and the government and why do some
want to reject nudges as a concept? .. 81

5.5.1 The rejection of nudges on the bases of freedom of choice .. 81
5.5.2 The ethical dilemma of nudging .. 82
5.5.3 Other concerns about nudge .. 85

5.6 Why was the app made for iOS? ... 85
5.7 Did the app nudge? ... 85

5.8 Summary .. 86
6 Future work .. 87

7 Conclusion .. 89
Bibliography .. 90

 6

Table of tables:
Table 1 show the feedback from tester´s ... 80

 7

Table of figures:
Figure 1 How the Podfile looks for this project. ... 18
Figure 2 How the view the app will start in looks like .. 22
Figure 3 How these access notifications looks like ... 23
Figure 4 All the labels, textfields and buttons with arrows and descriptions 24
Figure 5 This picture will show what happened when the user click on of the textfields. The
user will be taken to the autocomplete this transition is show with arrows from the textfield to
the autocomplete. It also shows how it looks like when the user writes in a letter, the
autocomplete will give suggestion from the first letter. .. 25
Figure 6 What the alert the user will be meet with if they click on the search button with
either none or only one textfield have an address. ... 25
Figure 7 When both the textfields have addresses and the user click the search button they
will be taken over to routes, this transition is shown with an arrow. 26
Figure 8 When the map button gets clicked the user will get up a white notification box they
can choose from location, to location or close. When the user clicks the from or to, they will
be taken to the map this transition is shown with arrows. If the user clicks on close they will
be taken back to view and this transition is shown with an arrow. .. 26
Figure 9 when the user click on the change travel mode they will be meet with a white
notification box where they can click on the transportation they want to utilize. They can
choose between walking, bicycling, and driving and when they choose something the app
will take them back to view. They can also close the notification box by clicking on close if
they want to choose none. .. 27
Figure 10 The map with a marker on it, the marker will in the start be localized to the user
current location. When the marker gets clicked on it will show the address to where it is
localized. Then when the user clicks pick location, the user will be taken back to view and the
address to where the marker where will now be in the textfield. All transition is shown with
arrows. .. 28
Figure 11 When a business gets clicked on the label will get a text with the information about
the business like name, rating and if it is open now. ... 29
Figure 12 This picture show the route view with a description about all the labels, textfield,
and buttons do and arrows to all of them. .. 30
Figure 13 When the user click the textfield a keyboard will show up and they can write in the
time they actually used. .. 31
Figure 14 In this figure there will be an overview over what happens when the user clicks
different buttons and textfields, this will be shown with arrows. .. 32
Figure 15 How it looks at the start of creating a new project in Xcode. 33
Figure 16 How this ViewController looks in the storyboard. .. 34
Figure 17 how this symbol looks like .. 35
Figure 18 How it the text that shows up when it is right clicked looks like 36
Figure 19 How the first view will look like. .. 36
Figure 20 How the second view will look like. ... 38
Figure 21 how this looks in the storyboard .. 39
Figure 22 How the third view will look like. ... 40
Figure 23 What the alert looks like when running the app. ... 46
Figure 24 How it looks in the project setting with both for Background fetch and Background
processing enabled. .. 51
Figure 25 What the autocomplete controller looks with search text and suggestions 54
Figure 26 How the project setting looks like after the Alamofire and SwiftyJSON framework
is added. ... 74

 8

Figure 27 How the project settings for build phase embed frameworks look after Alamofire
and SwiftyJSON have been removed. ... 74

 9

1 Introduction
This thesis will be using nudge to make people choose greener transportation. But what is

nudging? Nudge was first defined as [1] «any aspect of the choice architecture that alters

people´s behavior in a predictable way without forbidding any options». This thesis will

focus on the so-called green nudges, and these nudges [2] «aim at encouraging people to

voluntarily contribute to a public good, namely, environmental protection».

Why is there a need to nudge people to choose green transportation? One reason is that [3]

«main environmental issues in towns and cities are related to the predominance of oil as a

transport fuel, which generates CO2, air pollutant emissions and noise». CO2 is one of the

gasses which acts as a greenhouse gas in the atmosphere, making the earth warmer. This is

known as the greenhouse effect, [4] «is a leading factor in keeping the Earth warm because it

keeps some of the planet's heat that would otherwise escape from the atmosphere out to

space». Of [5] «the most important greenhouse gasses in the atmosphere are water vapor

H₂O, carbon dioxide CO₂, methane CH₄, nitrous oxide N₂O and ozone O₃». The problem is

that people have been emitting CO2 into the atmosphere and making the earth warmer than it

should be by natural processes. This is known as global climate change and is shown by the

climate change report [6] to be manmade. More CO2 in the atmosphere will only make this

process go faster, so one goal for humanity is to reduce the quantity of CO2 in the

atmosphere. This is where nudging may make it easier for people to choose green

transportation.

Road dust is another pollutant that comes from the use of motorized road vehicles. These

vehicles typically have spiked winter tires, resulting in the production of road dust when the

roads are bare. This road dust can trouble people suffering from asthma, they might have

trouble with breathing while there is lot of road dust in the air, and they have use asthma

medicine to breath properly. Nudging people to choose green transportation instead of

personal cars can therefore also help to reduce the amount of road dust.

Nudging can be both for digital and nondigital, where the difference between them is that

digital will do its nudging through digital environment and non-digital will not do its nudging

through digital environment. This app is going to be using digital nudges. According to

 10

Weinmann, Schneider and Brocke [7] «Digital nudging is the use of interface design

elements to guide people´s behavior in digital choice environments».

1.1 Problem definition

With all the pollution that comes from cars there is a need to move towards more

environmentally friendly transportation, like walking, biking, and using public

transportation. The problem is that it is difficult to incorporate these greener

transportation options in everyday travel, when one has to do an extra effort to plan

around these environmentally friendly transportations.

This thesis will with the use of digital nudging try to solve this problem by

making an app that will try to influence people to choose green transportation.

This app will be the main focus in this thesis and will be explored how it was

designed, implemented, tested and at the end if it was successful in influencing people

to make greener transportation choices.

1.2 Goal

To solve the problem the goal is to develop an app that can be used for travel planning

and nudge its users towards green transportation.

Therefore, the first goal is:

The app will need to be able to let users select an origin and a destination for

their travel. The origin and destination should be possible to identify by having

the user either writing in the address or choosing a location on a map. In its

first version the app will be limited to the city Tromsø. The map will have a

possibility to see establishment as well as the addresses for locations when

zooming in. To help the users when writing in addresses or location an

autocomplete feature will be implemented. The autocomplete should come with

suggestions based on the first letter the user writes and update for each

successive one.

The second goal is:

To implement a way to find the users location so the app can easily find the

starting point. The user’s current location will have a marker that displays the

address of the location.

 11

The third goal is:

Offer a way for the user to select their preferred transportation mode. A

direction feature must take all the inputs into consideration and show possible

green travel routes. This feature will use the information to calculate the

distance and duration of the travel routes. It will also need real-time updates

while traveling to show the remaining time, and distance and offer new

possible routes from the current location.

The fourth goal is:

There will be a possible to click on an establishment to get more information

about it. This will tell the user some things about the establishment that will

make them use the app. Since they can see name, rating and if it is open now

and this will give them enough information to see if they want to go there and

then they can choose it as a place to travel to. Also, there will be a possibility

to get personalized walking/biking time.

The fifth goal is:

To have a possible integration with calendars, such as Apple´s Calendar,

might also be implemented with a notification feature so the users can easily

get to their appointments.

The sixth goal is

The app will also have the possibility to use the data from the GPS trackers in

the buses in Tromsø. This will update the travel information about where the

buses are at the moment and the user can see this information and plan

around it.

The seventh goal is:

To integrate some weather data (i.e., rain, wind, sun, and snow) such that

users may be notified of weather conditions. This integration is important

since it will make it possible to show skiing as a green travel option during

winter conditions.

1.3 Approach

This thesis is about making an app that will nudge people into choosing green

transportation. Therefor the approach will be how this app was designed and

implemented.

 12

This app was implemented with the programming language Swift and the IDE Xcode

for iOS phones. Swift was chosen as the language to program this app in, and iOS was

chosen since Swift is made by Apple and there are more of documentation for Swift

with iOS. Xcode is made with iOS in mind and is developed by Apple. More

information about Swift and Xcode will be presented in -Section 2.2 and -Section

2.1.1. Xcode was used in designing the app, and Swift with Xcode were used to do the

necessary implementation to the design. The app´s design and implementation will be

presented in -Section 3 and 4.

1.4 Method

The starting point for the method for this thesis is to first understand nudging and

everything that comes with this concept. Then the next step is to design the app and

then implementing this design so that the app can influence people towards the choice

of green transportation. Finally test the app with the author doing some test to see if it

works and then with some other testers to find out if this app was successful in

nudging people to choose greener transportation. How these tests were done will be

presented in -Section 5.1 and the result of the test will be presented in -Section 5.2.

1.5 Contribution

Despite not having all features defined in -Section 1.2, the app forms an important

foundation that others can build on in the future. This foundation contains a method of

acquiring the address that the user wants to travel from and to, using autocomplete

and a map. The user´s preferred travel mode is also taken into consideration. This

information is used to create possible routes and calculate the distance and duration of

each route. Users may also hit a button to update their location while traveling,

triggering route recalculations and updating distance and duration estimates. When the

user clicks on a business, they receive information such as the name, rating about that

business and if it is open right now. There will be a way for the user to have their

preferred travel mode stored for the next time. The user may additionally put in the

time they used on the route, and this will show up the next time they travel this route.

This app is able to influence people to some extend towards the choice of greener

transportation choice, where this choice of transportations will be walking and biking.

 13

In the future someone can implement rest of the features in goal and make the app

better than this protype.

1.6 Outline

This thesis is structured as followed:

2 – Technical Background: Presenting nudge, some programming terms, the

programming language Swift, some tools used with Swift like IDE, CocoaPods,

Alamofire, SwiftyJSON and Googles APIs.

3 – Design: Explains the way the app was designed but does not go into how this was

done but explains what each controller does.

4 – Implementation: Explains how things were implemented into the app. Start first

with how things were implemented into in the storyboard in Xcode. Then goes on to

explain how ViewController, MapsViewController and RoutesViewController were

implemented. This section will also take up thing as programming language, libraries,

problems, the way errors was handled and the choice of using Google Maps.

5 – Discussion: Here different subjects will be discussed, these subjects will be what

was achieved of the goal, learned from them and shown from the author in these

goals. Then how the app was tested, the result from the testing the app, why Tromsø,

the choice of colors in the app, rejection on nudges on the bases of freedom of choice,

the ethical dilemma of nudges, if there are any other concerns of nudges, why it was

developed in iOS and if the app was successful in nudging.

6 – Future Work: Here all that was not implemented in goals will be talked about for

implementation in the future and with the result from discussion

7 – Conclusion: Here the conclusion of this thesis will be talked about, and if the app

was able to nudge user to take green transportation.

 14

2 Technical background
2.1 Nudge

Nudging is about pushing someone in a direction that is a better choice for society,

without forbidding any options [1]. It all comes down to how the choices are

presented to people. People will usually choose the option that is easier or takes less

effort on their part. If the choice requires less mental effort but still some physical

effort it will feel easier for people to choose it. For example, a sport watch that tells

you that you need to move, or that you have been inactive for too long. This nudge

could make you walk around more and get some exercise in your day.

The one creating the nudge is a choice architect, Thaler and Sunstein state [1] «that a

choice architect has the responsibility for organize the context in which people make

decisions». Thaler and Sunstein go on to say that there [1] «are many parallels

between choice architecture and more traditional form of architecture and that there is

no neutral design». There will always be something of that person in their design. One

can have several biases when designing things, but one can try to add less of the

biases and themself into a design. One can try to think what other people will think

about the design and how this will affect them. They go on to say [1] «that everything

matters when designing the nudge», which is the case for this app, especially to color

and this will be discussed in -Section 5.4.

Nudging as a concept is called libertarian paternalism, libertarian part of the nudge is

that people need to be able to choose for themselves and to not be part of the nudge if

they want to [1]. The paternalistic part of the nudge is that it will try to make people

lives longer, healthier and better [1].

Libertarian is all about the freedom of choosing but can there be an illusion of

freedom of choice. This will be discussed in -Section 5.5.2, but what is freedom?

Freedom is defined in Cambridge dictionary as [8] «the condition or right of

being able or allowed to do, say, think, write, etc. whatever you want to, without

being controlled or limited». With freedom comes the right to freedom of speech,

freedom to choose, freedom of information, freedom to life, the freedom to be free,

 15

etc. Freedom itself as a concept has been limited by human rights and laws, to ensure

that everybody´s freedom is upheld equally. This is something that also apply to

freedom of choice, one person is not free to do whatever choice they like if it restricts

someone else freedom in any way.

Nudging is usually used for good things like making people be healthier, using less

energy on heating and power, choosing green transportation, or saving up to pensions.

But this might not always be the case which is why there is the discussion of the

ethics of nudging, this will be discussed later in -Section 5.5.2.

The form for nudging utilized by this app is digital nudging, [9] «digital nudging is

also about selecting and combining the right set of information in the given context,

so people have better and more relevant information to base their choices on».

Weinmann, Schneider and Brock say [7] that this type of nudging is mostly used in

digital environment but it can be applied beyond this and that digital nudges being

increasingly used to influence real world behavior. There are apps that use nudges,

these are mostly for health and are called (for example mHealth, (Mobile Health)

apps). Not all of these apps use nudge but some of them do. These [10] «applications

have the potential to assist patients in adhering to their physician’s advice in chronic

disease management through the use of persuasive nudge».

In digital nudging [11] to design choices to nudge users the nudge will need to define

a goal, understand the users, and design and test the nudge. For apps that use digital

nudging ease of use is important, as this will help in nudging the users. Nudging is

about making choices easier; an app must portray this in its design. There are a lot of

design decisions a choice architect will need to think about in design the app that will

nudge the users. For example, where to place graphical widgets and their sizes. The

size of the users´ device play an important role in such decisions, here it is very

important to think about the size of phones. The most important thing in design will

be how the users are going to interact with the app.

Apps as digital nudges will focus more on the design of that app, since it needs to be

visually pleasing, not boring, and at the same time not distracting. Apps will often

collect information about the user and create a tailored profile for them so they can be

used better. Apps that do this to nudge are therefore utilizing smart nudging. Smart

nudging is defined as [12] «digital nudging, where the guidance of user behavior is

tailored to be relevant to the current situation of each individual user».

 16

2.2 Swift

Swift is a new language based on Objective-C, produced by Apple Inc. [13] «Swift is

a general-purpose programming language built using a modern approach to safety,

performance, and software design patterns».

Stated on Apple´s website [13] Swift is built to make programming easier both in

reading and writing the code. On memory Swift [13] «managed it automatically and

there is no need for semicolons» unlike in C. Swift [13] «also borrows from other

languages, for instance named parameters brought forward from Objective-C are

expressed in a clean syntax that makes APIs in Swift easy to read and maintain».

Regarding the safety of Swift, it is stated on Apple´s website that [13] «swift was

designed from the outset to be safer than C-based languages and eliminates entire

classes of unsafe code». On Apple´s website it is also stated that [13] «variables are

always initialized before use, arrays and integers are checked for overflow». Also,

[13] «syntax is tuned to make it easy to define your intent — for example, simple

three-character keywords define a variable (var) or constant (let)». Platforms that

swift can be used on [13] «open-source Swift can be used on the Mac to target all of

the Apple platforms: iOS, macOS, watchOS, and tvOS». They also inform on their

website [13] that they also have Swift for some Linux operative systems, and they

have also Swift for Windows 10. To get swift for any Mac OS one only need to install

Xcode. For Linux and windows 10 it is information about how to install Swift and

what else is need for each of these OS´s in [14].

2.1.1 Xcode

Xcode is an IDE (integrated development environment) that is developed by

Apple and that is used by programming language Swift to develop apps.

Integrated development environment is [15] «a program that is used with a

programming language, that helps with debugging, testing and running the

code». This program [15] «will also suggest things while one is writing the

code and telling you when you have written something wrong». It will also

[15] «give you more tools for helping with developing». Xcode is [16]

«integrated with the Cocoa and Cocoa Touch frameworks, Xcode is an

 17

incredibly productive environment for building apps for Mac, iPhone,

iPad, Apple Watch, and Apple TV».

2.3 API

Application Programming Interfaces (API) will be used in implementation of the

features to Google that will be used in this app, like map, places, geocoding,

directions, distance and duration. There is only one way to implement Google´s

features and that is with using API´s. But what is API? API (Application

Programming Interface) [17] «defines how an outside programmer can add

functionality or services to an application or other type of software created by others,

so that the coder does not have to familiarize themselves with the application's source

code».

2.4 HTTP and HTTPS

HTTP (Hypertext Transfer Protocol) [18] «is a communication protocol that is

primarily used to transfer HTML documents between servers and clients using a

transport protocol, usually the Transfer Control Protocol (TCP)». HTTPS is a secure

version of HTTP that [19] «uses HTTP in a combination with Transport Layer

Security (TLS) or Secure Sockets Layer (SSL), which encrypts the communication

session so that an unauthorized person cannot eavesdrop or change data during

transmissions over open networks». HTTPS will be used to access the data provided

by two of Googles APIs; the Directions API and Distance Matrix API. Here there

where two choices in implementation and that was either using HTTP or HTTPS to

access the URL. Here HTTPS was chosen because of its safety.

2.5 CocoaPods

CocoaPods is a library (Gem) in Ruby the programming language and it is used to

[20] «manages library dependencies for your Xcode projects». On the CocoaPods

website it is informed that [20] «the dependencies for your projects are specified in a

single text file called a Podfile». CocoaPods will resolve dependencies between

libraries, fetch the resulting source code, and then link it together in an Xcode

 18

workspace to build the project. To install CocoaPods on MacOS one has to use the

terminal. The easiest way to install it is to use the following command in the terminal:
sudo gem install cocoapods

This will also install a default version of Ruby on MacOS as well as CocoaPods. This

is because libraries in the programming language are dependent on the programming

language and won´t work without it. On CocoaPods official website states detail of

other ways of installing CocoaPods if needed [20]. To use CocoaPods one will first

need a Podfile, [21] «the Podfile is a specification that describes the dependencies of

the targets of one or more Xcode projects». The file should simply be named Podfile

and one can use the terminal to create it, simply navigate to the folder one would want

this Podfile in and then write the command `pod init´ in the terminal. Pods

themselves will be the outside library that needs to be install into a Xcode project. All

the required pods will be written into the Podfile, as displayed in Figure 1. To install

the pods in the Podfile go to the folder where the podfile is located at and then write

in the command pod install.

Figure 1 How the Podfile looks for this project.

CocoaPods was chosen because it was the easiest option and there was more

information about how to use it with Swift and Google.

2.5.1 Alamofire

Alamofire is one of the many libraries that is available for installation as a pod

through CocoaPods. Alamofire is created by the Alamofire Software

Foundation [22]. Alamofire itself can act as a library in a Xcode project [23]

and «provides an elegant and composable interface to HTTP network

requests». [23] «It does not implement its own HTTP networking

 19

functionality». Alamofire [23] «builds on top of Apple's URL Loading System

provided by the Foundation framework». Alamofire itself can be installed

without CocoaPods, on Alamofire´s official website [24] it is written that it

can be installed with Carthage and manually if one doesn´t want to or can´t use

CocoaPods. The Alamofire library is going to be used in this app to easier

implement the features for this app. This will be because it does the work that

is needed to access the HTTPS request to the Directions API and the Distance

Matrix API.

2.5.2 SwiftyJSON

In Swift dealing with JavaScript Object Notation (JSON) can be difficult and

messy. SwiftyJSON is a library that [25] «makes it easier and less messy to

deal with JSON». JSON [26] «is a text format and it is based on the

programming language JavaScript but is completely independent». To install

SwiftyJSON you can either do it using CocoaPods (by adding it as a pod into

the Podfile), using Carthage or by doing it manually. SwiftyJSON is going to

be used in this app with JSON to make it easier to work with JSON.

2.6 Google Maps

The app require a map that visualize directions, which is offered by Google at a cost

which is reasonable. There will a discussion of why Google was chosen to use as the

map in Section 4.9, since there is a choice between Google and Apples own map. The

author does not know if there is any other than these two that can be used as maps in

implementation of apps. Google was chosen as the map to use for implementing this

app and the features that was used in this app will be talked about below when talking

about Google. Not all Google´s features where required and these will not be talked

about, and this is because they were not necessary for the app to nudge people to

choose green transportation. The only one not used here that can be investigated in the

future when someone continue the work on this app is Maps Elevation API.

Google offers many APIs on their cloud platform, which may be used with their Maps

SDK for iOS API. Not all of these APIs are required to use the Maps SDK and some

of them can even be used without it. [27] «With the Maps SDK for iOS, you can add

 20

maps based on Google maps data to your application». The SDK [27] «automatically

handles access to the Google Maps servers, map display, and responds to user

gestures such as clicks and drags». With the SDK [27] «you can also add markers,

polylines, ground overlays and info windows to your map». These objects provide

additional information for map locations and allow user interaction with the map. To

get the Google Maps library into a Xcode project one can either do it through

CocoaPods as a pod in the Podfile or through Carthage or install it manually and add

it to the project.

Google Places were also used as an API in this app, this is one of the APIs that can be

used without the Maps SDK. [28] «The Places SDK for iOS allows you to build

location-aware apps that respond contextually to the local businesses and other places

near the device». The Places SDK is called Places API in Google Cloud Platform and

with it [28] «you can build rich apps based on places that mean something to the

user». With Google Place one can have the autocomplete feature when searching for

places and addresses. To get Google Place library into the Xcode project one can use

the same methods as for Google Maps SDK.

Other APIs that were used in this app are Directions API, Distance Matrix API and

Geocoding API. The Geocoding API can either geocode and address into a location or

reverse geocode a location into an address. It provides a direct way to access these

services via an HTTP request [29] «that is returned in JSON or XML format». The

Directions API [30] «is a web service that uses an HTTP request to return JSON or

XML-formatted directions between locations». With this [30] «you can receive

directions for several modes of transportation, such as transit, driving, walking, or

cycling». You can use this API [30] «for direction calculations that respond in real

time to user input (for example, within a user interface element) ». The Distance

Matrix API [31] «is a service that provides travel distance and time for a matrix of

origins and destinations». The API returns information based on the recommended

route between start and end points, as calculated by the Google Maps API, and

consists of rows containing duration and distance values for each pair. This API like

the geocoding API and directions API also uses an HTTP request and is return in

JSON or XML format. These three APIs use HTTPS for security, but it is also

possible to use HTTP. Here the output for both Directions API and Distance Matric

API were chosen to be JSON, this is because it is slighter easy to use in Swift than

 21

XML and used more be other people. Also, there is an outside library for parsing

JSON in Swift that make JSON even easier to use, this being SwiftyJSON.

 22

3 Design

This app was designed and made in a particular way to nudge the user toward the choice of

green transportation. This design and making of this app will now be talked about.

The author chose in to make the apps in four different views that the user interacts with, this

is because the size of phone screens. Users will need to see everything in this app properly

and this is the reason for dividing things in this app out in more than one view. In one view

the user can click buttons and textfields that will send them to other views, in another view

the user can write in an address or place and in the other two views the user can view the

map. One allows the user to choose an address or place from the map, and the other will have

a map with the directions for the planed route. These views will be named view,

autocomplete, map, and routes´ view

The app will start in the view that look like this Figure 2, the user will first need to give

access to the app to send notification, give access to the data in the calendar and the access to

the location of the user. The only thing that was design with this access notifications are the

text that show up, the rest of it is a default design from Apple. This way the user know they

are giving access to the app. To see how this access notifications looks like see Figure 3.

Figure 2 How the view the app will start in looks like

 23

Figure 3 How these access notifications looks like

The view consists of a label, that is on the top of the screen, this is the name of the app. Then

Two other labels that will tell the user which textfield that is from and to. Then two textfield

that will be empty until the user chose and address from the map or autocomplete. When the

user clicks the textfield they will be sent to autocomplete, see Figure 5. The labels will be

near the textfields, so the user understand these are what the app refers as from and to. Then a

button called search so that the user understand they will now search for a route between

from and to. This button will either send the user to routes or show an alert that tells the user

that both textfields need addresses in them. This button will only be a little down from

textfields, so the user understands the button is connected to the textfields. To see how this

alert will look like in the app see, Figure 6. To see what happens when both textfields have

addresses and the search button gets clicked see Figure 7. Then at the bottom the button for

the map will be, this will be a picture of a map, so the user understands what this button is

for. When this button is clicked, the user will first need to choose from or to, so that this

address can be put back in the right textfield. To see how this looks like in the app for the

user see Figure 8. Then after the user choose what they want the user will be taken to the

map. Then the last button will let the user choose their preferred transportation. To see how

this look like see Figure 9. To see a description with arrows to all labels, textfields and button

look at Figure 4.

 24

Figure 4 All the labels, textfields and buttons with arrows and descriptions

 25

Figure 5 This picture will show what happened when the user click on of the textfields. The
user will be taken to the autocomplete this transition is show with arrows from the textfield to
the autocomplete. It also shows how it looks like when the user writes in a letter, the
autocomplete will give suggestion from the first letter.

Figure 6 What the alert the user will be meet with if they click on the search button with
either none or only one textfield have an address.

 26

Figure 7 When both the textfields have addresses and the user click the search button they
will be taken over to routes, this transition is shown with an arrow.

Figure 8 When the map button gets clicked the user will get up a white notification box they
can choose from location, to location or close. When the user clicks the from or to, they will
be taken to the map this transition is shown with arrows. If the user clicks on close they will
be taken back to view and this transition is shown with an arrow.

 27

Figure 9 when the user click on the change travel mode they will be meet with a white
notification box where they can click on the transportation they want to utilize. They can
choose between walking, bicycling, and driving and when they choose something the app will
take them back to view. They can also close the notification box by clicking on close if they
want to choose none.

The Autocomplete view will have a search field that the user can write in and give the user

suggestion on the first letter typed and then when the user chose an address or place it will go

back to the view and the address will be in the textfield that the user clicked on to be sent to

autocomplete view. See how this autocomplete looks like by seeing Figure 5, it will show

also how it look like when the user writes in a letter and that the autocomplete comes with

suggestions.

The map view will have a map with a marker on it, this marker will show the address to

where it is localized on the map. When the user clicks on the map the marker will move to

where the user clicked. A button that when clicked will find user location and the map will

now be localized to where the user is. Another button that when clicked will pick the location

that the marker is on and go back to view and the address to the marker will now be in the

corresponding textfield. To see how this look like in the app see Figure 10. A label that will

 28

give information about business when they get clicked on the map by the user. To see how

this looks like in the app see Figure 11.

Figure 10 The map with a marker on it, the marker will in the start be localized to the user
current location. When the marker gets clicked on it will show the address to where it is
localized. Then when the user clicks pick location, the user will be taken back to view and the
address to where the marker where will now be in the textfield. All transition is shown with
arrows.

 29

Figure 11 When a business gets clicked on the label will get a text with the information about
the business like name, rating and if it is open now.

The routes’ view will have a map with a drawn route with the input that the user gave. It will

have two markers that will be the address that was put in the textfields. It will have a label

that tells the user what the textfield is for. It will have a textfield that when clicked on the

user can write in the time they used on the planed route. When the user clicks on this

textfield, it will open a keyboard that the user can use to write the time they used, to see how

this look like see Figure 13. It will have a button that when clicked on will localize the user

on their current location. It will have a label that tells the user the distance and duration of the

route. It will have a button dismiss that when clicked will go back to the view so the user can

plan a new route if needed. To see a description of the labels, textfield, map and the buttons

see Figure 12.

 30

Figure 12 This picture show the route view with a description about all the labels, textfield,
and buttons do and arrows to all of them.

 31

Figure 13 When the user click the textfield a keyboard will show up and they can write in the
time they actually used.

To see a complete picture of all the views and how they interact with each other see Figure

14. Here there will be arrows that show what happens when the user clicks on a buttons or

textfields.

 32

Figure 14 In this figure there will be an overview over what happens when the user clicks
different buttons and textfields, this will be shown with arrows.

 33

4 Implementation
The app was implemented in a specific way to be able to all the things to nudge people

towards a green transportation. How this app was implemented will now be talked about.

4.1 How this app was made

This app was made using Xcode and the first thing that had to be done to start the

making of this app is to make a new project in Xcode. When one makes a new project in

Xcode one gets the choice of which application one wants to make Figure 15.

Figure 15 How it looks at the start of creating a new project in Xcode.

Here the choice of making a single view app was made, which just means that the

project starts with one view controller. More views can be added if the app one is

designing needs it. This app will start up in a window and then will make other windows

pop up when the user clicks buttons and textfields. These windows are called view

controllers and will be the size of the version of iPhone one choses to go with. Here

Xcode will have different iPhone version to the newest and to the oldest. The iPhone

version that was chosen for this thesis is iPhone SE 2nd generation, this is because this

is the iPhone the app will be tested on and the design of the app most match the phone.

When the project has been made, go to the storyboard, this is where the design of the

app is made, in here there will already be a ViewController with a view Figure 16.

 34

Figure 16 How this ViewController looks in the storyboard.

4.1.1 Designing the app in storyboard

The first thing that was added is a label that was put at the top of the screen

and dragged out, so it went all the way to the edges. In this label the name of

the app got written, which is Nudge. This text also got centred, because then

the text is where it is natural to look. The reason for the label getting dragged

out all the way to the end of the screen so it is visible and a nice way of

creating a way to put it apart from the background. Then another label was

added, a little bit under the previous label, that also got dragged all the way to

the edges. Then “From location” got written into this label and this text also

got centred. Then a textField got added under the second label, this textField

got dragged out but not all the way to the edges. The label before the textfield

will tell the user that this textfield is where they put in where they want to

travel from. In this textField nothing is written since it is going to take in user

input. The details of how the textfield works will be talked about later in

making the code for the ViewController. Then a new label was added,

this label is a little way down from the textField and got dragged out all the

way to the edges, in this label it got written “To location” and it also got

centered. Then another textField got added a little way down from the third

label, this textField got dragged out a little but not all the way to the edges and

 35

so it aligned with the previous textField. This label with the textfield will also

inform the user that they can interact with this textfield to put in where they

want to travel to.

Then a button got added a little way down from the recently added textField,

this button got dragged out all the way to the edges and then search got written

into this button and the text got centered. Then a toolbar got added, this was

then moved to the end of the screen and was dragged out, so it covered at the

edges. In this toolbar a fixed space was added, then a bar button was added.

The fixed space was added because then it is space between the button and the

edge of the screen. This bar button will just have the image of a map, since this

button is going to make the app show the map either from location or to

location. Then a bar button was added, into this it was written “change travel

mode”, then a fixed space was added between this bar button and the previous

bar button. Then a flexible space was added after the "change travel mode"

button. Then every label, button and the toolbar background color were

changed to blueberry blue, and the text color was changed to white color. Then

the view´s background color got changed to sky blue, so it is a little lighter

blue then the rest is. Then there will be a need to add constraints so that it stays

this way int the runtime for the app and, so it stays the same for all versions of

iPhones. To add this constraint, it will be easiest to select each of the labels,

textfields, button and toolbar (the buttons in the toolbar will not need

constraint since they will be at the same place as the toolbar) separately and

then right click on the symbol that looks like a tie fighter Figure 17.When this

is right click it will come up a text that looks like this Figure 18, under

Selected Views click on add missing constraints.

Figure 17 how this symbol looks like

 36

Figure 18 How it the text that shows up when it is right clicked looks like

After all this the first ViewController is done, and this is the controller

that the app will start in when it gets launched. The end result will look like

Figure 19 and to get this end result it has to be designed in the way that is

explained above.

Figure 19 How the first view will look like.

The app will need more view controllers, so two more view controllers got

added in the main storyboard. These view controllers each got a name

MapsViewController and RoutesViewController, they also got

 37

their own storyboard id which is the same as their name. The

ViewController that was started with also got a storyboard id which is the

same as its name. These storyboard ids will help with connecting the

controllers with each other, and go to different views in the app.

The MapsViewController, is the view controller that will show the map

and allow you to pick a place from the map and will also show the previously

mention information about business, like name, rating and if it is open right

now. So here a button got added, that will be called “pick location”, and will

be at the bottom of the screen all the way to the right and will be dragged

someway up and to the left so the text is visible. The button background color

got changed to blueberry blue and the text color gets changed to white. Then a

label got added and put at the bottom to the left and dragged someway up and

to the right where the button is, it will be dragged as close as possible without

covering the button. Then the text will be removed from the label, and the

background color will be changed to the same as the button and the text color

will be changed to white. Also, the number of lines the label can take in will

be changed to 2 and the size of the text to systems 13.0. This will be so that it

can display the whole info for the business, since the length of business names

varies. Then a view got added, this got dragged out, so it covered everywhere

on the screen except at the very bottom where the previous added button and

label are. There is no need for color on the background since the map will be

added into in the runtime for this controller. Then the constraints get added to

all of them, so they stay at the same position and no clipping happens at run

time and it also looks the same on other versions of iPhone. The end result will

look like Figure 20, this will not be the way the app looks when it is launched

since the map will be where the white is. How to get this map in this controller

will be explained later, but to get the end result of this view controller the

design that is described above need to be used.

 38

Figure 20 How the second view will look like.

The RoutesViewController, is the view controller that will show the

routes between the two location that were written in the textField in the view

controller and will show information about distance and time and be able to

take in input from the user if duration is different than displayed duration (this

duration will then be saved and used later for the user). It will also have a way

of dismissing the route and go back to the view controller to make a new one.

A button got added at the very bottom at the left and is called “dismiss” (since

it will be used to dismiss the routes controller). The dismiss button got dragged

out, so the text is visible. The background color got changed to blueberry blue

and the text color got changed to white. Then a label got added at the very

bottom at the left, then it got dragged a little up and to the button without

covering it. Then the background color and the text color got changed to the

same as button, and then the text is removed. Then a label got added at the top

and got dragged out all the way to the screen and its background color and text

color got changed to the same as the button. Then in the label the text was

replaced with “Write in time actually used on route”. Then a textfield got

added at the bottom of this label, this textfield gets dragged out all the way to

the edge and then the background color got changed to aqua and the text color

got changed to white. The color was chosen so that the textfield will be visible

and stand out. The keyboard to the textfield got changed to number and

 39

punctuation and set the return key to done. In the placeholder write in this

“Enter time used with mins and hours at end”. This will be so that the user gets

up the number part of the keyboard and so they can click done to exit out from

the textfield. The placeholder is there so they can see what this textfield is for

and what to write in it, but it will not come up as text when they write in the

textfield and then they don´t need to remove this text before writing. Then in

the custom class to the textfield in the storyboard Figure 21, in the user defined

runtime attributes add a new key. In the text to this key write in

placeholderLabel.textColor and change the type to color and then change the

color to white. This will make the placeholder text be the color white in the

runtime for the app. The reason for the white text color is so that the

placeholder text is visible. Then a view was added and dragged so it covered

every edge except the bottom and the top and got dragged as close to the

button and the label as it could without covering it and got dragged the other

way as close as it could to the textfield. Then the constraints got added to all of

them, so they stay the same place in run time and in other versions of iPhone.

The end result will look like Figure 22, to get this end result the design steps

described above need to be followed.

Figure 21 how this looks in the storyboard

 40

Figure 22 How the third view will look like.

4.2 Making the files and the classes for the controllers and
connecting things from storyboard

After the main storyboard is finished it is time to connect things into their

corresponding classes, but first two more files need to be added to the project. One

will be called MapsViewController and the other RoutesViewController. These files

will only have one imported library in them which is Foundation, but this library is

not needed so it will be removed. Both of them will need to import the UIKit library.

Then in the MapsViewController file make a class called MapsViewController and

that will inherit from the UIViewController class (therefore the UIKit library was

needed, since this class is in this library). This will make MapsViewController a

subclass of the UIViewController, and let it access functions that are in that class it

inherited from.

Then in the RoutesViewController file also make a class, but this time called

RoutesViewController and will also inherit from the UIViewController class. There

will already be a ViewController file that has the imported library UIKit, and it will

also have a class called ViewController class in it. This class will already be set to

inheriting from the UIViewController. Now some of the things in the storyboard need

to be connected with the classes to the different controllers. So first the

ViewController, here both the textfields will be connected into the ViewControllers

 41

class. They will each be connected as variables at the top inside the class, the first

connected will be the first textfield that was added in the storyboard and this textfield

will be named fromLocationTextfield. The second one will be connected and will be

named toLocationTextfield. They are given these names so that it is known which

textfield is from the location and which is to location. Then the three buttons will each

be connected as functions. The first one connected is the search button’s function will

be called searchRoutes. The bar button with just a map as image will be connected

and called showTheMap. The bar button called change travel mode will be connected

and it functions name will be changeTravelMode. The function searchRoutes will

direct the user over to RoutesViewController where their route gets drawn. The

function showTheMap will first make the user choose from or to location and then

direct the users over to the MapsViewController where they can pick their location

from the map. The function changeTravelMode will give the user the option to choose

which mode they want to travel with. How these function does this will be presented

in 4.3.2, 4.3.3 and 4.3.4.

Then in the MapsViewController class the second UIView in the

MapsViewController will be connected as a variable and called mapView. The reason

for this being a variable is because it will display the map, and this is done thought the

class GMSMapView. It will need to display this map though another variable because

otherwise the map will show up without some essential thing. It will be map without a

marker and the location button and it will no longer be centered to Tromsø. This will

be a map that can´t be used, so for this reason this mapView will be a UIView when it

is connected and will use another variable that will be GMSMapView that will be

display on the frame to the mapView.

Then the label will be connected as a variable and called businessInfo. Then the

button pick location will be connected as a function and called pickLocation.

Then in the RoutesViewController class first connect the textfield and call it

timeActuallyUsed. Then the rest of the connections will be the same as for the

MapsViewController, expect the label and the button (this will be the label at the

bottom). The label will be called info and the button function will be called

clearScreen (it can´t be named dismiss, since it already exists an in-built function in

swift that is named that). This function when clicked on will return the user to the

view controller. In this function the inbuilt function dismiss will be called, which

takes in animated and completion. Set animated to be true and completion to be nil.

 42

After this it is time to close Xcode and open the terminal and go to the folder for this

project, then in the terminal write init pod, which will create a new cocoa podfile.

Then open that pod file and write in pod 'name', where the name will be the name of

the library that needs to be installed through cocoapods. These libraries are

GoogleMaps, GooglePlaces, Alamofire, SwiftyJSON.

In AppDelggate, before the initialization of the class, import both GoogleMaps and

GooglePlaces. Then in the class, in the function didFinishLaunchingWithOptions call

GMSServices.provideAPIKey("api key") and call

GMSPlacesClient.provideAPIKey("api key"). The api key will be gained through

google cloud platform, to get a working API key there needs to be a billing account

linked here. This is because Google has a pay as go to use all their APIs.

ViewController, MapsViewController and RoutesViewController will need to import

GoogleMaps, GooglePlaces, and CoreLocation, RoutesViewController will also need

to import Alamofire and SwiftyJSON. ViewController will need to also import

EventKitUI, EventKit and UserNotifications.

4.3 Implementing the app in ViewController

In ViewController, before the initialization of the class but after all the libraries

are imported make an enumeration called TravelModes. Inside TravelModes define

three different cases walking, bicycling, driving and default. Enumerations [32]

«defines a common type for a group of related values and enables you to work with

those values in a type-safe way within your code»

This ViewController will need to take in the protocol UITextFieldDelegate, to

manage the textfields. It will also need to take in the protocol

CLLocationManagerDelegate, to be used with the location manager object, which is

used for location. Then inside the class define a variable called fromLocation and set

it to be optionals (its value needs to be defined later) of type CLLocationCoordinate2D,

which is a structure that will make this variable into a coordinate. Optionals [33]

«represents two possibilities: Either there is a value, and you can unwrap the optional

to access that value, or there isn’t a value at all». They are used when the value is

absent, this might be because it needs to be set later. It must be unwrapped before it is

used, except for when it is set to be something, and it might need to be checked to see

if it has been set yet. Then define a variable called toLocation and set it to be

 43

optionals of CLLocationCoordinate2D. Then create a variable called currentLocation

and set it to be optionals of the CLLocation class. Then define a variable called

locationManager and set it to class CLLocationManger, this will help when

tracking the user’s location when they are using the app.

Then define a variable called fromOrToLocation and set it to true, which will make

this variable be type Boolean and will make it start with being true. A Boolean is a

type that can only be two things either true or false. Then define a variable called

travelModes that is set to be the default case from the enumeration Travelmodes

(TravelModes.defualt). Then define a variable called center and set it to be

UNUserNotificationCenter class current method. Then define a variable

called titles and set it to be an empty array that is the type string. Then define a

variable called startDates and set it to be an empty array of the type Date. Then define

a variable called locations and set it to be an empty array of the type string. Then

define a variable called eventStore and set it to be the class EKEventStore. Then

define a variable called calendar and set it to be the Calendar class current method.

Then define a variable called intervalBetween and set it to be an optional of type Date.

Then define a variable called eventStartDate and set it to be an optional of type Date.

Then define a variable called eventTitle and set it to be an optional of type string.

Then define a variable called eventLocation and set it to be an optional of type string.

Then define a variable called date and set it to be an optional of type Date.

4.3.1 Setting up the view to the controller and locations

Then define a function called viewDidLoad, which will already be an inbuilt

function in Swift that belongs to the UIViewController class, that

ViewController will inherit from it. Since this is a function that is inherit

from a class there will be a need to call the original function, because if not

this definition of the function will override the original things in that function.

Since the original function calls the view and makes it load in this is not

something that is wanted, so the super of viewDidLoad will be called in here.

Then after that in the function one can now do what one wants to be done

when the view loads in. Here there are some variables that needs to be set up

that were declared before this function. So, the textfields delegates will be set

to be themself. If these are not set, they will be nothing, and this will be a

 44

problem. Then the location manager delegate will be set to itself. If it is not set

it will be nothing, and this will be a problem. Then after these things are set,

there will be a need for location to be set, call the location manager function

called requestWhenInUseAuthorization, this function will be used to request

an authorization for location. Then call the function startUpdatingLocation,

which will update the location to the user’s current location. For the location to

complete work there is also a need to put something into info.plist, the

following privacy permissions need to be added into the plist file:

The key: Privacy - Location When In Use Usage; The key: Privacy - Location

Always and When In Use Usage Description; The key: Privacy - Location

Always Usage Description. The description for all these keys will be: This app

requires usage of location. These will make the user be able to click when the

location should be used, either in only the app, or always, they can also choose

never, but then the app will try to force them to turn on location when the

directions routes get drawn. Since it will need location to tell the person which

roads they should take.

Then define the inbuilt function locationManager (_ manager:

CLLocationManager, didFailWithError error: Error). Inside this the error

needs to be handled, the way to do this is create an alert with the title "Error:"

and the message "\(error)". The message will show what the variable error is,

the way the error is handled will be talked more about later.

Then after this function define the inbuilt function locationManager (_

manager: CLLocationManager, didUpdateLocations locations:

[CLLocation]), in this function set currentLocation to be last property to the

locations array. This will set the currentLocation to be the last position to the

user. Then call on four functions that will be defined later, requestNotification,

checkStatusAndGetAllEvents, getEventForToday and scheduleNotification. All

these functions will not take in anything and will not return anything. For the

calendar and notification to work there is something that is needed in

info.plist. add keys NSCalendarsUsageDescription and

NSContactsUsageDescription with the description: This app wants access to

your Calendar. Then add the key NSRemindersUsageDescription with the

 45

description: This app wants access so it can send you reminders. These will

give the user the option to either give access or not through a pop-up window.

4.3.2 Implementing the function for the search button

Then inside the RoutesViewController, inside the class define two

variables that are coordinates by using the CLLoctionCoordinate2D and name

them originCoordinate and destinationCoordinate and let them be optionals.

Then back to the ViewController, in the function searchRoutes it needs

first to check if both coordinates (from and to) are not nil. If they are not nil,

create a constant called storyboard and set it to be the UIStoryboard, then

create another constant called VC and set it to a function belonging to the

UIStoryboard called instantiateViewController (withIdentifier: (the

storyboard id belonging to RoutesViewController). Then the coordinates to the

RoutesViewController needs to be set to the coordinates to the

ViewController, then the RoutesViewController can be presented.

If one or both coordinates are nil, define a constant called alert and set it to be

the UIAlertController class (which will create an alert), all calls on

classes will have parenthesis, in these there will be a need to write in three

inputs title, message and preferedStyle. Make the title say, "Both of the address

field need to have an address" and the message say, "Either the from or to

location is not set", the style can be set to alert. There are two styles one can

use depending on how one wants the alert to show up, these styles are alert and

action sheet. They look different when showing up on the screen but there is a

bug with the style action sheet on IOS 12 and up, that has not been fixed yet

(as far as the author have investigated it in 2021). This means that for this app

the style that is going to be used for all alerts will be the style alert. Define a

constant called closeAction and set it to be the UIAlertAction class (which

creates an action to the alert), in the parenthesis there can be three inputs title,

style and handler. All actions can have a handler or not, this handler will create

a callback where one can put in things that one wants to happen when the

action gets clicked, but there will be no need for this in this action. The title

will say “close”, and the style will be set to cancel, this will make the action

close. Then add this action to the alert by using the method addAction and put

 46

in closeAction in the parenthesis to the method. Then present the alert by using

the inbuilt function present which takes in three things, in the parenthesis

write in the alert, then animated: true and completion: nil. This will make the

alert show up on the screen when the button is clicked and one or more of the

coordinates are missing. See how it looks in Figure 23.

Figure 23 What the alert looks like when running the app.

4.3.3 Implementing the function to the map button

Then in MapsViewController define a variable called

originOrDestination and set it to be optionals of type String, then define a

variable called prevVC and set it to be the ViewController class. Then in

ViewController inside showTheMap, create a constant called storyboard

and set it to be the UIStoryboard, then create another constant called VC

and set it to a function belonging to the UIStoryboard called

instantiateViewController (withIdentifier: (the storyboard id belonging to

MapsViewController). Then create and alert with the title "Show the map" and

message "Choose either from or to location:". Then create an action by using

the UIAlertAction function which takes in a title, style, and handler. With the

title “From location” and the style default. Here it will be a need for a handler,

in this callback set originOrDestination (belonging to the

MapsViewController, use the variable VC to get it) to be

"Origin_location" and then call an inbuilt function called present that will

present the MapsViewController. Then create another action with the

 47

title “To location” and style default, here there will also be a need for a

handler, so in the callback to the handler set the originOrDestination to

"Destination_location", then present the MapsViewController by using

the function present. Then create an action with the title "close” and the style

cancel, that will close the alert without changing anything. Then add all these

actions to the alert and present the alert on the screen.

4.3.4 Implementing the function to the change travel mode
button

In the function changeTravelMode create an alert with the title "Travel mode"

and message "Select travel mode:". Then create an action with the title

"walking" and style default, this action will need a handler, so in the callback

to the handler set travelModes to be the case walking from the enumeration

TravelModes. Then create another action with the title "bicycling” and style

default, and in its handlers, callback set the case to be bicycling. Then create

an action with the title "close" and the style cancel, that will close the alert.

Then add all these actions to the alert and present the alert. Then create another

action with the title "driving” and style default, and in its handlers, callback set

the case to be driving. Then create an action with the title "close" and the style

cancel, that will close the alert. Then add all these actions to the alert and

present the alert.

4.3.5 Implementing the calendar and notification feature

Then define the function called requestNotification, in this function call on

center requestAuthorization function. This function will take in an array, in

this array call on the propety alert and sounf. This function will have a call-

back in this callback check if error is not nil, then present an alert for the user.

This alert will have the title "Permission not granted" and the message "this

app will not be able to give any notifications". This alert will have a close

action with the title "close", add this to the alert and then present it.

 48

Then define the function called scheduleNotification, in this function define a

constant called content and set it to be the UNMutableNotificationContent

class. Then set content title property to be the string "You have an event

today". Then set content subtitle property to be the string "It is now 2 hours to

your event starts". Then chekc if eventTitle is not nil, if it is not then set

content body property to be eventTitle. Then set content sound property to be

UNNotificationSound default property. Then chcek if intervalBetween is not

nil, if it is not define a variable called dateComp and set it to be

DateComponents class. Then set dataComp.month to be calendar component

function that takes in the property month and intervalBetween. Then set

dataComp.day to be calendar component function that takes in the property

day and intervalBetween. Then set dataComp.hour to be calendar component

function that takes in the property hour and intervalBetween. Then set

dataComp.minute to be calendar component function that takes in the property

minute and intervalBetween. Then define a constant called trigger and set it to

be UNCalendarNotificationTrigger function which take in dataMatching and

repeats. Put in dataComp for dataMatching and for repats put in true, then

define a constant called request and set it to be UNNotificationRequest which

take in identifier, content and trigger. For idenfier put in the string "identifer",

for content put in content and for trigger put in trigger. Then call on center add

function which take in an input so put in request. This function will have a

call-back and in the call-back check if error is not nil if it is then create n alert

with the title "Permission not granted" and message "this app will not be able

to check calendar for events". Then create a action for closing with the title

"close", add this action to the alert and then present the alert.

Then define a privat function called createDate which will take in an Int called

year and will return an Date. In this function define a variable called

components and set it be the DateComponents class. This will create a new

instance of this class that will not override the last version. Then set

components year property to be year and set components timezone property to

be the TimeZone function which take in one input, put in zero here. Then

return calendar date function as an optional and the function will take in

components as its input.

 49

Then define a privat function called get and in this function define a contant

called calendars and set it to be eventStore calendars function which take in a

input, in here put in the property event. Then create a for loop with the variable

calender and will iterate through calendars. In this for loop create a guard

statement with calender allowsContentModifications property. Then create a

else statement and in this else call the continue statement, this will tell the

guard loop to stop an continue the iteration of the code. Then outside the else

but still in the for loop define a constant called startYear and set it to be

calendar component function which will take in the year property and Date

structure. Then deifne a constant called start annd set it to be createDate

function which will take in an int year, put in startYear. Then define a constant

callled end and set it to be createDate function and for year put in 2025. Apple

will only allow and end year that is four year from the start date. Then define a

constant called predicate and set it to be eventStore predicateForEvents

function which will take in (start, end, and an array of the type Calendar, put it

calender). Then create a constant called events and set it to be eventStore

events function which will take in a input called matching, put in predicate

here. Then create a for loop that will iterate over all event in events, in the for

loop append event title property to the titles array. Append event startDate to

the startDates array, and then check if event location property is not nil and

then if it is not append event location to the location array.

Define the function called checkStatusAndGetAllEvents, and in the function

define a constant called currentStatus and set it to be EKEventStore

authorizationStatus function which will take in EKEntityType event property.

Thn create a switch statement with currentStatus, define a a case authorized

and in this case call on the get function. Then define a case notDetermined in

this case call on eventStore requestAccess function which will take in event.

Then create a call-back with accessGranted and error and then check if

accessGranted, if it is then call on the function get. If not create an alert with

title "Could not get access" and the message "Change settings to Allow

access", define a close action with the title close and add this to the alert and

present the alert. Then define a case restricted in this case creat an alert with

the title "Access is resticted" and the message "if this is not what you wanted

go to setting and change to Allow". Define a close action with the title "close",

 50

add this action to the alert and present the alert. Then define a case denied and

in this case create an alert with the title "Access is denied" and the message "if

this is not what you wanted go to setting and change to Allow", have close

action to this alert and present the alert. Then define a case default and in this

create an alert with the title "Error:" and the message "Something went wrong"

and create a close action to this alert and present this alert.

Define the function getEventForToday, in this function create a constant called

timeZone and set it to be TimeZone current method. Then set calendar

timeZone property to be timeZone, then set date to be the Date class. Then

create a for loop that will iterate over all instances of startDate in startDates. In

this for loop create another for loop that will go through all location in

locations. Then in this for loop create a for loop that will go through all title in

titles, then in this for loop check if date is less than startDate, then if it is then

set eventStartDate to be startDate. Then set eventTitle to be title, set

eventLocation to be location and call a function calles

findDestinationCoordinate that will be defined later. This function will not

take in any inputs or return anything, then create a constant called

oneHourBefore and set it be a Double and the value 7200, which is two hours

in seconds. Then set intervalBetween to be startDate addingTimeInterval

function which will take in one input, put in oneHourBefore with a minus

before it so the value will be substrackted.

Define the function findDestinationCoordinate, in the function create a

constant calles geocoder and set it to be CLGeocoder class. Then define a

variable called lat to be an optional of the type CLLocationDegrees, then

define a variable called lon to be an optional of the type CLLocationDegrees.

Thne call on geocoder geocodeAddressString function which will take in one

input, put in eventLocation, then in the function create a callback with

placemarks and error. Then in the call-back deifne a constant called placemark

and set it to be optional of placemark first property. Then set lat to be the

latitude property access through coordinate property to location which is the

property to placemark, set both placemark and location to be optional. Then set

lon to be longitude property access through coordinate that is a property of

location that is a property to placemark. Also here set placemark and location

to be optional. Then set toLocation to be CLLocationCoordinate2D function

 51

which will take in latitude and longitude, put in lat and lon as inputs here.

Then set toLocationTextfield text property to be eventLocation.

Then in the project setting under Signing & Capabilities add capability called

background modes and click for Background fetch and Background

processing. This will let the notification get sent in the background when they

are needed to be sent to the phone by the app, look Figure 24 at to see how this

look like in the project settings.

Figure 24 How it looks in the project setting with both for Background fetch and Background processing
enabled.

4.3.6 Implementing the autocomplete feature to the textfields

Then in the ViewController file, after the end of the class, create an

extension and call it ViewController and let it take in the protocol

GMSAutocompleteViewControllerDelegate. This protocol is need for using the

GMSAutocompleteViewController class, which is used for getting

autocomplete feature. Then inside the extension define the inbuilt function

textfieldDidBeginEditing, this will be called when one of the textfields are

clicked on. This function will take in an UITextfield that can be used to

know which of the ones are getting clicked. Then inside the function define a

constant called autocompleteController and set it to be the

GMSAutocompleteViewController class. Then create a constant called

filter and set it to be GMSAutocompleteFilter class, this will help with

filtering the autocomplete list. This class will have some properties that can be

set to filtering the autocomplete list to Norway and to only Tromsø. To do this

set filter country property to "NO". Then set the delegate to the

 52

autocompleteController to be itself. Then create a constant called north and set

it to be the result of the inbuilt function CLLocationCoordinate2DMake(),

which takes in two parameter latitude(69.776753) and longitude(19.280129)

and these the author got from Google Maps. This function will take in these

two values and format it to a coordinate data structure. Then create a constant

called south and also set it to be the result of the function

CLLocationCoordinate2DMake(), but this time with latitude(69.552071) and

longitude(18.565459). Then set the filter locationRestriction property to be the

function GMSPlaceRectangularLocationOption() which takes in two

coordinates, so put in the coordinate north and the coordinate south. Then set

the autocompleteController autocompleteFilter to be filter, so that all the

filters get added to this autocompleteController class. This all needs to restrict

the filter for the autocomplete. Now the autocomplete and the textfields needs

to be taken care of. So, first check if the UITextfield is the

fromLocationTextfield, if this is the case then fromOrToLocation to be true.

Then call on an instance method called resignFirstResponder on the

fromLocationTextfield, this will make it no longer be the first responder on its

window. Then present the autocompleController in a new window over the

previous one, this window will show a search field, with a cancel button at the

end, and under it a table where suggestions will be for places and addresses. If

the UITextfield was not fromLocationTextfield, it must be

toLocationTextfield (it can´t be nil, since one of textfield had to be clicked to

call on this function), so in the else set fromOrToLocation to be false. Then

call on resignFirstResponder on the toLocationTextfield, and then present the

autocomplete table in a new window.

Then nothing more is needed in this function, but there are still things that

needs to be taken care of. Like when the place gets chosen, also when the

cancel button gets clicked. So, inside the extension define the inbuilt function

viewController (_ viewController: GMSAutocompleteViewController,

didAutocompleteWith place: GMSPlace). Inside this function check if

fromOrToLocation is true, if it is then set the fromLocationTextfield text

property to be GMSPlace class (which is named place from the function)

formattedAddress property, which will be the address of the chosen place or

 53

address. Then set fromLocation to be place´s coordinate property, this will be

the coordinate to the chosen place or address. In the else fromOrToLoaction is

false, then set toLocationTextfield text to be place formattedAddress property.

Then set the toLocation to be place coordinate property. Then at the end of

function outside the if and else statements, call dismiss, so that it will dismiss

the GMSAutocompleteViewController when something gets chosen.

Then in the extension define the inbuilt function viewController (_

viewController: GMSAutocompleteViewController,

didFailAutocompleteWithError error: Error), in here handle the error. To tell

the users that something is wrong, it will show an alert with the title "Error:"

and the message "\(error. localizedDescription)", the message will tell what

error is. Then create a close action with the title "Close" and style cancel, so

that this alert can be closed, then add this action to the alert and then present

the alert on the screen.

Then in the extension define the inbuilt function wasCancelled (_

viewController: GMSAutocompleteViewController), in this function call on the

inbuilt function dismiss, so it can dismiss the

GMSAutocompleteViewController when the cancel button gets

clicked and bring the user back to the ViewController.

To edit how the colors looks in the GMSAutocompleteController view, go to

the AppDelegate. Then in the function didFinishLaunchingWithOptions access

the variable barTintColor through the UINavigation class and the

appearance function and set it to be UIColor blue. This will make the search

bar color to blue (it exists only two types of blue in Swift UIColor, and it is

system blue, which is light blue and blue, see Figure 25 to see how this color

blue looks like). Then access the variable tintColor also through the

UINavigation class and the appearance method and set it to be UIColor

white. Then access the variable barStyle like the one before and set it to be the

enumeration UIBarStyle default case. Then to get the text white in the search

bar, do this: define a constant called searchBarTextAttributes and set it to be

type [NSAttributedString.Key: AnyObject] and then set it to be

NSAttributedString Key foregroundColor rawValue with the UIColor white

and NSAttributedString Key font rawValue UIFont systemFont. Then set

 54

defaultTextAttributes access through the UITextfield and the appearance

function (which takes in the UISearchBar) to be searchBarTextAttributes.

See how it looks in Figure 25.

Figure 25 What the autocomplete controller looks with search text and suggestions

4.4 Implementing the app in MapsViewController

Then everything with autocomplete and the first View is done. Now the

MapsViewController needs to be fixed, so there can be a map where the user

can choose the location, instead of searching for it with the autocomplete. So, where

the class MapsViewController is defined make it take in these two protocols

CLLocationManagerDelegate and GMSMapViewDelegate. The

CLLocationMangerDelegate, to be used with the location manager object, which is

used for location. The last protocol is for the GMSMapView class, which is for the

map, so its delegate will also help with doing stuff that is needed on the map. Then in

the class create a variable called googleMapView and set it to be optionals of the

GMSMapView class. Then create a variable called geocoder and set it to be the

GMSGeocoder class. This class will help with reverse geocoding latitude and

longitude into a readable address. Then create a variable called marker and set it to be

GMSMarker class, this class will be used for creating a marker on the map. Then

 55

create a variable called address and set it to be optionals of the string type. Then

create a variable called city and set it to be the same as address. Then create a variable

called currentCoordinate and set it to be optionals of the CLLoctionCoordinate2D

structure. Then create a variable called currentLocation and set it to be optionals of

the CLLocation class. Then define a variable called locationManager and set it the

class CLLocationManger, this will help when tracking the person location when

they are using the app.

4.4.1 Setting up the view and location

Then override the inbuilt function called viewDidLoad, then in the function

calls on the super of ViewDidLoad function (which calls the original function

which was inherited from the UIViewController class). Then set the

address to be an empty string and do the same with the city. Then the location

manager delegate will be set to itself. If it is not set it will be nothing, and this

will be a problem. Then after these things are set, there will be a need for

location to be set, call the location manager function called

requestWhenInUseAuthorization, this function will be used to request an

authorization for location. Then call the function startUpdatingLocation,

which will update the location to the user’s current location.

Then after the function ViewDidLoad, define the inbuilt function

locationManager (_ manager: CLLocationManager, didFailWithError error:

Error). Inside this the error needs to be handled, the way to this is create an

alert with the title "Error:" and the message "\(error)". The message will show

what the variable error is, the way the error is handled will be talked more

about in 4.8. Also create a close action to this alert so the user can close this

alert.

Then after this function define the inbuilt function locationManager (_

manager: CLLocationManager, didUpdateLocations locations:

[CLLocation]), in this function set currentLocation to be last property to the

locations array. This will set the currentLocation to be the last position to the

user.

 56

4.4.2 Setting up the map

Then create a function named setUpMap, this function will set up the map

with a marker. In this function create a constant called latitude and set it to be

currentLocation coordinate latitude, then create another constant called

longitude and set it to be currentLocation coordinate longitude. This

coordinate will be the user coordinate, since currentLocation will be where the

user is located. Then set currentCoordinate to be CLLocationCoordinate2D

structure which takes in two inputs latitude and longitude, so here the two

newly constants will be put in. Then check if currentCoordinate is not nil,

since it can´t never be nothing and if it is something is wrong, therefore it will

be an else to the if statement that handles the error. For now, in the else create

an alert with title "Error:" and message "current location is nothing, make sure

positions and GPS is turned on". This alert will have a close action and will be

present for the users, this way the users will know something is wrong and that

they can try to make sure their GPS and positions is turned on. In the if

statement create a new constant called camera and set it to be

GMSCameraPosition class camera function, this function takes in three

inputs latitude, longitude and zoom. Put in the two constants latitude and

longitude and set zoom to be 10.0. This is how much the camera starts zoomed

out, and it needs to be 10 so the user can see the whole city. The zoom levels

inputs values can be from 1 and up to 20, and the higher the zoom value is the

closer the zoom level of the map will be. Then set googleMapView camera to

be the newly created camera and set googleMapView mapType to be normal.

This means that the map will be the normal map, there are others map types to

choose from. A feature where one chooses which map type one wanted could

be implemented to create it more friendly to the users. This is something to

think about when someone is continuing the work on this app. Then call on

geocoder (which is the GMSGeocoder class) reversGeocodeCoordinate

function, which takes in a coordinate and a completionHandler. To get the

coordinate use CLLocationCoordinate2D struct and put in the latitude and

longitude constants into it. The completion handler is there to handle the

callback which is invoked with the reverse geocoding result. For that reason,

after the curl bracket write response, error in, and click enter between curl

 57

bracket and response. Then still inside the callback if error is nil (which mean

there is no error), if (create a new constant called result) is the response?

firstResult(). The question mark is for unwrapping the optionals response,

firstResult () will get the first result for the response (which get it from the

reversGeocodeCoordinate function). Then in the if statement set

googleMapView delegate to itself, then create a constant called lines and set it

to be result lines (let this be optionals) and cast it to the type of array that takes

in type string. Then set the city to be result locality, this locality will be where

the user is located now. Then set marker (GMSMarker class) position

property to be the current coordinate, do this by using the

CLLocationCoordinate2D struct and put in the constant’s latitude and longitude

in the input field. Then set marker snippet property (this property will show a

text when the marker is selected) to be lines joined (which is a method and

takes in a separator, put in here "/n"). The separator will create a separation

between every new line in the text to the snippet. Then set marker title

property to be result locality, make sure this is not nil by using two question

marks (this is the way of checking a value is nil without an if statement), if it is

it will return a string that says "Unavailable". While if it is not nil the string of

text that is in locality will be shown instead on the marker title. Then set the

address to be lines joined with the separator "/n". Then marker will have its

own map property set to be the googleMapView. Then create an else statement

to the previous if statement, this means the unwrapping, unwrapped nil. So, in

this else create an alert with the title "Error:" and message "please try again

later" and with a close action and present this alert.

This will be everything that is needed for this function, so outside this function

override the inherit (this was inherit from the UIViewController class)

function viewDidAppear (which takes in a Boolean, in this function call the

super (the original function) of the viewDidAppear(true) function, if this is not

called this define will override the original function completely, and this not

something that is wanted. Then after this set googleMapView to be

GMSMapView class, the reason why it is set now and optionals before this is

because now the view has appeared, and it can be set. Then set

googleMapView to be GMSMapView (frame: mapView.frame), this will make

 58

it so that the frame to the googleMapView will be the mapView frame. Then

set googleMapView.isMyLocationEnabled to be true, the

isMyLocationEnabled is for creating the blue location dot on the map. Then to

create the location button set the property myLocationButton (belonging to the

settings which is a property of googleMapView) to be true, when this it is

clicked it will center the map back to the blue dot. Then add a subview of

googleMapView to the view, this will make google maps show up on the view.

Then call on the setUpMap function.

4.4.3 Implementing the function to the button pick location

Then in the function pickLocation (which is connected through the storyboard),

check if currentCoordinate is not nil. If it is just dismissing this view and go

back to the previous. If it is not then creating a switch statement with

originOrDestination variable, then create two cases and on default. Set the

first case to be "Origin_location", in this case set prevVC (which is the

previous View) fromLocationTextfield text property to be address. Then set

prevVC fromLocation to be currentCoordinate, then dismiss this view and go

to the previous view. Set the second case to be "Destination_location", then in

this case set prevVC toLocationTextfield text property to be address and set

prevVC toLocation to be currentCoordinate. Then dismiss the

MapsViewController and go back to the ViewController.

4.4.4 Implementing so the marker moves when the user click
somewhere on the map

Then outside the class create an extension of MapsViewController, in

this extension define the inbuilt function mapView (didTapAt coordinate:

CLLocationCoordinate2D) belonging to GMSMapViewDelegate protocol. This

function will be called when the user taps a location on the map where the

current marker is not at. In this function the marker needs to be moved to the

new location, so set the currentCoordinate to be coordinate that the function

takes in (since this will be the new coordinate the user selected on the map).

Then call on the geocoder reversGeocodeCoordinate, which takes in

CLLocationCoordinate2D and completionHandler. For the

 59

CLLocationCoordinate2D (which takes in latitude and longitude) put in

coordinate latitude and coordinate longitude. For the completionHandler do as

in setUpMap reversGeocodeCoordinate, and in this reversGeocodeCoordinate

function callback do the same as in setUpMap.

4.4.5 Making the information about the business show up the
label

Then in the extension define the inbuilt function mapView

(didTapPOIWithPlaceID placeID: String, name: String, location:

CLLocationCoordinate2D) belonging to the GMSMapViewDelegate protocol.

Then create a constant called fields and set it to be GMSPlaceField

(rawValue:). Here one can put in as many fields one wants from the

GMSPlace object, which mean which information one wants from the place

that Google has access to. For what that needs to be done here only three fields

will be necessary and these are opningHours, utcOffsetMinutes and rating.

Then create a constant called placesClient and set it to be GMSPlaceClient

class, then call the function fetchPlace (which takes in placeID,

GMSPlaceField, sessiontoken and a callback) that belongs to placesClient.

For the placeID put in the placeID that already is here by the inbuilt function

mapView, then for GMSPlaceField put in field, for sessionToken set it to

nil and then the callback put in (place: GMSPlace? error: Error?) in. Then

continuing still in the callback check if error is there (if it is not nil), if it is

then make an alert with the title "Error:" and message

"\(error.localizedDescription)" and also make a close action and add it to the

alert and then present the alert. Then continuing in the callback check if the

GMSPlace (with using the variable place) is not nil, then if it is not creating a

constant called isOpen and set it to be place isOpen function (this function will

return one of the cases from the enumeration called GMSPlaceOpenStatus).

Then create a constant called openString and set it to be an empty string, then

create a switch statement with isOpen constant, then create two cases and one

default. Make one of the cases open from the enumeration

GMSPlaceOpenStatus, in this case set the openString to be the string "This

place is open now". Then make the other case closed from the same

 60

enumeration as open, then in the case set the openString to be the string "This

place is closed now". Then in the default case set openString to be the string

"Open and close time is not available". Then after this switch statement is

finished creating a constant called rating and set it to be place rating property.

Then create a constant called ratingString and set it to be the string "rating:

\(rating)" (this will convert the constant rating with is an int into an string with

some text before to tell the user that this number is the rating, Then set the

businessInfo text to be name (get this from the inbuilt function) plus this string

", " (this is to create a comma and a space between every new information

thing about the business) plus ratingString plus this string ", " plus openString.

Now when the user taps a business it will come a text in the label with name,

rating and if it is open, closed, or unknown. Then the

MapsViewController is done, and now only the

RoutesViewController is left.

4.5 Implementing the app in RoutesViewController

So, in the RoutesViewController where the class is defined make it takes in

two protocols CLLocationMangerDelegate and GMSMapViewDelegate.

Then in the class create a variable called locationManger and set it to be optionals of

the CLLocationManager class. Then create a variable currentLocation and set it

to be optionals of the CLLocation class. Then create a variable called

currentCoordinate and set it to be optionals of the CLLocationCoordinate2D protocol.

Then create a variable called prevVC and set it to be ViewController class, since

there are things needed from this class. Then create a variable called googleMapView

and set it to be optionals of the GMSMapView class. Then create a variable called

geocoder and set it to be GMSGeocoder class. Then create a variable called polyline

and set it to be an empty array which takes in GMSPolyline class type. Then create

a variable called transferPolyline and set it to be optionals of the type string. Then

create a variable called city and set it to be optionals of the type string, and then create

a variable called originAddress and set it to be optionals of the type string. Then

create a variable called destinationAddress and set it to be optionals of the type string.

Then create a variable called originMarker and set it to be optionals of the

GMSMarker class, then create a variable called destinationMarker and set it to be

 61

optionals of the GMSMarker class. Then create a variable called totalDistance and

set it to be optionals of the type string, and then create a variable called totalDuration

and set it to be optionals of the type string. Then create a variable called storedOrigin

and set it to be an empty array which takes in the type String. Then create a variable

called storedDestination and set it to be an empty array which takes in the type

String. Then create a variable called storedTime and set it to be an empty array which

takes in the type String. Then create a variable called storedMode and set it to an

empty string, then create another variable called changedDuration and set it to an

empty string. Then create a variable called origin and set it to be an empty string, then

create another variable called destination and set it to be an empty string. Then create

a variable called timeChanged and set it to be false.

4.5.1 Setting up the view and the location

Then define the inbuilt function viewDidLoad and in this function call on the

super of viewDidLoad function. Then set the city to be an empty string, then set

originMarker to be the GMSMarker class, the reason it was first set as

optionals is so it will be only defined when this view did load. Then set

destinationMarker to be the GMSMarker class, then set the delegate to

timeChanged textfield to be itself. Then set up everything that will be needed

for location when the view is loaded in, so set locationManger to be

CLLocationManger class. Then set the locationManager delegate to itself,

then set desiredAccuracy (belonging to the locationManager) to be

kCLLocationAccuracyBest variable (which is a global variable in the library

CoreLocation). Then call on the function requestWhenInUseAuthorization

belonging to the locationManager, and then call on the function

startUpdatingLocation also belonging to the locationManger.

Then define the inbuilt function viewDidAppear (which takes in a Boolean),

then in this function call the super of the viewDidAppear function and put in

true as the input. Now as the view is appearing the googleMapView can be

defined, so set the googleMapView to be GMSMapView class and make it

takes in a frame, where this frame is mapView (which is from the storyboard

RoutesViewController). Then it is time to fix so that the location dot

for the current location as well as the button. So set the isMyLocationEnabled

 62

(belonging to the googleMapView) to be true and set the myLocationButton

(belonging to the setting of googleMapView) to be true. Then add a subview to

the view of googleMapView, do this by using the addSubview method

belonging to the view and make it takes in googleMapView. Then call on three

functions that will be defined later, this function is createMarkersForRoute,

drawRoute and calculateTotalDistanceAndDuration. All of them will takes in

inputs, createMarkersForRoute will takes in a Boolean called isCurrent, as an

input here put in false. DrawRoute and calculateTotalDistanceAndDuration

will takes in a string called origin. Set origin to be a string and inside this

string write in latitude and longitude to originCoordinate and use backslash

opening parenthesis and closing parenthesis to get the value and have a comma

between them. Then put origin in as input in both drawRoute and

calculateTotalDistanceAndDuration.

Then it is time to fix the rest for location so define the inbuilt function

locationManger (didFailWithError error) and in this function the same alert

will be created as in MapsViewController version of this function. The

alert will also have a close action and will be presented if this function gets

called, which it only will if the location failed. Then define the function

locationManger (didUpdateLocations locations), and in here set

currentLocation to be locations (which is an array of the type CLLocation)

last property. This is the last element in the array, which will be the user’s

current position. Also call on the function createMarkersForRoute (put in true

in here as input), drawRoute and calculateTotalDistanceAndDuration and for

the input string create a constant called current and set it to be a string and

inside the string put in currentLocation coordinate latitude and longitude and

use backslash and opening parenthesis and closing parenthesis to get the value

on both and have a comma between them.

4.5.2 Setting up the map

Create the function called createMarkersForRoute and this function will take

in a Boolean called iscurrent and will not return anything. Then inside the

function create a constant called latitude and set it to be the latitude of

 63

coordinate to currentLocation. Then create a constant called longitude and set

it to be longitude of coordinate of currentLocation. Then set

currentCoordinate to be CLLocationCoordinate2D which takes in latitude and

longitude so put in the newly created latitude and longitude. Then create a

constant called camera and set it to be GMSCameraPosition class´s camera

function (which takes in CLLoctionCoordinate2D and a zoom). For the

CLLocationCoordinate2D put in currentCoordinate and for the zoom put in 9.0,

then set googleMapView camera to be the newly created camera. Then call on

a function that will be defined later called reverseGeoCode, this function will

take in these constants’ latitude, longitude, marker and startOrEnd. Put in

originCoordinate latitude and longitude for latitude and longitude, for marker

put in originMarker and for startOrEnd put in true. Then call this function

again but now with destinationCoordinate latitude and longitude,

destinationMarker and false.

Then create the function called reverseGeoCode and it will take in a double

called latitude, another double called longitude, a GMSMarker called marker

and a Boolean called startOrEnd. Then inside this function call on the function

reversGeocodeCoordinate belonging to the GMSGeocoder class (use the

geocoder to access it). This function takes in a CLLocationCoordinate2D (put

in the constants latitude and longitude) and completionHandler. The

completionHandler is there to handle the callback which is invoked with the

reverse geocoding result. So, for that reason after the curl bracket write

response, error in, and click enter between curl bracket and response. Then in

the callback check if error is nil, if it is not handling the error by creating an

alert with a close action and then present the alert. If it is then set the delegate

to googleMapView to itself, then create a constant called lines and set it to be

lines (as optionals) to result and set it as an array that takes in string. Then set

the city to be result locality property, then set marker position property to be

CLLocationCoordinate2D with the latitude and longitude taken in by the

function. Then set marker snippet property to be lines joined function with

separator string /n. Then set marker title property to be result locality, make

sure this is not nil by using two question marks (this is the way of checking a

value is nil without an if statement), if it is it will return a string that says

 64

"Unavailable". While if it is not nil the string of text that is in locality will be

shown instead on the marker title. Then check if startOrEnd is true if it is then

set originAddress to be lines joined by separator string and inside the string

write /n so it will separate at every new line. Then set the marker icon property

to be markerImage function belonging to GMSMarker, this function takes in

UIColor so put in blue. Then if startOrEnd is false set destinationAddress

just the same way as originAddress, then set marker icon to purple by using

GMSMarker markerImage function. Then outside the if and else statements

put still in the callback set marker map property to be the googleMapView.

4.5.3 Getting the distance and duration about route and
displaying it in the label

Then define the function calculateTotalDistanceAndDuration and make it

takes in a string called origin. Then inside this function set destination to be a

string and, in this string, write in destinationCoordinate latitude and longitude

by using backslash opening parenthesis and closing parenthesis on both and

comma between them. Then create a constant called defaults and set it to be

the standard property belonging to the class UserDefualts. Then call on a

function that will be defined later called getStoredTime, this function will not

take in anything or return anything. Then create a constant called travel and set

it to be ViewController (use the prevVC to access it) travelMode. Then

create a variable called tempTravelString and set it to be an empty string, then

create a switch statement by using travel rawValue. This switch statement will

have three cases and one default (there must always be a default with switch

statement). One of the cases will be TravelModes walking rawValue, in this

case set tempTravelString to be the string "walking", then set storedMode to be

tempTravelString. The second case will be TravelModes bicycling rawValue

and in this case set the tempTravelString to be the string "bicycling", then set

storedMode to be tempTravelString. The third case will be TravelModes

driving rawValue and in this case set the tempTravelString to be the string

"driving", then set storedMode to be tempTravelString. Then in the default

case check if defaults string function (that takes in a string called forKey, in

this string write in StoredMode) is not nil. If this is true, then set the

 65

tempTravelString to be defaults string function with the same input as in the if

statement. This will get the last stored mode that the user used. In the else

statement set the tempTravelString to be "walking", this will nudge the user to

walk more. Then after the switch statement create a constant called URL and

set it to be this string:

"https://maps.googleapis.com/maps/api/distancematrix/json?units=metric&ori

gins=\(origin)&destinations=\(destination)&mode=\(tempTravelString)&key=

api_key". This is an URL that will access Google Maps API Distance Matrix,

which will help with finding the distance for the route. This API has three

parameters that are required for using it, these are origin, destination, and a key

(this is the API key that one gets through the Google Cloud Platform). There

are also a lot of optional parameters one could use for this API, but only two

will be used in this app. These parameters are units (which will be which unit

system one wants to use for the app) and mode (which is the mode that was

used for traveling). Then continuing in the function, call on responseJSON

(which takes in a completion handler) belonging to request (which takes in

URL) belonging to the Alamofire library (use AF to access it). For the

completion handler create a callback with Response, then in this callback

check if the case success (belonging to the response enumeration, which

belongs to Alamofire) is result property belonging to Response. Then create a

do statement with a catch statement if it fails. This is because it needs to try to

unpack the json data, so the first thing inside the do statement needs to be

create a constant called json and set it to be try JSON (which takes in data, and

this data will be Response data, make it optionals). Then counting in the do

statement after the try, create a constant called rows and set it to be an

arrayValue (this is from the SWiftyJSON library) of the index string rows in

the array json. The arrayValue will access the value of rows since it will be

optionals. Then create a for loop with a constant i and set it to be 0 and set it to

iterate as long as i is less then count of rows (which is how big the array is)

and let i increment with each iteration. Then in the for loop create a constant

called row and set it to be the index i in the array rows. Then create a constant

called elements and set it to be arrayValue of the index string elements in the

array row. Then create a for loop with j and set it start at 0 and let it increment

 66

with each iteration and make the for loop go as long as j is less then count of

the array elements. In the for loop create a constant called element and set it to

be the elements array with the index j. Then create a constant called duration

and set it to be a dictionary of the index string duration in the array element.

Then check if timeChanged is true if it is then set totalDuration to be

changedDuration. This will set totalDuration to be the stored time. If it is false

then set totalDuration to be a stringValue of the string index text of the array

duration, let both duration and the index be optionals. StringValue belongs to

SwitfyJSON and will access the actual value of text. Then create a constant

called distance and set it to be a dictionary of index string distance of the array

element. Then set totalDistance to be the stringValue of the string index text of

the array distance and set the array and the index to be optionals. Then set info

text to be totalDistance plus a string with space and a comma plus

totalDuration. This is everything that is needed for accessing the distance and

duration from Google on the user created route.

4.5.4 Setting up the function for getting the stored time the user
put in last time

Create the function called getStoredTime, in this function create a constant

called defaults and set it to be the standard property belonging to the class

UserDefualts. Then create a constant called tempStoredOrigin and set it to

be defaults array function, that takes in a string called forKey and in this string

write in StoredOrigin. Then create a constant called tempStoredDestination

and set it to be defaults array function, that takes in a string called forKey and

in this string write in StoredDestination. Then create a constant called

tempStoredTime and set it to be defaults array function, that takes in a string

called forKey and in this string write in StoredTime. Then check if

tempStoredOrigin is not nil and tempStoredDestination is not nil and

tempStoredTime is not nil. This will make sure that it will get the storedTime

when all the stored variables are there, since the storedTime will need to be

with a corresponding origin and destination. In the if statement create a for

loop with i and set it to start at 0 and iterate until it reaches the count to the

optionals of tempStoredOrigin. Then in this for loop create another for loop

 67

with j and set it to start at 0 and iterate until it reaches the count to the

optionals of tempStoredDestination. Then in this second for loop create a third

for loop with k and set it to start at 0 and iterate until it reaches the count to the

optionals of tempStoredTime. Then in the third for loop check if the optionals

of tempStoredOrigin at index i (typecast as a String) is equal to the string

origin and the optionals of tempStoredDestination at index j (typecast as

String) is equal to the string destination. In this if statement set

changedDuration to tempStoredTime array at index k (typecast as a String),

then set timeChanged to be true.

4.5.5 Setting up the function for drawing up the route

Then create the function drawRoute, this function will take in a string called

Origin and it will not return anything. In this function create a constant called

destination to be string and inside the string write in the value of

destinationCoordinate latitude and longitude. To get the value use backslash

opening parenthesis and closing parenthesis on both and use comma between

them to. Then create a constant called travel and set it to be

ViewController´s travelMode (use prevVC to access it since it is an

instance of the ViewController class). Then create a variable called

tempTravelString and set it to be an empty string. Then create a switch

statement with travel rawValue, this switch statement will have three cases

and one default. The first case will be TravelModes case walking rawValue, in

this case set tempTravelString to be the string walking. The second case will

be TravelModes case bicycling rawValue, in this case set the tempTravelString

to be the string bicycling. The third case will be TravelModes case driving

rawValue, in this case set the tempTravelString to be the string driving. Then

in the default set the tempTravelString to be the string walking. Then the

switch statement is done now create a constant called URL and set it to be

string and inside this string put this URL:

https://maps.googleapis.com/maps/api/directions/json?origin=\(origin)&destin

ation=\(destination)&mode=\(tempTravelString)&alternatives=true&key=api_

key. This URL will access the API directions belonging to Google Maps, this

API have three parameters that are required for using it, these are origin,

 68

destination, and key (which is an API key one gets through Google´s Cloud

platform). There are also some optional parameters one could use here, for this

app only mode (mode that are travel with) and alternatives (a Boolean, that is

either true or false, when true let the route have more than one route) are used.

Then continuing in the function, call on responseJSON (which takes in a

completion handler) belonging to request (which takes in URL) belonging to

the Alamofire library (use AF to access it). For the completion handler create a

callback with Response, then in this callback check if the case success

(belonging to the response enumeration, which belongs to Alamofire) is result

property belonging to Response. Then create a do statement with a catch

statement if it fails. This is because it needs to try to unpack the JSON data, so

the first thing inside the do statement need to be create a constant called json

and set it to be try JSON(which takes in data, and this data will be Response

data, make it optionals). Then after the try, create a constant called routes and

set it to be an arrayValue (this is from the SwiftyJSON library) of the index

string routes in the array json. The arrayValue will access the value of routes

since it will be optionals. Then create a for loop with a constant i and set it to

be 0 and set it to iterate as long as i is less then count of routes (which is how

big the array is) and let i increment with each iteration. Then in the for loop

create a constant called route and set it to be the index i in the array routes.

Then create a constant called routeOverviewPolyline and set it to be a

dictionary of index string overview_polyline of the array route. Then create a

constant called points and set it to be stringValue of index string points of the

array route, set both the array and the index as optionals. Then create a

constant called path and set it to be the GMSPath init function which takes in

fromEncodedPath (which is the type GMSPath), so put in optionals of points

in here. Then create a constant called polyline and set it to be GMSPolyline

init function which takes in a path (which is the type GMSPath) so put in a

newly created constant path. Then set polyline isTabbable property to be true.

Then check if i is 0 (this if statement will have an else), which means the for

loop is at the first iteration. If it is then set polyline strokeColor property to

blue, then set polyline strokeWidth property to be five. Then set

transferPolyline to be points, then check if googleMapView is not nil. If it is

 69

not, then create a constant called bounds and set it to be

GMSCoordinateBounds which takes in a GMSPath so put in path as optionals.

Then call on animate function belonging to googleMapView (set this to

optionals), the function will take in GMSCameraUpdate class function fit

which takes in bounds and a constant called withPadding (which is a float) set

this to be fifty point zero. Then in the else to the if check for i is 0, set polyline

strokeColor property to systemBlue color (which is light blue). Then set

polyline strokeWidth property to be four. Then outside the else statement but

still in the for loop call on the inbuilt function append (which will take in

polyline) on the array polylineArray. Then set polyline map property to be the

googleMapView.

4.5.6 Setting up so the user can click the other polylines and
make it more visible than the others

Then define the inbuilt function mapView (which takes in a mapView of the

type GMSMapView and did Tap overlay of the type GMSOverLay). Then

inside the function call on createMarkersForRoute (in here put in true), then

create a constant called current and set it to be a string and inside the string

write the value of latitude and longitude belonging to coordinate belonging to

currentLocation, use comma between them and use backslashes opening

parenthesis closing parentheses to get the value in the string. Then check if by

using the isKind function on overlay, in the isKind function put in a version of

GMSPolyline which is itself. This will check if the user taped a polyline on

the map. Then in the if statement call on the clear function belonging to

mapView which will clear the map for markers, polyline, and ground overlays.

Then call on the function createMarkersForRoute. Then create a for loop with

i starting at 0 and get plussed one up with iteration until it is no longer a

smaller number than polylineArray´s count. Then in the for-loop check if the

overlay is equal to index i in polylineArray, if it is not then it goes to the else

statement. In the else statement call on calculateTotalDistanceAndDuration

and put in current as input, then set strokeColor property to the polylineArray

(use i as index) to be the color systemBlue. Then set strokeWidth property to

the polylineArray with i as index to be four, then set map property to the

 70

polylineArray with i as index to be mapView. Then in the if statement check if

strokeColor property to polylineArray (use i as index) is blue. If it is then set

map property to the polylineArray using i as the index to be mapView. If it is

not then call on calculateTotalDistanceAndDuration and put in current as

input, then set strokeColor property to the polylineArray (use i as index) to be

blue. Then set strokeWidth property to the polylineArray with i as index to be

five, then set map property to the polylineArray with i as index to be mapView.

Then set transferPolyline to be the encodedPath function belonging to path

(set this as optionals) property belonging to the polylineArray (with using i as

index, since this will access the current polyline). Then check if

googleMapView is not nil, if it is not then creating a constant called bounds

and set it to be GMSCoordinateBounds class with the input path property

(as an optional) to polylineArray (with using i as the index). Then call on

animate function belonging to googleMapView (as optionals) with the input fit

function belonging to GMSCameraUpdate, with the input bounds and

withPadding, set this to be fifty point zero.

4.5.7 Managing the textfields in the extension

Then outside the class create an extension to

RoutesViewController that takes in the UITextFieldDelegate

protocol. Then in this extension define the inbuilt function

textFieldShouldReturn, which takes in an UITextfield class called

textField and returns a Boolean. Inside this function check if the

textField text property is not nil. If it is not then, call the method called

insert on the array storedTime, this method takes in an element (to be

added into the array) and a position called at. For the element write in

textField text property as optionals, for the position at write in the

number zero. Do the same (except with different elements) for the

arrays storedOrigin (for the element write in origin) and

storedDestination (for the element write in destination). Then create a

constant called defaults and set it to be the standard property belonging

to the class UserDefualts. Then use the method set belonging to

defaults to store the three arrays storedTime, storedOrigin and

 71

storedDestination and store the variable storedMode. This method will

take in any value and a string called forKey. For the first call on this

method put in for the value the array storedTime and in the string called

forKey put in StoredTime. For the second call on this method for the

value put in the array storedOrigin and in for the string put in

StoredOrigin. Then for the third call on this method for the value put in

storedDestination and for the string put in StoredDestination. Then for

the last call on this method put in for the value put in the string

storedMode and for the string put in StoredMode. Then outside the if

statement and after it call resignFirstResponder on the textField and

then return true. This will make the user be able to go out of the

textfield, even if they have not written anything. This storing will not

take that much space so it can be saved on the phone, and it will not

need to be encrypted since it does not need to be stored safely like a

password. This data will still be safe here since it will be stored in

memory on the phone and can only be accessed through the phone and

not the internet.

4.6 Libraries and programming language

This app was implemented in the IDE Xcode and the programming language used to

implement this app was primarily Swift, but some Ruby was also used. Ruby was

used to get other libraries that does not belong to Swift or Ruby by using Ruby´s

library CocoaPods. These other libraries where Google Maps, Google Place,

Alamofire and SwiftyJSON and were installed by using Cocoapods as pods in the

podfile. These libraries were then imported into the code in Xcode. There were some

of Swift´s own libraries that were also used for implementing this app, these being

UIKIT and CoreLocation.

4.7 Problems

Thing were not intuitive during the implementation of this app. There were a lot of

problems along the way, and they were not always so easy to solve.

 72

4.7.1 Problems with Google´s API

The first issue was getting everything of the API from Google to work

right away, except for Google Maps. The issue was that one needs to have

an account that has billing to use the rest of the APIs at that time, but for

Google Maps one only need an API key through the Google platform and

have the API enabled (this is not the case anymore at the time of writing

this thesis in May in 2021). The cases are that it has not always been this

way with the Google APIs, there was a change like three years ago (in

2017) where one had to have a billed account to use the rest of the APIs.

This information was not easy to find out of this at first, and this was

especially a problem with Google Places, and it would not just work. A lot

of the tutorials about Google Places didn´t mention this, since they were

often more than three years old, and Google has only recently started to

inform about this on their website for Google Places iOS. There was also a

problem with getting Maps to work properly after updating Xcode to

version 11.5 and the solution to this problem was a URL schematic that

was needed in info.plist, this is not required anymore (in 2021). But at the

time it was required to be able to have a functioning map, but it the author

thought that there was something wrong with the version of Xcode. Since

the problem started when running the app after a new version of Xcode

had been installed, therefor an older version of Xcode 11.0 was

downloaded and installed. This fix didn't work at all, and the author had to

consider abandoning Google Maps and use iOS maps instead. First the

reason for why Google Maps were not working were investigated before

abandoning it totally. One solution was found on Google Maps iOS page

and that was that a schematic had to be used to make it work. Now Google

Maps only works if one has a billed account and Google informs about this

on their webpage, the URL schematic can be used to use Google Maps

without API key and a billed account. This will only open their version of

Google Maps and can´t be personalized to the app that someone makes. As

one can see Google changes now and then what their APIs will need to be

run, so the best option when something suddenly doesn't work is to check

 73

their documentation and see if there is any information there about it and

then check Stack Overflow.

Another problem was connected to the API keys from the Google Cloud

Platform, they would just not work in the URLs. The solution to this were

that it was a need to have a wait time of 10 minutes after making them

before they can be used.

4.7.2 Problem´s with CocoaPods

Another problem that came up was with CocoaPods, it would not install

the pods that were needed (like Google Maps). To try and solve this the

Mac was reset to a previous version, in hope that this fixes the problem

with CocoaPods. Since it suddenly did not work as it should after some

update from apple on Mac OS. It did not fix the problem, so other

solutions to this problem were looked into. To fix this problem start by

installing the Xcode Command Line tools in the terminal on the

Mac. What was written to install it was this:

xcode-select –install

After installing the command line tools make sure the Xcodebuild worked

as it should, to do that this needed to be written in the terminal:
sudo xcodebuild -license accept

This would install the Xcodebuild needed for CocoaPods. Then after that

the pod setup needs to be written in the terminal to setup the CocoaPods

environment. After all this it worked to install the pods through

CocoaPods.

4.7.3 Problem´s with Alamofire and SwiftyJSON

There has been some problem in using Alamofire and SwiftyJSON, and

they are were usefully to use with the implementation of the code.

Alamofire and SwiftyJSON are pods that are available through Coacopods.

The problem was with importing the Alamofire and the SwiftyJSON

library in the code. The author figured out how to solve this problem and it

is now working. It was solved through installing the pods again, to do this

one needed to write pod install in the terminal in the folder to the project

 74

and click enter and let it resolve. Then after that is done write in the

terminal pod update click enter then let it resolve. Open xcworkspace, this

will open the Xcode project with the pod files. Then in Xcode go to the

project settings, then add both Alamofire and SwiftyJSON in the project

settings general under frameworks, libraries and embedded content. If they

are already there, then remove them first and then add them again Figure

26.

Figure 26 How the project setting looks like after the Alamofire and SwiftyJSON

framework is added.

Remove Alamofire and SwiftyJSON frameworks from build phase

embedded framework Figure 27.

Figure 27 How the project settings for build phase embed frameworks look after

Alamofire and SwiftyJSON have been removed.

This is a problem that keeps showing up now and then, and this might need

to be fixed by doing the solution that is mentation above before the project

is built and run. Why this keeps happening is not something that was

figured out, it might be that Xcode cleans the build folder and removes the

 75

reference to Alamofire and SwiftyJSON. The solutions do make the error

go away and make the project be built and run again.

4.8 Error Handling

The way that errors were handled in this app was by just creating an alert that would

show up for the user that had information about the error and what was wrong. But

this is not a good enough way of handling error if this app is ever going to be put on

the App Store and be commercialized. There should be more done here, like having a

support feature. This support can be a chat, or through email or through phone. If

there is no support the user can´t get help when the error happens, and it will make

them not use the app or use it less. The reason why it is just an alert that show up is

because this was an easy way to debug when testing the app and an easy way to

implement error handling for now.

4.9 The Choice between Google Maps and Apple´s own maps

There were two maps that where considered for implementation in this app. The

options were Google Maps and iOS own map called MapKit. Since this app was

developed as an iOS app the MapKit would have been easier to use and implementing

when developing the app. On the other hand, MapKits is not that good at seeing trails

like the Lysløypa in Tromsø. Which is a trail one can use to bike and walk across

Tromsø island. Tromsø is a town that consists of the mainland and two islands, where

one is called Kvaløya and the other refers to the island or the Tromsø island. Most

people live or work on Tromsø island, it is where the city center is and where most

businesses are as well as the University of Tromsø and other public institutions. This

is why it really important to have a map that can see the trails, since this can be the

fastest and easiest way to take when walking or biking to places on the island. Google

Maps has the information about the trails and are able to create route through the

trails, and even though it is less simple to use Google Maps when making an iOS app

it was better to use more time on the map implementation than having a map that will

not tell its users of routes that are faster and less known.

 76

5 Discussion

In the start of this thesis there were set some goals that were going to be implemented into the

app to nudge people towards green transportation. The author is now going to talk about if all

of these where achieved, what was learned from them and what the author have shown

through these goals.

The first goal is:

The app will need to be able to let users select an origin and a destination for

their travel. The origin and destination should be possible to identify by having

the user either writing in the address or choosing a location on a map. In its

first version the app will be limited to the city Tromsø. The map will have a

possibility to see establishment as well as the addresses for locations when

zooming in. To help the users when writing in addresses or location an

autocomplete feature will be implemented. The autocomplete should come with

suggestions based on the first letter the user writes and update for each

successive one

The first goal was achieved the test user where able to select an origin and a destination for

their travel, this both through the map and an autocomplete feature. From the information

from the testers the author was able to show that they can make a simple design that is not

boring but not too distractive.

The second goal is:

To implement a way to find the users location so the app can easily find the

starting point. The user’s current location will have a marker that displays the

address of the location.

The second goal was achieved, the app is able to finds the user location and displaying the

address. The app need’s location permission to be granted from the user as well as having the

GPS for the phone to be on while the app is being used.

The third goal is:

 Offer a way for the user to select their preferred transportation mode. A

direction feature must take all the inputs into consideration and show possible

green travel routes. This feature will use the information to calculate the

 77

distance and duration of the travel routes. It will also need real-time updates

while traveling to show the remaining time, and distance and offer new

possible routes from the current location.

The third goal was achieved, the user was able to select their preferred transport mode. The

route was calculated with the user inputs and offered updates in both remaining time and

distance. Through this goal it was learned that everything can be fixed with some time and

patient. Through this the author was able to show a simple design with the help of Google.

The fourth goal is:

There will be a possible to click on an establishment to get more information

about it. This will tell the user some things about the establishment that will

make them use the app. Since they can see name, rating and if it is open now

and this will give them enough information to see if they want to go there and

then they can choose it as a place to travel to. Also, there will be a possibility

to get personalized walking/biking time.

The fourth goal was achieved, the user was able to get information about establishment when

clicking on them and put in personalized walking/biking time. Through here it was learned

how to work with time and inputs from users. Here the author showed they could make a

simple design that the user could interact with.

The fifth goal is:

To have a possible integration with calendars, such as Apple Calendar, might

also be implemented with a notification feature so the users can easily get to

their appointments.

The fifth goal was achieved, it can get events from Apple´s calendar. The app will send a

notification 2 hours before the event and put the location for the event into the destination

textfield. The notification is set to 2 hour and the reason why is so that the user will have

some time to make themselves ready and then to travel to destination. This is because the

notification would not show up if it was in findDestinationCoordinate function and because

of this the duration could not be added to the interval the notification will show up for the

user. The findDestinationCoordinate function is important for the duration since the duration

of the route must be found between current location and the events location and it will need

the coordinate for this. Before this function is called events location will be nil and therefor

duration cannot be found. The Author don´t know exactly why the notification don´t want to

show up in this function, it might be that it gets called too late. Therefore, it set to 2 hours, if

 78

the user has 1 hour travel time, they will then have 1 hour to make themself ready to leave for

the event.

The sixth goal is

The app will also have the possibility to use the data from the GPS trackers in

the buses in Tromsø. This will update the travel information about where the

buses are at the moment and the user can see this information and plan

around it.

The sixth goal was not achieved and through this it was learned that implementing buses into

an app is not easy and will take some time to figure out how to implement.

The last seventh goal is:

To integrate some weather data (i.e., rain, wind, sun, and snow) such that

users may be notified of weather conditions. This integration is important

since it will make it possible to show skiing as a green travel option during

winter conditions

The seventh goal was not achieved and through this it was learned that weather data is not

easy to implement and that it will take some time to implement it into the app.

5.1 How the app was tested

The app was tested on an iPhone SE (2nd generation) by the author, the project was

added to this iPhone. An origin (olastien 4) and destination (UiT) were provided in, this

gave possible routes that could be traveled. It calculated four different routes and the

route through “lysløpa” was chosen and walked. To see if there would be any problem

while walking in the “lysløpa” since it will be important as a walking and biking route.

The author thought the app was easy to use, and all the features functioned as intended.

There was a need for other people to test this app as well, to see if it was able to nudge

them toward choosing green transportation. Due to the covid-19 restrictions, voluntary

test subjects cuold not easily be found since this app needed to be tested in person with

the iPhone. This app was tested with three participants that were given the iPhone and

told what the app was supposed to do by the author. Then these participants tested all the

features and was asked questions about the different features and the design of the app.

All the answers and feedback from the three participants are in Table 1. The question the

where asked where what do you think of design of the app, what do you think about

color, and how is it interacting with the different features. The iPhone had to be

 79

disinfected before giving it to others and when getting it back due to the covid-19

pandemic.

5.2 Result

The author had an easy time using the app and it gave three different routes to walk

from olastien 4 to UiT. The time for the route between prestvannet student housing to

UiT were about one hour instead of the 45 min the app stated the route would require.

It also updated the location to the current position and the remaining time left to walk

when the location button was clicked. When other people got to test the app, the

feedback that was focused on how it was to use and interact with the app. The testers

were also asked if this app would make the choice of green transportation easier.

Some of the feedbacks from the testers of the app is presented in Table 1. The

questions were asked in Norwegian and the answers were given in Norwegian. Both

question and answers have been translated to English.

From tester one: From tester two: From tester
three

Simple Design The textfield in routes
should be white and the
text color should be
black

Thought it was
an interesting
app

Not disturbing The name of the app
should be another color
to display this is the
name, another color
blue.

Different time
on different
polylines,
since they
might be factor
like uphill and
downhill that
play an effect
on the time
used on route.

The button for
changing the
transportation
mode needs to
give feedback on
what is chosen as
a transport mode

The search button
should be another color
or moved to where the
other buttons are, the
show map button can´t
not just be a map

That the dismiss
button should be
renamed back or
return

The textfield should
maybe remove
information when going

 80

back from the
RoutesViewController

Text needs to be
bigger for weaker
sight people

Maybe have
experience point,
and more point
for walking

Table 1 show the feedback from testers

Based on the received feedback much future work remains for the app so that it can

nudge better to make the choice of green transportation. It will also need an info

banner about what it does since this does not come across in the app by itself, and the

author had to explain what it did to the testers.

5.3 Why Tromsø?

There are four reasons for selecting Tromsø as the base town for the Nudge app. The

first one is that it is a town that has very many walking and biking routes that many

people that live here don’t know about to full extent. The second reason is that since

Tromsø only has walking, biking and busses as a green choice it would not be that

much to implement, for example a city like Oslo has also trains and trams that would

need to be looked at during the design of the app. The third reason is that the creator

of this app happen to live in Tromsø, and knowledge of walking and biking routes is

needed to take the best decision during the design of the app, for example recognizing

that Lysløypa is really important for walking and biking routes (and also skiing in the

winter). The fourth reason is that the app had to be tested someway on an iPhone, and

since the app works with a given localization it had to be Tromsø since its creator

lived here and could test it here. So, for these reasons Tromsø was selected as the

town for this app, and why the filter for the autocomplete was restricted to Tromsø.

5.4 The choice of colors for the app

When designing the app, the question of what colors to use came up and what color

would be best to use. When it comes to products and branding the color of it will have

something to say whether it will be bought [34]. Singh goes on to say that [34]

 81

«people make up their minds within 90 seconds of their initial interactions with either

people or products». He also says that [34] «about 62‐90 percent of the assessment is

based on colors alone». The choice was made to go for the color blue in the app, and

this is because it there is a lot of apps that use this color (Facebook, twitter, PayPal,

even the traveling planner called Troms reise that is used in Tromsø) and it seem to

have a positive psychotically effect on people and are not too distracting.

5.5 Should nudges be uses by both business and the government and
why do some want to reject nudges as a concept?

There is a need to discuss some things that make people want to reject the concept of

nudge being used on people by both businesses and governments. One of the things

that people reject nudges based on is the freedom of choice. Another is that they reject

it based on the nudge being used unethically on people. These rejections will now be

discussed separately, and what can be done about these rejections that some people

have, so that the nudges can still be used. There are also some other concerns that

people might have that also will be discussed.

5.5.1 The rejection of nudges on the bases of freedom of choice

Rejection of paternalism and any nudge will usually come from those that

favor the freedom of choice [1]. They reject them on the basis that nudge

breaks the freedom of choices. These people believe that people can choose

for themself the best option and want there to be as many choices as possible.

This is mostly because most of them are economists that believe that people

are rational beings that can always make the best option (they say they take the

best choice for themself therefore others must do so too). Others just want to

have their freedom to do what they want and don´t know what freedom entails.

Economists are wrong, people don´t always do what is in the best interest for

themself, and too many options can make people too overwhelmed and make

them choose nothing or the option that is easiest. It is also the fact that people

usually don´t have all the information they need to make the best decision for

themselves.

There should always be an option with the nudge to not be a part of it. If this is

not a choice in a nudge, then that nudge can be rejected on the basis that it

 82

breaks the right to freedom of choice. The app design in this thesis does not

break any right to freedom of choice, even if localization must be on to use the

app. This is because it will be their choice if they install this app and use it,

they can always uninstall it.

5.5.2 The ethical dilemma of nudging

Some people will try to reject nudges based on nudge being unethical. This

will have something to say for this app since it uses nudge and if nudge is

unethical then the app is unethical. Therefore, there must be a discussion about

nudge being ethical or unethical to figured out if the app is unethical. There

are four commitment that are pointed to when it comes to concern about

nudging: welfare, autonomy, dignity, and self-government [35]. These are the

commitments one should keep in mind when considering whether the nudge is

ethical or not. Some of these commitments will be examined more thoroughly,

to determine whether a nudge is ethical or not. Welfare in the perspective of

nudging is that nudges are the best for the welfare for people in general. Will

certain nudges help people in making optimal choices for their health and

happiness in the long run? This welfare commitment is connected to what

nudges are supposed to be about and are connected to the other commitments

to see whether the nudge is ethical or not.

For the commitment autonomy there are some who believe that nudge have no

autonomy for the people that using the nudge. For example, that nudge have

no autonomy and it make people having less control over their actions [36].

There are other for example Sunstein that says that if there is going be

autonomy there have to be an informed choice and that lack of information is

when the nudge lack autonomy [35]. This fit with the freedom of information

that is one of the rights under freedom, this right will also have restriction to

protect people´s sensitive information to protect their life and their privacy.

There is some information that can´t be told because they are credit card

numbers, security numbers, passwords, etc. this is the type of information that

need to be secure and need to be withheld to protect people´s private life and

economy from other´s that would use it to their advantage or unlawful means.

There is other information that needs to be withheld to protect people´s life.

 83

This can be information about criminal records, here it can be sealed records

or witness protection. Types of information may be sensitive because it about

children, and will be sealed to protect them, since this is not something they

can do for themselves.

There are concerns about nudges that can be manipulative, since they change

the behavior to people and that in this way nudges are not ethical.

Manipulation can be tied to the commitment autonomy, since it is

manipulation that violates the autonomy that any person has [37].

About manipulation and nudge it is said that something that alter someone´s

behavior is not necessarily manipulative [35]. If you warn someone about a

danger or remind someone of a meeting you are not manipulating them [35].

Some other concerns when it comes to nudge and manipulation is that [38]

«nudge seeks to exploit imperfections in human judgement and to this extent it

is manipulative». Sunstein say that [35] «an action might generally be counted

as manipulative if it lacks transparency». For an action to be manipulative it

must attempt to influence people so that it undermines their choice over that

action [35].

Dignity can be tied in with welfare in way where people can have a loss in

welfare because of dignity. For example, if they feel that have been humiliated

or treated disrespectfully [35]. This insult on dignity is a not something that is

tied to one person’s feeling about it, and it should not be any part of the nudge

unless it has extremely good reason for being there. [35] There can be an

objection to some nudges but not nudges generally [35]. Some nudges can be

unethical if they are not looking out for the welfare of people and tries to

manipulate them or break any of the right that comes with freedom or try to

restrict them (of course without protecting any other´s rights, since they

sometimes need to be restricted to protect other people´s freedom´s right´s).

The author will say that any nudge that does this is not a nudge by the concept

and is unethical. This is because the concept of nudges is all about being for

the welfare of people, and they are not that if they are trying to fool any people

to take a choice that is not in their best interest. Since nudges is all about

helping people to take a choice that is the best for the welfare for the people

[35].

 84

The app description, if it gets put up on the App Store, will need to declare

what it does and why it does it on it is information page on the App Store. This

way people will get the complete information about the app. Some might say

that the app is manipulative on the bases of colors, but an app is not

manipulative just because of the colors that is used in the design. This app

does not use the color blue to be manipulative, it uses it because blue is a color

that many people don´t find distractive and it highlights the white textfield and

the places where there are informative text or buttons that does something for

the user of the app.

The author believes that there can be an illusion of freedom of choice, and that

it is this that people refer to when talking about the ethics of nudging. What is

illusion of freedom of choice? The author definition on this is that somebody

present a choice that is not actually a choice at all, it might seem like it, but it

is an illusion. Substein talked about a country that says everyone has a choice

to opt out (if they explicitly indicated this is not what they want) of the nudge

or the default leader forever will be person x [35]. This is not a choice at all, it

might seem so, it has two options, but it is not really so. Most people do not

want to go from a country that is run on democratic ideas to a country that is

run on authoritarian ideas, they want to be free to choose who is gone

represent them in the government and that leader for this government can

change every fourth year or something like that. It is an illusion of freedom of

choice since this kind of choice will remove the freedom to choose for

everyone in the country. This would break on the right for everyone to have

freedom and the right that comes with this. There should be some rules for

nudges, so that no one can make a nudge that is not really a nudge. To protect

people´s freedom there should always be rules in place so it can´t be misused

by any person, company, or government. Since any concept can be misused if

there are not rules or laws in place for them not to be misused by anyone. One

of these rules should be that nudges as a choice architecture can never do

something that will infringe on the democracy or the right´s to freedom that

people have. Where this right´s that should be followed should be the

Universal Declaration of Human Rights, which [39] «is a milestone document

in the history of human rights». It is a document that was made by

representatives from different people all over the earth with different cultural

 85

backgrounds [39]. A nudge that does this should be consider a non-nudge and

to be unethical and will have to be removed.

5.5.3 Other concerns about nudge

Some might ask why nudge should be used to solve problems like global

climate change, health, and economy. If people feel they have a choice rather

than a punishment can help to reduce the amount of greenhouse gases. Making

goods or transportation utilizing green energy cheaper provides an economic

incentive to change. The government should try to give people a carrot rather

than the stick, which is why they should use nudges.

5.6 Why was the app made for iOS?

The programming language Swift was the best choice for programming languages for

making app´s, and it is used on iOS. Xcode is easy to use as an IDE with Swift and is

easy to use when designing apps. Swift is a programming language which is easy to

learn and use, and Xcode was not difficult to use at all in designing the app and

making it. At the time the most used programming language for making app´s in

Android was Java, which is a problematic programming language because it can have

memory leaks and is not that safe to use. Swift does not have these problems at all.

Swift is designed to be safe, for example on Swift website [13] it is informed that

Swift never lets a value be nil and that a value will need to be checked before it is

doing something to avoid compile-time error. Optionals [13] «may contain nil, but

Swift syntax forces you to safely deal with it using question mark to indicate to the

compiler you understand the behaviours and will handle it safely». In the technical

background in the section 2.2, Swift it was discussed in detail why it is safe to use and

how it handles values, arrays, and memory.

In the future someone can develop this app for Android also so it can be used be more

people.

5.7 Did the app nudge?

This app is only a protype that someone can build on in the future and be able to

nudge people even better. This app was able to nudge, and in it is design it was

 86

thought about how the user were going to use this app. It was design to be easy to

interact with, easy to use and a color that made it easy for user to see where inputs and

buttons are. In the test this was achieved, since the tester thought it was easy to

interact with and that the colors were not distractive. Even if there are things in the

feedbacks from the tester on what can be improved on, this does not mean the app was

not successful in nudging. It only means there are things that can be improved in the

future in the design in the app to be able to nudge even better. The first design of big

apps like this will not be without anything that can be improved. Apps come with

update that improve them in the way they are design and how user interact with them.

This is also the case for app that nudge the users. Look at Pokémon Go, that uses

nudge to make people walk more. It has evolved a lot since it first started, all to make

it better for the user of the app and nudge them in walking. For example, the app now

check your speed and you need to tell the phone that you are a passenger, to make

people not drive and play Pokémon Go. This is because it is dangerous to use one’s

phone and drive at the same time and Pokémon Go want its user and other people to

be safer in traffic.

5.8 Summary

To summarize what have been talked about in this thesis, there were seven goals

established in the begin of this thesis. Five of these was achieved and that the app was

able to nudge people towards the choice of green transportation, which was shown in

the result. This thesis has concluded that nudging can ethical if there are rules in place

for nudging and that this app follow the rules and are nudging ethical. The thesis has

shown designs and implementations discissions and why thing was chosen. For

example, Google Maps, the color of the app and why the map is restricted to Tromsø

have been things that have been disscussed in this thesis and all have been able to

show why these choices where taken. This thesis has also talked about how this app is

a protype and that apps always improve more after they are released. If this app is

released the further work and feedbacks in result should be taken into consideration

for implementation.

 87

6 Future work

A possible improvement is to fix the calendar notification so that the notification shows up

one hour plus the travel time before the calendar event. Another thing to possible consider is

that the user can maybe put in the time they want to have before the travel time, so they can

decide for them self how long they need to make themselves ready.

Further improvements include looking into public transportation, to provide public

transportation as a mode of travel. The buses have live GPS tracking which can be used to

track the busses and see when they arrive. When the user inputs their location and destination

they could find bus stops near their locations and see when the bus leaves.

Another improvement will be to that user can get remaining time left on the time they

actually use on the route, when they update their location on the travel. This updating of time

would either have to plus or minus the difference between the time the user actually used

(user´s time) and the time Google think the user will use on the route (Google´s time). Where

it would be plus if the user´s time was longer than Google´s, and minus if the user´s time was

shorter than Google. Also adding something so that user don´t need to take the time

themselves, so they can hit a button that start time and then a button that end times and then

save the time between hitting the start and end button.

The route utilized while traveling could be saved, although storage space requirements must

be taken into consideration. If it takes too much space to store such data, it might have to be

saved in the cloud. This cloud has to be very secure to make sure this information is not

leaked, and it would need to require a login for users so that the cloud could make sure to

give the right user the right information.

Implementing the weather service as mention in goals could also help users plan their day.

The app could, for example, notify the user stating that it will rain today, or that it is windy.

The weather can also tell a person that the winter seasons have started, that skiing is an

option, and suggest viable winter routes. An implementation of this would require the skiing

to be implemented for itself, since the only road to take here in Tromsø would be through

Lysløypa. The calculated travel time for skiing should also change based on the snow and

weather conditions.

 88

To reduce the overall numbers of cars in use, future version of the app could suggest

carpooling. By examining people in the vicinity and determining that somebody got the same

destination in mind, the app could suggest grouping up to reduce overall vehicle usage. The

app could also have a way to split the money used on gas for traveling, parking and/or tolls

depending on the number of people that travel together.

 89

7 Conclusion
This thesis started with a problem definition:

In this thesis with the help of digital nudging attempt to make a solution that will

influence people to choose green transportation. This attempt to a solution will be done

through designing and implementing an app.

This problem definition was solved through making an app that would use nudge to make

people to choose greener transportation and in this it was successful when looking at the

feedback from testers.

There was also set some goals that where set for implementation for this app and even if not

all of them are implemented. The goals that where not achieved are:

The sixth goal:

The app will also have the possibility to connect with the GPS trackers in the

Tromsø buses. This will be used to tell the user when they are going, where

they are going, how far away they are and how long they will take to be at the

end position in real time.

The last seventh goal:

The possibility to integrate some (like rain, wind, sun, and snow) weather data

services that will show a notification about the weather. This integration will

be important since it will make it possible to show skiing as a green travel

option in the winter.

Even though not all goals are implemented into this app it is able to nudge the user, and in the

future the rest of the goals can be implemented into this app. This app is only a protype and

where the foundation of this app is made. In the future someone can continue the work on this

and get it out on the market.

If this app is implemented for Android, the things in future work and feedback from testers

should be taken into consideration for implementation.

 90

Bibliography

[1] R. H. Thaler and C. R. Sunstein, Nudge; Improving Decisions About Health, Wealth,

and Happiness, New Heaven: Yale University press, 2008.
[2] C. Schubert, "Green nudged: Do they work? Are they ethical?," Ecological Economics,

vol. 132, pp. 329-342, 2017.
[3] Commission of the European Communities, Towards a new culture for urban mobility;

Green Paper COM(2007) 551 final, Brussel, Belgium: European Commission, 2007.
[4] W. K. Darkwah, B. Odum, M. Addae, D. Koomson, B. Kwakye Danso, E. Oti-Mensah,

T. Asenso and B. Buanya, "Greenhouse Effect: Greenhouse Gases and Their Impact on
Global Warming," Journal of Scientific Research and Reports, vol. 17, no. 6, pp. 1-9,
2018.

[5] J. Mamen and R. Benestad, "drivhuseffekten i Store norske leksikon," snl.no, 26 Mars
2020. [Online]. Available: https://snl.no/drivhuseffekten. [Accessed 28 June 2021].

[6] R. Pachauri and A. Reisinger, "IPCC, 2007: Climate Change 2007: Synthesis Report.
Contribution of Working Groups I, II and III to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change," Geneva, Switzerland, IPCC, 2008, p. 104.

[7] M. Weinmann, C. Schneider and J. v. Brocke, "Digital Nudging," Business &
Information Systems Engineering, vol. 58, pp. 433-436, 2016.

[8] "Cambridge Dictionary," Cambridge University Press, [Online]. Available:
https://dictionary.cambridge.org/dictionary/english/freedom. [Accessed 25 April 2021].

[9] A. Andersen, R. Karlsen and W. Yu, "Green Transportation Choices with IoT and Smart
Nudging," in Handbook of Smart Cities: Software Services and Cyber Infrastructure,
Switzerland, Cham: Springer International Publishing, 2018, pp. 331-354.

[10
]

W.-y. Chao, "Usability Engineering Framework for Persuasive Mobile Health Apps to
Effectively Influence Dietary Decisions of Older Adults," Purdue University Graduate
School, 15-Dec-2020.

[11
]

C. Schneider, M. Weinmann and J. vom Brocke, "Digital nudging: Guid- ing online user
choices through interface design," Commun. ACM, vol. 61, pp. 67-73, 2018.

[12
]

R. Karlsen and A. Andresen, "Recommendations with a Nudge," Technologies, vol. 7,
no. 2, 2019.

[13
]

"About Swift," Apple Inc., [Online]. Available: https://swift.org/about/#swiftorg-and-
open-source. [Accessed 12 April 2021].

[14
]

"Using Downloads," Apple Inc., [Online]. Available: https://swift.org/download/#using-
downloads. [Accessed 14 April 2021].

[15
]

E. Rossen, "programmeringsverktøy i Store norske leksikon," snl.no, 4 August 2020.
[Online]. Available: https://snl.no/programmeringsverktøy. [Accessed 20 April 2021].

[16
]

Apple Inc., [Online]. Available: https://developer.apple.com/xcode/ide/. [Accessed 20
April 2021].

[17
]

E. Rossen, "API i Store norske leksikon," snl.no, 31 July 2020. [Online]. Available:
https://snl.no/API. [Accessed 12 May 2021].

[18
]

H. Dvergsdal, "HTTP i Store norske leksikon," snl.no, 16 January 2021. [Online].
Available: https://snl.no/HTTP. [Accessed 12 May 2021].

[19
]

M. Bartnes, "HTTPS i Store norske leksikon," snl.no, 25 November 2019. [Online].
Available: https://snl.no/HTTPS. [Accessed 6 July 2021].

 91

[20
]

"Getting started," CocoaPods, [Online]. Available:
https://guides.cocoapods.org/using/getting-started.html. [Accessed 20 April 2021].

[21
]

"The Podfile," CocoaPods, [Online]. Available: https://guides.cocoapods.org/using/the-
podfile.html. [Accessed 22 April 2021].

[22
]

A. S. Foundation, "Alamofire/Foundation," GitHub, [Online]. Available:
https://github.com/Alamofire/Foundation. [Accessed 22 April 2021].

[23
]

A. S. Foundation, "Alamofire/Documentation/Usage.md," GitHub, [Online]. Available:
https://github.com/Alamofire/Alamofire/blob/master/Documentation/Usage.md.
[Accessed 22 April 2021].

[24
]

A. S. Foundation, "GitHub/Alamofire," GitHub, [Online]. Available:
https://github.com/Alamofire/Alamofire#features. [Accessed 22 April 2021].

[25
]

"SwiftyJSON," GitHub, [Online]. Available:
https://github.com/SwiftyJSON/SwiftyJSON. [Accessed 22 April 2021].

[26
]

"JSON," [Online]. Available: https://www.json.org/json-en.html. [Accessed 22 April
2021].

[27
]

"Maps SDK for iOS; Overview," Google, [Online]. Available:
https://developers.google.com/maps/documentation/ios-sdk/overview. [Accessed 20
April 2021].

[28
]

"Places SDK for iOS; overview," Google, [Online]. Available:
https://developers.google.com/maps/documentation/places/ios-sdk/overview. [Accessed
20 April 2021].

[29
]

"Geocoding API; overview," Google, [Online]. Available:
https://developers.google.com/maps/documentation/geocoding/overview?hl=en_US#Re
verseGeocoding. [Accessed 20 April 2021].

[30
]

"The Directions API overview," Google, [Online]. Available:
https://developers.google.com/maps/documentation/directions/overview?hl=en_US.
[Accessed 20 April 2021].

[31
]

"Distance Matrix API; overview," Google, [Online]. Available:
https://developers.google.com/maps/documentation/distance-
matrix/overview?hl=en_US. [Accessed 20 April 2021].

[32
]

"Enumerations," Apple Inc., [Online]. Available: https://docs.swift.org/swift-
book/LanguageGuide/Enumerations.html. [Accessed 11 April 2021].

[33
]

"The Basics," Apple Inc, [Online]. Available: https://docs.swift.org/swift-
book/LanguageGuide/TheBasics.html. [Accessed 11 April 2021].

[34
]

S. Singh, "Impact of color on marketing," Management Decision, vol. 44, no. 6, pp. 783-
789, 1 July 2006.

[35
]

C. R. Sunstein, "The Ethics of Nudging," Yale Journal on Regulation 32 Yale J. on Reg.,
no. 2, pp. 413-450, 2015.

[36
]

L. Bovens, "The Ethics of Nudge," in Preference Change: Approaches from Philosophy,
Economics and Psychology (T. Grune-Yanoff and S. O. Hansson, eds.), vol. 42,
Dordrecht: Springer Netherlands, 2009, pp. 207-219.

[37
]

T. M. Wilkinson, "Nudging and Manipulation," Political Studies, vol. 61, no. 2, pp. 341-
355, 2012.

[38
]

T. Goodwin, "Why We Should Reject ‘Nudge’," Politics, vol. 32, no. 2, pp. 85-92,
2012.

 92

[39
]

U. Nations, "Universal Declaration of Human Rights," United Nations, [Online].
Available: https://www.un.org/en/about-us/universal-declaration-of-human-rights.
[Accessed 26 April 2021].

