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Abstract: The problem of antibiotic resistance has become a challenge for our public health and
society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics
that are introduced to the market face the rise of resistant pathogens after a certain period of use. The
relatively fast development of resistance against some antibiotics seems to be closely linked to their
microbial origin and function in nature. Antibiotics in clinical use are merely products of microor-
ganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has
progressed with the evolution of the respective resistance mechanisms in microbes for billions of
years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by
pathogens through horizontal gene transfer. Natural products from bacteria are an important source
of leads for drug development, and microbial natural products have contributed the most antibiotics
in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such
as redetection of known compounds and low compound yields consume significant resources. The
number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the
other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the
most promising sources for chemical novelty and bioactivity, employing the appropriate scientific
tools. This can be done by first looking into under- or unexplored environments for bacterial isolates
and by focusing on the promising candidates to reduce the number of subjects.

Keywords: antibiotics; antibiotic resistance; natural products; bioprospecting; actinobacteria; cyanobac-
teria; myxobacteria; biosynthetic potential; secondary metabolites; drug discovery

1. Introduction: Development of Antibiotic Resistance in Staphylococcus aureus. An
Example for Acquisition of Resistance to Antibiotics in Clinical Use

After the discovery of penicillin by Alexander Fleming in 1929, synthetic sulfonamides
in 1935, and streptomycin in 1944, the discovery of new antibiotics during the following
decades up to the 1970s buoyed optimism that the threat of infectious diseases had been
overcome [1]. However, Alexander Fleming warned already in 1945 that frequent and
irresponsible use of antibiotics triggered by public demand would lead to a loss of ef-
ficacy [2]. His statement that “microbes are educated to resist penicillin” was an early
warning that deserved much more attention than it actually received. More than 20 classes
of antibiotics were introduced to the market between the 1940s and 1962 [1], while no
new class of antibiotics reached the market between 1962 and 2000 [3]. The development
of new antibiotics in the first decades of the antibiotic era kept pace with the evolving
development of resistance in an “arms race” with the pathogens. This was in strong con-
trast to the current situation, where antibiotic resistance is considered to be a health crisis
by the World Health Organization [4]. The six most problematic clinical pathogens were
summarized by Louis Rice under the abbreviation “ESKAPE” bugs, namely Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas
aeruginosa, and Enterobacter species [5]. S. aureus, for instance, gradually developed resis-
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tance to antibiotics as they were introduced to the marked and used in therapy. While S.
aureus was susceptible to penicillin (Figure 1, 1) treatment in the 1940s, 40% of the clinical
isolates were penicillin-resistant by 1950, and this fraction increased to 80% by 1960 [6].
The resistance was acquired through the uptake of genes enabling the production of β-
lactamases [7]. In 1959, methicillin (Figure 1, 2) was introduced to treat penicillin-resistant
S. aureus infections [8], and two years later the first methicillin-resistant S. aureus isolate
was reported [9]. Consequentially glycopeptides, particularly vancomycin (Figure 1, 3),
served as a “last line of defense” against methicillin-resistant S. aureus (MRSA) for the next
40 years. The first resistance against vancomycin and teicoplanin was reported in 1988
in Enterococcus faecium [10], and nearly one decade later, in 1997, an MRSA isolate from
a wound infection exhibited decreased vancomycin susceptibility [11]. Four years later,
in 2002, the first vancomycin-resistant MRSA strain was discovered in a clinical setting.
In contrast to isolates showing decreased susceptibility (vancomycin MIC = 4–8 µg/mL,
the so-called vancomycin intermediate S. aureus, abr. VISA), the isolate demonstrated
resistance to vancomycin (vancomycin MIC > 8 µg/mL). This was the first representative
example of vancomycin-resistant S. aureus (VRSA) with resistance against vancomycin
(MIC > 128 µg/mL) and oxacillin (Figure 1, 4) (MIC > 16 µg/mL) [12].

Antibiotics 2021, 10, x FOR PEER REVIEW 3 of 16 
 

 
Figure 1. Structures of antibiotics with an anti-bacterial effect on Staphylococcus aureus/ MRSA: Penicillin G (1), methicil-
lin (2), vancomycin, (3), oxacillin (4) and teixobactin (5). 

2. Mechanisms and Acquisition of Antibiotic Resistance 
The chemically heterogeneous group of antibiotics comprises several modes of action 

in order to possess their respective effects. The three main targets of antibiotics are the 
bacterial cell wall or cell wall synthesis, nucleic acid-synthesis/-replication, and protein 
synthesis [13]. Examples for the respective antibiotics are the β-lactam antibiotics and van-
comycin-inhibiting cell-wall synthesis, rifampicin that inhibits bacterial RNA-polymer-
ase, and tetracyclines and clindamycin-inhibiting protein synthesis at the 30S and 50S ri-

Figure 1. Structures of antibiotics with an anti-bacterial effect on Staphylococcus aureus/ MRSA:
Penicillin G (1), methicillin (2), vancomycin, (3), oxacillin (4) and teixobactin (5).



Antibiotics 2021, 10, 842 3 of 15

2. Mechanisms and Acquisition of Antibiotic Resistance

The chemically heterogeneous group of antibiotics comprises several modes of ac-
tion in order to possess their respective effects. The three main targets of antibiotics are
the bacterial cell wall or cell wall synthesis, nucleic acid-synthesis/-replication, and pro-
tein synthesis [13]. Examples for the respective antibiotics are the β-lactam antibiotics
and vancomycin-inhibiting cell-wall synthesis, rifampicin that inhibits bacterial RNA-
polymerase, and tetracyclines and clindamycin-inhibiting protein synthesis at the 30S
and 50S ribosome subunits, respectively [13]. The bacterial arsenal of possible resistance
mechanisms, on the other hand, is diverse, too. It ranges from alteration of the target, as we
will see with some examples further down, to the enzymatic degradation of the antibiotic,
e.g., by β-lactamases. Another common resistance mechanism is the export of antibiotics
out of the bacterial cell using efflux pumps [14].

A depictive example of the acquisition of resistance against antibiotics used for treat-
ment of a bacterial pathogen is S. aureus; it also exemplifies different resistance mechanisms.
Penicillin resistance is caused by β-lactamase activity [7], whereas resistance against me-
thicillin is mediated by the mecA gene complex encoding penicillin binding protein 2′

(PBP2′). PBPs catalyze the crosslinking of peptidoglycan within the bacterial cell wall and
are targeted by β-lactam antibiotics. The resistance factor PBP2′ shows little affinity to
β-lactam antibiotics, thus mediating resistance against this class, including methicillin [15].
Resistance and tolerance against vancomycin are caused by two different mechanisms.
The VISA strains show different mutations, mostly involved in cell-wall biosynthesis, and
the overproduction of cell-wall material is an attribute of VISA observable by electron
microscopy [16]. Vancomycin resistance in VRSA is mediated by the vanA operon, located
within the Tn1546 transposon. Origin of resistance is the vancomycin-resistant entero-
cocci conjugative plasmid, which is the link between enterococcal and staphylococcal
resistance [17,18]. Vancomycin resistance is mechanistically based on the exchange of
an alanyl entity within the cell-wall-peptide linker into a lactyl group. Vancomycin has
high affinity to the D-ala-D-ala residue, a component of lipid II, which is a building block
for the bacterial cell wall and enables vancomycin to inhibit bacterial cell wall synthesis.
For vancomycin resistance, the D-ala-D-ala dipeptide is altered into D-ala-D-lac, which
has reduced susceptibility to vancomycin [16,19]. The different resistances acquired by
S. aureus are examples of different mobile genetic elements conveying resistance. The
β-lactamase is encoded by blaZ and located on plasmids [20], whereas vecA is located on
the staphylococcal cassette chromosome [21] and the vancomycin resistance within the
Tn1546 transposon. This development may exemplify how S. aureus acquired resistance
via different resistance mechanisms and genetic elements. The emergence of new antibiotic
resistance against last-resort antibiotics is ongoing. As seen above, the location of the antibi-
otic resistance gene on mobile genetic elements is an important factor for their spread into
other strains and genera. More recently, in 2016 a plasmid-borne resistance against colistin
(Figure 2, 6) was discovered in China, and its uptake by ESKAPE pathogens was reported
in 2017 [22–24], providing a more contemporary example of the described problem.

Antibiotics 2021, 10, x FOR PEER REVIEW 4 of 16 
 

bosome subunits, respectively [13]. The bacterial arsenal of possible resistance mecha-
nisms, on the other hand, is diverse, too. It ranges from alteration of the target, as we will 
see with some examples further down, to the enzymatic degradation of the antibiotic, e.g., 
by β-lactamases. Another common resistance mechanism is the export of antibiotics out 
of the bacterial cell using efflux pumps [14]. 

A depictive example of the acquisition of resistance against antibiotics used for treat-
ment of a bacterial pathogen is S. aureus; it also exemplifies different resistance mecha-
nisms. Penicillin resistance is caused by β-lactamase activity [7], whereas resistance 
against methicillin is mediated by the mecA gene complex encoding penicillin binding 
protein 2′ (PBP2’). PBPs catalyze the crosslinking of peptidoglycan within the bacterial cell 
wall and are targeted by β-lactam antibiotics. The resistance factor PBP2´ shows little af-
finity to β-lactam antibiotics, thus mediating resistance against this class, including methi-
cillin [15]. Resistance and tolerance against vancomycin are caused by two different mech-
anisms. The VISA strains show different mutations, mostly involved in cell-wall biosyn-
thesis, and the overproduction of cell-wall material is an attribute of VISA observable by 
electron microscopy [16]. Vancomycin resistance in VRSA is mediated by the vanA op-
eron, located within the Tn1546 transposon. Origin of resistance is the vancomycin-re-
sistant enterococci conjugative plasmid, which is the link between enterococcal and staph-
ylococcal resistance [17,18]. Vancomycin resistance is mechanistically based on the ex-
change of an alanyl entity within the cell-wall-peptide linker into a lactyl group. Vanco-
mycin has high affinity to the D-ala-D-ala residue, a component of lipid II, which is a 
building block for the bacterial cell wall and enables vancomycin to inhibit bacterial cell 
wall synthesis. For vancomycin resistance, the D-ala-D-ala dipeptide is altered into D-ala-
D-lac, which has reduced susceptibility to vancomycin [16,19]. The different resistances 
acquired by S. aureus are examples of different mobile genetic elements conveying re-
sistance. The β-lactamase is encoded by blaZ and located on plasmids [20], whereas vecA 
is located on the staphylococcal cassette chromosome [21] and the vancomycin resistance 
within the Tn1546 transposon. This development may exemplify how S. aureus acquired 
resistance via different resistance mechanisms and genetic elements. The emergence of 
new antibiotic resistance against last-resort antibiotics is ongoing. As seen above, the lo-
cation of the antibiotic resistance gene on mobile genetic elements is an important factor 
for their spread into other strains and genera. More recently, in 2016 a plasmid-borne re-
sistance against colistin (Figure 2, 6) was discovered in China, and its uptake by ESKAPE 
pathogens was reported in 2017 [22–24], providing a more contemporary example of the 
described problem. 

 
Figure 2. Structure of colistin (6). 

3. The Ancient Origin of Antibiotic Resistance 
After discussing the function of antibiotic resistance and its spread by horizontal 

gene transfer, the question of resistance origin remains. It is a common perception that 
antibiotic resistance has been induced via use and misuse of antibiotics by humans, 

Figure 2. Structure of colistin (6).



Antibiotics 2021, 10, 842 4 of 15

3. The Ancient Origin of Antibiotic Resistance

After discussing the function of antibiotic resistance and its spread by horizontal gene
transfer, the question of resistance origin remains. It is a common perception that antibiotic
resistance has been induced via use and misuse of antibiotics by humans, thereby triggering
the evolution of the molecular targets to develop resistance by mutation and selection.
However, this anthropogenic scenario is just partly true [25]. Antibiotic resistance itself
evolved long before the first humans appeared on Earth. Antibiotic-resistant bacteria have
been isolated from Siberian permafrost sediment, dating back 3 × 103 to 3 × 106 years,
with resistance against antibiotics such as chloramphenicol, tetracycline, and aminoglyco-
sides [26]. In 2016, a Paenibacillus sp. isolate was found to carry resistance against 26 of the
40 tested antibiotics, including daptomycin, which was introduced to the market in 2003.
Notably, the cave it was isolated from had been cut of from the surrounding environment
for 4 × 106 years [27]. In another study, with isolates from Beringian permafrost samples,
it was shown that a vanHAX cluster, encoding for glycopeptide resistances, was clustering
with genes of recent organisms, showed functional as well as structural similarity of the
gene products, and was capable of mediating genuine resistance proven by heterologous
expression in E. coli [28]. In addition to the experimental findings, structure-based phy-
logeny suggests that metallo-β-lactamases evolved more than 2.2 × 1012 years ago [29].
The structure- and sequence-based phylogeny of serine-β-lactamases suggests that they
evolved around 2.2 × 1012 to 2.4 × 1012 years ago, depending on the respective class [30].
Thus, antibiotic resistance to different antibiotics was already present within the envi-
ronment before they came into clinical use. Given the already existing presence, if not
omnipresence, of antibiotic-resistance genes in nature and the various mechanisms of hori-
zontal gene transfer, the fast rise of antibiotic resistance in pathogens, only a few years after
exposure to clinical use of the respective antibiotic, is, in retrospect, no surprise [31]; see
Figure 3 for a schematic overview. However, the uptake of resistance factors is not the only
path to resistance development. Antibiotic resistance by mutation (de novo) and subsequent
selection can be observed, for instance, in long-term antibiotic treatment of patients [32]
and contributes to the problem of antibiotic resistance. The resistance against synthetic
antibiotics cannot be derived from resistance genes that have co-evolved in nature [33],
and is therefore a product of more recent evolutional processes that happened after the
introduction of the drugs. The role of antibiotics in nature is assumed not to be primarily as
antimicrobial agents; in order to possess an antibiotic effect, the concentrations within natu-
ral habitats attributable to antibiotic-producing microorganisms are mostly too low. Other
functions, such as bio regulation, intercellular signaling, or quorum sensing, seem to be the
original, main purpose of the molecules in their natural environment [31]. Antibiotic resis-
tance probably co-evolved within this frame as (regulative) responses to antibiotics serving
as signaling molecules [31]. Given the presence of resistance-carrying bacteria within the
environment, there are many ways for pathogens to come in contact with bacteria carrying
resistance genes, for example, via wastewater from hospitals reaching waterbodies such as
rivers, serving as an incubator for the exchange of those resistance factors [34]. In addition
to the environmental potential for antibiotic resistance, made up by the present resistances,
humans cause a selective pressure. Human use and misuse of antibiotics may be coupled
to the dispersion of antibiotics into the environment, which makes the aforementioned
mechanisms more likely to take place or to increase in frequency. This theory is supported
by the observation that resistance formation rates correlate with the consumption of antibi-
otics in different countries [35,36]. Additionally, the heavy use of antibiotics in agriculture
may represent a problem because it contributes to the selection and spread of antibiotic
resistance within the environmental bacterial community; antibiotic-resistant bacteria can
be distributed together with agricultural products, and farmers may even act as vectors for
resistant microbes [36]. A study of archived soil samples from the Netherlands has shown
that antibiotic resistance genes present in soil have increased significantly since 1940 [37].
It is noteworthy that soil represents an important source of antibiotic resistance, and it has
been shown that agricultural use of antibiotics can increase the prevalence of resistance
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genes in soil [25]. Because the majority of our marketed antibiotics have been isolated from
soil microorganisms, the presence of the corresponding resistance elements is no surprise,
taking the aforementioned roles of antibiotics in nature into account [38]. Remarkably, the
ocean, as the other and even bigger part of the global environment, harbors resistance
genes similar to those found within the terrestrial environment [39]. The consequences
of antibiotic resistance for our healthcare systems and society are already alarming, and
the problem is likely to intensify. As a review of antimicrobial resistance projects, by 2050
there will be 107 deaths per annum worldwide due to antimicrobial resistance, causing
global economic damage of 1014 USD per annum [40]. In addition to the problem of rising
antibiotic resistance, the need for potent antibiotics in the clinical setting is likely to in-
crease because of an aging population, the increasing use of immunosuppressive therapies,
cancer treatments, surgeries, and the treatment of other diseases that require anti-infectives
or are more likely to require them, such as, for instance, diabetes [41,42]. To conclude,
the cellular mechanisms for antibiotic resistance have evolved from another geological
age and were present in our environment even before humans appeared, not to speak of
clinical antibiotics. However, this does not exempt us from the obligation to use antibiotics
responsibly. The spread of antibiotics into the environment, their use in agriculture, and
their over-prescription certainly contribute significantly to the problem of rising antibiotic
resistance. The most responsible use of antibiotics will not prevent antibiotic resistance
from occurring, but it will certainly reduce and delay it. While some antibiotic-resistance
factors are ancient, the use and misuse of antibiotics promotes their spread and presence in
pathogens as well as the evolution of new factors [14,43]. A very important factor on that
pathway is the mobilization of the respective resistance-factor encoding genes on mobile
genetic elements [44].
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Figure 3. The dilemma of resistance against natural product-derived antibiotics. Antibiotic-producing bacteria exist in the
same environments as antibiotic-resistant ones. Antibiotic resistance is also linked to antibiotic production by the respective
producers’ resistance for “self-protection”. The resistance factors available within the environment finally contribute to the
antimicrobial resistance (AMR) of clinically relevant pathogens.

4. Natural Products in Drug Discovery

The discovery and investigation of natural products have delivered numerous active
pharmaceutical ingredients and lead structures for pharmaceutical development. Newman
and Cragg analyzed the origin of new drugs between 1981 and September 2019 [45], and
within that time-span, 1394 small molecular drugs were approved. In relative ratios, purely
synthetic drugs accounted for 33% of the new drugs, 35% were synthetic natural product
mimics or synthetics with a natural product as pharmacophore, 5% natural products, 26%
natural product derivatives, and 1% defined as botanical drugs [46]. While the number
of “genuine” natural products that reached the market as unmodified molecules is rela-
tively low, together with the natural product derivatives they account for 31% of all drugs



Antibiotics 2021, 10, 842 6 of 15

(excluding the botanical drugs), coming close to the share of synthetic drugs. While natu-
ral products and natural product derivatives are closely related, synthetics with natural
product pharmacophore or natural product mimics represent an “intermediate” group.
However, it still implies that 67% of the drugs approved between 1981 and September 2019
are either directly or at least in some more or less abstract way related to the structures
of natural products [46]. If we take a closer look at the data for the small molecular an-
tibacterial drugs exclusively, we see that natural product derivatives and natural products
together account for 70.6%, synthetic drugs for 28.6%, and the intermediate classes for
approx. 0.8%. For a comparison, see Figure 4. The natural products, or more precisely, their
structural scaffolds, seem to play a significant role in the antibiotic field. It is noteworthy
that the term “antibiotics” was primarily dedicated to antibacterial compounds that were
of microbial origin, whereas the term for the synthetic pendant was “antibacterials” [41].
However, this distinction faded over the course of time, and the word “antibiotic” now
commonly refers to both synthetic molecules and molecules of biological origin [44].
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the classifications from the original were pooled for simplification.

4.1. Chemical Characteristics of Natural Products

The chemical properties of natural products and synthetic compounds in compound
collections for drug screening were investigated and compared. Those investigations
provided the insight that natural products have a lower number of nitrogen, halogen, or
sulfur atoms compared to synthetic compounds. Natural products possess more chiral
centers, oxygen atoms, sp3-hybridized bridgehead atoms, more rigid fused ring systems,
and on average, a higher molecular weight [47,48]. However, when performing comparison
studies between drugs, natural products, and synthetic compounds, it should be kept in
mind that the drug category itself consists of the other two groups (i.e., synthetics and
natural products), and the properties of one or another group are reflected by the properties
of a certain share of the approved drugs [48]. Nonetheless, investigating the structural
similarity between natural products and synthetic compounds from different databases
and screening libraries, Henkel et al. found that 40% of the natural product structures were
not represented by structures of synthetic compounds, which indicates the suitability of
natural products as a source for chemical novelty [47].

In 1988, Evans et al. reported an observation of certain molecular patterns that bind
more than one ligand, termed by the authors as “privileged structures”, hence providing a
viable source for medicinal chemistry [49]. Natural products themselves have the intrinsic
property of interacting with protein targets because they are products of biosynthetic path-
ways employing enzymes, and they are often ligands to protein targets/receptors [50,51].
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The structural properties of natural products and their interaction with proteins evolved
over millions of years and are therefore optimized for ligand-target interaction [50]. The
antibiotics produced by microorganisms have, moreover, been optimized by evolutionary
processes to pass cell walls and membranes of target bacteria [52]. Ganesan investigated 24
unique natural products (according to rather strict criteria) that led to an approved drug
between 1970 and 2006 [53]. He found that half of them fall into what he calls the “Lipinski
universe”, which means that only one of the “Rule of five” were violated. The other half
falls in what he calls the “parallel universe”. For both classes, 50% of the candidates led
to orally administrable drugs, and this is at first glance in conflict with the “Rule of five”.
But this may be explained by Lipinski’s fifth rule: “Compound classes that are substrates
for biological transporters are exceptions to the rule” [54]. Given the limited biosynthetic
pathways of natural products and the unknown substrate promiscuity, active transport
may account for the high bioavailability of natural products [53]. Ganesan states that “log
P is the lord of the rules”, being the most important for the evaluation of bioavailability.
The molecules that fall into the “Lipinski universe” have an average molecular weight of
319 Da and an average log P of 0.0, while those of the “parallel universe” have an average
molecular weight of 917 Da and log P of 2.2, indicating that log P is remarkably stable
despite of an almost threefold increase in molecular weight. This can be explained by in-
corporation of polar functional groups enabling high molecular weights while maintaining
drug-like log P values. In addition, natural products may employ intramolecular H-bonds
to increase permeability and undergo structural rearrangement when interacting with their
target [53].

4.2. Suitability of Natural Products for Drug Discovery

During the 1990s the pharmaceutical industry turned away from natural product
drug discovery and focused resources on high throughput screening of libraries generated
by combinatorial chemistry. Those combinatorial libraries were more suitable/practical
for high throughput screening and easier to generate [55,56]. However, according to
János, the hit-rate when screening natural products is magnitudes higher than screening
combinatorial libraries [57]. From an estimated 3 × 106 to 4 × 106 compounds synthesized
by the pharmaceutical industry, around 0.001% became approved drugs while at the
same time 0.2 to 0.3% of the ten of thousands (>5 × 104) of microbial metabolites became
approved drugs and another share of the same size served as lead compounds [57]. The
insufficient outcome of a classical high-throughput screening for antibiotic compounds
using combinatorial libraries is also reflected by a study at Glaxo Smith Kline, where
67 high-throughput screening campaigns against different antibacterial targets resulted in
16 projects leading to hits, and five of them resulted in leads. In addition to the target-based
screening, three cell assay-based campaigns were executed, one of which led to three hits
but not to lead identification [58].

Examining the molecular weight and polarity of antibiotics compared to drugs for
other indications such as neurological diseases targeting the central nervous system, it
appears that antibiotics are on average more hydrophilic and slightly larger [58]. The
fact that the chemical properties of antibiotics differ may apparently indicate that their
target organisms, bacteria, are different from man. One property that speaks particularly
in favor of marine natural products is their higher potency compared to compounds from
terrestrial origins, which is most likely a consequence of the high dilution within the marine
environment, allowing only compounds with high potency to come into effect [59]. Thus,
natural products of marine origin are more likely to reach the bioactivity threshold for
antibiotic agents, which are minimal inhibitory concentrations of <1–10 µM for Gram-
positive and 10–100 µM for Gram-negative pathogens [60]. A statistical investigation by
Kong et al. revealed that marine natural products show a large share of novelty compared
with natural products from terrestrial origin, but on the other hand, they show a higher
hydrophobicity, which can be explained by the reduced abundance of oxygen within the
marine environment [61].
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5. Microorganisms as Producer of Natural Products and Hurdles in Bioprospecting

Most of the antibiotics approved for medical use are products of microorganisms
or derived from their metabolites, as described above. Fungi and bacteria are the clas-
sical producers of antibiotics. Among the bacteria, Actinobacteria contribute the lion’s
share of bioactivity and are responsible for 90% of commercial antibiotics [62]. Within
the aforementioned study of Ganesan, 19 of the 24 natural products that led to approved
drugs between 1981 and 2006 were products of soil microorganisms, and the remaining
five compounds were of plant origin. The compounds of microbial origin split further
into four produced by fungi, two produced by bacteria, and 13 compounds produced by
Actinobacteria. Notably, the investigated drug classes are not limited to antibiotics, but
the numbers underscore the biosynthetic potential of Actinobacteria contributing more
than half of the compounds [53]. However, there are practical reasons that make the
search for novel microbial natural products a difficult task. First, there is the problem
of re-investigating known compounds, which can be overcome by efficient dereplication
of active bacterial extracts at an early stage in the bioprospecting workflow. The work
with microorganisms in biodiscovery may present other obstacles such as silent gene
clusters or difficulties in the isolation and cultivation of the organisms [63]. To shed light
on these silent gene clusters, different strategies have been established and utilized, such
as co-cultivation or molecular biological techniques including heterologous expression or
promotor insertion [64]. The bioprospecting workflow, traditionally based on “top down”
methods starting with the biological and chemical characterization of the metabolites pro-
duced by an organism, has been extended by the newer “bottom up” techniques available,
using genetic information to assess the biosynthetic potential of microorganisms based on
bioinformatics and molecular biology [65]. Genome mining and heterologous expression
enable us to detect and access silent gene clusters, whereas metagenomic techniques pro-
vide the possibility to circumvent the problem of cultivability [63,65]. The isolation and
culturing of yet “uncultivable” bacteria have made substantial advances, too; techniques
in the field of membrane diffusion-based cultivation, cell sorting-based cultivation, and
microfluidics-based cultivation were developed and applied to culture the uncultivable
majority within the bacterial realm [66]. In the field of microbiology, the OSMAC (one
strain many compounds) approach and improvements in the cultivability of microorgan-
isms enable us to produce compounds and isolate bacteria not previously accessible [67].
However, ultimately the compound has to be produced, extracted, and purified to obtain
material for structure elucidation and bioassays, but genomics can serve as an indicator
of where to allocate available resources to find new molecules [52]. One of the most
challenging tasks after cultivating bacteria is to identify and distinct compounds that are
likely to be new or likely to be known; in combination with bio testing of the respective
fermentation broth or extract, this can reveal that a known antibiotic is responsible for
the observed bioactivity. This working step, called “dereplication”, is mostly based on
HPLC-MS analysis, with subsequent interpretation of the spectra and database searches
using the elemental composition and eventually the fragment pattern of the respective
analyte in order to identify it. Here, new software using machine learning has eased the
identification of known molecules and the assessment of “unknowns”—for instance, Sirius
for predicting and analyzing MS2 data based upon structures, circumventing the necessity
of MS2 reference spectra [68]. Metabolite databases such as METLIN ease the identification
of known, as well as the characterization of unknown, compounds [69]. Important to
mention as a significant improvement on the metabolomics front is GNPS (Global Natural
products Social Molecular Networking), an automated metabolomics networking workflow
and database search platform that has made the generation of metabolic networks feasible
in particular for people who are not dedicated experts in MS2 data analysis but want to
make use of that technique [70]. In a similar manner, antiSMASH has eased the process of
genome mining bacterial (and eukaryotic) genomes for biosynthetic gene clusters on the
genomics front [71]. A recent success story on antibiotics was the discovery of teixobactin
in 2015 (Figure 1, 5), a new antibiotic produced by a bacterium that was isolated using the
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isolation chip approach [72,73]. The compound is effective against MRSA, Enterococcus,
and other problematic pathogens while having a low risk of triggering resistance because
of its highly conserved targets undecaprenyl pyrophosphate, lipid I, and lipid II [72,74].

6. Reaching out in Less Investigated Environments to Find Novel Isolates
and Compounds

One research cruise, field trip, or isolation campaign can easily yield many hundreds to
thousands of bacterial isolates. The bottleneck in bioprospecting bacteria is thus extraction
and screening rather than isolating bacterial strains. One problem is, as mentioned above,
the frequent detection of known compounds with antibiotic effects; for instance one percent
of soil Actinobacteria are streptomycin producers while one in 107 Actinobacteria produces
daptomycin [52]. The bottom-up and top-down approaches represent in both ways a
labor and cost factor that reasonably should be focused on the most promising subjects of
investigation. One strategy for selecting bacteria for bioprospecting in order to gain high hit
rates of chemical novelty is to sample the, to date, untapped or less sampled ecosystems. For
the marine environment, the polar seas are a promising source because about 3% of marine
natural products have been isolated from polar marine organisms [75]. Less than 2% of the
natural products have originated from deep sea samples [76]; thus, the polar sea represents
a less investigated ecosystem, substantially different from the terrestrial/soil ecosystems
that historically have been the main source for antibiotic-producing microorganisms. The
concrete source to obtain new isolates for a bioprospecting campaign depends, of course,
on the individual scientist’s resources, experience, and facilities and can vary from certain
geographical locations down to organisms as sources for isolates [77].

7. Selecting the Proven Prolific Producers of Natural Products–Characteristics and
Indicators for the Biosynthetic Potential of Bacteria

Another strategy to enhance the antibiotic hit rate in bioprospecting is to focus on
bacteria belonging to phylogenetic groups that have been shown to be frequent producers
of antibiotics or bioactive compounds. Here, the Actinobacteria have served as the most im-
portant producers of active compounds to treat different diseases. In the above-mentioned
study of Ganesan, Actinobacteria were the producers of more than half of the natural
products that led to an approved drug. Besides the compounds that were developed into
drugs, the Actinobacteria accounted by the year 2002 for approx. 53% of the discovered
antibacterial compounds of microbial origin (fungi 30%, other bacteria 18%, approximate
numbers) [57]. Actinobacteria are mainly soil dwelling bacteria but also present in fresh and
salt water. They are Gram-positive, GC rich, and many have the ability to form mycelia and
spores [78]. The most interesting property of Actinobacteria for natural product chemistry
is their ability to produce a wide variety of bioactive secondary metabolites; in particular,
the genus Streptomyces is a producer of a high number of antibiotics. There are statistical
estimations that only 3% of the antibiotics produced by Streptomyces have been found [79].
The genomes of Actinobacteria, especially the Streptomyces, show a high content of biosyn-
thetic gene clusters, in particular for non-ribosomal peptides and polyketides, which can
account for more than 5% of the genome. Interestingly, some of the Actinobacteria and
all Streptomycetes have linear genomes that are, in the case of Streptomyces, as large as
8–10 Mb and may contain over 20 biosynthetic gene clusters [80]. The investigation of
marine Actinobacteria has already resulted in the discovery of salinosporamide A, and
marine Actinobacteria are a promising source for further new, secondary metabolites [81].
Another group with high biosynthetic potential is Myxobacteria. Members of this group
probably have the most complex life cycles and “behaviors” in the bacterial kingdom.
The Gram-positive δ-proteobacteria are able to glide over surfaces and “hunt” other bac-
teria and fungi, form biofilms, or move toward nutrient sources. The ability to “hunt”
other microorganisms includes also the ability to lyse them by excretion of bacteriolytic
enzymes [82,83]. Moreover, they have the ability to form spores, so-called myxospores,
in fruiting bodies under unfavorable conditions [83]. Their physiological complexity is
reflected by their large genomes (9 to 12.5 Mb), the latter being the largest genome within
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the bacterial kingdom [83,84]. Myxobacterial genomes contain a high number of polyketide
syntethases (PKS), non-ribosomal peptide synthetases (NRPS), and NRPS/PKS-hybrid
gene clusters, and antibiotic compounds of the mentioned classes have been isolated
from myxobacteria [85,86]. Although it was previously thought that myxobacteria are
exclusively terrestrial organisms, halotolerant and obligate marine strains have now been
reported [84]. However, the isolation and cultivation of marine myxobacteria are difficult,
and this is the main reason why they are a less investigated resource [85]. Other bacterial
taxa with considerable biosynthetic potential are cyanobacteria and bacilli [60,87,88], which
are both genera that show in general rather complex or complex morphologies and life
cycles (spore formation, specialized cells such as heterocysts in cyanobacteria, cellular
organization, e.g., into filaments, etc.).

Schinke et al. reviewed antimicrobial compounds produced by marine bacteria that
have been discovered from 2010 to 2015 [60]. It appears that Actinobacteria were the
most prolific producers of new compounds (n = 27), followed by bacilli (n = 12) and γ-
proteobacteria (n = 3). The compounds produced by bacilli and γ-proteobacteria were active
against Gram-negative bacteria while seven of the actinobacterial products showed activity
against Gram-negatives. It is noteworthy that the majority of the active Actinobacteria and
bacilli were isolated from sediment [60]. In another statistical investigation by Hu et al., the
authors investigated bioactive compounds (including all bioactivities such as anti-cancer,
anti-inflammatory, etc.) isolated from marine organisms between 1985 and 2012 [89]. The
ratio between the total number of isolated compounds to active compounds was 47.01%
for Actinobacteria and 46.38% for other bacteria. Both values are significantly over the
average of 28.39% for all marine macro- and microorganisms [89]. It is remarkable that
the phylogenetic groups with the highest biosynthetic potential in the bacterial kingdom
often show rather complex morphologies and life cycles. On top of that, it seems that large
genomes are an indicator for biosynthetic potential. A study by Donadio et al. reinforced
that hypothesis [90]. They investigated 223 genomes for the presence of PKS and NRPS
clusters, and those clusters were not present or rare in genomes < 3 Mb [90]. In another
study, Belknap et al. investigated 1110 available Streptyomyces genomes and found a
significant positive correlation between genome size and the number of biosynthetic gene
clusters per genome [91]. So, there is another, more general indicator for promising subjects
for investigation that follows an inner logic because additional genes need to be encoded
within the genome besides the genes for the primary metabolism of the bacteria. In addition
to the genome size, I want to stress again the tendency that appears when looking at the
genera mentioned above. To have a complex life cycle (sporulation and germination), but
even more, to have a complex cellular morphology seems to be a potential indicator for
genera to focus on during bioprospecting efforts.

8. Conclusions

Bacteria have contributed an important share of the medicines in clinical use. Their
metabolic machinery is able to produce a wide range of secondary metabolites with a wide
range of biological activities. When it comes to natural products with strong pharmaceutical
activities, they often turn out to be produced by bacteria. The anti-cancer chemotherapeutic
trabectedin, primarily isolated from a tunicate, is probably the product of a symbiotic
bacteria [92]. Another example is tedrodotoxin, which can be found in some species of
pufferfish that are well known for their toxicity. It is one of the most potent small molecular
toxins accumulated in some organs of the pufferfish but produced by bacteria [93]. The
products of bacteria have served as drug leads or active pharmaceutical ingredients for
many therapeutic areas such as antibiotic, immunosuppressive, and anti-cancer drugs [53].
However, the field of antibiotics is somewhat different from other pharmaceutical areas.
As we isolate antibiotics from the same natural environment that is the origin for potential
resistances to the pathogens, it is very likely that we will face the development of antibiotic
resistance for every natural-product antibiotic that comes into clinical use. This can happen
via uptake of resistance factors or mutation. It is up to us to delay the process by establishing
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a best practice in use of antibiotics [44]. In addition to the search for new antibiotics, the
“preservation” of reserve antibiotics through responsible use should be an integral part of
the strategy. In order to find new antibiotic molecules as reserve antibiotics against resistant
pathogens, it is in my opinion most promising to further investigate the bacterial phyla
that are known to produce secondary metabolites, to select the less-investigated branches
of those phyla, isolates from less-sampled or un-sampled habitats, and to look on those
that are difficult to isolate and cultivate. One environment that is therefore predestined
is that found in the Arctic and Antarctic waters. To me, the combination of “sampling
strategies for novelty”, e.g., isolating specifically Actinobacteria from the Arctic deep sea,
seems to be a reasonable approach. Natural products from bacteria are a proven source of
chemical novelty, and they have led to the development of many drugs, especially in the
field of antibiotics. However, by reviewing the natural products literature, one may gain the
impression that combinatorial and synthetic chemistry is “outdated”, which is not the case.
Keeping the numbers from Newman and Cragg in mind, the pure synthetics made up one-
third of the small molecular drugs for all indications. The toolset for finding new molecules
in bioprospecting pipelines has expanded through recent and ongoing developments in
bioinformatics, which provides tools to identify new biosynthetic gene clusters and predict
what kind of molecules they produce. Methods in molecular biology that enable sequencing,
heterologous expression, and production of metabolites are also available. These techniques
provide a powerful addition to the classical bioprospecting workflow based on bioassay-
guided compound isolation. The isolation of the bioactive compounds still has a crucial role,
as it is required to finally identify the active compound(s), determine its bioactivity, and
obtain material for structure elucidation. The bioactivity screening of extracts and fractions
frequently leads to the rediscovery of known compounds and false positives via unspecific
bioactivity. In our lab, we frequently obtain hits in anti-cancer and antimicrobial assays
caused by lipids such as rhamnolipids [94]. Here, HPLC-MS/MS guided dereplication
provides an important tool to exclude the known or trivial bioactivities. The combination
of retention time, UV/Vis spectrum, mass, and fragment masses sometimes allows an
identification of known bioactive compounds with high certainty, and sometimes it allows
at its best an “educated guess”. However, it should be kept in mind that the identification
of a known active compound and subsequent termination of the investigation of an extract
carry the risk of missing other, less abundant active compounds. As mentioned above, all
the possible workflows and tools in bioprospecting represent an economic and personal
effort, and one can easily get lost in trying to deal with the emerging number of samples,
e.g., when employing the OSMAC approach. The key to efficient bioprospecting in my
opinion is finally to focus on the investigation of promising bacterial phyla, but to avoid
reinvestigation of known compounds. Additional indicators to consider for promising
isolates among a given collection may be the genome size of bacteria and a complex
morphology and/or life cycle.
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