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Abstract: Fringe pattern analysis is the central aspect of numerous optical measurement
methods, e.g., interferometry, fringe projection, digital holography, quantitative phase microscopy.
Experimental fringe patterns always contain significant features originating from fluctuating
environment, optical system and illumination quality, and the sample itself that severely affect
analysis outcome. Before the stage of phase retrieval (information decoding) interferogram
needs proper filtering, which minimizes the impact of mentioned issues. In this paper we
propose fully automatic and adaptive fringe pattern pre-processing technique - improved period
guided bidimensional empirical mode decomposition algorithm (iPGBEMD). It is based on
our previous work about PGBEMD which eliminated the mode-mixing phenomenon and made
the empirical mode decomposition fully adaptive. In present work we overcame key problems
of original PGBEMD - we have considerably increased algorithm’s application range and
shortened computation time several-fold. We proposed three solutions to the problem of
erroneous decomposition for very low fringe amplitude images, which limited original PGBEMD
significantly and we have chosen the best one among them after comprehensive analysis. Several
acceleration methods were also proposed and merged to ensure the best results. We combined
our improved pre-processing algorithm with the Hilbert Spiral Transform to receive complete,
consistent, and versatile fringe pattern analysis path. Quality and effectiveness evaluation,
in comparison with selected reference methods, is provided using numerical simulations and
experimental fringe data.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The branch of optical full-field (non-scanning) fringe-based techniques, e.g., interferometry
[1-3], digital holography [4,5], fringe projection [6] and moiré [7], plays an important role in
various fields of modern science, such as biomedicine (non-invasive cell/tissue imaging) [8,9],
3D imaging [10], and experimental micromechanics (strain and stress evaluation) [11] etc. One
of the main issues limiting the usefulness of fringe-based measurement methods is generally
a cumbersome task of proper fringe patterns analysis [12]. Such analysis is based on solving
the inverse problem and extracting the phase map from raw interferogram intensity distribution
(phase map stores information about the measurand of interest). Optical full-field measurement
is affected by several factors, like environment stability (temperature, air pressure, vibrations
etc.) or optical system quality [1,2].

It is impossible to point out the best and the most universal method of fringe pattern analysis,
mainly because there are two vital and usually exclusive measurement priorities: accuracy and
speed. Temporal Phase Shifting (TPS) [1-2,13—14] techniques provide the best precision of
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fringe pattern analysis; however, they belong to multi-frame analysis methods and thus require
recording more than 3 fringe patterns, differed by the phase step. If TPS is planned to be used,
optical system must be especially prepared, so that it can provide phase stepping. Multi-frame
techniques enable relatively easy phase extraction and the highest accuracy for single-pixel
resolution (phase values are calculated in each pixel separately) [1-2,13—14], but phase stepping
elongates measurement time.

There are many applications, where measurement time is as crucial as its accuracy, e.g. time-
lapse examination of rapidly moving biological objects or tomographic images [8]. Therefore
single-frame fringe pattern analysis methods have been developed. Many of them are worth
mentioning, for example: Fourier transform (FT) [15], windowed Fourier transform (WFT) [16],
spatial carrier phase shifting (SCPS) [17], continuous wavelet transform (CWT) [18] and Hilbert
spiral transform (HST) [19], to name some.

Single frame techniques enable quick and simple measurement, but they are more vulnerable
to low signal to noise ratio (SNR) and varying fringe shapes (local period and orientation) [20].
In numerous scientific fields there is a strong desire of automatized fringe pattern analysis, but the
mentioned difficulties make it an actual challenge, as optical data processing almost always needs
some kind of human supervision. Among single-frame fringe pattern analysis techniques the
Hilbert Spiral Transform (HST) [19] stands out as one of the most effective, versatile, and robust as
it is an all-pass filter type of phase demodulation algorithm working without restrictions imposed
on local shape of fringes —in contrary, e.g., to the FT, which needs high carrier frequency to ensure
spectral separation of cross-correlation terms. The HST requires fringe pattern pre-processing,
however. There are two crucial requirements, that must be fulfilled before performing successful
HST: background inhomogeneity removal (i.e., to force fringe signal oscillation around zero mean
value) and slowly-varying or non-existent amplitude modulation [19]. High noise level could also
severely affect phase retrieval results (e.g., impending unwrapping of the phase map), making
noise removal very desirable. Various pre-processing techniques fulfill these requirements, but
come with a downside of long processing time and are highly parameter dependent (e.g., CWT
[18] and Variational Image Decomposition (VID) [21]). Among them, recent improvements of
Empirical Mode Decomposition (EMD) mark it out as unique and powerful approach.

Initially, EMD was proposed by Norden Huang in 1996 [22] as an adaptive and data driven
method for nonlinear and nonstationary data analysis. Decomposition process is determined
by the signal itself, basing on extrema distribution. Signal is decomposed into several intrinsic
mode functions (IMF), representing consecutive, ascending inner scales of spatial frequencies.
Development of bidimensional EMD (BEMD) [23,24] began an era of effectively applying this
family of techniques into the fringe pattern analysis [25,26]. BEMD itself was an enormously
time-consuming algorithm, however, as a consequence of using bidimensional cubic splines
and radial based functions for interpolating envelope surfaces of the corresponding irregular 2D
extrema maps. A significant improvement in computation time has been proposed by Bhuiyan et
al. [27], replacing cubic splines with order-statistics-based filtering followed by a smoothing
operation — algorithm is known as Fast Adaptive Bidimensional EMD (FABEMD). Further
acceleration was provided by Trusiak et al. in Enhanced Fast EMD (EFEMD) algorithm [28].
Filtering window size was estimated using the number of extrema without resorting to costly
calculation of the distance between adjacent extrema; envelope estimation as well as extrema
detection was performed by means of the time-optimized morphological grayscale dilation.

The EFEMD algorithm and all its predecessors had a serious trouble due to the mode mixing
phenomenon, understood as information spreading among several modes or mixing inside a single
one [29]. In consequence, fringe information of various density was stored in several different
modes. Fringe-containing modes had to be chosen manually, what impeded pre-processing
automation and decreased its level of versatility and accuracy. In our previous work we proposed
a solution to this important problem: Period Guided Bidimensional Mode Decomposition
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(PGBEMD) algorithm [30]. We eliminated mode-mixing phenomenon, achieving crucial step
in automation of the fully adaptive fringe pattern pre-processing. The working principle of
PGBEMD relies on adaptive local filter size tailoring — we have applied small filter size in dense
fringe areas and large filters in sparse fringe areas. Entire fringe information is now included
in the first mode and background heterogeneity is removed. For more efficient noise removal,
algorithm was also combined with block-matching 3D (BM3D) method [31]. It is important to
note that PGBEMD alone works very well under noisy conditions, however incorporating the
BM3D prevents the noise component to spoil the resulting phase distribution.

The PGBEMD, however, still suffers from certain issues and is not suitable for all kinds of
interferograms. The first major issue, which restricts algorithm’s versatility, refers to the low
contrast images. Since numerous low-quality interferograms, exhibiting low fringe contrast
and strong incoherent background illumination term, do not fulfill this condition, pushing the
contrast limit is a crucial issue studied in this paper. Computation time stands out as the second
major issue. Anti-mode-mixing improvements caused about fivefold elongation of the PGBEMD
decomposition process compared to the EFEMD technique.

Thus, the main objective of this paper is to significantly improve the PGBEMD algorithm and
overcome two main issues mentioned above, making it a truly versatile tool, capable of quick,
automatic and adaptive pre-processing of any type of interferogram in a data-driven way. Proposed
improved PGBEMD - the iPGBEMD algorithm, described in Section 2 — will be combined with
phase demodulation performed by the HST creating comprehensive end-to-end fringe pattern
analysis path, described in Section 3. Proposed method is numerically evaluated in Section 4
using various synthetic fringe patterns, along with reference methods: morphological operation
based BEMD (MOBEMD) [32], unsupervised Variational Image Decomposition (uVID) [33] and
original PGBEMD algorithm [30]. Last section of the paper provides experimental verification
of image pre-processing and phase retrieval quality basing on real interferograms collected under
laboratory conditions.

In all the following sections we will use Root Mean Square (RMS) error, received between
calculated outcome and the numerical/experimental ground truth, to describe decomposition
quality during quantitative evaluation. We use Matlab environment for all numerical analyses.

2. PGBEMD improvement: implementing the iPGBEMD
2.1. Pushing the fringe contrast limit

The EFEMD algorithm [28], PGBEMD predecessor, extracts the first mode function by subtracting
the mean envelope from initial image. The next modes are extracted similarly, but the mean
envelope from the previous iteration is treated as a new input image and filter size is bigger. In all
iterations filter size is constant for the entire image, independently from local fringe density and as
a result, fringe information of various density is stored in several different modes. In PGBEMD
algorithm, mode-mixing has been avoided through spatially adaptive filter size introduction. This
approach required local fringe density (fringe period) map estimation. Estimation we originally
proposed in [30] works in a pixel-by-pixel manner on a single fringe pattern intensity distribution
and contains the following steps:

1) Calculation of arithmetic average from the smallest pixel’s neighborhood (3 x 3 pixels)

2) Calculation of local differences from this arithmetic average for every pixel in the
neighborhood

3) Calculation of so-called Average Deviation (AvD, arithmetic average of those local
differences)

4) Verification if AvD is larger than limit value, currently set as 50% of AvD calculated for
the entire image: if this is true, neighborhood size is multiplied by 2 and saved as local



Research Article Vol. 29, No. 20/27 Sep 2021/ Optics Express 31635

Optics EXPRESS

density, otherwise whole operation is repeated for consequently increasing neighborhoods
(5x5,7x17 etc.) until the condition is met

Local fringe period is used as a filter size for mode extraction in subsequent decomposition.
The PGBEMD is sensitive to steep fringe slope, but in low-contrast images fringe slopes are not
large enough compared to the background altitude, because AvD will not achieve the predefined
limit value and will locally assign far too large density value to the pixels. It results in severe
background leakage to the first mode and damage of the retrieved phase. To overcome this issue,
we have proposed several improvements.

2.1.1. Search for the highest derivative of the Average Deviation parameter

We have investigated, how the AvD fluctuates in a function of the neighborhood size for three
main cases: dense (Fig. 1(d)), moderately dense (Fig. 1(a)) and sparse fringes (Fig. 1(b)). For
every case we calculated AvD for three adjoining pixels to prevent random errors.
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Fig. 1. AvD parameter in a function of the neighborhood size for moderately dense fringes
(a), sparse fringes (b) and dense fringes (d) from exemplary simulated interferogram with
low fringe contrast (c).

Figure 1 shows, that in dense fringe areas there occurs significant AvD function variation.
It is less visible in sparse fringe case, but AvD parameter grows in differential rate, reaching
highest growth in the middle of investigated range. Our first improvement idea is to change the
stopping criterion for local density estimation. Filter size is now saved as local density when
AvD derivative is the highest. This requires, however, calculation of AvD for entire range of
mask sizes, making algorithm even more time-consuming.

2.1.2. Initial, coarse background estimation

As a second improvement concept to overcome erroneous decomposition for strong background-
to-signal ratio we have decided to keep density calculation principle unchanged and reduce the
background altitude initially in a fast and very versatile manner. Density map calculation is now
preceded by initial, coarse background estimation, performed by image smoothing operation.
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Value of every pixel is set as arithmetic average from its neighborhood. Initial smoothing uses a
filter of very large size, currently set as quarter of image width, to ensure that no fringe information
is lost at this stage. The simple filter we have created is an averaging, square-shaped one with
adjustable size. It does not change its basic size, but if the pixel is near the edge of the image it
becomes, for example, rectangular 9 X 7 or 9 x 5 instead of regular square 9 X 9. Algorithm does
not search for pixel’s neighborhood outside the image, so no data extrapolation is needed. It is
similar to the one used in the decomposition process itself. As a result, low-frequency background
distribution is received (Fig. 2(a)). Consequently, calculated distribution is subtracted from
original image, significantly reducing the background altitude (Fig. 2(b)).

100 200 300 400 500

Fig. 2. Low spatial-frequency background distribution (a) estimated from the interferogram
depicted in Fig. 1(c), and fringe pattern after subtraction of the coarse background (b).

2.1.3. Adaptive Average Deviation limit

Our third improvement idea is based on the preliminary determination of fringe contrast. The
AvD limit is now made adaptive, in contrast to PGBEMD global one. It increases in the case of
high fringe contrast and decreases in the case of low fringe contrast. For this purpose, initial,
coarse background estimation is performed, same as in section 2.1.2. The difference is that
background distribution is not subtracted from original image, we only acquire information
about background altitude instead. Subsequently, we compare it with fringe altitude, acquired
by subtracting background altitude from the range of input image intensity values. At the end
AvD limit is multiplied by such estimated background-to-signal ratio. Scheme illustrating this
procedure is shown on Fig. 3.

All simulated fringe patterns in this manuscript were in size of 512 x 512 pixels and were
expressed with the following equation, unless otherwise stated:

image = contrast - cos(phase) + gauss + noise

where:
noise = abs(randn)

gauss = 10 - normpdf (x* + 12,0, 3)

What is more, the phase of the exemplary interferogram from Figs. 1-3 is simulated as follows:
phasezx% —11-x=2-y>+10-y+6 - peaks

Effectiveness of all three improvements from sections 2.1.1-2.1.3 has been numerically
compared in order to select the best solution. We investigated the RMS error between 1% mode
from different variants of iPGBEMD and reference cosine of the simulated ground-truth phase —
using the same exemplary interferogram, as in Figs. 1-3. Parameter c (fringe contrast defining
the overall signal to background ratio of the fringe pattern) was established as a variable. Figure 4
shows RMS investigation results.
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Fig. 4. RMS error of all proposed solutions in comparison to original PGBEMD decompo-
sition comparison under varying fringe contrast.

Figure 4 clearly proves that all three proposed methods increased decomposition quality in low
fringe contrast regime. Furthermore, we can undoubtedly state, that initial, coarse background
estimation returns the best results. We have made an obvious decision to include that method
in our enhanced iPGBEMD algorithm. Sufficient fringe contrast limit has been pushed down
from 0.5 to around 0.2, considering competitive threshold of RMS=0.1. Decomposition of
post-estimation image returns greatly improved 1% mode, see Fig. 5.

2.2. Accelerating the algorithm

The PGBEMD long computation time is a consequence of three main factors: BM3D denoising,
local density map computation and the decomposition itself. Currently the PG-BEMD computa-
tion time varies between 20 and 40 seconds for 512 x 512 pixels images, processed on laptop
with Intel Core i7-9750HF CPU and 16GB RAM (important note: all computation durations
mentioned in this paper will refer to this computer). Relatively long processing time, although
not precluding the preprocessing automatization, restricts algorithm’s suitability for full-field
interferometric data coming from regular CCD cameras (around 2000 x 3000 pixels). In this
section we will concentrate on accelerating fringe density estimation, primarily. We propose
three improvements accelerating the PGBEMD.
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Fig. 5. The case of fringe contrast equal to 0.2: 1% mode extracted by original (a) and
improved (b) PGBEMD.

2.2.1. Sparse sampling of the density map

While estimating the local fringe density, the PGBEMD repeatedly performs pixel-by-pixel
operations and investigates large pixel neighborhoods. We have formed a hypothesis, that sparser
sampling will have large impact on pre-processing time, while having a minor impact on the
decomposition quality. We questioned our hypothesis, and calculated density of every third
pixel in horizontal and vertical axis (every ninth, effectively) instead of doing it for every pixel.
Density of remaining pixels were extrapolated from the nearest calculated one. Subsequently, we
repeated experiment with density calculation of every fifth pixel, every seventh, every ninth etc.
Decomposition quality and computation time have been evaluated in Fig. 6, depending on the
fringe period map sampling rate.
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Fig. 6. RMS error and computation time depending on sampling density.

Outcomes presented in Fig. 6 prove, that small sampling rarefaction results in reasonably
incremental RMS error increase, while it shortens the pre-processing duration significantly.
Relationship between the RMS error, time and sampling density remains similar for many
other simulated fringe patterns, therefore we decided to include only one such plot (derived for
interferogram presented in Fig. 1(c)) in our paper. We chose sampling every fifth pixel for further
analysis, but sampling rate remains parameterized and can be modified if needed.

2.2.2. Local density estimation guided by the adjacent values

Original PGBEMD algorithm always initiates density estimation from the smallest pixel’s
neighborhood (3 x 3) and increases neighborhood size until the AvD parameter reaches its
predefined limit value. Therefore, investigation of all successive neighborhoods, especially in
sparse fringe areas, is highly time consuming. In the novel iPGBEMD we propose the following
modification: local density value from previous pixel serves as initial neighborhood size, and that
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size can be either increased or decreased, depending on the AvD value. As a result, we managed
to accelerate decomposition even more without any quality loss.

2.2.3. Removal of all further modes and merger of three acceleration concepts

After interferogram decomposition performed by PGBEMD entire fringe information is included
in the first mode. Subsequent modes were still extracted, however, despite of providing non
useful information. In iPGBEMD only the first mode is extracted, remaining mean envelope
represents residual, background component.

Three proposed improvements combined allow to reduce the decomposition time greatly —
about 6 times, from 30 to around 5 seconds for 512 x 512 images. We investigated decomposition
process of two exemplary interferograms with the same phase function, but with different carrier
spatial frequencies, verifying computation time for overall sparse and dense fringe patterns.
Figures 7 and 8 show comparative charts between PGBEMD and iPGBEMD, respectively,
pointing out fragmented computation time of every stage: BM3D denoising, density map
calculation and decomposition.

HmBM3D M densitymap & decomposition

0 10 20 30 40 50
time [s]

Fig. 7. Exemplifying input image (left) and the PGBEMD decomposition time before (2 -
top right) and after (1 - bottom right) improvements.
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08 - ]
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Fig. 8. Exemplifying input image (left) and the PGBEMD decomposition time before (2 -
top right) and after (1 - bottom right) improvements.

The greatest advantage is achieved in duration of the decomposition itself, although for sparse
fringe interferograms acceleration of density estimation becomes almost equally important.
BM3D has not been accelerated and now it works through 25 to 50% of total pre-processing
time. In case of low fringe pattern noise, it can be omitted thus reducing the pre-filtering time
to around 2-5 seconds. Employing more sophisticated CPU hardware or implementing GPU



Research Article Vol. 29, No. 20/27 Sep 2021/ Optics Express 31640

Optics EXPRESS

realization one could try to approach real time processing (8 frames per second). It is not the
objective of this study, however, as we aim at low-cost and straightforward hardware.
3. Complete automatic interferogram analysis path

After improvements proposed in Sections 2.1 and 2.2 we have combined iPGBEMD with HST in
order to create complete automatic interferogram analysis path. Main advantages of the HST in
relation to other single-shot methods, which advocate the usage of HST for further analysis, are:

- easy automation — no special preparations in measurement technique and no manual window
selection (like in Fourier Transform) are necessary;

- fully 2-D second frame generation;

- HST has already been successfully combined with previous empirical mode decomposition
algorithms [22,25,28,34].

To sum up, we present all steps included in our novel analysis in a graphical way in Fig. 9.
Processing path includes:

] original image |

IPG-BEMD
decomposition

165 ok

phase unwrapping

phase map

Fig. 9. Graphic scheme illustrating fringe pattern analysis using iPGBEMD + HST tech-
nique.

a) generation of synthetic interferogram in Matlab,

b) image denoising using BM3D algorithm — sigma parameter set to 60, wider analysis in our
previous work [30],
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¢) initial background estimation performed by smoothing operation with very large (0.25 *
M, where MxN is the image size), square-shaped, averaging filter,

d) subtracting the estimated background from the image,
e) density map calculation,

f) empirical mode decomposition, using local density value as local filter size, 1% mode
extraction,

g) wrapped phase retrieval by Hilbert Spiral Transform,

h) phase unwrapping using Miguel 2D Unwrapper algorithm [35],

At the end we calculate the RMS error not only between 1% mode and ideal cosine of the phase,
but also between retrieved phase and the reference simulated phase.

Since the visual difference, see Fig. 9, between the 1% mode and the image after coarse
background estimation is relatively small, we have decided to compare decomposition results
with hypothetical omission of that process — we have performed HST and phase unwrapping
using image just after background estimation as input. The RMS error between calculated and
ideal phase for original image from Fig. 9 is 0,2044 with iPGBEMD decomposition and 0,3972
without it (with simple coarse background removal only). Figure 10 presents error maps of both
calculated phases. HST performs significantly worse without previous iPGBEMD decomposition
—on Fig. 10(b) we can clearly see far larger errors than in Fig. 10(a).
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Fig. 10. Error map of retrieved phase with (a) and without (b) the iPGBEMD decomposition
employment. In case of lack of iPGBEMD decomposition simple coarse background removal
was implemented. The phase RMS dropped from around 0.4 to 0.2 radians after iPGBEMD
incorporation.

4. Numerical evaluation using synthetic fringe patterns

Effectiveness of the presented technique has been numerically evaluated in broad and diverse tests.
At first, we chose three reference pre-processing methods and compared, how they collaborate
with HST.

The first chosen technique is the unsupervised Variational Image Decomposition (uVID),
known for its good quality, but also for its long processing time. As the second method we chose
Morphological Operation Based BEMD (MOBEMD), the reference technique in our previous
work [30]. The last compared technique is original PGBEMD before improvements presented in
this paper. We evaluated three main results for each method:

- RMS error between retrieved phase and reference phase,

- RMS error between fringe pattern after pre-processing and reference cosine of the phase,
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- computation time.

Simulated fringe patterns were expressed with the following equations:
phase = a - x + b - peaks

Image = c - cos(phase) + gauss + d - noise

We have investigated RMS and calculation time depending on the 5 factors, varying in a
reasonable range:

- (1) carrier spatial frequency - parameter a - of linear fringes, see Fig. 11,

- (2) carrier spatial frequency - parameter a - of linear fringes with phase modulation, see Fig. 12,
- (3) dynamic range of the phase - parameter b, see Fig. 13,

- (4) fringe contrast - parameter c, see Fig. 14,

- (5) noise level - parameter d, see Fig. 15.
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Fig. 11. RMS error of retrieved phase (a), RMS error after pre-processing (b) and
computation time (c).
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Fig. 12. RMS error of retrieved phase (a), RMS error after pre-processing (b) and

computation time (c).
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4.1. Variable carrier spatial frequency of linear fringes

Simulated fringe patterns were generated using the following formulae:
phase =a-x

Image = 0.5 - cos(phase) + gauss + 0.2 - noise

All fringe pattern pre-processing methods return lower RMS values for dense fringes rather
than sparse fringes. There are, however, significant differences between them. The iPGBEMD
achieves satisfactory quality already for a=5, while for other methods it is about §8-10. All
techniques provide similar pre-processing and phase retrieval quality for dense linear fringes,
however the MOBEMD is performing noticeably worse in case of pure pre-processing. It is
worth mentioning, that the iPGBEMD provides the shortest computation time in the entire range
of variable parameter a.

4.2. Variable carrier spatial frequency of closed fringes

Simulated fringe patterns were generated using the following formulae:
phase = a - x + 10 - peaks

Image = 0.5 - cos(phase) + gauss + 0.2 - noise

Similarly, as in section 4.1 RMS error and computation time decrease with increasing carrier
spatial frequency. The iPGBEMD outperforms all reference methods, especially in terms of
quickness, achieving satisfactory overall time of 4-5 seconds.

4.3. Variable dynamic range of the phase

Simulated fringe patterns were generated using the following formulae:
phase = 10 - x + b - peaks

Image = 0.5 - cos(phase) + gauss + 0.2 - noise

Larger dynamic range of the phase in most cases slightly increases RMS error of both phase
retrieval and fringe pattern pre-processing. This effect is the least observable in the iPGBEMD,
however. Our technique returns the most reliable and the fastest results. It is worth to notice that
computation time of iPGBEMD is not only the shortest, but also the most stable and does not
depend on the phase dynamic range (general variability of local optical path differences).

4.4. Variable fringe contrast

Simulated fringe patterns were generated using the following formulae:
phase = 10 - x + 10 - peaks

Image = c - cos(phase) + gauss + 0.2 - noise

Figure 14 shows that none of the considered techniques deals properly with very low fringe
contrast. There are, however, some important differences in their usefulness limit. The iPGBEMD
and uVID are capable of properly decomposing images with fringe contrast larger than 0.2. For
MOBEMD and original PGBEMD this is 0.3 and 0.4, respectively. Once again, the iPGBEMD
proves itself to be the best and the fastest pre-processing tool among the tested representatives. It
is also important to note how processing time is elongated for PGBEMD in low contrast regime,
as algorithm is not able to converge.
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4.5. Variable noise level

Simulated fringe patterns were generated using the following formulae:
phase = 10 - x + 10 - peaks

Image = 0.5 - cos(phase) + gauss + d - noise

Presented plots show clearly that increasing noise level gradually increases the RMS error. The
iPGBEMD achieves the best quality and the shortest calculation time for entire investigated range.
It is worth mentioning, that all MOBEMD, uVID, PGBEMD and iPGBEMD methods include
the same denoising technique — the BM3D.

5. Experimental validation

For the purpose of comprehensive iPGBEMD quality validation we take into account two
experimental data sets — the first one was recorded during interferometric (Fizeau) evaluation
of optical phase plate with varying shape of the front surface [36] and thus fringes encapsulate
overall optical thickness variations (Fig. 16(a)). The second one represents HeLa(human cell line
originating from cervical cancer) cells quantitative phase imaging (Fig. 17(a)). The first data
set contained a total of 5 images, mutually phase shifted by /2, but all compared techniques,
excluding TPS, used only 1 out of 5 interferograms for further phase retrieval. HeLa cells were
fixed and the temporal phase shifting was successfully captured in a Linnik type quantitative
phase imaging interferometer [37-39].

In Figs. 16(a)-(j) we present pre-processing and phase retrieval results of the first experimental
data set using 5 techniques: TPS, original PGBEMD + HST, iPGBEMD + HST, uVID + HST
and MOBEMD + HST. All investigated techniques were generally competent, except for the
MOBEMD where significant phase errors occurred on the upper edge (Fig. 16(j)). All the other
phase maps exhibited hardly distinguishable differences, hence we decided to present phase
error maps instead of very similar phase maps. Phase error map and consequent RMS error
are calculated for each method as a difference between retrieved phase and the reference TPS
phase map. Considering 1% modes extracted by PGBEMD (Fig. 16(b)), iPGBEMD (Fig. 16(¢)),
MOBEMD (Fig. 16(i)) and uVID texture component (Fig. 16(g)) we can state, that background
removal in PGBEMD (RMS=0,3021) and iPGBEMD (RMS=0,3048) is better than in uVID
(RMS=0,3587) and MOBEMD (RMS=0,3805), however comparing to uVID it has a very little
impact on the final phase retrieval. It is worth to note, that original PGBEMD technique performs
as good as the improved one — this is caused by relatively high fringe contrast in the input image.

Since obtaining ideal phase map from experimental data is practically impossible, in pursuit of
better comparison we decided to treat the TPS-retrieved phase as the reference phase. We present
the RMS error between TPS-retrieved phase and all the other phases in Table 1. We have also
taken into account the computation time of the whole procedure, including HST and unwrapping.
The RMS error is very similar for every method, except for MOBEMD, but iPGBEMD stands
out as the indisputably fastest algorithm.

Table 1. Comparison of phase retrieval errors and computation time for phase
plate examination.

Technique RMS (in comparison to TPS) Computation time [s]
PGBEMD 0,2142 108
iPGBEMD 0,2099 17
uVID 0,2076 132

MOBEMD 0,2493 52




Vol. 29, No. 20/27 Sep 2021/ Optics Express 31646

EXPRESS

1 c 1
05 05
0 0
05 05
A 4
200 400 600

1 f 1
05 05
0 0
05 05

200 400 600

h.i

200 400 600

=}

-1

200 400 600

Fig. 16. Input image (a), 15t mode from original PGBEMD (b), original PGBEMD + HST
error map (c), TPS-retrieved phase (d), 1%t mode from iPGBEMD (e), iPGBEMD + HST
error map (f), texture component from uVID (g), uVID + HST error map (h), 1% mode from
MOBEMD (i) and MOBEMD + HST error map (j).



Research Article Vol. 29, No. 20/27 Sep 2021/ Optics Express 31647 |

Optics EXPRESS

)

~

=)

[

200 400 600 800 1000 1000

6 e 6
200
4
400
2
600
0
800
2 o
1000

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

S

N

°©

(S

Fig. 17. HeLa cells: input image (a), TPS retrieved phase (b), iPGBEMD + HST retrieved
phase (c), original PGBEMD + HST retrieved phase (d), MOBEMD + HST retrieved phase
(e), and uVID + HST retrieved phase (f).

In Figs. 17 (c)-(g) we present the retrieved phase maps of the HeLa cells (Fig. 17(a)), using
TPS, iPGBEMD, uVID, MOBEMD and original PGBEMD for fringe pattern pre-processing
and HST for phase retrieval. The iPGBEMD (Fig. 17(c)) and MOBEMD (Fig. 17(e)) returned
good results — cell shapes are correctly obtained, apart from minor punctual errors. The original
PGBEMD results contain major discontinuities in two cells (Fig. 17(d)). The uVID performance
was the most troublesome — significant errors are present in three cells (Fig. 17(f)).

Similar to experimental data from Fig. 16 we have decided to treat the TPS-retrieved phase as
the reference phase. In Table 2 we present the RMS error between TPS-retrieved phase and all the
other phase maps. Computation time of all methods is also presented. The iPGBEMD achieved
the best RMS value, followed by MOBEMD, original PGBEMD, and uVID. The new iPGBEMD
algorithm once again proves to be the fastest and the most efficient. Taking into account both
experimental data sets its computation time is regularly 4 to 6 times shorter than in original
PGBEMD. Processing time of all methods is significantly higher in comparison to numerical
evaluation in section 4 due to larger image sizes (780 x 780 for Fig. 16(a) and 1000 x 1000 pixels
for Fig. 17(a)).

Table 2. Comparison of phase retrieval errors and computation time for HeLa
cells examination.

Technique RMS (in comparison to TPS) Computation time [s]
PGBEMD 0,4325 211
iPGBEMD 0,1772 45
uVID 0,4986 679

MOBEMD 0,1829 90
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6. Conclusions

Fringe pattern enhancement and phase retrieval automatization are highly desirable features in
many contemporary optical measurements. To fulfill this important need and fill the state-of-
the-art gap we proposed an adaptive, versatile and efficient interferogram analysis path using
improved Period Guided Bidimensional Empirical Mode Decomposition and Hilbert Spiral
Transform. We have reduced computation time greatly by merging sparse sampling rate, density
map optimization using adjacent density values and removal of further modes extraction. Due
to simple, but effective idea of initial coarse background estimation and subtraction we have
managed to deal with the most important problem of original PGBEMD: bad immunity to low
fringe contrast. The novel iPGBEMD is later combined with the Hilbert Spiral Transform, and
as a result both techniques cooperate perfectly with each other. We tested out how broad range
of factors affect decomposition, including fringe carrier spatial frequency, dynamic range of
the phase, fringe contrast and noise levels. Wide numerical evaluation proved iPGBEMD to be
superior to every reference method, including unsupervised Variational Image Decomposition
(uVID), Morphological Operation Based Empirical Mode Decomposition (MOBEMD) and
original PGBEMD. Experimental validation, executed upon phase plate interferometric analysis
and HelLa cells quantitative phase imaging, corroborated unique capabilities (short time, high
accuracy and versatility) of the novel single shot phase demodulation approach. Our algorithm
has also provided the shortest computation time among all reference methods in both numerical
and experimental validation. Proposed iPGBEMD technique is undoubtedly suitable for a wide
range of applications for efficient and automatic fringe pattern enhancement in numerous fields
of contemporary science and technology, e.g. biomedicine, 3D imaging and experimental
micromechanics.
The iPGBEMD algorithm has been implemented as we show in Code 1, Ref. [40].
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