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Abstract

Computer games with distributed functionality, such as most modern multiplayer games, provide a rich
environment in which one can experiment with high performance distribution of computational and graph-
ical resources. Their extremely high requirements for processing power and consistent visual output create
a platform with unique demands.

Current tiled display walls provide, as a consequence of their architecture, a large amount of compu-
tational resources in the form of a networked cluster of computers, driving the individual tiles. Existing
forays into creating games intended for display walls have unfortunately made little use of this power,
opting instead to centralise computation on a single host and distributing the resulting graphical infor-
mation, or by running the same computations on all hosts and displaying different parts of the locally
generated information.

We seek to remedy this situation by distributing computation and visualisation in order to exploit
available resources to a greater degree. Achieving a higher level of resource utilisation will allow increasing
the complexity of games to involve larger environments with more interactive entities than on comparative
single host systems. These are approaches that are used to some degree in Massively Multiplayer Online
Games, though rarely with the same focus on distribution or the same demands for visual consistency
between adjoining tiles that on a display wall.

This thesis discusses techniques for determining and distributing a continually evolving set of infor-
mation to a cluster of heterogeneous hosts connected by a network. The hosts will be able to simulate a
set of mobile entities, where all entities on all hosts share a single virtual environment in which they can
interact with each other while keeping a shared and consistent view of the world state. Furthermore, the
approach is tailored to visualisation on a display wall.

To avoid having to design games specifically for the distributed system presented herein, a library is
introduced as a method of removing all distribution-related responsibilities from the game itself, as long as
the game supports a simple common interface and a limited set of callbacks for the library to modify the
game. Do demonstrate the feasibility of this approach and study some of its properties, the Frag library
is implemented as a prototype according to the specified design. An ordinary computer game is modified
to use Frag, after which the system is tested and measured, leading to comparisons between the original
and the Frag-enabled game in terms of scalability in game complexity, in addition to observations about
the suitability of the approach.
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Chapter 1

Introduction and background

Display walls offer the possibility of an unprecedented amount of information displayed simultaneously
on a single screen. The main physical implications of display wall technology is twofold: The technology
allow user to rapidly change the visual context by looking at another part of the screen or moving about
the room. Several users may also interact with the system at once, working in separate context while
still being able to see what other users are doing, or collaborating in the same context whether working
on a document or a computer game.

Computer games can benefit greatly from being played on such a device. Most games have a social
aspect, as the point is to play with or against other humans and most modern PC games include at least
some form of multiplayer mode, usually allowing players to play together by the Internet. Before Internet
games took off, the usual mode of multiplayer gaming was hotseat or shared screen modes. These were
based on players sharing a single computer and either alternated being in control (sitting in front of
the monitor and keyboard) or sharing the keyboard and screen between themselves. Obviously, both
approaches have little scalability, either because of waiting for one’s turn or because a keyboard and a
monitor are both spatially very limited resources.

The distributed, yet tightly coupled architecture of current display walls creates many interesting
problems when it comes to making use of all available resources. Regarding simulation and visualisation
of large data sets, the challenge is twofold.

Firstly, there is an abundance of computing power available, but it is rarely available as a single,
easily reachable resource, although the display wall front end has the appearance of a single unit. The
usual environment is a heterogeneous one, where many computers with workstation-equivalent computing
power are connected in a local area network (LAN). To make use of the environment, one has to parallellise
applications to the point where they can run on separate computers, while keeping communication to a
minimum. Latency on a normal LAN is several orders of magnitude higher than access to local memory,
as to make the speedup negligible if frequent accesses to other computers’ memory is needed.

Secondly, if a tile in the display wall needs to display information generated on another host, this
information, which can potentially be very large, must be made quickly available. Even more important:
Since the tiles generate a composite, but ideally seamless, image, information that is shared between tiles
visualising it must have a high level of temporal consistency. If, for instance, a moving entity crosses an
area of space spanning several tiles, the parts of the entity located on different tiles must all match up
to create a correct image without tears or missing parts. Graphical inconsistencies, such as broken lines,
can be very easy for observers to discover and must therefore be avoided.

As should be quite obvious, and indeed has been showed to be the case[45], it is possible to achieve
a visually consistent display by running the same program in lockstep on all tiles, all the while ensuring
that the tiles receive the same input and pseudo-random variables, resulting in processes that execute
the exact same sequence of events, thus staying consistent. This does solve the problem of distributing
visual information by making it unnecessary as all the information already has been generated locally.
However, this also means that the entire system runs at the speed of the slowest participant, not offering
much scalability in terms of game complexity. This approach is not completely meaningless, however, as

1
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Figure 1.1: Tromsø Display Wall

it renders the game view in a resolution which is very hard to achieve with a single, ordinary graphics
processor. WallSpring[45] was shown to run smoothly at a speed of 20 frames per second at the Tromsø
Display Wall’s native resolution, 7168x3072, equivalent to 28 normal 1024x768 screens.

To make maximal use of the available resources, a middle ground must be found where the simulation
can be sufficiently distributed to exploit the available computing power, while still keeping the network
bandwidth usage manageable. Achieving this does for a big part rest on finding a minimal, necessary
set of information that each node needs to receive and also in rearranging the distribution of tasks to
reduce the size of the minimal set even further.

1.1 Tiled display walls

One of the motivations for creating display walls is observation that one is unlikely to ever have too much
space in which to display information. To the contrary, there always seems to be too much information
to display at once in any comprehensible way. Display walls[43] attempts to remedy the problem by
creating displays covering as large surfaces as possible, such as a wall. One can, of course attain a similar
effect by scaling up a normal screen image with a projector, but this does not really improve the amount
of displayable information. In an upscaled image, the number of pixels is constant and independent from
the image size, so the information capacity would is constant.

The display wall does not simply scale up the image, it increases the number of pixels. This results
in a wall-sized display with about the same resolution as a normal monitor. A tiled display wall achieves
this by, as the name indicates, tiling several screens next to each other, either placing normal screens
in a custom rack or by using projectors and back-projecting images onto a canvas, taking care to align
them to create the illusion of a single, continuous screen, as illustrated in figure 1.1.

The continuous display is, however, just an illusion. Each tile in the display is usually driven by
a separate host computer, connected to the others by a local area network. Newer architectures allow
a single host to power a large amount of displays1, but this obviously restricts the maximum flow of
information to what a single host can handle. If used correctly, the distributed nature of the tiled

1http://www.wedgwood-group.com/xentera gt8 pci multi-screen graphics card cable.htm
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Figure 1.2: The board game Chess

display wall can be exploited to great effect by having each host focus its computing power on the
information displayed on the tile it controls.

Regarding the distributed display wall architecture, there exists several studies on the distribution
of large data sets for visualisation[15, 38]. Some of the techniques discussed there do indeed lead to
efficient distribution of large amounts of data. However, the techniques generally assume a single source
of information from which the visual data is propagated to the tiles. This leads to a focus on how best
to distribute complex visual data containing very large amounts of information, while generation of the
data is generally not considered to be a problem, or at least tractable using a single host or at most some
easily parallellised algorithm. What we are looking for is conversely the distribution of computation
tasks in a complex simulation, while still allowing efficient distribution of the resulting graphical output.

1.2 Gaming

1.2.1 A model for games

Games of all kinds plays a significant role in most peoples lives, to the point where modern humans have
been nicknamed homo ludens2. In his book with the term-coining title, Huizinga states the importance
of play thus[24]:

Now in myth and ritual the great instinctive forces of civilised life have their origin: law and
order, commerce and profit, craft and art, poetry, wisdom and science. All are rooted in the
primaeval soil of play.

Huizinga also defines the concept of play as following[24]:

Play is a voluntary activity or occupation executed within certain fixed limits of time and
place, according to rules freely accepted but absolutely binding, having its aim in itself and
accompanied by a feeling of tension, joy and the consciousness that it is “different” from
“ordinary” life.

2The playing man

3
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Figure 1.3: Spring, a modern computer game, with mobile entities and a continuous terrain, shown in
part

Games come in an endless variety of forms and systems, but they all have the principle above in
common. That means that in addition to providing some emotional reaction, all games have at their
core some set of rules which govern how the game world functions. The game world is the context within
which the game occurs and it can be everything from a painted board to the real world with some added
rules regulating allowed behaviour. The rules are generally necessary to provide an amount of challenge
which again can provoke and emotional response by being overcome or failed.

If one looks at chess, for example (shown in figure 1.2), the model is obvious: The game world exists
as a board with 64 squares, making up exactly 64 discrete spatial locations, inhabited by the pieces of
which only one can occupy a given location at any time. This extremely stylised representation of the
real world is regulated by a set of rules that explicitly regulate how the pieces can move between the
squares and attack each other. Following the rules, it is impossible to construct a situation where the
rules are not applicable, as the game is internally consistent. The feelings of tension or joy, as Huizinga
describes them, are triggered by the players’ competitive instinct as the battle for control of the game
world.

From this description, one can also observe that chess is a finite state machine, with states consisting
of all combinations of pieces and locations, reachable by legal moves.

1.2.2 Computer games

Transferring games to computers maintains the basic properties of games, but allows the games to expand
in the areas where the computer offers additional resources. Where to spend these resources has been
the basis for a long-lasting discussion among computer game designers, however. The prime contenders
are visuals and rule complexity[37].

The former seek to use the computer to realise something that is very hard to do in non-computer
games, namely vividly visualising the game world and the events happening within it. The static and
inflexible representations offered by gaming boards and pieces pale in comparison to the graphics a
computer can create. Indeed, computers are increasingly being used to augment traditional board games
to create a richer game experience[28].

The other element is extending the game rules and adding more computational complexity. As the

4
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computers excels at computing problems, the platform is ideal for implementing complex rule sets, which
would otherwise have been impossible to use. A computer can, for example, with relative ease, implement
a complex physics simulation model, making possible games which come close to real life play while still
allowing things that would not happen in the real world, such as removal of gravity or the possibility of
shooting other players with large weaponry.

Finally, a computer can also act as a virtual opponent, increasing the challenge by making the game
more unpredictable. The computer thus creates a synthetic player which can provide pseudo-random
input to the game.

We have already discussed the basic model for games, but let us look at it again in the light of the
increased rule complexity offered by computers. There does, of course, exist fairly straight conversions of
traditional board games to computers, such as the aforementioned game of chess. In these cases, nearly
all of the improvement goes into the synthetic player, providing opposition without a real opponent,
although there are also computerised games which replicate the original perfectly, adding almost no
additional features3.

Many computer games, however, attempt to expand on the highly stylised world offered by boards
and pieces. The game world is then constructed from a variety of elements. It could for example consist
of a rolling outdoors terrain, with hills, forests and mountains, in which players could move freely.
Alternatively, the world might consist of a large building complex, with rooms, stairs and hallways. The
“terrain” thus defines the physical limits of the game. Terrain, or the map, as it is often referred to, is
usually immutable to keep certain aspects of the game’s complexity in check. In cases where the map
is modifiable, there is nearly always some firm boundary which cannot be altered, and which serves to
keep players or other mobile entities within the designated game area.

Playing pieces are usually replaced by simulated entities, representing interactive objects or creatures.
The degree of complexity in the simulation varies greatly, but it is common to have mobile entities with
behavioural-governing logic and several properties which regulate what they can do and how they can
be interacted with. While not yet approaching true artificial intelligence, computer games is an area in
which application of some elements gathered from AI research is common[26].

1.2.3 Game state

As the map is rather static, it is usually possible to distribute it before the game commences. That is,
the terrain data is treated as other resources the game uses, such as audio or graphical data which is
used for the game’s output. This also applies to some of the entity data, such as graphical models and
certain fixed attributes.

The other entity-related information is created as the game goes along and either real or synthetic
players manipulate entity properties. In most games, this involves moving the entities directly or giving
them commands which the entities then try to fulfil with their internal behavioural logic. These orders are
usually limited to indicating a location the entity should move to and modifying behavioural attributes,
such as aggressiveness or willingness to take detours in order to reach a destination.

Returning to the finite state machine model, computer games are thus in essence not very different
from board games such as chess. However, the computational possibilities of the computers leads to state
machines that are many orders of magnitude more complex than those classical games where the players
themselves must be able to keep track of the state. Entity positions can, instead of being confined to
only 64 separate coordinates, be any of several million unique coordinates. In addition, entities can have
a rather complex internal state, not only describing rotation or contortion but also behavioural state.

Describing the state of a running game, therefore, can be a time-consuming task, especially since
the flexibility of a computer simulated environment leads to an extremely high amount of possible new
states.

3The notorious solitaire implementation which accompanies Microsoft Windows is a good example of such games
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1.3 Why games?

One might ask if games warrant the special attention given to them here. Should it not be possible
to encounter the same challenges and solution spaces in dealing with more classical problems or indeed
newer, network based application groups, such as web services?

Computer games are of course not completely unlike any other applications. If anything, computer
games use elements form a very wide range of disciplines as they adapt to fit various environments and
roles. Computer games can in some instances be seen as a driver for new technologies and techniques,
and are often among the first to implement new functionality. The focus on creating the latest and
greatest, preferably with the additional feature of offering something completely new, combined with
the often more relaxed attitude towards correctness, both in algorithms and implementations, leads to a
creative environment where there is little hesitation in pushing the available technology to its limits.

In the context of display walls, we can single out two application domains that appear to have several
similarities with games, namely high performance computing and content delivery systems, like certain
web services.

As described in 1, the kind of game we wish to see appears to be quite like a normal HPC application.
Indeed, one could classify this type of games as a subclass of parallellised simulations, such as parallellised
ELCIRC[29]. However, parallellised simulations used in high-performance computing and computer
games usually have a different set of goals and therefore use a somewhat different approach. Many
applications used in parallel computations are constructed in order to have clean and simple separations
of responsibility, for example by studying a problem as a set of cells with certain properties, being
affected by their neighbours. This results in a clear definition of which data must be exchanged between
participants in order to keep the simulation consistent, usually the cells along the “border” between the
areas different participants’ responsibility.

As games usually deal with objects moving around the world and interacting with each other, possibly
from great distances, it becomes harder to find a fitting model which allows for simple parallellisation.

More importantly, games are fundamentally different from simulations in that their goal is not to
provide scientific data, but highly interactive environments for play. This means that in addition to just
keeping all participants loaded with useful work, a game domain application also requires low latency
to allow real time operation. Scientific computation can often spend quite long times on each single
operation and several can be queued and executed as capacity becomes available, since it is only required
that the results become available eventually. A game will need to process objects rapidly and provide
the results to other interested parties immediately leading to an onus on very rapid data distribution and
computation scheduling, since the execution of tasks cannot be held back without delaying the game.

As such, the demands for interactivity and low latency in games may have more in common with
high performance web services, such as the various services provided by Google, which indeed also
relies heavily on parallellisation and distribution[4]. These services are structured around allowing large
numbers of users rapid access to a large amount of data, much like the requirements of games with
distributed computation and visualisation.

Content services are, however, largely directed, as in Google’s search service, where users are offered
access to the database, but are unable to directly influence it. In fact, generation of the content itself is
seen as rather straight-forward, with distribution being the main challenge. Indeed, one of the aspects
allowing the extreme amount of distribution used by Google is the fact that their servers are stateless[4],
something which likely does not map very well unto games with distributed computation.

Distributed computer games, then, instead of being clearly placeable within one dicipline, appears as
an amalgam of the mentioned diciplines and many more, creating an interesting platform for experimental
development.
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Chapter 2

Related work

Games have seen a steadily increasing amount of interest from academic circles during the last decade.
Especially after network-based gaming began achieving real popularity in the late 1990’s, games have
been at the leading edge when it comes to creating high-performance distributed systems with strong
demands on latency, consistency and bandwidth. Games have therefore become a convenient medium
for studying such systems, and the efforts have certainly not been hampered by the increasing amount
of resources spent on electronic entertainment.

The joint, steady increase in both processing power and network bandwidth are constantly stretching
the limits of available resources and there is a constant push for more distribution in order to handle
larger and more complex environments.

However, the concept of large scale, distributed simulations is not a completely new phenomenon.
As in many other areas, military research has been leading the way. The Distributed Interactive
Simulation[17] (DIS) protocol provided the basis for a geographically distributed system of autonomous
simulators working together in a shared, virtual environment. The use of autonomous nodes with no
central arbiter can be seen as an early implementation of a peer-to-peer architecture, although the
trusted nature of the nodes meant that cheating was not a problem, something which is a major problem
for Internet-based games. The main thrust of DIS, which has later been improved upon by the High
Level Architecture[25] (HLA), is the development of a common format for exchanging information about
“ground truth”, or an entity’s current status. As long as nodes agree on the information exchange format,
their internal implementations can vary.

DIS had the following among its main features:

• No central system for event scheduling or conflict resolution

• Autonomous simulation nodes

• Sending nodes send ”ground truth” data, receiving nodes are responsible for how it is actually
perceived.

• Each system dead reckons the position of all entities in the simulation, including itself. Entity
state data is sent when the simulated and dead reckoned positions diverge by more than an agreed
threshold or when a timeout interval is exceeded.

• The shooter determines whether and where a target was hit, the victim determines the amount of
damage and its effect.

These properties are emphasised, as they are, at least to some degree, seen in almost all newer
distributed simulations, Frag included. One can claim that Frag to some degrees contains a reimple-
mentation of the DIS/HLA protocol. However, we are not just presenting a protocol, but constructing a
full and workable system able to work with modern games, something no DIS applications appear to do.
Furthermore, our implementation allows us to do extensive testing in a tiled display wall environment.
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MiMaze[21] is a classical, fully distributed game, using bucket synchronisation to achieve distributed
consistency in a real-time environment. Bucket synchronisation works by gathering and assigning player
input into time-separated slots, and having participants wait until a slot has been closed, all new input
going into the next slot, before operating on the given input. This is based on the state machine
model of the games, where the same input applied to the same state, always results in the same, new,
state. All participants can therefore run their own instances of the game, while still ensuring that no
inconsistencies arise. This technique have been used for several Internet-based games, such as X-Wing
vs. Tie Fighter[27], Age of Empires II[7] and Spring[45], where the complexity caused by large number of
active entities made sending state updates infeasible, instead resorting to only sharing input. Common
for these systems is that there is no speedup gained from adding additional computers, as all parties
execute all operations regardless. It is even required for all parties to lower their computation frequency
if one of the connected parties cannot maintain the current frequency, to avoid diverging the parties’
game state.

In the display wall context, most relevant studies have looked at the problem of distributing visual
information to the tiles of the display wall fast enough to, for instance, allow smooth animation. As
display walls offer very high resolutions, visuals that attempt to fully utilise the available proverbial
information bandwidth of the display must by definition contain large amounts of data and therefore
need clever techniques in order to accomplish fast network distribution[15, 38]. Again, these works do
not consider increasing the speed of generating the visual information, only that of the distribution.
Conversely, the latter is our main goal with Frag.

Distributed Entertainment Environment[34] (DEE) presents the model that has become rather com-
mon in modern multiplayer games, with a three way division of the game. The visual model exists at, and
is unique to each client, allowing them to view the world as they see fit. The conceptual model describes
the properties of objects, how they behave and interact with the environment. Finally, the dynamic
model handles the in game interaction between objects, such as collisions and interactions changing
objects’ state. This model provides a very useful approach to distributing games, as it shows how we
can isolate and distribute only a part of the game, that making up the dynamic model. The conceptual
model will usually be agreed on an distributed before the fact, while the visual model is generated by
each participant on the fly, letting it choose what to display for itself.

OpenPING[31] describes a gaming middleware system, providing many of the features implemented
in Frag. OpenPING does not focus on performance issues as much as the value of a common, open and
flexible architecture to which games can delegate communication tasks. Although this system is aimed
at games constructed for distributed use, where Frag is intended to distribute games with minimal
participation from the game itself, the values of an open and easily modifiable platform, which can be
shared by many applications are a common factor.

On the subject of general techniques in game distribution a study by Gil & al.[22] contains a review
of some of the issues involved in creating a scalable distributed game system. The study touches upon
both the elements reviewed in chapter 4 and the general architecture of Frag.

One of the main issues related to distribution of game state, multiple works deal with the reduction of
information distribution by overlaying a partitioning scheme on the game world. The general tendency
is for servers to take control of one or several partitions, computing everything that happens within,
with some protocol for migrating entities between servers when the move between partitions. Adjusting
to server load, partitions can either change size or the number of partitions assigned to a server can be
changed according to a load balancing algorithm[16, 42].

Yamamoto & al.[44] describes an event delivery system using publish-subscribe and a dynamically
overlay partitioned world, limiting information distribution to interested parties. This model or delivering
events is quite close to that used by Frag, except for the fact that Yamamoto’s system is designed for
a server to inform large numbers of players about events and such has a more sophisticated network
protocol, while Frag has a rather straightforward solution encapsulated in the Shout system (see chapter
6).

Mercury[8], based on Scribe[14] features a similar publish-subscribe system, but uses dynamic match-
ing instead of fixed partitions. Although scalable, the Mercury, as an effect of its Scribe base architecture
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as a quite complex routing system involving many hops, something that leads to high latency on event
delivery. As Frag is dependent on delivering a high number of events very fast, in order to keep nodes
updated, the multi-hop approach used in Mercury is not ideal.

Matrix[3] is a complete system designed to alleviate the load problems that many massively multi-
player online games by providing a minimal intrusion middleware which can dynamically partition the
world into overlay regions and start servers to which regions are assigned. Player clients communicate
with the server managing the region they are in and the Matrix middleware routes player input to other
regions when players get close to them, or migrates the player transparently to a new server when the
player crosses into a new region.

The Matrix system appears to be somewhat close to what we are trying to achieve with this project.
However, it uses simplifying assumptions at a few key points where we wish flexibility: It assumes that
most entities have the same area of interest only allowing different values as exceptions, whereas we want
to model a game where entities can have radically different range of view. Matrix also assumes that a
single server can handle all entities within a certain geographical area. While sound for a homogeneous
game, this is not ideal for the design with autonomous nodes which we wish to use. If a certain participant
is the only one in the system which can simulate a certain entity, this entity cannot be migrated, but it
must nevertheless be allowed to move freely in the world.

On the matter of performance analysis, Bjørndalen makes some interesting observations regarding
the tuning of the PATHS system, noting that costs related to network transport, normally considered
the main bottleneck, can become insignificant compared to costs related to packet processing[9].
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Chapter 3

Requirements

As has been said, what we want to achieve is the ability to play games where the simulation is distributed
over many hosts connected by a network. “Many” is intentionally loosely defined, but as a minimum, 28
nodes (the number of tiles in the Tromsø Display Wall) should be supported. Ideally, the system should
also be able to draw on nodes located anywhere connected by a reasonably fast local area network. In
light of this, allowing several hundred nodes to cooperate seems reasonable.

Connecting a set of nodes together must result in a system which can compute the world state for
a single, continuous game environment. This means that an entity should potentially be able to move
across the entire game world without having to perform any special actions beyond those imposed by
the terrain or other entities. As a result of this requirement, the game world cannot be partitioned into
discrete sections in any noticeable way. Forcing the game to be partitioned in this way may reduce the
problem to a set of independent problems with no intercommunication, but it also removes the impression
of a continuous world, as borders are inevitably noticeable.

As the goal of creating the system is to increase the amount of active entities, the system needs to
offer more processing power than an equivalent non-distributed system. Since a non-distributed system
probably involves concurrent lockstep computation on all nodes, this basically means that the system
should be able to compute more tasks than a single node.

However, only being able to perform the computations is not enough. The system must also be able
to keep the game world sufficiently consistent. The use of the world “sufficiently” is defensible since the
system is not intended to run distributed scientific simulations, but rather game applications. This means
that the result does not need to be “correct” or verifiable, only reasonable. This increases the system’s
freedom significantly, since the node coupling can be released somewhat and simulations can proceed
independently at separate nodes, as long as conflicts and interactions can be discovered and resolved
before they become significant. As long as significant inconsistencies do not arise, minor inconsistencies
can be accepted.

Still, the system needs to communicate quite heavily between nodes to keep the system sufficiently
consistent. It is, for example, not acceptable for entities to spend significant time in each others’ presence
without reacting, if they ordinarily should have done so. Even more important, separate nodes cannot
maintain a state where significant events, such as the destruction of an entity, has happened in one node’s
world, but not in the others. If this occurs, the nodes’ world view, while originally shared, will rapidly
diverge, as the unit which only exists on one node performs other significant actions or other entities
react to it.

As has already been indicated, the system should exist as a set of nodes which together compute the
state of the game world. There is thus no central server responsible for computing and disseminating
the results of all actions. This model is receiving an increasing amount of attention in multiplayer
games[36], but requires all game-related computations to be executed, or at least verified, at more than
a single location, in order to detect errors or cheating attempts. Although the server can be replicated
or otherwise share its load with other servers, this still does not reach the potential power of having the
clients compute their respective parts of the game. Of course, in an environment such as the Internet,
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where most other parties are untrusted, letting a client control what happens is extremely prone to abuse.
This problem is possible to remedy by having multiple clients double check computation results and has
indeed been studied in peer-to-peer gaming contexts[20]. However, as the environment of deployment
for this platform is controlled, we can assume that the clients are trustworthy and reliable. Security is
thus not given much consideration.

A great advantage of moving responsibility out to the clients, in addition to harnessing more available
computing power, is that one can implement the game rules in the clients and even have the clients using
differing rules. One could then connect a client to the system, which uses a radically different behavioural
logic for an entity type and see how this entity behaved in the shared world. One could also have a client
which used a different physical model, but this would likely cause strange and useless effects unless the
clients are assigned separate areas, in which they have total authority.

To make the system as flexible as possible, it should also support nodes joining and leaving at any
time. Supporting dynamic disconnecting is a virtual necessity, as the system otherwise will have multiple
points of failure, leading to an increasing probability of failure as the number of connected nodes rises.

In addition to computing the game world in a distributed fashion, the visualisation of the world must
also be taken into account. As the game is to run in a display wall context, care should be taken to
actually allow the visualisation of the game world on a display wall. Utilising the mentioned attributes
of display walls, this likely entails showing an overview of the world, allowing users to see all or a large
part of what is going on. This is again reasonable, as the tiled nature of the display wall means that no
single tile needs to see an overwhelming part of the world.

Finally, it is rather optimistic to expect games to be designed with a distributed system, like that
described above, in mind. It must therefore be a goal to create a system which can enable distributed
operation in existing games with minimal changes changes to the game. Such a library would take all
responsibility with regards to configuring the distributed system, distributing appropriate updates and
updating local game world copies.

3.1 Performance

The previous effort in display wall gaming scaled to around 1000 objects in WallSpring[45]. As the
performance was limited to that of a single computer, should expect more from a distributed system.
Since we want to create a generalised library, it is hard to specify some exact target for performance, as
the library could be used by a game that scales very poorly even though it does not need to perform
much object state generation. Given an unfortunate choice of algorithms, a game could, for instance, see
a significant amount of time spent for a single object if some of its computation is a complex function of
the number of other visible objects.

As we already have access to and have tested WallSpring, however, it makes for a tangible target for
comparison. Adaption of Spring to use the new library will also reveal whether the new functionality is
something which can be easily adapted into existing games, without needing the game to be designed
around the new functionality.

Considering a single entity, a participants needs a certain minimal amount of state regarding this
entity to correctly model it to the extent that other entities can react to its presence or actions. This state
varies a bit with the entity’s possible actions. A projectile is for example quite a bit more predictable
and simple than an autonomous unit. Nevertheless, a rough estimate of a unit’s state would be around
64 bytes (not considering compression or delta updates). Given an update rate of 30 world updates per
second, this amounts to a stream of 1, 83 megabytes per second for 1000 visible objects.

Even though it it hard to make assumptions when the complete application environment is not known
and the library could be put to use in virtually any kind of game, we can indicate some wanted targets
for the performance of the library itself. The library is potentially going to perform quite a lot of actions,
so making these as efficient as possible is a must. We can therefore stipulate that for a sum of local and
non-local objects, the time used in the library per frame, added to the time used by the game itself,
should not exceed the time used by the non-distributed version of the game for the same number of units.
This is likely to be reasonable for most games with some complexity, although it would likely lead to a
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problem in games with very simple, and therefore fast, object simulation and huge numbers of objects.
Nevertheless, a distribution library should attempt to at least not worsening game performance.
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Chapter 4

Reducing transferred state

Observing the sheer amount of information that makes up the complete game world, it is unlikely that all
this state can be manipulated in a distributed environment without severe performance costs. Network
capacity itself might not be a direct problem, especially not as gigabit and faster networks are becoming
common in local networks. Using applications across the Internet can of course still impose direct
limitations on the amount of information transferable data per second, but in a cluster- and display wall
environment, processing costs, rather than bandwidth, are likely to be a larger problem.

This assumption is based on the notion that received information must be processed to some degree
before being available and useful in the game. How much processing is required will of course vary
somewhat with implementation, but at the very least, deserialisation of game state having been serialised
for network transfer will be necessary. If the receipt of a message from the network means that an entity
specified by the message must be located and updated with the rest of deserialised message by various
member functions, it is clear that there must exist some limits on how many messages can be processed
without noticeably affecting the game performance, for example by causing lower frame rates.

One must also consider the impact on game logic by having to consider excessive numbers of entities.
A naive implementation might use entity behaviour logic having execution time being a function of the
total number of units. Informing a participant of the existence of vast number of units can therefore
also have negative effects on the game internals if the numbers are scaled far beyond what the game was
designed for.

It will therefore be necessary to reduce the amount of information distributed to each participant,
both to keep message processing overhead reasonable and also because it, after all, would be possible to
saturate even the most powerful network if the size of the game world and the number of entities were
increased sufficiently.

Fortunately, there are some techniques which we can apply to the distribution of game state in order
to keep the information flow under control.

As has been pointed out, a participant who sees everything that happens in the game world will be
overloaded when activities in the world passes a certain limit. To remedy this, we can postulate that a
participant has no need of knowing about everything that happens. Indeed, by applying data dependency
analysis, we see that for an entity to function correctly, it usually has a set of information it needs to
receive, which can include information about the immediate game world surroundings or certain kinds
of other entities. If we therefore study a single participant managing a number of units, it is possible
to recognise updates which none of the managed entities have any interest in and which does not affect
them in any way. These updates can then be discarded without costly processing or possibly without
even being sent to the participant.

Finding the set of information that is necessary, allows us to discard all other updates. However, even
with this optimisation, the necessary updates may pose a problem. Game entities are likely to change
their position or other state very rapidly, potentially leading to a large number of updates. Even if we
were to assume that the dissemination and application of these updates did not pose any problems, there
is still a problem of latency and temporal separation of updates. Small delays in delivering updates can
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A B
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Figure 4.1: Area of interest filtering: B receives updates for A, A receives no updates

be quite easily noticed by human observers[33] and can also confuse behavioural logic of entities, if they
believe the other entity to be in the wrong place.

This is of course assuming that entities not managed locally are only modified when a corresponding
update message is received. What can be done is to realise that entities are usually quite predictable, at
least for a short period of time into the future. We can therefore reduce the rate of updates and instead
replace some of the updates with predictions of what the would contain.

When considering the notion of predictability, we make the assumption that games do not need to
behave as true physical simulations. While the latter must produce a correct and verifiable result, a
game only needs to be sufficiently consistent as to be entertaining for the players. A certain amount
of inconsistency is usually acceptable to players of network games, both because the human eye and
mind might not notice small and temporary errors and because such glitches are an accepted part of the
network gaming experience. Indeed, in combing real-time simulations with interactivity and a network,
keeping all participants consistent all the time is nearly impossible. One can execute all clients in lockstep
and not allow any effects of input until everyone has received the update and acknowledged it, but this
would result in a rather low level of interactivity, if one considers that latencies in multiplayer games on
the Internet often ranges from 50 to 350 milliseconds[2].

4.1 Interest filtering

In most games, it is reasonable to assume that an entity is more interested in some entities than in
others. By identifying the interesting entities, one can discard the rest and thereby reduce the need for
updates. Interest can be both spatial and attribute oriented[30].

The spatial approach is probably the most common, and depends on entities only interacting with
other entities close to themselves. In this case, we can identify a distance beyond which an entity is
unable to interact with or see anything. If an entity is beyond this distance, it has no consequence for
the local entity and can be safely ignored. Note that this does not mean that if, for instance, the remote
entity fires a projectile in the direction of the local entity, there cannot be any consequences for the
latter. If the projectile nears the local entity, it does indeed become of interest, as it might even hit.
Obviously, the local entity needs to know about the projectile. The trick is to not focus upon the remote
entity which produced the projectile, but rather to consider the projectile as its own, separate entity. To
the simulation, it does not matter exactly where the projectile came from, but it can be treated as any
other entity as soon as it enters the local entity’s area of interest1.

1It might, of course, be relevant to know who fired the projectile in order to count points or such, but this only requires
an abstract handle to the originator and not knowledge of its in-game representation or current state.
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It is worth noting that an area of spatial interest does not have to be centred upon the owning entity.
If one, for instance, imagines a person looking through binoculars, that person will observe an area at
a remote location, while perhaps not paying attention to his immediate surroundings. Areas of interest
should therefore be rather freely placeable so that different requirements can be supported. The area of
interest can also be shaped, if an entity looks in one particular direction, as illustrated in figure 4.1.

As an alternative to spatial filtering, one can also filter information by subject. This can be useful if
one models different sets of sensors which have large coverages but are used to detect different entities.
This approach is quite prevalent in military systems, where the need to simulate radically different
weapon and sensor systems is great[11].

For all methods of filtering by interest, it is important to keep in mind that the defined interests
are a means to reduce the amount of game state which the host needs to see. It is therefore extremely
important to keep interest to a minimum. If an entity decides that it needs to see the whole world, all
updates must be propagated to it, and the network load may diminish the advantages of computation
distribution.

4.2 Dead reckoning

Dead reckoning is a technique using the assumption that entities are predictable to reduce the num-
ber of updates that needs to be transferred from the generator, simulating the units, to interested
participants[36]. The notion of predictability is based on the fact that most games, as they simulate the
real world to some degree, use Newton’s First Law, which states that an entity in motion stays in the
same state unless acted upon by a net external force. The basic interpretation of this is that entities
tend to keep moving in whichever direction they are moving at the moment.

Because of this, we can make the simple optimisation of not sending updates as long as an entity is
not affected by any unexpected forces, where unexpected forces are those caused by the entity’s internal
behaviour or by other entities and thus cannot be discovered without evaluating the entity’s state.
Constant forces, such as gravity, at least in games where the gravity is immutable, are known to all, are
quite inexpensive to calculate and changes caused by such forces thus does not need to be distributed,
as everyone easily can predict their results.

As has been said, such prediction invariably leads to inconsistencies, as predicted movement will
place an entity at the wrong position if the entity changes direction midway during the movement. In
systems where each participant runs the entire game, computing all entities in lockstep, inconsistencies
are very dangerous. Making an entity behave slightly different on a single participant will rapidly cause
this participant’s game state to diverge from that of the others. An entity placed in a slightly different
spot can cause other outcomes form behavioural algorithms or might cause a projectile to miss. The
single inconsistency then causes a rapidly expanding series of other inconsistencies as it interacts with
other entities, bringing the participant along a completely different path than the other participants.

If participants simulate different entities or no entities at all, however, the problem is reduced to
visual inconsistencies and causing wrong reactions. This is for example common in Internet-based games
where computation is done on a single or a set of servers to which players connect as clients[23]. In these
cases, dead reckoning is used to generate fluid animations of movement even though updates are received
less than once per frame, but entities’ states are promptly overwritten when updates are received. The
described scenario of cascading inconsistencies is therefore avoided, although the inconsistencies may
affect the player or other client-side processes using the client view of the world state. If she aims an
another player and fires what appears to be a precise shot, she may nevertheless miss because the other
player’s location was only predicted and a received update changed his position enough to throw the aim
off.

In doing some entity computation locally on each participant, inconsistency problems appear like
those in normal client-server applications as long as not more than one participant generates state for
each entity. There is, however, a price to pay in accuracy and correctness. Using approximated data
generated by predictions will, as mentioned, be wrong some of the time and calculations, such as collision
detection, will therefore be “wrong” some of the time, as a single server computing all entities would have
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Local

Remot e

Figure 4.2: A local moving entity and it’s dead reckoned remote counterpart.

found another result. As put forth in the requirement for “sufficient” correctness, however, we do not
need exact result, as long as they appear plausible, meaning that collisions, for instance, can be allowed
to occur even though they technically should not, as long as all parties involved can agree that a collision
happened. A system architecture using this approach must therefore ensure that parties involved in an
interaction agree on what happened.

Of course, one could extend the concept of dead reckoning by adding further sophistication to the
prediction, such as evaluating a simple version of the entity’s behaviour logic. However, adding complexity
to the prediction algorithm means increasing the time spent on computing that entity’s state when the
whole goal is to do as little computation as possible. Such an approach would in any case not work
if the entity was interactive and controlled by a player or it’s behaviour was unknown. This equation
represents the fundamental trade off in a distributed simulation, where a certain amount of state must
be processed per frame and that state can be generated locally at the cost of processing entity logic or
be transferred over the network, costing bandwidth and message processing.

There is also another issue here, which relates to filtering by area of interest. Once we have accepted
that some computation is to be done locally, it becomes obvious that reducing the number of entities
for which this computation must be done is a good idea. Filtering out parts of the game world and the
corresponding entities will therefore also be useful in limiting the amount of computation needed to be
done for remote entities.

A reasonable way of determining an appropriate rate of sending updates would be to calculate a
delta between the local, and by default correct, model and the result of the predicted model[5]. This
approach does require participants to keep copies of their locally managed entities, but this should be
bearable, as it needs to keep equivalent representations of all remote entities it is interested in. The added
computational complexity will also be negligible, compared to the “real” simulation and it is again done
for all remote entities anyway.

Thus, when a participant updates its state, it performs a normal simulated evaluation of all locally
managed units. Additionally, it performs dead reckoning updates on all remote entities it is aware of so
that local entities can react properly to them and to make a possible visualisation appear as correct as
possible. In addition to making predictions for local entities, the participant should also make the same
predictions for special copies of its local entities. These special copies do not exist in the game world
as such, but are used as a reference to compare local entities with. As one can assume that all other
participants see something closely resembling the local prediction model, it is reasonable to send updates
when an entity in the local model diverges from the copy in the predicted model by more than a certain
threshold. Using this method and by tweaking the threshold value, we can make sure that updates are
withheld as long as possible, thereby reducing the message count in the network.

A locally computed entity and its remote counterpart at another host is illustrated in figure 4.2.
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4.2.1 Corrections

When it comes to visualising networked games, dead reckoning is considered to be a virtual necessity[36].
If one were to demand fluid movements just based on updates from other participants, these would have
to arrive at least as fast as the eye is able to register them and without the temporary delays one often
experiences on networks. If any on these conditions are not fulfilled, entities will seem to “warp” between
locations, suddenly disappearing, and reappearing at a new spot.

Dead reckoning can be used to extrapolate the intermediate locations between two updates and
hopefully place the entity at approximately the same location as the next update on the correct time.
An observer can therefore see a smooth movement even though the movement does not really exist as
anything else than a guess.

However, the prediction might turn out to be wrong, which is why we want to receive an update
as soon as possible when an entity and it’s predicted counterpart becomes inconsistent. Even though
inconsistencies can be rapidly discovered and corrected, latency or high thresholds can cause the predicted
model to be noticeably out of sync before it can be corrected. In such cases, dead reckoning will actually
be causing warping instead of preventing it, as the entity must be moved back to its correct position.

Nevertheless, it is possible to remedy this problem by applying even more prediction. Discovering
an inconsistency, the dead reckoning algorithm can find and intersection point along the updated entity
movement vector, but ahead of the updated point, and continue to move the entity smoothly from its
current and erroneous position towards the intersection point. The entity will move along a path which
is known to be somewhat wrong, but as long as the error is reasonably small, this will likely appear
better than if the entity were to warp to its correct position immediately.

4.2.2 Further optimisations

It is also possible to adjust the dead reckoning algorithm to take into account the need for precise
knowledge. One could stipulate that entities only seeing each other across a large distance does not
need very precise information and that they would not notice corrections below a certain size. If the
entities can tolerate larger inconsistencies and the corresponding corrections, the threshold for sending
updates can be increased. Cai & al., for example, suggests a model with four discrete levels of precision,
decreasing the update threshold as entities get closer, based on their area of interest and a sensitive
region within which collisions are likely[10].

4.3 Discarding obsolete updates

Depending on the architecture used to distribute state updates, dropping messages without processing
them might lead to reduced bandwidth usage if messages can be filtered before being sent to uninterested
receivers. As a minimum, it can lead to reduced processing in the receiver as it can discard messages it
recognises as irrelevant. As the game progresses according to wallclock time, it is rarely of interest to
receive updates regarding something that happened a minute ago. The information in the message is
likely wrong at the current time and might therefore not even improve the local model.

As we have already accepted that participants only see a partially correct view of the game world,
we can discard messages if they happened more than a certain time frame ago, as we can expect newer
messages lying in the input queue or being sent shortly[32]. However, care must be taken in order to not
drop the last update message, as we then may have to wait for a periodical update message. To that
effect, the newest update for an entity can be kept, possibly replacing the old, until we are quote sure
that no newer updates exist. At that point, the newest update cached can be applied to bring the entity
up to data with a minimum of message processing.

This method could be especially efficient in an architecture where updates are routed or redistributed,
as they could be stopped at an early point and never reach networks further along the route.
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4.4 Data packet manipulation

Looking at the concrete end of the network system, it is also possible to apply some simple optimisations,
although they do have certain drawbacks.

The first technique is packet bundling, which is based on the fact that there is a lot of overhead
associated with sending small sets of data. The overhead is caused both by packet headers in the chosen
transport and network layer protocols that will make up a significant portion of the total used bandwidth
if updates are small and separate, and by the increased strain on network components caused by having
to process more packets, of which all are treated individually. To lessen the load and attain a higher
data to header ratio, several messages can be bundled into one packet before being sent on the network.
One method would be to gather updates for all entities and send a single packet for the whole iteration,
given that computing the entire iteration does not cause significant latency between the earliest messages
being created and being sent.

While this approach would both reduce bandwidth usage to some degree and reduce the load on
components doing packet processing, one must also consider both the increased harm done by lost
packets and the increased latency caused by gathering data. If many updates are collected into a single
packet, having the network drop this packet would mean losing all the included updates instead of just
a single one. There might, as mentioned, also occur a certain latency while waiting for enough updates
to send a bundle. It is clear that an algorithm for bundling messages must have an upper bound on how
long it will wait before sending the data, at least providing a “flush” operation which can be called if we
know that no new messages will be sent for a while.

A second technique is the use of compression to reduce the amount of data sent. By doing this,
messages would be compressed just before being encapsulated in the transport layer protocol. It is,
however, vital that compression is fast. It is not a good idea to have hosts spend significant amounts
of time processing messages, a cost which would certainly increase if compression and decompression
was slow. The issue of compression also has a bearing on the choice of protocol. Various formats
have rather different entropy values, containing various amounts of “unnecessary” information[35]. A
Extensible Markup Language (XML)-based protocol, for instance, will naturally tend to be verbose,
due to requirements for readability and strictness. Such a protocol will also, because of its verbose and
therefore low entropic format, be more susceptible to compression. This in contrast to binary formats
which usually start out being quite compressed.

The choice of protocol can therefore also have some bearing on a system’s effectiveness. Aside from
bandwidth concerns, there may also be other costs tied to the protocol. Using XML and the Document
Object Model2 to represent messages, for example, is likely to incur extra overhead as nodes must be
created to fill the model.

2http://www.w3.org/DOM/
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Chapter 5

Architecture

This chapter describes an architecture, seen as appropriate for the defined problem, and forming the
basis of the Frag library. The first section gives an overview of the components and their functions, while
the rest of the chapter describes them in detail and explains the rationale behind them.

5.1 Overview

The architecture of the Frag system consists of three main components, the game, the Frag node and
the router, in addition to the router client, their relation shown in figure 5.1.

The game is the base application running all game logic, creating updating and deleting entities, in
addition to possibly creating audiovisual output. How the game works and which features it provides
is basically not of much interest to the rest of the system, as long as it supports the notion of entities
and has been modified in order to call the Frag module. It is nevertheless assumed that the game
will not attempt any entity distribution itself. A multiplayer game which already supports some form of
distribution is likely to interact badly with Frag, causing unnecessary network communication or creating
synchronisation errors as a result of temporary inconsistencies caused by Frag.

Our main interest lies beyond the game, from where it connects to the Frag module. Frag receives
entity registrations, updates and deletions as they occur in the game and is responsible for conveying
these to the other active Frag nodes. This is done by dividing the world into overlay zones, having no
effect on the game world itself, but instead allowing Frag to locate the “home zone” of each entity. The
zones act as channels when passed to the router client together with game updates, allowing the system
to limit messages to those interested. Interest is expressed as spatial areas of interest, derived by Frag
from the entities the module manages.

Game Frag  Nod e Rout e r c lie n t Net work Rout e r

Figure 5.1: Detailed Frag architecture
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Figure 5.2: A discrete partitioning scheme

Updates are sent and received on the network through the router. The router is responsible for
receiving game updates originating in various zones and disseminating the updates to interested Frag
nodes.

5.2 Simple approach to zones

Using the described techniques for reducing transferred state extends the area that can be safely viewed
without overloading the network. However, there is still a need for an architecture that supports efficient
use of the techniques. If we are to implement interest management, for instance, we must have some
way of getting updates from producers to interested consumers. The point of limiting the update rate
is to reduce incoming bandwidth load, so it is implicit that updates must be filtered before reaching the
client. However, it is unlikely that we can use a single server which can collect all updates before sending
them on to interested parties, as this server then would have to possess a drastically higher network
bandwidth capacity than the common nodes.

The traditional way of constructing this architecture has been to partition the world into a set
of discrete zones, as show in figure 5.2. The zones are in practise separate worlds, between which
no interaction is possible. This approach efficiently regulates the maximal state amount, especially
when combined with regulation concerning the number of entities in each zone. Although the zones are
separate, they are often used to split up a landscape, where one would expect the world to be continuous.
To keep players from noticing that the world is not continuous, barriers are usually placed along the
edges of the zone and thereby keep the players “walled in”. It is usually a good idea give such barriers
a natural appearance, such as a mountain range or similar. Of course, this introduces some obvious
limitations on the available terrain. Indeed, in cases such as a rolling plain, the infamous “glass walls”
are sometimes used, where players are suddenly hindered from going any further by invisible barriers
and cannot observe any events on the other side even though something should happen there. As should
be obvious, this rarely improves game immersion. To move between zones, the common case is for
players to explicitly pass through a gateway such as a door or magical portal, beyond which the player
is transported to the connected zone. The portals are again usually constructed such that one cannot
observe what happens on the other side or impose any effect there.

As the ideal system has no such artificial partitioning of the world, this architecture, while simpler
and easier to implement, must be discarded in favour of a more dynamic system allowing the world to
be continuous.
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5.3 Overlay zones in a continuous world

As massively multiplayer online games have become common and complexity has increased, much en-
ergy have been spent on creating more immersive worlds. One of the areas of focus aims at removing
barriers used to partition the world into manageable units, while at the same time allowing scalability by
distributing load across several hosts. Approaches using continuous worlds where the zone partitioning
scheme is not inherent in the game world has been suggested several places[1, 44, 3] and is a rather
natural result of combining a continuous world with spatial interest management.

This approach has mostly been studied in the context of player nodes visualising state generated by
a cluster of servers to which nodes connect by way of a single front end, providing name transparency.
In that context, each player acts as a single node which connects to the server, which is responsible for
modelling the game world and computing all effects. The player’s area of interest covers what she can see
on her display, and updates from her node are generated when the player orders her avatar to perform
some action. The server will then compute the results of the input and send updates to interested player
nodes. Usually, the only computation happening on a player node is that related to graphics which have
no direct effect on the game state. In contrast, what we are interested in is to do computations at the
leaf nodes, propagating the effects to interested parties, thus creating a more decentralised structure.

To reduce the amount of information distributed to participating nodes, the game world is partitioned
into a set of discrete zones. When all parts of the world thus has been assigned to a zone, all entities can
be assigned exactly one “home” zone. If positioned at a border between zones, an entity can be partially
within another zone, but as we will show, this is not important as long as there is a clearly defined home
zone.

The obvious thing to do here is to only let entities know about other entities in the same zone. If one
were to assume a random distribution of entities over the entire world and that all zones were of equal size,
this would reduce the amount of information a node needed to S/z, where S is the total game state and z
is the number of zones. Indeed, this is almost exactly the simple architecture described in section 5.2. As
mentioned, this solution is quite common, especially in MMORPG-type (Massively Multiplayer Online
Role Playing Game) applications, where the zones are completely separate and transitions between zones
are usually done by portals or some other barrier which prevents interaction between zones.

The problem gets more complex if the zones are required to overlay a continuous world. In this case,
entities may well need to interact with entities an a neighbouring zone. Having invisible, but impassable,
barriers at random points in the world is not a particularly preferable technique. Entities situated near
the borders of a zone and possessing an area of interest, will therefore also need to get information from
neighbouring zones, as the area their interest crosses the border.

This scheme, illustrated in figure 5.3, allows us to use zones as ways to identify communication
channels in which nodes can share information. The zones define the lowest resolution at which the world
is visible to the nodes, so that entities should always see what happens in their home zone. Additionally,
entities should also receive updates sent to nodes that are covered by their areas of interest.

The zone system somewhat resembles the technique of “ghost regions”, often used in parallel, cell-
based, applications[12], where data not updated by the local process are nevertheless fetched and stored
at the expected position. This enables the process to use these cells for its computation without having
to request the cell values from another process every time one of the cells is accessed. One could say
that the home zones and surrounding interest zones together form a ghost region outside which no local
entities will need any information, although the lack of task division by area means that the ghost entities
will be intermingled with locally updated entities.

5.4 Computation nodes

Computation of entity state happens in game clients, connected to the system as a Frag nodes. A node
is responsible for a set of zero or more entities, which it updates as necessary. This means that instead
of just sending request and attempted operations to a central server which then computes the result, the
nodes themselves simulate and update their respective piece of the game state. Each entity, therefore, is
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Zo n e s

Nod e s

Ob s e rve r

Rout e r

BA

En t it ie s

Figure 5.3: The world is partitioned into a set of zones, between which entities can look and move freely.
Updates are send to the router which all nodes are connected to and which distributes the update to
nodes which have subscribed to the originating zone. A node can observe an area by creating an observer
entity which does not generate objects, but ha an area of interest, resulting in incoming data.

owned by a single node, where this node is the only one that can update the entity’s real state. A node
can therefore ensure that an entity does not enter an inconsistent state, as it is the sole arbiter of that
piece of the game state.

The system does not put any limitations on the number of nodes per host. As far as the game
implementation allows, there is no problem with multiple nodes and games running on a single computer.
This will of course be limited by performance, as computation-intensive games are likely to completely
expend the computer’s processing resources if several are running at once. There may also be resource
conflicts regarding graphical output, if the game insists upon reserving the only available hardware
acceleration resource and so on.

To make entity simulation possible in the context of a larger world, nodes need to keep a copy of
parts of the game state and therefore also copies of some remote entities, owned by other nodes. To allow
dead reckoning, the state of these entities must also be modifiable, although with the understanding that
this is only a local and temporary modification, which will be immediately overridden by updates from
the entity’s owner.

As a result of this, the architecture supports plugging in nodes with arbitrary behaviour, and allows
them to insert entities into the game world. The published information regarding entity state must of
course conform to an agreed standard, but the local representation is entirely up to the node. A node
can then perform whatever simulation it wants to in the context of the larger world.

One can imagine cases where the client does not wish to perform simulations for itself. This could
be in cases such as testing an embedded component meant to control a robot, whose mode of operation
is to issue control signals to a motor module in a simulated environment. The component is unlikely to
have enough processing power to perform some complex simulation on its own. Placing computation in
the nodes at the edge of the system does not preclude this option, but it does require the addition of an
intermediate layer. The “game” holding the Frag node must simply be modified to accept input from
the control component and factor this into its decision making algorithms. Usually there will exist some
algorithm which decides how entities react to changes and what they try to achieve. When controlled
by an external device, this algorithm must be replaced by a communication layer which accepts input,
attempting to operate the entity, and output, providing feedback to the control component through
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A−>R A−>Z 1 A−>Z 2

Figure 5.4: A is updated

whatever sensors it may support.
Communication is done by way of the router client. The client is responsible for supporting the

various operations that the Frag node may wish to perform, such as updating entities. The node will
indicate to the router client which zone the communication is meant for and the router client will contact
the router and ensure that the information reaches the correct receivers. A normal entity update sequence
is shown in figures 5.4 and 5.5.

In order to receive updates, Frag nodes must take inventory of all managed entities and instruct
the router client to receive updates in all zones covered by entity home zones or entity interest zones.
Theoretically, it is the individual entities that need to see the specific information, but as several entities
are managed at a single node running a single instance of the game, this is the natural way to handle
communication.

The amount of information that a node receives is thereby defined by itself, although it has no control
over the frequency at which other nodes send their updates to the subscribed zones. If a node subscribes
to several zones, it has the possibility of reducing its load by removing its interest from some of the zones
and thus receiving fewer updates which it needs to process. This does of course require that the node
takes some action regarding the entities causing the interest in those zones, such as migrating them to
another node.

As each node may handle any number of entities, there is a quite significant risk of having these
entities spread out over the game world. Managing many spatially distributed entities, can lead to a
large number of subscribed zones, again leading to an influx of messages, potentially impeding the node’s
performance. In order to reduce the potential impact of such problems, Frag supports migrating entities
between nodes. This mechanism is used when a node discovers that it is becoming overloaded, allowing
it to shed some of its load to a node with free capacity, preferably reducing the set of subscribed zones
in the process.

5.4.1 Observer nodes

As nodes can own zero entities, they can also act as passive observers which do not produce any infor-
mation, only consuming that produced by other nodes. An observation node can therefore connect to
the system and visualise the game world without affecting the game itself in any way. Like the ordinary
computation node, the observer must decide for itself which information it is interested in, which it can
then present through some output interface.
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Figure 5.5: B and C are updated

Since the observer node has no local entities which it uses to determine what information it is inter-
ested in, it instead uses the confines of the area it displays to set its area of interest, acting like a camera
inserted into the virtual world. The architecture’s reliance on spatial context is somewhat limiting, as
the observer needs to define a spatial area to watch. Showing information about a particular type of
entities, for example, becomes hard without class or attribute-specific ways of requesting information.

5.5 Router

Distribution of information is handled by the router. Combined with the zone partitioning scheme,
a publish-subscribe system is natural for distributing game state updates to interested parties. As
described, each entity resides in one zone at a time and has an area of interest, which potentially covers a
set of other zones. This means that as entities are updated by their owner nodes, updates can be sent to
the home zone by way of the router, which then forwards the update to all nodes which have subscribed
to the zone. The router thereby enables the use of zones as rendezvous points, allowing producers of
information to disseminate their products to interested consumers.

Introducing a single component responsible for all communication does lead to a rather obvious single
point of failure, somewhat misplaced in a system designed to be decentralised. Yet there is no strict
reason for keeping the router as a single component. Its tasks should be quite possible to replace the
router with a peer to peer network between the Frag nodes, enabling them to collectively establish the
zone channels and deliver the necessary messages.
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Chapter 6

Implementation

To demonstrate the plausibility of the described approach and measure its performance, a library has
been developed which allows distribution of game state and interactions between entities on various
hosts connected to the system. The library, Frag, is implemented in Python for convenience. This means
that the set of potentially compatible games is limited to those written in languages with Python or
C bindings1. Such bindings are available for a wide range of languages. Perhaps most importantly,
C++[39] a very common language, especially for writing games, is able to interact with Python through
several interface implementations, such as Boost.Python[19], SWIG[6] or Python’s own C API[41].

Frag also assumes that the game can handle entities as objects so that references to entities can be
passed around. For games written in Python or C++, this should be the norm and this limitation can
therefore be counted on to not exclude many candidates.

In order to make the distribution library portable between applications, it attempts to make as few
assumptions about the underlying game as possible. Indeed, a game does not necessarily need to be
aware that any distribution is going on at all. The game must, however, behave in a predictable manner
and must have a notion about external events and remote entities.

Thus, for a game to be compatible, it must both provide certain requirements in its entity objects
and in its game logic. A system that would allow distribution to work with completely unmodified games
would be nice but is unfortunately rather unrealistic.

6.1 Game behaviour

There are very few limitations placed on the game logic, allowing modified games to run with no dis-
cernible effects, besides those caused by delays or errors in the network, which is outside of the system’s
control.

The most important task delegated to the game by Frag is to stop the computation of remote entities.
As the internals of the game is outside Frag’s control, but the game is likely to track all entities through
some common data structure, the game itself needs to decide when to stop computation according to
entities’ locality.

As an example, consider a game with a list of all active entities. The game updates its state by
iterating over all these entities and calling each entity’s update-method, which again performs behavioural
logic. This logic may include rules such as reacting to other entities in the entity list, perhaps ordered
into a more geometrically representative structure.. An entity will necessarily want to react to all entities
within range, so it is clear that all nearby entities, whether local or remote must be available. However,
updating remote entities’ state is not necessary, since these state updates are received and applied by
Frag. The game’s main loop can therefore skip those entities during the entity list iteration.

1As Python can interact quote smoothly with C, another program accessible from C can also be accessed from Python
with some circumvention.
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def r e g i s t e rEn t i t y ( s e l f , e n t i t y ) : . . .
return newId ( )

def removeEntity ( s e l f , g l o b a l i d ) : . . .

def r e g i s t e rEv en t ( s e l f , event ) : . . .

def r e g i s t e rOb s e rv e r ( s e l f , e n t i t y ) : . . .

def removeObserver ( s e l f , id ) : . . .

Table 6.1: Registrar API

6.1.1 Entity handling

For the library to function correctly, managed games must make sure to inform Frag when entities are
created or removed. As long as the library is told about such changes and is passed references to the
entity objects, it can perform the other necessary operations by itself. Entity registration is done through
Frag’s registrar interface, shown in table 6.1.

Frag is informed of the local creation and removal of entities through registerEntity and removeEntity,
where registerEntity returns a global identifier which the entity must use. Observers are registered and
removed the same way, but Frag treats them specially, only using entities registered through these
methods to determine the subscription set and never generating any updates for these entities.

Additionally, the game must support callbacks from Frag in order to create and insert remote entities
into the game. This should be quite easily accomplished by offering a single or several entity factories
which can be accessed through a function named createEntity, which takes a single string as its argument
and returns an entity. This string is an identifier the originating game uses to uniquely identify the entity
type and which can be used by the factories to create a new entity of the same type. The new remote
entity can then be updated by the usual deserialisation methods.

After the entity creation process has completed, the entity should exist in the game world, able to
interact and be interacted with by other entities.

The game must also support the callback removeEntity, taking a global identifier and removing the
corresponding remote entity from the game. This call will need to be made when remote entities are
removed from the game and therefore needs to be removed at all nodes who have made copies of them.

6.1.2 Remote interaction

Interaction between local entities is quite straightforward and is handled exactly as if the game runs
completely in one place, without interference from Frag, except for distribution of updated entity state.
Interaction between local and remote entities, however, needs to be handled explicitly, since updates to
remote entities are discarded as soon as updated information about the entity becomes available.

It would have been possible to have Frag detect modifications to remote entities and send these
updates to the node owning the entity. However, this would break the responsibility model in addition
to making such changes hard to verify. This approach is a break with the responsibility model because is
would require a node making changes to an entity which it did not own. Remote entities is by definition
imperfect copies of the original and can therefore function differently from what the non-owning node
expects. This node should therefore not attempt to update the entity, even though something appears
to be a reasonable operation. Changes can be hard to verify as simply sending the updated state back
to the owning node does not indicate what caused the update. If the local entity would have reacted
differently to the interaction than the non-owning node believed, the update might be breaking the rules
and have to be discarded, even though it could have been applied correctly at the owning node if the
context was known.
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Event

Rem ote

Figure 6.1: Event

Thus, to allow interaction between local and remote entities, while still keeping to the entity-specific
rules, nodes must be explicitly notified of interaction attempts so they can decide if and how to change
the relevant entity’s status. These notifications are transferred in the form of events, as shown in figure
6.1, which acts as a request from a remote entity to perform an interaction with a local entity with a set
of parameters.

Assuming that the underlying game performs interaction through specific entity methods, the game
must at the point of entering the method check if the entity is remote. If this is the case, the update
cannot be processed as usual, but an event has to be generated. An appropriate event object for the
interaction is created and registered with the Frag handler (see figure 6.1). Depending on the game’s
source code, this could be a time-consuming operation if entities have many points of entry during an
update. All these points must be identified and handled to avoid computing remote entities. Using a
suitably advanced language, such as LISP, this might have been done by modifying the code dynamically,
wrapping method calls in extra logic which would return the call or generate an appropriate event if the
method belonged to a remote entity. Using C++ as the main “game language”, however, makes such
techniques hard to implement.

The game must also implement a function named evalEvent, which is called from Frag when an event
is received. This function is responsible for calling the appropriate entity method that was aborted on
the originating node and completing the interaction by updating the local entity.

Interactions are always performed between two specific entities. If some action, such as an explosion,
affects several entities, this is represented as a series of events between the initiator and the affected. It
is also worth noticing that the initiator should be defined as the entity most directly connected to the
event. This means that if a tank entity fires a shell, which is also modelled as an entity, the event of
the shell hitting a third entity is an interaction happening between the shell and the third entity. The
tank entity, although the original initiator of the interaction is not directly involved, unless there is no
separate projectile entity. In that case, the tank is figuratively reaching out and touching someone. This
could be imagined to be the case if the projectile had an instantaneous effect, such as a laser beam at
non-relativistic range.

6.2 Application Program Interface

This section gives an overview of the objects Frag uses in cooperation with the underlying game. For Frag
to function properly, the game entities must provide certain attributes and must be handled correctly
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by the game at certain key points. Technical details on the Frag’s interface to C++ games is described
in appendix A.

6.2.1 Entity objects

Entity objects must supply a few properties through appropriate access methods, of which most are
likely to already exist in a normal game.

First, an entity needs a field indicating whether it is local or remote. This is the only property related
to the distributed aspect of the system and is thus a slight break of transparency, though a necessary
one, as described in section 6.1.

Secondly, game entities must support a global identifier. The global identifier serves to identify the
entity in the system as a whole and an the usual internal and instance-specific entity identifier used in
most games is therefore not sufficient, since this is usually something as simple as an offset in the list of
existing entities. The global identifier is randomly generated by a call to the local Frag library at entity
creation. True globally unique identifiers is hard to achieve due to the decentralised architecture of the
system, but a sufficiently low probability of collisions is achievable by using large enough pseudo-random
values. Assuming an even distribution, the chance of a collision occurring is equal to 0.5 after a little less
than 1.2

√
H attempts, where H is the number of possible permutations[18]. For a 128 bit identifier, this

means that a collision is likely to occur after approximately 2.2 ∗ 1019 entity instantiations. Even if the
system were to generate that many entities, we still wouldn’t have a problem unless both entities were
alive at the same point, which is even more unlikely. We therefore assume that collisions will not happen.
The random identifier was chosen in order to minimise the bandwidth usage of messages, but by using
more space, it would have been possible to create an even safer method of identification by using host
identifiers. If all hosts can be assigned a unique identifier, this could form the entity identifier together
with a sequential number belonging to that host, being increased each time a new identifier was needed.
On an addressable network, this could be as easy as using the hosts’ IP-addresses and using a counter
sufficiently large as to avoid the risk of it overflowing and restarting while there still existed active entities
with low identifiers. As explained in section 6.3, however, nodes do not have to be globally addressable,
and so would need another way of finding host identifiers, perhaps using a centralised service. Regarding
the counter, its size would generally depend on the rate at which new entities were created. If 1000

local entities were created every second, a 32 bit counter would last for 1193 hours ( 2
32

1000∗60∗60
) until it

wrapped, at which point things would go wrong if any of the original entities were around. At 64 bits,

the counter would have lasted a little less that 600 million years ( 2
64

1000∗60∗60∗24∗365
), during which it is

quite reasonable to assume that the game would have been halted at least once.

It is assumed that the game occurs in a three-dimensional space where entities have a position,
indicated by Cartesian coordinates. Additionally, an entity has a speed property which may be non-zero,
indicating a vector by which its position changes for each time unit that passes.

As a simple way of representing an entity’s field of view, it must also be able to report its interest
expression as three values, indicating a distance, each way, along each of the three coordinate axes,
where the entity is interested in happenings within the described volume. This is a rather primitive
approach to the area of interest concept and lacks methods for having an asymmetric area of interest. It
is however worth noticing that this does not impact game modelling of fields of vision, only the amount
of remote data available to the game. As such, this method ensures that all data an entity might possibly
be interested in is available, by forcing the subscription zone to cover more than the entity’s in-game,
“real”, area of interest. This also serves as a form of prefetching if the entity is able to rapidly move
its asymmetric field of vision, bringing new areas into sight without changing its position significantly.
Using a constant shaped area of interest, the Frag node ha already subscribed and received entities of
interest within the local entity’s range, and the game algorithms can thereby make use of them without
any delay. Nevertheless, this does incur the cost over oversubscribing, potentially by a significant amount
if an entity has a very long but narrow field of view. Using the naive approach, Frag’s calculated area of
interest will be a volume covering the entire length of the entity’s field of view, in all directions.

Finally, the entity must support serialising and deserialising a set of basic properties, with the entity’s
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class BaseObject :
def s e tLoca l ( s e l f , g l o b a l i d = −1, l o c a l = True ) :

s e l f . g l o b a l i d = g l ob a l i d
s e l f . loca l compute = l o c a l
s e l f . c oo rd in a t e s = (0 , 0 , 0)
s e l f . i n t e r e s t = (0 , 0 , 0)
s e l f . speed = (0 , 0 , 0)

def dumpState ( s e l f , e x t r a s t a t e = ’ ’ ) :
return s e r i a l i s e ( s e l f . g l oba l i d , s e l f . coord inate s ,

s e l f . speed ) + ex t r a s t a t e

def updateState ( s e l f , message ) :
coord inate s , speed , r e s t = d e s e r i a l i s e ( s e l f , message )
s e l f . c oo rd in a t e s = coo rd in a t e s
s e l f . speed = speed
return r e s t

Table 6.2: BaseObject methods

gid category type pos-x pos-y pos-z spd-x spd-y spd-z

Table 6.3: Serialised BaseObject

identity and location as an absolute minimum. Knowing the position of remote entities is enough to
react to them in a sensible way, but additional information is required if the remote host is to know
which model to represent the entity with or how to orient and animate it. The speed must be known
if dead reckoning is to be performed, without which, the remote host will have large problems with old
and incorrect state data. The entity is itself responsible for the serialisation and deserialisation, since
the Frag library does not know what properties a unit has beyond those required and described above.

The Frag library provides a basic BaseObject, shown in table 6.2, on which the library can perform all
its operations, and which acts as a template for all game entities, which must provide the same methods
as BaseObject. BaseObject also supports serialisation of the required properties, meaning that entities
can delegate some responsibility to the library and only have to deal with serialisation if it wants to give
away additional information.

Although not strictly required, all entity classes must functionally act as subclasses of BaseObject,
supporting the same calls. Because of this assertion, one can assume that a common ground exists
between all entities, and that they can be treated in the same manner by the library without it having
entity-specific knowledge. Furthermore, this allows representation of entities on remote hosts, even
though the entity type is unknown. If no extra information is available at all, the entity can be represented
by some placeholder, since at least the entity’s position is known. Thus, local entities can interact with
remote entities, even though they know very little about the remote entity. It is, however, important to
note that this is not a preferable method of operation. Local entities may want to choose reactions from
a wide range of options based on more specific knowledge about the remote entity. Visualisation of the
unknown entity will also suffer, as it will be hard to identify by the placeholder representation.

6.2.2 Event objects

Like the entity objects, events are also structured as a hierarchy, providing increasingly specialised data
fields for representing different events and corresponding methods for serialising and deserialising the
data. The base class is BaseEvent, whose serialised properties is shown in table 6.4.

The category indicates the general type of event, hopefully enabling the event’s use even if the receiver
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category type source gid target gid

Table 6.4: Serialised BaseEvent

doesn’t support the full type. The categories thereby allow entities from different systems to interact,
at least in part. One can, for example, imagine an event from a category called “damage” being created
as a specific type defined by a certain game. This event is then delivered to an entity implemented in
another game which does not have the same damage implementation, but still understands the notion of
“damage”. The receiving entity can then deliver a reasonable amount of damage to itself, even though
it does not understand the specifics of the interaction. This can result in unexpected reactions, such as
entities taking catastrophic damage from slight nudges, but then again, if the games do not have any
common ground beyond the basic concepts, this does not explicitly break any rules.

To assist game logic and event validation, events also contain identifiers for both entities involved in
the interaction. This can both be useful for internal bookkeeping, such as reacting accordingly to the
entity that initiated the interaction and for verifying the validity of the event. If, for instance, an event
requiring physical contact is received and the source entity is too far away, the event may be discarded
as at apparently was issued in error and thus should have no effect.

6.3 Frag operation

The Frag library is divided into a set of modules, according to the architecture description shown in
figure 5.1, where the game, Frag node and router client form the “client” application. These modules
form four separate modules where the router and router client communicate over the network, while
the router client, Frag node and game communicate by functions and attribute access. The location of
the “client” side components are not important, as long as the router is reachable. As the Frag nodes
themselves are responsible for connecting to the router, they can also be placed at addresses that are
not reachable from other networks. If the router were to be replaced with a peer to peer network, this
property would not necessarily hold.

6.3.1 Dead reckoning

To deliver as few updates as possible, while still maintaining good coherency between nodes that can
see each others’ entities, dead reckoning is used to determine the rate of updates as described in section
4.2. The dead reckoning system consists of two parts, the normal dead reckoning done for updating
remote entities in-game, and the control module, performing dead reckoning on copies of local entities
to determine when the dead reckoned model’s error passes a certain threshold.

When a new entity is registered, a new BaseObject is created and initialised with the relevant part of
the entity’s properties, without being inserted into the game. The new entity is then tied to the original
entity’s global id in an internal dictionary belonging to Frag. The entity copies in this dictionary is used
to discover discrepancies between the predicted entity and the local entity, by performing normal dead
reckoning operations on the copy and comparing its position to the original, which is being updated
by the game. If the delta passes a certain threshold, an entity update is issued to the home zone, and
the copy is reset to the original’s current position and speed, to resemble other node’s new view of the
entity. To account for entities that are not moving, an update will also be issued if a certain amount
of time passes without the entity producing any updates. This ensures that newly joined nodes will get
information about entities which have been stationary since the node subscribed to the relevant zone. It
is also useful in avoiding some other issues, described in section 6.3.2.

The normal dead reckoning system works in the same way as the control module, but operates directly
on the in-game remote entities. That is, Frag iterates over all remote entities and updates their position
according to their movement attributes.
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The prediction itself is done simply by adding the entity’s speed at the time of the last update to
its position to derive the new, predicted, position. The dead reckoning model is quite simple as it just
performs first-degree prediction, which basically assumes that the speed vector is constant. This is fine
as long as entities are moving in an environment without terrain or gravity and are not manoeuvring.
However, as soon as an entity starts manoeuvring, it will usually exert some power to accelerate until it
has achieved the change in direction or speed it wished for. During this period, the entity is unpredictable
using the simple dead reckoning scheme. Consider a projectile travelling along a ballistic path. The
projectile is continually accelerating downwards and therefore changes its vertical speed with each update,
rapidly causing it to divert from the dead reckoning model. To include an acceleration vector and thereby
achieve second-degree prediction could have been useful. The increased rate of updates caused by not
having this precision is likely acceptable, but could still have been possible to avoid.

6.3.2 Remote entity removal

We have up to now described how Frag allows games to discover and track remote entities existing inside
the area of interest belonging to one or more local entities. This is however not enough to maintain the
required level of consistency. If a zone is temporarily subscribed to and remote entities discovered in it,
they will exist as copies in the local game. It would be possible to delete these objects as soon as their
home zone was not in the set of subscribed zones any longer, but this could prove quite inefficient if
an entity is moving as to constantly add and remove the relevant zone to and from its area of interest.
In that case, the copy of the remote entity would be created and destroyed continuously, quite possibly
causing some overhead.

Instead, remote entities are kept in the game even when their home zone is no longer updated, to
act as a cache if the zone again becomes of interest, something quite likely, given many game entities’
nature of erratic movement. The remote entity will stop being updated and appear to freeze in place,
but this should not matter to the game, as no entities are interested and therefore able to interact with
the area in which the remote entity is frozen.

Caching remote entities in non-subscribed zones may cause some problems, however, as delete-
messages regarding those entities may be lost while the zone is out of subscription. If a remote entity is
deleted while the zone is unsubscribed, it will never be updated again, even tough the zone may become
subscribed again. Local entities moving into range may therefore attempt to interact with a remote en-
tity that does not exist and which may have been non-existent for a good period of time. This situation
is clearly unacceptable and must be accounted for.

The way this is handled is to have remote entities time out after a certain period of time has passed
without any updates having been received for that entity. Since the system specifies the maximum amount
of time that can pass without sending update messages for an entity, not receiving any such messages
for significantly longer than this period, in all likelihood means that the entity has been deleted and will
results in the deletion of its copy.

Deleting remote entities after a certain period of inactivity also serves to clean previously visited
zones which have not been subscribed for a while, avoiding cluttering the game with inactive entities.
The technique also solves another critical issue, that of nodes dropping out of the system. Whether due
to lost network connectivity or a crash, a node disappearing from the system will lead to its local entities
not being updated.

6.3.3 Migration

Frag implements a mechanism for migrating entities between nodes. Since node capacities can vary,
each node must examine its own load and decide when it is being overloaded. At that point, the node
selects an entity to migrate. This entity will ideally be the only entity causing the node to maintain a
subscription to a given zone, so that the subscription can be cancelled once the entity leaves.

When an entity has been selected, the node generates a migrate query message containing information
about the entity and sends this to the entity’s home zone, resulting in the dissemination of the query to
all nodes having an interest in the zone.
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1.  Qu e ry

2.  Ack

3.  Mig rat e

Sup p orte d  typ e s : Sup p orte d  typ e s :

Figure 6.2: Entity migration

Upon receiving a migration query, nodes check whether they can receive the entity without unreason-
ably increasing their own load. If a node has several entities within the relevant zone or is managing few
entities, it is likely that receiving the entity will not cause any problems and a migrate accept message
is returned to the originator.

To keep the system in a consistent state, an entity can only be controlled by a single node at a time.
If this is not the case, the system will contain several nodes generating updates for the same entity, quite
likely gradually becoming more inconsistent. To ensure that this does not happen, the originating node
will always select the first node responding to the query, issuing a migration message directed at the
accepting node, before setting the entity’s status to remote. Upon receiving the migrate message, the
new owner updates or creates the entity and sets its status to local.

Sensing the migrate query to the home zone is suboptimal in that it risks not reaching nodes which
could have accepted the entity. Nevertheless, distributing the query to all zones would not be a scalable
solution if the number of zones can be large. It is also more likely to find suitable hosts among nodes
already having an interest in a zone. Receiving a new entity for that zone does not increase the node’s
workload beyond that of computing the new entity, since it is already receiving updates for the zone.
Adding an entity in a zone not already subscribed to would mean a potentially larger increase in load,
as the node would have to begin processing all updates in that zone.

6.3.4 Zone subscriptions

As has been said, the amount of incoming messages is tied to the number of subscribed zones and the
number of entities existing in each of them. When connected to the router, the router client sets a filter,
defining the zones it wants to receive updates in. This filter is dynamically updated by the router client
as the Frag node discovers changes in the managed entities’ interests.

As long as a connected client has set a zone in its filter, the router considers that client as subscribed
to the zone and sends all updates it receives for the zone on to the client.

Since the goal of the zone partitioning system is allowing nodes to receive a minimal amount of
updates, the maintenance of zone subscriptions is a main priority for Frag. The subscription maintenance
is divided into two tasks: Identifying entity home zones and entity zones of interest.

The first tasks is simply a matter of checking each entity to see if it is still within its home zone. If it is
not, a new home zone will need to be located and subscribed. Finding entities’ area of interest is slightly
more complicated as in involves identifying a volume of the game world, possibly including several zones.
The entity’s area of interest is retrieved from its getInterest method, returning the three-dimensional
interest vector which then describes the covered area when centred upon the entity. As an entity can be
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type timestamp source id

Table 6.5: Binary protocol headers

located at different places within a zone, its coordinates must be taken into account so that it is sure to
see across a zone border it is closer to than the limits its area of interest.

The entity home zone is saved in a dictionary keyed to entities’ identifiers so that the home zone for
any given entity can be found quickly. This is necessary, as the model requires entities to send updates
to their current home zone. Zones covered by interest do by default include entities’ home zones, but
can also extend beyond this. These zones do however not need to be tied to any specific entity, since
it is only required that the node is connected to them in order to receive updates. As all updates are
applied to the local model, all local entities see remote entities in all subscribed zones, even though the
zone may be out of a particular entity’s area of interest.

When the interesting zones for all local entities have been identified, the zone filter is updated by the
router client.

6.4 Communication

6.4.1 Router and router clients

The communication system uses the Shout rapid event delivery library[40] which resembles our proposed
solution closely. Shout provides a server which can receive events categorised according to an integer
type identifier. Shout clients can then connect to the Shout server and set filters for various event types
by their identifiers. The Shout library is quite lightweight and requires little adaption of the Frag node.
Shout supports events containing a binary field of arbitrary size, meaning that we can tunnel the Frag
protocol transparently through Shout.

Shout’s event filtering matches nicely to our demands for zone filtering, allowing us to specify each
zone as a separate event type and have the server handle the filtering. The only problem with this
approach is that the event type field is limited to 32 bits, leading to a rather limited number of possible
zones. As zones are treated by frag as a set of three coordinates, bottom left and foremost corner of a
cube, it is natural to use 10 bits of the identifier to store each coordinate, allowing very quick conversion
back and forth between the normal and serialised version of a zone’s coordinates.

This is obviously somewhat wasteful in that in discards two bits and thereby reduces the total number
of zones by 3/4. Using all of the bits would require defining more zones to be available along two axes,
spending 11 bits on each of those while only keeping 10 bits for the last.

Applying the filtering at each Frag node would also have been a possibility, but limits the system’s
scalability somewhat, as all updates data would be sent to all nodes. As a compensation, this approach
would have yielded the possibility of more complex filtering, if so desired.

6.4.2 Protocol

Communication between applications in Frag is based on a simple binary format with messages containing
a few header fields and, possibly, the serialised form of an entity or event.

The binary protocol header contains three fields as show in table 6.5, where type indicates message
type, allowing it to be parsed correctly. The timestamp indicates when the message was sent and the
source id identifies the source, which can be either a computation node or a coordinator. The source
field is mainly used by nodes to filter out updates which originates from itself and has been redistributed
by the coordinator. The timestamp can be used to drop late messages if they are of a message type with
stream properties, such as entity updates.

The protocol currently supports the seven message types shown in figure 6.4.2. These messages
represent the five different actions that can occur in Frag. The four first messages are related to the
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• UPDATE

• EVENT

• DELETE

• MOVE

• MIGRATE QRY

• MIGRATE ACCEPT

• MIGRATE

general publish-subscribe system, originating from an entity’s owning node and being disseminated to
the entity’s home zone in order to update the state on all listening nodes. The last three messages are
used by the migration system, which is two-way, resulting in the need for a more complex protocol.

Shout provides both lossy and non-lossy modes of transfer, meaning that stream type messages may
be dropped by shout if it becomes overloaded. In the Frag protocol, all messages except updates are
non-lossy per default.

The update message indicates that a unit has updated its state. These messages are generated as
soon as the unit’s position changes by a significant amount and are sent at regular intervals if the unit is
stationary. Entity updates can therefore be considered to be a stream, where it is safe to drop messages
now and again. Dropping update messages may be prudent, as these are expected to make up the vast
majority of messages sent and queueing of messages because of delivery delays will cause old information
to be used long after it was produced. These messages are generated at the owning node and sent to the
coordinator controlling the zone the entity resides in. The coordinator thereafter propagates the message
to all connected nodes so they can update their remote entity. Since the originating node does not want
to apply what by now might be an outdated update, it discards the update if it finds its own identity in
the source field.

Event messages are similar to update messages, representing a serialised interaction. Events are,
however, one time occurrences and should therefore not be dropped. A late event might potentially be
dropped by the node at a later point, if the source and target entities are found to be in positions where
they cannot interact.

Delete messages signifies that an entity has been removed from the game. To execute the deletion,
no further information than the entity’s global id is required and the message therefore consists of only
the common message headers.

Move messages are a special case, used instead of DELETE message when an entity changes zones.
The goal is to let all observers of the home zone know that the entity has left, enabling them to delete it
immediately instead of having to wait for the timeout, the latter causing a longer period of inconsistency.
Using DELETE, however, means that the entity, in addition to being removed from nodes only observing
the home zone, is also removed from all nodes observing both the old and the new home zone. Any such
nodes will first delete the entity and then respawn it immediately when the first UPDATE to the new
zone is received. Instead, a MOVE message is tagged with the identifier of the new zone, resulting in
receiving Frag nodes keeping the entity if the new zone is subscribed, only deleting the entity if this is
not the case.

A MIGRATE QRY is used when a Frag node wishes to offload an entity to another node to avoid
becoming overloaded. Migration, as mentioned, is more complex than the other types of communication,
since it requires a two-way protocol.

The need to communicate both ways introduces a problem: The system has no inherent way of iden-
tifying nodes, with no global view aside from the shout server, which does not support such functionality.
Fortunately, we can resolve the problem by having nodes decide on a random identifier with the same
rationale as for entity identifiers, described in section 6.2.1. Using Shout’s feature of tagging messages
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with a reference, a node can tag the MIGRATE ACK message, indicating its willingness to take control
of the entity, with its identifier and the originator can tag the final MIGRATE message with the same
identifier. All nodes subscribing to the migrating entity’s home zone will receive the messages, but will
only react to an accept if the entity identifier included in the message is listed in the node’s list of
currently migrating entities. Likewise, nodes will only react to a MIGRATE message if the message is
tagged with their own identifier. Since there is always at most a single node having an entity marked
as local, one would think checking the status flag was sufficient to decide whether to react to a migrate
accept. However, as there is no way to control how many accepts will be created and how delayed they
may be, there is a risk that the node where the entity migrated to receives an accept after setting the
entity’s status to local. In this case, we likely do not want to migrate the entity further. Therefore, a
list of currently migrating entities is used, with entities appended when their query is sent. If an accept
is received for a local entity that is not on the list, the accept is ignored.
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Chapter 7

Experiments

In order to test the viability of a distributed approach, Spring[45] has been modified in order to use the
Frag library for distributing the game computations.

The modifications done are along the lines described earlier, inserting calls to Frag in order to register
or delete entities and events, on which more details are available in appendix A. For ease of use, a python
wrapper for Spring was implemented, allowing some behaviour modifications without recompilation in
addition to extending the entity classes by adding serialisation and deserialisation methods implemented
in python.

To investigate the potential differences in performance between non-Frag and Frag-enabled operation,
several test cases were executed and the relationship between the number of active entities and frame
rate were recorded in addition to message transfer rates and corresponding network load. The frame rate
is the easiest way of measuring system performance, as it provides the time taken to execute a complete
single iteration of the game. The message numbers also serves to indicate how much network activity is
induced and may suggest vectors of optimisation.

It is also useful to look at the frame rate of the non-Frag enabled version of the game for itself and
not only as a basis for comparison with Frag. The basic game frame rate as a function of the number of
entities gives a good indication about the complexity of entity simulation. We would expect that a game
with very complex simulation would benefit more from distribution as the number of active entities at
any time would generally be lower than that of a game with less complexity, since games are usually
designed to be playable on current computers. A high-complexity game is therefore likely to put less
strain on the distribution library as it has fewer entities to keep consistent.

The test cases attempt to both give a general idea of Frag’s scalability by keeping entities spread out
over the world, and to test performance under heavy load by creating a worst case scenario, moving all
available entities into a small area and keeping them in continuous motion. The latter case creates a
complex environment for entities as they will see and react to a large number of nearby entities. Due to
the way Frag is structured, it is possible to maintain a very large number of entities in the game world,
as long as each node contain its entities within areas were they have limited contact with remote entities.
As nodes have no knowledge of the total system, the interesting metric to look at is therefore the effect
of total visible entities.

7.1 Test environment

The tests are run in the Tromsø Display Wall environment. The display wall cluster consists of 28
workstations, each with the characteristics displayed in table 7.1.

Each of the workstations uses a projector to drive a 1024x768 tile in the display wall. All tile
workstations are interconnected by a switched 1 Gb/s Ethernet.
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• Dual 64-bit Pentium 4 3.2 GHz CPU

• 2042 MB RAM

• 1 Gb/s Ethernet interconnect

• NVIDIA Quadro FX 3400 GPU

• Linux 2.6.9 SMP kernel

Although using a 64-bit processor, all programs and libraries are run in 32-bit compatibility mode.
Problems with 64-bit versions of central libraries has lead to the use of pure 32-bit OS installations.

Table 7.1: Display wall tile characteristics

L All entities local to the node.

R All entities in the system.

r Remote entities known to the node

M The number of messages received per frame.

α The movement threshold after which an update is produced

β The update timeout after which an update is produced even though the entity has not crossed the
movement threshold.

m Average entity movement per frame.

Z Total number of zones containing entities.

z Number of subscribed zones.

Table 7.2: Variables

7.2 Expected loads

As has been pointed out, the total system performance is hard to generalise about, since will be heavily
influenced by the game implementation. We can, however, make some rough estimates for the amount
of remote entities a node will see, which in turn will influence the amount of incoming messages and
dead reckoning needed to be done. In the experiments, entities generally produce updates at the same
rate, meaning that higher message rates can be linked to higher numbers of remote entities. These
estimates will only be rough, however, considering the number of variables which can affect the number
of messages a node sees. A node’s set of subscribed zones will vary with where its local entities are
positioned relative to each other, the size of their area of interest and where remote entities are located
in the world. Additionally, the patterns of movement for remote entities will also affect how often they
produce updates, spanning to the specified update timeout if stationary, to producing updates every
frame if entities move rapidly and the dead reckon threshold is small enough to make the entity exceed
it with each position change.

Let us define a set of variables as shown in table 7.2. Given a uniform distribution of entities over
the world we then have the following:

MR =
∑

R ∗ m

α
+

∑
(R − Ralready updated) ∗ 1

β
(7.1)
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Muniform distribution = MR ∗ Z

z
(7.2)

Mworst case = MR (7.3)

Mbest case = MR ∗ 0 (7.4)

The total number of messages in the system is expressed in equation 7.1. This shows us the relation-
ship between entity movement speeds, the movement threshold and the update timeout. Note that the
timeout update only occurs if the entity has not produced any updates for the entire timeout period.

Given this expression, we can make some estimates about system behaviour as a function of var-
ious entity distributions. Equation 7.2 is the general rate of messages, showing that with a uniform
distribution of entities, the amount of incoming messages is directly tied to how many of the zones with
entities in the current node can see. Subscribing to empty zones naturally cause no additional messages
to be received. Having a completely uniform distribution of entities is rather unlikely, however, as most
entities attempt to interact with each other and therefore create some pattern. In a worst case scenario,
as shown in equation 7.3, all entities are gathered within the set of subscribed zones, meaning that the
node sees all messages in the system. The converse is also true: If z grows to encompass Z, the same
effect will be achieved, but by spreading out the local entities in order to cover all zones, or possibly by
having entities with very large areas of interest.

In the best case scenario, shown in equation 7.4, z and Z are disjunct, resulting in a message rate of
zero, since there are no remote entities within the area of interest. In this case, the game is functionally
almost equivalent to running without Frag, as no distribution of entities is done, as seen from the node’s
perspective. Frag still sends updates to the home zones, and other nodes may subscribe to these, of
course, so there is still a possible need for Frag, but this is not something the node needs to concern
itself with.

The total amount of processing at a node is therefore as displayed in equation 7.5, consisting of game
processing (7.5), Frag dead reckoning processing (7.6) and Frag message processing (7.7). Note that the
dead reckon control expression also includes time spent on serialising entity state when an update is
needed.

Ctotal = Gmain game loop(L) + Gextra overhead(r) + (7.5)

Ndead reckon ctrl(L) + Ndead reckon(r) + (7.6)

Nmessage processing(M) (7.7)

As we have pointed out, this shows the influence of remote entity numbers upon node frame rates.
The points affected are dead reckoning, having to be evaluated for all seen remote entities and message
processing, also dependent on the seen remote entities, but additionally influenced by the dead reckoning
threshold and timeout.

7.3 Non-Frag enabled Spring

Spring with Frag disabled is basically running the same executable as Frag-enabled Spring, but with a
run-time option which disables all Frag evaluation besides the entity insertion and deletion hooks. These
use a negligible amount of time compared with the other parts of the program, and so are unlikely to
affect the benchmarks. The python interface is of course not part of the original Spring and might as
such have some impact compared to benchmarks with the pure C++ version. However, the time spent
on calling the Spring main function, which does all game evaluation, once per frame is next to nothing.

To measure the load imposed by increasing numbers of entities, the game is started and 5 mobile
entities are spawned every two seconds and given an order to move continuously in a simple pattern.
The time to run each frame is logged together with the number of active entities, and the experiment is
run until the number of entities reaches 1000. The relatively low number of entities was chosen because
informal tests indicate that game performance in Spring deteriorates so badly for higher number of
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Figure 7.1: Non-Frag Spring

entities as to make the game both completely unplayable and hard to benchmark as each frame takes
very long to compute.

The results are displayed as a graph in figure 7.1.

7.4 Frag-enabled Spring with congregation

To test Spring with Frag support, it is useful to model a game unfolding as close as possible to the
test case without Frag support. Starting with a low number of local entities, the number of visible,
remote entities is slowly brought up to around 1000. At that point, the node we are measuring at will
be modelling a game with that number of entities, akin to the original version, but will only be making
computations for a small number of these.

The scaling of visible units is done by first launching a single node with logging capabilities turned
on. This node spawns 5 local entities every 2 seconds until it reaches 100 entities, and gives them the
same orders as in the previous test case. Then, new nodes are started every 16 seconds, each spawning
entities in the same pattern as the logging node. All nodes spawn their entities in approximately the
same location, so that the other nodes have a good chance of discovering them. This leads to a gradual
increase in the number of visible entities, until the number approaches 2800. Due to visibility limits
imposed by the game world partitioning into zones, it is possible that some entities will be invisible to
the logging node at any given point and thereby ignored. All measurements are therefore relative to the
number of visible entities, as opposed to the number of existing entities in the system.

Results from the test run of Spring with Frag support is displayed in figure 7.3. The graph shows
time spent per frame and how it was distributed over the various components. Spring’s performance
with Frag enabled is compared to the non-Frag run in figure 7.2.

Measurements taken at the Shout server are shown in figures 7.5 and 7.6, respectively quantifying
the total number of packets in the system and the associated CPU usage by Shout (these figures also
displays the results from the test described in section 7.5.1). As shout is only a transport, it has no
conception about the game state. The measurements are therefore not directly linked to the number of
units, but do instead show measurements as a function of time into the test run. Since the number of
entities are steadily increasing during the test, once can still observe the results of an increasing number
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Figure 7.2: Non-frag Spring and Frag-enabled Spring
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Figure 7.3: Frag-enabled Spring. Each plot, except the top plot shows the time spent in executing the
designated module. The top plot is the sum of these, showing the complete time taken per frame.
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Figure 7.4: Frag message rate

of entities.

7.5 Other feature tests

Finally, two other experiments look at Frag under less demanding circumstances, highlighting some of
its intended functionality.

7.5.1 Frag-enabled Spring with ideal entity placement

Having tested Frag under conditions expected the stress the system, it would also be interesting to see
how it handles more benign situations and if the system as a whole can scale to greater numbers of
entities in such circumstances. As shown earlier, the node processing load is to a good degree influenced
by the amount of message processing. To lessen the message rate, an experiment similar to the last one
is set up, but instead of spawning all entities in the same general area, they are spawned into separate
parts of the game world, according to their owning nodes. The spawned entities are given move orders
that keep them active, while not straying too far from the starting point. This setup should lead to all
nodes only being subscribed to a few zones each as all their local entities are in more or less the same
spot. These subscribed zones should also not contain too many remote entities, as they are spread out
over the entire game world. In this environment, the system should be able to handle a larger number
of units while keeping load at each node reasonably low.

7.5.2 Spring content generators with simple observer applications

As interoperability of applications is touted as one of Frag’s features, this final test aims at showing a
real use of this functionality.

Du to time constraints, the Spring 3d engine itself has not been modified to display a single viewpoint
on the display wall using interest management to only receive updates about those entities displayed. As
an alternative way of visualising the game on the display wall, a very simple visualisation application,
using Frag, has been developed, taking on the appearance of a radar display which covers the entire wall.
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Figure 7.5: Shout packet loads
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Figure 7.6: Shout CPU load
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The radar program is started on all display wall nodes, being instructed at startup about their
position in the tiled display in addition to the game world dimensions. Each program then places an
observer at appropriate coordinates, setting its interest area to cover the space to be visualised.

The radar program does not care about entity details besides the properties of the BaseObject class,
only requiring position data. As the program receives updates from Frag, all entities are drawn as points
at screen positions appropriate for the programs placement in the display.
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Chapter 8

Discussion

The tests revealed some rather surprising performance results, in addition to some not quite so surprising
results. They do, however, indicate the plausibility of the chosen solution although several improvements
are obviously in order.

8.1 Non-Frag Spring

First of all, the reference test itself, as shown in figure 7.1, underperformed significantly compared
to what was expected. The benchmarks done on WallSpring indicated that an active entity count of
around 800 was feasible, although performance rapidly degraded for higher numbers[45]. The new test
results replicate the odd development in frame rates seen in the previous experiment, a rapid increase
in processing time after a certain number of active entities, causing the time spent on processing each
frame to become around 400% larger. After this sharp rise, frame times continue to rise, but does so at
a pace which appears to be more linear.

What is disconcerting, is that the rise in the new experiment appears at 400 entities, half of what
was achieved in the previous experiment. The cause of this is unknown and can have its root cause in
a wide range of locations as the game code base has been changed, along with its method of invocation
and experimental setup. It was speculated that some of the WallSpring results were due to some of the
active entities being stationary for at least part of the experiment and it was observed that stationary
entities generally required much less processing. In the new experiment, we ensure that all entities are
moving continually and so may strain the game to a greater degree. The Spring implementation used
with Frag is also of a newer version than that used in WallSpring, in addition to having been modified
slightly in order to interface Frag. None of this can be expected to have such drastic results, but nothing
can be excluded as there are no experimental results with which we can cross-check.

It is unclear what causes the rapid increase in processing times and why it occurs for the given number
of entities, but it appears as if some of the algorithms used in the game have geometric complexities
depending on the number of entities. As the results show, however, the geometric development is not
sustained and so there does not appear to be a simple, single solution. Whatever might be the cause, we
need not concern ourselves excessively with this, aside from noting that certain games may display rather
serious problems with scaling. From the Frag library perspective, we have no choice but to assume that
the developers of the underlying game have made their implementation efficient. It can nevertheless be
interesting to study Spring in this context, as we can observe Frag enabling a partial circumvention of
the initially observed scaling problems.

8.2 Frag-enabled Spring

Disregarding discrepancies between versions of Spring should not be a large problem, since we are mainly
interested in studying improvements in a specific program by adding Frag support. In this regard, Frag

47



8.2. FRAG-ENABLED SPRING CHAPTER 8. DISCUSSION

has proven a moderate success, showing that processing times indeed can be reduced.

Comparing with the non-Frag test of Spring as shown in figure 7.2, the Frag-enabled test reveals
a marked reduction in computation time per frame, perhaps most significantly avoiding the fast rise
around 400 entities exhibited by the original. Although not exactly playable at two frames per second,
Frag-enabled Spring still keeps total frame time below one second for the entirety of the test, at which
point the original is completely unplayable.

We cannot speak of an extremely effective parallellisation, with a speedup of far less than the ideal
when adding 27 nodes. That was however not expected, as the benchmarked scenario was expected to
represent the worst case, with all entities congregating in a single area. As shown in 8.3, performance
is indeed much more favourable in less demanding circumstances, although some network issues are
encountered, as discussed in section 8.4.

Looking at figure 7.3, the different components’ influence on execution time us quite clear and based
on knowledge of the implementation, it appears that Frag’s internal performance leaves quite some room
for improvement. Primarily, we can point to the choice of programming language as a limiting factor.
Python is usually not considered to be a particularly “fast” language1, so as the amount of work which
Frag needs to do increases with the number of remote entities, performance suffers notably. It is usually
suggested that computation-heavy parts of python applications be implemented in C or C++, as these
points are usually only a small part of the code and one thus can draw both upon Python’s advantages
in development speed and correctness, while exploiting the raw speed of C at critical points[19].

It is also interesting to observe the performance of the game itself, where the time per iteration
appears to rise somewhat fast. Compared to the rather linear rise in time spent by Frag, Spring appears
to contain algorithms with quadratic behaviour, regardless of whether all entities were updated or not.
This is obviously not a good thing when we aim to lower processing load by distributing tasks. With this
development in processing times, Spring will impose a limit on the number of entities that can be seen
at the node, even if Frag was to spend zero time per iteration, causing the game’s frame rates to become
unbearably low. Nevertheless, the results show a clear improvement over unmodified Spring, yielding,
as expected, far lower iteration times when only some of the entities are evaluated.

Another point of notice regarding implementation of the underlying game appears when dead reck-
oning timeouts are adjusted to a minimal value, causing remote entities to become deleted almost imme-
diately when their home zone falls out of the node’s interest set. As discussed in section 6.3.2, waiting
a while for entities to time out works as a method of caching in case the entity’s home zone becomes
interesting again soon, as is likely when the local entities move back and forth. Reducing the timeout
interval causes a much higher rate of “cache misses”, where a zone falls out of interest, its remote entities
deleted, then comes back into interest only moments later. This causes a continuous cycle of rapidly
deleting and creating new entities, which results in quite heavy slowdowns in the game loop. Even worse,
when the frame rate drops below a certain level, the nodes are unable to produce entity updates in time
to avoid the entity timeout, or the receiving nodes takes too long to process the packet. This results
in entities being deleted at the subscribing nodes, the nodes making the assumption that the entity has
moved or been killed, only to have it reappear as the delayed update message is processed. This creates a
cascading effect where nodes are further delayed by continually having to respawn entities, again leading
to them issuing and processing updates too late, causing even more delays. In the worst case, all remote
entities at a node are deleted and respawned every frame, the node being continually too late and having
no chance of recovering.

It appears that instancing at least certain kinds of entities in Spring is costly. In the normal game,
this is not a problem at all, since the rate at which new entities are spawned is quite low. Adding the
Frag functionality, however, changed game behaviour drastically by suddenly requiring it to instance
several hundred entities at once every few seconds, introducing a new choke point in the program.

The previous two points go to prove that distribution will not necessarily be a magic bullet that
solves all scalability problems. In fact, patterns in game execution might be significantly altered without
making any major changes to its implementation.

1http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=python&lang2=gpp
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8.3 Ideal and cross-application behaviour

Running Frag-enabled Spring under more benign circumstances does, as expected, yield far better results
than the worst-case scenario. The system easily scales to several thousand entities while maintaining
a per-node performance like that illustrated in figure 7.3. That is, as long as nodes keeps their local
entities from making contact with too many remote entities, the additional, but unknown, entities existing
elsewhere has no impact on performance. This is of course at some point limited to the bandwidth and
processing capacity of the router, but the Shout system has been shown to handle far greater loads than
that imposed by Spring([40].

Running the radar application to visualise entities running in the Spring engine nicely demonstrates
the possibilities for cross-application usage of Frag. While requiring more implementation in the radar
application if more information from Spring were to be used, Frag provides the basic information neces-
sary to display a simple view of the game world.

8.4 Shout

The measurements taken at the Shout server are also quite interesting, giving some perspective on
the system’s bottlenecks. Figure 7.5 gives an idea of the network bandwidth used by Frag as the
test progress, both for the congregation test and the idealised situation test. As is clear from the
figure, the congregation test rapidly produces large amounts of network traffic, where the idealised
test is significantly less demanding. The difference is caused by Shout’s point to point approach for
communication, requiring the same packet to be sent to all subscribed parties. The congregation test
data shows the result of an increasing number of nodes requiring information about an increasing number
of entities, in what amounts to an all-to-all communication system.

The idealised test, however, shows the results of entities being spread out. There is still quite a lot
of state to be disseminated, but there is a marked reduction compared to the first case.

The second chart showing CPU load (figure 7.6) sheds some light on another side of the system.
Comparing the two tests, the congregation test shows Shout being generally lower loaded than the
idealised test. It seems reasonable to assume that the lower load in the worst case scenario is caused by
the fact that nodes rapidly come under such heavy load that they are unable to issue updates at their
normal pace, resulting in reduced amounts of packets for shout to process, an assumption supported by
the lower rate of incoming data in the worst case scenario shown in figure 7.5. Conversely, when nodes
are under less load, we see that the stress on the Shout server increases, as the number of event-producing
entities rises.

Summarised, the performance of Shout thus leads us to two observations: First, as was our assumption
in chapter 4, the network bandwidth is indeed not the bottleneck in this distributed system. In a
scenario introducing stress on the nodes by forcing them to receive updates from a significant number of
entities, the nodes become overloaded long before the network infrastructure. The capacity of a gigabit
Ethernet, although quite higher than the average end-user Internet connection, is nevertheless unlikely to
become rarer in the future. Second, even though bandwidth usage in the idealised scenario is relatively
low compared to the worst case scenario, due to the same data not having to be distributed to many
subscribers, the CPU load of the Shout server rapidly becomes quite high. This indicates than even
though we may avoid overloading individual nodes, the infrastructure used to distribute information
to the correct receivers, the mechanism by which we reduce the nodes’ load, is at risk. This second
observation to a certain degree therefore repeats the first observation in showing that network bandwidth
is not the hampering factor, the bottleneck being tied to packet processing, either at the nodes at the
network’s edge, or in the Shout server, the network transport’s internal mechanism.
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Chapter 9

Limitations and future work

Although the prototype Frag implementation presented herein is functional, it leaves quite a lot to be
desired. As has been pointed out, the speed of the implementation is sub-optimal and it is quite likely that
a reimplementation of the most time-critical parts in C++ would reduce computing time significantly.
There are also several things that could be done for general optimisation. The dead reckoning algorithm
is quite primitive, only considering the first-degree factor of current speed. The question of how complex
to make the dead reckoning is of course a difficult one, where it is easy to make it overly complex.
A second-degree prediction algorithm, taking entity acceleration into account would likely be useful in
reducing packet rates, without costing too much in computing.

Another issue with the dead reckoning system is that the update threshold has to be set manually,
making it necessary to guess about the needed accuracy. As Frag does not know anything about the
underlying game’s world model, except for the fact that it uses Cartesian coordinates, the meaning of
“one unit” in the coordinate system might carry a different meaning in different games. To illustrate,
one could say that given a defined two-dimensional view such as in the radar application, one unit equals
one screen pixel (the real radar application avoids the problem by requiring the parsing of the game
world size and the application’s view constraints as parameters). If we introduce a viewpoint with zoom
functionality, however, we see that dimensions in the game world can no longer be defined reliably in
pixels, since a given view of the world always contains the same amount of pixels. In Spring, a normal
entity may have a width of 10 units, although this varies. Nevertheless, this gives a somewhat fixed
point relative to which we can make assumptions, like that the threshold should be reached when an
entity’s predicted location differs from its real position by more that half it’s width. It could therefore
be a possibility to have the game register some base size with Frag upon startup, which Frag then could
use to calculate values such as the threshold.

The problem becomes more complex and wide-ranging if we consider that Frag ideally should support
independent applications interacting, although the main requirement was for versions of the same game
using different behavioural logic et cetera. If these applications use different sized units, keeping them
consistent will become very hard. The ideal solution would of course to have all games use the same unit
definitions, but as this is somewhat unlikely, having Frag translate units between the different systems
could be a solution.

Considering the migration algorithm, it is also somewhat too simple, not taking more that one entity
into account when deciding which entity to remove. A more clever algorithm would perhaps recognise
limited sets of entities where migrating all would remove one or several zones from the nodes subscribed
set.

Regarding the architecture itself, there are also some interesting options that have not been investi-
gated yet. An idea that has been considered, but not explored in depth, is that of a tuple space-based
system. The paradigm of inserting, retrieving and updating objects existing in a shared space seems
quite close to the way Frag operates[13]. Using a tuple space could mean all entities were available in
the shared space, from which nodes could copy, compute and update them. A tuple space approach also
brings with it a simpler way of doing load balancing, as nodes can retrieve objects to compute as they see
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fit. Tuple spaces implementations have, however, traditionally had performance problems when scaled.
Especially in a system such as Frag, information needs to be available immediately, as computations are
done many times per second. The advantages in the abstraction the model offers is nevertheless a good
reason for not dropping the idea completely.

Observing the load imposed on Shout, it is also clear that the current message distribution system
has limited scalability. Shout is still under development, and may be optimised, but it would also be a
good idea to look at other mechanisms for distributing information to interested parties. Multicast is
an obvious network technology, which in theory offers what the system needs, with different multicast
groups assigned to the various zones. The multicast approach was discarded in favour of a wish to test
the Shout system, but may prove to be a good alternative. The most obvious drawback with multicast,
is the somewhat low proliferation of support for the protocol, meaning that a system based on multicast
will be restricted to intra-lab or Mbone-connected systems.

Another point of contention is that Frag’s fault tolerance is limited to smoothly handling crashes in
Frag nodes, although the entire system will grind to a halt if the Shout server becomes unavailable. In
the case of a Frag node going down, the other nodes will simply stop receiving updates from its entities,
eventually timing them out. Although it is hard to tell whether an entity has been consciously deleted
or if its controlling node has crashed, it is nevertheless not ideal if entities disappear from the system
without any good reason. Given the presence of a migration system, it would be nice if the entities
belonging to the crashed node could have been moved to other nodes when it became clear that the
original node was down. However, this would require having some component outside the node which
would keep track of entities managed by the node and that could detect if a node becomes unavailable,
migrating these entities. Given the impossibility of knowing whether a remote computer has crashed or is
just temporarily unavailable, this would also require additional safeguards to ensure that the supposedly
crashed node cannot come back and start emitting updates for an entity which by then is controlled by
another node.

Continuing on fault tolerance, there is also, although with only a slight chance of occurring, an
issue with the migration protocol. If a node crashes after emitting an accept, but is still selected for
migration by the originator, there is currently no way for the originator to discover that the migration
did not work correctly, effectively removing the migrated entity from the game. This is of course not
ideal, but is an effect of the rendezvous model of communication, which does not lend itself too easily to
such operations. Solving the problem would likely entail an additional acknowledgement from the node
receiving the migrated entity and a timeout at the originator, after which it would start the migration
process again. In this case, there is still a risk of the original recipient coming back from a temporary
unavailability and taking control of the entity, after which there can be two nodes controlling the same
entity. This would again require a scheme for conflict resolution, where several nodes controlling the
same entity for example could defer to the node with the lowest identifier.

A final note that has been mentioned in the introduction, but not incorporated into the design of
Frag, is that of world persistency. There is currently no way, short of defining parts of the world to be
entities, to keep things like terrain deformations consistent between nodes. Such world modifications are
generally caused by events that interact with the world itself, such as a projectile hitting the ground.
Letting all nodes which see the impact know about the change is quite easily done by issuing a normal
event (although Frag does not support events without an entity target at the moment). Other nodes
who do not see the impact area, however, will not know about the modified terrain even if they become
interested in that area. Making this happen is likely to require some notion of persistency in the system.
The game instances that have seen the change, do of course contain the correct information, but not in a
format recognisable to Frag. As mentioned, modelling parts of the world as entities would work around
the problems by keeping the changes in a format that Frag could understand. Not taking this route
would mean extending Frag with a notion about game state other that just entities and having a way of
distributing such changes to nodes after the fact, as they need information about an affected area.
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Chapter 10

Conclusion

This thesis has described a novel approach to parallellising the complex problem of simulating, in real
time, a computer game world populated by mobile entities, yielding better scalability.

The real time constraint, implicit in many computer game genres, is a problem when distributing
computation tasks and gathering results. Processes cannot afford high latencies when accessing entities,
but must still be relieved of a significant amount of their computation tasks if they are to achieve good
scalability.

This thesis introduces the Frag library in order to solve this problem. A game, which does not even
have to be aware of any distribution going on, is modified slightly, only needing to follow a certain
contract in how it deals with entity objects. Calls to Frag are inserted at key points, allowing Frag
to keep track of entities managed at the local host while communicating with other hosts using Frag,
receiving information about their entities and applying this information to the local game.

Frag eschews the approach of assigning discrete areas of the game world to designated hosts while
moving simulation of entities between them based on the entities’ location. In stead, the Frag approach
has hosts control a semi-fixed set of entities that are free to roam the entire game world. This supports
the freedom of heterogeneous participants, who can use individual rules to model “their” entities, rules
that can differ between hosts, something not possible if entities are to move seamlessly from participant
to participant as they traverse the game world.

Frag is founded upon two assumptions. Firstly, entities does not need to know about what happens
beyond a certain range from them, as there is some limit to the distance at which they can interact
with or observe other entities or happenings. Entities, and thereby their controlling hosts, not needing
to have knowledge of the entire game world, is used by Frag in order to reduce the amount of updates
each hosts receives to those happening in a restricted area around each entity. Secondly, a game does
not need to be an exact and repeatable simulation as long as it appears consistent, something which
allows us to tolerate brief inconsistencies if they are kept from diverging game states at different hosts
noticeably. This allows Frag to use only periodical updates with “real” information, using predictions
for entity movements for the rest of the time.

The system is tested and measured using a real game, where the game has no notion of the distribution
that Frag manages. We show significantly lowered computation times per frame and thereby clearly
increased scalability in numbers of entities in the same game. It is also shown that network bandwidth is
not the main limiting factor when distributing game state, the bottleneck primarily lying in the software
at the hosts themselves and the speed at which they can apply and create state update messages.
Connected to this, there is also a bottleneck in the network logic managing update filtering.

The need for such filtering is showed by testing a worst case scenario in which the game instances are
overloaded and grind to a halt as they receive too much state information and must spend most of their
time processing it.
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Appendix A

Python-C++ interface in
Spring/Frag

Python is supplied with a comprehensive C interface, allowing both importing specially designed shared
libraries written in C to be imported into the Python interpreter, and extending a C program by em-
bedding Python functions within it1. The second approach, python extension, is usually selected, as it
allows most of the application to be written in pure Python, avoiding recompilation and writing C code
in general.

Python extension is done by writing shared libraries in C, including certain macros defined by the
Python header files which designate the shared library as a Python module, defining the available func-
tions, classes and variables. After compiling the library, the Python interpreter may import it as a
module, accessing the designated features.

This allows us to implement computationally complex parts of a program in C, potentially giving a
performance boost, while keeping most of the implementation in Python, allowing higher implementation
speed, lower chance of bugs and easier debugging. An example extension module is shown in table A.2,
wrapping the simple function shown in table A.1, which returning a string decided by the function
argument.

As is quite obvious, the wrapping procedure is rather verbose, forcing the programmer to handle
things like argument extraction and reference counting manually. Fortunately, there exists several more
or less automatic wrapper generators which can alleviate some of these problems. For this project we
are using Boost.Python, which is part of the Boost libraries2 and provides a drastically improved level

1http://docs.python.org/ext/ext.html
2http://www.boost.org/

char∗ g r e e t (unsigned int x )
{

static char∗ msgs [ ] = { ” h e l l o ” , ”Boost . Python” , ”world ! ” } ;

i f ( x > 2)
{

return ”” ;
}

return msgs [ x ] ;
}

Table A.1: C function
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#inc lude <Python . h>

extern ”C”
{

// Wrapper to handle argument/ r e s u l t convers ion and check ing
PyObject∗ greet wrap ( PyObject∗ args , PyObject ∗ keywords )
{

int x ;
i f ( PyArg ParseTuple ( args , ” i ” , &x ) ) // e x t r a c t / check arguments
{

char const∗ r e s u l t = gr e e t (x ) ; // invoke wrapped func t i on
return PyString FromString ( r e s u l t ) ; // conver t r e s u l t to Python

}
return 0 ; // error occurred

}

// Table o f wrapped f unc t i on s to be exposed by the module
static PyMethodDef methods [ ] = {

{ ” g r e e t ” , greet wrap , METH VARARGS,
” re tu rn one o f 3 par t s o f a g r e e t i n g ” } ,

{ NULL, NULL, 0 , NULL } // s en t i n e l
} ;

// module i n i t i a l i z a t i o n func t i on
PyMODINIT FUNC i n i t h e l l o ( )
{

(void ) Py InitModule ( ” h e l l o ” , methods ) ; // add the methods to the module
}

}

Table A.2: C++ function exposed as a Python module through Python API (example from Boost
Consulting)
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#inc lude <boost /python . hpp>

using namespace boost : : python ;

BOOST PYTHON MODULE( h e l l o )
{

def ( ” g r e e t ” , greet , ” r e tu rn one o f 3 par t s o f a g r e e t i n g ” ) ;
}

Table A.3: C++ function exposed as a Python module through Boost.Python (example from Boost
Consulting)

of abstraction in dealing with Python’s C interface.

A.1 Boost.Python

Relying heavily on preprocessor macros and C++ template metaprogramming, Boost provides a highly
abstracted way of dealing with Python3, automatically finding type requirements and handling reference
counting. Boost also provides implementations of Python’s object class and common subclasses, such as
list, dict and tuple, providing access to their public methods directly and all other attributes indirectly
through the attr method, which takes a string as parameter and returns the named attribute as an object.

Wrapping the function from table A.1 in Boost.Python is displayed in listing A.3.

As can be seen, this is a vast improvement over manual wrapping, the only drawback being somewhat
increased compile times associated with Boost’s metaprogramming facilities.

Where Boost.Python truly shines is in interaction with C++’s object orientation, enabling wrapping
of classes, enabling transparent access to these and their instantiated objects, allowing access to features
like C++’s run time type information from Python.

A.1.1 Wrapping Spring objects

Spring is created in the object oriented fashion which is a quite common way to model games, with
basic classes representing physical objects and specialisations for these into projectiles, vehicles and so
on, according to their properties and usage within the game. A partial view of Spring’s class hierarchy
is shown in figure A.1.

Given the C++ class definitions, we can then register the classes with python, exposing the attributes
and methods which need to be visible (we could easily expose everything, but in the spirit of briefness,
we will keep to the bare necessities. The result is shown in table A.4.

This efficiently allows Python access to the Spring classes, both for manipulation and creation. When
a class constructor requires parameters, these are specified with the init function. The property function
creates a Python property, which was introduced in Python 2.24. These appear as normal attributes,
but in reality call get and set methods upon attribute access, creating a transparent access layer which
for example can allow different external and internal representations of an attribute. In the Spring
wrapping, this is for instance used to make coordinates and vectors appear as tuples to python, while
using a custom object for internal storage.

Once a class has been registered with Boost, any subclass of that class can be passed to Python,
although it will appear as an object of the superclass, breaking RTTI. If the class is registered with the
bases template argument, however, methods such as killObject, which is implemented for all classes and
handles object destruction and cleanup, will resolve to the correct class implementation, even though it
is only defined for WorldObject.

3http://www.boost.org/libs/python/doc/
4http://www.python.org/download/releases/2.2/descrintro/#property
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Figure A.1: Game class hierarchy

#inc lude <boost /python . hpp>

using namespace boost : : python ;

BOOST PYTHON MODULE( spr ing )
{

c l a s s <CWorldObject >(”WorldObject” )
. de f ( ” i n i tOb j e c t ” , &CWorldObject : : i n i tOb j e c t )

. de f ( ” k i l lOb j e c t ” , &CWorldObject : : k i l lOb j e c t )
. d e f r e adwr i t e ( ” g l o b a l i d ” , &CWorldObject : : g id )
. d e f r e adwr i t e ( ” local compute ” , &CWorldObject : : loca l compute )
. add property ( ” coo rd in a t e s ” , &CWorldObject : : getPos , &CWorldObject : : setPos )

;

c l a s s <CSolidObject , bases<CWorldObject> >(” So l idOb jec t ” ) ;

c l a s s <CUnit , bases<CSolidObject> >(”Unit” )
. de f ( ”doDamage” , &CUnit : : DoDamage)

;

c l a s s <CTransport , bases<CUnit> >(”Transport” ) ;

c l a s s <CFactory , bases<CBuilding> >(”Factory” )
. d e f r e adwr i t e ( ” opening” , &CFactory : : opening )

;

c l a s s <CPro jec t i l e , bases<CWorldObject> >(” P r o j e c t i l e ” ,
i n i t <f l o a t 3 , f l o a t 3 , CUnitPtr >())

. d e f r e adwr i t e ( ”owner” , &CPro j e c t i l e : : owner )
;

c l a s s <CMis s i l eP ro j e c t i l e , bases<CPro jec t i l e > >(” M i s s i l e P r o j e c t i l e ” ) ;
c l a s s <CLaserPro jec t i l e , bases<CPro jec t i l e > >(” L a s e rP r o j e c t i l e ” ) ;

}

Table A.4: Boost.Python-wrapped Spring
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from sp r ing import Unit

def s e t I n t e r e s t ( s e l f , span ) : pass

def g e t I n t e r e s t ( s e l f ) : return (200 , 200 , 200)

Unit . i n t e r e s t = property ( g e t I n t e r e s t , s e t I n t e r e s t , None ,
’The un i t s area o f i n t e r e s t ’ )

Table A.5: Spring class extended in Python

us ing namespace boost : : python ;

Sp r i n g I n t e r f a c e : : Sp r i n g I n t e r f a c e ( ob j e c t f r ag ) :
f r ag ( f r ag )

{}

f r ag : : IdType Sp r in g I n t e r f a c e : : r e g i s t e rEn t i t y ( CWorldObjectPtr en t i t y )
{

return ex t rac t<f r ag : : IdType>( f r ag . a t t r ( ” r e g i s t e rEn t i t y ” ) ( en t i t y ) ) ;
}

void Sp r i n g I n t e r f a c e : : removeEntity ( CWorldObjectPtr en t i t y )
{

f r ag . a t t r ( ” removeEntity ” ) ( en t i t y ) ;
}

void Sp r i n g I n t e r f a c e : : r e g i s t e rEv en t ( EventPtr event )
{

f r ag . a t t r ( ” r e g i s t e rEv en t ” ) ( event ) ;
}

Table A.6: Callbacks to Python

Having been registered, classes can also be extended in Python, although these changes will naturally
not be visible in the C++ code, as they can happen at run-time. In Python, this is simply a matter of
adding methods or variables to the class, which results in the new methods being able to all instantiated
objects of that class. An example of this usage is shown in table A.5

A.1.2 Spring frontend

The final part of the wrapping process, is to allow access to the game itself from Python. As Spring has
a sequential design, with a main loop performing all updates to the game state, this is simply a matter
of exposing this function in the shared library through an interface object, allowing it to be called from
Python. The constructor of this object simply takes the frag instance as its parameter, later allowing it
to call the Frag registry functions as shown in table A.6.

A.2 Python access

Compiling the above mentioned source results in a Python module which gives access to the essentials
of Spring, including access to entity objects and selected attributes belonging to them. Integrating with
Frag is then simply a matter of writing a small Python program which initialises Frag and Spring, passing
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the Frag instance object to Spring, completing the connection. The program then loops Spring’s and
Frag’s main loops alternatingly.

The Python frontend may also, by enabling the proper methods in the Spring shared library, interact
with Spring in various ways, modifying game behaviour without requiring recompilation of the C++
source. This is for example used to spawn entities at intervals when benchmarking the system.
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CD-ROM

The accompanying CD-ROM contains this document in PDF format in addition to LATEX and BibTEX
sources.

The CD-ROM also contains all code created and modified in relation to this thesis, including Frag-
enabled Spring, the radar application, Shout and the Frag library. The root contains a README file
giving a more detailed view of the contents.
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