
1. Introduction
The ionosphere, Earth's immediate space environment, is intimately connected to the solar system's greater, 
continuous plasma environment, the solar wind. Through the solar wind, the ionosphere is injected with 
energy, in a stream of charged particles (Cowley, 2000; Dungey, 1961). Partially as a consequence of this 
energy input, plasma instabilities occur in the high-latitude ionosphere, which is the ultimate cause of 
widespread turbulent structuring, called plasma irregularities (Tsunoda, 1988). On small scales ( 10 km), 
such ionospheric plasma irregularities cause rapid scintillations in radio signal phase and amplitude, to the 
general detriment of GPS services (Kintner et al., 2007; Yeh & Liu, 1982).

In the high-latitude regions of the ionosphere, the occurrence of plasma irregularities is in general subject 
to strong seasonal dependencies, where local winter is accompanied by an increase in observed plasma ir-
regularities (Heppner et al., 1993; Jin et al., 2018, 2019; Prikryl et al., 2015). These seasonal changes are not 

Abstract Based on the Swarm 16 Hz Advanced Plasma Density data set, and using the Swarm A 
satellite, we apply automatic detection of spectral breaks in seven million sampled plasma density power 
spectra in the high-latitude F-region ionosphere. This way, we survey the presence of plasma irregularity 
dissipation due to an enhanced E-region conductance, caused both by solar photoionization and particle 
precipitation. We introduce a new quantity named the steepening slope index (SSI) which we use to 
estimate the occurrence rate of break-points in sampled plasma densities. We provide an interpretation 
of SSI in the context of solar photoionization-induced conductance enhancements of the E-region. 
We present a comprehensive climatology of the SSI occurrence rate, along with statistics documenting 
characteristic high-latitude plasma density spectra. In the absence of steepening, the typical spectral index 
is 2.1. When density spectra steepen, the index is typically 1.6 at large scales, and 2.7 at small scales. We 
discuss the impact of high-energy deeply penetrating electron precipitation in the diffuse aurora, and 
precipitating electrons in the aurora at large. Here, a key finding is that near the cusp, where the F-region 
conductance is enhanced, spectra tend not to steepen. We find that both the diffuse and discrete aurora are 
modulating F-region plasma irregularity dissipation through an enhancement of E-region conductance, 
highlighting the role played by factors other than solar zenith angle in high-latitude plasma dynamics. 
The influence of E-region conductance on spectral shapes indicates the need for a new discussion of how 
particle precipitation can structure the local winter high-latitude F-region ionosphere.

Plain Language Summary While the growth of turbulent plasma structures in the high-
latitude ionosphere has been paid much attention, the dissipation or decay of these structures has 
evidently not. By analyzing a massive amount of data from the European Space Agency's Swarm mission, 
we can create a map of turbulent structure decay in the polar and sub-polar regions of Earth. Perhaps 
surprisingly, we find that turbulence and dissipation in fact go hand in hand. Both extreme ultraviolet 
radiation from the Sun and energetic particles in the aurora are causing widespread plasma turbulence 
dissipation.
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only the result of a differing rate of irregularity production, but also the result of plasma diffusion (Ivarsen 
et al., 2019).

1.1. Diffusion in the High Latitude F Region

Diffusion is to be understood as a transport mechanism that causes plasma structures to dissolve into the 
surrounding plasma. In the presence of this mechanism, when plasma irregularities (turbulent structures) 
only undergo diffusion, they dissipate. The timescale involved in irregularity dissipation is usually seen in 
the context of the time it takes a plasma density gradient to decrease to 1e  times its initial value (referred to 
as e-folding time). If diffusion was controlled by molecular processes so as to exhibit a simple response to 
pressure gradients, one diffusive e-folding time should be given by Vickrey and Kelley (1982),




 2
1 ,

k D (1)

where D  is the diffusion coefficient for field-perpendicular plasma structures, and k  is the wave number 
resulting from a Fourier decomposition of the plasma density distribution in a direction perpendicular to 
the magnetic field.

Inside the polar caps, plasma diffusion adheres to the following principles: strongly magnetized electrons 
are in effect frozen in the magnetic field, leading the motion of the ions to create an ambipolar electric field, 
which serves to severely retard the ion diffusion. Vickrey and Kelley (1982) (VK82, hereafter) developed 
a framework to explain the observed seasonal differences in polar cap plasma irregularity occurrences. 
During local summer, a high E-region conductivity shorts out the ambipolar electric field, causing F-region 
plasma to diffuse at the high ion perpendicular diffusion rate instead of the balanced ambipolar diffusion 
rate. Conversely, during local winter, the E-region conductivity can become negligible, causing plasma to 
diffuse at the slow ambipolar diffusion rate. As a result, VK82 proposed a new diffusion equation, where D  
in Equation 1 can be expressed as (Ivarsen et al., 2021),

 



  
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E

iF ED D (2)

where  ,F E is the height-integrated Pedersen conductivity (i.e., conductance) of the F- and E-region respec-
tively. Also, ,iD  is the field-perpendicular ion diffusion coefficient. In other words, the ratio of E-to F-region 
Pedersen conductance controls high-latitude F-region plasma diffusion. Nevertheless, Ivarsen et al. (2021) 
also concluded that although the mechanisms causing Equation 2 are taking place, the 2k  scaling in Equa-
tion 1 is evidently not correct: the lifetimes of turbulent plasma structures are longer than expected from 
theoretical molecular diffusion considerations. In effect, the findings presented by Ivarsen et al. (2021) lead 
to the conclusion that Equation 1 is not taking into account all the relevant physical processes at play. How-
ever, it can be shown that even when the diffusion operator is not associated with molecular pressure gra-
dients, Equation 2 is still valid, where ,iD  now is to be understood as an operator controlled by turbulence. 
E-region Pedersen conductance then remains a key ingredient in high-latitude plasma diffusion.

Changes in ionospheric Pedersen conductance are broadly predicted by changes in solar extreme-ultraviolet 
(EUV) photoionization, and by proxy, solar zenith angle (SZA, the angle between a vector normal to Earth's sur-
face and the Sun). SZA is a strong predictor for Pedersen conductance (Brekke & Moen, 1993; Fujii et al., 1981; 
Ridley et al., 2004; Vickrey et al., 1981). For high values of SZA, in the absence of EUV photoionization, iono-
spheric conductivity is strongly affected by precipitating electrons (Vickrey et al., 1981). In fact, overall, the par-
ticle energy of individual precipitating electrons is higher during local winter and in darkness (Liou et al., 2001; 
Newell et al., 2010). Thus, the flux of highly energetic auroral precipitation exhibits opposite seasonal behavior 
to that of EUV photoionization. Pedersen conductivity consequently does not exhibit strong seasonal depend-
encies in the auroral zone E-region (Kwak & Richmond, 2007), where deeply penetrating electrons assure that 
both Pedersen and Hall conductances remain relatively high regardless of solar EUV photoionization (Robin-
son et al., 2021). When SZA is not in control of E-region conductance, the aurora then steps in.

Returning to diffusion, plasma structure dissipation in the auroral zone will then not adhere to a simple 
dependence on incident solar photoionization. Since we cannot under any circumstance assume an absence 
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of irregularity production sources, plasma structures here are generated through instability processes, 
meaning that they will undergo simultaneous growth and dissipation (Huba et al., 1985; Tsunoda, 1988). 
To complicate matters, strong plasma turbulence can accelerate the return to equilibrium by creating en-
hanced mixing, resulting in a drastically increased diffusion coefficient (Braginskii, 1965; Kaufman, 1990). 
Conversely, free energy can push a blob of plasma toward instability without ever making it unstable, which 
would increase the decay time of stable plasma. As a direct consequence of electron precipitation, the au-
roral region shows an abundance of plasma irregularities (Kelley et al., 1982), which may be the cause of 
widespread GPS scintillations (Hong et al., 2020; Prikryl et al., 2015).

1.2. Turbulent Spectral Shapes

Turbulent structuring is readily scrutinized using a powerful tool, the power spectral density (PSD) analy-
sis. The power spectrum, ( )S f , of a plasma density timeseries is a measure of the strength of fluctuations 
in the observed plasma density at a given frequency f . When the timeseries is measured using an orbiting 
spacecraft, and assuming that the spacecraft velocity is much greater than the local plasma velocity, ( )S f  
can be used as an estimator for spatially distributed fluctuation strength. In other words, the distribution of 
power on the frequency spectrum reflects the intensity of fluctuations on a range of spatial scales , through 
  /Sv f , where Sv  is the spacecraft velocity (around 7.6 km 1s  in the topside F-region). Power spectra 
measured in high-latitude ionospheric plasma density fluctuations can often be described by a power law 
(Mounir et al., 1991; Phelps & Sagalyn, 1976; Spicher et al., 2014; Tsunoda, 1988),

( ) ,S f f (3)

where   is a positive number. As it happens, plasma density power spectra often display a break-point, or a 
knee, in ( )S f . The presence of such a break-point in Equation 3 leads to,
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where 1,2 represents the initial and second slopes, or spectral index, for the low- and high-frequency ranges 
respectively and where bf  is the frequency at the break point where the spectral slope changes from 1 to 2.

The literature is full of examples of spectra undergoing steepening at a spectral break point, namely break-
points at which  2 1 (Kelley, 1989a) Using a very large data set acquired with the high-resolution (16 Hz) 
in-situ plasma density data from the Swarm mission (Friis-Christensen et al., 2006; Knudsen et al., 2017), 
we have set out to investigate spectral steepening in the F region near 450 km altitude in terms of where and 
when it happens and at what wavelength it occurs in a 1–100 km interval. A primary motivation for this study 
is that the origin of steepening spectra has been blamed on a variety of notions that could benefit from some 
sorting out. For instance, steepening has been associated with transitions from an inertial regime to a fully 
collisional regime (Keskinen & Huba, 1990). Other studies have interpreted the occurrence of steepening to 
mean that there is ongoing plasma irregularity dissipation below the scale of the break-point (Kivanc & Hee-
lis, 1998). Moreover, it has been pointed out that break-points at scales between 1 and 10 km coincide with the 
scale of the F-region ion skin depth (Ivarsen et al., 2019), that is, to say, to plasma instabilities due to transverse 
electromagnetic perturbations associated with the ion skin depth (Califano et al., 2002; Stenson et al., 2017). 
The ion skin depth, or ion inertial scale, is defined as  /i piL c , where c is the speed of light and pi is the 
ion plasma frequency. In effect, these instabilities could in turn lead to an injection of energy on scales around 
the break-point. Alternately, in the context of energy injection where turbulent cascade would be in control, 
the initial spectral index should theoretically adhere to  1 5 / 3 until steepening occurs at some scale associ-
ated with molecular or other processes (Kintner & Seyler, 1985; Mounir et al., 1991).

Direct irregularity dissipation and energy injection then constitute two interpretations of steepening plas-
ma density spectra. However, energy injection through instabilities at the break-point scale would lead to 
an accelerated return to equilibrium, and thus cause diffusion (St-Maurice & Hamza, 2009). In other words, 
the two interpretations go hand in hand. In addition, there is no direct way to distinguish between the two 
interpretations of a spectral break (Mounir et al., 1991). Natural variability in spectral indices ensures that 
a strict test of  1 5 / 3 for individual spectra is untenable. Nevertheless, spectral breaks in density power 
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spectra have been found in multiple studies of the high-latitude ionosphere (Basu et  al.,  1990; Mounir 
et al., 1991; Spicher et al., 2014; Villain et al., 1986). The interpretations of the spectral breaks found in these 
studies reflect the ambiguity between the two opposing break-point interpretations.

The above notwithstanding, a key finding from the recent study by Ivarsen et al. (2021) quoted above has 
been that the lifetime of 10-km scale structures in the F region is strongly affected by the E region electrical 
conductivity lower down, as predicted by VK82. An implication of the short-circuiting of the electrostatic 
structures generated in F-region should therefore be that for plasma structures of certain perpendicular 
scales, ambipolar diffusion should take over the final evolution of the structures in time. In other words, 
the presence of a strong E-region induced conductance has to introduce an increase in the dissipation rate 
of structures. This increase should in turn be seen through a spectral break in the spectrum at some high 
enough frequency, at least in structures that are large enough to map into the E-region. This has therefore 
been one of the factors that we have paid attention to in our study of spectral steepening.

Specifically, the present study is a direct follow-up to two previous investigations by Ivarsen et al. (2019) 
and Ivarsen et al.  (2021). In the former, we developed an automatic detection of break-points in plasma 
density spectra. We applied this in the polar caps to show that SZA is a powerful indicator for the presence 
of steepening spectra in the polar caps. In the latter, we showed that the lifetimes of diffusing plasma struc-
tures in the polar cap (Equation 1) could be explicitly calculated from the plasma-convection estimated 
using satellite orbits along the noon-midnight meridian. A key finding, we determined that diffusion is 
faster when there is a strong E-region conductance, and that the ratio    / ( )E E F  plays a role similar 
to that predicted by VK82. However, as mentioned above, something is increasing the structure lifetimes 
by modifying the predicted 2k  scaling. We hypothesize that this increase is caused by turbulent velocity 
fields, inhibiting dissipation. Thus, in the present study, we will investigate the shape of plasma density 
spectra at high latitudes. If turbulent velocity fields are in control, this should be detectable at larger scales 
in density spectra. If this is correct then, an enhancement in E-region conductance should be accelerating 
plasma diffusion, implying that density spectra should exhibit break-points and subsequent steepening, as 
long as the scales undergoing diffusion are covered by the PSD analysis. While a combination of irregularity 
source dependencies and diffusion can modify the spectral shapes accordingly, our investigations lead us to 
posit that there is widespread co-occurrence between the two. As we show in the present publication, we 
did detect an abundance of break-points with steepening in density spectra, in support for the VK82-style 
shorting mechanism occurring throughout the sunlit high-latitude F-region ionosphere, as well as in deeply 
penetrating particle precipitation regions in deep darkness. Our results highlight the need to take particle 
precipitation-induced irregularity dissipation into account when considering high-latitude F-region plasma 
irregularities.

2. Methodology
For this study we have used the high-resolution (16 Hz) in-situ plasma density data set from the Swarm 
mission (Friis-Christensen et al., 2006; Knudsen et al., 2017). We collected data from all Swarm A orbits as 
they passed through the polar regions (poleward of  55  magnetic latitude [MLAT]) between October 15, 
2014 and January 15, 2021, constituting more than 6 years of more or less continuous data coverage (small 
daily gaps and a few longer-term gaps exist in the data). To calculate MLAT and magnetic local time (MLT), 
we used the altitude adjusted corrected geomagnetic coordinates system (Baker & Wing, 1989). Next, we 
sampled 60 s (approximately 456 km) intervals of ionospheric plasma, with a cadence of 5 s before subject-
ing each 60 s segment to a PSD analysis.

It proves important here to provide some details regarding the analysis to which we subject each 60 s seg-
ment of plasma density observations. The approach we chose is analogous to the method presented in Ivars-
en et al. (2019). For the PSD itself, we use a variant of Welch's power spectral density (Welch, 1967), consist-
ing of averaged modified periodograms over a logarithmically spaced spectral range (Trbs & Heinzel, 2006). 
Next, to fit Equation 4 to each spectrum, we use a piecewise linear Hermite function, as documented in 
D'Errico (2017). This way, we automatically locate the position of a spectral break. If a spectrum exhibits a 
numerical difference between 1 and 2 such that   2 1 0.8, we infer a spectral break, and the spectrum 
is characterized as a steepening slope spectrum. If the analyzed spectrum does not exhibit a spectral break, 
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the numerical difference between 1 and 2,  2 1| |, is lower than 0.8, and we conclude that the analyzed 
spectrum is adequately described by a single power law (Equation 3). In addition, we require for the spectral 
break to be found between frequencies of 0.19 and 6.5 Hz, corresponding to spatial scales between 1.2 and 
39.9 km, respectively. The reason for this comparatively narrow interval is directly related to the PSD analy-
sis itself—extensive use of window functions in calculating the PSD causes power to diminish in the lowest 
frequencies. This stated, the interval encompasses both the transitional scale to a fully collisional regime, 
2–3 km (Keskinen & Huba, 1990), and the F-region ion skin depth, 2–5 km (Ivarsen et al., 2019). The param-
eters of our algorithm, such as the 0.8 threshold for steepening spectra were determined through extensive 
testing, with the central goal in mind: to automatically determine whether there is a natural visual break 
in the power spectra, which is the criterion generally used for identifying spectral breaks in the literature.

It should be mentioned that we found a few instances of spectra that exhibited some shallowing after a 
spectral break (e.g., the spectrum in panel E-a in Figure 1). There are a number of possible interpretations 
of such spectra. They can, for example, be associated with a noise floor in the Swarm 16 Hz density pow-
er spectra, which is situated around  3 6( ) 10 cmS f /Hz (Ivarsen et al., 2019). Another interpretation of 
spectra such as the one shown in panel E-a is that the PSD has steepened on scales larger than the interval 
available to scrutiny in the present study, though this would entail a break-point on scales comparable to 
the spatial extent of polar cap patches. Strengthening such an interpretation is the relative steepness of the 
spectral index before the break-point (2.7), compared to typical single-slope spectra (panel E-b). As a coun-
terpoint to such an interpretation is that shallowing spectra overwhelmingly appear in smooth sub-auroral 
plasma, as is apparent in panel (A). However, as the present study is concerned with spectra that steepen 
within the scale-interval available for scrutiny, we will not deal here with the rather rare occurrence of 
high latitude shallowing spectra, other than to conclude that they do not exhibit spectral steepening in the 
present scale interval.

As mentioned, we collected orbits made by Swarm A crossing both polar regions poleward of  55  MLAT, 
thereby covering a much larger region than Ivarsen et al. (2019). In addition to the analysis outlined, we also 
calculated the SZA adjusted for the approximate altitude of the E-region peak, at 110 km.

The end result of this analysis is a binary time series equal to either 0 or 1, which indicates whether the 
sampled 60 s, or 456 km stretch of F-region plasma, exhibits a spectral break. We call this timeseries the 
steepening slope index (SSI). Figure 1 shows a typical polar region crossing, which occurred through the 
northern polar region on December 12, 2017. Panel (A) shows the 16 Hz plasma density, and panels (B–D) 
document the resulting steepening slope spectra encountered in the interval. Panel (B) shows the first and 
second spectral indices, 1 and 2, along with the degree with which the spectra are steepening. Panel (C) 
shows the location of the spectral breaks, and panel (D) shows the SSI, along with a 30-s along-orbit SSI 
occurrence rate, SSI30s. The latter corresponds to the probability that plasma sampled in a relatively long 
stretch of Swarm orbit will exhibit a spectral break, as each of the 6 spectra included in the 30 s interval 
contains contributions from a 456 km stretch of orbit. In the bottom panels (E), we show three examples 
of spectra, labeled (a, b, and c), where each label is highlighted in a particular spectrum in panel (D). Here, 
(a) shows a shallowing spectrum, (b) shows a single slope spectrum, and (c) shows a steepening slope spec-
trum. In all three cases, the values of the slopes are indicated above the plot.

In Figure 1, we see that Swarm A enters the northern polar region from the post-midnight sector at around 
15:52:00 UT on December 12, 2017. Poleward of  65  MLAT, it encounters three density enhancements, 
accompanied by moderate increases in the SSI30s. Although SSI occurrences are associated with the density 
enhancements, smaller fluctuations in the measured plasma density also register SSI occurrences. As the 
satellite orbits equatorward through the afternoon sector, it encounters a large enhancement in density and 
density fluctuations at around  80  MLAT, accompanied by a marked increase in SSI occurrences. On the 
sharp edges of density enhancements, break-points have a tendency to be found at smaller scales, around 
2–3 km. SSI occurrence quickly subsides as the satellite orbits equatorward of  70  in the post-noon sector.
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3. Results
We aggregated all polar region orbits made by Swarm A between October 14, 2014 and January 15, 2021, 
giving us a database of roughly seven million plasma density spectra, more or less equally divided between 
the northern and southern hemispheres. Each spectrum is described by either a single slope ([a] and [b] in 
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Figure 1. A sample orbit across the northern polar ionosphere, made around 16:00 UT on December 12, 2017. Panel (A) shows the plasma density. Panel (B) 
shows the first and second spectral indices, 1 and 2, as orange and blue triangles respectively. The extent of the yellow bar connecting the triangles represents 
the degree with which the slopes of the spectra are steepening. Panel (C) shows the location of the spectral breaks, for frequency (left y-axis) and spatial scale 
(right y-axis). Panel (D) shows the steepening slope index (SSI) and the SSI30s (a 30-s along-orbit SSI occurrence rate). In panel (E), three examples of spectra 
are shown, with labels corresponding to specific points in panel (D). The orbital time is indicated in the top x-axis of panel (A), while the position in magnetic 
latitude (MLAT) and magnetic local time (MLT) is indicated by the two x-axes below panel (D).
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Figure 1), or a steepening slope ([c] in Figure 1). Note that the results are not fundamentally different if the 
analysis is applied to data from Swarm B or C.

In Figure 2, we show various statistics of all the high-latitude aggregated steepening slope spectra. In panels 
(a–c, for the northern hemisphere) and (e–g, for the southern hemisphere), we show the distribution in 
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Figure 2. Steepening slope statistics. Panels (a–c) and (e–g) distributions of the first (solid line) and second (dotted line) spectral indices for steepening spectra. 
Also shown is the distribution of indices for which steepening was not identified (dash line). Panels (a–c): northern hemisphere data. Panels (e–g): southern 
hemisphere data. Panels (a and e) are for the polar caps (poleward of  82  MLAT). Panels (b and f) are for the diffuse aurora (  63 |MLAT  | 75 , MLT  10
(h), while panels (c and g) are for the discrete aurora (  65 | MLAT  | 77 , MLT  14(h). Each distribution is normalized (using estimated probability density 
values). The mode (peak) of each distribution is indicated, as calculated from a kernel estimation of the probability density distributions. Panels (d, northern 
hemisphere) and (h, southern hemisphere) show the distributions of the spectral break locations, for the three regions defined, with frequencies (bottom x-axis) 
and corresponding spatial scale (top x-axis) indicated. Panel (j) shows the long-term development of the polar cap steepening slope index (SSI) occurrence rate. 
Each data point represents a running 1-week SSI occurrence rate inside the polar caps (poleward of  82  MLAT), where the northern and southern hemispheres 
are shown in blue and orange respectively. The solid lines are linear fits of SSI against solar zenith angle (SZA), including a slowly varying solar cycle-based 
trend. The December and June solstices are indicated on the x-axis of panel (j). Panel (k) scatter plot of the 1-week polar cap SSI occurrence rate against the 
E-region conductance (E) for both hemispheres, and with the Pearson correlation coefficient between the logarithm of E and 1-week SSI occurrence rate 
indicated above the plot. The conductance E is calculated using global ionospheric models (Bilitza et al., 2014; Bilitza & Reinisch, 2008; Picone et al., 2002; 
Thult et al., 2015).



Journal of Geophysical Research: Space Physics

the first (solid lines) and second (dotted lines) spectral indices, 1,2 in Equation 4. The separation of order 
1.0 between the two distributions is consistent with our choice of 0.8 as a selection criterion for steepening 
spectra. In addition, we show the distribution of 0, the spectral index of slopes where no spectral break 
could be determined (dashed lines). We show the indices for the polar caps (panels a and e), for the dawn 
aurora (panels b and f), and for the dusk aurora (panels c and g). Here, we define the polar caps as the area 
poleward of  82  MLAT, the dawn aurora as the area confined by  63 |MLAT  | 75 , MLT  10 h, and the 
dusk aurora as the area confined by  65 |MLAT  | 77 , MLT  14h. In panels (a–c) and (e–g), the mode 
(peak) of the distributions are indicated, where we fit a non-parametric Kernel distribution to the data in 
order to estimate the exact probability density distributions. Panels (d and h) show the distributions of the 
location of spectral break points, for all three regions. Here, we find no clear peaks in the distributions, 
though a dual mode distribution could be inferred.

In panel (j) of Figure 2, we show the long-term development of the polar cap SSI occurrence rate. Each 
datapoint represents a running 1-week SSI occurrence rate inside the polar caps (poleward of  82  MLAT), 
where the northern and southern hemispheres are shown in blue and orange respectively. The solid lines 
are linear fits of SSI against SZA, with a solar cycle-based trend added:

 SZA SC( , ) ( ) ( ),p Z t p Z p t (5)

where p is the modeled long-term SSI occurrence rate, SZAp  is a linear fit of SSI against SZA, Z  represents 
SZA, and SC( )p t  is a slowly varying solar cycle-based trend, as a function of time t. See appendix A for details 
about the model parameters.

Panel (k) of Figure 2 provides a final illustration of the strong relation between E-region conductance and 
polar cap SSI occurrence rates. To this goal we have used E-region conductance values (E) for a period from 
2017 through 2019, based on global ionospheric models, after Ivarsen et al. (2021), and references therein. 
As is readily observed, the correlation between E and 1-week polar cap SSI occurrence rates is unambig-
uous, with Pearson correlation coefficients of 0.95 and 0.91, for the northern and southern hemispheres 
respectively.

In panels (a through f) in Figure 3, we show a climatology of the occurrence rate of steepening slope spectra. 
This is calculated based on a spatial binning in MLAT and MLT, where each bin roughly covers the same 
geographical area. In each panel, the SSI occurrence rate is shown to the left, while the sampled SZA is 
shown to the right. Moreover, in each panel, magnetic noon (12 h) points toward the location of the Sun, 
and magnetic dawn (6 h) and dusk (18 h) are situated to the right and left respectively. The SSI occurrence 
rate is simply the number of spectra exhibiting a double slope divided by the total number of spectra in each 
bin, while the SZA is the median SZA of that bin. Panels (a, c, and e) show the northern hemisphere, while 
panels (b, d, and f) show the southern hemisphere. Each panel contains data from a local season. Local sum-
mer and winter are defined as 131-day periods centered on both solstices, while equinox is the combined 
52-day periods centered on both equinoxes—this way, all days of the year are assigned to a season. Note that 
the Swarm satellites cover all magnetic local times in a period of 131 days, meaning each local time contains 
contributions from each year. Panels (a and b) show local summer, panels (c and d) show combined equi-
noxes, while panels (e and f) show local winter.

We see that inside the polar cap in Figure 3, the SSI occurrence rate shows a predictable behavior with 
respect to local season. The local winter polar caps exhibit an overall occurrence rate of 28% and 30% for 
the northern and southern hemispheres respectively, with the corresponding rates being 79% and 74% for 
the northern and southern local summer polar caps, which is reflected in panel (j) of Figure 2. During 
local summer, the entire high-latitude regions exhibit a SSI occurrence rate of  70%, and are stretch-
ing equatorward to around magnetic latitudes of  65 . During local winter, auroral magnetic latitudes  
(    65 | MLAT | 75 ) remain regions of high SSI occurrence rate, exhibiting rates in excess of 60%. In both 
hemispheres, a maximum appears in the morning sector, where the SSI occurrence rate is still in excess of 
70% for the northern hemisphere. At auroral latitudes, there are local minima in the SSI occurrence rate 
distributions in the pre-midnight sector and the noon sector. For all seasons, in both hemispheres, the cusp 
region (  75  MLAT, 12 h MLT) does not exhibit a clear enhancement in SSI occurrence.
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Figure 3. SSI occurrence rate climatology the high-latitude F-region ionosphere (poleward of  55  MLAT). Panels (a, c, and e) display the northern 
hemisphere, and panels (b, d, and f) display the southern hemisphere. Panels (a and b) show local summer, panels (c and d) show combined equinoxes, while 
panels (e and f) show local winter, where local summer and winter are defined as 131-day periods centered on both solstices, while equinox is the combined 
52-day periods centered on both equinoxes. In all panels, magnetic noon (12 h) points toward the location of the Sun, and magnetic dawn (6 h) and dusk (18 h) 
are situated to the right and left respectively. Steepening slope index (SSI) occurrence rate is shown to the left in each panel, while median sampled solar zenith 
angle (SZA) is shown to the right, with colorscales indicated below. Note that the color white in the SSI occurrence rate climatologies signifies a saturation in 
the colorscale, and not a lack of datapoints.
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Returning to the median SZA values in the right side of each panel in Figure 3, we see that the regions of 
very high SSI occurrence rate ( 70%) are the high MLAT—low SZA regimes. In darkness, SSI occurrence 
rate quickly diminishes, starting with the midnight sector of the equinox polar caps (poleward of   82  
MLAT). However, during local winter, there is a clear holdout of consistently high SSI occurrence rate in 
the auroral region (    65 | MLAT | 75 ).

To further explore the nature of the results presented in Figure 3, we present in Figures 4 and 5 a climatol-
ogy of SSI occurrence rate compared to the distribution of field-aligned current (FAC) densities (panels e 
through h), and to the F-region plasma structuring (panels j through m). For the former, we use the Swarm 
FAC density data set, which derives FAC density from the perpendicular magnetic field components. To 
estimate plasma structuring, we use total integrated power from each plasma density spectrum. Total inte-
grated power, given a stationary process, corresponds to the root-mean-square (RMS), or variance  2. We 
define this quantity as,
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Figure 4. Aggregated data for local summer, where summer is defined as a 131-day period centered on the respective summer solstice. We show steepening 
slope index (SSI) occurrence rates (panels a through d), field-aligned current (FAC) density (panels e through h), and plasma structuring root-mean-square 
(RMS, panels i through m), for both hemispheres, and for geomagnetically active and quiet times, where we use the SME index to distinguish between the two 
(Gjerloev, 2012). In the FAC density, red (positive) density denotes a current going upwards, and blue (negative) density denotes a current going downwards. 
The first and second columns show the northern hemisphere, while the third and fourth columns show the southern hemisphere. In all panels, we show the 
average distribution of the discrete aurora, based on Newell et al. (1996). In panels (a, e, and i), we show the average distribution of the pulsating aurora, based 
on Grono and Donovan (2020). Note that the color white in panels (a-d) and (i-m) signifies a saturation in the colorscale, and not a lack of datapoints.
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where the limits of the integration reflect the scale interval under scrutiny in the present study. The RMS 
has units 6cm  and reflects the total power of plasma density fluctuations present in each sampled 60 s 
segment. In Figure 4 (local summer) and Figure 5 (local winter), we show SSI occurrence rate along the 
first row (panels a through d), FAC density along the second row (panels e through h), and the logarithm 
of RMS along the third row (panels i through m). The values in the distributions of FAC density and RMS 
are taken as the median in each bin, where each bin contains the same data coverage as the corresponding 
bins of SSI occurrence rate. Positive values of FAC density correspond to an upwards current direction in 
both hemispheres. We further divide the data into geomagnetically active and quiet times. Here, we use the 
SME index from the SuperMAG initiative (Gjerloev, 2012), which is a ground-based alternative to the AE 
index (Davis & Sugiura, 1966). The SME index is a direct indicator of the nightside integrated auroral power 
(Newell & Gjerloev, 2011), and has the added benefit that it extends to December 31, 2019, which is roughly 
two years longer than the AE index. Specifically, we label as active times when the SME index is higher than 
its median value, and quiet as times when the SME index is lower than its median value. Note that in using 
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Figure 5. Same as Figure 4, but for local winter.
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the SME index to separate our data into geomagnetically active and quiet times, we exclude the last year of 
Swarm data from Figures 4 and 5.

To visualize the extent of the aurora, we show as an overlay the area from which the pulsating aurora had 
an occurrence rate in excess of 40%, based on a recent climatology of pulsating aurora in the northern 
hemisphere, presented in Grono and Donovan (2020). Using all-sky cameras with a data coverage from 
2006 to 2016, the latter study surveyed several subcategories of pulsating aurorae, of which we show the 
most prevalent type, the amorphous pulsating aurora. Note that Grono and Donovan (2020) did not take 
geomagnetic conditions or local season into account, but we posit that the visual appearance of the aurora 
is most prevalent during local winter in geomagnetically active times (Newell et al., 2010), and so we only 
overlay the pulsating aurora distribution over the northern hemisphere active climatologies (panels a, e, 
and i in both Figures 4 and 5). Then, we overlay the distribution of discrete aurora energy flux from Newell 
et al. (1996). The latter study presented a climatology of the discrete aurora, using precipitation data from 
the DMSP satellites, with a data coverage lasting from December 1983 to November 1992. The discrete 
aurora climatology is echoed by Liou et al. (1997), who measured optical UV emissions. In all panels in 
Figures 4 and 5, we show the regions of discrete aurora occurrence rate greater than 9% as a white line. 
Newell et al. (1996) divided observations into active and quiet times by the north-south component of the 
interplanetary magnetic field (IMF), compared to our division using the SME index. However, active times 
as defined using the SME index occur on average during times of southward IMF, and vice versa for quiet 
times. As a note to the drastically differing magnitudes of the occurrence rates between Newell et al. (1996) 
and Grono and Donovan (2020), we believe this is due to differing methodologies. The former calculated 
occurrence rates based on all sampled data, while the latter calculated occurrence rates only from all-sky 
images that were clear.

In Figure 4, which shows local summer conditions, the SSI occurrence rate distributions (panels a through 
d) are not drastically different between active and quiet times, nor between hemispheres, with consist-
ently high occurrence rates (70%) across the high-latitude ionospheres. The region of high occurrence rate 
moves equatorward during active times, and the cusp regions (poleward of  75  MLAT, 12 h MLT) does 
not exhibit any enhancements in SSI occurrence rate. The FAC density data (panels e through h), shows 
the FAC flowing into (blue) and out of (red) the high-latitude ionosphere. In the plasma structuring data 
(RMS, panels i through m), we see stark differences both between active and quiet times, and between hem-
ispheres. In the sunlit northern hemisphere, plasma structuring peaks near the cusp region and stretching 
into the post-noon sector. We observe regions of enhanced structuring in the large-scale polar cap convec-
tion path. In the nighttime northern hemisphere, regions of enhanced plasma structuring are co-located 
with the distributions of discrete and pulsating aurora, both in geomagnetically active and quiet times. In 
the southern hemisphere, the same pattern is discernible, but with much stronger enhancements in struc-
turing, and with nightside enhancements reaching further equatorward than in the northern hemisphere.

In Figure 5, which shows local winter conditions, the SSI occurrence rate distributions (panels a through d) 
exhibit a clear dependence on the SME index. Furthermore, regions of enhanced SSI occurrence rate (60%) 
are strongly co-located with the distributions of discrete and pulsating aurora, both during geomagnetically 
active and quiet times. The dawn side auroral SSI occurrence rates are noticeably higher than on the dusk 
side. Furthermore, as during local summer, the cusp regions do not exhibit elevated SSI occurrence rates. 
The distributions of FAC density during local winter are similar to local summer, but weaker, reflecting the 
relationship between FAC strength and solar illumination (Yamamoto et al., 2003).

4. Discussion
4.1. Spectral Indices and Their Relation to Geophysical Conditions

The top eight panels of Figure 2 all reflect the general characteristics of the plasma density spectra iden-
tified by Swarm A. The distributions of the first spectral index of the steepening spectra, 1, clearly peaks 
at  1 1.6 for all three regions considered, and in both hemispheres. The second spectral index tends to 
come in at  2 2.7, with the polar caps showing slightly steeper 2. The spectra best described by a single 
slope exhibit a spectral index of 2.1, which is in between the average values of 1 and 2. For steepen-
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ing spectra, the spectral index at larger scales, 1.6, closely matches the 
  5 / 3 1.67 associated with the turbulent cascade theory (Kintner 
& Seyler, 1985; Mounir et al., 1991). This is indicating that turbulence 
is dominating over plasma diffusion on scales larger than the break-
point, and that diffusion takes over for scales smaller than the break-
point. 1 for steepening spectra tends to be considerably lower than 0 
for non-steepening spectra.

In panels (d and h) of Figure 2, we see that the location of the spectral 
break itself occurs more or less uniformly across the available frequency 
interval for all three regions considered. We note, though, that a sem-

blance of a dual peak distribution can be inferred, with one peak near 10 km and another near 4 km. Fur-
thermore, the long-term SSI development inside the polar caps (Figure 2, panel j) reflects the results from 
Ivarsen et al. (2019), though with a clearer solar cycle trend. The solid lines, which are linear fits of raw 
SSI against SZA (Equation 5), vary in near perfect unison, showing clearly that the polar cap SSI seasonal 
dependencies are driven by incident solar illumination, which together with the relative invariance of the 
spectral break location implies that the source of the irregularities present remains unchanged throughout 
the year. A direct quantification of these dependencies is possible, through the calculation of the point 
biserial correlation between SZA and SSI, for the entire data set of 7 million steepening slope classifications. 
The point biserial correlation coefficient is the equivalent of the Pearson correlation coefficient for associ-
ation between a continuous and a binary variable (Kornbrot, 2014). We show this correlation coefficient in 
Table 1. The point biserial correlation between SZA and SSI is −0.45, −0.01, and −0.09, for the cap, dawn 
aurora, and dusk aurora respectively, for the northern hemisphere. For the southern hemisphere, these 
numbers become −0.43, −0.17, and −0.22, indicating that there is a clear relationship between SZA and SSI 
in both polar caps, and less so in the auroral regions. For a brief discussion on the solar cycle trend in the 
long-term polar cap SSI occurrence rate, see the end of this section.

In the general SSI climatology, in Figure 3, and specifically inside the polar caps (poleward of   82  MLAT) 
in panels (a through f) in Figure 3, we see that the SSI occurrence rate closely follows the sunlight termi-
nators, indicated by the median SZA-values. This provides strong evidence for an SZA-dependence in polar 
cap plasma irregularity dissipation, due to photoionization-induced enhancements in E-region conductance 
(Ivarsen et al., 2019; Kivanc & Heelis, 1998). A high ratio of E-to F-region conductance in Equation 2 causes 
plasma to diffuse with a faster rate owing to the shorting out of electric fields by the E region (Vickrey & Kel-
ley, 1982). Moreover, as is evident in panels (a through d) of Figure 4, summer polar cap SSI occurrence rates 
are largely independent of geomagnetic conditions. Thus, SZA, or incident sunlight photoiniozation, is the 
biggest stakeholder in polar cap SSI occurrence rate, which is reflected in panel (j) of Figure 2 and Table 1.

There is no clear enhancement in SSI occurrence rate in the cusp regions (  75  MLAT and 12 h MLT) 
in Figures  3–5. Here, a particularly strong and structured injection of auroral precipitation occurs (Jin 
et al., 2015; Rother et al., 2007). This is reflected by a clear cusp-enhancement in plasma structuring (panels 
i through m, Figures 4 and 5). However, cusp particle precipitation, and the dayside diffuse aurora equa-
torward of the cusp, are associated with a relatively low particle energy (Newell et  al.,  2010). As such, 
precipitating electrons here penetrate less deeply, and are expected to structure the ionospheric F-region at 
km scales (Millward et al., 1999; Rother et al., 2007), while having little effect on the E-region. This means 
rather than the E-region Pedersen conductance, F-region conductance is directly enhanced by the cusp 
precipitation, causing the ratio of E-to F-region conductance in Equation 2 to diminish, forcing plasma dif-
fusion to proceed with a slower rate (Vickrey & Kelley, 1982). Depending on the exact location of the cusp, 
the lack of cusp-associated SSI is discernible both during local summer (panels a through d of Figure 4), and 
during local winter (panels a through d of Figure 5).

In panels (a through d) in Figure  5, at auroral latitudes (    63 | MLAT | 77 ) at all local times bar the 
noon-sector, we observe consistently high SSI occurrence rates (60%). These regions are in deep darkness 
(right side plots in Figure 3). Looking at the FAC density in panels (e through h) in Figure 5, we identify 
these regions as the upward dawn-side FAC region 2, and the upward dusk-side region 1, where the former 
is slightly more equatorward than the latter (Iijima & Potemra, 1978). On the dawn side, the region 2 is 
dominated by the diffuse aurora (Newell et al., 2010), which occurs primarily on the region 2's closed mag-
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Cap Dawn aurora Dusk aurora

Northern hemisphere −0.45 −0.01 −0.09

Southern hemisphere −0.43 −0.17 −0.22

Table 1 
The Point Biserial Correlation Coefficient Between SZA and the Binary 
Variable SSI, for the Three Regions Considered in the Present Study, and 
for Both Hemispheres
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netic field lines (Nishimura et al., 2020). The dusk side region 1 is dominated by the discrete aurora (Newell 
et al., 1996). These two regions of upward flowing FAC are also co-located with the occurrence of GPS phase 
scintillations (Clausen et al., 2016).

4.2. The Connection Between SSI and E Region Conductance

Given that both the SSI index and the diffusion times have a similar morphology in terms of the presence 
of a strong E region, we are led to conclude that the reason for the local winter auroral SSI occurrence rates 
(panels a through d in Figure 5) is a precipitation-induced enhancement in E-region Pedersen conductance. 
This means that the effect of the E-region enhancement in conductance is twofold. First, it allows the mech-
anism first proposed by VK82 to operate freely, even under a complete lack of incident sunlight as deeply 
penetrating particle precipitation in the dark auroral ionosphere brings the ratio    / ( )E E F  in Equa-
tion 2 closer to 1, allowing plasma to diffuse at a higher rate. Second, we have to conclude that because the 
frequency index undergoes steepening primarily when there is an E-region enhancement in conductance, 
the implication is that when the E region conductance is important, the spectra are far more likely to steep-
en. It happens according to the following script: at lower frequencies there is a predominance of turbulent 
cascading. At frequencies beyond the break point, the power goes down more steeply. In Figure 6 we use 
a stack of contour plots to present added details about the relation between the spectral power density, the 
value of 2, and the wavelength of the structures for all the cases covered in Figures 4 and 5. The plots of 
Figure 6 have several remarkable features. One is that for a given wavelength the statistics do not depend at 
all on whether or not the data were acquired in the polar cap or in the dusk or dawn auroras. Also, there is 
a lot of similarity between the forms of the plots related to the individual sizes of the structures, although 
there is some visible evolution in relation to the smaller spectral power and smaller 2 region. The result is 
that when a linear regression is applied to the data set in each panel, there is a decreasing correlation coef-
ficient between spectral power and 2. One more noticeable feature is that there is less average power at the 
smaller wavelengths, particularly for wavelengths smaller than 5 km. This is consistent with the cascading 
context in that in ordinary cascade there is more energy at larger wavelengths. That same cascading concept 
is related to the frequency spectrum at a given wavelength: aside from spontaneous growth or decay occur-
ring at a given wavelength, wave energy found at one size is assumed to be fed by larger structures and given 
to smaller ones. In that context the presence of steepening under high E-region density conditions indicates 
that all wavelengths in the sampled 1–100 km range are subject to increased spontaneous decay when the 
E region conductance is elevated.

The above notwithstanding, we observe elevated SSI occurrence rates at all local times associated with the 
discrete and diffuse aurora, but more so in the dawn side diffuse aurora. The reason for this dawn-dusk 
asymmetry has to lie in key differences between the two categories of aurora that influence SSI occurrence 
rates. The diffuse aurora is the dominant source of auroral energy (Newell et al., 2009), and is character-
ized by high-energy precipitation (Nishimura et al.,  2020). The pulsating aurora is a subcategory of the 
diffuse aurora, and it supports especially high-energy precipitating electrons, with characteristic particle 
energies on the order of several keV and higher (Bryant et al., 1975; Miyoshi et al., 2010, 2020; Nishimu-
ra et al., 2020). Such high-energy precipitation will promptly penetrate deep into the ionosphere (Brown 
et al., 1976; Partamies et al., 2017), reaching the E-region peak at 110 km. This is shown in a study by Kwak 
and Richmond (2007), where the early morning E-region enhancement in Pedersen conductivity can be de-
duced to follow from deeply penetrating electrons (Coumans et al., 2004; Vickrey et al., 1981). The discrete 
aurora is characterized by particle energies lower than that of the diffuse aurora (Liou et al., 1997; Lyons & 
Evans, 1984; Newell et al., 1996; Shue et al., 2001). Furthermore, the overall energy flux of discrete aurora 
is lower than that of the diffuse aurora (Newell et al., 2009). The former can then induce less change to the 
Pedersen conductance than the latter, as exemplified in a recent study by Robinson et al. (2021). The dawn-
dusk asymmetry seen in panels (a through d) in Figure 5 is then a consequence of these considerations.

However, as mentioned, the strong co-location between both the discrete and the diffuse aurora in panels 
(a through d) in Figure 5 can conceivably also be interpreted in the context of energy injection in the steep-
ening slope spectra (Kintner & Seyler, 1985; Mounir et al., 1991). In this context, a spectral break would be 
indicative of turbulent structuring rather than the presence of dissipation. However, as a counterpoint, we 
are not observing any clear cusp-region enhancement in SSI occurrence rates, despite evidence of strong 
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Figure 6. Contour lines based on 2D histograms of log 10 S (y-axis) against 2| | (x-axis) for four scales, with the 
scales indicated by . Also indicated in each panel is the scale-dependent Pearson correlation based on simple linear 
regressions. Each row corresponds to one of the three regions of interest (indicated by color, see legend below the 
figure), and the top 12 panels contain data from the northern hemisphere, while the bottom 12 panels contain data 
from the southern hemisphere.
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plasma structuring there ([Jin et al., 2015] [Rother et al., 2007], and panels i through m of Figures 4 and 5 
in the present study). To complicate matters further, plasma turbulence leads to enhanced mixing, caus-
ing unstable plasma to undergo an accelerated return to equilibrium, perhaps through Bohm diffusion 
(Braginskii,  1965; Kaufman,  1990). In that case, fast evolving structures can undergo rapid growth and 
corresponding rapid dissipation (St-Maurice & Hamza, 2009), which likewise would translate to an increase 
in the SSI occurrence rate. Finally, steepening plasma density spectra have been found in the cusp, but with 
break points at much lower scales than the Swarm data can resolve (Spicher et al., 2014).

In summary, during local winter, we observe strong co-location between the discrete and pulsating aurora, 
and regions of enhanced SSI occurrence rates. We interpret this in two ways. First, the framework developed 
by VK82 (Equation 2) provides an avenue for deeply penetrating precipitation to directly modulate plasma 
irregularity dissipation: high-energy deeply penetrating precipitation will raise E, and thus increase topside 
plasma irregularity dissipation. Conversely, lower energy precipitation will penetrate less deeply, and raise 
F, which will in turn decrease the rate of topside plasma irregularity dissipation. Second, the presence of 
plasma turbulence can induce spectral breaks, increasing SSI occurrence rates in regions rich in energy 
injection through particle precipitation, and plasma turbulence can itself lead to anomalous diffusion. To-
gether, these considerations explain how the occurrence of steepening slope spectra during local winter is 
intimately connected with particle precipitation. While the local summer aurora features a higher number 
flux, particle energies are lower (Hamrin et al., 2005; Newell et al., 2010). This, and the abundance of solar 
EUV photoionization in the auroral region during local summer, means that the intimate relationship be-
tween break-points in plasma density spectra and particle precipitation is a winter phenomenon.

The local winter dynamics between particle precipitation and irregularity dissipation might have wide-
spread consequences for how we understand F-region auroral plasma irregularities. At auroral latitudes 
during local winter, SSI can serve as a placeholder for the existence of particle precipitation in Swarm-sam-
pled plasma. Furthermore, given a fuller understanding of precipitation-induced energy injection, analyses 
of break-points in plasma density spectra can give observational constraints on the distribution of high-lat-
itude E-region conductance. This method can work in synergy with other methods of diagnosing iono-
spheric conductances, which could be based on ionospheric reflection coefficients (e.g., Ivarsen et al., 2020; 
Pakhotin et al., 2018), or on global FAC density maps ((Robinson et al., 2021), and references therein).

4.3. What Causes the Mapping Between Swarm Altitude and the E Region

Our results clearly indicate that the evolution of F region structures depends on the E region plasma den-
sity, even for wavelengths as small as 1 km. This is somewhat unexpected, based on the consideration of 
expected parallel to Pedersen conductivity ratios (Heelis & Vickrey, 1990). We have therefore revisited this 
question in Appendix B through a calculation of typical conductivity ratios encountered in our study and 
their impact on the mapping scales. We have also queried the effect of gradients in the parallel conductivity. 
We show in the Appendix that the conductivity ratio is large enough for 1 km structures to map down to 
200 km altitude. Below that altitude, we require the impact of the conductivity gradient to allow the map-
ping to extend all the way to the lower E region. We suggest that the combined action of large conductivity 
gradients at high latitudes and of the impact of gradients in the parallel conductivity below the F peak are 
able to explain why we find the E region conductance to have an impact on structures as small as 1 km that 
are observed at Swarm altitudes.

4.4. Inter Hemispheric Asymmetries

There is a need to discuss briefly the hemispheric asymmetry evident in the SSI occurrence rates (panels a 
through d, in Figure 5), where the northern hemisphere local winter is characterized by markedly higher 
SSI occurrence rates. There are two underlying asymmetries at play. First, there is a large distance between 
the geographic and geomagnetic south poles (Jin & Xiong, 2020), causing the southern hemisphere polar 
region to exhibit a wider range of SZA values than in the northern hemisphere. Second, recent studies 
have found that the northern hemisphere is characterized by stronger field-aligned currents that cannot 
be explained by differing SZA distribution (Ivarsen et al., 2020; Workayehu et al., 2020), as well as stronger 
energy input in the form of Poynting flux (Pakhotin et al., 2021). As we have shown, during local winter, 
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SSI occurrence rates are dependent on auroral particle precipitation, and so the local winter hemispheric 
asymmetry in SSI occurrence rates should be seen in this context. To quantify the hemispheric asymmetry 
that is due to different SZA distributions, we refer to the point biserial correlation coefficient between SZA 
and SSI in Table 1. We see that while the correlation between SZA and SSI is negligible in the northern 
auroral regions, it is considerably stronger in the southern auroral region. While the stronger SZA-SSI cor-
relation in the southern auroral region could be a direct result of the wide range of SZA values there, the 
greater influence of particle precipitation on northern SSI occurrence rates could also contribute to a lower 
SZA-SSI correlation in the northern auroral region. A discussion of the hemispheric asymmetry in high-lat-
itude plasma structuring is outside the scope of the present study (see, e.g. Jin & Xiong, 2020) for a recent 
investigation into hemispheric asymmetries in plasma density).

4.5. Solar Cycle Effects

We conclude this section with a brief discussion of the solar cycle trend discernable in the long term polar 
cap SSI occurrence rate (panel j of Figure 2). In the model presented in Equation 5, we add a slow cyclical 
variation in the long-term SSI occurrence rate. This slow variation, SC( )p t , is shown in panel (a) of Figure 7, 
which shows mean monthly sunspot number on the left y-axis, and SC( )p t p along the right y-axis, where 
p is the overall median 1-week polar cap SSI occurrence rate (see Appendix A for details about SC( )p t ). 
To estimate solar activity, we use sunspot data from the World Data Center SILSO, Royal Observatory of 
Belgium, Brussels. The solar cycle dependence in the long-term polar cap SSI is, however, not fully cap-
tured by a simple cyclical variation. In panels (b and c) in Figure 7, we show scatter plots of daily polar 
cap SSI occurrence rate against mean daily sunspot number, with blue datapoints representing days on 
which the median SZA  90 , and red datapoints representing days on which the median SZA  90 . Note 
that while the SSI data in panel (a) is based on 1-week occurrence rates, the SSI data in panels (b and c) is 
based on 1-day occurrence rates. The two categories in panels (b and c) show drastically differing behavior 
with respect to sunspot number, exemplified by the Pearson correlation coefficient in the two categories 
(indicated above the plots). Days during which the polar caps are on average sunlit exhibit no dependence 
on solar activity. Conversely, days during which the polar caps on average receive no incident sunlight, 
exhibit a clear dependence on solar activity, with Pearson correlation coefficients of 0.46 (for the northern 
hemisphere) and 0.37 (southern hemisphere). In fact, days with very low polar cap SSI occurrence rate  
( 10%) exclusively occur on days with comparatively low solar activity. The fact that SSI occurrence rate in 
the sunlit polar cap does not depend on sunspot numbers while that in the dark polar cap does, reflects the 
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Figure 7. Solar cycle trends in the SSI. Panel (a) shows mean monthly sunspot number along the left y-axis (black crosses), and the solar cycle-based long-term 
SSI trend along the right y-axis (dashed lines), where the northern hemisphere is shown in blue, and the southern hemisphere in orange. Panels (b and c) show 
daily SSI occurrence rate inside the polar caps (poleward of  82  MLAT) along the y-axis, and mean daily sunspot number along the x-axis. The data is divided 
into days with a median SZA  90  (sunlit days, blue), and days with a median SZA  90  (dark days, orange). The Pearson correlation coefficients for linear 
regressions done on both groups are indicated, and the linear fits plotted with black solid lines. Panel (b) shows the northern hemisphere, and panel (c) the 
southern hemisphere.
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two stakeholders in steepening plasma density spectra: in the presence of solar illumination, geomagnetic 
influence on SSI occurrence rate is suppressed, as SSI occurrence rates are generally high. In that case, solar 
photoionization is the main stakeholder in SSI occurrence rate. In the absence of solar illumination, the 
geomagnetic influence on SSI occurrence rates is substantial, with auroral particle precipitation being the 
main stakeholder in SSI occurrence rate.

5. Conclusion
We have calculated and collected seven million plasma density spectra measured by Swarm A. Based on an 
analysis of the Swarm 16 Hz Advanced Plasma Density data set, and, utilizing an automatic detection of 
spectral breaks, we present a comprehensive climatology of the occurrence of break-points and subsequent 
steepening in plasma density spectra at high latitudes. Steepening density spectra tend to exhibit a spectral 
index of 1.6 at larger scales throughout the high-latitude F-region ionosphere, indicating that turbulence 
is ubiquitous. The steepening itself shows that turbulence goes hand in hand with VK82-style irregularity 
dissipation.

At auroral latitudes, we have shown that deeply penetrating particle precipitation is facilitating irregularity 
dissipation described by the VK82 framework. Here, we see a picture of a complicated synergy between 
dissipation and turbulence, and this causes the steepening slope index, SSI, to act as a placeholder for the 
prevalence of auroral particle precipitation. Conversely, near the cusp, an enhancement in F-region con-
ductance, as opposed to E-region conductance, is inhibiting irregularity dissipation.

Although the fact that the nightside aurora can modulate ionospheric conductivity has previously been 
recognized (Shue et al., 2001, e.g.), measuring the aurora-induced conductivity has proven to be exceedingly 
difficult (Weimer & Edwards, 2021). Our results indicate that electron precipitation from the diffuse and 
discrete aurora are strongly enhancing E-region conductance, causing widespread irregularity dissipation 
in the local winter auroral region. That the framework developed by VK82 has been given an avenue to work 
in complete darkness invites an entirely new discussion of how particle precipitation can structure the local 
winter high-latitude F-region ionosphere.

It should be kept in mind that the spectral interval available to scrutiny in the present study is limited. 
Break-points can naturally be found on multiple scales outside the interval under consideration. In fact, 
in-situ experiments have documented spectral breaks on much smaller scales than those encountered in the 
present study (Basu et al., 1990; Mounir et al., 1991; Spicher et al., 2014). Likewise, high-frequency radar 
experiments can monitor decameter scale plasma fluctuations in the ionosphere, where some statistical 
studies show enhanced spectral broadening on auroral latitudes (Villain et al., 2002). The spectral breaks 
documented in the present study might be linked to structuring at much smaller scales through turbulent 
cascade, highlighting an avenue for future applications for the SSI.

Appendix A: Polar Cap SSI Model Parameters
The SSI model shown in Equation 5 consists of a linear fit of SSI against SZA, for all seven million spectra, 
and a slowly varying solar cycle-based trend. The former, SZAp  is determined by linear regression,

     
SZA

158 0.013 , for the northern hemisphere,
( )

143 0.011 , for the southern hemisphere.
Z

p Z
Z (A1)

For the slowly varying solar cycle component, SCp , we find that the following function accurately describes 
the deviations from the long-term median in the polar cap SSI occurrence rate,

  
 
   
 
 

SC 0
2sin ,

2 11 years
p t (A2)
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where   is the standard deviation of the long term 1-week polar cap SSI occurrence rate, t is the number of 
days elapsed since 0 January year 0, and 0 is a phase shift that aligns the solar minimum near the end of 
2019. In practice, Equation A2 becomes,

     
SC

12.6sin(0.0016 0.34), for the northern hemisphere,
12.0sin(0.0016 0.34), for the southern hemisphere.

t
p

t (A3)

The result is displayed in panel (a) of Figure 7, which shows  SCp p  along the right y-axis, where p is the 
long-term median polar cap SSI occurrence rate. Note that the unit for (Equations A1–A3) is percentage 
occurrence rate.

Appendix B: The Coupling Between E and F Region Plasma Structures
In a simple yet powerful argument Farley (1959) used the null current divergence condition from which we 
can infer that structures less than around 10 km in size should not map over more than 200 km in altitude. 
However, we have found clear evidence for the fact that even sub-km size structures at 450 km altitude 
are affected by the conductivity of the E region. In this appendix, we revisit the Farley argument based on 
typical sets of conditions met in our study. We also argue that for the altitudes of interest in the present 
work, the vertical derivative of the parallel conductivity could play an important role so that smaller scales 
than inferred from the original Farley paper could map from 450 km down to 100 km altitude. As with the 
original study by Farley (1959), our analysis of the extra conductivity gradient contribution is strictly based 
on dimensional analysis, meaning that it does not deal with actual solutions to the relevant differential 
equation.

Following Farley (1959), we start with the null current divergence condition. Being interested in perpen-
dicular diffusion, we Fourier analyze the structures in the plane perpendicular to the magnetic field. We 
retain only parallel and Pedersen currents and use  E , where E is the ionospheric electric field and 
 is the associated electric potential. Furthermore, we drop gradients in the ambient Pedersen conductivity 
owing to the scales under consideration, and we assume the magnetic field to be vertical to leading order. 
The current continuity then becomes,


  

   
    

  




2
2

2 0,k
z z z

 (B1)

where    2 /k  and  is the parallel conductivity. It is to be understood that  is the k-component of 
the Fourier analyzed potential and that we are after its variation along the vertical direction z. After dividing 
by  we end up with the equation,

 




  

   
 





2
2

2

ln
0.k

z zz
 (B2)

Above about 200 km altitude  is mainly proportional to the plasma density while below 200 km it is main-
ly proportional to the neutral density. We should therefore use


 


ln 1 ,

z H
 (B3)

where H is of the order of the neutral scale height below 200 km and of the order of the ion scale height 
above 200 km (although it should be kept in mind that the plasma density normally tends to increase be-
tween 200 and 300 km altitudes).

If the derivative of the parallel conductivity is ignored we end up with the potential having an exponen-
tial decay of the form   0 exp( / )z z  where      / /pz k , as argued by Farley (1959). We note that 

   / /p k  is inversely proportional to the square root of the plasma density as a function of altitude. 

Specifically, classical theory gives         
2 2/ (1 / )( ) / ( )p i i e i e i , which is normally thought to be of 

the order of 510  to 610  at Swarm altitudes (Kelley, 1989b). The net result as described by Farley (1959) is that 
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structures with a wavelength less than 10 km might or might not map to the E region from Swarm altitudes, 
although this result would vary with neutral and plasma density conditions.

At the extreme where the wavenumber would be too small to matter in Equation B2 we would find two 
solutions: one would be   / 0z , meaning no parallel electric field at all. The other would describe an 
electric field that grows exponentially with altitude as the plasma density decreases with the plasma scale 
height, that is, the scale height of the conductivity.

In actual situations we should be concerned with the competition between all the various terms in Equa-
tion B2. Our dimensional analysis ends up with a quadratic equation for 1 / z (z being the vertical scaling) 
in terms of the other parameters. The two possible scales are given by the quadratic solution,

  


2
22 1 1 1 4 Hk

z H H R
 (B4)

where,




  .R (B5)

In Equation B4, we have to rule out the solution with the  sign, since it leads to infinite electric fields at 
infinity, which cannot be satisfied. The other scale would infer a potential (and therefore a parallel electric 
field) that decreases with increasing altitude, which is what we are looking for. In Figure B1, we show exam-
ple height profiles for the conductivities under consideration, along with selected solutions to Equation B4. 
In panel (a), we plot parallel and Pedersen conductivity height profiles for typical high latitude ( 75  MLAT) 
conditions, based on global ionospheric models [see Ivarsen et al. (2021), and references therein]. In panel 
(b), we show the ratio R (Equation B5) along with the logarithmic gradient of the parallel conductivity 

1 / H. The values in panels (a and b) are used to produce solutions to Equation B4, taking the minus sign. 
These are shown in panel (c), for eight values of the perpendicular irregularity scale  (indicated in the 
plot). Observe that the ratio R is found to be as large as 810  at Swarm altitudes. Along with values of H on the 
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Figure B1. Solving Equation B4 for typical high-latitude ionospheric conditions. Panel (a) shows the height profiles of both parallel and Pedersen 
conductivities, while panel (b) shows the conductivity ratio R (Equation B5) on the bottom x-axis and H (Equation B3) on the top x-axis. Panel (c) shows 
solutions to Equation B4, taking the minus sign, for eight perpendicular irregularity scale lengths , indicated in the plot.
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order of 210 — 310  at Swarm altitudes, we find that the vertical scaling z is sufficiently long for even  100 
m, indicating that km-scaled irregularities would map to the E-region without trouble.

Finally it should be kept in mind that since we did not solve Equation B1 but only looked at its scaling, the 
scaling arguments need to be revisited at the various altitudes. That is, to say, while we could infer that the 
mapping scale at Swarm altitudes is high enough at km size wavelengths to map well into the E region, we 
have to keep in mind that by 200 km altitude the scaling changes. This means that the scaling at 200 km 
must be revisited before concluding that km structures map down by another 100 km or so. This stated, 
with the numbers found hereby we can safely conclude that km wavelengths do map well between Swarm 
altitudes and the lower E-region.

Data Availability Statement
Sunspot data are courtesy of SILSO, World Data Center—Sunspot Number and Long-term Solar Observa-
tions, Royal Observatory of Belgium, and can be accessed from http://www.sidc.be/silso/.
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