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Abstract 

The e-commerce industry is experiencing rapid growth, and growing customer expectations 

and demand challenges the industry to find more cost-efficient ways of performing the last-

mile deliveries. Drones have in recent years been a hot topic, and with high versatility and 

several application areas it may be the answer to the challenge. In this project a Vans-and-

Drones System for Last-Mile Delivery have been developed considering effective task 

allocation and route scheduling. A literature review is presented on the topic of drone 

technology and application areas, especially emphasizing utilization of drones in logistic 

operations and routing problems. A mathematical model for the Vehicle Routing Problem 

with Drones is derived based on the classical Capacitated Vehicle Routing Problem, and the 

formulation is modeled in Jupyter Notebook with Python programming language and solved 

with CPLEX solver.  

A case study is carried out to examine the effects of integrating drones into the delivery 

system for a vaccine distribution scenario in a sparsely populated area, Ofoten region, 

considering vehicle employment cost, delivery time and emission impact. Results show that 

the proposed vans-and-drones system outperforms a truck-only delivery system for this 

purpose.   
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1 Introduction  

1.1 Background 

In order to survive in today’s competitive market, logistics companies are engaging to provide 

a faster and more cost-efficient last-mile delivery service to customers [1]. At the same time, 

with technological advancements, the effective use of drones has been extensively focused in 

a large variety of industries, i.e., facility maintenance, entertainment, disaster management, 

and transportation and logistics [2]. Thus, the development of a vans-and-drones system for 

improving last-mile delivery services has been widely focused by both academicians and 

practitioners.  

The e-commerce industry has been experiencing rapid growth during recent years, this 

together with urbanization is putting the delivery logistics systems to the test [3]. Customers 

get more and more demanding and tend to choose the retailer option with the shortest delivery 

time. Companies often offer same day or next day delivery and the parcel delivery operation, 

especially with last mile, is easily the most expensive part of the supply chain. The e-

commerce industry therefore seeks to find a more cost-efficient option while maintaining 

customer satisfaction [4]. The huge increase in parcel deliveries is putting strain on the 

infrastructure, especially in urban regions leading to traffic congestion and negative 

environment and health impacts[5]. UAVs are a promising solution to this challenge, being 

airborne resulting in congestion-free routing, and with relatively low operational costs and 

environmentally friendly when powered by electricity from low-carbon energy sources.   

With today’s drone technology there are still some setbacks, for instance with the rotary-

winged drone that is the most tested for parcel deliveries in urban areas. The drones still have 

limited capacity related to range due to high power consumption, and often need hubs or 

recharging stations nearby. Another issue is low carrying capacity, or payloads. Researchers 

are now addressing these issues to improve the technology and its performance, as well as 

improving drone-assisted parcel delivery logistics systems in routing and scheduling [4].  

1.2 Problem Statement  

This project aims at improving the last-mile parcel delivery operation and increase the 

competitiveness of logistics services to satisfy growing customer demand and expectations. 

The last-mile delivery operation is very expensive and time consuming, the problem to be 

explored in this project is whether vans-and-drones last-mile delivery systems can outperform 
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traditional truck-only last-mile delivery systems when considering delivery cost and emission 

[4].  

A vans-and-drones optimization model is to be developed and tested to see if the effectiveness 

of the last-mile delivery system can be improved by integrating drones in the delivery 

process. In addition, the optimization model shall be tested in a real-world case study. The 

world is currently battling a pandemic. Vaccines have been created to defeat the virus, but the 

next challenge is how to effectively distribute the vaccines to the public. A case-study that 

will be executed is based on this vaccine distribution challenge and will test if drones can play 

a key role in the effective distribution of the vaccines in Ofoten region, considering delivery 

time-consumption, cost, and emission. 

1.3 Research objective  

The objectives of this project is; 

•  The development of an optimization model for task allocation and route scheduling of 

a vans-and-drones last-mile delivery system, which shall be verified and validated. 

• Comparison data from the Vans-and-Drones Last-Mile Delivery System versus truck-

only last-mile delivery systems shall be identified and derived.  

• Most importantly, a small-scale case-study shall be executed where the optimization 

models effectiveness is tested in the scenario of vaccine distribution in a sparsely 

populated area, Ofoten region, with consideration of delivery time, cost and emission 

level compared to truck-only systems.  

Scope: 

1. Formulate a mathematical model of a Vans-and-Drones System for Last-Mile 

Delivery to optimize the task allocation and routing. 

2. Code and solve the mathematical model with an industrial optimization solver. 

3. Verify and validate the Vans-and-Drones Delivery System. 

4. Perform a case study to test the model in distribution of vaccines in Ofoten region.  

1.4 Limitations 

Even though drones can be a useful tool in several industries, the logistic industry is the area 

of interest for this project. There are several factors to take into consideration when operating 

UAVs, especially for commercial use. Drone operations in civil areas are subject to strict 
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rules and regulations and the UAV devices needs to be operated/controlled by authorized 

personnel under continuous monitoring [6]. However, for this project the focus area will be 

on the Operation Research aspects of the last-mile delivery operations with drones, 

considering logistics and operational problems related to routing, allocation, and network 

design. 

Another area that will not be emphasized is the technical specifications and details for the 

drone devices. 
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2 Literature Review 

2.1 Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles, UAVs, commonly known as drones, are aircrafts with no 

onboard human pilot, controlled by autonomous navigation or remote-control navigation [7] . 

UAVs are not a new invention, in fact they have been around for over a decade. The first 

reported drone dates back as far as 1916, created by the Americans Lawrence and Sperry. 

However, UAVs did not have a prominent role in either of the world wars, due to the 

immaturity of the technology. It was not until the 1950’s that the UAV technology really 

started to develop. [7] 

For several years UAV technology have been deployed in military operations for 

reconnaissance and combat purposes. However, in recent years it has become more accessible 

to the public.  

2.1.1 Fuselage 

Drones comes in different shapes and sizes, listed in Table 1, based on Macrina, et al. [4], are 

the main categories with general advantages and disadvantages. The sizes range from 1 mm 

(wingspan) and 0,005 g to 61 m and 15,000 kg. The most common drone types are the fixed- 

and rotary-winged drones. In 2016 an American start-up called Zipline International used 

fixed-winged drones to delivery medical supplies to remote areas in Rwanda [4]. The fixed-

winged drones are well suited for this kind of delivery operations, since they have relatively 

low energy consumption and can travel long distances with high payloads, drop of delivery 

packages, and return to depot while maintaining high traveling speed throughout the 

operation.  

Rotary-winged drones are probably the most known drones for the public, especially the 

quadcopter with four rotors. The fuselage gives it great maneuverability and the possibility to 

hover in the air, making it ideal for operations where high flexibility is required.  

In an attempt to combine the advantages for both the fixed- and rotary-winged drone, 

different companies, like Amazon, are designing hybrids that can travel fast with high range 

and payloads while having good maneuverability and adopting the rotary-winged drones 

hovering features [8]. 
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Table 1 - Pros and cons on different fuselages 

2.1.2 Application Areas 

UAVs are very versatile tools that have several application areas.  Macrina, et al. [4] 

performed an extensive literature review on the drone-aided routing problem, and adopted the 

work of Singhal, et al. [9], where they grouped the application areas into three different 

classifications; civilian, environment and defense.  

2.1.2.1 Civilian 

Drones are widely used by hobbyists for recreational purposes, like photographing. In the 

industry drones have been proven a useful tool, e.g., in construction, mining, agriculture, 

disaster management, and most importantly for this literature study; logistics and delivery.  

The online-shopping industry have been experiencing rapid growth in recent years, which 

results in increased competition between companies, as well as a growing population of 

online retailers. Customers become more demanding and tend to purchase from the online 

shops with the fastest delivery time. The last-mile delivery operation is for many retailers the 

most expensive part of the supply chain. Therefore, they explore delivery options to reduce 

this cost. Drone-aided routing may be the solution to this challenge.[4] 

2.1.2.2 Environment 

The drone technology makes it more accessible to monitor environmental situations like air 

quality, crops, and ecosystems, and inspect mountains and observe the environmental effects 

from the climate changes. Different drones can operate from the air, on the water surface and 

Fixed-wing Similar to traditional airplane 

Pros: Longest range, heavy payloads, low maintenance cost 

Cons: Low maneuverability 

Rotary-wing Helicopter, Quadcopter, Hexacopter, Octocopter 

Pros: High maneuverability 

Cons: High energy consumption 

Flapping-wing Imitates birds/insects flying 

Pros: High maneuverability (when small sized) 

Cons: Low range, high maintenance cost, high energy consumption 

Hybrid Combine fixed-, rotary- and flapping-wing features 

Often have longer range and high payload 
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under water. Underwater drones are used for studying ocean animals or under water regions, 

such as polar regions.[4] 

2.1.2.3 Defense 

For defense operations UAVs are used for espionage, missile launches, boarder surveillance, 

bomb dropping, supplying medical supplies to warzones and other combat purposes. [4] 

2.2 Routing Problems with Drones 

There are several configuration models for delivery routing problems with drones, for this 

literature study the Traveling Salesman Problem with Drone, TSP-D, the Flying Sidekick 

Traveling Salesman Problem, FSTPS, and the Vehicle Routing Problem with Drones, VRPD, 

is considered and reviewed. The forthcoming paragraphs will explain these delivery models, 

accompanied with recent literature on the subjects. 

2.2.1 The TSP-D 

The Traveling Salesman Problem with Drones, TSP-D originate from the classical Traveling 

Salesman Problem, TSP which is an NP-hard problem in combinatorial optimization. The 

objective of the TSP is to find the shortest possible path concerning minimum cost or distance 

travelled while satisfying different requirements and constraints. The TSP-D includes drones 

in this operation. Hernández, et al. [10] studied the usage of UAVs in parcel delivery, in 

collaboration with the traditional trucks. With basis in the TSP, they proposed a mathematical 

model to solve the problem with the goal to increase efficiency in the distribution network. 

They emphasized several advantages with the implementation of UAVs in the distribution 

network, in relation to traveling speed, accessibility, flexibility and the fact that the drones 

can operate autonomously without the need for human support. 

Ha, et al. [11] presented an extension of the work from Murray and Chu [12] on the FSTSP. 

They propose a new variant of the TSP-D, which they chose to call min-cost TSP-D. Unlike 

Murrey and Chu’s work, where they focus on developing a model to reduce the delivery 

completion time, Ha, et al.[11] propose a model where the objective is to minimize the total 

operational cost of the delivery process.  

Moshref-Javadi, et al. [13] notice a limited research base on the topic synchronized multi-

echelon routing. They studied multi-modal delivery systems with truck and drones and 

identified two major disadvantages with the usage of UAVs in the parcel delivery process, 

geographical reach, or flight time, and carrying capacity. The first is due to limited battery 
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life, where the drones require recharging or replacement of the batteries after a certain period 

of time or flight distance. The latter considers limited carrying capacity of the drone in 

relation to parcel size and weight. This needs to be considered when deciding the customer 

allocation between the truck and drones. 

Due to the limitations with today’s technology a purely UAV based parcel delivery system 

could be challenging [13]. On the other hand, during this literature review we see more and 

more researchers investigate delivery systems where the traditional trucks work in 

collaboration with UAVs, combining their strengths to create a more efficient system. With 

the trucks having high travel ranges and ability to carry bigger payloads with parcel of both 

high volume and weight, and the drone’s flexibility in travel routes and speed. 

Moshref-Javadi, et al. [13] proposed a multi-modal last-mile delivery system based on the 

traditional Traveling Repairman Problem, TRP, called the Simultaneous Repairman Problem 

with Drones, STRPD. The problem considers one truck and one or more drones operating in 

synchronization with each other, with the objective of minimizing the customer waiting time. 

Due to the synchronization between the truck and the drones, the drones are able to dispatch 

from the truck, serve a customer, and return to the truck on a subsequent truck stop, or a 

rendezvous location. This function extends the service range for the drone by making the 

truck serve as a portable hub.  

The STRPD was formulated as a Mixed-Integer Linear Programming problem, MILP. A 

Truck and Drone Routing Algorithm, TDRA, was also designed to efficiently solve the 

STRPD in real-world instances. Compared with the MILP model, the TDRA was able to 

provide optimal or near optimal solutions for small-scale problems. 

2.2.2 The FSTSP 

The Flying Sidekick Traveling Salesman Problem, FSTPS was introduced by Murray and 

Chu [12] in 2015. In the FSTSP a set of customers is served either by a single truck or a 

single drone, with the objective of minimizing the completion time of the operation. Each 

customer must be served exactly once, and the drone can be transported by the truck. In recent 

years, several researchers have studied and extended their work, proposing new solving 

methodologies and heuristics to reduce the completion time for the algorithms and to be able 

to solve problems with larger instances.  
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Crişan and Nechita [14] proposed and tested a new heuristic so solve the FSTSP, called the 

New Greedy Heuristic, NGH. This heuristic is stated to be less complex than the one 

proposed by Murray and Chu [12]. For the proposed method they included a new cost 

function to consider the drones limited flying time, with the objective of minimizing the total 

transportation cost for the truck and drone delivery problem. They used multiple instances for 

the testing of the heuristics, both real-world and theoretical instances to fully analyze the 

behavior of the NGH method. The results came out promising and provided time savings for 

the total system. 

Jeong, et al. [15] focus on the importance of considering drone energy consumptions related 

to parcel weight, and restrictions in flying areas for UAVs when operating with truck and 

drone delivery systems. They notice that these factors tend to not be included in the literature, 

so they emphasize it in their studies aiming to receive more accurate and realistic data. The 

authors proposed a model called FSTSP-ECNZ, a hybrid last-mile delivery model that 

considers one truck and one drone. They developed a new solution algorithm with MILP 

formulation and tested it up against known metaheuristics like nearest neighbor, particle 

swarm optimization, generic algorithm, and simulated annealing. The model considers the 

drones energy consumption related to the parcel weight carried by the drone, in addition to 

proposing detour routes for the drone to avoid time-dependent restricted flight zones. To 

derive these routing schedules, they developed a heuristic named the Two-Phase Construction 

and Search Algorithm, TPCSA, which combines construction heuristics and search heuristics. 

The truck and drone routing problems tend to be quite complex, but the authors states that 

their TPCSA method is able to give promising solutions within a reasonable time frame.  

Dell’Amico, et al. [16] proposed a new formulation for the solving methodology of the truck 

and drone delivery problem, also with focus on the FSTSP. They presented a two- and a 

three-indexed formulation in a new objective function, as well as inequalities for application 

in the branch-and-cut method, with the objective of finding optimal solutions to the problems 

within short time. They considered two scenarios of the delivery problems and adapted the 

solving methodologies for both; one in which the drone is allowed to wait at customer 

location to save battery power, and one where the drone is only allowed to wait while in the 

air. Their methods gave promising results, and the authors claimed it to outperform other 

optimization methods, especially the two-index formulation, by finding optimal or near 

optimal solution to a high percentage of the benchmark instances tested within a reasonable 
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amount of time. The endurance of the drone proved to be the feature that impacted the 

algorithms the most, with lower endurance allowing the algorithms to perform better. 

Raj and Murray [17] introduced the Multiple Flying Sidekick Traveling Salesman Problem 

with Variable Drone Speed, mFSTSP-VDS. In this problem a truck work in conjunction with 

a fleet of drones in the last-mile delivery system, where the objective is to minimize the 

makespan. Unlike the mFSTPS, where the drones are assumed to travel at a constant speed, 

the mFSTPS-VDS considers the drone speed as a decision variable, where the drones can 

travel at varying velocities. To solve the problem a three-phase algorithm was developed, 

which were able to obtain the optimal performance by dynamically varying the drone 

velocity. The challenge was to find the best trade-off between the drones maximum traveling 

speed and the maximum travel range relative to the drone endurance, to minimize the 

makespan. The result from the study suggests that the performance of the system is improved, 

in terms of overall delivery time, when utilizing drones where their maximum speed exceeds 

the speed at which the range is maximized. Also, the drones tend to take on a higher number 

of deliveries relative to the truck when the velocity varies, which often results in reduces 

makespan.  

2.2.3 The VRPD 

The Vehicle Routing Problem with Drones, VRPD is an extension of the classical Vehicle 

Routing Problem, VRP that considers drones in the delivery operation. Kitjacharoenchai and 

Lee [3] proposed a variant of the VRPD, with the objective of minimizing the total 

transportation time. The model is based on the FSTSP and their own, previously published 

work of the mTSPD, but unlike these models the VRDP considers capacity constraints of the 

vehicles, both truck and drone, and the order of launching and landing operations. They 

suggested a MIP algorithm to find optimal solutions to the routing problem with small 

instances. The results from the study reported that the usage of drones in the delivery problem 

reduces the transportation time in the last-mile delivery process. 

Wang and Sheu [18] also considered the VRPD but reformulated the problem as a path-based 

model and an arc-based MIP model was proposed with a branch-and-price algorithm. They 

compared their VRPD solution to the VRP general solution and found that an average cost 

saving of 20% was obtained, as well as an average 5 min decrease in waiting time for each 

customer. Their results also supported the perception that the VRP is improved by including 

drones in the delivery process.  
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Lin, et al. [19] considered parcel delivery systems with one truck and multiple drones in 

collaboration. They wanted to create a system that could be suitable for various city road 

networks since they noticed a lack of research in this area. To solve the routing problem in 

their distribution system they propose a mixed-integer programming model based on an urban 

road network. For the solving methodology they presented two algorithms, a hybrid genetic 

algorithm, h-GA, and a hybrid particle swarm optimization algorithm, h-PSO. Testing of the 

algorithms showed promising results and their solving methodology was claimed to 

outperform existing basic solving algorithms. 

 

Similarly, Salama and Srinivas [1] focused on the last mile delivery problem with one truck 

and multiple drones. However, they proposed a system with non-overlapping clustering, 

where the cluster focal point can either be on a customer location, JOCR-R, or anywhere in 

the delivery region, JOCR-U, unlike common literature on the same field. By not restricting 

the clustering focal points to be placed on a customer location, total operational cost and 

delivery completion times could be reduced. They introduced a mathematical programming 

model that jointly optimizes the clustering delivery problem, by using machine learning-based 

heuristic and knowledge-based constraints. Their objective was to find the best trade-off 

solution between reduction in total cost and delivery completion time. They tested their 

method up against known sequential heuristic methods and their model proved to be a better 

solution method in all cases. 

 

Schermer, et al. [20] studied the multi-drone VRPD by formulating it as a MILP. They 

introduced sets of valid inequalities to improve the performance of the general MILP solvers. 

Since this approach is only possible for problems with small instances, they proposed a new 

metaheuristic approach where they included the Drone Assignment and Scheduling Problem, 

DASP, for handling problems with larger instances. By considering an existing routing of 

trucks, the DASP model utilizes two MILP formulations aiming to minimize the makespan by 

searching for optimal assignment and scheduling for a set of drones. Results from the study 

suggested that the makespan could be reduced by applying drones. 

 

Similar to Kitjacharoenchai and Lee (2019), Sacramento, et al. [21] also studied an extension 

of the VRPD. They presented a new mathematical formulation of the VRPD by extending the 

MIP formulation utilized in the FSTPS, considering both several truck and drones, and time 
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and capacity limitations. For the solving methodology for the multi-truck problem, they 

propose a metaheuristic with Adaptive Large Neighborhood Search, ALNS, with the 

objective of minimizing total operational cost. The obtained results suggested that the VRP 

works better when including drones. 

2.3 Environmental Impact 

Elsayed and Mohamed [6] studied how the transitioning to drones in the first- and last-mile 

delivery will affect the environment regarding emission, considering airspace regulations and 

policies. Traditionally, the delivery of parcel is executed by a truck or similar vehicle powered 

by fossil fuels, which is known have a poor impact on the environment due to high CO2 and 

GHG emissions. Electric powered ground delivery vehicles reduce this emission but does not 

reduce the traffic congestion in urban areas. An important factor to consider is that strict aerial 

flight regulations may disrupt the UAVs traveling path, forcing the UAV to reroute the 

delivery path to stay clear of the restricted areas, or even making the customer location 

inaccessible, causing up to 400% increase in CO2e emission compared to lean regulations. 

Results from the study suggested that UAVs in the parcel delivery system would be as much 

as a 1000-fold more CO2 efficient compared to traditional trucks, and around 30% more 

efficient compared to electric ground vehicles.  
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3 Methodology 

3.1 CVRP with Drones 

The capacitated VRPD model presented in this report is based on the classical VRP, which is 

an extension of the classical TSP by Dantzig and Ramser [22]. The mathematical formulation 

proposed in this report is derived based on the information gathered from the literature 

review, and the works presented by Dantzig and Ramser [22], Nanda Kumar and 

Panneerselvam [23], Kulkarni and Bhave [24] and Laporte [25].  

The VRP is an NP-hard problem, hence it is difficult to get an optimal solution within 

reasonable runtime for problems with larger instances when using exact solution methods 

[23]. However, for the application of the VRPD model in this project the instances are kept 

low, under 50 – 100 which is considered to be the size limit for exact VRP solving methods 

[23], so an exact solving method is utilized.  

3.2 Mathematical formulation 

The VRPD is defined on a complete graph G = ( V, E ),  where V represents a set of n 

customers defined as V = { 0, 1, 2,…, n }, with a depot located at V. E is a set of arcs 

connecting each node pair, eij = (i, j). K is a homogeneous fleet of trucks defined in a set K = 

{ 1, 2,…,  k }, where each truck has maximum carrying capacity Qk, and the set KD = { 1, 

2,…, kd } defines a homogenous fleet of drones with maximum carrying capacity Qkd. Both 

the truck and drone fleets are initially located at the depot. Each customer node has a demand, 

qi ≥ 0, that needs to be satisfied by either a truck or a drone, except for the depot node where 

the demand is q0 = 0. Let ck
ij and ckd

ij denote the cost of travel over arc eij for truck and drone, 

respectively. For this model, the cost parameters ck
ij and ckd

ij are represented by the distance 

traveled over arcs for each vehicle, for the trucks the distance is actual driving distance 

between node i and j, whilst for the drone the distance is flight distance in a straight line. Let 

xk
ij and xkd

ij be the principal decision variables for truck and drone respectively, where xk
ij = 1 

if truck k travels along arc eij, and 0 otherwise. Same goes for xkd
ij in the drone set. Based on 

the generalized subtour elimination constraint (GSECs), where r(s) corresponds to the 

minimum number of vehicles required to serve set S, which is subset of V. [26]  
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Objective function: 

(1)     𝑚𝑖𝑛 ∑

𝑘∈𝐾

∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐸

+ ∑

𝑘𝑑∈𝐾𝐷

∑ 𝑐𝑖𝑗
𝑘𝑑𝑥𝑖𝑗

𝑘𝑑

(𝑖,𝑗)∈𝐸

 

Subject to: 

(2)    ∑

𝑘∈𝐾

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉,𝑖≠𝑗

+ ∑

𝑘𝑑∈𝐾𝐷

∑ 𝑥𝑖𝑗
𝑘𝑑

𝑖∈𝑉,𝑖≠𝑗

= 1           , ∀𝑗 ∈ 𝑉 ∖ {0} 

(3) ∑ 𝑥0𝑗
𝑘

𝑗∈𝑉∖{0}

= 1                                                                 , ∀𝑘 ∈ 𝐾 

(4) ∑ 𝑥𝑂𝑗
𝑘𝑑

𝑗∈𝑉∖{0}

= 1                                                                , ∀𝑘𝑑 ∈ 𝐾𝐷 

(5) ∑ 𝑥𝑖0
𝑘

𝑖∈𝑉∖{0}

= 1                                                                  , ∀𝑘 ∈ 𝐾 

(6) ∑ 𝑥𝑖0
𝑘𝑑

𝑖∈𝑉∖{0}

= 1                                                                , ∀𝑘𝑑 ∈ 𝐾𝐷 

(7) ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉,𝑖≠𝑗

+ ∑ 𝑥𝑖𝑗
𝑘𝑑

𝑖∈𝑉,𝑖≠𝑗

− ∑ 𝑥𝑗𝑖
𝑘

𝑖∈𝑉

+ ∑ 𝑥𝑗𝑖
𝑘𝑑

𝑖∈𝑉

= 0     , ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷 

(8)    ∑

𝑖∈𝑉

∑

𝑗∈𝑉∖{0},𝑖≠𝑗

𝑞𝑗𝑥𝑖𝑗
𝑘 ≤ 𝑄𝑘                                 , ∀𝑘 ∈ 𝐾 

(9)    ∑

𝑖∈𝑉

∑

𝑗∈𝑉∖{0},𝑖≠𝑗

𝑞𝑗𝑥𝑖𝑗
𝑘𝑑 ≤ 𝑄𝑘𝑑                              , ∀𝑘𝑑 ∈ 𝐾𝐷 

(10) ∑

𝑘∈𝐾

∑
(𝑖,𝑗)∈𝑆,𝑖≠𝑗

𝑥𝑖𝑗
𝑘 ≤ |𝑆| − 𝑟(𝑠)                          , 𝑆 ⊆ 𝑉 ∖ {0} 

(11) ∑

𝑘𝑑∈𝐾𝐷

∑
(𝑖,𝑗)∈𝑆,𝑖≠𝑗

𝑥𝑖𝑗
𝑘𝑑 ≤ |𝑆| − 𝑟(𝑠)                     , 𝑆 ⊆ 𝑉 ∖ {0} 

(12)   𝑥𝑖𝑗
𝑘 ∈ {0,1}                                                                    , ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑘 ∈ 𝐾 

(13)  𝑥𝑖𝑗
𝑘𝑑 ∈ {0,1}                                                                   , ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑘𝑑 ∈ 𝐾𝐷 
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The mathematical formulation for the proposed VRPD model with the parameters, sets and 

decision variables are defined above, where objective function (1) minimizes the total cost of 

travel for completing the tour for both the trucks and the drones. Constraint set (2) ensures 

that each customer node is visited only once by only one vehicle, either truck or drone. 

Constraint set (3) and (4) guarantees that each vehicle from both the truck and drone fleets 

depart from the depot. Similarly, constraint set (5) and (6) guarantees that each vehicle returns 

to the depot. Constraint set (3), (4), (5) and (6) jointly ensures a complete tour for each 

vehicle. Constraint set (7) restricts that for each customer the same number of vehicles enters 

and leaves the node. Constraint set (8) and (9) limits the delivery capacity of each vehicle to 

be less than or equal to the maximum vehicle capacity for truck and drone, respectively.  

Constraint set (10) and (11) ensures the removal of subtours for both truck and drone routes, 

respectively. Lastly, set (12) and (13) define the binary decision variables for truck and drone 

respectively, which is 1 if arc eij is in the vehicle route, and 0 otherwise.  

3.3 Modeling Phase 

The coding process was executed in Jupyter Notebook, which is an open source 

computational notebook where you can compile different types of data [27]. The code was 

written in Python language and generated through the linear programming modeler PuLP 

[28]. The solver used for this model is the CPLEX solver from IBM ILOG, which uses the 

branch-and-cut exact solving algorithm [29]. An advantage of using the Jupyter web 

application is that it allows you to visualize the model in the same document while working 

on it. Using this technique makes it easier to detect errors in the model right away. MatPlot 

was used to visualize the results in a 2D plotted graph, and functions from Gmaps was used to 

plot results on Google Maps with customer locations, depot location and vehicle routes. The 

work by Kim [30] is used as inspiration when performing the modeling phase in Jupyter 

Notebook.  

3.3.1 Generation of Customer Locations and Distance Matrices 

Jupyter allows you to import different packages and libraries into the notebook that are 

compatible with Python. Numerical Python, or NumPy, is a Python library used for working 

with arrays. For this model, the customer locations and associated demands are generated by 

using the “NumPy. Random” function, and together with Pandas, which is also a Python 

package, data frames are generated with the customer location data, presented with latitudes 

and longitudes, and the demands for each customer. For the depot, the demand is set to 0.    
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The cost for the vehicles is their travel distance which is different for the truck and the drone 

since the drone can fly in a straight line between locations, while the truck is limited to using 

roads. To obtain distance matrices for the vehicles two different approaches is used:  

 

• Drone travel distance 

The distance matrix for the drones is generated by calculating the Euclidean distance 

between the customer nodes in 2D plane. For the case study, described later in the 

report, the distances are calculated using the Haversine formula, which is assumed to 

be more accurate in a real-world scenario since it considers the spherical form of the 

earth. Over small distances the difference between the Euclidean and the Haversine 

distance is presumably negligible, but is considered, nevertheless.  

 

• Truck travel distance 

Google Direction API allows you to retrieve actual driving directions between 

geographical locations that are connected to a road network [31]. This function was 

utilized to generate the distance matrix for the trucks, which was assembled in a data 

frame. 

 

For the following sections of the modelling phase an example problem is solved. This 

problem is only inserted for illustration purposes, and the results are not considered any 

further. The complete code for the model accompanies this report in a separate .ipynb file 

called “Vans-and-Drones System for Last-Mile Delivery Jupyter Notebook”.  
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Figure 1 - Jupyter Notebook Generation of Customer Locations and Demand 

Illustrated above in Figure 1 is the generation of customer locations with latitude and 

longitude coordinates and the demand for each customer. Location 0 is the depot and has 

therefore no demand. The necessary packages, libraries and solvers are imported, the API key 

is inserted in the “API_KEY” slot and the preferred customer count is defined as well as the 

number of drones and their respective carrying capacity. Furthermore, a fixed cost for 

employing the trucks can be inserted, which is optional. The depot latitude and longitude 

coordinates are then defined and works as a basis for the random generation of customer 

locations with, in this case, logistic distribution within a defined range. For this case, the 

depot is located in Narvik city center. The distribution around the depot location is optional as 
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well. For the generation of demands upper and lower bounds are defined and a seed is used 

together with the “numpy. random()” function to get equal results for each run of the kernel. 

From these inputs a data frame with customer location coordinates and demands will be 

produced as output.  

 

Figure 2 - Jupyter Notebook Generation of Distance Matrix Truck 

A distance matrix is generated from the data in the customer coordinate list using the 

“googlemaps.directions()” function as shown in Figure 2. The distance between all pairs of 

customer nodes is retrieved and appended into a defined empty matrix 

“_travel_distance_truck”. The mode of transportation is set to “driving”, hence the distances 

listed represent actual driving distances between the different locations, in this case in meters.   
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Figure 3 - Jupyter Notebook Generation of Distance Matrix Drone 

The drone distance matrix is generated through a similar setup as for the truck distance 

matrix, except that the calculation of the distances is now done by using the haversine formula 

function as shown in Figure 3. Distances between each pair of customer nodes is calculated 

and appended into an empty matrix. The initial expectation is that the distances for the drone 

should be shorter than for the truck since the drone does not have to follow a road network, 

this appears to be true.  

 

3.3.2 Visualization of Generated Customer Locations 

To visualize the customer locations the nodes are plotted in a plane coordinate system by 

utilizing functions from the MatPlot library. Figure 4 illustrates the code for retrieving the 
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graph and appending the customer and depot nodes. For each customer node the required 

demand is included. In the graph the x-axis represents the latitudes, and the y-axis represents 

the longitudes, customizations can be made to this cell to obtain preferred layout for the 

output. 

 

 

Figure 4 – Jupyter Notebook Customer Node Plot 

To make the system even more understandable the same customer nodes are plotted in Google 

Maps by using the “gmaps.figure()” function as shown in Figure 5. Customer nodes are 

represented as red markers that points out their exact location, and the depot is presented as a 

black circle. One aspect to be aware of when creating customer locations randomly is that 

some nodes may be places in a location that the vehicles are unable to access, like for instance 
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in the ocean or on top of a mountain. For the drones, this occurrence will not be an issue, but 

the trucks are dependent on having road access to the customer location in order to serve it. 

This will also impact the distance matrix for the truck resulting in inaccurate distances and 

directions between locations since the driving distance will only be measured up to the point 

of where the road ends closest to the customer location that is currently out of reach. To 

prevent this issue the customer locations should be checked in advance to ensure that they are 

within reach when using randomly generated nodes, this cell is suitable for that purpose.  

 

Figure 5 - Jupyter Notebook Customer Node Google Maps Plot 
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3.3.3 Coding the Mathematical Formulation 

The formulation presented in section 3.2 is coded into the Jupyter Notebook using PuLP, 

which creates a Linear Programming-file, or LP-file, that the solver can read. Figure 6 

illustrates the first part of the code, where the decision variables for both truck and drone is 

defines as well as the objective function. Constraint set 1 in the model corresponds to 

constraint set 2 in the mathematical formulation which ensures that each customer is served 

once by only one vehicle, and constraint set 2 in the model corresponds to constraint set (3), 

(4), (5) and (6) in the mathematical formulation which guarantees that each vehicle departs 

from and returns to the depot.  

 

Figure 6 - Jupyter Notebook Coding the Mathematical Formulation 1 

The remaining code for the mathematical formulation is illustrated in Figure 7, where 

constraint set 3 corresponds to constraint set (7) in the mathematical formulation which 
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restricts the arcs in and out of the customer node to be used only once by one vehicle. 

Constraint set 4 ensures that the truck and drones carrying capacity is not exceeded during 

their route, this corresponds to constraint set (8) and (9) in the mathematical formulation. 

Lastly, constraint set 5 is defined which prevents subtours in the vehicle routes, like constraint 

set (10) and (11) in the mathematical formulation. The mathematical formula is now 

translated into a complete LP-file which for this case is called “VRPDModel”.  Line #76 then 

calls for the CPLEX solver and the problem status is printed, as well as required truck and 

drone count, and the objective value from the solution which is the total distance traveled for 

all vehicles in the system. An additional feature found is the model is the ability to determine 

the number of vehicles required to perform all the deliveries if the carrying capacity for each 

vehicle is large enough, and as long as the objective function is not affected negatively by the 

reduction. If desirable, line #77 and #78 can be used to print the node pairs in the active arcs. 

 

Figure 7 - Jupyter Notebook Coding the Mathematical Formulation 2 
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The presented problem example contains a small amount of customer nodes located closely 

together and a small vehicle count with sufficient combined carrying capacity. The solver was 

then able to find an optimal solution, using branch-and-cut algorithm, with 0% gap between 

best bound and best integer solution within a short period of time as presented in Figure 8. 

The solution required all available vehicles, and the objective value was found with a total 

travel distance of 7095 meters.  

 

Figure 8 - Jupyter Notebook CPLEX Solver 

3.3.4 Illustration of Results 

The results from the solver are presented in a graph from the code shown in Figure 9. Similar 

to the code in Figure 4, this code creates a graph with the customer nodes, depot node and 
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demands. In addition, the active arcs are plotted, in this case the two truck routes are 

illustrated with the blue and red routes, while the drone route is a dotted purple line. All 

customer nodes are visited, and each vehicle starts and ends their route at the depot, without 

having any subtours. The direction of the routes is denoted by arrowheads. This cell is also 

suitable for detecting any obvious errors in the system during the modeling phase if the model 

happens to be incorrect. 

 

Figure 9 - Jupyter Notebook Plotting Results 
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The last part of the model is to illustrate the results in Google Maps, now the vehicle routes 

are included, the code for this is shown in Figure 10. A google maps figure is created and the 

customer and depot locations is plotted. Layers are added to plot the vehicle routes, which are 

illustrated with different colors for each active vehicle. 

 

Figure 10 - Jupyter Notebook Code for Plotting Results in Google Maps 
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Figure 11 shows the results plotted in a map, where the truck routes are represented in blue 

and red, and the drone route is purple. Each route is connected and starts and ends at the 

depot, which is located at the black circle. It is clearly shown that the trucks follow the road 

network and visits all customers on its route. The drone is not restricted to roads and travel in 

a straight line between the depot and the customer location it is serving. As intended the 

model succeeds to find optimal routes based on the given inputs while meeting all the 

requirements subjected by the formulation constraints. 

 

 

Figure 11 – Jupyter Notebook Results plotted in Google Maps 
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4 Verification and Validation Phase 

In this section the proposed VRPD model is tested through a verification and validation 

phase. To verify the VRPD model a small comparison study is executed where the model is 

set up against Google OR-Tools CVRP model, which is assumed to be an accurate 

representation of such a system [32]. The instances used for the study are listed in Table 2. 

Four different settings are tested for both models and compared based on runtime and optimal 

objective values. Google uses its own solver GOLP, while our model uses CPLEX solver. 

The customer locations are randomly chosen as well as the customer demands.  

For the validation phase a small-scale case study is carried out, where the vans-and-drones 

model is compared with a truck-only configuration. The two models share the same base 

layout, so for the CVRP tests the drone parameters are simply ignored. The case study is in 

two parts with different test instances, the set of customer locations are predefined, and the 

objective is to effectively deliver vaccines in Ofoten region. In this part emission is also tested 

as well as total travel cost.  

4.1    Comparison of VRPD model and Google OR-Tools CVRP 

In this section the results from the verification phase are presented, where the proposed 

VRPD model is tested against Google OR-Tools VRPD model. The purpose for this test is to 

compare the computational effectiveness and efficiency of the models, therefore the 

parameters are randomly generated and equal for both systems, and the carrying capacity is 

the same for both truck and drone. Two different customer count configurations are tested, 

first with 8 then with 10 customers. Since the drones are given the same carrying capacity as 

the trucks it is expected that the results from the VRPD model should be equal to the results 

from the CVRP model. As shown in Table 2 each customer count configuration has two test 

instances each. For 8 customers, denoted as “N8”, the first test instance is “K3-Q10 / K3-

Kd1-Qk10-Qkd10”, where “K3-Q10” belong to the CVRP configuration and represents three 

trucks, “K3”, with maximum carrying capacity of 10 units, “Q10”. The second part of the 

instance notation belong to the VRPD configuration where “K3” represents three trucks, 

“Kd1” represents one drone, “Qk10” denotes a truck carrying capacity of 10 units and lastly 

“Qkd10” denotes the drone carrying capacity which is also 10 units. The results show that the 

deviation of objective values between the to models are 0% for all instances, which indicates 

that the VRPD model is able to solve the routing problems accurately, with somewhat longer 
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runtimes but still assumed to be acceptable. It may be that Google OR-Tools uses more 

efficient heuristic methods which lead to a better performance than the exact solution in 

CPLEX. However, this is not investigated further since the runtimes for the VRPD is 

considered acceptable.  

 

 

Instance 

GOLP CPLEX Deviation 

of 

objective 

values 

(%) 

CVRP VRPD 

Objective 

value 

Runtime 

sec 

Objective 

value 

Runtime 

sec 

 

N8 

K3-Qk10 /  

K2-Kd1-Qk10-Qkd10 

4404 1.2 4404 2 0 

K4-Qk8 / 

K3-Kd1-Qk8-Qkd8 

4108 2 4108 7.2 0 

 

N10 

K3-Qk15 / 

K2-Kd1-Qk15-Qkd15 

3880 2 3880 10.1 0 

K4-Qk10 / 

K3-Kd1-Qk10-Qkd10 

4268 0.5 4268 12.5 0 

Table 2 - Comparison Study Google OR-Tools Results 

4.2 Case Study 

This section contains a small-scale case study in two parts carried out as a numerical 

experiment. In the first part the proposed Vans-and-Drones routing model is applied to a real-

world scenario in order to prove the validity of the model. The customer locations are 

predefined, the cost parameter uses actual driving distances for the trucks, obtained through 

Google Directions API with avoidance of ferries in the truck routes, and the drones routes are 

obtained using the haversine function. The results are compared to a truck-only CVRP model.  

In the second part of the case study the purpose is to test the effectiveness of the proposed 

Vans-and-Drones routing model against a truck-only system in a vaccine distribution scenario 

for a sparsely populated delivery area. Delivery by drone would presumable be ideal for 

vaccine distribution, since the vaccine bottles are small in size and several dozes can be fitted 

into one unit of parcel for the drone to carry. This could prevent excessive use of traditional 

diesel trucks in the system and reduce the emission and costs of employment associated with 

this type of transportation in the delivery operation. 

A total of 13 geographical locations are serving as the set of customer nodes used in the case 

study including the depot, as shown in Table 3. The delivery area is located in the northern 

region of Norway, and the customer locations are chosen based on the highest populated areas 
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in Ofoten region [33]. Two additional locations are included which are not located in this 

region but nearby. These are the customer locations number 11 and 12 and are added in order 

to analyze how a wider spread of the customer nodes in the network would affect the results, 

and they are only considered in part two of the case study. Each location is denoted with 

latitude and longitude coordinates and Narvik serves as the depot for all test instances and is 

marked as location number 0.  

Number Location Latitude Longitude 

0 Narvik (D) 68.438575 17.42726 

1 Kjøpsvik 68.09695 16.37415 

2 Liland 68.48083 16.8861 

3 Lødingen 68.41415 15.99439 

4 Håkvik 68.40514 17.3085 

5 Bjerkvik 68.54929 17.5575 

6 Beisfjord 68.37617 17.59601 

7 Ballangen 68.34293 16.83141 

8 Bogen 68.52244 17.00573 

9 Kjeldebotn 68.40556 16.66178 

10 Fjelldal 68.55605 16.52621 

11 Abisko 68.34954  18.83124 

12 Setermoen 68.86100  18.34857 

Table 3 - Customer Locations 

For this case study the features for the drones, related to travel speed and range, are based on 

the drone “Robin XL” manufactured by a Canadian company called Drone Delivery Canada 

[34]. Hence, the drone travel speed is set to 105 km/h and the range is 60 km for all drones in 

the delivery system. The longest travel distance from the depot that the drone will experience 

in this case study is approximately 60 km one way, so for the drone to be able to return to the 

depot after delivering the parcel is it assumed that there is recharging facilities for the drone at 

the farthest located customer nodes. For the trucks, the case study considers diesel vans where 

the range is assumed to be unlimited, since it is assumed that there are available gas stations 

along the roads. The truck travel speed is set to 80 km/h since this is the general speed limit in 

Norway outside densely populated areas [35].  
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The emission parameters considered in the case study is 0.079 kg CO2-eq for each km 

traveled by a drone, based on the results obtained in the works by Koiwanit [5] and Goodchild 

and Toy [36]. The emission level for the truck is based on data from Statistics Norway, where 

the average emission level for a van is set to 0.1754 kg CO2-eq per km traveled [37].  

4.2.1 Case Study Part 1 – Validation  

In the first part of the case study the proposed VRPD model is applied to a real-world 

scenario with the purpose of delivering vaccines to different locations in Ofoten region. The 

VRPD model is tested with 8 and 10 customers, each with three similar instances. For each 

instance, a CVRP and a VRPD configuration is listed, where the total vehicle counts are the 

same but for the VRPD one truck is replaced with a drone. For the drones, the carrying 

capacity is set to one unit, and for the trucks the capacity varies in order to meet the total 

demand of the system while trying to assign roughly the same number of customers to each 

truck. Table 4 presents the results from the numerical experiment, where we can see that that 

the Vans-and-Drones delivery system manages to outperform the CRPV for all instances. The 

average improvement is found to be 7.22% by replacing one truck with a drone.  

 

 

A sensitivity analysis is also carried out to see how changes in the vehicle carrying capacity 

would affect the objective values when the vehicle count remained unchanged. The results 

from this analysis are listed in Table 5, and they show that when the carrying capacity for 

each truck gets higher and customer demand remains the same, the objective value for the 

CVRP system decreases, whilst for the VRPD system it remains the same. The increased 

 

 

Instance 

CPLEX Improvement 

of objective 

value 

(%) 

CVRP VRPD 

Objective 

value 

Runtime 

sec 

Objective 

value 

Runtime 

sec 

 

 

 

N8 

K3-Qk15 / 

K2-Kd1-Qk20-Qkd1 

509758 0.44 475501 0.30 6.72 

K4-Qk10 /  

K3-Kd1-Qk12-Qkd1 

579851 0.52 527928 0.41 8.95 

K5-Qk8 /  

K4-Kd1Qk12-Qd1 

618729 2 584472 1.9 5.54 

 

 

 

N10 

K3-Qk20 /  

K2-Kd1-Qk20-Qkd1 

549751 32 531484 2.5 3.32 

K4-Qk15 /  

K3-Kd1-Qk20-Qkd1 

619844 58 570362 28 7.98 

K5-Qk15 /  

K4-Kd1-Qk10-Qkd1 

731579 106 652738 19 10.78 

 Average     7.22 

Table 4 – Comparison Results Vans-and-Drones and Truck-Only Systems 
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vehicle carrying capacity would allow the trucks to serve more customer in its route, resulting 

in a reduced total distance traveled for the whole system. The customer location layout for 

case study part 1 is the same as for part 2, see Figure 12, and it can be observed that there are 

clearly two main legs out from the depot location where the customer locations and demands 

are somewhat evenly distributed. The test instances for the CVRP hold three trucks and with 

two main legs protruding from the depot would excessive use of the third vehicle be 

somewhat redundant, and actually adding cost to the system. While for the vans-and-drones 

system the two trucks hold in the test instance are already doing this job, and an increase of 

the carrying capacity for the truck would not change the objective value, unless the carrying 

capacity is increased to such an extent that one truck could serve the system alone.  

 

 

Instance 

CPLEX Improvement 

of objective 

value 

(%) 

CVRP VRPD 

Objective 

value 

Runtime 

sec 

Objective 

value 

Runtime 

sec 

 

 

 

N10 

K3-Q17 /  
K2-Kd1-Qk25-Qkd1 

670879 284 531484 1.15 20.78 

K3-Q20 /  

K2-Kd1-Qk30-Qkd1 

549751 32 531484 0.86 3.32 

K3-Qk24 /  
K2-Kd1-Qk45-Qkd1 

517961 2 531484 1.53 (-2.61) 

Table 5 - Sensitivity Analysis Results 

4.2.2 Case Study Part 2  

In this section the model is tested even further by increasing the number of drones in the 

VRPD system in three different settings. For the case study the distances requested for the 

trucks from Google Direction is set to avoid ferries in the driving route. In setting 1 and 2 the 

customer locations are the same, as shown in Figure 12, and are equal to the customer 

location layout used in part 1 of the case study. While in setting 3, customer locations 

“Beisfjord” and “Håkvik” are replaced with “Abisko” and “Setermoen”, as shown in Figure 

13. For all instances, each drone is limited to serve only one customer. 
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Figure 12 - Customer Locations for Setting 1 and 2 

 

Figure 13 - Customer Locations for Setting 3 

In setting 1 the CVRP system with 2 trucks gave an optimal objective value of 510873 m, see 

Table 6, which is an improvement compared to the test results in Table 4 where the objective 

value for test instance K3-Qk20 with 3 trucks was 549751 m. The method in setting 1 is to let 

drones serve the customer nodes that are furthest from the depot, which is done continuously 

through test instances (2), (3), (4) and (5), to see how this would affect the objective value 

compared to the CVRP system. The results show that neither of the test instances for VRPD 

in setting 1 improved the objective value compared to the truck-only system. 

As mentioned earlier, the layout of the customer node locations in Figure 12 clearly shows 

two main legs protruding from the depot, with customer nodes located along each one. This 

could be favorable for trucks since it prevents too many detours from the main truck route and 

may be the reason why assigning drones to serve the further nodes fail to improve the 

objective value. In test instance (6) one whole leg of customer nodes is assigned to drones 

instead of only the furthest nodes. As shown in Table 6 the result from this test instance also 

shows an increase in the objective value compared to instance (1).  

Since setting 1 and 2 both failed to improve the objective value, a third setting is created 

where the customer locations are scattered more evenly around the depot, as shown in Figure 

13. The objective value for the CVRP in this layout is 766531m, see instance (7) in Table 6, 

and instance (8) and (9) gets tested against this value. Introducing drones in this layout results 
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in an improvement of the objective value of 1,32% and 4,71% for one and two included 

drones, respectively. The reason for this is probably that serving the two new customer nodes 

would be a considerable detour for the trucks since the system now has four main legs and 

only 2 trucks. Another aspect to consider is that the road networks connecting the customer 

nodes in this layout are somewhat geographically straight to begin with, and since the only 

cost parameter considered in the VRPD model is travel distance, will switching to drones may 

not have a significant effect on the these results. However, for setting 3 the objective value is 

indeed improved when employing drones.  

 

 

 

 

 

 

 

 

The results of the total travel distances for the tested instances are converted into total travel 

time to see the changes in travel time consumption for both systems. The average speed for 

the trucks is set to 80 km/h, and the average drone travel speed is set to 105 km/h. The total 

travel times for the instances are listed in Table 7, and the results show a decrease in travel 

time for all instances of the VRPD model compared to the CVRP model. Hence, even though 

the total travel distances in the VRPD system for setting 1 and 2 in Table 6 is not improved 

compared to the CVRP system, the total delivery time is improved. On average the delivery 

time is reduced by 6.77% when employing the vans-and-drones system. These results will 

have an impact on the vaccine delivery operation and making it more efficient by providing 

overall faster deliveries.   

 

 

 

Instance 

CPLEX Improvement 

from CVRP 

Objective 

Value(%) 

CVRP VRPD 

Objective 

value 

Objective value 

 

 

Setting 

1 

(1) K2 CVRP 510873   

(2) K2-Kd1  531484 Neg 

(3) K2-Kd2  520367 Neg 

(4) K2-Kd3  555093 Neg 

(5) K2-Kd4  577229 Neg 

Setting 

2 

     (K2) (510873)   

(6) K1-Kd5   537702 Neg 

Setting 

3 

(7) K2 CVRP 766531   

(8) K2-Kd1  756410 1.32 

(9) K2-Kd2  730455 4.71 

Table 6 – Results from Case Study Part 2 
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The cost savings related to employment of truck drivers is analyzed based on an average 

monthly salary of 39 130 NOK [38]. The hourly pay would then be approximately 260 NOK 

per hour assuming there is 37.5 working hours per week. The total cost for employing the 

trucks in each test instance is listed in Table 8. The results show an average reduction of 39.4 

% for the truck employment costs when drones are also included in the delivery system. 

  

In addition to the total distance traveled and total travel time the emission impact is analyzed. 

For the trucks, the average emission level is set to 0.1754 kg CO2-eq per km traveled, and for 

the drone it is set to 0.079 kg CO2-eq per km traveled. These are the parameters used for the 

calculation of the emission for both systems. As shown in Table 9 the emission levels are 

improved for all the VRPD instances compared to the truck-only system, with an average 

reduction in Co2 emission of 19.23%. These results are similar to the results obtained in 

Stolaroff, et al. [39] where they found an average reduction of around 20-30%.  

Instance Drone Distance 

Traveled (km) 

Truck Distance 

Traveled (km) 

Total delivery 

time (hours) 

Decrease in Total 

Delivery time (%) 

(1) CVRP  510.873 6.4  

(2) 115.288 416.196 6.3 1.56 

(3) 232.58 287.787 5.8 9.38 

(4) 310.536 244.557 6 6.25 

(5) 373.57 203.659 6.1 4.69 

(6) 263.376 274.326 5.9 7.81 

(7) CVRP  766.531 9.6  

(8) 116.66 639.75 9.1 5.21 

(9) 236.612 493.843 8.4 12.5 

Average   6.77 

Table 7 - Travel Time Analysis 

Instance Truck Distance 

Traveled (km) 

Total truck 

delivery time 

(hours) 

Total truck 

employment cost 

(NOK) 

Reduction in truck 

employment cost 

(%) 

(1) CVRP 510.873 6.4 1664  

(2) 416.196 5.2 1352 18.75 

(3) 287.787 3.6 936 43.75 

(4) 244.557 3.1 806 51.56 

(5) 203.659 2.5 620 62.74 

(6) 274.326 3.4 884 46.88 

(7) CVRP 766.531 9.6 2496  

(8) 639.75 8 2080 16.67 

(9) 493.843 6.2 1612 35.42 

Average   39.4 

Table 8 - Truck Employment Cost Analysis 
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Instance Drone Distance 

Traveled (km) 

Truck Distance 

Traveled (km) 

Total Co2 

emission  

(kg CO2-eq) 

Decrease in Co2 

emission compared 

to CRVP (%) 

(1) CVRP  510.873 89.61  

(2) 115.288 416.196 82.11 5.02 

(3) 232.58 287.787 68.85 23.17 

(4) 310.536 244.557 67.43 24.75 

(5) 373.57 203.659 65.23 27.2 

(6) 263.376 274.326 68.92 23.09 

(7) CVRP  766.531 134.45  

(8) 116.66 639.75 121.43 9.69 

(9) 236.612 493.843 105.31 21.67 

Average   19.23 

Table 9 - Emission Analysis 

The test instances (2), (3), (4) and (5) for setting 1 are illustrated in Figure 14, Figure 15, Figure 

16 and Figure 17, and for setting 2 test instance (6) is illustrated in Figure 18.  
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Figure 14 - Test Instance (2) 

 

Figure 15 - Test Instance (3) 

 

Figure 16 - Test Instance (4) 

 

Figure 17 - Test Instance (5) 

 

Figure 18 - Test Instance (6) 

For setting 1 the two truck routes are plotted in red and blue, while the colors for the drone 

routes varies. In setting 2 only one truck is employed, which is plotted in red. Each customer 

location is represented with a red marker and the depot location is plotted with a black circle.  

 



D
ev

el
o
p
in

g
 a

 V
an

s-
an

d
-D

ro
n
es

 S
y
st

em
 f

o
r 

L
as

t-
M

il
e 

D
el

iv
er

y
 

 

Page 37 of 44 

 

Figure 19 - Test Instance (8) 

 

Figure 20 - Test Instance (9) 

 

For Figure 13 and Figure 20 the route and marker for customer node “Kjeldebotn” is partially 

missing or not present, this is due to an issue with the Google Maps API request quota during 

the plotting causing this layer to be left out. However, the route is included in the calculation 

of the objective value and is therefore only a shortcoming in the map illustration.  
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5 Discussion  

The proposed VRPD model derived in Jupyter Notebook works well for its intended use in a 

Vans-and-Drones System for Last-Mile Delivery. The model successfully went through a 

verification and validation phase where no major functionality issues were discovered, and it 

successfully managed to represent the delivery system for the tested instances. However, the 

test instances described in this report are small with a low number of customer locations, this 

was done in order to get the optimal solution using exact solving methods. It would therefore 

be favorable to test the model further with larger test instances using heuristic solving 

methods and add a grater number of customer locations and employ more vehicles.   

 

The purpose of the case study was to examine the effectiveness related to delivery time and 

cost of a delivery system with integrated drones compared to a truck-only system in the 

scenario of vaccine distribution in a sparsely populated area with a small amount of 

customers. The analyzed factors are travel distance, travel time, delivery cost of the system 

and lastly emission impact, where the most current results are the three latter. The results 

indicated that there would be an overall saving of almost 40% of total employment cost when 

including drones into the system. In addition, the vans-and-drones system would improve the 

effectiveness of the delivery time to the customer by almost 7%. If the customer network was 

located in a more urban environment with more traffic this number would presumably get 

even higher, since the drones are not dependent one road networks and therefore not affected 

by traffic. From the literature review it is learned that the main disadvantages with drone 

delivery is the drones limited carrying capacity and range related to battery consumption. 

Since the vaccines that gets delivered are small in size and weight, the drone would 

presumably be able to deliver several vaccine doses in one parcel unit. Hence, the utilization 

of drones seems suitable for this purpose and together with this the results obtained in the 

case study also indicates substantial savings in both employment cost and time-consumption. 

The last important factor to consider is the emission level, and the results indicate an average 

reduction in CO2-emission for the whole system of almost 20% when including drones. A 

reduction in emission was obtained for all instances of the VRPD system, which also 

strengthens the perception that adding drones would be favorable for the delivery process.  

 

Another observation obtained from the case study is that the task allocation for the drones in 

the delivery system could have an impact on the total distance traveled for all vehicles when 
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considering the customer network configuration. For some of the test instances the total travel 

distance would actually increase when including drones, this occurred when the drones was 

allocated the customer nodes furthest from the depot. For these cases, the customer nodes 

were placed along two main routes out from the depot, and with two trucks and one drone it 

resulted in an increased total traveling distance when allocating the further customer nodes to 

the drone. These results could indicate that it is favorable to make the task allocation in a way 

so that each vehicle travels in different directions from the depot, or letting the drones serve 

the customers located close to the depot that would in other ways be a considerable detour for 

the truck. However, despite the increase in travel distance the cost and time-consumption 

were improved for these instances as well. This was a small-scale case study, so the task 

allocations were not tested to grate extents, and it would be advantageous to study this further 

in future work.   

 

In the case of vaccine distribution during a pandemic, which is the current situation, another 

advantage with employing drones in the delivery operation is that drones perform contactless 

deliveries with no human-to-human interaction that can lead to further spreading of the virus. 

Deliveries performed by trucks would require a worker to hand over the parcel, which would 

increase the risk of transmitting the virus to the customer. In addition, drones could provide 

faster deliveries to rural areas with poor road infrastructures since they are not dependent on 

road networks unlike the trucks. Both of these factors would be interesting to study in future 

work.  
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6 Conclusion  

The main contributions of this project are; 

•  The development of a Vans-and-Drones System for Last-Mile Delivery based on the 

traditional CVRP. 

• Coding, and verification and validation of the model using Jupyter Notebook with 

Python programming language and CPLEX solver. 

• Most importantly, to provide insight into the advantages of using drones in last-mile 

delivery of vaccines in a sparsely populated area in Ofoten compared to truck-only 

delivery systems, considering delivery cost, time-consumption and emission impact. 

 

Based on the results from the verification and validation phase, it can be concluded that the 

proposed VRPD model represents a vans-and-drones system for last-mile delivery in a 

satisfactory manner. The model manages to produce reasonable results for task allocation and 

route scheduling for the routing problem with the given parameters. 

 

The results derived in the case study shows that integrating drones into the last-mile delivery 

system for vaccine distribution in a sparsely populated area, like Ofoten region, could 

improve the effectiveness of the delivery system considering total delivery time and 

employment cost compared to truck-only delivery systems. The pollution level from the 

delivery operations would also be affected positively when employing drones, resulting in an 

overall reduction in CO2-emission for the whole system.  
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7 Future Work 

It would be advantageous to perform a more detailed study on how the task allocation for the 

drones is affected by the customer network configuration. Preferably a larger study with 

several different customer location layouts and larger test instances. Similarly, it would be 

preferable to test the proposed VRPD model even further by including a higher number of 

customers and employing more vehicles in the system. Two other factors that would be 

interesting to study further are the drones advantages of contactless delivery, and how this 

advantage would impact the situation concerning spreading of the ongoing virus, and how the 

drone could contribute to more effective delivery of vaccines to rural areas with poor 

infrastructure.  

Other factors should also be considered in the model development phase, weather condition 

could impact the accessibility of the drones. In arctic areas, like the test area in the case study, 

the vehicles would be exposed to cold weather with icing and snow during wintertime, and it 

should be investigated how these conditions would impact the drones performance in the 

delivery operation. In addition the drone range should be added as a capacity constraint to 

assure that the drone manages to serve the customer and return to the depot before its battery 

capacity is exceeded.   
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