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Abstract  

We consider resource allocation between two players through contest or Nash bargaining, 

assuming that player 2’s contest effort or resource use exerts an externality on player 1. A 

sequential move contest where the effectively lowest valuation player (the underdog) moves 

first maximises individual and thus also sum of payoffs. The interests of regulator and players 

are thus aligned. In Nash bargaining between the players, a threat point of no allocation 

produces the highest sum of payoffs. Then the externality source fully gets the cost (benefit) 

of a negative (positive) externality. If contest outcomes are used as bargaining threat points, 

the highest sum of payoffs is for the favourite-moves-first contest. That contest, however, 

gives lower sum of payoffs as a contest, and is thus not immediately credible as threat point. 

If the regulator can commit to play the contest the players jointly recommend, or have as 

threat point to bargaining the contest the players jointly promote, sum of payoffs from 

contests and from Nash bargaining can be maximised, even if the regulator does not have full 

information about valuation and externality. It requires that the players have sufficient 

information to know who is favourite and who is underdog.  

 

JELCodes: D7, Q2, R52. Key Words: contest, asymmetric externality, resource 

management, bargaining, conflicts, sharing 
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Introduction 

Competition over access to natural resources takes many forms. Sometimes it is a matter of 

writing applications and having a dialogue with a regulator, alone or as part of a planning 

process. Lobbying for resource access is also common, inside or outside of a structured 

planning process, as is bribing officials. Sometimes the regulator is looking for spin-offs of 

resource use, like job creation and rural development, and will grant resource access to those 

that best render this probable (sometimes coined “a beauty contest”). In economics all the 

competition types above can be classified as contests.  

 

Epstein and Nitzan (2006) argue that contest-models can be used to study lobbying in a large 

variety of democratic political environments; contest models can capture the basic 

relationship between government objectives, public policy, and the characteristics of the 

interest groups that try to influence that policy. A contest is when actors invest 

resources/effort in order to influence their chances of winning a prize, or a share of a prize, 

and the invested resources are sunk (Konrad 2006). The prize would here be access to a 

natural resource. Contests have been studied extensively, under many different 

assumptions/settings.2 Externalities of effort have, however, not been explicitly included in 

many contest models (see more in section 2). 

 

                                                

2 Contests have at least been used to study war, sports, R&D contests/patent races, firm-internal labour markets, 

litigation, education filters, marketing, “beauty contests”/lobbying/rent-seeking, political campaigning and 

committee bribing. Surveys and collections of seminal papers for contests: (Buchanan et al. 1980; Nitzan 1994; 

Lockard & Tullock 2001; Konrad 2006; Congleton et al. 2007; Garfinkel & Skaperdas 2007). Several other 

papers have dealt with rent-seeking in natural resource allocations (i.a. Boyce 1998; Edwards 2001; i.a. Bergland 

et al. 2002) 
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In this paper we first consider natural resource contests when an asymmetric external effect 

may be present. Our study is motivated by coastal zone planning processes. Agents may 

compete for exclusive access to a location or some other coastal resource, but in many cases it 

is for a share of a resource. Own access to and use of coastal resources is always valuable for 

a user, while others’ use may entail external effects (negative or positive). The stock-

externality in fisheries affecting harvesting costs is an example (Clark 1992). It is a symmetric 

externality, at least when fishing vessels are identical. In other cases there will be asymmetric 

externalities, e.g. may owners of holiday homes or tourism resorts experience negative effects 

if industrial activities take place nearby (fish farming, processing, manufacturing, shipping 

(Anonymous 2002)), fisheries may be affected by aquaculture (Mikkelsen 2006), and there 

may be conflicts between wind power farms and fishing (Kannen 2005). 

 

External effects on players’ payoffs could emanate directly from the effort other players spend 

in the contest, by affecting the costs or effect of contest effort. Alternatively, an actor’s 

resource access may lead to a stream of profits, the size of which depends on other actors’ 

access. This can either be due to changed physical productivity or production costs, or a 

change in the price received for the product.  

 

Our basic model is a one-shot game with simultaneous or sequential moves, and only 2 

players. Order of play can be thought of as an instrument a regulator can use to maximise 

benefits to society. We investigate how the players’ optimal effort depends on the sign and 

size of an asymmetric externality, as well as the set-up of the contest. This in turn affects 

payoffs to individual players and society at large. We believe that despite the model’s 

simplicity it can be relevant for policymakers in many different settings, including coastal 
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zone management, where stakeholders compete for resource shares and there may be external 

effects of resource use. 

 

Although the contest model will be relevant for many battles over coastal resources, in coastal 

zone planning stakeholders often are in a dialogue and try to make arrangements for 

coexistence. We therefore find it reasonable to compare the contest outcomes with Nash 

bargaining over resource shares. Also, regulators may encourage bargaining to avoid wasteful 

rent-seeking, and since stakeholders are often better informed about costs, benefits and 

externalities than the regulator. We consider the contest outcomes or no allocation at all as 

threat points, the possible outcomes if bargaining does not lead to agreement. 

 

The paper is organised as follows. In section two, we survey the literature on contests and 

relate our work to this, before we present our three model-variants in the third section. The 

models’ results are compared to each other and discussed in the fourth section, Nash 

bargaining is in section five, and in section six we discuss and sum up. 

Contests 

Let xi be some amount of resources (time, money, effort) irretrievably expended by agent i 

(i=1,2..n) to influence the probability of winning a prize A. More formally, the agents have 

payoff functions: 

 1 2p (x , x ,...x ) ( )i i n iA c xπ = −   for i=1…n (1) 

Here c(xi) is the agent’s cost of expending effort xi, in the same terms as the prize A. The 

probability function pi(x1, x2,…,xn), often denoted the “contest success function” (CSF), is for 

agent i usually increasing in own effort xi, but falling in other agents’ effort. The most popular 

form of CSF is usually attributed to Tullock (1980): 
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The parameter r is the elasticity of the odds of winning (pi(·)/(1–pi(·))). The CSF can be 

interpreted as the probability with which a contestant wins the whole prize (in an “imperfectly 

discriminating contest”), or as the share of the prize a contestant receives. 

 

The Tullock CSF is widely used in contests, and there seems to be two main ways to justify 

this. Based on reasonable axioms on how conflict resolution should depend on contestants’ 

efforts, the Tullock CSF appear as the only possible CSF (Skaperdas 1996; Kooreman & 

Schoonbeek 1997; Clark & Riis 1998). This is coined “axiomatic reasoning” (Konrad 2006). 

It is also possible to justify the Tullock CSF from a microeconomics basis. From assumptions 

on the utility function of the contest administrator, and the effort the contestants spend in a 

probabilistic search for a good proposal that will win them the prize, a Tullock contest 

structure emerges (Hirshleifer & Riley 1992; Fullerton & McAfee 1999; Baye & Hoppe 2003; 

Epstein & Nitzan 2006). These papers even make a strong case for the Tullock CSF with r=1. 

This is despite that the Tullock-type CSF, particularly with r=1, strongly resembles a lottery, 

where xi is the number of lottery tickets acquired by agent i, and ∑xj is the total number of 

tickets in the lottery.3,4
  

 

Major issues in the contest literature are optimal choices of effort for the agents, and the 

amount of rent dissipation in equilibrium (how large part of the prize A is spent as contest 

                                                

3 Of course, some agents in real life sometimes feel that resource allocation outcomes from planning processes 

are like a lottery, but this is beside the point. 

4 Another way of looking at lobbying is that contestants spend effort in a probabilistic search 

for information that increase their chances of winning the prize (e.g. Lagerlöf 1997; 2006).  
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effort by the agents). If the size of the prize depends on effort in the contest, sum net payoff is 

the reasonable measure of the efficiency of different contests setups and outcomes, rather than 

rent dissipation. 

 

When an agent unilaterally increases his effort in a contest, everybody else’s probability of 

winning goes down, as does the expected return on their effort. There are thus mutual 

negative externalities between the contestants. These externalities can even be  seen as the 

constituting element of contests (Konrad 2006). However, some authors have also considered 

other type of externalities in contests. Linster (1993) considers externalities in Tullock 

contests generally. Long and Vousden (1987) considered rent-seeking contests where the sum 

total of effort affects the prize in a probabilistic way (the probability that the prize is larger 

than a given size, but yet below a maximum size, increases with sum effort). Chung (1996) 

models a game where the size of the prize itself increases with aggregate effort, based on the 

Tullock CSF.  Baye and Hoppe (2003) show that patent race models under certain conditions 

can be viewed as Tullock contest with a positive externality of effort on the size of the prize. 

 

Shaffer (2006) presents two two-player contest models, aiming to include symmetric 

externalities of effort on prize, also using the Tullock CSF. In Shaffer’s linear externality 

model, what she sees as an externality coefficient of contest effort on the prize may as well be 

interpreted as affecting the unit cost of rent-seeking effort directly, and being independent of 

the players’ effort.  

 

Shaffer states in the “linear externalities” model that the players’ efforts generate net payoffs 

of the form: 
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for players 1 and 2, respectively. Player 1 invests an amount x in rent-seeking, and player 2 

invests y, the basic prize is A, and γ is the coefficient of destruction (if γ>0) or enhancement 

(if γ<0) of the prize by rent-seeking effort x and y (to follow Shaffer’s description). 

 

Shaffer finds that in the non-cooperative Nash-equilibrium, efforts are 

 * *

4(1

A
x y

γ
= =

+ Α)
   (4) 

We can transform the payoff-functions in (3): 

 xA
yx

Ax
)1(1 γπ +−

+
= ;  yA

yx

Ay
)1(2 γπ +−

+
=    (5) 

This means Shaffer’s model can be interpreted as the standard model of Tullock (1980), with 

a unit cost of rent-seeking effort of c=(1+γA).5 

 

From the Nash equilibrium rent-seeking efforts in (4), Shaffer deduces that “If the prize is 

large and the contest is strongly productive, we might observe 1/ Aγ < − , in which case 

0/ >∂∂ γx  and 0/ >∂∂ γy “. Clearly, if 1/ Aγ < − , the Nash equilibrium efforts would be 

negative. Although Shaffer has not explicitly assumed that efforts are non-negative, it is a 

common assumption in contest models. The problem with assuming 1/ Aγ < − , however, 

goes deeper. When 1/ Aγ < − , it is clear from (3) that payoffs increase indefinitely with each 

                                                

5 We also see that the equilibrium efforts in (4) follows readily from the standard model’s solution (x*=A/(4c)) 

(see e.g. (Hillman & Riley 1989)). 
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player’s own rent-seeking effort. Rent-seeking effort should thus approach infinity to 

maximise payoffs, and a Nash equilibrium would be impossible.  

 

Trying to model externalities of effort in 2-player Tullock models  with linear costs one ends 

up with a variant of the standard model with either altered costs of effort (like in Shaffer 

2006), or with altered (valuation of the) prize. Note that for Tullock models with linear cost 

functions a change in unit cost is structurally equivalent6 to a change in the prize, and vice 

versa. The model we will present below, with asymmetric externalities, gives asymmetric 

change in valuation or cost of effort.7 

Contests with asymmetric externalities 

In our two-player model player 1 has effort x (≥0), player 2 effort y (≥0), and x+y>0. They 

compete for shares of the prize A (A>0). There is a direct linear externality from player 2’s 

share of the prize to player 1’s net payoffs, with marginal effect of γ  (γ < 0 (γ > 0) is a 

negative (positive) externality).8 Player 2 is not a victim of any external effects. Net payoffs 

for player 1 and 2 are:9 

                                                

6 Meaning that the optimisation problem is the same, but that the scaling or denomination of payoffs may differ. 

7 Several papers on contests have considered asymmetric valuation or costs of effort (i.a. Hillman & Riley 1989; 

i.a. Baik 1994; Nti 1999; Baik 2004; Ryvkin 2007), but not with an externality of effort as the origin of the 

asymmetry. 

8 Note that in our model the interpretation of the sign of γ is opposite to that of Shaffer (2006). 

9 Define for completeness that if x = y = 0, π1 = (A+γ)/2 and π2 = A/2, i.e. that both receive one half of the 

resource in this case.  
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For our externality-interpretation of the model to make sense, we assume throughout that the 

prize is divisible. The only way that player 1 can reduce a negative external effect is to 

increase own effort relative to player 2’s effort, reducing player 2’s share of the prize. We 

look at outcomes in three different games where the players have payoff functions as in (6). 

The first is a simultaneous move game (S0), the second a sequential game where player 1, the 

victim of the externality, moves first (S1), and the third a sequential game where player 2 

moves first (S2). 

 

Note that in the two-player symmetric simultaneous move contest without externalities, the 

players’ equilibrium efforts and payoffs are all A/4 (Hillman & Riley 1989). This is a 

benchmark case for our analysis. 

Simultaneous move contest (S0) 

The first-order conditions for profit-maximisation with respect to own effort are, for player 1 

and 2 respectively: 

 1
2

( )
1 0

( )

d A y

dx x y

π γ−
= − =

+
, 2

2
1 0

( )

d Ax

dy x y

π
= − =

+
 (7) 

The second order conditions for payoff maximisation in an interior solution are both fulfilled 

for A–γ ≥ 0. Reaction functions for player 1 and 2 are: 

 ( )Rx A y yγ= − − , R
y Ax x= −  (8) 

They are valid for 0<y≤A–γ and 0<x≤A. Note that only player 1’s reaction function depends 

on γ, the externality coefficient. The figure below shows plots of the reaction functions for 

different values of γ.  
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Figure 2- Reaction functions. Numbers labelling curves give value of γγγγ        for player 1’s 

different reaction curves.
10
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Player 1 responds to increases in player 2’s effort by increasing own effort, as long as y<(A–

γ)/4, else increased y is responded to by reducing x. We see that the lower γ is, the more effort 

should player 1 invest for a given y, getting a larger share of the prize, and thus either 

reducing a negative external effect or compensating for a reduced positive externality.  

 

The intersections of the reaction functions give efforts in the Nash-equilibrium of the 

simultaneous move game, depending on γ, with efforts for player 1 and 2 equal to: 

                                                

10 All figures are examples using A=1. 
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When the second order conditions are fulfilled x* and y* are always positive. For negative 

externalities (γ<0), player 1’s equilibrium effort will be larger than A/4, the benchmark from 

the symmetric case without externalities. For a positive externality, the opposite is true. For 

player 2 equilibrium effort is lower than A/4 when an externality present (γ ≠0). With a strong 

positive externality (γ goes towards A), both players’ effort goes towards zero.  

 

Due to the asymmetric externality, around the Nash equilibrium, the players’ optimal 

responses to effort increases by the other player are also asymmetric. For a positive 

externality, if player 1 should get more aggressive (increase his effort x), player 2 would 

respond by increasing his effort too, but if player 2 gets more aggressive, player 1 responds by 

reducing his effort. The opposite is the case if γ <0. The response is given by the slope of the 

reaction functions, which again is given by the cross partial derivatives of the profit functions 

for each player:  

 
2

1
3

( )( )
( )

x y A

x y x y

π γ∂ − −
=

∂ ∂ +
;       

2
2

3

( )
( )
y x A

y x x y

π∂ −
=

∂ ∂ +
. (10) 

These change sign depending on whether x is larger or smaller than y, and they will always 

have opposite sign, unless x=y. When an increase in player 1’s effort gives player 2 a larger 

marginal profit of own effort, an increase in player 2’s effort gives player 1 a smaller marginal 

profit of his own profit, and vice versa. 

 

The effects that the externality has on efforts are: 
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In equilibrium, player 1’s effort always decreases with γ. If a positive externality gets 

stronger, player 1 lets player 2 get a larger share of the prize, since the reduced share of the 

prize is compensated by the increase in the positive external effect and the reduction in own 

effort. Similar, but opposite, reasoning applies if a negative externality is reduced. 

 

For player 2, if a negative externality is reduced, he increases his effort in equilibrium, but if a 

positive externality is increased, he decreases effort. Player 2’s response is of course a 

response to the change in player 1’s effort due to the change in γ, rather than an own response 

to the change in γ. As player 1’s reaction curve in Figure 2 shifts due to changes in γ, we see 

how the optimal effort for player 2 changes too.  When there is a reduction in a negative 

externality, and a corresponding reduction in player 1’s effort, the marginal cost of effort for 

player 2 is lower than the marginal value of the extra share of the prize that that extra effort 

gives. For a positive externality the situation is opposite.   

 

Larger γ always leads to a smaller share of the prize for player 1 and increased share for 

player 2 in equilibrium. When both players reduce their efforts in response to increased γ, 

player 2’s reduction is always smaller than player 1’s reduction. 

 

Sum effort in equilibrium is  
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which decreases monotonically in γ, and is zero when we have a positive externality of same 

magnitude as the prize. Clearly, for a negative externality sum efforts are higher than the A/2 

benchmark for no externality, and vice versa for a positive externality. 

 

Profits in equilibrium are, for player 1 and 2 respectively 

 
2 2

* 0
1 2
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γ γ
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While player 2’s profits are always positive in equilibrium, player 1’s profits are negative 

when 2 (1 5)Aγ < −  (that is γ < ca. –0.62 A). Note that choosing the effort level in (9) is not in 

conflict with a Nash equilibrium, since if player 1 tried to avoid the negative payoff by 

choosing x=0, player 2 would choose y=ε, where ε is just above zero, leaving player 1 with 

the payoff γ. That payoff is even less than in the interior equilibrium represented by (13). 

 

Sum profits in equilibrium are  

 * 0 ( )
2

S

i

A A

A

γ
π

γ

+
=

−
∑ , (14) 

which is negative when γ<–A. It has a maximum value of 2A, when γ=A. 
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Sequential move contest with externality victim first (S1) 

By analyzing how player 2 will react to the effort level set by player 1, player 1 can get an 

advantage by moving first.11 Putting player 2’s reaction function into player 1’s original 

payoff-function (6) we get a new payoff function for player 1: 

 1
1 1S x

Ax x
A

π γ
 

= + − −  
 

 (15) 

The first order condition for player 1 then becomes: 

 2 0
A

Ax

γ−
− =  (16) 

The second order condition for profit maximisation is still fulfilled for γ≤A. Effort in 

equilibrium for player 1 and 2 are: 

 * 1 1
4 2 2

S A
x

A

γ γ 
= − − 

 
; 

2
* 1

4 4
S A

y
A

γ
= −  (17) 

Together with the second order condition, the limitation x≤A from player 2’s reaction 

function means –A�γ�A. 

 

As can be seen from Figure 3, or by differentiating the optimal efforts in (17) wrt γ, the 

players’ response to increased γ is qualitatively the same as in the simultaneous game S0. 

 

Sum effort is (A–γ)/2, approaching zero as γ goes towards A, and approaching A as γ 

approaches –A (from the positive side). If player 1 get as much from player 2’s share as from 

                                                

11 Contests that may have sequential moves are studied by several others previously (i.a. Dixit 1987; Baik & 

Shogren 1992; Leininger 1993; i.a. Baik 1994). 
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his own (when γ=A), he does not care about the size of the share he gets. On the other hand, 

with a strong negative externality (γ→ –A), player 1 really wants to avoid that player 2 gets 

anything. 

 

Payoffs for player 1 and 2 are equal in equilibrium: 

 
2

* 1 ( )
4

S

i

A

A

γ
π

+
= , i=1,2. (18) 

As γ approaches –A from the positive side, the individual payoff falls towards zero. The sum 

of payoffs is just twice the individual payoff.  

Sequential move contest with externality source first (S2) 

The reaction function for player 1 is ( )Rx A y yγ= − − , with y≤(A–γ) as a requirement for 

player 1’s effort to be non-negative. Inserting this into player 2’s payoff function gives 

 2
2
S A y

y
A

π
γ

= −
−

 (19) 

given that γ≤A. The first order condition for player 2 then becomes 

 2 0
( )

A

y A γ
− =

−
 (20) 

This gives the following effort in equilibrium for player 1 and 2: 

 * 2 1
4

S A
x

A

γ

γ

 
= − 

− 
, * 2

4
S A A

y
A γ

 
=  

− 
 (21) 

This equilibrium only exists for γ≤A/2 (else player 1 gets negative effort). Optimal effort for 

player 1 decreases monotonically with γ, while for player 2 optimal effort increases 



 

16 

monotonically with γ. The latter is in contrast to in the other two games, where player 2’s 

effort in equilibrium has a maximum when γ=0. Sum effort in equilibrium is A/2. 

 

Payoffs in equilibrium are the same for player 1 and 2 

 * 2

4
S

i

A A

A
π

γ

 
=  

− 
, i=1,2. (22) 

Individual payoffs increase with increasing γ, and then naturally so does the sum, which is 

just twice the individual payoff. 

The effect of order of play in contests 

Comparing efforts 

When player 1 is subject to a negative externality, his effort will be higher in equilibrium than 

with no externality, or a positive externality, as Figure 3 shows. For player 2, equilibrium 

effort is lower when he inflicts an externality (positive or negative) on player 1, compared to 

when no externality is present. The exception is when player 2 moves first (in a sequential 

game) and there is a positive externality. 
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Figure 3: Optimal effort in equilibrium in the three contests, depending on γγγγ. 
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Our findings on how equilibrium effort depends on the externality in the simultaneous move 

game is similar to results in Baik (1994). He has a contest model with asymmetric valuation. 

Player 1’s valuation is αv (α>0, v>0), while player 2’s valuation is just v. As α increases 

from zero, both players’ optimal effort increases until α=1 and we have symmetric valuation, 

thereafter player 1’s optimal effort level keeps on increasing, while for player 2 it is reduced.  

 

To see that these two findings are comparable, consider the following. Since the CSF for 

player 2 in my model, (y/(x+y)), is equal to (1–x/(x+y)), we can rewrite player 1’s payoff 

function: 

x*S1
 

x*S0
 

x*S2
 

y*S0
 

y*S1
 

y*S2
 

γ 
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 1

( )A x
x

x y

γ
π γ

−
= + −

+
 (23) 

In this form it is clear that player 1 has a larger marginal payoff of effort than player 2, given 

that γ<0, that is, the externality from player 2 is negative. Then it is also natural that player 1 

ends up with larger effort in equilibrium than player 2 under this condition.  

 

If γ =A, player 1’s valuation is zero, and as γ decreases from A, the valuation increases. This 

is the same as α increasing from zero in Baik (1994). We both find that with the simplest 

Tullock-type CSF, like in my model, total effort always increases as player 1’s valuation 

increases. 

 

The results also compares well with Nti (1999). He finds for a two-player simultaneous move 

Tullock contest that the effort of the “favoured” player (the one with the highest valuation) 

increases if his own or the other contestant’s (the underdog’s) valuation increases.12 The effort 

of the underdog increases in own valuation but falls in the valuation of the favoured player. In 

the model we present, as γ changes sign, say from minus to plus, players 1 and 2 also switch 

roles, from favourite-underdog to underdog-favourite. 

 

I find that if the underdog is allowed to move first, both players reduce effort levels compared 

to the simultaneous move game, just like Baik (1994) and Dixit (1987). On the other hand, if 

the stronger player is allowed to move first, he overcommits and chooses a higher effort level 

than in the simultaneous game. 

                                                

12 The terms favourite and underdog are natural to use since asymmetries in valuation is analytically equivalent 

to asymmetries in the cost of effort. The low cost/high valuation player is the favourite, and the other is the 

underdog. 
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Sum effort falls monotonically with γ in games S0 and S1.13 For a strong negative externality 

(γ<–A) game S0 has higher sum effort than S2 (S1 is not defined). With a weaker negative 

externality S1 gives the highest sum effort, followed by S0 and then S2.  For a moderate 

positive externality (0<γ<A/2) that order is reversed, with S2 having the highest sum effort 

followed by S0 and S1. For a stronger positive externality (A/2<γ<A) contest S0 has higher 

sum effort than S1 (S2 is not defined). 

Comparing sum of payoffs  

The sum of payoffs in the equilibria of the different games (S0, S1 and S2) varies with size 

and magnitude of the external effect. One of the sequential games has always larger than sum 

of payoffs than the simultaneous move game (except for γ=0), as can be seen from Figure 4. If 

there is a negative externality (γ<0) game S2 gives the largest sum of payoffs, and if there is a 

positive externality (γ>0) S1 gives the largest sum of payoffs. This means that when the 

player with the lowest valuation is allowed to move first, the sum of payoffs will be the 

largest in equilibrium. This is of course as undercommitment by the underdog allows also the 

favourite to have less effort than in the simultaneous game. 

 

There is a clear policy recommendation from this. If a regulator can choose the order of play 

in a contest over natural resources, to maximise benefits to society one of the sequential 

games should be chosen. More specifically, the player with the lowest valuation should be 

allowed to choose his effort level in the contest first. 

 

                                                

13 Remember that in S2 it is constant at A/2. 
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Figure 4: Sum of payoffs in equilibrium in the three contests, depending on γγγγ. 
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It is also interesting to see what sequence of play individual players would prefer depending 

on the value of γ; will players oppose or support a regulator’s choice of game? We analyse 

this by comparing individual payoffs in the different games, in the next section. 

Comparing individual payoffs 

The payoff for individual players in the three equilibria ranks as follows, depending on the 

sign and magnitude of the external effect, given by γ: 

For player 1: 

π1
S1 > π1

S0 always. 

π1
S0 > π1

S2 for 0 < γ ≤ A/2, else π1
S0 < π1

S2. 

For player 2: 

π2
S2 > π2

S0 always. 

π2
S0 > π2

S1 for A(1–√17)/2 (~ –1.56 A) < γ < 0, else π2
S0 < π2

S1.  

For both players: 

S2 

S0 

S1 

γ 

Sum π* 
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πi
S1 > πi

S2 for γ < –A(1+√5)/2(~ –1.62 A) or 0 < γ ≤ A/2, else πi
S1 < πi

S2, for 1=1,2. 

 

When a player moves first, it is natural that he gets at least as high payoff as in the 

simultaneous move game, since the effort choice of the simultaneous game is also possible to 

play when he moves first. We find, however, that the individual payoffs are for both players 

always larger in a sequential move game than in the simultaneous move game (except for 

γ=0). Which sequential game the players prefer depends on γ-value. Since equilibrium payoffs 

in each of the sequential games are the same for both players, they actually prefer the same 

sequential game given the value of γ. For some γ-values, player 1 will prefer the game where 

player 2 moves first, and for other values of γ, player 2 will prefer the game where player 1 

moves first. This can also be seen by inspecting Figure 5. The results conform with two-

player models with asymmetric valuation, where the players first choose whether to commit 

“early” or “late”, and then set their effort levels (Baik & Shogren 1992; Leininger 1993). 

They also find that the underdog wants to move early, and the favourite late. The result does 

not hold for all contest types, but holds for the basic Tullock contest (Konrad 2006; 56). 

 

What is perhaps most surprising is that both players’ individual interests and the collective 

interests are aligned in choice of game, given the type of externality. Here it is natural, as the 

players have the same payoffs in each of the sequential games. Since the societal objective of 

sum of payoffs is just the sum of the players’ payoffs, it is clear that individual and collective 

interests are aligned. In the discussion-section we consider the usefulness of this for a 

regulator that has limited knowledge over the players’ valuation of resource access and sign 

and magnitude of external effects. 
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Figure 5: Payoffs for player 1 and 2 in the three contests, depending on γγγγ  
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Nash bargaining 

It may be reasonable to model planning processes and lobbying, where stakeholders try to 

influence a regulator’s decision over access to coastal resources, as contests. However, for a 

coastal zone regulator, an alternative to deciding resource access himself is to let stakeholders 

bargain between themselves on how to share resources. This may be an attractive alternative 

if the regulator is unsure about the players’ valuation of resource access and size and direction 

of externalities, and the players know more than him. Bargaining may also reduce wasteful 

rent-seeking. Of course, real life bargaining is not costless, even though it is often assumed so 

in economic models. 

 

We will consider how different threat points affect payoffs in the bargaining outcomes, for 

individual stakeholders and in sum. “No resource-allocation” and the different contests in the 

last section are used as threat points. Whether a player would opt for the threat point outcome 

π2
S0 

π1
S0 

πi
S2 

πi
S1 

πi
S1 

π1
S0 

γ 



Resource Allocation by Contest or Bargaining 

23 

rather than the outcome of the Nash bargaining solution14 is also briefly considered. In the 

discussion section afterwards we also consider how less than perfect information on behalf of 

the regulator can affect the possibility of realising the outcome with the highest sum of 

payoffs.  

 

Denote β as the share of the resource that player 1 gets, and (1–β) similarly for player 2. Then 

the payoffs for players 1 and 2 in a bargaining solution are: 

 1 (1 )B Aπ β γ β= + − ; 2 (1 )B Aπ β= −  (24) 

The Nash product to be maximised by choice of β is then:15 

 1 10 2 20( )( )B Bπ π π π− −  (25) 

where ( 10 20,π π ) is the threat point of the bargaining; the payoff players 1 and 2 will get if they 

do not achieve agreement. The solution to this bargaining is 

 * 10 20 20
10 20

( 2 ( ))
( , )

2 ( )

A A

A A

γ π π γπ
β π π

γ

− + − +
=

−
 (26) 

Assuming that π10 and π20 are independent of γ, larger γ leads to a lower share for player 1 in 

equilibrium (lower β*). With a stronger positive externality, or a reduced negative externality, 

player 1 is less eager to fight over shares of the natural resource. We also see that increased 

                                                

14 The Nash bargaining solution is the only bargaining solution simultaneously satisfying four axioms often 

considered reasonable (Clark 1995). It maximises the product of the gains from bargaining above the 

disagreement point. Other bargaining solutions are i.a. the Kalai-Smorodinsky solution and the utilitarian (Clark 

1995). They implicitly emphasize other principles for sharing of gains. We have chosen to use the Nash 

bargaining solution, simply as it is the most commonly used bargaining solution. Which bargaining solution that 

will be used in real-life bargaining situation depends on the stakeholders’ cultural background, ethics and more. 

15 See e.g. (Muthoo 1999) chapter 2. 
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payoff for player 1 in the threat point increases β∗, while increased payoff for player 2 in the 

threat point reduces β∗. If your outside options are bettered, then so will the bargaining 

outcome be too, but if the outside options are weakened, the opposite is true. Consequently 

player 1 wants π10 to be as large as possible, and π20 as small as possible. The opposite applies 

for player 2. 

 

If the players get nothing without agreement ((0,0) is threat point), the outcome of the 

bargaining is 

 * 1
(0,0) 1

2 ( )A

γ
β

γ

 
= − 

− 
, (27) 

which is positive only for γ ≤ A/2. For a positive externality (γ>0) player 1 gets less than half 

of the resource, and vice versa for a negative externality. With this sharing rule the players 

get equilibrium payoffs of: 

 *
1 2B

A
π = ; *

2 2B

A A

A
π

γ
=

−
. (28) 

Note that player 1 gets the same payoff independent of the sign and magnitude of the 

externality. If there is a negative externality (γ<0), player 2 gets a smaller equilibrium payoff 

than player 1, and vice versa (provided A> γ). This means, for example if player 2’s use of the 

resource will create pollution that harms player 1, bargaining with no resource allocation as 

the threat point, makes the polluter pay.  

 

That the stakeholders should get no resources at all if they don’t agree on a sharing rule will 

be unlikely in many settings. Rather, a regulator may offer the agents to negotiate over the 

sharing of the resource, and announce that if they do not reach agreement the sharing will be 
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decided by a contest, like those described in previous sections.16 One of the contest outcomes 

thus constitutes the threat point. Table 2 gives payoffs from bargaining for all the different 

threat points. 

 

Table 2: Payoffs from bargaining, with no allocation (0,0) or  contests S0, S1, S2 as threat 

points 

Threat 

point 
ππππ1    ππππ2    Sum of payoffs 

(0,0) 
2

A
 

2 ( )
A A

A γ−
 

2( )
A

A
A

γ

γ
+

−
 

S0 
2

A

A
γ−

 
2

A

A
γ−

 
21 A

A
γ−

 

S1 
21

1
2 8 4 2

A

A A

γ γ 
+ + + 

 
 

3
4

2

AA

A

γ

γ

− 
 

− 
 

21
3

2 8
A

A A

γ γ
γ
  

+ + +  
  

 

S2 
3
4

2

AA

A

γ

γ

− 
 

− 
 

5
4

2

AA A

A A

γ

γ γ

−  
  

− −  
 

2 23 3
4 8

2( )

A A
A

A

γ γ

γ

 − +
 

− 
 

 

In Figure 6, sum of payoffs are plotted as a function of γ for the bargaining outcomes of 

different threat points. We see that the bargaining outcome with “no allocation” as threat 

point gives the largest sum benefit (only defined for γ<A/2).17 For  the possibly more credible 

threat points of contest outcomes, which threat point that gives the largest sum of payoffs 

varies with size and direction of the externality. However, the bargaining outcome with one of 

                                                

16 Grepperud and Pedersen (2003) is an example of a bargaining game where a non-cooperative game is the 

threat point. Unlike our setting, their game is between a regulator and a single resource user/polluter. 

17 Although difficult to see from Figure 6, this can be verified by algebra or more detailed plots. 
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the sequential move contests as threat points always dominates the simultaneous move 

contest.  

 

Figure 6: Sum of payoffs from bargaining, given no allocation (0,0) or the contest 

outcomes  (S0, S1, S2) as threat points 
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If there is a strong negative externality (γ<–A), contest S1 is not defined, and S2 as threat 

point gives the largest sum of payoffs in the bargaining outcome. For a less strong negative 

externality (–A<γ<0), S1 as threat point gives the highest sum of payoffs. For a moderate 

positive externality (0<γ<A/2) contest S2 gives the largest sum of payoffs from bargaining. 

For a strong positive externality (A/2<γ<A) S2 is not defined and S1 gives the largest sum of 

payoffs. 

 

In the contests, letting the player with the lowest valuation choose effort level first gives the 

highest sum of payoffs. In bargaining, using the contest where the player with the highest 

valuation chooses effort level first as threat point gives the highest sum of payoffs (when both 

S0 S2 

S0 

(0,0) 

(0,0) 

S1 

γ 

Sum π* 
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sequential contests are defined). If the regulator does not bind himself to using the right 

contest in case of bargaining breakdown, players may not see it as a credible threat, and 

bargain as if the other sequential contest is the real threat point, thus not realising the higher 

sum of payoffs.  

 

Figure 7 shows the individual payoffs from Nash bargaining given different threat points. If 

there is a negative externality, player 1 prefers no allocation (0,0) as the threat point. 

Naturally this gives the lowest possible payoff to player 2. Conversely, with a positive 

externality, player 2 gets the highest payoff when (0,0) is threat point, leaving player 1 with 

the smallest possible payoff.18 

Figure 7: Individual payoffs from bargaining as a function of γγγγ, given threat points. 
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Note: 1(0,0) is player 1’s payoff when no allocation is threat point, 2S1 is player 2’s payoff when contest S1 is 

threat point, and so on. 

                                                

18 Remember that the bargaining outcome is not defined with (0,0) as threat point for γ>A/2.  
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If we concentrate on the contest outcomes as possible threat points we find the following. 

With a strong negative externality (γ<–A) player 1 prefers contest S2 as the threat point (S1 is 

not defined). If there is a moderately strong negative externality (–A<γ<0) he prefers contest 

S1 as threat point. For a positive externality player 1 prefers contest S0 as threat point. With a 

strong positive externality (A/2<γ<A) player 2 prefers contest S1 as the threat point (S2 is not 

defined). If there is a less strong positive externality (0<γ<A/2) he prefers contest S2 as the 

threat point. For a negative externality player 2 prefers contest S0 as threat point. All these 

findings also follow directly from (26) and the observations on how (π10, π20) influence β*. 

 

Overall, of all bargaining outcomes, the regulator and the player with the effectively higher 

valuation prefer the one with no allocation as threat point (when all contest outcomes are 

defined). Among the bargaining games with contest outcomes as threat points, the regulator 

and the player with the higher valuation prefers the contest where the favourite moves first. In 

fact, the regulator and the player with the higher valuation, player 1 if there is a negative 

externality and player 2 if there is a positive externality, has the same ranking of the 

bargaining games according to threat point. The lower valuation player prefers the bargaining 

game with simultaneous move contest as threat point. Among the sequential move contests he 

prefers the game where he moves first. The ranking of bargaining games by threat point is 

summed up in Table 3. 

 

Whether the regulator can realise the largest sum of payoffs through bargaining with one of 

the sequential contests as threat points depends not only on him knowing which player is 

favourite and which is underdog. If the underdog’s payoff in the bargaining outcome will be 

lower than in the contest making up the threat point, he will cause a breakdown of the 
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bargaining to realise the higher payoff of the contest. However, this will not happen. With a 

positive externality, player 2 is the favourite, and the bargaining game with the largest sum of 

payoffs is the one where contest S2 is threat point. For the values of γ where contest S2 is 

defined (γ <A/2), player 1 prefers the bargaining outcome. If the positive externality is 

stronger than that, player 1 will choose zero effort in contest S2.19 With a negative externality, 

player 2 is the underdog, and the bargaining game with contest S1 as threat point has the 

largest sum of payoffs. Player 2 prefers the bargaining outcome over the outcome of contest 

S1 itself as long as S1 is defined (–A≤γ<0). If the negative externality is stronger than that 

player 2 will have zero effort in contest S1. 

Discussion and conclusion 

In this paper we have considered two ways of allocating a resource between two players. The 

first is a contest, the second bargaining. In both we assume that player 1 receives an external 

effect from player 2, depending on player 2’s contest effort or use of the resource. We have 

considered both positive and negative externalities.  

 

We investigate contest that are either a simultaneous move game (S0) or sequential move 

games where player 1 moves first (S1) or player 2 moves first (S2). In all the contests it is 

optimal for player 1 to increase contest effort in equilibrium if a negative externality gets 

stronger, or a positive externality is reduced. Then he gets a larger share of the prize, reduces 

player 2’s share, and also reduces the negative externality or compensates for a reduction in 

the positive externality.  

 

                                                

19 The non-negativity restriction on effort is the reason why contest S2 is not defined for γ≥A/2. 
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If the players value shares of the resource equally, independent of the externality, player 1 has 

the largest valuation if there is a negative externality, and player 2 if there is a positive 

externality. If a regulator can set up the resource contest, he should let the underdog, the 

player which has the lowest valuation of the natural resource when also the externality is 

accounted for, move first. Sum of payoffs are then maximised. In such a contest, the players’ 

individual interests and the regulator’s interest are aligned; the regulator and the underdog 

want the underdog to move first, and the favourite wants to move last, as can be seen from 

Table 3. In each of the sequential move contests the players get the same payoff in 

equilibrium. A regulator may find the equitable sharing a positive feature of these contests. 

Table 3: Ranking of games by payoffs, given value of γγγγ 

 ∑π π1 π2 ∑π π1 π2 ∑π π1 π2 ∑π π1 π2 

C S2 S2 S2 S2 S2 S2 S1 S1 S1 S1 S1 S1 

 S0 S0 S0 S0 S1 S1 S0 S0 S2 S0 S0 S0 

    S1 S0 S0 S2 S2 S0    

NB S2 S2 S0 S1 S1 S0 S2 S0 S2 S1 S0 S1 

 S0 S0 S2 S2 S2 S2 S1 S1 S1 S0 S1 S0 

    S0 S0 S1 S0 S2 S0    

 

Note: NB indicates Nash Bargaining and C contests. We only consider contests as threat points for the 

bargaining. ∑π means sum of payoffs, and π1 and π1 payoffs for player 1 and 2. The ranking in each column 

gives the game that gives highest payoff (top) to lowest payoff (bottom) in sum or for that player. Note the axis 

on the bottom for the γ-values. Remember that for γ<–A contest S1 is not defined, and for γ>A/2 contest S2 is 

not defined. 

 

Information asymmetries between the regulator and the players can pose big challenges for 

setting up such a contest. Imagine a fisher and a fish-farmer in a contest as described above, 

 γ 
 

–A 0 A/2 A 
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with a negative externality of farming on fishing. The regulator is, however, not certain about 

sign and magnitude of the externality, but he expects the players want to maximise their own 

profits, and he wants to maximise sum profits. The regulator can then simply ask the players 

who should be allowed to move first in the contest, and they should provide the true answer, 

as everybody’s interests are aligned. The correctness of that assumption depends crucially on 

the player with the lower valuation, in this case the fisher, being certain resource allocation 

will be through a contest. If the fisher assumes the regulator will use the players’ information 

on who should move first to directly allocate resources, he has incentive to lie. This is because 

the regulator should give all of the resource to the player with the highest valuation, in order 

to maximise overall profits. Naturally then, the lower-valuation player will not reveal himself 

to the regulator. This is regardless of whether there is a negative externality (externality 

victim has the highest valuation), or a positive externality (externality source has the highest 

valuation). 

 

Contests imply waste of effort to affect allocation. An alternative method, with possibly less 

waste of effort, is to let the players bargain over resource sharing. A bargaining outcome is 

sensitive to the threat point, the payoffs the players get if they do not reach agreement. The 

regulator could state that there will be no allocation of the natural resource if the players do 

not reach agreement. Then, in the bargaining outcome, the externality victim ends up with the 

same payoff regardless of sign and magnitude of the externality. If there is a negative 

externality the player which is source of the externality ends up with a lower payoff than the 

victim, and if there is a positive externality he ends up with a higher payoff than the victim. 

The players actually agree to share the resource so that “the polluter pays” and the victim is as 

well off as if there were no externality. A regulator may find it attractive to use no allocation 

as threat point for the bargaining due to this, and since it also gives the highest sum of payoffs 
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of all bargaining games considered here. However, it may not be very credible as threat point. 

Which real-world regulator would leave resources unused when their use could bring benefits 

to society? Rather, the regulator may decide that if the players can not reach agreement 

resource sharing will be decided by him. The players will naturally try to influence the 

regulator’s decision. The process may then again be described or illustrated as a contest.  

 

Using the sequential contest where the favourite moves first as threat point gives the highest 

sum of payoffs in the bargaining outcome. However, the stakeholders may nevertheless 

expect that the other sequential contest, where the underdog moves first, will be used in case 

of breakdown. This is because it gives the largest sum of payoffs, as a contest. If the regulator 

can not credibly establish the favourite-moves-first contest as the threat point to bargaining 

breakdown, the highest sum of payoffs will not be realised from bargaining. 

 

Unlike for the contests, the regulator’s interests are not aligned with both players’ in the 

bargaining, as can be seen from Table 3. While the favourite and the regulator share interest 

over which contest should be used as threat point, the underdog gets the highest payoff if a 

different contest is used as threat point.  

 

Would it be possible for the regulator to use bargaining to maximise sum of payoffs if he has 

limited knowledge about the players’ valuation and the externality? Consider the same 

example as above in this section, with a fish-farmer exerting a negative externality on a fisher, 

the regulator unsure about players’ valuation and the externality, but players have full 

knowledge over them. Let us start by assuming that the regulator credibly has committed to 

use as threat point any sequential contest the players jointly promote. An obvious challenge is 

that the farmer and the fisher prefer different threat points, as we have seen. But would it be 
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possible for the fisher to promise the fish-farmer compensation if he would agree to promote 

as threat point the contest maximising the fisher’s payoff, the one where the fisher moves 

first? Clearly this is the case, as sum of payoffs are always higher from bargaining when the 

favourite moves first in the threat point contest. The fisher can give the farmer a side payment 

that will make both their payoffs at least as good as from the bargaining game with the 

farmer-moving-first contest as threat point.  

 

Summing up, we have found that it is possible to maximise sum of payoffs from contests and 

from Nash bargaining when an asymmetric externality is present, even if the regulator does 

not have full information about players’ valuation and the externality. It requires that the 

players have sufficient information to know who is underdog and who is favourite, and that 

the regulator can commit to either playing the contest the players jointly recommend, or have 

as threat point to bargaining the contest the players jointly promote. The latter will require a 

side payment from the favourite to the underdog. 

 

These results have interesting policy implications for managing contests over natural 

resource, or setting up bargaining over resource allocation, both when the resources are in the 

coastal zone and elsewhere. The results should be investigated for games where the players 

have different valuation at the outset independent of an externality, and also for games with 

more than two players.  
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