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Plastic debris has been accumulating in the marine realm since the start of plastic mass
production in the 1950s. Due to the adverse effects on ocean life, the fate of plastics
in the marine environment is an increasingly important environmental issue. Microbial
degradation, in addition to weathering, has been identified as a potentially relevant
breakdown route for marine plastic debris. Although many studies have focused on
microbial colonization and the potential role of microorganisms in breaking down marine
plastic debris, little is known about fungi-plastic interactions. Marine fungi are a generally
understudied group of microorganisms but the ability of terrestrial and lacustrine fungal
taxa to metabolize recalcitrant compounds, pollutants, and some plastic types (e.g.,
lignin, solvents, pesticides, polyaromatic hydrocarbons, polyurethane, and polyethylene)
indicates that marine fungi could be important degraders of complex organic matter in
the marine realm, too. Indeed, recent studies demonstrated that some fungal strains
from the ocean, such as Zalerion maritimum have the ability to degrade polyethylene.
This mini-review summarizes the available information on plastic-fungi interactions in
marine environments. We address (i) the currently known diversity of fungi colonizing
marine plastic debris and provide (ii) an overview of methods applied to investigate the
role of fungi in plastic degradation, highlighting their advantages and drawbacks. We
also highlight (iii) the underestimated role of fungi as plastic degraders in marine habitats.

Keywords: fungi, marine plastic debris, marine pollution, plastic degradation, biodegradation

OCEAN PLASTIC POLLUTION

Plastics are man-made materials of mostly petrochemical origin – so-called conventional plastics
that are commonly considered as non-biodegradable (Wayman and Niemann, 2021). Most
conventional plastics comprise a carbon-carbon backbone, e.g., polyethylene (PE), polypropylene
(PP) and polystyrene (PS), while other plastics feature heteroatoms, e.g., polyethylene terephthalate
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(PET), polyurethane (PU) or polyamides (PA, Nylon).
Conventional plastics are used in nearly all industrial sectors,
most importantly packaging, construction and transport. The
global annual production of plastics reached 359 Mt in 2018
(PlasticsEurope, 2020). Recently, biopolymer alternatives, based
on renewable sources (e.g., starch and cellulose) have been
developed, but their global market share is still small. In 2020, the
global production of bioplastics amounted to approximately 2 Mt
(Bioplastics Market Data update, 2020). Among the plastic types
produced from renewable carbon sources, approximately half are
biodegradable, while the second half is non-biodegradable.

A substantial fraction of plastic waste is mismanaged (Geyer
et al., 2017), and it has been estimated that this fraction
represented an average of 80 Mt (60 to 99 Mt) accumulated
in total (Lebreton and Andrady, 2019). Mismanaged plastic
waste ends up in all ecosystem compartments, such as soils
(Chae and An, 2018), lakes (Mason et al., 2016) and rivers
(Lebreton et al., 2017). Thus, freshwater bodies function as
a transport vector for plastic ultimately reaching the ocean
though the magnitude of this transport mechanism is discussed
controversially (Weiss et al., 2021). In addition, plastic litter can
be airborne, thus, the atmospheric deposition of plastic litter is a
potentially important source for the ocean’s plastic budget (Liss,
2020). Indeed, plastic litter has emerged as a major pollution
issue in marine environments (Eriksen et al., 2014; UNEP, 2014;
van Sebille et al., 2015; Wayman and Niemann, 2021). Plastic
debris forms the most abundant component of marine litter,
accounting for up to 95% of waste found on shorelines, ocean
surface water and the seafloor (Galgani et al., 2015). In fact,
sedimented plastic litter might become a stratigraphic marker
horizon of the Anthropocene epoch (Zalasiewicz et al., 2016).
It has been estimated that 0.1% (Cózar et al., 2015) to up to
4.6% (Jambeck et al., 2015) of the global plastic production
enters the ocean. As a result, the total accumulated plastic waste
in the ocean might have reached 320 Mt in the year 2015
(Wayman and Niemann, 2021).

Plastic floating at the ocean surface is typically dominated
by PE and PP, roughly in accordance with global production
figures (Erni-Cassola et al., 2019). However, plastic debris in
the ocean varies in size: macroplastics (>5 mm), microplastics
(1 µm – 5 mm) and nanoplastics (<1 µm) (Wayman and
Niemann, 2021). Several studies have tried to quantify the
different size fractions to estimate the total concentration of
plastics and the fate of it in marine environments. For example,
in the Mediterranean Sea, the density of floating microplastic
was about 2.5 × 105 items per km2 (Cózar et al., 2015).
The abundance of floating plastic in the ocean is usually
determined by surface trawling with nets (typically > 300 µm
mesh size). Consequently, these methods discriminate against
smaller size classes, which could account for an important
fraction of the floating plastic budget (Poulain et al., 2019).
Furthermore, surface trawls do not account for submerged and
sedimented plastics debris (Woodall et al., 2014). Finally, the
distribution of floating plastic is not homogenous, as large
quantities concentrate in subtropical ocean gyres and enclosed
basins, making balanced sampling efforts over large areas difficult
(Lindeque et al., 2020).

MICROBIAL BIOFILMS ON MARINE
PLASTIC DEBRIS

Rapid microbial colonization occurs on any available material
that ends up in the ocean, whether it is of natural or synthetic
origin (such as plastic debris). From a microbial perspective,
transiting from pelagic to a particle-attached lifestyle provides
advantages; e.g., better access to nutrients, and protection against
UV exposure and grazing (de Carvalho, 2018). Several studies
have investigated the composition of microbial communities
living on plastic materials in different marine environments
(Zettler et al., 2013; Amaral-Zettler et al., 2015; Eich et al., 2015;
Oberbeckmann et al., 2016; Debroas et al., 2017; Dussud et al.,
2018; Ogonowski et al., 2018; Miao et al., 2019; Dudek et al., 2020;
Krause et al., 2020; Vaksmaa et al., 2021b). Some of these reported
a difference in community structure when comparing microbes
in biofilms on plastics to those in the surrounding seawater
or those attached to natural surfaces. A detailed overview of
this matter is compiled in Wright et al. (2020). However, most
studies applied amplicon sequencing of the 16S rRNA gene,
and focused on bacterial and archaeal communities in biofilms
attached to the plastic debris. In contrast, fungal community
composition on plastic in the marine environment has, until now,
been investigated seldomly (Table 1).

A BRIEF INTRODUCTION TO THE
FUNGAL KINGDOM

The fungal kingdom constitutes a major lineage within the
domain Eukarya and diverged from a common ancestor with the
animals >800 million years ago (Parfrey et al., 2011; Chang et al.,
2015). Fungi exhibit highly diverse lifestyles and can cope with
different redox conditions. The majority of fungi seemingly prefer
oxic environments, however some fungal species inhabit oxygen
minimum zones (Stief et al., 2014). Furthermore, anaerobic
fungi (mainly studied in gut microbiomes) have been identified
(Gruninger et al., 2014; Mura et al., 2019). Morphologically,
fungi may be unicellular (e.g., yeasts and cells with a flagellum
such as zoospores), filamentous (e.g., molds and mushrooms)
or dimorphic (i.e., they exists in two forms, yeast-like single
cells or hyphae forming) (Boyce and Andrianopoulos, 2015).
They can be found as free-living organisms, in mutualistic
symbiotic associations (such as those forming mycorrhizas,
lichens, in gut microbiomes) (Watkinson, 2016) or as parasitic
pathogens of several plants and animals, including humans
(Szabo and Bushnell, 2001). Fungi are ubiquitous and occur
throughout terrestrial, freshwater and marine environments
(Sutherland, 1916; Raghukumar, 2017; Walker et al., 2017;
Gladfelter et al., 2019).

Taxonomically, nineteen major fungal phyla are
recognized: Aphelidiomycota, Ascomycota, Basidiobolomycota,
Basidiomycota, Blastocladiomycota, Calcarisporiellomycota,
Caulochytriomycota, Chytridiomycota, Entomophthoromycota,
Entorrhizomycota, Glomeromycota, Kickxellomycota,
Monoblepharomycota, Mortierellomycota, Mucoromycota,
Neocallimastigomycota, Olpidiomycota, Rozellomycota, and
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TABLE 1 | Studies on the diversity of fungal communities on microplastics in marine environments.

Source Polymer Location Primers Phyla detected

Oberbeckmann
et al., 2016

PET bottles North Sea 1391F – 1795R Ascomycota, Basidiomycota and
Chytridiomycota

Kettner et al., 2017,
2019

PE, PS Baltic Sea and Warnow
river

Eu565F – Eu918R Ascomycota, Basidiomycota, Chytridiomycota
and Rozellomycota

De Tender et al.,
2017

PE North Sea (coast and
offshore)

fITS7bis (adapted) –
ITS4NGSr

Ascomycota, Basidiomycota, Chytridiomycota,
Glomeromycota, and Mucormycota

Kirstein et al., 2018 HDPE, LDPE, PP, PS and
PET

North Sea (flow-through
system)

Eu565F – Eu918R Chytridiomycota

Lacerda et al.,
2020

PE, Nylon, PU, PP and
PS

Western south Atlantic and
Antarctic Peninsula

1391F – EukB,
TAReuk454FWD1 –
TAReukREV3, ITS1f – ITS4
and gITS7 – ITS4

Aphelidomycota, Ascomycota, Basidiomycota,
Blastocladiomycota, Chytridiomycota,
Rozellomycota, Mucoromycota and
Zoopagomycota

All studies applied next generation sequencing by using the Illumina MiSeq platform.

Zoopagomycota (Wijayawardene et al., 2020). However,
the phylogeny and taxonomy of the fungal kingdom has been a
matter of debate (Hibbett et al., 2007; Spatafora et al., 2016, 2017).
Some fungal phyla are rarely sampled and our understanding
of the deeply branching groups is insufficient (Naranjo-Ortiz
and Gabaldón, 2019). Lately, the number of available fungal
genomes has been increasing. But these new data showed that
complex inter-species relationships occur, such as introgression
and hybridization (Gabaldón, 2020), that blur the definition of
a species. The estimated total number of fungal species could
range from 2 to 4 million (Hawksworth and Lücking, 2017),
but only ∼100000 have been described (Wu et al., 2019) of
which only ∼1100 species originate from marine environments
(Amend et al., 2019).

Recently, an online database, www.marinefungi.org,
containing marine fungal species was created (Jones et al.,
2019). Many fungal species are found in both, terrestrial and
marine environments (Gladfelter et al., 2019). It has been
proposed that early diverging fungi, Chytridiomycota and
Rozellomycota, originate from aquatic environments (Berbee
et al., 2017, 2020). These phyla also have members found in
the present-day ocean. On the other hand, fungi from the
Ascomycota and Basidiomycota phyla, commonly present in
marine environments, are proposed to originate from terrestrial
ancestors. Because of this difference in origin (terrestrial vs.
aquatic), a clear definition of “marine fungus” is challenging.
The recent definition suggests that a marine fungus is “any
fungus that is recovered repeatedly from marine habitats
and: (1) is able to grow and/or sporulate (on substrata) in
marine environments; or (2) forms symbiotic relationships
with other marine organisms; or (3) is shown to adapt and
evolve at the genetic level or is metabolically active in marine
environments” (Pang et al., 2016). Marine fungi are found
ubiquitously in the ocean (Comeau et al., 2016; Tisthammer
et al., 2016; Raghukumar, 2017) including coastal environments
(Taylor and Cunliffe, 2016; Picard, 2017; Banos et al., 2020),
mangroves (Hyde and Lee, 1995; Alias et al., 2010; Pang et al.,
2010; Lee et al., 2019), the water column (Richards et al., 2015;
Tisthammer et al., 2016; Morales et al., 2019) and sediments
(Kohlmeyer and Kohlmeyer, 1979a; Khudyakova et al., 2000;

Mouton et al., 2012; Tisthammer et al., 2016). Marine fungi have
also been detected in extreme marine habitats such as the deep
sea biosphere (Orsi et al., 2013; Rédou et al., 2015), the Arctic
(Rämä et al., 2017; Hassett et al., 2019) and oxygen minimum
zones (Cathrine and Raghukumar, 2009; Jebaraj et al., 2010;
Manohar et al., 2015).

Metabolically, fungi participate in different biogeochemical
processes and occupy a plethora of ecological niches. Fungi play
a major role in decomposing recalcitrant substrates, making
them an integral part of food web structures, contributing to
carbon cycling and nutrient regeneration in, at least, terrestrial
environments. For example, saprophytic fungi accelerate carbon
and nitrogen cycling and symbiotic fungi such as mycorrhiza
networks, enhance primary production in symbionts and hosts
(Lindahl et al., 2007; Walder et al., 2012). Similar to terrestrial
systems, parasitic fungi in aquatic environments were found
to have a great impact on pelagic food webs and thus
biogeochemical cycling (Jobard et al., 2010; Sime-Ngando, 2012).
Also some symbiotic interactions are known from the marine
environment, for example, with phytoplankton seaweeds and
sponges (Rasconi et al., 2011; Richards et al., 2012; Webster
and Taylor, 2012; Du et al., 2019). Similar to terrestrial
systems, fungi in coastal and surface marine environments were
found to degrade wood (lignin, cellulose and hemicellulose)
(Bucher et al., 2004) and remains of marine animals (Kohlmeyer
and Kohlmeyer, 1979b,c; Raghukumar, 2017). Marine fungi
were furthermore found to degrade complex components
of algae such as agar (in laboratory conditions; Balabanova
et al., 2018) and fungi dominate the microbial composition
of bathypelagic marine snow where they might play the role
as saprotrophs (Bochdansky et al., 2017). Fungi contribute to
different nitrogen cycle processes such as nitrification (Falih
and Wainwright, 1995) and denitrification (Shoun et al., 1992;
Stief et al., 2014; Maeda et al., 2015) in both, terrestrial and
the marine environment (Cathrine and Raghukumar, 2009).
Marine fungi mobilize metals by excreting siderophores and
act as bio-sorbents for some metals, thereby alleviating metal
toxicity (Taboski et al., 2005; Vala, 2010). These processes
influence the cycles of several elements among them: Fe, Mn,
Hg, Ni, Zn, Ag, Cu, Cd, and Pb (Gadd, 2004). Finally, some
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fungi break down rocks and minerals to harvest nutrients
(Ortega-Morales et al., 2016).

LIFE ON PLASTIC IS FANTASTIC:
FUNGAL COLONIZATION OF MARINE
PLASTIC DEBRIS

Fungi in Marine Environments as Part of
Marine Plastic Debris Associated
Biofilms
Marine fungi are generally understudied, which is also reflected
by the relatively limited number of studies targeting fungi
on marine plastic debris (MPD) (Jacquin et al., 2019).
Oberbeckmann et al. (2016) conducted a seasonal comparison
of microbial communities including both bacteria and fungi on
submerged PET bottles, glass slides, and seawater in the North
Sea. Fungal communities were represented by Ascomycota,
Basidiomycota and Chytridiomycota. The study showed that
the PET-attached eukaryotic communities (fungi among them)
varied significantly with season and location. Kettner et al. (2017,
2019) conducted exposure experiments with PE and PS in the
Baltic Sea and the river Warnow and investigated colonization
of these plastic surfaces by fungi. The fungal genus Chytridium,
as well as fungi-like Rhinosporideacae, Rhizidiomyces, and
Pythium taxa, had a high read count on both plastic types at
both locations. However, a substantial number of sequences
was assigned as unclassified fungi. The fungal community
composition was significantly influenced by location but not
polymer type. Furthermore, the alpha diversity was significantly
lower for PE and PS compared to the surrounding water and
wood particles. De Tender et al. (2017) conducted a 44-week
experiment during which PE plastic sheets and dolly ropes were
weighed down close to the sediment at a harbor and an offshore
location in the North Sea. Similar to the Baltic Sea studies by
Kettner et al. (2017, 2019), they found that the Ascomycota were
highly abundant followed by a smaller fraction of Basidiomycota
and Mucoromycota. Furthermore, a minor fraction of members
of Ascomycota from the Lecanoromycetes class (Physconia,
Candelariella, Caloplaca) were identified. Analyses on the
beta diversity of the fungal community composition showed
statistically significant effects of sample type (natural substrate
vs. plastic polymers), environment, and exposure time. Some
of the detected species were previously identified as potential
PE degraders in terrestrial environments: Cladosporium
cladosporioides (Bonhomme et al., 2003) and Fusarium redolens
(Albertsson, 1980; Albertsson and Karlsson, 1990).

Recently, Lacerda et al. (2020) studied the fungal diversity
associated with plastics in the surface waters of the Western
South Atlantic and the Antarctic Peninsula by investigating
three different molecular marker genes for fungal identification:
ITS2 (Internal transcribed spacer), the variable regions V4 and
V9 of the 18S rRNA gene sequence. To date, this is the only
study aiming to resolve fungal diversity on plastic using multiple
marker genes. Across the tested marker genes, a total of 64
different fungal orders were associated with plastics. The primers

targeting the 18S rRNA gene (V4 and V9 regions) were able
to detect a higher number of Chytridiomycota. Some taxa
that were totally omitted by the ITS2 marker were detected,
such as Rozellomycota, Zoopagomycota, Aphelidomycota, and
Blastocladiomycota. Across all samples, the genus Aspergillus
was the most abundant. Some of its OTUs were assigned at the
species level, identifying A. vitricola, A. restricus, and A. wentii.
None of the identified strains were previously reported as plastic
degraders, although other Aspergillus species have been shown to
be able to oxidize different plastic types (Table 2). Lacerda and
colleagues also reported on fungal taxa, such as Aphelidomycota,
Zoopagomycota, Mucoromycota, and Blastocladiomycota, that
had previously not been detected to colonize plastic in the
marine environment.

In contrast to environmental studies, Kirstein et al. (2018)
studied the microbial composition formed on microplastics
under controlled laboratory conditions. Their set-up consisted
of a flow-through system with North Sea water in which HDPE
(High Density Polyethylene), LDPE (Low Density Polyethylene),
PP, PS and PET were incubated in the dark. The 18S rRNA
gene sequencing analysis of the eukaryotic community of biofilms
revealed that the highest fungal read abundances belonged
to Chytridiomycota (up to 3% of sequences on PET). This
can be explained by this taxa’s dominance throughout aquatic
environments (Comeau et al., 2016) or the compatibility of
biofilm presence on PET and chytrid’s parasitic lifestyle.

Plastic Biodegradation Potential of Fungi
Biodegradation is the degradation of compounds and substrates
mediated by living organisms, most commonly microorganisms.
The soluble products of biodegradation (typically low molecular
weight compounds) are absorbed or assimilated by the
microorganisms. The biodegradation can be partial or complete.
Complete biodegradation results in the formation of CO2 and
is also referred to as biomineralization. On the other hand,
degradation of organic matter without a terminal electron
acceptor, conditions that are countered in some reduced
environments, leads to the formation of CH4 and/or other short-
chain hydrocarbons. In natural environments, biodegradation is
mediated by enzymes or by other compounds (such as acids and
peroxides), secreted by microorganisms.

Fungi are able to degrade synthetic compounds; e.g., persistent
organic pollutants (POPs) (Singleton, 2001), polycyclic aromatic
hydrocarbons (PAHs) (Cerniglia and Sutherland, 2001), benzene,
toluene, ethylbenzene and xylenes (BTEX compounds) (Buswell,
2001) and pesticides (Pinto et al., 2012). The metabolic versatility
of fungi and ability to degrade complex compounds indicates
that biodegradation of plastics in the environment could be a
potential metabolic trait of some fungi (Vaksmaa et al., 2021a).
To date, some plastic degrading fungi have indeed been identified
mostly from the Ascomycete phylum to which also Aspergillus,
Fusarium, and Penicillium belong (Table 2 Fusarium sp. and
F. oxysporum isolated from soil provoked weight loss of Nylon,
PE, and PU) (Tachibana et al., 2010; Raghavendra et al., 2016).
F. solani from a collection hydrolyzed PET to terephthalic acid
(TPA) via a cutinase (Ronkvist et al., 2009). Furthermore, several
strains belonging to Penicillium are considered as potential
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TABLE 2 | Selection of fungal strains that showed plastic degradation potential.

Strains References Environment of
isolation

Polymer Degradation assessment
technique

Incubation
time
experiment

Main observed results

Alternaria alternata Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, enzyme
activity assays,
quantification of CO2

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase,
MnP and lignin peroxidase

Aspergillus
caespitosus

Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, enzyme
activity assays,
quantification of CO2

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase
and MnP

Aspergillus flavus Alshehrei, 2017 Seawater PE Weight loss, tensile
strength, SEM, FTIR

30 days 16.2% weight loss of polyethylene

Aspergillus flavus Deepika and
Madhuri, 2015

Soil from waste
disposal site

PE Halo test, weight loss 180 days Reduction of 16% in molecular weight

Aspergillus flavus Zhang et al., 2020 Guts of wax moth
Galleria mellonella

HDPE Halo test, HT-GPC, FTIR 28 days Decreased Mn. Carbonyls groups FTIR and
two laccase-like multicopper oxidases
(LMCOs) genes, afla_006190 and
afla_053930, displayed up-regulation

Aspergillus flavus ITCC
no. 6051

Mathur and
Prasad, 2012

Soil from waste
disposal site

PU Weight loss, SEM, FTIR,
and thermogravimetric
analysis, enzyme activity
assay

30 days Weight loss of PU, detection of PU
degradation via FTIR and production of
esterase

Aspergillus
flavus VRKPT2

Sangeetha Devi
et al., 2015

Coastal area of
gulf of Mannar

HDPE SEM, FTIR, weight loss,
total protein content
measurement

30 days Weight loss of 8.5 ± 0.1%

Aspergillus fumigatus Alshehrei, 2017 Seawater PE Weight loss, tensile
strength, SEM, FTIR

30 days 20.5% weight loss of polyethylene

Aspergillus fumigatus Zahra et al., 2010 Landfill soil LDPE UV treated LDPE, SEM,
FTIR

100 days Molecular weight decreases and use of UV
LDPE as sole Carbon source and detection of
structural changes by FTIR

Aspergillus fumigatus Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

Aspergillus glaucus Kathiresan, 2003 Mangrove soil PE Weight loss 30 days Weight loss of 28.8 ± 2.4%

Aspergillus niger Alshehrei, 2017 Seawater PE Weight loss, tensile
strength, SEM, FTIR

30 days 19.5% weight loss of PE

Aspergillus niger Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

Aspergillus niger Deepika and
Madhuri, 2015

Soil from waste
disposal site

PE Halo test, weight loss 180 days Reduction of 26% in Mn

Aspergillus niger Kathiresan, 2003 Mangrove soil PE Weight loss 30 days Weight loss of 17.4 ± 2%

Aspergillus niger (ITCC
no. 6052)

Mathur et al.,
2011

Soil from waste
disposal site

HDPE Weight loss, tensile
strength, SEM, FTIR

30 days Reduction of 3.44% in Mn and 61% reduction
in tensile strength

Aspergillus nomius Munir et al., 2018 Soil from waste
disposal site

LDPE Weight loss, tensile
strength

45 days Weight loss of 6.63% and tensile strength
reduction of 40%

Aspergillus oryzae Muhonja et al.,
2018

Soil from waste
disposal site

LDPE Weight loss, FTIR analysis 112 weeks Weight loss of 36.4 ± 5.53% and degradation
products detection by FTIR

Aspergillus sp. Pramila and
Ramesh, 2011

Seawater LDPE SEM, Quantification of CO2 7 to 17 days Visual signs of degradation via SEM and about
4g−L of CO2 produced

Aspergillus sp. Osman et al.,
2018

Soil from waste
disposal site

PU Weight loss, quantification
of CO2, SEM, FTIR, DSC

28 days 15–20% of weight loss. Change in melting
temperature and detection of degradation
products via FTIR

Aspergillus sp. in
co-culture with
Lysinibacillus
xylanilyticus XDB9

Esmaeili et al.,
2013

Landfill soils UV and non-UV
irradiated LDPE

Tensile strength, SEM,
FTIR, CO2 measurements

126 days Carbon dioxide measurements:
biodegradation 7.6 and 8.6% of mineralization
for the non-UV irradiated and UV irradiated
LDPE respectively after 126 days vs. 29.5 and
15.8% in presence of co-culture

Aspergillus sydowii Sangale et al.,
2019

Mangrove
dumpsite

PE Weight loss, tensile
strength, SEM, FTIR

60 days Cracks and holes visible by SEM, FTIR
analysis, weight loss of 37.94 ± 3.06%
(pH = 7) and tensile strength reduction

Aspergillus terreus Sangale et al.,
2019

Mangrove
dumpsite

PE Weight loss, tensile
strength, SEM, FTIR

60 days Cracks and holes visible by SEM, FTIR
analysis, weight loss of 41.82 ± 5.47%
(pH = 9.5) and tensile strength reduction

Aspergillus terreus Alshehrei, 2017 Seawater PE Weight loss, tensile
strength, SEM, FTIR

30 days 21.8% weight loss of polyethylene

Aspergillus terreus Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, enzyme
activity assays,
quantification of CO2

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase,
MnP and lignin peroxidase

Aspergillus terreus Zahra et al., 2010 Soil from waste
disposal site

LDPE UV treated LDPE, SEM,
FTIR

100 days Molecular weight decreases and use of UV
LDPE as sole carbon source and detection of
structural changes by FTIR

(Continued)
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TABLE 2 | (Continued)

Strains References Environment of
isolation

Polymer Degradation assessment
technique

Incubation
time
experiment

Main observed results

Aspergillus
terreus MF12

Balasubramanian
et al., 2014

Soil with PE
wastes

HDPE was pretreated by
physical (heat and UV),
chemical (citric acid and
KMnO4/HCl), and
biological (microbial)
treatments in different
combinations

SEM, GC-MS, weight loss
and FTIR

30 days Highest degradation rates for UV treated PE

Aspergillus tubingensis Khan et al., 2017 PU buried in soil PU SEM, tensile strength and
ATR-FTIR

20 days SEM surface cracking, erosion, pore formation
or loss in tensile strength and ATR-FTIR
detected degradation products

Aspergillus tubingensis
VRKPT1

Sangeetha Devi
et al., 2015

Coastal area of
gulf of Mannar

HDPE SEM, FTIR, weight loss,
total protein content
(alkaline hydrolysis
treatment)

30 days Weight loss of 6 ± 0.2%

Bjerkandera adusta Friedrich et al.,
2007

Collection Nylon-6 Halo test, SEM, DSC,
HPLC, Enzyme activity
assay

60 days Decrease in number Mn and production of
MnP in presence of Nylon

Cladosporium
cladosporioides

Brunner et al.,
2018

Shoreline of lake
Zurich

PU Halo test several days Halos indicating potential plastic usage

Cladosporium
pseudocladosporioides
strain T1.PL.1

Álvarez-Barragán
et al., 2016

Soil PU (Impranil) Halo test, SEM, FTIR,
GCMS, enzyme activity
assay

14 days detection of PU degradation via FTIR and
GCMS. Production of esterase in presence of
PU

Eupenicillium
hirayamae

Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, enzyme
activity assays,
quantification of CO2

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase
and MnP

Fusarium oxysporum Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

Fusarium oxysporum Nimchua et al.,
2007

Terrestrial
environment

PET Enzyme activity assay and
increase of hydrophilicity
detection

7 days Increase of hydrophobicity and release of TPA
from PET in presence of esterase

Fusarium solani Ronkvist et al.,
2009

Collection PET (low crystallinity) Weight loss, SEM, DSC
and HPLC

4 days Degradation of PET into TPA via cutinase
(named FsC) and 5% of film weight loss

Fusarium sp. Tachibana et al.,
2010

Nylon 4 films
buried in
composted soil

Nylon-4 Weight loss, Biochemical
oxygen demand (BOD),
NMR, MALDI-TOF and
SEM

35 days Decreased average weight and SEM evidence

Gloeophyllum trabeum Krueger et al.,
2015

Collection PS (polystyrene
sulfonate)

Size exclusion
chromatography (SEC)

20 days Depolymerization of up to 50% reduction in
Mn

Lasiodiplodia
crassispora

Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

Lasiodiplodia
theobromae

Sheik et al., 2015 Terrestrial
environment

LDPE and PP (Gamma
irradiated)

Weight loss, DSC,
SEM,FTIR, enzyme activity
assay

90 days production laccase, weight loss in PP and PE
and detection of degradation products via
FTIR

Leptosphaeria sp. Brunner et al.,
2018

Shoreline of lake
Zurich

PE, PU Halo test several days Halos indicating potential plastic usage

Paecilomyces variotii Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, Enzyme
Activity Assays, Estimation
of CO2 Evolution

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase,
MnP and lignin peroxidase

Penicillium
chrysogenum

Ojha et al., 2017 Soil from waste
disposal site

LDPE and HDPE SEM, AFM, and FTIR 90 days Visual with SEM and detection of degradation
compounds with FTIR after 60 days

Penicillium citrinum Liebminger et al.,
2007

Landfill soil PET Increase of hydrophilicity
detection (rising height and
drop dissipation
measurements)

1 day Polyesterase hydrolyzed PET showed by
rising height (5.1 cm) and drop dissipation
measurements (55 s)

Penicillium
griseofulvum

Brunner et al.,
2018

Shoreline of lake
Zurich

PE, PU Halos test several days Halos indicating potential plastic usage

Penicillium oxalicum Ojha et al., 2017 Soil from waste
disposal site

LDPE and HDPE sheets SEM, AFM, and FTIR 90 days Visual with SEM and detection of degradation
compounds with FTIR after 60 days

Penicillium
simplicissimum

Sowmya et al.,
2015

Soil from waste
disposal site

UV treated PE, non uv
autoclaved, non uv
surface sterilized

Halo test, SEM, FTIR, NMR
spectroscopy, Enzyme
activity assay

90 days Weight loss for UV treated polyethylene was
38%. FTIR detected degradation products.
NMR indicated degradation. Both laccase and
MnP when treated with PE disk showed
weight loss and morphological changes in
FTIR spectrum.

Penicillium
simplicissimum YK

Yamada-Onodera
et al., 2001

Soil PE HT-GPC, FTIR, visual
growth assessment

90 days Lower molecular weight and FTIR detection of
degradation products

Penicillium sp. Alshehrei, 2017 Seawater PE Weight loss, tensile
strength, SEM, FTIR

30 days 43.4% weight loss of PE

Penicillium sp. Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

(Continued)
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TABLE 2 | (Continued)

Strains References Environment of
isolation

Polymer Degradation assessment
technique

Incubation
time
experiment

Main observed results

Penicillium sp. Magnin et al.,
2019

Waste from
terrestrial
environment

PU Weight loss, FTIR, SEM 60 days SEM showed visual signs of degradation.
Detection of PU degradation via FTIR

Phialophora alba Ameen et al.,
2015

Mangrove LDPE Weight loss, SEM, Enzyme
Activity Assays, Estimation
of CO2 Evolution

28 days Increased biomass in culture with LDPE, CO2

emission and increased production of laccase
and MnP

strain IZU-154 Deguchi et al.,
1997

Collection Nylon-6 NMR 20 days NMR showed formation of four end groups,
CHO, NHCHO, CH3, and CONH2 indicating
degradation

strain IZU-154 Iiyoshi et al., 1998 Collection PE Tensile strength, enzyme
activity assay, HT-GPC

12 days Decrease of tensile strength in presence of
strain. Production of MnP. Loss in Mn with
MnP treatment

Thermomyces
(formerly Humicola)
insolens

Ronkvist et al.,
2009

Collection PET (low crystallinity) Weight loss, SEM, DSC
and HPLC

6 days Degradation of PET into TPA via cutinase
(named HiC) and 97% weight loss

Trichoderma
harzianum

Raghavendra
et al., 2016

Soil from waste
disposal site

PU and LDPE UV
irradiated for 50 h

Halo test, weight loss 90 days Weight loss for PE and PU after 90 days and
loss of tensile strength

Trichoderma
harzianum

Sowmya et al.,
2014

Dumpsite soil PE SEM, FTIR, NMR analyses
and enzyme assay

90 days Weight loss of UV PE was 40%. Enzymes
causing degradation were identified as
laccase and MnP

Trichoderma viride Munir et al., 2018 Soil from waste
disposal site

LDPE Weight loss, tensile
strength

45 days Weight loss of 5.13% and tensile strength
reduction of 58%

Xepiculopsis graminea Brunner et al.,
2018

Shoreline of lake
Zurich

PE, PU Halos test several days Halos indicating potential plastic usage

Zalerion maritimum
(ATTC 34329)

Paço et al., 2017 From collection
but marine strain

PE FTIR-ATR, NMR 28 days FTIR analysis (carbonyl index), mass loss of
56.7 ± 2.9% of the plastic

PE, polyethylene; LDPE, low density polyethylene; HDPE, high density polyethylene; PP, polypropylene; PS, polystyrene; PU, polyurethane; Nylon, polyamides; PET,
polyethylene terephthalate; TPA, terephthalic acid; SEM, scanning electron microscopy; FTIR, Fourier-transform infrared spectroscopy; NMR, nuclear magnetic resonance;
DSC, differential scanning calorimetry; HPLC, high-performance liquid chromatography; HT-GPC, high temperature gel permeation chromatography; GC-MS, gas
chromatography–mass spectrometry; MALDI-TOF, matrix-assisted laser desorption/ionization – time-of-flight mass spectrometry; Mn, average molecular weight; MnP,
manganese peroxidase.

plastic degraders. P. chrysogenum, P. oxalicum, P. simplicissimum
isolated from soil (Yamada-Onodera et al., 2001; Sowmya et al.,
2012; Ojha et al., 2017) and Penicillium sp. isolated from seawater
(Alshehrei, 2017) showed potential to degrade PE. Similar to
Penicillium, different species belonging to the genus Aspergillus
were found to be potential plastic degraders as well (Table 2).
A. flavus isolated from soil (Deepika and Madhuri, 2015), wax
moth gut (Zhang et al., 2020) and a marine environment
(Sangeetha Devi et al., 2015; Alshehrei, 2017) exhibited the
potential to degrade PE and A. niger isolated from soil (Deepika
and Madhuri, 2015; Raghavendra et al., 2016) and seawater
(Alshehrei, 2017) showed potential to degrade PE and PU. Also,
A. terreus isolated from soil (Zahra et al., 2010), mangrove
sediments (Ameen et al., 2015; Sangale et al., 2019) and seawater
(Alshehrei, 2017) were potentially able to degrade PE. In addition
to these species, several other types of Aspergillus strains were
considered as potential PE and PU degraders. Many of the
plastic degrading species that were isolated from terrestrial
environments (Table 2) are also found in marine habitats.
However, it has not been confirmed if all of the plastic degrading
strains found in terrestrial environments perform equally well in
the marine realm.

The enzymes utilized by plastic degrading fungi in the
environment are typically not constrained. However, fungi
produce a wide range of enzymes that have the potential
to break down the chemical bonds of the plastic polymers
(Figure 1). Amongst these are manganese peroxidase (MnP)
and lignin peroxidase (LiP), which are commonly associated

with lignin degradation (Xu et al., 2013). These enzymes
catalyze oxidation-reduction reactions, involving free radicals,
transforming several compounds into oxidized or polymerized
products (Wei and Zimmermann, 2017). Peroxidase are also
used in industrial applications for degrading recalcitrant organic
pollutants, PAHs, industrial dyes and chlorophenols (Qin et al.,
2014). Lignin peroxidase is characterized by a high redox
potential, and enables oxidation of non-phenolic aromatic
compounds. Another enzyme that might be involved in plastic
degradation is laccase, a multicopper oxidase, which is a well
classified lignin-modifying enzyme (Mehra et al., 2018) and
mediates the oxidation of the polymers’ carbon backbone
(Amobonye et al., 2021).

Elevated laccase, manganese peroxidase and lignin peroxidase
activities were observed during PE degradation by a fungal
consortium in a mangrove (Ameen et al., 2015). It appears
likely that these enzymes also play a role in potential plastic
degradation in the ocean. Marine adapted fungi have the ability
to regulate the expression of their enzymes according to salinity.
Cultivated in marine conditions, Peniophora sp., for example,
showed multigene transcription of ligninolytic laccase enzymes
(Otero et al., 2017). Fungi isolated from marine environments can
also produce enzymes that allow them to grow in liquid media
with sole carbon sources such as agar, alginate, carrageenans,
laminarians, and ulvans, i.e., polymers which are common
in the marine realm (Wang et al., 2016). However, whether
these compounds are also utilized by marine fungi in situ,
i.e., in the ocean, still needs to be shown. Similarly to several
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FIGURE 1 | Schematic of important plastic types encountered in the marine environment. Fungal enzymes and fungal groups potentially involved in plastic
degradation are displayed. Blue underline indicates fungi producing laccase. Green underline indicates fungi producing peroxidase, Yellow underline indicates fungi
producing polyesterase and red underline indicates fungi producing cutinase. PE, polyethylene; PP, polypropylene; PS, polystyrene; PU, polyurethane; Nylon,
polyamides; PET, polyethylene terephthalate.

biopolymers in the terrestrial realm, these marine polymers also
feature chemical similarities with some plastic types (presence of
aromatic compounds, presence of carbonyl groups). The ability
of marine fungi to regulate their metabolism and to adapt to
different environments and substrates indicates that the number
of marine fungi with the potential to degrade plastics could
be underestimated.

ANALYTICAL TOOLS FOR ASSESSING
THE POTENTIAL FOR FUNGI-MEDIATED
PLASTIC DEGRADATION

Relatively little is known about the potential for microbial
plastic biodegradation in the marine environment (Wayman
and Niemann, 2021). However, the chemical structures of most
plastic polymers render them rather durable, which makes it
challenging to evaluate the biodegradability of conventional
plastics and to identify the key organisms mediating this process.
As the majority of studies evaluating plastic breakdown have
been conducted in the terrestrial environment (Ru et al., 2020),
the methods reviewed below do not focus solely on the marine
systems (Table 3).

Gravimetric Measurements and Growth
of Biomass
To date, the most commonly applied technique to assess
plastic biodegradation is based on gravimetric measurement of

weight/mass loss of the polymer over a specific time period
during which the plastic is exposed to an environmental
matrix or to cultured microbes. Weight loss of plastic has
been demonstrated both in studies where plastics were exposed
to soils, the marine water column and sediments (Syranidou
et al., 2017; Welden and Cowie, 2017) as well as in studies
focusing on the capability of a single strain to degrade specific
plastic polymers (Table 2). However, in environmental studies, it
remains unclear to which extent the observed plastic breakdown
was due to solely fungal activity. In the environment, the
observed breakdown may be facilitated by microorganisms other
than fungi and/or by microbial consortia, and/or by abiotic
factors, such as mechanical degradation. These factors remain
inseparable from potential fungal biodegradation. In contrast,
laboratory studies with single strains decrease the number of
biotic and abiotic factors, that may contribute to the plastic
degradation. Fungal isolates recovered from municipal solid
waste revealed that Fusarium oxysporum, Aspergillus fumigatus,
Lasiodiplodia crassispora, Aspergillus niger, Penicillium sp., and
Trichoderma harzianum were all able to cause a weight loss of
PE as well as PU (Raghavendra et al., 2016). A. niger showed
the highest biodegradation efficiency leading to a weight loss
of 2.9, 4.3, and 5.1% of LDPE sheets and 0.8, 1.5, and 2.2%
of PU sheets exposed for 30, 60 and 90 days, respectively.
Fusarium oxysporum as well as Aspergillus sp. have previously
been shown to cause weight loss of LDPE (Das and Kumar,
2014). Trichoderma viride and Aspergillus nomius, isolated from
landfill soil, caused weight loss of LDPE films of 5.1 and 6.6%,

Frontiers in Marine Science | www.frontiersin.org 8 November 2021 | Volume 8 | Article 738877

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-738877 November 26, 2021 Time: 10:17 # 9

Zeghal et al. Plastic Degradation by Marine Fungi

respectively, after 45 days (Munir et al., 2018). Cladosporium
tenuissimum caused 25.9 and 65.3% of weight loss of PE-PU
foams with and without flame retardants, respectively (Álvarez-
Barragán et al., 2016). The marine fungus Zalerion maritimum
exposed to PE microplastics caused mass loss of 56.7 ± 2.9% of
the plastic, corresponding to 43% of removal after 2 weeks of
exposure (Paço et al., 2017).

Although determining the weight loss of plastic is a
straightforward method, it requires a long monitoring time,
ranging from months to years to yield measurable gravimetric
changes, while short term studies often yield inconclusive
results (Lee et al., 1991). Gravimetric measurements require
post incubation treatments, i.e., the removal of the biofilm
from the incubated plastic. This can easily cause measurement
artifacts; e.g., the incomplete removal of biofilm or accidental
removal of a polymer respectively leads to an under or
overestimation of weight loss. Weight loss measurements
indicate that plastic polymers indeed disintegrate over time,
however, this type of measurement does not reveal whether
the polymer is broken down physiochemically (e.g., plastics
release lower molecular weight compounds as a result of
photooxidation; Wayman and Niemann, 2021) or if the plastic
polymer was hydrolyzed and metabolized by microbes. Some
plastics (e.g., polyvinyl chloride) contain high quantities of
additives which, if soluble, can be released, and thus bias
weight loss measurements. Also, biomass figures (i.e., cell
numbers, culture dry weight) are typically not reported for

culture-based studies, making these investigations quantitatively
non-repeatable, thus, severely limiting comparability. Hence,
gravimetric measurements are insufficient to identify plastic
degrading organisms and microbial kinetics, but should be
accompanied by other methods.

Determining microbial biomass growth on plastic as the sole
carbon source (e.g., monitoring cell numbers) has been used to
infer the biodegradability of a specific polymer. Together with
monitoring the weight loss of the polymer, some studies have
measured an increase in fungal biomass as an indicator for the
activity of fungi (Paço et al., 2017), and interpreted that the
increase in fungal biomass occurred at the expense of carbon
originating from the plastics.

Clearance Zone Formation
The growth of fungi at the expense of plastic can be monitored
visually with degradation assays based on plates coated with agar
and solubilized plastic. Inoculation at the surface and utilization
of the plastic leads to the formation of clearance zones, referred
to as ‘halos.’ Appearance of ‘halos’ on plates with plastics as the
sole carbon source is used as an indicator for plastic degradation.
The fungal species Cladosporium cladosporioides, Xepiculopsis
graminea, and Penicillium griseofulvum and Leptosphaeria sp.,
isolated from plastic debris from the lake Zurich, formed
clearance zones on PU. However, none of these strains
were able to degrade polyethylene (Brunner et al., 2018).
Attempts to use polyethylene and clearance zone formation

TABLE 3 | Most common methods used to assess plastic degradation advantages and disadvantages.

Methods Principle Advantages Disadvantages

Gravimetric measurements and growth
of biomass

Monitoring strains biomass growth with
plastic as sole carbon source and
plastic weight changes

Easily performed measurement and
inexpensive

Not accurate and weight loss can be
due to other processes than
biodegradation

Clearance zone formation Visual assessment based on the
appearance of clearance zones on agar
plates containing solubilized plastic

Easy assessment and cheap. Great
screening technique before further
studies.

The plastic is not the sole carbon
source (presence of agar) so the strain
growth cannot be automatically
imputed to the biodegradation of plastic

Scanning Electron Microscopy (SEM) Microscopy technique allowing visual
assessment of strain growth and
physical changes within the polymer

High resolution allowing a clear visual
assessment

Changes in polymer physical structure
and strain growth are not sufficient to
prove plastic biodegradation

Atomic Force Microscopy (AFM) Microscopy technique allowing
collection of data on the surface
roughness

Precise quantitative and qualitative data
on the surface roughness

Changes in polymer surface roughness
are not sufficient to prove plastic
biodegradation

Fourier-Transform Infrared
Spectroscopy (FTIR)

Spectroscopy technique allowing the
obtention of an infrared spectrum of
physio-chemical properties of a sample

Reliable detection and
semi-quantification of changes of the
polymer configuration

Sensitive to biofilm attachment and
chemical treatments. Only proves
degradation of the plastic

Assays with 13C or 14C labeled
polymers

Tracing of isotopically labeled carbon
from the plastic polymers

Precise quantification of plastic
degradation products and traces
incorporation in microbial biomass

High costs

Respiratory assays Measurements of O2 consumption
and/or CO2 production of strains

Can provide quantitative information on
degradation

Respiration cannot be automatically
imputed to biodegradation of plastic

Tensile resistance Detection of physio-chemical properties
changes (tensile resistance strength,
thermal stability, glass transmission,
molecular weight). The decrease
detected in these properties indicates
structural alteration of the plastic
polymer

Easy measurements that can indicate
plastic polymer degradation

Changes in these properties do not
automatically indicate biodegradation of
plastic as these methods are sensitive
to other processes of degradation

Thermo Gravimetrical Analysis (TGA)

Differential scanning calorimetric
analysis (DSC)

High-Temperature Gel Permeation
Chromatography (HT-GPC)
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have been successful for Aspergillus niger and Aspergillus flavus
(Deepika and Madhuri, 2015).

Clearance zone tests allow for rapid visual observations.
However, the technique has the drawback that it requires
dissolving the polymer in an organic solvent that can be applied
to the petri dish at relatively cold temperatures to avoid agar
melting. Furthermore, remnants of the solvents (rather than the
plastic) may act as a carbon source for the fungi, leading to false-
positive results. In addition, bias associated with clearance zone
formation is relatively large, as clearance zones are not uniform
in size or shape. Finally, fungi with hyphae may grow through the
plastic, thus gain access to the agar below, which can also lead to
false-positive results. As agar also represents a carbon source, this
test alone does not prove microbial plastic degradation.

Scanning Electron Microscopy
Scanning electron microscopy (SEM) is used to create a surface
image by directing a high-intensity electron beam at the surface
and scanning over this surface. SEM allows high magnification,
thus offers high resolution at the nanometer range. SEM-
based observations are used to examine and evaluate the
colonization of plastic films or particles by microorganisms and
to simultaneously visualize cracks, pits and deformations on the
plastic surface (Zettler et al., 2013; Vaksmaa et al., 2021a), which
in return can indicate if the polymer is degraded. SEM has
been applied in several studies to investigate fungi on plastics,
for example, to visualize the growth of C. tenuissimum and
C. pseudocladosporioides hyphae within PE-PU foams (Álvarez-
Barragán et al., 2016). Furthermore, Paço et al. (2017) visualized
the attachment of Z. maritimum on PE. With SEM, also surface
roughness of single plastic fragments can be visualized. Floating
marine plastics often feature signs of abrasion, cracking and
ongoing fragmentation (Zettler et al., 2013; Vaksmaa et al.,
2021b). Also, plastics exposed to the marine environment
developed such signs during the incubation. For example,
Welden and Cowie (2017) exposed PE, PP and Nylon to
marine sediment for 12 months and found breaks and increased
fraying on nylon ropes, surface scratching and roughening
on PE filament rope, cracks, fissures and finer surface fibers
scaling off from PP.

Scanning electron microscopy is a rapid technique, and
allows to visualize surface attachment and morphological
microstructures. Observations by SEM without chemical fixation
can be achieved by applying FIB-SEM (Focused Ion Beam milling
combined with Scanning Electron Microscopy). However, SEM
does not allow phylogenetic identification of the microbes
(unless the strain-specific morphological characteristics allow
this) and the formation and attachment of biofilms is not
necessarily an indication for biodegradation. Furthermore,
though SEM is a valuable tool to visualize surface defects
(e.g., cracks) of the plastic, it does not allow to scale in
Z-direction (i.e., to measure the depth of cracks). Alternatively,
this may be achieved by atomic force microscopy (AFM).
For example, an increase in surface roughness and formation
of cracks and grooves on PE films were investigated with
AFM after exposure to two different Penicillium strains
(Ojha et al., 2017).

Fourier-Transform Infrared Spectroscopy
Fourier-transform infrared spectroscopy (FTIR) is a technique
used to obtain an infrared spectrum of absorption, emission,
and photoconductivity of a material allowing to determine the
chemical identity of most polymers. Furthermore, the FTIR
spectrum enables detection and semi-quantification of changes of
the original polymer configuration, for example, the introduction
of carbonyl groups during polymer oxidation (Xu et al., 2019;
Almond et al., 2020). The degree of carbonylation can be
enumerated by determining the carbonyl index (calculated from
the ratio between the integrated band absorbance of the carbonyl
and that of the methylene peaks). Carbonyl indexes, as a measure
of degradation, has been applied for a variety of polymers,
such as PU (Filip, 1979; Álvarez-Barragán et al., 2016), PE
(Paço et al., 2017), PS (Tian et al., 2017), and PP (Sheik et al.,
2015). PE degradation has been evaluated by FTIR in co-cultures
of bacteria and fungi, Lysinibacillus xylanilyticus and A. niger,
isolated from soil (Esmaeili et al., 2013). For example, Penicillium
variabile CCF3219 strain decreased the carbonyl peaks of pre-
oxidized 14C-βPS after 16 weeks of incubation and ozonation
pre-treatment enhanced subsequent biodegradation (Tian et al.,
2017). An additional advantage of FTIR is that it can be used
for small plastic particles (the diffraction limit in IR spectroscopy
is ∼10–20 µm).

Fourier-transform infrared spectroscopy is a straightforward
and reliable technique, however, it often yields non-quantitative
results that are difficult to compare between studies. Also,
the attachment of biofilm on the plastic surfaces affects the
plastics optical properties in the IR range because proteinic
and polysaccharide contents of the biomass will change the
polymer’s IR spectrum (Bonhomme et al., 2003). Samples must
hence be pretreated to remove biofilms, e.g., using hydrogen
peroxide (Löder and Gerdts, 2015) or sodium dodecyl sulfate
(Zhang et al., 2020). These chemicals have been described
as the least aggressive. Nevertheless, chemical treatments can
modify the molecular structure of plastic surfaces, which can
introduce biases.

Assays With 13C or 14C Labeled
Polymers
Isotopically labeled plastics can be traced into biodegradation
products sensitively and quantitatively (Lanctôt et al., 2018;
Taipale et al., 2019). The first studies involving isotopically
labeled plastics were conducted with the radio isotope 14C.
The fungus Fusarium redolens liberated 14C-CO2, originating
from pulverized 14C-labeled HDPE (Albertsson, 1978, 1980;
Albertsson et al., 1978). 14C labeled 14C-CO2 formation was
also evaluated after photoirradiation of 14C-αPS and 14C-βPS,
exposed to garden soil and activated sludge, showing higher
14C-CO2 formation in treatments with photo oxidized polymer.
The authors quantified degradation rates and showed that
complete degradation of the 14C-αPS polymer in garden soil
would require 20 to 80 years and in activated sludge from 11
to 24 years (Guillet et al., 1974). 14C labeled polystyrene was
also used to test PS degradation capabilities of 17 different
fungal species in a 14 days incubation experiment during
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which 0 to 0.24% of the 14C-PS was degraded (Kaplan et al.,
1979). Because radioactivity can be measured and quantified
extremely sensitively, radio isotope probing allows determining
extremely low plastic degradation rates. Nevertheless, the use of
radio-chemicals entails the necessity for specialized laboratory
facilities and trained personnel, and the radio-labeled base
materials for synthesizing polymers are extremely expensive
or not available at all. This makes the use of radio isotopes
mostly impractical. However, using plastics labeled with stable
isotopes (e.g., containing a high degree of 13C or 2H) provides a
good alternative. Similar to radio isotope probing, stable isotope
probing (SIP) offers the advantages to allow tracing plastic
derived matter into degradation products (Sander et al., 2019;
Taipale et al., 2019), though the ubiquitous presence of 13C
and 2H in most types of matter makes SIP assays less sensitive
compared to approaches with radio isotopes. Nevertheless, no
study using 13C or 2H labeled conventional plastics (PE, PP, PET,
PS, PU, and nylon) for investigating interactions of marine fungi
and plastics has been published yet. On the other hand, Zumstein
et al. (2018) used 13C-PBAT (Polybutylene adipate terephthalate)
to study its microbial degradation in soil.

Other Methods
Additional methods to evaluate plastic degradation include
the following techniques: (i) Respiratory measurements of O2
consumption or CO2 production, which can provide quantitative
information of degradation, but cannot discriminate between
different respiration pathways. (ii) Tensile resistance alterations
of plastic can be used as a measure of the strength/integrity of the
plastics, which will decrease as a function of degradation (yet, also
physiochemically induced degradation reduces tensile strength).
(iii) Thermo Gravimetrical Analysis (TGA) characterizes the
thermal stability of a polymer, which can potentially indicate
its degradation (similar to tensile strength). (iv) Differential
scanning calorimetric (DSC) analysis assesses the thermal
properties of synthetic polymers, such as glass transition
Temperature (Tg).

Lower Tg temperatures are often related to a decrease in
the stability, indicating degradation (Lucas et al., 2008). (v)
High-Temperature Gel Permeation Chromatography (HT-GPC)
provides information on the molecular weight (Mn%) and
molecular weight distribution of the polymer. A decrease in Mn%
is evidence of chain cleavage that can be related to microbial
degradation. Nevertheless, just as alterations of tensile resistance,
glass transition Temperature, thermal stability and the molecular
weight will also change in response to physicochemical processes
Finally, none of the other methods described in this section is able
to unambiguously prove the occurrence of complete microbial
biodegradation, from initial depolymerization to mineralization
and biomass assimilation.

LIMITATIONS OF STUDYING FUNGAL
COMMUNITIES

In comparison to bacteria, fungi in the marine realm are
understudied and often overlooked. It seems likely that fungi
are relevant as saprotrophs in general and may act as plastic

degraders, yet this needs to be demonstrated in future studies.
However, in comparison to investigating bacterial communities,
taxonomic and physiological characterization of (marine) fungi
is not as straightforward and standardized methods are generally
lacking. Indeed, molecular studies on fungi still encounter classic
difficulties and biases related to molecular techniques such as
polymerase chain reaction (PCR) bias, library preparation bias,
sequencing bias, bioinformatics biases and unequal sequencing
depth. Perhaps the most hindering factors in molecular studies of
fungi are: (i) nucleic acid extraction method bias (ii) marker gene
bias when using 18S rRNA or ITS spacer and (iii) primer bias.
In addition, also (iv) culture-based methods are hindered by the
fact that identification based on morphological features (alone) is
difficult, growth conditions are hard to determine and fungi have
complex life cycles.

(i) Fungal genomic DNA extraction is less straightforward
in comparison to extracting DNA from bacteria. Fungal
cell walls are made of chitin making them more robust
than a peptidoglycan bacterial cell wall (Fredricks et al.,
2005; Shin, 2018). Breaking down fungal cells requires
further steps such as the addition of lysing agents (for
example, adapting the lysis buffer or adding enzymes such
as cutinases) and/or mechanical disruption (e.g., increasing
bead-beating steps or introducing freeze-thaw cycles) to
increase fungal DNA yields, while maintaining the integrity
of the DNA. Furthermore, different fungal strains may
require different extraction steps to be added, complicating
DNA extraction from the whole fungal community in
environmental samples.

(ii) Selection of a reliable marker gene (gene section) is
influenced not only by the number of targeted taxa,
but also the feasibility of down-stream analysis as this
depends on the availability of data stored in publicly
available databases. For prokaryotes, several and up to
date databases exist for 16S rRNA gene sequences (and
are publicly accessible), while far less information is
available for 18S rRNA sequences. One of the most
commonly used database is SILVA, but while the SILVA
ref 138.1 release (Quast et al., 2013) contains 2,052,220
16S rRNA gene sequences (1,983,022 bacterial and 69,198
archaeal sequences), it only contains172,520 18S rRNA
gene sequences, of which 30,386 were classified as fungi.
SILVA also, hosts a repository of 9329 representative 18S
rRNA gene sequences covering all of the fungal kingdom
and includes a manually curated alignment, and reference
phylogenetic tree (Yarza et al., 2017). An alternative
database for the identification of fungi is the ITS sequence
database UNITE, but the most recent release (Nilsson et al.,
2018) contains a similarly low number of 30,555 fungal
sequences. Reich and Labes (2017) reviewed the available
molecular ecology tools including their advantages and
drawbacks when applied to the community studies of
marine fungi. Even when the available number of 18S
rRNA gene sequences, ITS sequences and fungal genomes
has increased substantially, these numbers stand in stark
contrast to the estimated several million fungal species
(Nilsson et al., 2015). About 50% of the described fungal
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species still lack any DNA sequence information in public
databases (Xu, 2016). In order to fill the taxonomic marker-
related gaps in public databases, it has been suggested to use
third-generation sequencing and apply ribosomal tandem
repeat sequencing to cover all ribosomal markers for fungi
(Wurzbacher et al., 2019).

(iii) Different nuclear ribosomal DNA marker genes are
used for the identification of fungal species. However,
environmental studies on fungal communities, apply most
commonly the ITS and the 18S rRNA marker gene. The
ITS region has been proposed as a universal barcode for
fungal DNA as it may allow for a better resolution of
fungal taxonomy than the 18S rRNA gene overall (Schoch
et al., 2012). ITS barcoded sequencing has been successfully
applied for both unicellular as well as for filamentous fungi
(Vu et al., 2016, 2019). Many ITS targeting primers have
been developed in recent years (Martin and Rygiewicz,
2005; Manter and Vivanco, 2007; Toju et al., 2012).
However, choosing adequate thresholds for taxonomic
assignments in ITS processing pipelines is delicate as the
average intraspecific ITS variability is fluctuating (Smith
et al., 2007; Simon and Weiß, 2008). For example, 0.2%
for A. fumigatus, 3.1% for F. solani and up to 24.2% for
the Ascomycota Xylaria hypoxylon (Nilsson et al., 2008).
Vu et al. (2016, 2019) suggested that a threshold of 98.41%
should be applied for ITS to distinguish between yeast
species and a threshold of 99.6% should be applied to
discriminate between filamentous fungi. Moreover, within
an individual, ITS polymorphism (Alper et al., 2011) and
ITS hybrid forms (Sriswasdi et al., 2019) were reported.
Consequently, even when using fungal specific primers
(ITS), intraspecific variability might not lead to species
identification. Use of ITS shows even more limitations
when dealing with marine fungi. Indeed, the ITS marker
has a higher divergence rate compared to the 18S rRNA
marker gene in marine fungal communities where early
diverging fungi are abundant, and thus results into low
classification success rates for ITS (Nilsson et al., 2019). For
example, De Tender et al. (2017) could not assign 28 to 99%
of the fungal reads acquired in their study when using ITS.
To overcome this issue, it has been suggested to combine
multiple marker genes for the molecular identification
of the members of marine fungal communities. Banos
et al. (2018) suggested to apply a fungi-specific 18S rRNA
primers according to different environments, conditions or
goals. This raises a new issue when using fungal specific
ITS/18S primers, as different sets may overestimate some
taxa and, in some cases, not target any fungus at all. By
using a long read sequencing approach multiple marker
genes can be retrieved at the same time, which allows for
better taxonomic resolution (Heeger et al., 2018). Studies
focusing on fungi colonizing plastic debris are scarce and
the use of different marker genes and short read sequencing
technology (Table 1) makes comparison between different
datasets difficult. Unfortunately, no credible hypotheses on
the presence or absence of a core fungal community living
on plastic can be formulated yet.

(iv) Culture-based methods are time-consuming and the
culture media will have a selective effect on fungal
growth. There is no specific medium for marine fungi
available to date, but only adaptions of media selective
for terrestrial fungi. The morphological diversity associated
with different developmental stages of the same species,
complicates the identification of fungal isolates (Xu,
2016). Nevertheless, only culturing of strains isolated from
environmental samples enables in-depth investigation of
their physiological and metabolic capabilities. Overy et al.
(2019) published a toolkit of best practices for the
culturing and isolation of marine fungi. We thus argue
that combining molecular and isolation/culturing effort
is the best way to evaluate interactions between fungal
communities and plastics in marine environments.

CONCLUSION-OUTLOOK

This mini-review summarizes the current knowledge on marine
fungi – PMD interactions; i.e., the ability of fungi to colonize
plastics and specific strains known to degrade plastics as well
as the methodological advances and difficulties in studying
fungi – PMD interactions. Investigating the interaction of marine
fungi and PMD is an emerging and exciting field of research
when considering the high potential for plastic degradation
of several fungal strains. Yet, for a well-constrained appraisal
of marine fungi and their role as plastic degraders, several
knowledge gaps still need to be filled. Firstly, a more general and
fundamental understanding of fungi in the marine environment
needs to be achieved by addressing fungal prevalence and
diversity in the ocean. By using new molecular markers, the
available sequence databases could be expanded for future
classification of fungi detected on plastic polymers and to classify
currently unclassified fungi. To address the biodegradation
potential of fungi, comparable detection methods should be
used to enable comparison between different strains, polymers
and studies. Also, we suggest applying several complementary
techniques for assessing biodegradation, particularly if the used
techniques might cause false positives. Once fungal species
degrading plastic in the marine environment are identified, future
research should address the enzymatic potential of these fungi,
which might then serve biotechnological applications for plastic
waste bioremediation.
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