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Summary 

The pineal gland is part of the endocrine system involved with rhythmic activity in e.g. 

fish. The main product of the pineal gland is the indole hormone melatonin, 

synthesised from the amino acid tryptophan. Melatonin is mainly synthesized when it 

is dark, as light inhibit the production. For this reason melatonin is thought to be 

strongly involved in biological rhythms. Arctic charr (Salvelinus alpinus) is a 

circumpolar species and anadromous in parts of its distribution area. Arctic charr 

experience strong seasonal changes in environmental factors, such as light regime, 

temperature and nutrient availability. This may influence for example smoltification 

and spawning. The pineal gland and melatonin are considered important in the 

adaptation to the shifting environment. On this background the present study was 

conducted in order to reveal seasonal differences in diel plasma melatonin rhythms 

and putative associated changes in pineal morphology, pinealocytes, glial cells, 

blood vessels, mitochondria, endoplasmatic reticulum and lumen. In order to do so 

Arctic charr were held in freshwater under natural light conditions from August 2006 

to June 2007. Blood samples taken at 7 time points through four 24 hour periods 

(August, December, February and June) during the year were analysed for plasma 

melatonin levels. Further, pineal glands were excised from Arctic charr at mid-day at 

the same dates for ultrastructure- and stereological analysis. Radioimmunoassay 

analysis of the plasma melatonin levels revealed higher peak values for the 

scotophase of December and February than was found during the photophase. 

August and June showed a consistent low level of plasma melatonin throughout the 

24 hours period. No significant differences were found between the seasons with 

regard to ultrastructure and organelle volumes studied.  

 

Key words: Arctic charr; seasonality; pineal gland; melatonin; ultrastructure; 

stereology 
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1. Introduction 
Arctic charr (Salvelinus alpinus L.) is the worlds northernmost living freshwater fish. 

Its distribution is circumpolar, and further south it is found in alpine areas in central 

Europe (Johnson 1980). Anadromous (sea migratory) populations of Arctic charr is 

found in the northern parts of the distribution area, but in some lakes the Arctic charr 

remain in freshwater throughout their life even if it is possible to migrate to the sea 

(Johnson 1980). Populations and morphs of this species differ in many 

characteristics as a result of long term spatial separation. Examples of such traits are 

distribution with respect to depth, choice of prey, the size at maturity and the time and 

the place of spawning (Klemetsen et al. 2003). In many lakes sympatric populations 

(e.g. anadromous/resident) are found, which means that there is more than one form 

or morph found in one and the same lake (Johnson 1980; Rikardsen et al. 2000; 

Klemetsen et al. 2003). This reveals a substantial plasticity within this species 

regarding life-history strategies.  

Light conditions in the Arctic show extreme variations throughout the year. 

During winter it is a long period of total darkness in the ice covered lakes, whereas in 

summer the sun is above the horizon for several months, resulting in high light 

intensity 24 hours a day. Food resources are abundant during summer, especially for 

the individuals that undertake migration to the sea. Fresh water lakes are very 

nutrient poor during winter (Gross et al. 1988). The extreme seasonal variations in 

light, food supply and water temperature in the high north represents substantial 

challenges for animals living in these areas, with regard to resource accumulation 

(feeding and growth) and reproduction. Arctic charr, as well as most other animals in 

these areas, need to accumulate as much energy as possible during the periods of 

abundant food supply for autumn reproduction and winter survival. This has resulted 

in a marked seasonal variation in food intake and growth in this species (Jørgensen 

et al. 1997). Immature fish feed intensively throughout summer and cease feeding in 

the autumn, apparently when a threshold condition factor and energy status have 

been attained (Tveiten et al. 1996). Maturing fish needs extra energy for gonad 

maturation, and in line with this it has been found that maturing fish start feeding 

earlier in spring than immature fish (Tveiten et al. 1996). Frantzen et al. (2004) 

studied the effects of photoperiod on plasma levels of sex steroid and gonad 

maturation, and found that a switch from long day to short day early in the 
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reproduction cycle resulted in a stronger synchronization in both ovulation and 

spermiation, and a temporal advanced maturation. Further it has been shown that 

photoperiod govern the timing of the process (smoltification) that prepare 

anadromous individuals for seaward migration (Johnsen et al. 2000). Hence, the 

Arctic charr show a strong seasonality, including rhythms in food intake, growth, 

adiposity, seawater tolerance, reproduction etc., which need to be synchronized with 

the changing seasons. These rhythms are expected to be controlled by phase-

adjusted endogenous timing mechanisms in the Arctic charr (Sæther et al. 1996). For 

such phase adjustments (entrainment) animals in general use the change in 

daylength (photoperiod) as a reliable environmental cue for calendar information 

(Falcón et al. 1992; Reiter 1993). One of the organs that is involved in light 

perception and entrainment is the pineal gland, which produce and secrete the 

hormone melatonin. The pineal gland is both a sensory and a secretory organ 

(Rüdeberg 1970). The pineal gland is considered to be part of the system regulating 

biological rhythmicity, mainly due to its main secretory product, the indole hormone 

melatonin (Kulczykowska 2001). In birds and mammals melatonin is strongly involved 

in the synchronization of diurnal and annual rhythms (Reiter 1993) whereas the role 

of melatonin in fish is less clear (Falcón 1999).  

The pineal organ in Arctic charr is located in the skull roof (Holmgren 1959; 

Rüdeberg 1968), and shown in figures 1 and 2. 

  

 
Figure 1: Transparent window in the skull of 

Arctic charr, and the position of the pineal 

gland (arrow) under it. Photo by the author. 

 
Figure 2: Close up picture of the pineal gland 

in Arctic charr (arrow). Photo: Jo Jorem 

Aarseth. 
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Above the gland is an area (the pineal window) where the cartilage is thinner and 

more transparent, and in this area there is a crevice for the pineal gland. It is close to 

the top of the head, in the most ideal position for receiving as much light information 

as possible (see figures 1 and 2). The pineal organ is developed from the same area 

as the thalamus and pituitary glands (Ekström and Meissl 1997). 

 The pineal gland in salmonids is directly light sensitive (Migaud et al. 2007). 

Light inhibit melatonin production, whereas darkness removes this inhibition. The 

responds time to light is rapid. Figure 3 shows the change in melatonin levels in an in 

vitro experiment as the light were changed. It is clear that light inhibit the melatonin 

production with immediate results (Strand et al. 2008). 
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Figure 3: In vitro production of melatonin in pineal glands from Arctic charr exposed to an experimental 

light regime (top panel). Lower panel shows the natural LD at 69°N during the experiment (22.-27. 

January). Each value is the mean of 6 glands (±SEM). White, gray and black bars represent light, civil 

twilight and darkness, respectively. Light intensities; light 50 μW/cm2 (752 lux), darkness 0.001 

μW/cm2 (0.015 lux). (From Strand et al. 2008, with permission). 

 

The sack-like shape of the pineal gland is remarkable similar throughout the animal 

kingdom (Falcón 1999). A slender stalk connects the pineal gland to the 

diencephalon, and the lumen opens to the third ventricle, which is filled with 

cerebrospinal fluid (Falcón 1999). Generally the pineal gland in fish looks the same, 

but there are some species-specific variations with regard to morphology (Holmgren 
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1959) and folds in the central lumen (Ekström and Meissl 1997). The pineal organ 

consists of the pineal gland and the parapineal organ. The parapineal organ is 

present in embryologic stages of development but is lacking in adult fish (Holmgren 

1959; McNulty 1984; Vighteichmann et al. 1991). The function of the parapineal 

organ in fishes is not well understood, and it will not be discussed in this thesis. 

Figure 4 show the whole pineal gland of the Arctic charr embedded in resin. 

 

 
Figure 4: Pineal gland of the Arctic charr embedded in resin showing the entire gland with the end 

vesicle (ev), lumen (Lu, the lighter line in the centre), pineal stalk (ps) and the black dots (probably 

pigments. Diameter of the block is 8 mm. 

 

Three types of cells are considered the main content of the pineal gland, i.e. 

pinealocytes (photoreceptor cells), glial (supporting) cells and second order neurons 

(ganglion cells; Ekström and Meissl 1997; Falcón 1999). There are blood vessels 

supplying blood to all parts of the pineal gland, but they do not penetrate into the 

parenchyma of the gland (Ekström and Meissl 1997; Gupta and Premabati 2002).  

The pinealocytes are both photosensitive, containing photopigments, and 

secretory, producing chemical substances. Pinealocytes have been shown to 

undergo  morphological changes in response to changes in photoperiod (Hafeez et 

al. 1978; McNulty 1982a; Ekström and Meissl 1997). The photoreceptors of the 

pinealocytes have similarities with the cone photoreceptors of the retina (Ekström 

and Meissl 1997). They differ, however, as the time it takes for a resting membrane 

potential (the dark potential) in the individual pineal photoreceptors to reach peak-

potential (hyperpolarizrtion) and the recovery time (the return to the resting potential 

after a stimulus) is much longer in the pineal gland than in the retina (Meissl and 

Ekström 1988). This supports the theory that the pineal gland record gradual light 

ev 

ps 

Lu 
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intensity changes rather than the rapid changes that the retina can perceive (Ekström 

and Meissl 1997). Further, the pineal pigments absorbs light at longer wavelengths 

than the retina (Bowmaker and Wagner 2004). Photoreceptors of lower vertebrates 

presumably release neurotransmitters constantly during darkness (Korf and Wicht 

1992), and the size and numbers of synaptic ribbons (part of the photoreceptor axon 

terminal) change with time of day and ambient light (Ekström and Meissl 1997). 

Glial cells (also called interstitial cells or supportive cells) create diffusion 

barriers between the extracellular fluid and the cerebrospinal fluid in the lumen, and 

show traits that generally are associated with synthetic activity (Rüdeberg 1968; 

McNulty 1978; Ekström and Meissl 1997). It has traditionally been difficult to pinpoint 

exactly what their function might be, as they differ between fish species (Ekström and 

Meissl 1997).  

The second order neurons (ganglion cells) are intrapineal and most of them 

possess axonal projections to the brain. They are post synaptic to the pinealocytes, 

but some times they also form conventional synapses with each other and with 

pinealocytes, probably in order to provide feedback information in connection with 

light adaptive processes (Ekström and Meissl 1997). Bundles of neurons are found in 

the pineal stalk, the only neuronal information way to the brain (Ekström and Meissl 

1997). Two different types of responses have been recorded in the neurons. Light 

inhibit the maintained ganglion cell discharges, and short wavelengths inhibit and 

longer wavelengths stimulate the response (Korf and Wicht 1992). The exact location 

of the terminal sites are not certain, but it seems to partly overlap with the axonal 

projections from the optic tract (Ekström and Meissl 1997). Neurons have not been 

studied in the present thesis. 

 

Melatonin (N-acetyl-5-methoxytryptamine) is an indole hormone produced from the 

amino acid tryptophan. The biosynthesis of melatonin starts with conversion of 

tryptophan into 5-hydroxytryptophan by the enzyme tryptophan hydroxylase (TPOH). 

Hydroxytryptophan is then decarboxylated by the aromatic amino acid decarboxylase 

to serotonin. Arylalkylamine N-acetyltransferase (AANAT) converts serotonin into N-

acetylserotonin, and hydroxyindole-0-methyltransferase (HIOMT) methylates N-

acetylserotonin to melatonin (Falcón 1999). The pineal gland is the main organ for 

melatonin production in fish, but there is melatonin production in the retina of the eye 

as well (Falcón 1999). In mammals and birds melatonin is also produced in the 
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gastrointestinal tract, and under specific nutrition-dependent circumstances this 

production may contribute to the levels of circulating melatonin, albeit not in a  

rhythmical fashion (Huether 1993; Ekström and Meissl 1997). No consistent 

information have been found for melatonin production outside the retina and pineal 

gland in fish (Kulczykowska et al. 2006), but pinealectomized trout have shown 

increased mid-scotophase plasma melatonin level (Gern et al. 1978). Kezuka et al. 

(1992) found that pinealectomy in goldfish did not completely abolish plasma 

melatonin levels. The production from the retina is considered to be mainly for local 

(paracrine) use and is not in phase with the plasma melatonin level (Falcón 1999). In 

fish the melatonin diffuses into the blood stream directly after the synthesis.  

Melatonin is believed to be involved in behavioural, physiological and 

biochemical rhythmic activity. An indication of this is the diurnal variations in indole 

compounds (serotonin. 5-hydroxyindolacetic acid, 5-hydroxytryptophol and 

melatonin) in the pineal and that the melatonin levels are consistently higher during 

night time (Ekström and Meissl 1997; Falcón 1999). Light inhibit the production of 

melatonin, while darkness removes this inhibition. The limiting factor is AANAT, 

which show cyclic activity with higher activity in darkness (in pike, Exos lucius, Falcon 

et al. 1987). Abundance of AANAT messenger RNA transcripts varies in a manner 

parallel to the enzyme activity (Falcón 1999). Both the duration of the elevated night-

time level and the amplitude of plasma melatonin rhythm change in a fashion 

consistent with the seasonal change in photoperiod (Falcón 1999), providing 

calendar information to the animal. It has been shown that Arctic charr maintains a 

diel- and seasonal melatonin rhythm perfectly reflecting the daylength even in lakes 

covered by ice and snow (Strand et al. 2008). A very high night-time plasma 

melatonin level was recorded in these fish in September, when the lake temperature 

was high (~10°C), whereas in June when there is constant light at high latitudes the 

24 hour plasma melatonin levels in Arctic charr were constantly under the detection 

limit of the assay (Strand et al. 2008). Diel fluctuations of pineal melatonin production 

have also been described in species closely related to the Arctic charr such as 

rainbow trout (Oncorhynchus mykiss; Masuda et al. 2003) and Atlantic salmon 

(Salmo salar; Porter et al. 2001) as well as in many other fish species (Ekström and 

Meissl 1997; Falcón 1999).    

The pineal gland is fairly well described on a general level, however several 

details regarding its specific mechanisms remain to be unravelled (McNulty 1984; 
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Ekström and Meissl 1997). As the production of melatonin in the Arctic charr pineal 

gland varies tremendously between seasons, the question arises weather there are 

any differences in the ultrastructure of the pineal gland throughout the year, and if 

putative ultrastructure changes is related to the changes in absolute production of 

melatonin between seasons. Energy saving is a crucial factor for animals living at the 

edge in the north and the Arctic charr would, at least theoretically, benefit from a 

reduction in the size of the gland and its melatonin production capacity during the 

season when melatonin production is minimal. For example has it been shown that 

there are changes in morphology of the structures of the pineal gland, with e.g. larger 

nuclear volumes, after continuous darkness (DD) in trout (Hafeez et al. 1978). They 

found larger nuclei and nucleoli in steelhead trout (Salmo gairdneri) exposed to DD in 

both pinealocytes and support cells. Correspondingly the size of support cells were 

significantly smaller in trout subjected to constant light (LL) as in those subjected not 

only to DD, but also to LD treatments.      

 

Objectives of this study 

On this background, the present study was set out to compare the diel melatonin 

production at different seasons with the ultrastructure (pinealocytes, glial cells, blood 

vessels, mitochondria, endoplasmatic reticulum and lumen) of the pineal gland of the 

Arctic charr. This was done in order to see weather there are any connection 

between the absolute melatonin production and the ultrastuctural components that is 

important for this production in the pineal gland.   
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2. Materials and methods 

2.1 Fish and experimental design 

The fish used in the present study hatched in 2004, and were offspring of wild, 

anadromous Arctic charr (Salvelinus alpinus) from a strain caught at Svalbard (79°N) 

in 1990. They had been reared at the Aquaculture Research Station in Kårvik, 

Tromsø (69°52’N, 18°55’E), under natural conditions. The experiment was carried 

out between August 2006 and June 2007 at the same research station.  

100 fish of similar size was randomly selected from a stock tank and 

transferred to a 500L tank with fresh water. The amount of fresh water was 

continuously adjusted in order to maintain an oxygen saturation of � 90 % in the tank 

and the water inlet was placed so that a circumferential current was created in the 

tank. By this arrangement the fish were forced to swim continuously (~1 

bodylength/second) and this was done in order to prevent formation of social 

hierarchies among the fish (Christiansen et al. 1992). They were kept under natural 

light (light transparent roof) and ambient water temperature throughout the whole 

experiment. Feed (commercial dry feed; Skretting, Stavanger, Norway) was provided 

in excess by automatic disc feeders in accordance with routine praxis at the station. 

 

Blood sampling 

Four times throughout the year (August 9th -10th, December 18th -19th, February 14th-

15th and June 13th-14th) blood samples were taken from subsamples of fish (n=10) at 

4 hour intervals throughout 24 hours for plasma melatonin analysis (i.e. seven time 

points per day for each season). Before taking the blood samples the fish were 

removed carefully from the tank and transported to the laboratory area in a small 

bucket. A few (3-5) fish were then anesthetised at the time in Benzocain (60 ppm) for 

approximately 5 minutes. The fish were considered properly anesthetized when they 

showed no reaction to stimulus. Length and weight were registered for all the fish. 

Blood samples were taken from the caudal vein, using 2 ml vacutainers with lithium 

heparin (LH 34 I.U., BD Dianostics-Preanalytical Systems, Belliver Industrial 

Estate,Plymouth,UK). After the blood samples had been taken, the fish were 

transported back to another tank, where they were held until the last blood sampling 
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had been conducted. After the entire procedure for the day was finished, the fish 

were moved back to the original tank. 

The blood samples were kept on ice before they were centrifuged at 3800 rpm 

for 10 minutes at 4°C, to separate the plasma from the blood cells. The plasma was 

then frozen at -80°C until later melatonin analysis. During the sampling times when it 

was dark, a head light with a red beam was used.  

 

Collection of pineal glands 

The pineal glands were dissected out for histological analysis from those fish that 

were sampled for blood at midday. The fish was killed by a blow to the neck before 

the neck was cut, and the pineal glands carefully excised from the fish heads. All 

together nine pineal glands were harvested at each season. Three of the pineal 

glands were preserved in 2.5 % Glutaraldehyde in 0.2 M cacodylic buffer. Three 

pineal glands that were to be used for light microscopy were fixed in 4 % formalin, 

and three were put in 8 % formaldehyde in 200 mM Hepes buffer. The pineal glands 

were stored in a refrigerator until embedding. The pineal glands for the ultrastructure 

analysis from August could not be used, so three new ones were collected at 

September 14th.   

 

2.2 Plasma melatonin analysis 

To analyse the blood samples for the daily and seasonal variations in plasma 

melatonin levels in the Arctic charr, a RadioImmunoAssay (RIA) method was used. 

This method is used for several different types of hormones, and it is validated for 

plasma melatonin analysis in Arctic charr (Strand et al. 2008).  

Before samples could be analysed fat was extracted from plasma since it can 

interfere with the assay (primarily by obstructing binding of the hormone to the 

antibody). The extraction procedure was modified from Van’t Hof and Gwinner 

(1996). Using this protocol approximately 20 % of the melatonin is lost (pilot studies) 

and all plasma melatonin levels presented are corrected for this. For details of the 

extraction process, see appendix 1. 

The plasma melatonin levels can be measured indirectly by finding the ratio 

between the binding of the unknown amount of melatonin in the plasma (“cold 
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melatonin”) and a known amount of added radioactive (3H) melatonin (tracer) to a 

melatonin antibody. After washing out all unbound melatonin (both “cold melatonin” 

and tracer) with charcoal the remaining (bound) amount of ligands can be counted, 

and from that the amount of bound plasma melatonin to the antibody can be 

estimated. If there is little melatonin in the plasma there will be much tracer bound to 

the antibody, and vice versa. The plasma melatonin is estimated from the standard 

curve and the percentage binding of the known substances (tracer). The standard 

curve is made from an increasing dilution of standard melatonin, and this standard 

curve is also used to see if there are any irregularities with any of the solutions and/or 

with the binding capacity of the antibody.  
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Figure 5: Parallelism between curves representing serial diluted Arctic charr plasma and the standard 

curve (from Aarseth et al. 2009, with permission).  

 

The standard curve was made from total count (TC), none specific binding (NSB), 

total binding (TB) and the standard melatonin dilution range S1- S7. This is the basis 

for the calculations of the melatonin level in the plasma. The curve is sigmoid and 

ideally the values from the plasma samples should be in the steepest part of the 

curve. The binding should be above 40% for the results to be valid. In order to check 

if the antibody is able to bind melatonin specifically in a species, diluted species 
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plasma spiked with melatonin should display parallel displacement with the standard 

curve. In Arctic charr, this has been validated as shown in figure 5.  

Several solutions are needed in an assay. The buffer solution is made special 

for the antibody so that its binding properties are optimal. The melatonin standard 

was pre-made, and the working solution was 10 ng/ml. 125 μl melatonin standard to 

2,5 ml buffer made a solution of 0,5 ng/ml to be used for the standard curve and this 

was freshly made every day. The antiserum used was raised in sheep (Stockgrand 

Ltd., Guilford, Surrey, UK). The working solution was 50 μl (1:10 stored at -20°C) 

diluted with 20 ml buffer for 100 reagents. This gave a 1:4000 dilution of the original 

antiserum. 3H-melatonin (3H-Mel or tracer) was diluted from the stock, so 100 μl 3H-

Mel gave a disintegration activity of ~4000 cpm. Tracer was also made fresh every 

day.  

Dextran coated charcoal was used to wash out the unbound components and 

other particles, so it would only be melatonin (3H-Mel and cold) bound to the antibody 

left in the sample that is counted. Scintillation fluid in excess is needed to give 

accurate counting.   

All samples were analysed in duplicate. In this way any extreme variations can 

be seen in the analysis. If two of the plasma samples are traded for two more S7 

(one sample less in the assay) it is possible to measure intra-assay variation, to see if 

the counts are stable throughout the counting process, and if a theoretical known 

amount of melatonin is measured correctly. This is a security measure and insurance 

for the validity of the results. The S7 can also be used for inter-assay variation. If 

several assays are run, this is done to check that they are comparable. The extra S7 

samples should in theory contain a melatonin level of 500 pg/ml, as that is the 

amount added to it. The amount of plasma in each sample should ideally be 500 μl 

per vial. This is difficult to achieve because of the rather large amounts of blood this 

would require (~1000 μl plasma from each fish). When there was too little plasma, 

the remaining amount was replaced with buffer. The plasma:buffer ratio was noted 

for final corrections of melatonin levels. Preferably the duplicates held similar amount 

of plasma, whenever possible. After correlation for the dilutions of the plasma 

samples the plasma melatonin level is given as pg/ml. For more details regarding the 

RIA procedure, see appendix 1. 
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2.3 Histology 

Preparation for transmission electron microscopy (TEM) 

Embedding 

The pineal glands were blotted once on soft tissue paper and weighed at ±0,1 mg 

accuracy and the volume (ml) of the glands were estimated by fluid displacement in a 

1 ml shot, clogged with cement. They were then immersed in Karnovsky fixative until 

embedding.  As the glands were too large to be embedded as a whole, they were cut 

into smaller pieces (2-5 per gland) which were embedded separately. The method is 

standard for TEM, and contains several steps, including primary fixation, washing, 

second fixation, dehydration by graded series of alcohol, infiltration with transitional 

solvent and then infiltration of resin and embedding. The preparation helps to avoid 

changes in the cell and cell components size, shape and spatial distribution. The 

embedding also gives good cutting properties to the material. Chemicals are used as 

stabilizing factors. The initial fix (Karnovsky fix, right after dissection) stops biological 

activity, stabilizes protein and insures a good preservation of the cell structures. 

Osmium stabilizes fat (membranes), and uranyl acetate were added during the 

embedding process to get better contrasts in the preparation. The pieces of the 

pineal gland were embedded in Epon/Araldite. For more details regarding the 

embedding, see appendix 2. 

 

Sectioning 

The embedded samples were cut in a systematic random (the first point being 

random, the following at set intervals) fashion into ultra thin sections (~70 nm) on a 

ultramicrotome (Reichert-Jung Ultracut E; Vienna, Austria), using a diamond knife 

(Diatome, Switzerland). The sections were picked up with carbon coated formvar 

films on 200 square mesh copper grids (Agar Scientific, Essex, UK). A fixed distance 

was maintained between the sections, ~200 semi thin sections (0.99 μm). The semi 

thin sections were cut with a glass knife. Not all sections were used in the 

stereological count.  
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Contrasting 

Uranyl acetate (Ur.Ac.) and Reynold’s lead citrate were used for contrasting the 

sections on the grids because of their high atom numbers. They are ideal contrasts 

for TEM because they are unspecific, but different cell components are stained with 

different densities. This makes it easier to see the different structures in the section 

because the electron beam will be scattered by the high densities. Electrons that fail 

to hit the fluorescent screen create darker areas in the section. Electrons that pass 

through the section will be seen as fluorescent spots on the screen. Ur.Ac. binds 

mainly to phosphate groups and nucleic acid, lead citrate binds lipoproteins, proteins, 

glycogen and RNA. The copper grids with the tissue sections were left on the 

droplets of Ur.Ac. for 7 minutes, washed in distilled water, dried and placed on lead 

citrate for 5 minutes, washed and dried again. For details in the contrasting process, 

see appendix 2 for laboratory manual. 

    

Microscopy and Micrographs 

Transmission Electron Microscopy (Jeol JEM 1010, Tokyo, Japan), at 80kV, with a 

Morada camera system (Olympus Soft Imaging systems, Münster, Germany) was 

used to examine the sections so the structures could be accounted for. The sections 

were searched until an area containing biological material was found. The best 

magnification for this study was found to be 4000x for the pineal gland in Arctic charr.  

At this magnification a reasonable area could be covered, and the important 

structures could be separated. Micrographs were taken in a systematically random 

fashion (at 4000x magnification), starting at one end of the specimen, and taking 

pictures in the upper left corner of every second square, using the mesh of the 

copper grids as reference. Only the areas of the section where there was tissue were 

photographed, leaving out the areas only containing resin. In this way the entire 

section was covered, and no area was photographed twice. In some cases the upper 

left corner were not good for photographing due to artefacts or no tissue, and in 

these cases one of the other corners in the mesh were used. 
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Preparation for light microscopy 

One pineal gland from each season was taken from the glands fixated in 4 % 

Formalin, and dehydrated in alcohol (100 %) and embedded (Technovit 8100, for 

details of the embedding process, see appendix 2).  

After trimming the block with glass knife to get to the pineal gland at the right 

angel, semi thin sections were cut with a diamond knife, on a Leica EMUC6 

Ultramicrotom. The sections were placed on a slide and stained with toluidine blue.  

A light microscope (Leitz aristoplan) with a Leica DFC320 camera was used to study 

the slides, and get the pictures.  

 

2.4 Stereology and pineal ultrastructure 

Stereology is a method for analyzing three dimensional (3-D) structures based on 

their two dimensional (2-D) histological sections (Weibel 1979; Inuwa 2005). The 

micrographs used for point counting were selected in a systematically random 

fashion (in a way so all the micrographs had the same chance of being chosen). 

Point count analysis was used to estimate the relative volume of selected pineal 

structures. The structures were chosen firstly for their assumed functional importance 

in the pineal gland, and secondly for how easily recognisable and detectable they 

are. The structures counted were pinealocytes, supporting cells (glial cells), 

mitochondria, endoplasmatic reticulum (ER), lumen and cilia and blood vessels (all 

vessel types included). The micrographs were analysed using the computer software 

imaging system iTEM (Olympus, Soft Imaging System, Münster, Germany). A mesh 

grid with squares 5000 nm both horizontally and vertically was added to the 

micrographs. This gave 66 hits per micrographs. The area in the lower left corner of 

the grids was used as hit as it is difficult to know what is directly under the cross of 

the lines, see figure 6 for an example of a micrograph with the overlaying grid.    

The selection of the areas were systematic random at every step of the 

process from cutting the sections. When the entire pineal gland was cut (all the 

pieces), ten areas were chosen by dividing the total number of sections with ten to 

get the number of sections between each chosen area. One of the numbers was 

drawn and used as the starting point. In this way all the sections had an equal 

chance of being picked. After the ten sections were chosen, five sections were 

selected by taking every second section after drawing whether to start with the first or 
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the second. The final five sections were contrasted and photographed. From each 

section ~five micrographs were chosen by using the same selection system as were 

used to choose the initial ten sections. The number of micrographs varied somewhat 

between the pineal glands (see table 1).  

 

 
Figure 6: Micrograph with the point grid. Arrows point towards some of the areas that was counted, the 

lower left corner of the squares. Several structures can be seen, e.g. blood vessel (BV), pinealocyte 

nucleus (P), lumen (Lu), cilia (Ci) and glial cell nucleus (Gl). 

 

 
Table 1: Number of micrographs used for counting per pineal gland and average per season 

   PG # of micrographs average
September 09-133 26   
  09-134 19   
  09-135 23 22,7 
December 07-208 16  
  07-209 22  
  07-210 22 20,0 
February 07-1490 27  
  07-1491 20  
  07-1492 24 23,7 
June 07-1493 26  
  07-1494 21  
  07-1495 24 23,7 
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Every pineal gland should have a total of approximately 200 hits of the relevant 

structures. This number is found to be ideal, as less gives an uncertainty in the result, 

whereas more does not give more accuracy, only more work (Gundersen and Jensen 

1987). In this examination it is more hits, as it was difficult to estimate the number of 

micrographs needed before the counting started.   

 

Volume calculation 

The volume of each structure (V(structure) ) was calculated in relation to the total volume 

of the pineal gland, using the formula 

 V(structure)= P(structure)/Ptotal*VPG*1000 

where    

P(structure) is the number of hits of a structure, Ptotal is the number of hits in total and 

VPG is the volume of the PG as measured before the embedding. Calculations were 

based upon standard procedures for stereology volume estimates (Weibel 1979; 

Gundersen 1986). The additional *1000 was to get μl instead of ml, as was the 

original denomination.  

 

2.5 Statistical analysis 

All data are presented as means and standard error of a mean (SEM). Statistical 

computations were made in Statistica 6.1 (Statsoft Inc., Tulsa, OK, USA) and Sigma 

plot 10.0 (Systat Software Inc.). A parametric, one-way analysis of variance (ANOVA) 

was used for revealing possible differences in the plasma melatonin levels between 

the sampling times for each separate date and for the fish growth, followed by a 

Turkey-HSD post hoc. test. Significant changes in PG volume vs. PG mass and BM 

vs. PG mass were performed by Multiple Regression Analysis. Due to the low 

number of pineal glands (n = 3) analyzed at each time point, possible differences of 

the structures between the seasons were analyzed by a non-parametric Kruskal-

Wallis test for multiple comparison of mean ranks for all groups. A probability level of 

p≤0.05 was considered significant. 
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3. Results 

3.1 Experimental fish 

Water temperature in the fish tank during the experimental period is shown in figure 

7.  
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Figure 7: Water temperatures (°C) from August 2006 to July 2007. The sampling dates are marked 

with an asterisks.  

 

Growth of the experimental fish throughout the experiment period is shown in table 2. 

 
Table 2: Average body length (BL) and body mass (BM) ± SEM, throughout the study. N= the number 

of fish measured.  

  BL (cm) SEM BM (g) SEM n 

August 32,3   ± 0,95 425,5   ± 15,62 70 

December 36,3   ± 0,29 616,2   ± 18,06 70 

February 37,1   ± 0,43 679,7   ± 25,25 66 

June 39,3   ± 0,50 875,9   ± 38,55 63 

 

The fish showed a significant increase in body mass (BM) between the first (August) 

and the last (June) sampling dates (p≤0.05). The growth is smallest during the winter 

months (December and February). The body length (BL) showed significant 
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difference between August and June (p≤0.05), but none of the other months were 

significant from each other (p≥0.05).    
 

The pineal gland (PG) mass and the body mass of the respective fish show a 

significant positive correlation (p≤0.05, r2=0.142). The pineal gland size seems to 

follow the fish size, but the size of the fish can not be used to predict the mass of the 

gland (see figure 8). 
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Figure 8: Pineal gland mass (in mg) in respective fish (BM in g; n=57). Regression line: y = 2.6603 + 
0.0035x. 
 

 

There is no correlation between the PG mass and the PG volume (p≥0.05), as shown 

in figure 9.   
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Figure 9: Correlation between mass (mg) and volume (ml) of the pineal gland in Arctic charr (n=12). 

 

3.2 Plasma melatonin 

Plasma melatonin levels during 24 hours in all experimental months are shown in 

figure 10. In August and June there is no significant difference between the melatonin 

levels at any given time point. The December and February curves on the other hand 

vary more throughout the day, with a peak in the dark period of the day. During 

daylight hours the melatonin levels are low. In February melatonin levels are at their 

highest, and the increase is stable during the mid-scotophase.  

Inter- and intra- assay variations were 8,2 % and 7,2 %, respectively. The 

lower detection limit of the assay was 10 pg/ml, and all the values below the 

detection limit are set to half of this value, that is 5 pg/ml.  



 

 28

M
el

at
on

in
 (p

g/
m

l)

0

50

100

150
August

0

50

100

150
December

0

50

100

150

February

0

50

100

150

June

a
a a

a
a

a a

a a a

ab ab

b b

a a a
ab

bc

c

abc

a a
a

a
a a

a

10:00 13:00 17:00 21:00 01:00 05:00 08:00  
Figure 10: Plasma melatonin levels at seven different time points in four different months. The first 

point is at 10.00, the second 13.00, followed by 17.00, 21.00, 01.00, 05.00 and 08.00 o’clock. The 

black and white bars below each graph indicate duration of natural darkness and daylight, 

respectively. The letters indicate significant difference between different times (p≤0.05), that is, the 

times with different letters are significantly different from each other. 
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3.3 Pineal ultrastructure 

TEM 

Micrographs (figures 11 and 12) show some of the structures in the pineal gland, 

pinealocyte nucleus (P), glial cells nucleus (Gl), endoplasmatic reticulum (ER), 

mitochondria (Mit), photosegment (outer segment; Ph), cilia (Ci) and lumen (Lu). 

Blood vessels and the point count grid can be seen in the figure 6, in the materials 

and methods chapter. 

 

 
Figure 11: Micrograph from the pineal gland of 

Arctic charr showing pinealocyte nucleus (P), 

glial cell nucleus (Gl), mitochondria (Mit) and 

photopigments (Ph). Magnification: 4000x. 

 
Figure 12: Micrograph from the pineal gland of 

Arctic charr showing pinealocyte nucleus (P), 

lumen (Lu), cilia (Ci), endoplasmatic reticulum 

(ER) and arrows points towards mitochondria 

(Mit). Magnification: 4000x. 

 

 

 

 

Volumes of cells and organelles 
The volumes of the structures in different seasons are shown in figure 13. There 

were no significant differences between the volumes of the structures in the pineal 
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gland throughout the year (p≥0.05). ER show lower volume in September than in the 

other months. The other five structures, pinealocytes, glial cells, mitochondria, blood 

vessels and lumen show some trends through the seasons, although not significant. 

September have higher volumes of pinealocytes and blood vessels, but 

comparatively lower ER, mitochondria and lumen volumes. February have the 

highest volumes of ER, mitochondria and lumen. In September ER and mitochondria 

volumes are lowest. For mitochondria and ER February are closely followed by June 

and December. The only structure with highest volume in June is the glial cells. The 

other seasons show lower, and almost equal volumes to each other for glial cells. 

February and June have similar volumes of pinealocytes, blood vessels and lumen. 

Their lumen volumes are much higher than September and December. The volume 

of blood vessels in February and June, on the other hand, are much lower than in 

September, and lower than in December.  
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Figure 13: Relative volume of cells and organelles in the pineal gland at all sampling points ± SEM . 

Abbreviations: Pi, pinealocyte; Gl, glial cell; BV, blood vessel; ER, endoplasmatic reticulum; Mit, 

mitochondrium; Lu, lumen. 
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Light microscopy 

Figures 14 a-d show light microscopy micrographs of the pineal gland at four different 

times, August, December, February and June. The lumen is convoluted, and the PG 

is surrounded by a membrane. The pinealocytes (round, light stained) and glial cells 

(darkest stained, both difficult to see in figures 14 a-d) are located towards the lumen, 

with a blood vessel in the middle. No statistical analysis has been conducted on the 

differences between the seasons.  

 
 

 
 

 

 
 

Figures 14 a-d: Micrographs showing transverse sections of the end vesicle in the pineal gland of 

Arctic charr. Lumen (Lu) and arrows pointing towards blood vessels can be seen. Magnification: 10x  

a) form August; b) from December; c) from February; d) from June. The section from June is ripped 

open, not giving the impression of a round gland. 
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4. Discussion 
The fish grew throughout the experimental period (table 2). There was a slight 

decrease in growth rate during mid-winter (data not shown), in accordance with data 

obtained previously in both wild (Jørgensen et al. 1997) and captive Arctic charr 

(Sæther et al. 1996). The most intense feeding and growth period of the year 

(summer), was not included in the present study and hence the overall growth rate 

was moderate (data not shown). 

  Measurements of the pineal gland mass may be inaccurate due to the 

presence of several folds and membranes in the gland, and hence, different amounts 

of fluid could be trapped in the folds upon weighing. Nevertheless, there was a 

significant, positive relationship between the weight of the pineal gland and the fish 

body mass (figure 8), indicating that the size of the pineal gland increase with the fish 

size (or age). The relationship between body mass and pineal gland mass in fish has 

not, to the best of our knowledge, been reported before. This does not however, 

seem to be a general rend. In seals, for example, an inverse relationship between 

age (and therefore body mass) and pineal gland mass exists (Aarseth and Stokkan 

2003). Further pubertal and early fertile sheep had larger pineal glands than infantile 

and adult individuals (Redondo et al. 2003). These findings suggest that the size of 

the pineal gland may depend on other factors than body size, and for example be 

more related to maturation stages. The pineal gland in fish is very small, making it 

difficult to get completely accurate measures. The measurements done in the present 

study were strictly standardized, and the number of measurements was quite high 

over a relatively large range of fish weights (207-1241 g). Hence, the results are 

considered valid. Since the pineal glands are from the same group of fish, the weight 

cannot be compared between the seasons, as the fish grew.  

No trends could be found regarding the relationship between mass and 

volume of the pineal gland. This finding was highly unexpected, particularly since the 

pineal glands sampled differed so much in mass. It is not very likely that the density 

of the pineal gland tissue should differ very much, and although an accurate 

determination of the mass was difficult, obtaining an accurate volume of the gland 

was even more so with the 1 ml syringe used. The finding of a positive relationship 

between fish and pineal gland mass, and no relationship between the pineal gland 

mass and volume question strongly the accuracy of the volume measurements. This 
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would in so case influence the data on the volume of organelles in the gland, since 

these were related to the total volume of the gland. The fish body mass compared to 

pineal gland mass had more data (n=57) than the pineal glands which were available 

for the comparison between the pineal gland mass and volume (n=12) and hence it 

was more likely to reveal a relationship in the body- and pineal mass data.   

 

Melatonin levels 

Melatonin is released directly into the bloodstream after production in the pineal 

gland, and the plasma levels are therefore a reliable indication of production of 

melatonin in the pineal gland (Reiter 1991). The diel plasma melatonin rhythms seen 

at different seasons in the present study were somewhat inconsistent with those seen 

in previous experiments with Arctic charr (Strand et al. 2008). Strand et al. (2008) 

found very low plasma melatonin levels throughout the day in June in Arctic charr, 

consistent with the finding in the present study. There was an increase in plasma 

melatonin levels during night in the present study, consistent with findings in a large 

number of other fish species (Gern et al. 1978; Falcon et al. 1987; Kulczykowska 

1999). However, the night-time peaks in December and February were seen late in 

the scotophase rather than early, as seen in the study by Strand et al. (2008). There 

is currently no reliable explanation for the mechanisms underlying these differences, 

but it cannot be excluded that the use of artificial light at the research station, both 

inside and outside, may have affected melatonin production in this experiment. In the 

room where the fish tank was kept there are lights which are switched on during 

working hours, and probably at other occasions if somebody needed to do something 

there during the natural scotophase. The light regime might therefore not be in 

complete accordance with the outside illumination, and hence influence the 

measured melatonin levels.  This would be possible since the irradiance threshold for 

suppression of melatonin production seem to be very low in salmonid fish (Migaud et 

al. 2006), as well as in Arctic charr (between 1x10-2 and 1x10-3 W/m2; Strand et al. 

2008), and that there where no cover over the tank used in the study. On the other 

hand there may still be unknown factors involved in the regulation of plasma 

melatonin levels, since night time profile of plasma melatonin levels in intact fish both 

in the present study and in Arctic charr held in a natural system (Strand et al. 2008) 

deviate strongly from the mammalian C-like pattern (consistently high melatonin 



 

 34

levels during the whole scotophase; Reiter 1993) seen in Arctic charr pineal glands 

producing melatonin in vitro (Strand et al. 2008).  

In August there was no significant difference in the plasma melatonin level 

throughout the 24 hour period. The measurement was, however, taken in early 

August, when nights are short at 70 °N and actually not completely dark. The lack of 

any peak in melatonin data for August may therefore either be due to irradiance 

during the night that was above the threshold for suppression of melatonin 

production, or the fact that blood samples were not taken during the short night. The 

amplitude of the diel plasma melatonin variation was similar in December and 

February, but expected to be higher earlier in autumn, due to higher water 

temperatures and a Q10 effect on melatonin synthesizing enzymes (Ekström and 

Meissl 1997; Porter et al. 2001; Strand et al. 2008). The results in the present study 

clearly show that there are strong seasonal differences in the pineal melatonin 

production, with a much lower production throughout the continuous light summer 

than during winter. 

 

Pineal ultrastructure 

The findings of the different cell types in the present study of the Arctic charr pineal 

gland are consistent with findings in other species. The cell nuclei seen are most 

likely identical to those described by Confente et al. (2008) for sole (Solea 

senegalensis), the round and light coloured nuclei being pinealocytes and the darker 

oval ones being glial cells (Rüdeberg 1968). Blood vessels are seen in the centre of 

the parenchyma, and the lumen is convoluted. In the outer areas there is mostly 

blood vessels and membranes, in the parenchyma the pinealocytes are found, and 

the stalk is compact with neurons (Gupta and Premabati 2002). The pineal gland of 

Arctic charr seems to fit this general description. Because of the differences in the 

localisation of different cell types, and the small size, biopsies were considered 

unspecific, as the chances of getting unrepresentative data were prominent. This is 

important for this study as volumes of different structures independent of cell types 

were analyzed, not the differences of organelles within different cells, which would 

allow random sampling of the cells as long as they were all represented.  

In some of the pineal glands it was occasionally seen what could be 

melanocytes (pigment cells). Melanocytes are recognisable by their comparatively 
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huge size, even shape and many densely stained round contents. Rüdeberg (1969) 

found electron dense granules in dogfish (Scyliorhinus canicula) inside irregular 

shaped cells. Electron dense granules of what appeared to be pigments were 

described by McNulty (1978) in Chologaster agassizi. Pineal glands show some 

black spots around them when seen whole (see figure 4). They are found around and 

below the middle of the gland, seeing the upper area as the end vesicle, and towards 

the stalk as the lower part. Underlying the pineal gland there is a pigment layer 

(Rudeberg 1968). The “black spots” seen might be part of this layer and are not a 

part of the pineal gland itself. It is possible that these “spots” may get into the pineal 

membranes during the initial cutting and preparation for embedding. These spots 

could be what was found in this study, as they did not resemble the granules 

described by Rüdeberg (1968) and McNulty (1978).  

The number of micrographs used for counting varied between the pineal 

glands (table 1). This should however not influence the results as there were more 

than enough hits for all the pineal glands for stereology, assuming ~200 hits is 

enough per sample (Gundersen and Jensen 1987).  

The blood samples and the pineal gland were taken at the same time, except 

in early autumn when the melatonin data were obtained from blood samples taken in 

August (9th), and pineal glands in September (14th), some weeks later. It was 

assumed that August was too early for any morphological changes to have taken 

place and that September represents the months where long nights and “high” 

temperatures co-occur and hence is the month with the highest rate of (night time) 

melatonin production (Strand et al. 2008). Difference between night and day in 

melatonin production was not associated with differences in night and day pineal 

weight. This result does not correspond to those of  Redondo et al. (2003) who found 

that the pineal gland of sheep were heavier, and had higher volume, when the glands 

were excised during the night than during the day (02.00 h vs 14.00 h). The 

difference between species may be related to ectothermy vs homeothermy; i.e. that 

the rate of changes may be much faster in the sheep with a body temperature of 

~37°C than in a fish with a body temperature below 10°C. 

McNulty (1982a) found a significant increase in the volume of photoreceptor 

cells and mitochondria and area of rough ER after exposing goldfish (Carassius 

auratus) to constant darkness for six months, compared to natural light:dark cycles, 

but no significant changes after six days. No significant changes were found after 
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exposing the fish to constant light. This shows that the changes in light conditions 

(and/or melatonin production) may be associated with changes in the pineal gland 

over time. Such long-term changes in organelle size involved in synthesis and 

secretion were not found in the Arctic charr, despite the strong seasonal change in 

light intensity and melatonin secretion between mid-summer and –winter. The relative 

glial cell and pinealocyte volumes varied little throughout the sampling period. There 

were differences between sampling dates in the other organelles, but these 

differences were not significant. It cannot be excluded, however, that the lack of 

statistical differences could be due to the low number of pineal glands analysed and 

huge inter-individual differences (cf. high SEM), and corresponding type 1 statistical 

errors.  

There was a tendency toward higher blood vessel volumes in September and 

December than in February and June (p=0.08). Further there were a tendency to 

changes in the endoplasmatic reticulum (p=0.055), but this difference was in so case 

opposite of that found for blood vessels; higher in February than in September. 

Taken together, these results suggest that the present study did not reveal any 

quantitative, structural changes in the pineal gland of Arctic charr consistent with the 

changes in irradiation and melatonin production. This result is surprising, particularly 

since the season with high melatonin production (winter) also is the season where 

the temperature is low. Hence, a temperature compensation, brought about by 

alterations in the concentration and/or specific activity of melatonin synthesizing 

enzymes should be expected (Prosser 1990). Mean pinealocyte volume was 

somewhat higher in September as compared to June, but the difference was far from 

significant (p=0.67), and it may be suggested that the increased autumn/winter 

production of melatonin are associated with specific activity of synthesizing enzymes. 

John and George (1989) found significant changes in the area of pinealocytes, 

pinealocyte nucleus and mitochondria, between (some of the) different times of year 

(spring migration, breeding, moult and fall migration) in migratory Canada goose 

(Branta canadensis interior). They noted that the abundance of mitochondria 

(amongst other) appeared to be greatest during the spring post migratory phase, the 

phase with the lowest ambient temperature. In the present study, mean volumes of 

endoplasmatic reticulum and mitochondria was highest in the coldest sampling date.   

As mentioned before, type 1 errors cannot be excluded, and in September when 
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melatonin production is expected to be highest (Strand et al. 2008) both blood vessel 

and pinealocyte volumes were higher than in other dates.  

Previously, the size of nuclei and nucleoli have been investigated (Hafeez et al. 

1978). Both the nuclei and nucleoli of the support cells were significantly smaller in 

continuous light (LL) than in constant darkness (DD) and light:dark cycles (LD) in 

steelhead trout. If this is the case for Arctic charr, there is a possibility for increased 

activity even without increase in the volume of the cell itself. Another structure 

investigated, synaptic ribbons (part of the photoreceptor axon terminal; Ekström and 

Meissl 1997), seems to respond quickly to light changes. McNulty (1982a) found the 

synaptic ribbons in goldfish to change on the first day subjected to LL, and on every 

sampling they were markedly longer than the controls. There was also registered 

significant daily volume differences in endoplasmatic reticulum and golgi complex, 

but not mitochondria, in goldfish (McNulty 1982b).  

As noted before, it is very unlikely that the method for measuring pineal gland 

volume was able to provide reliable volume data. The quality of the quantitative data 

on gland ultrastructure is therefore uncertain. However, when ultrastructure volumes 

were related to pineal weight (which is considered more correct than volumes) no 

clear-cut picture of seasonal differences appeared. It is therefore concluded that 

there is no differences between season in ultrastructure of the pineal gland in Arctic 

charr.  

By comparing the micrographs from the four seasons by light microscopy, 

there were no clear differences to be seen, although no tests have been conducted 

to verify this. Taken together, these data indicate that the pineal gland of the Arctic 

charr does not undergo marked seasonal changes in ultrastructure and size. On the 

one hand this is surprising, taken into consideration that the organ size often is 

correlated with their metabolic activity (Jensen 1980) in order reduce the stationary 

cost of organ maintenance (Piersma 2002). On the other hand the low melatonin 

production in the Arctic charr occurs during a period with abundant food supply, 

making energy saving less important. Further, the pineal gland is a very small gland 

which probably represents an insignificant contribution to the total energy need in 

fish.  
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Conclusion 

From this study it seems that the production machinery for melatonin in the pineal 

gland does not change its ultrastructure or components markedly with season, 

despite fluctuations in melatonin production throughout the year. This indicate that 

the pineal gland in it self is capable of increasing its production of melatonin without 

an increase in cell components/cells regarded as important for hormone synthesis in 

the gland. 
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 Appendix 1 
 
Extraction for plasma 
 
Day 1 
Use conical glass extraction tubes. Acid washed or new. 

1. Add 100 μl or more of plasma to the labelled extraction tubes and record 
amounts in standard assay forms (adjust amount of plasma depending upon 
the time of day you obtained the sample and/or the experimental treatment) 

2. Bring all samples to an equal volume of 300 μl with 2x distilled water 
3. Add 150 μl 1.0 M NaOH 
4. Add 3 ml of reagent or HPLC grade chloroform 

Vortex each vial individually and then set on vortex machine for at least 10 minutes 
continuous vortexing. Make sure the tubes are covered. 
Set in 4°C overnight (or at least 4 hours) 
 
Day 2 
First extraction: 

1. Vortex each vial individually, spin for 15 min at 1100 rpm (if they are persistent 
micelles then spin longer) 

2. Carefully aspirate off chloroform layer into respective labelled glass tubes 
(12x75 mm) using a clean Pasteur pipet for each sample 

 
2nd extraction: (3 and 4 only necessary if there is a lot of fat, e.g. seal) 

3. Add 2 ml more of chloroform to extraction tubes. Vortex singly and set aside at 
4°C for 1-2 hour 

4. Spin again for 15 min at 1088 rpm. Repeat aspiration procedure and add to 
first respective extracted samples 

5. Evaporate chloroform in 40°C water bath under nitrogen 
6. Add 270 μl (or 160 μl when you do the assay in single tubes) of 0.1 M Tricine 

buffer 
7. Vortex vigorously, pulse spin, and let equilibrate overnight at 4°C 

 
To clean the extraction vials: Aspirate off water/plasma layer and discard in 
radioactive waste. Place dirty tubes into counts-off bucket, after at least 24 hrs into 
the acid wash. 
 
Day 3: 
Get dry ice, MEL-antibody and MEL label from the -70°C freezer (institute) 
3rd extraction: 

1. Wash with 250 μl or more of Petroleum ether (=petroleum benzine) 
Vortex vigorously every single vial by hand until all of the fat comes off the glass and 
out of the buffer phase. Left over fat will interfere with the assay 

2. Spin at 3000 rpm for 10 min 
3. Freeze on dry ice setting the tubes at an acute angle but only long enough to 

freeze the buffer phase not the Pet ether phase 
4. Using sink aspirator aspirate off upper Pet ether phase 

 
Set in water bath for 5 minutes to let Pet ether evaporate. Pay attention to the time! 
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Check every tube carefully. If it is still milky or there are coloured crystals of fat, 
repeat the defattening procedure. There should be no ring of fat on the bottom of the 
tube. If there is you need to repeat the procedure and vortex longer. For some birds 
e.g. Redpolls, Ptarmigan and even some winter sparrows it is almost always 
necessary to wash twice. 
Remove and set at 4°C for 30 minutes 
Now you can continue with the Radioimmunoassay   
 
 
RIA procedure 
MELATONIN RIA 
 
Buffer: 
1 g gelatin dissolves in 200 ml distilled water, 50 minutes at 50°C. 
17.9 g tricine and 9.0 g NaCl dissolves in 700 ml distilled water. 
The two solvents are mixed and the volume adjusted to 1L with distilled water. 
 
Storage and durability: Refrigerator 1 week. 
 
Antiserum:  
Anti-melatonin antiserum from sheep (product code: AB/S/01). Sufficient for 4000 
assay vials. 
 
Intermediate stock (1:10): Contents resuspenderes in 2 ml distilled water. 
    Distribute in eppindorf tubes á 50 µl and store at -20°C. 
 
Working stock: 50 µl (1:10) to 20 ml with buffer. Sufficient for 100 vials, 

1:4000 dilution 
 
Dextran coated charcoal: 
4 g activated charcoal dilutes in 200 ml buffer. Shake for 5 minutes on ice. 
Distribute in 50 ml centrifuge vials and centrifuge at 1000 rpm, 4°C, 5 minutes. 
Discard supernatanten and puss around the edges. 
Resuspender the charcoal in 200 ml buffer and add 0,04 g dextran T70. 
Stir for at least 1 hour at 4°C. 
 
Storage and durability: Refrigerator 1 week. 
 
3H-melatonin: 
Intermediate stock:  20 µl from the bomb in 2 ml abs. EtOH. Stored at -20°C.  
 
Working stock:   Dilution in buffer so that 100 µl contains 4000 cpm. 
    Make fresh every day. 
 
Standard:  
Melatonin stock (1 mg/ml): Dissolve 10 mg melatonin in 0.5 ml abs.EtOH. 

Adjust the volume to 10 ml with distilled water 
 
     Durability at least 1 year in a refrigerator. 
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Working stock:  100 µl (1 mg/ml) to 100 ml with distilled water = 1 µg/ml. 
    500 µl (1 µg/ml) to 50 ml with distilled water = 10 ng/ml. 
    125 µl (10 ng/ml) to 2.5 ml with buffer = 0.5 ng/ml. 
 

 
MT standard 
0.5 ng/ml (µl) 

MT fritt plasma 
(µl) 

MT concentration 
Pg/0.5 ml 

0 500 0 
5 495 2,5 
10 490 5,0 
25 475 12,5 
50 450 25,0 

100 400 50,0 
200 300 100,0 
500 0 250,0 

 
      
Scintillation fluid: 
5 g PPO (2,5-diphenyloxazole) 
0.3 g dimethyl-POPOP 
To 1L toluene (with low sulphur content) 
 
 
PROCEDURE 
At the start of new round: 
 
Make all the working solutions. 
Run one standard curve before you start with your samples. 
 
Day 1 
Make tracer. 
Make antibody solution. 
Make std stock (0.5 ng/ml) in buffer. 
Defrost the samples to be analysed. 
Pipette out standard curve according to table. 
Vortex all vials and incubate for 30 minutes in room temperature. 
Add tracer according to table. 
Vortex all vials and incubate over night in refrigerator, 4°C.  
 
Day 2 
Place the charcoal solvent for stiring on ice for 30 minutes. 
Add 500 μl buffer to the TC vials. 
Add 500 μl charcoal to all vials except TC. 
Vortex all vials and incubate for 15 minutes at 4°C. 
Centrifuge for 15 min at 500 g (~2700 rpm), 4°C. 
Transfer 700 μl from each vial to counting vials. 
Add 4 ml scintilation fluid in each vial and put on lid. 
Shake for 1 hour on a shaker. 
Count each sample in the β-counter (scintillation counter) for 5 minutes. 
Melatonin concentration in each sample is calculated from the std. curve. 
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MT 
clean 

plasma 
(buffer) 

MT 
std 
0.5 

ng/ml Sample AS Buffer 3H-MT Dextr.c.Charcoal Buffer 
Dilution 
factor Comments

TC buff         700 100   500     
NSB buff         700 100 500       
TC    500       200 100   500     
NSB    500       200 100 500       
4x TB 500     200   100 500       
S1 495 5   200   100 500       
S2 490 10   200   100 500       
S3 475 25   200   100 500       
S4 450 50   200   100 500       
S5 400 100   200   100 500       
S6 300 200   200   100 500       
S7   500   200   100 500       

1                     
2                     
3                     
4                     
5                     
6                     
7                     
8                     
9                     
10                     
11                     
12                     
13                     
14                     
15                     
16                     
17                     
18                     
19                     
20                     
21                     
22                     
23                     
24                     
25                     
26                     
27                     
28                     
29                     
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Appendix 2 
 
Preparation for TEM 
Protocol for embedding in Epon/araldite 
Safety: 
Separate procedure for OsO4 
Always use gloves 
The resin is carcinogen and allergen and shall only be used in disposable equipment  
Waste: 
Fix, buffer and alcohol discharge in the sink 
OsO4 , uranyl acetate and propylene oxide in special bottles 
Epoxy resin evaporate under a hood and polymerize at 60°C   
 
 

1. Fixation, minimum 4 hours 
2. 2x 15 min wash with buffer, corresponding to the initial fix used 
3. 1 % OsO4 in distilled water for 1½ hours 
4.  2x 15 min wash with buffer ( the same as above) 
5. 2x wash in distilled water, quick changes 
6. 2 % uranyl acetate in water 1½ hours 
7. Dehydration 

30 % ethanol 5 min 
60 % ethanol 10 min 
(70 % ethanol if a stop in the protocol is needed, otherwise no) 
90 % ethanol 10 min 
96 % ethanol 10 min 
2x absolute ethanol 10 min 
3x propylene oxide 5 min  

8. epoxy:propylene oxide 1:2 30 min 
9. epoxy:propylene oxide 1:1 1 hour without lid 
10. pure epoxy 1 hour 
11. pure epoxy over night (in mats or vials) 
12. Polymerization Epon/araldite over night at 60°C 

 
 
EPON (Glycidether)/ARALDIT 
Glycidether 6ml 18ml 24ml 
DDSA  11ml 33ml 44ml 
Araldite 502 3ml 9ml 12ml 
DMP 30 0.4ml 1.2ml 1.6l 
 
Shake well and stir ½ hour on a magnetic stirrer 
Store at -20°C 
Leftovers polymerizes at 60°C over night 
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Conrasting 
Contrasting is done on a piece of parafilm with pits made in it (to stop the droplets 
from moving into each other), in a petri dish with lutperler to absorb any moist. A 
droplet of Ur.Ac. is placed in each of the pits, and the grids placed on the droplets, 
with the tissue down, for 7 minutes. The grids are picked up with forceps and washed 
by dipping 10-15 times in five different cups of distilled water. Small pieces of blotting 
paper are placed in the forceps to absorb water droplets. The drying period is at least 
15 minutes, before the procedure is repeated with a new parafilm for the lead citrate 
droplets. The drying time between the contrast solutions are important to avoid 
crystallisation of the solutions. The grids are placed one on each droplet, with the 
tissue side down, for 5 minutes. Wash as with Ur.Ac. and let the grids dry for at least 
30 minutes before use in the microscope or storage in a grid box.      
 
 
 
Embedding using Technovit 8100 
Dehydration 
The tissue is dehydrated in 100 p.c. acetone for 60 min at 4°C. During the first 5 min 
acetone should be renewed a few times until the solution remains clear. 
Infiltration 
Using Technovit 8100 the infiltration time lasts between 6-10 hours at 4°C. The 
infiltration solution consists of  
100 ml base-liquid Technovit 8100 
0.6 g hardener I ( 1 bag) 
The infiltration solution is stored at a maximum of 4 weeks at 4°C.  
To avoid a change in temperature, the Histoform should be kept in cold store (ice). 
Embedding 
Embedding solution: 15 ml infiltration solution (base-liquid and hardener) and 0.5 ml 
hardener II are mixed thoroughly at 4°C. After that the tissue to be embedded is 
immersed and the solution is agitated for 5 min. The well mixed embedding solution 
is poured into the embedding mould and the tissue specimen is properly placed. 
Right afterwards, the mould is sealed hermetically with the cover foil and placed on 
crushed ice (refrigerator) at 4°C.  
When using the above mentioned ratio, the curing time at a temperature of max. 
11°C is at least 3 hours.   
 
 


