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Automatic Selection of Relevant Attributes for
Multi-Sensor Remote Sensing Analysis:
A Case Study on Sea Ice Classification

Eduard Khachatrian
Wolfgang Dierking

Abstract—It is of considerable benefit to combine information
obtained from different satellite sensors to achieve advanced and
improved characterization of sea ice conditions. However, it is also
true that not all the information is relevant. It may be redundant,
corrupted, or unnecessary for the given task, hence decreasing the
performance of the algorithms. Therefore, it is crucial to select
an optimal set of image attributes which provides the relevant
information content to enhance the efficiency and accuracy of
the image interpretation and retrieval of geophysical parameters.
Comprehensive studies have been focused on the analysis of rel-
evant features for sea ice analysis obtained from different sen-
sors, especially synthetic aperture radar. However, the outcomes
of these studies are mostly data and application-dependent and
can, therefore, rarely be generalized. In this article, we employ
a feature selection method based on graph Laplacians, which is
fully automatic and easy to implement. The proposed approach
assesses relevant information on a global and local level using two
metrics and selects relevant features for different regions of an
image according to their physical characteristics and observation
conditions. In the recent study, we investigate the effectiveness of
this approach for sea ice classification, using different multi-sensor
data combinations. Experiments show the advantage of applying
multi-sensor data sets and demonstrate that the attributes selected
by our method result in high classification accuracies. We demon-
strate that our approach automatically considers varying technical,
sensor-specific, environmental, and sea ice conditions by employing
flexible and adaptive feature selection method as a pre-processing
step.

Index Terms—Graph Laplacians, multi-sensor remote sensing,
sea ice, unsupervised information selection.
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1. INTRODUCTION

N THE last decades, sea ice research has become a focus of

Earth observation, especially in the Arctic region where sea
ice extent and volume are declining rapidly [1]. Sea ice plays an
essential role in the polar ecosystem [2]. It is one of the main
indicators of global climate change, and it also considerably
affects the indigenous population’s lifestyle and welfare [2].
Moreover, sea ice poses a great challenge to navigation in the
polar seas; therefore, the knowledge about its type, concentra-
tion, thickness, deformation, and extent is extremely important
for various activities, such as marine transportation and offshore
operations, and for stakeholders from the oil and gas industry,
fisheries, and tourism, among others.

Sea ice observations have a long history of more than a
century. They were carried out visually from coastal stations,
ships, and aircraft [3], while they were spatially and temporally
limited. Regular sea ice monitoring over larger regions became
possible in the late 1970s using image data from satellites [3].
Since then, the technologies for acquiring and analyzing sea ice
data have been considerably improved and extended.

Optical sensors provide information about sea ice in visible
and infrared channels. The main advantage of this kind of
information is an easier visual interpretability. However, optical
sensors are limited to cloud-free and favorable light conditions,
which causes a significant problem since dense cloud covers
and long periods of darkness prevail in the polar regions for
several months of the year. Therefore, spaceborne synthetic
aperture radar (SAR), which combines high spatial resolution
and independence of cloud and light conditions, is the main
source from which detailed maps of sea ice conditions are pro-
duced. However, the automatic interpretation of remote sensing
data, especially SAR data, is challenging and strongly relies on
expert’s knowledge. Passive microwave radiometers are another
type of sensor that can be used for sea ice observations. However,
in comparison to the aforementioned techniques, it has a signif-
icantly coarser spatial resolution and is, therefore, preferably
used for global or large-scale observations [3]. The increasing
amount of available satellite data together with more and more
activities in sea ice covered waters requires a greater effort
for supplementing the production of ice charts by employing
fully automated methods of information selection and image
analysis [3], [4].
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Multi-sensor remote sensing refers to the use of different
sensors usually operating at different frequencies and/or spatial
resolutions and coverage and with different time intervals be-
tween data acquisitions over a given region. Therefore, diverse
remote sensing systems grasp various properties of sea ice by
using different physical principles. Thus, combining the infor-
mation from multiple sensors allows better characterization of
seaice [5]. Nevertheless, although different data sources provide
complementary information, they can potentially also include
redundant, corrupted, or simply unnecessary information for a
given task. Accordingly, combining these data can significantly
deteriorate the performance by decreasing the accuracy and
increasing the computation time and structural complexity of
the algorithm. Thus, the selection of relevant information from
the original data set is an essential step of multi-source data
fusion that enables reliable and efficient performance [6], [7].

We note that the term “feature” is commonly used in fields
such as classification methodologies, pattern recognition, and
texture analysis. In our study, however, we use the notation
“attribute” from information theory which refers to directly
measured quantities such as, e.g., radar intensities at different
frequencies and polarizations, optical reflectance, and param-
eters such as textural or polarimetric features. The pertinence
of different attributes for sea ice characterization has been in-
vestigated for both SAR [4], [7]-[14] and optical imagery [15],
[16]. In some studies, e.g., the entropy was found to be well
suited for separating seaice types [13]. In other studies, however,
the same parameter was found to be less relevant for sea ice
classification [8], [11] and less useful for detection of leads in
the ice [9], [12]. In fact, it has been shown that the relevance of
single attributes varies with the observation conditions such as
incidence angle and season [7], [9]. Accordingly, the results of
such analyses cannot be generalized and emphasize the need for
an automatic attribute selection algorithm.

The selection of relevant information can be achieved using
dimensionality reduction methods that are generally divided
into two main categories: attribute extraction and attribute se-
lection [17]. Extraction methods generate a prominent set of
attributes by projecting the original set into a lower-dimensional
space. Among such methods, we can highlight the principal
component analysis (PCA) [18]. Selection algorithms search
for the most relevant elements, according to the given criteria,
within the original set, without applying any transformation.
One example of this category is the forward selection (FS) [19]
that determines a subset of attributes incrementally, by adding
at each step the attribute that leads to the largest improvement
of the information content. The transformation applied by the
attribute extraction approaches improves the separation of dif-
ferent data classes but at the expense of reducing the physical
interpretability, which may be a disadvantage for remote sensing
data analyses. Unlike the attribute extraction approach, attribute
selection preserves the data’s physical interpretability by work-
ing in the same space. The approaches mentioned above can
be classified as supervised [20], if they require training data,
or unsupervised [21]. In the case of remote sensing data, espe-
cially when dealing with complex scenes or considering modal-
ities (i.e., various sensors characterized by different acquisition
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techniques) that are difficult to interpret such as sea ice SAR
images, providing accurate labels is challenging even with the
assistance of an expert. Therefore, the unsupervised attribute
selection method is the right choice in the case of multi-sensor
remote sensing sea ice analysis.

In this article, we use a recently developed graph-based
method (referred to as GKMI) [22] that relies on information
theory metrics to capture the most relevant attributes for differ-
ent sea ice classes. The acronym GKMI recalls the Gaussian
kernel (GK) and the mutual information (MI) used as similarity
measures within this approach. GKMI combines the advantages
of both attribute extraction and selection approaches since it
generates a new representation of the attributes that can be reas-
signed to the original ones. As such, itincreases their separability
(even if they are non-linearly separable) while preserving their
physical interpretability. Moreover, it selects relevant attributes
for separate zones of an image that might belong to different
ice classes and/or are measured under different conditions (e.g.,
different radar incidence angles, varying sun elevation angles).
Accordingly, it enhances the classifier’s ability to separate dif-
ferent sea ice classes even in challenging scenarios.

The considered method was paired with a supervised clas-
sification approach [23]. Regions that appear homogeneous in
a single image and can also be identified in images acquired
from different sensors are labeled as a certain ice type with
the help of sea ice experts. In our study, we focus on data
that were acquired under freezing conditions. Hence, the re-
sulting attribute selections cannot be generalized for the melt-
ing season or freeze—melt cycles. However, the GKMI method
can be employed in the same manner to other than freezing
conditions.

The rest of this article is organized as follows. Section II
describes the data sets used in this study. Section III provides
details of the proposed architecture. Section IV presents an
experimental validation of the proposed method. Finally, the
discussion and conclusion are presented in Section V.

II. DATA SETS

This section describes the different data sets, consisting of
SAR and optical images that we used in our analysis. To increase
the validity range of our conclusions, we consider several data
sets of different spatial resolutions representing various sea ice
conditions: a multi-frequency data set from an airborne SAR
measurement campaign (ICESAR), two multi-sensor data sets
combining Radarsat-2 and Landsat-8 imagery, and Sentinel-1
and Sentinel-2 imagery. The data sets were labeled based on di-
rect field observations (ICESAR) or by analysts from operational
ice services and sea ice experts from institutions contributing to
this article.

Table I provides general information about the data sets,
and Fig. 1 illustrates their geographical location. SAR images
were acquired in linear polarization, and the notation “HV”
means that a horizontally polarized wave was transmitted and
the backscattered signal was received at vertical polarization.

A more detailed description of each data set is presented in
the following subsections.
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TABLE I
CHARACTERISTICS OF REMOTELY SENSED DATA SETS USED IN THIS STUDY. INTENSITIES ARE GIVEN AS BACKSCATTERING COEFFICIENT SIGMA-NOUGHT

Name Date Region Measured Quantities Pixel Size [m] Coverage [km]
ICESAR March 20, 2007 Fram Strait TV VY nneeites 15 53x1.5
Sentinel-1/Sentinel-2  April 08, 2018 g"gg:fb;f; Optical ?’?‘; l;;‘i if:mHgf 42‘;‘3:1?{“2' 19pm 60 87.5%109.8
Radarsat-2/Landsat-8  April 25, 2018 g”srtzﬂ]éz:; Optcal ?”]‘lf t;;:(i ?f:mHOY ng’eﬁﬁ_“m S 100 102.5%35.5

/ _ \ \ 3
10°W 20°E 30°E 40°E 50°E

Fig. 1. Location of the data sets used in this study. Boundary colors refer to
a specific data set: Sentinel-1/Sentinel-2 (Red), Radarsat-2/Landsat-8 (Blue).
Given the small area of coverage of the ICESAR data set, an approximation
of its location is given by a yellow square. It should be noted that only the
overlapped area of the multi-sensor data sets, mainly Sentinel-1/Sentinel-2 and
Radarsat-2/Landsat-8, are used.

A. ICESAR

From the ICESAR measurement campaign, we used images
acquired by the airborne SAR of the German Aerospace Cen-
ter (DLR) and an optical scanner operated on an aircraft of
the Alfred Wegener Institute (AWI). The SAR data set was
recorded at C-band (dual-polarization, VH, and VV) and L-band
(quad-polarization, HV, HH, and VV). The time difference be-
tween C-band and L-band measurements varies approximately
between 10 and 30 min. A more detailed description can be found
in [4] and [24]. The ICESAR data set includes six classes which
are open water, nilas, grey ice, grey-white ice, level first-year
ice (FYI) and deformed FYI according to the WMO sea ice
nomenclature [25]. Fig. 2 shows the false-color composite of
one scene at C- and L-bands.

B. Sentinel-1/Sentinel-2

The Sentinel-1/Sentinel-2 multi-sensor data set consists of
SAR and optical data obtained from Sentinel-1 and Sentinel-2
satellites. The time difference between SAR and optical data was
less than an hour. Sentinel-1 imagery was acquired in extra-wide
(EW) swath mode at dual polarization (HH and HV), which
is commonly used for sea ice monitoring. From Sentinel-2,
we used 13 bands in the visible, near-infrared, and shortwave
infrared part of the spectrum. Sentinel-1 data have a pixel size

(b)

Fig. 2. False-color composite representation of ICESAR data set. (a) C-band
(VH, VV, and VV as RGB). (b) L-band (HV, HH, and VV as RGB).

of 40 m, while the pixel size of Sentinel-2 varies from 10 to 60 m
depending on the spectral band. Both Sentinel-1 and Sentinel-2
data sets were downsampled to the same pixel size of 60 m.
The data set includes several classes, such as thick FYI, thin
FYI, grey ice, grey-white ice and open water. Fig. 3 shows the
SAR false-color composite and optical natural color composite
images of the Sentinel-1/Sentinel-2 data set. In Fig. 3(b), clouds
can be recognized, which is quite common for optical data.

C. Radarsat-2/Landsat-8

The Radarsat-2/Landsat-8 consists of optical and SAR data
acquired from Landsat-8 and Radarsat-2, respectively. The time
difference between SAR and optical data was less than an hour.
The SAR images were acquired at HH and HV polarizations.
From Landsat-8, we have images for 11 different spectral bands.
The Radarsat-2 ScanSAR Wide A image product has a pixel size
of 50 m, and the pixel size of Landsat-8 data varies in interval
from 15 to 100 m. Both SAR and optical imagery were down-
sampled to the same pixel size (100 m) by the nearest neighbor
resampling method and projected onto the same coordinate
system. The data set includes several sea ice types (thick FYI,
thin FYT, young ice, and nilas) and open water. Fig. 4 shows the
SAR false-color composite image along with the optical natural
color composite image of the Radarsat-2/Landsat-8 overlapped
area. In contrast to the Sentinel-2 image of Fig. 3, the optical
scene of the Radarsat-2/Landsat-8 data set is not affected by
clouds [Fig. 4(b)].
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(b)

Fig. 3. Color representation of Sentinel-1/Sentinel-2 data set. (a) SAR false-
color composite (HV, HH, and HH as RGB). (b) Optical natural color composite
(RGB).

)

Fig. 4. Color representation of Radarsat-2/Landsat-8 data set. (a) SAR false-
color composite (HV, HH, and HH as RGB). (b) Optical natural color composite
(RGB).

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

III. METHODS

Fig. 5 represents the flowchart of the proposed approach that
consists of pre-processing (collocation and downsampling of the
original data sets), the generation and combined extraction and
selection of attributes, and, finally, the classification.

In the following sections, random scalars are denoted by
lower case letters, e.g., z. Random vectors are designated by
bold lower case letters, e.g., z. Bold upper case letters refer to
matrices, e.g., A. |A| denotes the determinant of the matrix A.
diag{dy,...,dn} refers to a diagonal matrix whose diagonal
elements are dy, . .., dy starting from upper left. The ddiag(A)
operator set to zero the off-diagonal entries of A.

A. Pre-processing

The images acquired by different sensors can have different
characteristics, such as units of measurements, spatial reso-
lution, image, and geographical coordinate systems. The first
step of our analysis consists of making the data compatible
by means of subsampling, alignment on the same coordinate
system, collocating, and, finally, extracting the overlapping area.

We note that we did not use any additional filters or correction
schemes usually applied to optical data, such as atmospheric
correction, cloud masking or to SAR images, such as thermal
noise removal, incidence angle compensation.

During the ICESAR campaign, the radar images at L- and
C-bands were acquired with a time difference between 10 and 30
min, while for Sentinel-1/Sentinel-2 and Radarsat-2/Landsat-8,
the time difference between multi-sensor data was less than 1 h.
Nevertheless, after a detailed analysis of the images, especially
focusing on individual ice formations and areas of open water,
we can assume that there was no significant drift effect that needs
to be considered.

B. Attributes Extraction

In addition to the original radar intensities or optical re-
flectances, we consider the textural attributes in this study. It
is noteworthy that GKMI is independent of the data type; hence,
it can also be applied to other attributes such as polarimetric
features.

For each image layer (frequency/wavelength band and/or
polarization), we extract the textural features using the gray-level
co-occurrence matrix (GLCM) [26], [27]. We use the directional
average for 0°, 45°, 90°, and 135° which is common practice
to account for the possible rotation of sea ice floes, leads, or
any other sea ice structure or roughness pattern on the ocean
surface. Moreover, it reduces the number of GLCM matrices.
We also considered the average of the distance/displacement
parameter that we varied from 1 to 5 (corresponding to the half
of the window’s size that was set to 11x11). It is noteworthy
that minor changes of window size (45) do not significantly
affect the classification accuracy. Table Il illustrates the extracted
features as well as their mathematical definitions.
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Flowchart of the proposed approach.
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Attribute selection

Segmentation Graph clustering

N S

Graph building

Classification

For all superpixels,
apply parallel classification
using random forest classifier.

Classified maps

TABLE I
MATHEMATICAL DEFINITION OF GLCM FEATURES

Texture Features Definition Texture Features Definition
Angular Second Moment/ E Maximum Correlation N5y
Energy (ASM) i,j= 0 gm Coefficient (MCC)

Correlation (CORR) ZZ ! 0 gij [W]
i0j

Variance (VAR) Zl S L 9ig (i — p)?

Contrast (CST) >3 gis li—il?)

Sum Average (SAVE) 529 Gaty(n)

Sum Variance (SVAR)

22, (= S22 o0 (m)?) gr40(n)

Sum Entropy (SENT) =522, Guty(n) 10g (gu+y (n))

Entropy (ENT) >0 g1 log (gi5)

Difference Variance (DVAR) Zn 0 L (n = pre—y)? gomy(n)

Difference Entropy (DENT) - 23;01 gz—y(n)log (gz—y(n))

o-1
i

. 9i,j
9i,j log ga (1) gy (5)

Information Correlation (IC) — max (o H,)

Inverse Different Moment/ Z 9i,j
Homogeneity (IDM) 6,j= 0 1+(i—j)2

E?; 09 j(i—m)2
Z, “i= Uwu

Coefficient of Variation (CV)

Note: g; ; denotes the elements of the GLCM matrix G. @ is the number of gray levels used. g = >_; gi,j. gy = ZJ 9ij» Gaty(n) =
=—22i 9=(2) log(g= (7)), and H, =

-1
S i jimn Givge Hamy = 3Gt ngay(n). H.
. 9i k95 k
A(i)) = Xk 5. thgstm-

C. Attributes Selection

In this section, we briefly describe the GKMI method that we
employ to find relevant attributes [22]. This approach consists of
three steps: segmentation, graph building, and graph clustering.

Segmentation: GKMI finds different attributes for separate
zones of an image (superpixels) to reflect their particularity.
In fact, different parts of an image might represent separate
entities and may require different types of attributes to be well
represented. Moreover, even if the various parts represent the
same entities, they might be observed under different conditions
(different noise levels, light conditions, incidence angles, etc.).
As such, the first step of GKMI consists of determining the
superpixels using the Watershed segmentation method [28],
[29].

Graph building: Let L be the number of superpixels extracted
using the segmentation method and N the number of initial
attributes (see Table III).

In order to select K relevant attributes, among the initial N
attributes, GKMI employs two similarity measures, GK and MI.
GK permits to preserve the structure of the original set and is
defined as follows:

2
GK [Ixi — x|
Wy = €Xp <W ey
where ||.|| is the Frobenius norm, x; and x; are the vectors

corresponding to the ¢-th and j-th attribute, respectively, and
o > 0 is a parameter that controls the measure of similarity

>igj=nGigs Goy(n) =
— > 9y (i) 1og(gy(2)). A is the second largest eigenvalue of A, where

of the attributes [30]. A large value of o will indicate a larger
similarity even if the Euclidean distance between x; and x; is
relatively large, whereas, conversely, a lower value of o weakens
the resemblance judged from only the Euclidean distance. Ac-
cordingly, o might be interpreted as a scale factor that controls
the strength of the similarity measure between attributes. In this
work, we set o to the default value 1. It is worth noting that we
tried other values of o, but the performance of the analysis did
not change significantly (less than 1% of accuracy).

MI quantifies the shared information between two attributes
and is defined as follows [31]:

= Dia (P(xi,%;)[|[P(x:) P(x;)) @

where Dy (.||.) is the Kullback-Leibler divergence, P(x;,x;)
is the joint density function of x; and Xj, and P(x;) and P(x;)
are the marginals. Small values of wM exhlblts independency of
x; and x; which means that both attrlbutes encompass different
information. Conversely, high values of wi\/[jl show dependency
between the attributes, which means that both reflect similar
information.

For each superpixel [, we build a multigraph G;(V, E) with
N vertices corresponding to the /N attributes connected by two
edges. The weights of the edges (strength of the connections) are
given by GK (1) and MI (2). The MI is measured image-wise,
considering all pixels in the image, while the GK is calculated
superpixel-wise, using only the pixels within each superpixel.
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Graph clustering: By partitioning the graph §; into subgraphs,
GKMI groups similar attributes together, according to MI and
GK measures. As such by selecting a representative attribute
from each subgraph, we obtain a subset that preserves the struc-
ture and the information content of the original set of attributes
within the [ superpixel.

Two Laplacian matrices, and
the graph G;, and are defined as follows:

LGK LMI

, are associated with

K-1/2

LGK —I— DGKfl/szKDG (3)

“
where T is the identity matrix. W = (w#);; and WM! =
(w%ll)ij are the adjacency matrices of the graph G;, and DGK =
diag(}",.; wi*) and DM = diag(}", . ; w}i') are their corre-
sponding degree matrices, respectively.

The number of subgraphs within the graph g is equal to the
multiplicity of the null eigenvalues of LE¥ and LM!. Moreover,
each eigenvector associated with a null eigenvalue is an indicator
of a subgraph [30]. Accordingly, the partition of the graph G, into
subgraphs can be performed by embedding the attributes into a
new manifold spanned by the joint null eigenvectors (eigen-
vectors associated with the null eigenvalues) of the Laplacian
matrices. The joint eigenvectors of LK and LM are obtained
by a joint approximate diagonalization [32]

LEK = VASKVT (5)

LM _1_pMIY?

LMI — VAMIVT (6)

where V = (v; j)o<i j<n is the matrix of eigenvectors, and
ACK = diag(AFX, .. AGK) and AMT = diag(AMT, .. AMD)
are diagonal matrices of the corresponding eigenvalues. The
K first eigenvectors corresponding to the smallest eigenvalues
will define a new representation of the attributes, i.e., the vector
u, = [Vk1,- -, vhN]T is the new representation of the k-th
attribute xy,, as follows:

u; is the representative of the 1st attribute

1
V1K | : V1IN
V2K L V2N
1
. 1
. 1
1
UNK +-- UNN

K eigenvectors associated with the K smallest eigenvalues

The final step consists of performing a clustering on the new
attributes uy,...,ux. In our case, we perform the clustering
using K -means [18]. The subset of K relevant attributes corre-
spond to the closest attributes to the centroids of the clusters.
It is worth noting that the embedding of the attributes increases
their separability and accordingly gives better results than when
performing the clustering on the original attributes [30]. More-
over, unlike the feature extraction approaches, the attributes
embedding can be mapped back to the original set (since the
original attributes and their new representations have the same
indices), hence preserving their physical interpretability.
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TABLE III
INITIAL ATTRIBUTES CONSIST OF THE ORIGINAL BANDS/POLARIZATIONS AND
14 TEXTURAL FEATURES (TABLE II)

Data set Derived N

ICESAR

Original

2 x C-band + 3 x L-band
2 X SAR + 13 x optical
2 X SAR + 11 x optical

Textural 75

Textural 225
Textural 195

Sentinel-1/Sentinel-2

Radarsat-2/Landsat-8

TABLE IV
CLASSES DETERMINED BY SEA ICE EXPERTS FROM VISUAL INSPECTION, AND
NUMBER OF TRAINING SAMPLES AND REGIONS OF INTEREST FOR ALL THE
DATA SETS USED IN THIS ARTICLE

Class Name  Class Description  Training Samples ROI

ow Open Water 2398 3

. NI Nilas 12946 8
s GI Grey Ice 2342 5
8 GWI Grey-White Ice 10640 9
= LFY Level FYI 14233 8
DFY Deformed FYI 6356 12

ow Open Water 911 3

QN GI Grey Ice 9906 3
€ GWI Grey-White Ice 6205 3
» TNFY Thin FYI 5054 3
TKFY Thick FYI 8009 3

ow Open Water 401 3

x NI Nilas 774 6
§ YI Young Ice 889 5
~ TNFY Thin FYI 746 4
TKFY Thick FYI 1381 6

Note: Training samples refers to the number of pixels available for classification
performance evaluation.

D. Classification

It is noteworthy that the main focus of this article is the
application of the GKMI method to determine an optimal set of
attributes, which we here demonstrate for the separation of ice
types. We perform the sea ice classification using the random
forest method, which is a widely applied classifier in remote
sensing [23].

Table 1V illustrates the sea ice and water classes for all the
data sets used in this article as well as the number of regions
of interest (ROIs) and available training samples that have been
applied for creating the training and test data sets to evaluate
the classification performance. Additionally, Figs. 6(a), 7(a),
and 8(a) show the distribution of ROIs that were used for the
classification of all the data sets.

In all the experiments, we randomly choose 20% of the
samples from each label as a training set, while the remaining
80% of samples are used as a test set for performance evaluation.

IV. EXPERIMENTS

In this section, we study the relevance of various attributes,
described in the previous section, for the characterization of
different sea ice types employing GKMI. To quantitatively eval-
uate the result of sea ice classification, we use two measures: the
overall accuracy (OA) index and Cohen’s Kappa coefficient (k).
The OA shows the percentage of correctly classified samples,



KHACHATRIAN et al.: AUTOMATIC SELECTION OF RELEVANT ATTRIBUTES FOR MULTI-SENSOR REMOTE SENSING ANALYSIS 9031

@

EEE Open Water B Nilas Grey Ice EEE Grey-White Ice EEE Level FYI mm Deformed FYIJ

(b)

Fig. 6. (a) ROI and (b) classified map for ICESAR data set.

while Kappa measures the agreement between the classification
and the reference data [33].

In the following, using the ICESAR, Radarsat-2/Landsat-8,
and Sentinel-1/Sentinel-2 data sets, we run different analyses
to demonstrate the relevance of automatic feature selection in
Section IV-A, the importance of the combination of several
imaging modes in Section IV-B, and the data dependency of
the relevant attributes in Section IV-C. Finally, in Section IV-D,
we compare GKMI to the commonly automatic approaches for
attributes selection, PCA and FS.

A. Performance Analysis

Before conducting our analysis of the relevant attributes for
the characterization of different ice types, we evaluate the per-
formance of GKMI.

Fig. 9 illustrates the overall accuracies of the GKMI at-
tribute selection method dependent on the number of selected
attributes for the ICESAR, Sentinel-1/Sentinel-2, and Radarsat-
2/Landsat-8 data sets. The red line indicates the accuracies
obtained with the RF classifier for ICESAR, the blue line
refers to Sentinel-1/Sentinel-2, and the black line illustrates
the Radarsat-2/Landsat-8 data set. The stars show the points
where the accuracies reach their peak. It can be clearly seen
that all curves rise sharply until the number of attributes reaches
20 for ICESAR and Sentinel-1/Sentinel-2 and 30 for Radarsat-
2/Landsat-8, whereupon the accuracies become stable and high
for Sentinel-1/Sentinel-2 and Radarsat-2/Landsat-8 and slightly
decreasing for ICESAR. Moreover, the maximum accuracy was
reached with almost half of the attributes for ICESAR, less than
one-fifth for Radarsat-2/Landsat-8, and less than one-seventh
of the attributes for the Sentinel-1/Sentinel-2 data set. Table V
shows the OA and Kappa coefficient (k) obtained for the optimal
number of selected attributes /K, and the ones obtained for the
total number of attributes N. After reaching the point of the
highest accuracy, the inclusion of additional attributes in the clas-
sification does not provide any further information which could
improve the classification performance for Sentinel-1/Sentinel-2
and Radarsat-2/Landsat-8 data sets. In case of the ICESAR data
set, more attributes slightly decline the classifier performance.
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Fig. 7. (a) ROI and (b) classified map for Sentinel-1/Sentinel-2 data set.
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Fig. 8. (a) ROI and (b) classified map for Radarsat-2/Landsat-8 data set.
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Fig. 9. Overall accuracies of GKMI as a function of the number of selected
attributes for ICESAR, Sentinel-1/Sentinel-2, and Radarsat-2/Landsat-8 data
sets.

TABLE V
CLASSIFICATION PERFORMANCE OBTAINED OVER DIFFERENT DATA SETS

K  OA k N OA k

ICESAR 40 985 980 75 980 975
Radarsat-2/Landsat-8 30 99.6 993 195 99.6 99.5
Sentinel-1/Sentinel-2 30 99.9 99.8 225 999 99.9

Note: K refers to the optimal number of selected attributes, /N shows the total number
of attributes, k refers to the Kappa coefficient, and OA (%) corresponds to the overall
accuracy. The maximum values of the OA and & are shown in bold. Note that the table
shows the classification performance for both optimal and total number of attributes.

TABLE VI
CLASSIFICATION PERFORMANCE OBTAINED USING C-BAND, L-BAND, AND
MULTI-FREQUENCY ATTRIBUTES FOR ICESAR DATA SET

L-band C-band Multi-frequency

K OA k K OA k K OA k

40 932 912 30 90.1 872 40 985  98.0
20 924 902 20 896 865 20 976 969

These results clearly demonstrate the prominence of information
selection.

Figs. 6(b), 7(b), and 8(b) show the classified maps for multi-
frequency and multi-sensor data sets used in this work. Since
the ICESAR data were acquired with a higher spatial resolution,
narrow structures such as ice ridges, cracks, and small leads are
easier to identify in the classification maps.

B. Multi-sensor vs. Single-Sensor

To demonstrate the advantage of combining data obtained
from various sensors, we compare the performance of the classi-
fication algorithm when only using the attributes of each imaging
mode individually and when using their attributes combined.

1) ICESAR: Table VI shows the OA and Kappa coefficient k&
obtained for [, the optimal number of selected attributes among
the attributes extracted for L-band, C-band, and multi-frequency
data set (i.e., when we are using them together). Note that the
optimal number is different for each case. To better show the
difference in performance, we also added results obtained for a
fixed amount of selected attributes K = 20. It is evident that the
joint use of both data sets increases the accuracy significantly.
The OA of the multi-frequency data set reaches its peak with
40 attributes and is equal to 98.5%, while the L-band achieves
93.2% and C-band 90.1%. In fact, even with only 20 attributes,
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TABLE VII
NORMALIZED CONFUSION MATRIX FOR CLASSIFICATION RESULTS OBTAINED
WiTH ICESAR DATA SET

Actual class

oW NI GI GWI LFY DFY
%’ oW | 0.722 0 0.065 0.03 0 0
< NI 0 0.978 0 0.001 0.011 0
g GI 0.117 0 0.664 0.111 0 0
§ GWI o0.161 0 0.271 | 0.854 0 0
‘%2 LFY 0 0.022 0 0.004 | 0.893 0.021
< DFY 0 0 0 0 0.096  0.979
(a)
Actual class
ow NI GI GWI LFY DFY
§ OW | 0.961 0.007 0.009 0 0 0
< NI 0.008  0.974 0.042 0.019 0 0
g G 0.026  0.001 | 0.792 0.05 0.011 0
& GWI 0005 0.018 0.139 0867 0.065 0
‘2 LFY 0 0 0.018 0.064  0.924 0
< DFY 0 0 0 0 0 1
(b)
Actual class
oW NI GI GWI LFY DFY
§ OW | 0.964 0 0.005 0 0 0
< NI 0 0.999 0 0 0.003 0
) GI 0.021 0 0.926 0.035 0 0
& GWI 0.015 0 0.069  0.962 0 0
2 LFY 0 0.001 0 0.003 | 0.997 0
< DFY 0 0 0 0 0 1

(0
Note: OW denotes the open water, NI the nilas, GI the grey ice, GWI the grey-white ice,
LFY the level FYI, and DFY the deformed FYTI class. (a) C-band attributes. (b) L-band
attributes. (c) Multi-frequency attributes.

the multi-frequency data set achieves higher performance than
the maximum achievable performance using a single band with
its optimal number of attributes. Our result indicates a slightly
better accuracy at L-band than at C-band. Since the penetration
depth into the ice is larger at L-band, deformation structures
are easier to recognize in the corresponding SAR images. In
cases for which deformation structures comprise an important
criterion for classification (like for our data set here), better
accuracies are often achieved at L-band.

Furthermore, we analyze the interclass performance for the
single-frequency and the multi-frequency approaches by cal-
culating the normalized confusion matrices depicted in Ta-
ble VII(a)—(c). The results show that the NI (nilas) and DFY (de-
formed FYI) were the easiest to distinguish for single-frequency
and multi-frequency data sets, compared to OW (open water),
GWI (grey-white ice), and GI (grey ice). Besides, we notice that
GI has the lowest accuracy among all classes for both L-band
and C-band data. In fact, GI is highly misclassified as GWI, as
can be visible on the confusion matrices. This misclassification
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TABLE VIII
CLASSIFICATION PERFORMANCE OBTAINED USING SAR, OPTICAL, AND
MULTI-SENSOR ATTRIBUTES FOR SENTINEL-1/SENTINEL-2

SAR
N K OA k K OA k K OA k

225 30 982 976 100 99.8 997 30 999 998
43 20 978 971 13 994 99.1 10 997  99.6

Optical Multi-sensor

results from the significant overlapping of GI and GWI signa-
tures because of their high similarities in many radar signature
attributes. Moreover, the L-band data set shows higher accuracy
than the C-band data set for all classes. However, the highest
accuracies were always achieved by the multi-frequency data
set. The prominence of the multi-frequency approach is more
apparent for the class GI (grey ice). In fact, by combining L-band
and C-band, the accuracy of their most challenging class GI has
significantly improved.

To show the flexibility and robustness of the attribute selection
method and multi-sensor approach, we also perform a classifi-
cation comparison of SAR and optical attributes for Sentinel-
1/Sentinel-2 and Radarsat-2/Landsat-8. The optical data that
were used as complementary source for the manual classification
by experts could not be geometrically registered to the radar im-
ages because the time gap between acquisitions was too large to
compensate for sea ice deformations. The Radarsat-2/Landsat-8
and Sentinel-1/Sentinel-2 data reveal a clear dominance of the
optical attributes over radar attributes. Since this is dependent on
the special measurement conditions (e.g., sensor characteristics
and ice properties, for optical sensors sun elevation), it is difficult
to generalize this result, and, correspondingly, we expect varying
priorities of single attributes. Nevertheless, the dominance in the
number of attributes does not always lead to better accuracy or
more information content, as shown in Fig. 9. We emphasize
that one of the main ideas of this study is to show that the
GKMI method can be easily adapted to any sensor and image
combination and for any environmental conditions.

2) Sentinel-1/Sentinel-2: Table VIII illustrates the classifi-
cation performance of SAR, optical, and multi-sensor attributes
for Sentinel-1/Sentinel-2 data set. This analysis was conducted
using two initial sets of attributes. The first set consists of the
original bands and polarizations of optical and SAR images in
addition to their corresponding textural features. Conversely, in
the second set, optical images’ textural features were omitted
(in this scenario, the data set consists of 43 attributes: 13 optical
and 30 SAR). The second set was considered to appropriately
evaluate each sensor’s contribution. The results show that using
only optical attributes, one reaches the same high accuracy as
multi-sensor attributes for Sentinel-1/Sentinel-2 data set. How-
ever, when using multi-sensor attributes, accuracy is achieved
with less number of attributes.

Additionally, we also extracted confusion matrices, like we
did for the ICESAR data set, to better analyze the interclass
performance of the single-sensor and multi-sensor approaches.
Table IX(a)-(c) demonstrates the results for the Sentinel-
1/Sentinel-2 data set. We notice that the optical data set achieves
a better separation for all classes compared to the SAR data set.
However, there is no significant accuracy superiority in any of the

9033

TABLE IX
NORMALIZED CONFUSION MATRIX FOR CLASSIFICATION RESULTS OBTAINED
WITH THE SENTINEL-1/SENTINEL-2 DATA SET

Actual class

(0)%Y% GI GWI TNFY TKFY
@ ()% 0.977 0 0 0 0.013
) GI 0 0.994 0.008 0 0
g GWI 0 0.006  0.959 0.032 0
5 TNFY 0.014 0 0.033 = 0.968 0.006
‘2 TKFY 0.009 0 0 0 0.981
<
(a)
Actual class
[0)% GI GWI TNFY TKFY
§ ()% 0.993 0 0 0 0
= GI 0.007 £ 0.998 0.005 0 0
g GWI 0 0.002 = 0.995 0 0
5 TNFY 0 0 0 1 0
‘2 TKFY 0 0 0 0 1
<«
(b)
Actual class
OW GI GWI TNFY TKFY
§ oW 1 0 0 0 0
o} GI 0 1 0.003 0 0
g GWI 0 0 0.997 0 0
5 TNFY 0 0 0 1 0.001
‘% TKFY 0 0 0 0 0.999
<«
(©)

Note: OW denotes the open water, GI the grey ice, GWI the grey-white ice,
TNFY the thin FYI, and TKFY the thick ice class. (a) SAR attributes. (b) Optical
attributes. (c) Multi-sensor attributes.

TABLE X
CLASSIFICATION PERFORMANCE OBTAINED USING SAR, OPTICAL, AND
MULTI-SENSOR ATTRIBUTES FOR RADARSAT-2/LLANDSAT-8 DATA SET

SAR
N K OA k K OA k K OA k

Optical Multi-sensor

195 20 91.0 883 120 985  98.1 30 996 993
41 20 91.0 883 11 953 939 10 98.6 98.2

classes. Moreover, the multi-sensor approach results in higher
accuracies than the single-sensor.

3) Radarsat-2/Landsat-8: Now, we evaluate the differ-
ence in performance between optical and SAR sensors for
Radarsat-2/Landsat-8 data set. As for the Sentinel-1/Sentinel-2
data set, we consider two sets of initial attributes. In the second
set, the textural features of the optical bands were excluded
to have a comparable number of attributes for each sensor.
Accordingly, for this scenario, the Radarsat-2/Landsat-8 data
set includes 41 attributes (11 optical and 30 SAR). Table X
illustrates the performance comparison using SAR, optical, and
multi-sensor attributes. Unlike the Sentinel-1/Sentinel-2 data
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TABLE XI
NORMALIZED CONFUSION MATRIX FOR CLASSIFICATION RESULTS OBTAINED
‘WITH RADARSAT-2/LLANDSAT-8 DATA SET

Actual class

(0)%Y NI YI TNFY TKFY
§ ow 0.857 0.004 O 0 0.01
° NI 0.031 0848 O 0.005 0.147
3 YI 0 0 1 0 0
& TNFY 0.017 0.016 O 0.993 0.001
%2 TKFY 0.095 0.133 0 0.002 = 0.842
<
(a)
Actual class
ow NI YI TNFY TKFY
ﬁ (0)%Y 0974 0.024 0.015 0 0
c} NI 0.016 = 0.976 0.007 0 0
3 YI 0.01 0 0.978 0 0
5 TNFY 0 0 0 0.998 0.001
% TKFY 0 0 0 0.002 = 0.999
<
(b)
Actual class
(0)%Y% NI YI TNFY TKFY
§ (0)%% 0.985 0.013 0 0 0
o} NI 0.015 0987 O 0 0
3 Y1 0 0 1 0 0
% TNFY 0 0 0 1 0
‘2 TKFY 0 0 0 0 1
<

(©
Note: OW denotes the open water, NI the nilas, YI the young ice, TNFY the thin
FYIL, and TKFY the thick ice class. (a) SAR attributes. (b) Optical attributes. (c)
Multi-sensor attributes.

set, where the single-sensor performance for both sensors was
high, the Radarsat-2/Landsat-8 single-sensors show less accu-
rate performance than multi-sensor attributes.

Table XI(a)—(c) shows the confusion matrices for Radarsat-
2/Landsat-8. The results reveal that the YI (young ice) was the
easiest to distinguish using SAR, while TNFY (thin FYI) and
TKFY (thick FYI) showed high classification accuracy using
optical data. Unlike optical, the SAR part shows significantly
lower accuracies for OW (open water), NI (nilas), and TKFY
(thick FYT). However, the multi-sensor attributes combine the
advantages of both sensors and ensure the highest separability
for all classes.

It should be noted that even though, for this particular ex-
ample, optical attributes result in high accuracies, they cannot
serve as basic source for operational monitoring. This is due to
several familiar factors, such as limitations due to light and cloud
conditions that influence the separability of rough and smooth
level ice, and snow cover that prevents recognition of sea ice
types.

The results obtained for the investigated data sets reflect dif-
ferent situations: the dominance of one frequency or one sensor

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

forice type separation (ICESAR and Sentinel-1/Sentinel-2), and
the complementarity of sensors (Radarsat-2/Landsat-8). In all
cases, the combination of data from different sensors guarantees
better performance. In particular, for certain ice conditions and
combinations of available data, the multi-sensor approach can
increase the classification accuracy significantly if compared to
the single-sensor case (in Table VII(c), e.g., the ICESAR data).

C. Relevant Attributes

Because the selection by GKMI is performed in superpixel
space, different attributes are selected for different classes. The
selected attributes can also differ between the superpixels of one
ice-class due to the influence of several factors, such as incidence
angle, range-dependent noise, light and cloud conditions, etc.
However, we can still estimate the relevant attributes for a class
by identifying its frequently selected attributes. To this end, we
identify all superpixels belonging to a class and extract their
chosen attributes.

Fig. 10 shows the histograms of the five most selected at-
tributes for each class for the different data sets.

Fig. 10(a) shows the relevant attributes for each class of
ICESAR data set. The histograms show that, in general, C-band
and L-band attributes were often selected equally. However, for
some classes, there is a clear predominance of L-band (open
water, level FYI, and grey-white ice) or C-band attributes (nilas).
Moreover, several attributes, such as information correlation and
inverse different moment derived from L-band VV polarization
(L VVIC and L VV IDM), were selected for several classes of
the ICESAR data set.

Fig. 10(b) demonstrates the relevant attributes selected for
the different classes of Sentinel-1/Sentinel-2 data set. Optical
attributes are predominant for this data set, especially for thick
and thin FYI. Moreover, the intensity of band B1 (B1 INTST)
was frequently selected for three classes (open water, grey-white
ice, and thick FYI).

Fig. 10(c) illustrates the relevant attributes for the classes of
the Radarsat-2/Landsat-8 data set. Optical attributes were se-
lected more frequently than SAR attributes; however, unlike the
Sentinel-1/Sentinel-2 data set, all the classes have a mixed set of
selected attributes. The most predominantly selected attribute for
Radarsat-2/Landsat-8 was the maximum correlation coefficient
derived from HV polarization (HV MCC), that was chosen for
open water, nilas, young ice, and thick FYL.

From the results mentioned above, it is possible to conclude
that it is hard to find any generalization among the attributes
and corresponding sea ice types. Moreover, for a given com-
bination of data types, selected attributes vary even between
the superpixels that belong to the same ice class. This indicates
that the selection procedure is sensitive to the technical setup
(e.g., incidence and sun elevation angle) and slight variations
of the appearance of a given ice class (e.g., varying degrees of
deformation and ice concentration). Therefore, it is crucial to
have a flexible attribute selection method that allows selecting
the relevant attributes for different data combinations and sea ice
classes even under various conditions to enhance the accuracy
of classification.
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Fig. 10.  Five most frequently selected attributes for each class of (a) ICESAR,
(b) Sentinel-1/Sentinel-2, and (c) Radarsat-2/Landsat-8. Note that the height of
the bars (number of attributes’ occurrences) is different for the various classes
because the number of used ROI is different for each class. INTST refers to
intensity. For radar data, intensity refers to the backscattering coefficient.

TABLE XII
PERFORMANCE COMPARISON AMONG DIFFERENT METHODS FOR ATTRIBUTE
SELECTION, USING RF CLASSIFIER

ICESAR Sentinel-1/Sentinel-2  Radarsat-2/Landsat-8

Method N OA(%) k N OA&%) k N OA (%) k
FS 40 98.0 975 30 99.8 99.7 30 97.7 97.0
PCA 40 97.7 97.0 30 99.9 99.8 30 98.9 98.0
GKMI 40 98.5 98.0 30 99.9 99.8 30 99.6 99.3

D. Comparison of Methods

To evaluate the GKMI method’s performance, we compared
its results to the two mostly used automatic attributes selection
methods, mainly PCA and FS. PCA is an unsupervised feature
extraction approach, while FS is a supervised attribute selec-
tion. Table XII shows the accuracy and kappa for the different
methods and data sets used in this article. All methods show
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a high classification accuracy; however, GKMI gives slightly
higher accuracy for all data sets. These results validate our
approach’s efficiency since it offers better performance without
any supervision as for FS, and while preserving the physical
interpretability of attributes as opposed to PCA.

We emphasize that in this study, the major focus was on
attribute selection for maximizing the information content of
satellite and airborne images as a step toward improved sea
ice classification. The results of attribute selection can also be
applied for an assessment of dominant scattering mechanisms or
for optimizing the retrieval of ice parameters such as roughness
or thickness.

In comparison to other attribute selection algorithms, par-
ticularly to the ones that were used in this study, GKMI is
substantially different, which is an advantage for automated
classification. Hereby, the optimal subset of attributes using
the GKMI method is determined according to two different
criteria, which are structure (GK) and information content (MI).
These criteria are applied simultaneously and account for the
global and local particularities of the original data set. More-
over, the method is performed on a superpixel level, which, in
combination with the use of two similarity measures explained
in Section III-C, allows us to capture relevant information at
different scales. Additionally, GKMI preserves the advantages
of both attribute extraction and selection approaches, namely,
increases the class separability and, at the same time, preserves
the physical meaning of the original data.

V. CONCLUSION

In this article, we employed GKMI, a recently developed
approach for attribute selection, and applied it to the task of sea
ice classification using different multi-sensor data combinations.
The optimal set of selected attributes, by GKMI, is not fixed
for the whole image or a sea ice class but is adaptive for each
region of the observed scene according to the technical and
environmental conditions (such as noise level, incidence angle,
cloudiness, etc.)

Furthermore, our results show the ability of GKMI to pro-
cess different combinations of data sets and the importance of
deploying multi-sensors for the characterization of ice types by
comparing the performance of using several sensors separately
and simultaneously. Since the major idea of our approach s to in-
troduce a highly flexible and adaptive scheme, it is not necessary
to recommend fixed sets of attributes for classification, which
depend on sensor types, imaging modes, and environmental and
ice conditions during data acquisitions. As such, the fact that
optical information is more accurate in the considered data sets
is not of general validity due to the limitations of optical sensors
in cloudy and dark areas.

Finally, two issues still need to be addressed. For the first, we
did not yet investigate in detail how our results are affected by the
observation conditions, such as radar incidence angle or sun el-
evation angle. This is part of future investigations. Another item
concerns the availability of the investigated sensor combinations
for operational mapping. Since our results clearly demonstrate
the advantage of multi-sensor classification (here focussing on
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GKMI), space agencies and operational services should develop
strategies that make the joint use of data from different sensor
types possible. For example, it has to be considered that optical
data can only be used under favorable light and cloud conditions
(hence requiring a “only-add-if-usable” strategy). Moreover, the
combination of different radar frequencies for operational ser-
vices is recently under discussion, e.g., the Copernicus ROSE-L
mission (see [34]). For joint data use, it is important to consider
the drift of sea ice, which requires that different sensors acquire
data with smallest possible time gaps over a given region. For
the combination of C-band and L-band SAR, corresponding
acquisition scenarios are under investigation in the ROSE-L
project.
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