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Abstract. Motion detection is vital for consumer electronics and the Internet of things (IOT). 
For a scenario where the motion is slow and gentle, the resolution of the motion sensor is critical 
for the detection, while the algorithm development is another critical issue to differentiate the 
motion signal from noise measurement.  This paper investigates the feasibility of using higher 
order statistics kurtosis as a motion indicator. Statistical hypothesis test has been developed to 
assess the motion presence. Several experiments are conducted to test the feasibility and 
performance of the approach. The results show the approach is feasible, but with some 
limitations.                     

1.  Introduction 
The motion detection is vital in the smart devices for motion recognizing such as detecting the rotation 
of screen, measuring the movement of hand-held devices. A typical example is the step counting 
commonly used in the smartphone and wearable devices. In the industry, motion detection is applied to 
measure the acceleration of the machine, the movement of machinery, or to detect the dislocation of 
components in the infrastructure. For example, motion sensor is used to detect the transmission wire 
movement in the electricity industry. In ship industry, the motion sensor can be used to detect the 
stability of the ship.  

In recent decade, attributing to the rapid development of Microelectromechanical systems (MEMS) 
sensor, the sensor becomes low-cost, smaller size, but with high accuracy and high reliability. In addition, 
the rapid development of Internet of Things (IOT) promotes the demand of the motion sensor. Some 
chip manufacture companies such as STMicroelectronics provide affordable and miniature MEMS 
motion sensor.  The hardware of motion detection becomes simple and cheap.  

The sensor in general, regardless of its physical principle of mechanic, optic or ultrasonic, can 
measure the acceleration in three dimensions. This paper addresses a scenario with very slow and non-
periodic motion. The motion is subtle and the changings in the three dimensions are not significant. If 
the subtle motion can be identified, the sensitivity of the motion detection can be improved, i.e. 
detectable for a slight motion. If the detection is successful, the applications will be promising, as the 
available motion sensor in the market is mostly with resolution as low as to 1 or 2 hz. For slight motion 
less than 1hz, the sensor is available, but expensive and hard to be procured.      

Using common motion sensor, this paper develops algorithms to detect the abovementioned subtle 
motion. In state of art, the vibration analysis addresses a similar issue. Whereas methods used for 
vibration analysis such as Fast Fourier Transform would not work. The frequency domain won’t show 
evident patterns characterizing the motion, since the motion could be transient and not periodic. In 
addition, as another challenge, the motion signal is not readily discernible as the signal strength could 
be in the same level as the noise data. In the vibration analysis, when the bearing defect in its early stage, 
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the defect signal is not evident, patterns would be identified in the time domain [1]. Motivated from the 
time domain analysis on the bearing defect, this paper proposes statistical approach to address the slow-
motion detection problem.        

2.  Statistical Approach 

2.1 Sample Kurtosis 
When no motion present, the motion measurement would be purely random as white noise. The 
distribution of this random noise follows Normal distribution. But this assumption should be validated 
for each measurement. Motion present will induce a systematically increasing, decreasing, cyclic, or 
anything else embedded in the noise. We can consider the motion signal as additive measurement.  The 
additive measure, as outlier to the Normal distribution, can be identified and therefore the motion can 
be detected. 

Kurtosis is a higher order statistic highly sensitive to outlier. Since the motion signal added to the 
while noise is equivalent to outliers added into a Normal distributed data, we propose to use the kurtosis 
to detect the motion. The kurtosis is defines as [2] 

𝑘                                       (1) 

where 𝑥  is a random variable, the 𝜎  is the standard deviation of this variable.  For a Normal 
distributed random variable, the kurtosis in (1) is exact valued as 3.  

For the sample Kurtosis, state of art has several definitions. This paper defines the sample kurtosis 
as  

𝑘
∑ ̅

∑ ̅
                 (2) 

According to (1), the expected kurtosis is 3, while the expectation of 𝑘  is 
𝐸 𝑘 3                 (3) 

The (2) is thus biased. It is a drawback of this estimator. Nevertheless, the biasness is trivial for a 

large sample size 𝑛, as the  is close to 3 when 𝑛 is large. 

It is also desirable to obtain the variance of the 𝑘 , since we will use it for the statistic test.  The 
variance of 𝑘  is  

𝑉𝑎𝑟 𝑘     (4) 

An corrected estimator of kurtosis is presented as [3] 
𝑘 𝑛 1 𝑘 3 𝑛 1 3     (5) 

The expectation of 𝑘  is readily to be seen as 
𝑘 3                                                              (6) 

The (6) is unbiased. The corresponding variance of the unbiased (5) is 
 

𝑉𝑎𝑟 𝑘                         (7) 

Since 

1   (8), 

it is seen the 𝑘  having larger variance. As less variance is more desirable, the choice of sample 
kurtosis is a balance between the biasness and variance.  

2.2 Hypothesis Proposal 
The kurtosis value can be calculated from (2) or (5) for motion detection. In most situations, the sample 
kurtosis will not be 3, even the data are purely Normal distributed. An issue remains: at which value, 
the kurtosis value implies a motion. We can solve this problem by using hypothesis test.  
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The sample kurtosis is asymptotically approaching as sample following Normal distribution when 
the sample size increase. For our motion sensor data, the data sets can be more than 1000, which is a 
large data set. If motion occurred, the assumption of Normal distribution of the samples will be violated. 
The kurtosis is then no longer 3. A statistical test can be proposed to detect the significance of the motion. 

Suppose the sample kurtosis computed from (2) or (5) is 𝑘. The 
√

 is approximately a standardized 

Normal distribution.  

𝑧
√

~𝑁𝑜𝑟𝑚𝑎𝑙 0,1           (9) 

The 𝑧 can be computed numerically since all its entities can be computed from (2) or (5), (4) or (7). 
If motion present, the 𝑧 is expected to locate in the right extreme. Higher z value implies a higher level 
of the violation on the normality assumption, i.e. higher level of motion presence. The z value can be 
used as an indicator of the intensity level of the motion. If we set a confidence level, for example 0.95, 
when the z value locates outside of the 0.95 region, motion is evaluated as detected.  

 
Figure 1. Extreme Level of Sample Kurtosis 

Alternatively, the corresponding probability of the region, i.e. the right region of the dashed line in 
the Figure 1, can be computed, since the z value follows standard normal distribution. This probability 
for z can be used as an indicator. This probability is essential the p-Value in the classic statistic test.   

A drawback of the probability as indicator is its value might be very small. In classic statistics, the 
extreme region with 5% or 2.5% or 1% is considered as significant. However, for motion detection, the 
probability can be extremely small as 10 . When it is processed by commercial software such as 
Matlab, this small value is even handled as 0. Nevertheless, we would like to reserve the probability as 
a motion indicator, since the probability might be able to be used as a potential numerical indication of 
motion level.  

3.  Case Study 

3.1 Measurement Data without Motion Present 
Theoretically, the motion measurement will follow Normal distribution since the signal is pure white 
noise, as mentioned in previous section. The kurtosis value is hence around 3.  The Figure 2 
demonstrates a plot drawn from raw data without motion. In the left plot, the distribution of the data is 
not able to be identified. While from the histogram plot, shown in the right figure, it exhibits a PDF with 
Normal distribution shape. The raw data exhibit as a Normal distribution. 
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Figure 2. Demonstration of Raw Motion Data 

From Eq(2), the biased sample kurtosis value is computed as 2.84, which is near 3.  The skewness 
value, depicting the symmetry of the distribution, is -0.0798. A perfect symmetry PDF like Normal 
distribution is with skewness value 0.  The raw data is evidently following Normal distribution. Table 1 
tabulates the calculated skewness and kurtosis value when no motion present. The sensor 1 measures 
the motion in the x,y and z direction. The motion sensor 2 measures the angular change. For all the 
measurements, the skewness is near 0 and kurtosis is near 3. The kurtosis is a highly sensitive indicator. 
Even a few outliers present, the value kurtosis will significantly deviate from value 3. Their values, as 
shown in the Table 1, are all near 3 showing the raw data is significantly follows Normal distribution.      
 

Table 1.Skewness and Kurtosis for the raw no-motion data 
Data Skewness Kurtosis Normal Distribution 

Motion Sensor 1 x -0.0793 2.85 Yes 
Motion Sensor 1 y 0.0560 2.91 Yes 
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Motion Sensor 1 z 0.1021 2.81 Yes 
Motion Sensor 2 Rate 0.0098 2.81 Yes 

 
Another finding from Table 1 is, for the purpose of motion detection, it reveals the kurtosis with no 

motion tends to be less than 3.  We will find, when motion presents, the kurtosis will excess 3 from the 
next experiment. 

3.2 Parameter Drift of Motion Sensor 
This section evaluates the performance of using mean value of the measurement data as an indicator. A 
perfect sensor would have a constant value on each motion direction when no motion present. The mean 
value is thus constant. However, a real situation reveals the mean value differs, sometimes significantly, 
with time. It is an unexpected adverse phenomenon.  

An experimental was conducted to measure the magnitude of drift. Experiment runs several hours, 
meanwhile data were continuously collected. The mean of each 1500 data sets was calculated. During 
this period, total 36 mean values were obtained. Figure 3 plot the mean for direction x as a demonstration. 
In x direction, the mean can differ as large as 1. For y direction, it can differ 0.15 at largest. For the z 
direction, it can differ 0.45 at largest. The deviation is just for a shorter time period of several hours. If 
the experiment continues, the difference will be larger.  The magnitude of the drift is big. The data 
fluctuation is inevitable as it is probably due to the parameter drift. A hardware problem exists in most 
sensors. Using mean as motion indicator is compromised.  This paper does not use it as an indicator.    

 
 

Figure 3. Parameter Drift of Motion Sensor 

3.3 Measurement Data with Motion Present 
An experiment was conducted by introducing artificial motions on the motion sensor. Sensors are simply 
locating on a smooth table surface. The severity of the motion was from low to high. The first artificial 
motion was induced by pressing the table mounting the sensor. The motion induced was not significant. 
The x and z direction do not show any noticeable change.  In the y direction, several higher amplitude 
points exhibit, but not significantly, as shown in Figure 4.  The kurtosis value for the Motion 1 in the x 
direction and z direction are near 3, almost same as that from pure noise data. For the y direction, the 
kurtosis value is 3.91. Compared with the kurtosis value from Table 1, Kurtosis value becomes higher.   
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Table 2.Skewness and Kurtosis Values with Motion Present 

Motion Data Skewness Kurtosis pValue (Biased) P (UnBiased) 
1 Motion Sensor  x -0.1044 2.9541 0.3922 0.3922 

Motion Sensor  y 0.0326 3.9129 2.5572*e-10 2.5572*e-10 
Motion Sensor  z 0.0881 3.0452 0.3657 0.3657 

2 Motion Sensor  x -0.1060 4.0054 1.59*e-12 1.59*e-12 
Motion Sensor  y 0.9234 9.6935 0 0 
Motion Sensor  z 0.1633 3.9618 1.2889*e-11 1.2889*e-11 

3 Motion Sensor  x -2.0321 23.6180 0 0 
Motion Sensor  y -2.8905 29.2543 0 0 
Motion Sensor  z 1.5336 26.25 0 0 

4 Motion Sensor  x 0.3633 15.8504 0 0 
Motion Sensor  y -0.5843 6.5801 0 0 
Motion Sensor  z -0.0193 5.4629 0 0 

 
Figure 4. Plot of Original Measurement Data in y Direction 

Next the severity of motion increases. The measurement data exhibits more significant change. As 
shown in the Motion 2 in the Figure 4, obvious peak is shown in the time-series for y direction. As the 
motion is mainly in the y direction, the measurement data in the x and z for Motion 2, not demonstrated 
in Figure 4, are still not significant in the time series plot. Nevertheless, the x and z directions show 
slight changes in their kurtosis values, 4.00 and 3.96 respectively.  In the y direction, kurtosis has more 
significant change as 9.69.  

Motion 3 introduced an even higher motion by shaking the table where sensor mounting. For this 
scenario, both the plot of raw time-series measurement data and the kurtosis exhibit significant change. 
All x, y and z direction detected motion. The kurtosis value is as high as 29.25 in the y direction. All of 
them are as expected and desired.  
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Experiments continued to Motion 4. The table mounting the sensors are shaking frequently and lasted 
much longer than in the Motion 3. An unexpected result presents. For all 3 directions, the kurtosis values 
are much lower than Motion 3. But from the measurement time-series data, the motion is shown more 
significant than Motion 3. It reveals a drawback of using kurtosis as an indicator of the severity of 
motion.   

Further analysis was conducted by using the hypothesis test of Eq (9). The lower p value is designated 
to indicate higher motion. The results are also tabulated in Table 2. Unexpected results are present: when 
the kurtosis value is big, the p value is too small and the Matlab handles it as 0. It is a drawback of using 
the p-value. Nevertheless, the p value can be still be applied for slight motion as shown in the Motion 1. 
For this experiment, biasness is not necessary to be considered. As shown in Table 2, the p-value from 
the biased and unbiased kurtosis does not show significant difference.  

4.  Conclusion 
The experiment established in the paper is to simulate the motions in some industrial fields. The 
experiments show detecting the slow motion from the time-domain is feasible with some limitations. 
The mean value of measurement data as motion indicator is not working. The kurtosis reveals highly 
sensitive to the motion. However, a higher kurtosis value is not able to imply a higher intensity of motion, 
as for periodic motion, the kurtosis does not show a promising performance. Same as the kurtosis, the 
proposed p-value in the paper can work well for slight motion, but with an additional limitation as it 
always tends to be zero. Conclusively, the kurtosis and its p-value can be applied to detect the motion 
presence with high sensitivity, but their performances are compromised when motion is periodic.             
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