
Flexible time aggregation for energy systems modelling 

 

Koen van Greevenbroek1*, Chiara Bordin1, Sambeet Mishra2 
 
1Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway 
2Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 

Tallinn, Estonia 

 

* Corresponding author: koen.v.greevenbroek@uit.no 

 

Abstract 

With high shares of renewable generation and a reliance on storage, modelling large scale energy systems 

is computationally challenging. One factor driving the complexity of these models is the need for a high 

temporal resolution over a long period; a typical baseline is modelling all 8760 hours in a year. While simple 

methods such as down-sampling and segmentation are effective at reducing the number of time-steps in a 

model, there is potential for more sophisticated simplifications. In this work, we propose a flexible time 

aggregation framework where individual components in the systems (e.g. generators, storage units) may be 

modelled at a lower time resolution. We base the method on the theory of aggregation in linear 

programming, giving the possibility for provable bounds on the resulting objective value. These ideas have 

only been explored in a limited fashion in the context of energy systems modelling, and we highlight their 

potential for large scale energy system models and the next steps for research.  
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Motivation 

In the Paris Agreement we have set out to achieve a carbon neutral world by mid-century, necessitating a 

global shift to renewable energy sources. One element enabling this transition is mathematical modelling in 

order to explore and design future energy systems. With accurate models, we can determine an optimal 

transition path and optimal mix of technologies which respects emission limits while minimising costs. 

 

While energy system expansion is not a new problem, the emergence of wind, solar and other intermittent 

renewable energy sources introduces new challenges. There is a need for flexibility in order to even out local 

mismatches in time between generation and demand, which can be provided by transmission capacity, 

sectoral coupling and energy storage units, among others. The less predictable generation and the use of 

storage in turn make newer energy systems significantly harder to model. This has spurred a renewed 

interest in the fundamentals of energy systems modelling and motivates the search for more efficient 

modelling techniques.  

 

In this paper, we are interested in the capacity expansion problem for large-scale energy networks at the 

transmission level, with a time scale of months to decades. Well-known models addressing this problem 

include TIMES [1], ReEDS [2], OSeMOSYS [3], PyPSA [4] and Calliope [5]. Theoretically, large energy 

systems can be modelled quite well with (linear) mathematical programs, allowing the optimisation of both 

operation and design of the system. However, the systems are large and complex enough that we run into 

computational limits when building detailed models. Therefore, we must make simplifications and 

corresponding compromises to accuracy. As an example, PyPSA-Eur [6] is a model of the European energy 

system consisting of hundreds of nodes over one year at hourly resolution, and takes in the order of one day 

and tens of gigabytes of memory to run. 

 

Recent advances in computational power are driven by increasing numbers of processing cores, which linear 

program solvers are not able to take advantage of effectively [7]. Thus, to improve the capabilities of energy 

system models, we focus on improvements to the models themselves. There are many different ways to 

reduce the complexity of energy systems models [7], and comprehensive models employ a combination of 

techniques suited to problem which the model addresses [8]. Basic factors to consider are level of 
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technological detail, spatial resolution and temporal resolution. These factors all influence the size and 

complexity of the linear program defined by the model. In this work, we are mainly interested in temporal 

resolution. 

 

Large-scale energy systems are usually modelled at an hourly resolution at best. However, several methods 

exist to address the number of time steps in energy systems models [9], collectively referred to as time 

aggregation techniques. A uniform down-sampling of the model (e.g. going from hourly to 4-hour time steps) 

is perhaps the most basic reduction. A more sophisticated method, called segmentation, is to aggregate 

adjacent time steps based on how similar the input data for the model is at these time steps. For example, 

the state of our system might not change much between 02:00 and 05:00 at night, allowing us to aggregate 

these three hours into one longer step. Finally, the most drastic simplification is to model only a select subset 

of representative time periods, for example a few typical days per season. However, implemented naïvely, a 

model using representative time periods can’t keep track of the state of charge of storage between periods. 

 

While time aggregation techniques have been the object of much research, up-to-date surveys have still 

identified significant gaps in the literature. For example, [7] mentions the need for a more abstract or flexible 

approach to aggregation. Together with the lack of systematic comparison between different studies, we can 

conclude that there is no consensus yet on the best way of using time aggregation in energy systems 

modelling. 

 

The use of representative periods specifically is becoming questionable in energy systems which are 

influenced more and more by the weather. A traditional system with conventional power plants may have a 

few typical demand profiles for each season, and the behaviour of this system is almost solely determined by 

the demand input data. However, a system spanning a large geographical region with generation relying 

heavily on wind and solar power may not have any global typical periods which repeat at all. This is because 

the operation of such a system depends on many different external variables, and the probability that all 

these variables (and hence the operation of the whole system) repeat themselves simultaneously in a typical 

pattern is very low. A similar problem has been identified in [9] in the context of adding representative 

extreme periods to a model. 

 

In this work, we do away with the traditional use of representative time periods. Instead, we investigate the 

idea of modelling individual components at different time resolutions, or indeed applying the technique of 

representative time periods to individual components. Some limited attempts at this have been made 

previously and are used for inspiration. However, we pursue a synthesised and general perspective on how 

to use variable and constraint aggregation techniques at the component level to reduce the temporal 

complexity of energy system models. 

 

Related literature and theories 

For comprehensive reviews on the topic of time aggregation in energy system models, we refer to [9–11]. In 

the following, we merely outline the most relevant work in our context. 

 

As mentioned, modelling (long term) storage presents a particular challenge and is one of the motivating 

factors for this work. However, while we abandon the model-wide use of representative periods, significant 

work has also been done recently on reconciling the use of representative periods with seasonal storage. In 

particular, a number of independent publications [12–15] have pioneered the idea of “linking” representative 

periods in some way, keeping track of the state of charge of storage between periods. The performance of 

some of these new methods has been compared on large instance in [16]. However, while linking 

representative periods takes care of the state of charge of seasonal storage, the more fundamental problem 

with representative periods (there being no repeating patterns in high-dimensional input data) remain. 

 

Existing literature is sparse on the topic of modelling individual components at different time resolutions. The 

work in [12, 13] could be seen as modelling seasonal storage at a coarser resolution, but the idea is not 

investigated as such. To the authors’ knowledge, the topic (in the context of energy systems research) has 

been the most thoroughly investigated in [17]. There, inspiration is taken from literature on the scheduling of 



chemical plant operations. But although the paper highlights the potential of separate time resolutions, the 

scope considered in [17] is fairly narrow. The instance on which various component-level time aggregation 

techniques are tried out is a simple single-node system. While the results are positive but not dramatic, it is 

acknowledged that the impact on larger systems may be quite different. Moreover, there is much potential for 

different component-level aggregation strategies. 

 

Research questions 

In this work, we address two questions. 

1. Is there a reasonably simple energy system model formulation in which the representations of 

individual components are independently simplified in the time dimension?  

This formulation should generalise existing time aggregation approaches such as down-sampling, 

segmentation and representative time periods. 

2. How do we choose appropriate simplifications at the component level, and what is their impact on 

the performance and accuracy of typical energy system models?  

Of course, the proposed simplifications should be compared with existing approaches to evaluate their 

impact. 

 

Methodology 

While we want to simplify energy system models to reduce the computational burden, we should recognise 

that some components may suffer more from simplification than others. On one hand, for example, the 

operation of a nuclear plant or seasonal energy storage may not vary much throughout a day and could be 

modelled at 6-hour intervals. On the other hand, the operation of batteries, which often work with daily 

cycles, may need to be modelled at an hourly resolution in order to take peaks in demand and production 

into account. There may also be components, such as gas turbines providing peak generation, whose 

operation may only need to be modelled in detail during hours or even seasons where peak demand typically 

occurs. As we outline in more detail below, varying the time resolution at a component level can be achieved 

by simply aggregating individual operational variables of the model. 

 

It is instructive to compare this approach visually with existing time aggregation techniques. The left drawing 

in Figure 1 illustrates the operational variables in a model without any time aggregation. Each box represents 

a variable, and we have arranged the variables by which time step and component they correspond to. The 

approach of this paper is illustrated on the right in Figure 1, highlighted by the red box. Here, we have 

aggregated some of the variables, but differently for each component. Contrast this with aggregation by 

segmentation and representative time periods, illustrated in Figure 2. There, variables have been aggregated 

uniformly for all the components. 

 

 

 

 

 
 

Figure 1: Left: the operational variables in a full-resolution model. Right: the same model, but 

some of the variables have been aggregated. Each block represents the operational variable (e.g. 

production level) of a component at a particular time 



 
 

Figure 2: Left: segmentation, where adjacent time steps have been aggregated for all 

components. Right: representative time periods. In this example, we have three representative 

time periods indicated by three different colours.  

 

 

As a theoretical underpinning, we can use the aggregation and disaggregation framework proposed in [18]. 

Simply put, we can aggregate variables 𝑥1, … , 𝑥𝑛 by replacing all their occurrences in a linear program by a 

new variable 𝑥. This produces a new linear program, potentially with a different optimal objective value. The 

idea is that if 𝑥1, … , 𝑥𝑛 are all similar in an optimal solution, then replacing them by 𝑥 won’t change the 

objective value much. 

 

Dually, we can also aggregate constraints. In the context of energy system models, each operational 

variable often has one or more simple constraints associated with it. For example, the output of a power 

plant is at any given time limited by its maximum capacity. Now, if we have constraints 𝑥𝑖 ≤ 𝑏𝑖 for 𝑖 = 1,… , 𝑛 

and we aggregate 𝑥1, … , 𝑥𝑛 into 𝑥, then we can simply replace the constraints by the single bound 𝑥 ≤

min
(i=1,…,n)

𝑏𝑖. 

 

As we can see, any set of variables and constraints can be aggregated in theory. However, the natural 

question is which variables (and associated constraints) we can aggregate without changing the objective 

value too much. There are a few different kinds of aggregations which we could consider. For one, we can 

aggregate sets of variables, associated with one component, which represent contiguous sections of time. 

This is analogous to segmentation, but for a single component. Another approach is to use aggregation to 

create representative time periods for single components. Moreover, while we choose to focus on temporal 

resolution, variable aggregation may also be applied flexibly to components. For example, sets of 

components may be aggregated for specific time periods only. 

 

All in all, the approach outlined in this section answers our first research question in the affirmative. 

 

Expected results 

The second research question, asking how effective the flexible aggregation technique can be, is harder to 

answer. We plan to try out a variety of different aggregation techniques and levels of aggregation on large 

instances of energy systems in order to compare their performance and accuracy to that of a full resolution 

model. We will use the PyPSA-Eur as a reference and a basis for experimentation. In this way, we hope to 

elucidate which kinds of components deal well with which kinds of simplifications. The performance and 

accuracy of our tests will additionally be compared to existing time aggregation methods, and indeed 

incomplete solves of a full resolution model. 

 

Since our aggregation method is a strict generalisation of previous time aggregation approaches, our results 

in terms of performance and accuracy are expected to be at least as good as for previous approaches. What 

remains to be investigated is whether the flexible time aggregation approach leads to significant enough 

improvements to justify its use. 

 

Finally, following [18], it is also possible to calculate bounds on the objective function of aggregated models 

without solving the full resolution model. These bounds will be investigated and compared with empirical 



results in order to evaluate their usefulness. This may provide an effective tool for designing new 

simplifications, and lend new insight into the accuracy of existing time aggregation techniques as well. 

 

Conclusion 

In this work, we introduce a new, flexible way of simplifying energy system models by directly aggregating 

operational variables for individual components. In this way, we hope to enable good approximations of 

large-scale energy systems with a big share of wind, solar and seasonal storage technologies. Moreover, our 

formulation unifies many previous time aggregation techniques. 

 

For future research, the most important remaining open question will be how to choose the variables to 

aggregate. Looking to the literature on how to choose representative time periods, this may well involve 

clustering of the input data. 
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