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Abstract—Increased human presence and commercial activities
in the Barents Sea (fishing, offshore oil and gas exploration) are
amplifying the need for large-scale operational ocean monitoring
of the eventual oil spills in the region. The geographical location
and climate impose additional constraints on satellite-based
monitoring, making it necessary to use Synthetic Aperture Radar
(SAR). Dark features or low backscatter areas are frequent
within the SAR images and their occurrence may indicate oil
spills or so-called lookalikes. Automatic oil spill detection hinges
on accurate separation of the lookalikes from actual oil spills. Two
main types exist in the Barents Sea: newly formed sea ice and low
wind regions, where the former occur during the freezing part of
the year (approx. November - April) and the other year around.
Mapping the occurrence of oil spills and lookalikes in the Barents
Sea on a seasonal basis would add to our understanding and
knowledge of the low backscatter phenomena. Awareness of the
major locations of oil spills, natural oil seeps, or lookalikes, are
important for operational services and their effort to reduce false
alarms. Here, we explore the use of a segmentation-based dark
feature detection method with Sentinel-1 Extra Wide-Swath SAR
images. We test the method on images acquired over the Barents
Sea during the freezing season, and cross-validate the results
with two sets of dark features segmented by operational expert
oil spill and sea ice monitoring services. The results are discussed,
together with currently developing method improvements, all
while working towards a fully-automated method for monitoring
dark features in the Barents Sea.

Index Terms—Oil slicks, newly formed sea ice, SAR, polarime-
try, Arctic

I. INTRODUCTION

ARK features in Synthetic Aperture Radar (SAR) con-

stitute signatures of low backscatter areas of various
shapes, extents and origins. Within the Arctic ocean, a com-
mon dark feature is represented by the thinnest ice types
including new ice, nilas, and young ice [1], but also e.g.,
oil slicks (mineral or animal) and low wind regions. Oil
slicks are more common along the commercial shipping routes
or in the vicinity of oil and gas platforms in the Barents
Sea [2], whereas new ice formation takes place in, e.g., the
marginal ice zone (MIZ) and leads [3]. Newly formed sea
ice and leads provide safe routing for ship traffic and cost-
effective passage through the sea ice, therefore oil slicks
may occur in their vicinity. Advanced Microwave Scanning
Radiometer 2 (AMSR2) data was used to identify the peak in
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new ice formation for the Barents and Kara Seas as occurring
between October and February, though with large inter-annual
variations [3]. In the context of operational monitoring, using
the finer resolution SAR could enhance the detection of
dark features with potentially small dimensions and irregular
shapes.

SAR satellite images have a long history of being used for
operational surveillance of ocean areas, detection of marine
oil slicks and classification of sea ice types. This is possible
thanks to the nature of radar imaging, which is independent
of natural light or cloud cover. The spatial coverage and
the temporal resolution (twice daily coverage of the Extra
Wide (EW) mode in the HH/HV configuration over the Arctic
Ocean) offered by Sentinel-1 as well as the free data policy
makes it the obvious SAR data source. This paper presents
an automatic method for the detection of dark features in
Sentinel-1 EW imagery. The method consists in selecting
segments with low backscatter produced by a segmentation
algorithm based on statistical mixtures [4] [5].

In the EW mode, data is acquired under a range of in-
cidence angles spanning over approx. 28°, which implies
considerable intensity decay from near to far range [6] [7].
The segmentation algorithm merges theoretical aspects and
empirical observations into a statistical model that accounts for
the decay by assuming non-stationary per-segment means [5].
This ensures that the dark features are encapsulated within the
same segments. In order to demonstrate the performance of our
method, we have selected two Sentinel-1 EW images acquired
in the Barents Sea and containing dark features that extend
throughout the range. The automatically segmented dark fea-
tures are also compared with a set of manually segmented dark
features provided by operational oil spill detection services at
ScanEx Moscow, as well as with sea ice classifications with
specific emphasis on new ice types carried out by experts at
the Norwegian Ice Service.

The main purpose of this study is to demonstrate the ability
of the proposed method to identify dark features. The long
term objective is to work towards identifying the locations and
times of the year where dark features are most pronounced.
In order to accomplish this, a thorough assessment of a larger
dataset will be required and constitutes ongoing work.

II. METHOD

Our proposed dark feature detection method is automatic
and consists of a segmentation step and a dark feature selection
step.



A. Segmentation

SAR image segmentation is performed using the statistical
mixture model-based algorithm presented in [4] and [5]. Each
mixture component is meant to model the natural variability in
backscattering coefficients [dB] (equivalent to log-intensities)
measured for a physical structure with relatively homogeneous
scattering properties (for example open water affected by wind
of a certain speed, an oil film, a type of sea ice with uniform
roughness etc.). The end segments are produced by splitting
the mixture into these components. The model is a Gaussian
mixture modified to allow varying means for the components,
in order to account for incidence angle effects that manifest
as approximately linear backscattering coefficient decays from
near to far range. Moreover, the decay rates are free to vary
between components, as structures with different scattering
properties are known to present not only different degrees of
backscatter variability at a specific range, but also different
backscatter decay rates with incidence angle ([8], [6]). The
segmentation is essentially performed by separating the mix-
ture components using an iterative Expectation-Maximization
scheme, which converges when all the estimated components
are fitted by the model to a specific level set by a goodness-
of-fit test. The end result consists in a variable number of
segments, depending on the subset of samples selected for
the estimation procedure. In the two examples presented here,
approximately 0.5 % of the total image samples were used to
determine the segments.

Prior to segmentation, the input intensities are calibrated to
Sigma Nought, and the original product land masks are used to
exclude the land pixels from the analysis. The algorithm is de-
signed for multi-channel use, but is here employed on single-
channel intensities for two reasons. Firstly, as the sought-after
dark features produce evident signatures in the co-polarized
(HH) channel due to very low scattering from the surface, they
can usually be detected by using this channel alone. Secondly,
the cross-polarized (HV) channel in the Sentinel-1 EW mode
is often severely affected by noise, which in turn can have a
negative impact on the segmentation result.

B. Dark feature selection

In addition to segments, the algorithm outputs segment
features, of which the mean intensity [dB] at § = 0° and the
decay rate [dB/°] are of interest here for segment selection. At
this stage, the segment with the lowest intensity at incidence
angle § = 32° is simply selected as the dark feature. The
value of 32° is chosen to be approximately mid-range in
order to ensure consistency between images. As the dark
features are defined as having backscatter values lower than
their surroundings (below -20 dB at § = 32°), it is often the
case that the chosen segment maintains the lowest intensity
throughout the range.

The post-extraction results were then compared to the two
validation datasets provided by ScanEx Moscow and the
Norwegian Ice service, both of which are presented in Section
IV. The segments were overlayed for visual interpretation.
Moreover, the overlap between the automatically and manually

obtained segments has been computed as an initial validation
measure.

III. SAR DATA

We use medium-resolution Sentinel-1 EW images covering
parts of the Barents Sea. The images have a 100m x 100 m
resolution, a swath width of 410km and an incidence angle
range of 18.9-47.0°. The selected images were taken during
the freezing season, when the mean temperature is expected
to be below -5°C [3]. Image #1 (Fig. 1(a)) was acquired on
November 29 2017 at 03:00 UTC and image #2 (Fig. 1(c))
on March 25 2019 at 03:39 UTC, and both were acquired
in descending pass. The two images were chosen as they
contain dark features throughout most of the range, including
both newly formed sea ice and low wind regions, and in both
images ScanEx Moscow confirmed the absence of oil slicks
and presence of ice. Only the co-polarized channel (HH) was
used for detection.

IV. VALIDATION DATA

In order to assess and validate the automatically obtained
segments, we used two complementary datasets obtained via
two different methods applied to the dark feature areas from
the test images.

The first dataset contains segments identified manually by
the operational oil slick detection service of ScanEx Moscow.
The identification was based on visual examination of the
images, after the absence of oil was confirmed using the
semi-automatic approach of [2]. The dark feature areas were
clearly identified and delineated down to pixel resolution,
thereby enabling a quantitative pixel-to-pixel comparison with
the results from the automatic detection algorithm.

For the second validation dataset, sea ice experts at the Nor-
wegian Ice Service identified the newly formed sea ice areas
using the same two Sentinel-1 images, but also complemented
them with Copernicus Marine Environment Monitoring Ser-
vice (CMEMS) sea surface temperature (SST) data. Inclusion
of SST data enables separation of areas with temperatures
above freezing (>-1.8°C) from those below freezing. This is
important, as ocean areas with too high temperatures are un-
likely to contain newly formed sea ice, though could possibly
contain oil slicks or be affected by low winds. In this validation
dataset, larger polygons cover broad regions containing newly
formed sea ice with both low and high backscatter, therefore
only a qualitative comparison is possible.

V. PRELIMINARY RESULTS AND DISCUSSION

Fig. 1 shows the two original Sentinel-1 scenes (a and c),
as well as the dark features identified by our method and
overlapping validation data (b and d).

Scene #1 contains newly formed sea ice with varying
levels of brightness, as the smooth regions show up as dark,
while the more rough, fragmented regions as slightly brighter.
The automatically identified segments contain only the darkest
regions, while the manually delineated segments from dataset
1 also incorporate the brighter parts considered by the experts
as part of the dark feature. Therefore, some differences stem
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Fig. 1. The two Sentinel-1 EW images (HH Intensities in dB) and identified dark features. The left column shows the Sentinel-1 images #1 (a) and #2 (c)
and the right column (#1 (b) and #2 (d)) shows the identified dark features. Automatically identified dark feature segments are shown in blue, validation
dataset 1 is represented by red outlines and validation dataset 2 by the bright yellow areas.

from the slightly different definitions of the dark features,
and may be eliminated by adding a segment fusion step. The
visual expert opinion is furthermore supported by the sea ice
validation dataset (dataset 2), which outlines the likely new
ice formation region. The automatic segments are also covered
by dataset 2, with the exception of a few dark areas on the
southern tip of Novaya Zemlya. The discrepancy highlights the
importance of secondary analysis of the automatically obtained
segments, which may include a manual step for the removal of
some areas. As an alternative, it is worth exploring the use of
complementary information from the cross-polarized channel
for the exclusion of areas that may be incorrectly included in
the dark feature segment.

Scene #2 is more complex due to the presence of low

backscatter regions representing both freezeup areas and low
wind areas. The latter can be seen in the central part of
the scene, and was confirmed by SST data used in dataset
2, where the temperatures were too high to support new
ice formation. In the western extremity of the scene, we
can observe a dark feature that was not detected by the
segmentation algorithm. This is likely due to the positioning
of the feature in the far range, where intensity values are
approaching the noise floor and the reliability of the segments
decreases. Additional differences between the automatically
and manually determined segments are, as in the first scene,
determined by variations in backscatter intensities within the
dark features.

A quantitative comparison was performed between the au-



tomatically and manually obtained segments by considering
the latter as reference. The automatically detected segments
were found to overlap with 56 % of the reference for scene
1, respectively 48 % for scene 2. Additional steps will be
required for a more precise detection. However, considering
that the contours of the dark areas are very well determined,
even a semi-automatic approach would be superior to a full-on
manual approach.

VI. CONCLUSIONS AND FUTURE WORK

The proposed method is able to identify dark features across
an entire wide-swath SAR image, thereby ensuring that dark
features covering different incidence angles are combined into
one coherent segment within each image. The qualitative
comparison with manually selected dark features shows that
the overlap is generally good and the segment outlines are well
determined. The discrepancies observed in both the qualitative
and quantitative analysis may be diminished by adding a
manual step to the method, or by exploring algorithm improve-
ments. One such improvement is currently being developed
and consists in the integration of a variable noise-floor model
for the mean of the intensity distribution, in order to reduce
errors originating from noise artefacts. This will also allow
the use of the cross-polarized channel as complementary data.
Moreover, segment selection was performed here in a very
simplistic way, and segment fusion could be a better option
if the dark features are defined as including variable intensity
levels. Lastly, our analysis suggests that the integration of,
e.g., CMEMS SST products into the method may ensure the
separation of low wind areas from the other dark features.
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