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Chapter 1

Introduction

The work of this thesis has been contributing in the development of the program
package MRChem, which is a code developed at the University of Tromsø [1]
that is aiming at a fully numerical treatment of molecular systems, based on
Density Functional Theory (DFT). There are currently a huge number of these
program packages available, each with more or less distinct features, and what
separates MRChem from all of these is the choice of basis functions. While
traditional computational chemistry programs use Gaussian type basis sets for
their efficient evaluation of two- and four-electron integrals, MRChem is based
on the multiresolution wavelet basis.

Wavelet theory is a rather young field of mathematics, first appearing in the
late 1980s. The initial application was in signal theory [2] but in the early 90s,
wavelet-based methods started to appear for the solution of PDEs and inte-
gral equations [3][4], and in recent years for application in electronic structure
calculations [5][6][7].

The Kohn-Sham equations

In the Kohn-Sham [8] formulation of DFT the eigenvalue equations for the
electronic structure can be written

[−1
2
∇2 + Veff (r)]ψi(r) = εiψi(r) (1.1)

where the effective potential is the collection of three terms

Veff (r) = Vext(r) + Vcoul(r) + Vxc (1.2)

where the external potential Vext is usually just the electron-nuclear attraction,
the Coulomb potential Vcoul is the electron-electron repulsion and Vxc is the
exchange-correlation potential which (in principle) includes all non-classical ef-
fects. The functional form of Vxc is not known.

The nuclear charge distribution is a collection of point charges, and the nuclear
potential has the analytical form

Vnuc(r) = −
Nnuc∑
α=1

Zα
|r − rα|

(1.3)

2



The electronic charge distribution is given by the Kohn-Sham orbitals

ρ(r) = 2
Ne/2∑
i=1

|ψi(r)|2 (1.4)

assuming a closed shell system with double occupancy. The electronic potential
is now given as the solution of the Poisson equation

∇2Vcoul(r) = 4πρ(r) (1.5)

where the orbital-dependence of the potential makes eq.(1.1) a set of non-linear
equations that is usually solved self-consistently. The current work will not
be concerned with the solution of the Kohn-Sham equations, but is rather a
precursor to this where some building blocks required for the DFT calculations
are prepared, in particular the solution of the Poisson equation.

The Poisson equation

Solving the Poisson equation for an arbitrary charge distribution is a non-trivial
task, and is of major importance in many fields of science, especially in the field
of computational chemistry. A huge effort has been put into making efficient
Poisson solvers, and usual real-space approaches includes finite difference (FD)
and finite element (FE) methods. FD is a a grid-based method, which is solving
the equations iteratively on a discrete grid of pointvalues, while FE is expanding
the solution in a basis set, usually by dividing space into cubic cells and allocate
a polynomial basis to each cell.

It is a well-known fact that the electronic density in molecular systems is rapidly
varying in the vicinity of the atomic nuclei, and a usual problem with real-space
methods is that an accurate treatment of the system requires high resolution of
gridpoints (FD) or cells (FE) in the nuclear regions. Keeping this high resolution
uniformly througout space would yield unnecessary high accuracy in the inter-
atomic regions, and the solution of the Poisson equation for molecular systems is
demanding a multiresolution framework in order to achieve numerical efficiency.

There are ways of resolving these issues using multigrid techniques, and a nice
overview of these methods is given by Beck [9], but this thesis is concerned
with a third way of doing real-space calculations, one where the multiresolution
character is inherent in the theory, namely using wavelet bases.

At this point MRChem is basically a Poisson solver. It has the capabilities
of representing arbitrary functions in the multiwavelet basis, and calculate the
potential originating from these functions. This is the result of the work by
[1]. The current work includes the implementation of some basic arithmetic
operations involving these function representations, where the space adaptivity
of the grid and strict error control will be important topics. We will also look
at some possible optimizations of the existing code, where computational effi-
ciency, memory requirements and linear scaling with respect to system size will
be important.
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The thesis is split in two parts; theory and implementation. The theory part
gives a brief overview of the mathematical theory of multiwavelets, from the
basic concept of multiresolution analysis, to the representation of functions and
operators in the multiwavelet basis, and ultimately to the solution of the Poisson
equation. The implementation part gives a short description of the data struc-
tures and algorithms used in the MRChem program, and some details of how
the mathematical theory is implemented in practice. Some numerical results
are given to show the capabilities and performances of the code.
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Part I

Theory
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Chapter 2

The multiwavelet basis

A suitable gateway to the theory of multiwavelets is through the idea of mul-
tiresolution analysis (MRA). A detailed description of MRAs can be found in
Keinert [10], from which a brief summary of the key issues are given in the fol-
lowing. This work is concerned with orthogonal MRA only, and for a description
of the general bi-orthogonal MRA the reader is referred to Keinerts book.

2.1 Orthogonal MRA

A multiresolution analysis is an infinite nested sequence of subspaces of L2(R)

V 0
k ⊂ V 1

k ⊂ · · · ⊂ V nk ⊂ · · · (2.1)

with the following properties

1. V∞k is dense in L2

2. f(x) ∈ V nk ⇐⇒ f(2x) ∈ V n+1
k , 0 ≤ n ≤ ∞

3. f(x) ∈ V nk ⇐⇒ f(x− 2−nl) ∈ V nk , 0 ≤ l ≤ (2n − 1)

4. There exists a function vector φ of length k + 1 in L2 such that

{φj(x) : 0 ≤ j ≤ k}

forms a basis for V 0
k .

This means that if we can construct a basis of V 0
k , which consists of only k + 1

functions, we can construct a basis of any space V nk , by simple compression
(by a factor of 2n), and translations (to all dyadic grid points at scale n), of
the original k + 1 functions, and by increasing the scale n, we are approaching
a complete basis of L2. Since V nk ⊂ V n+1

k the basis functions of V nk can be
expanded in the basis of V n+1

k

φnl (x) def= 2n/2φ(2nx− l) =
∑
l

H(l)φn+1
l (x) (2.2)

where the H(l)s are the so-called filter matrices that describes the transforma-
tion between different spaces V nk .
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The MRA is called orthogonal if

〈φn0 (x),φnl (x)〉 = δ0lIk+1 (2.3)

where Ik+1 is the (k + 1) × (k + 1) unit matrix, and k + 1 is the length of the
function vector. This orthogonality condition means that the functions are or-
thogonal both within one function vector and through all possible translations
on one scale, but not through the different scales.

Complementary to the nested sequence of subspaces V nk , we can define another
series of spaces Wn

k that complements V nk in V n+1
k

V n+1
k = V nk ⊕Wn

k (2.4)

where there exists another function vector ψ of lenght k + 1 that, with all
its translations on scale n forms a basis for Wn

k . Analogously to eq.(2.2) the
function vector can be expanded in the basis of V n+1

k

ψnl (x) def= 2n/2ψ(2nx− l) =
∑
l

G(l)φn+1
l (x) (2.5)

with filter matrices G(l). In orthogonal MRA the functions ψ fulfill the same
othogonality condition as eq.(2.3), and if we combine eq.(2.1) and eq. (2.4) we
see that they must also be orthogonal with respect to different scales. Using
eq.(2.4) recursively we obtain

V nk = V 0
k ⊕W 0

k ⊕W 1
k ⊕ · · · ⊕Wn−1

k (2.6)

which will prove to be an important relation.

2.2 Multiwavelets

There are many ways to choose the basis functions φ and ψ (which define the
spanned spaces V nk and Wn

k ), and there have been constructed functions with
a variety of properties, and we should choose the wavelet family that best suits
the needs of the problem we are trying to solve. Otherwise, we could start from
scratch and construct a new family, one that is custom-made for the problem
at hand. Of course, this is not a trivial task, and it might prove more efficient
to use an existing family, even though its properties are not right on cue.

There is a one-to-one correspondence between the basis functions φ and ψ,
and the filter matrices H(l) and G(l) used in the two-scale relation equations
eq. (2.2) and eq.(2.5), and most well known wavelet families are defined only
by their filter coefficients. This usually leads to non-smooth functions, like the
Daubechies D2 wavelet family (figure 2.1).

In the following we are taking a different, more intuitive approach, which follows
the original construction of multiwavelets done by Alpert [4]. We define the
scaling space V nk as the space of piecewise polynomial functions

V nk
def= {f : all polynomials of degree ≤ k

on the interval (2−nl, 2−n(l + 1))
for 0 ≤ l < 2n, f vanishes elsewhere}

(2.7)
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Figure 2.1: Daubechies D2 scaling (left) and wavelet (right) function.

It is quite obviuos that one polynomial of degree k on the interval [0,1] can be
exactly reproduced by two polynomials of degree k, one on the interval [0, 12 ]
and the other on the interval [ 12 ,1]. The spaces V nk hence fulfills the MRA con-
dition eq.(2.1), and if the polynomial basis is chosen to be orthogonal, the V nk
constitutes an orthogonal MRA.

2.3 The wavelet basis

The wavelet space Wn
k is defined, according to eq. (2.4), as the orthogonal

complement of V nk in V n+1
k . The multiwavelet basis functions of Wn

k are hence
piece-wise polynomials of degree ≤ k on each of the two intervals on scale n+1
that overlaps with one interval on scale n. These piece-wise polynomials are then
made orthogonal to a basis of V nk and to each other. The construction of the
multiwavelet basis follows exactly [4] where a simple Gram-Schmidt orthogono-
lization were employed to construct a basis that met the necessary orthogonality
conditions. The wavelet functions for k = 5 are shown in figure 2.2

One important property of the wavelet basis is the number of vanishing mo-
ments. The k-th continuous moment of a function ψ is defined as the integral

µk
def=
∫ 1

0

xkψ(x)dx (2.8)

and the function ψ has M vanishing moments if

µk = 0, k = 0, . . . ,M − 1

The vanishing moments of the wavelet functions gives information on the ap-
proximation order of the scaling functions. If the wavelet function ψ has M
vanishing moments, any polynomial of order ≤M−1 can be exactly reproduced
by the scaling function φ, and the error in representing an arbitrary function in
the scaling basis is of M -th order. By construction, xi is in the space V 0

k for
0 ≤ i ≤ k, and since W 0

k ⊥ V 0
k , the first k + 1 moments of ψ0

j must vanish.
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Figure 2.2: First six wavelet functions at scale zero

2.4 The scaling basis

The construction of the scaling functions is quite straightforward; k + 1 suit-
able polynomials are chosen to span any polynomial of degree ≤ k on the unit
interval. The total basis for V nk is then obtained by appropriate dilation and
translation of these functions. Of course, any polynomial basis can be used,
the simplest of them the standard basis {1, x, . . . , xk}. However, this basis is
not orthogonal on the unit interval and cannot be used in orthogonal MRA. In
the following, two choices of orthogonal scaling functions will be presented, and
even though they span exactly the same spaces V nk there are some important
numerical differences between the two. These differences will be considered in
the implementation part of this thesis.

In order to construct a set of orthogonal polynomials we could proceed in the
same manner as for the wavelet functions and do a Gram-Schmidt orthogo-
nalization of the standard basis {1, x, . . . , xk}. If this is done on the interval
x ∈ [−1, 1] we end up with the Legendre polynomials {Lj}kj=0. These functions
are usually normalized such that Lj(1) = 1 for all j. To make the Legendre
scaling functions φLj we transform the Legendre polynomials to the interval
x ∈ [0, 1], and L2-normalize

φLj (x) =
√

2j + 1Lj(2x− 1), x ∈ [0, 1] (2.9)

The basis for the space V nk is then made by proper dilation and translation of
φLj . This is the original construction of scaling functions done by Alpert [4].
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Figure 2.3: First six Legendre (left) and Interpolating (right) scaling functions
at scale zero
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Alpert et al. [11] presented an alternative set of scaling functions with inter-
polating properties. These Interpolating scaling functions φIj are based on the
Legendre scaling functions {φLj }kj=0, and the roots {yj}kj=0 and weights {wj}kj=0

of the Gauss-Legendre quadrature of order k+1, and are organized in the linear
combinations

φIj (x) =
√
wj

kp∑
i=0

φLi (yj)φLi (x), x ∈ [0, 1] (2.10)

Again the basis of V nk is made by dilation and translation of φIj . The Legendre
and Interpolating scaling functions of order k = 5 are shown in figure2.3. The
construction of φIj gives them the interpolating property

φIj (yi) =
δji√
wi

(2.11)

which will prove important for numerical efficiency.

A detailed discussion on the properties of Interpolating wavelets can be found
in Donoho [12], but the case of Interpolating multiwavelets is somewhat differ-
ent. An important property of Interpolating wavelets is the smoothness of any
function represented in this basis. This property stems from general Lagrange
interpolation. In the multiwavelet case the interpolating property applies within
one scaling function vector only, which means that functions represented in this
basis can be discontinous in any merging point between the different transla-
tions on any scale. This is also the case for the Legendre scaling functions, and
it makes differentiation awkward in these bases.

With the basis functions in place we can now use these to construct the filter
matrices that fulfill the two-scale conditions eq.(2.2) and eq.(2.5). The details
of this construction are given in Alpert et al. [11], and will not be presented
here, but we specifically end up with four matrices H(0), H(1), G(0) and G(1),
which size and contents are dependent on the order and type of scaling functions
chosen. Eq.(2.2) and eq.(2.5) thus reduces to

φnl = H(0)φn+1
2l +H(1)φn+1

2l+1

ψnl = G(0)φn+1
2l +G(1)φn+1

2l+1

(2.12)

2.5 Multiwavelets in d dimensions

When dealing with multidimensional multiwavelets we open a notational can
of worms that easily gets confusing. The following notation is aiming to be as
intuitive as possible, and is similar to the one presented in [1].

Multidimensional wavelets are usually constructed by tensor products, where
the scaling space is defined as

V n,dk
def=

d⊗
V nk (2.13)
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The basis for this d-dimensional space is given as tensor products of the one-
dimensional bases.

Φnj,l(x) = Φnj1j2...jd,l1l2...ld(x1, x2, . . . , xd)
def=

d∏
i=1

φnji,li(xi) (2.14)

The number of basis functions on each hypercube l = (l1, l2, . . . , ld) becomes
(k + 1)d, while the number of such hypercubes on scale n becomes 2dn, which
again means that the total number of basis functions is growing exponentially
with the number of dimensions.

The wavelet space can be defined using eq.(2.4)

V n+1,d
k =

d⊗
V n+1
k =

d⊗
(V nk ⊕Wn

k ) (2.15)

where the pure scaling term obtained when expanding the product on the right
hand side of eq.(2.15) is recognized as V n,dk , making the wavelet space Wn,d

k

consist of all the remaining terms of the product, which are terms that contain
at least one wavelet space.

To achieve a uniform notation, we can introduce a ”generalized” one-dimensional
wavelet function {ϕα,nj,l } that, depending on the index α can be either the scaling
or the wavelet function

ϕαi,nji,li

def=
{
φnji,li if αi = 0
ψnji,li if αi = 1 (2.16)

The wavelet functions for the d-dimensional space can thus be expressed as

Ψα,n
j,l (x) =

d∏
i=1

ϕαi,nji,li
(xi) (2.17)

Where the total α index on Ψ separates the 2d different possibilities of combining
scaling/wavelet functions with the same index combination j = (j0, j1, . . . , jk).
α is given by the binary expansion

α =
d∑
i=1

2i−1αi (2.18)

and thus runs from 0 to 2d− 1. By closer inspection we see that α = 0 recovers
the pure scaling function

Ψ0,n
j,l (x) ≡ Φnj,l(x) (2.19)

and we will keep the notation Φnj,l for the scaling function, and exclude the
α = 0 term in the wavelet notation when treating multidimensional functions.

We can immediately see that the dimensionality of the wavelet space is higher
than the scaling space on the same scale n, specifically 2d−1 times higher. This
must be the case in order to conserve the dimensionality through the equation

V n+1,d
k = V n,dk ⊕Wn,d

k (2.20)
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since dim(V n+1,d
k ) = 2ddim(V n,dk ).

As for the monodimensional case we can define filter matrices that transform
the scaling functions at scale n+1, {Φn+1

j,l }, into scaling and wavelet functions at

scale n, {Ψα,n
j,l }

2d−1
α=0 . Details of this construction can be found in [1], where the

corresponding matrices are shown to be tensor products of the monodimensional
matrices.

15



Chapter 3

Function representation

With the multiwavelet basis introduced, we have a hierarchy of basis sets with
increasing flexibility, and we can start making approximations of functions by
expanding them in these bases.

3.1 Function projection

We introduce the projection operator Pn that projects an arbitrary function
f(x) onto the basis {φnj,l} of the scaling space V n (in the remaining of this text
the subscript k of the scaling and wavelet spaces will be omitted, and it will
always be assumed that we are dealing with a k-order polynomial basis).

f(x) ≈ Pnf(x) def= fn(x) =
2n−1∑
l=0

k∑
j=0

sn,fj,l φ
n
j,l(x) (3.1)

where the expansion coefficients sn,fj,l , the so-called scaling coefficients, are ob-
tained by the usual integral

sn,fj,l
def= 〈f, φnj,l〉 =

∫ 1

0

f(x)φnj,l(x)dx (3.2)

If this approximation turns out to be too crude, we double our basis set by
increasing the scale and perform the projection Pn+1. This can be continued
until we reach a scale N where we are satisfied with the overall accuracy of fN

relative to the true function f .

3.2 Multiresolution functions

We can also introduce the projection operator Qn that projects f(x) onto the
wavelet basis of the space Wn

Qnf(x) def= dfn(x) =
2n−1∑
l=0

k∑
j=0

dn,fj,l ψ
n
j,l(x) (3.3)

16



where the wavelet coefficients are given as

dn,fj,l
def= 〈f, ψnj,l〉 =

∫ 1

0

f(x)ψnj,l(x)dx (3.4)

According to eq.(2.4) we have the following relationship between the projection
operators

Pn+1 = Pn +Qn (3.5)

and it should be noted that dfn is not an approximation of f , but rather the
difference between two approximations. We know that the basis of V∞ forms a
complete set in L2, which implies that P∞ must be the identity operator. Com-
bining this with eq.(3.5) we can decompose the function f into multiresolution
contributions

f(x) = P∞f(x)

= P 0f(x) +
∞∑
n=0

Qnf(x)

=
k∑
j=0

s0,fj,0 φ
0
j,0(x) +

∞∑
n=0

2n−1∑
l=0

k∑
j=0

dn,fj,l ψ
n
j,l(x) (3.6)

This expansion is exact, but contains infinitely many coefficients. If we want
to make approximations of the function f we must truncate the infinite sum in
the wavelet expansion at some finest scale N

f(x) ≈ fN (x) =
k∑
j=0

s0,fj,0 φ
0
j,0(x) +

N−1∑
n=0

2n−1∑
l=0

k∑
j=0

dn,fj,l ψ
n
j,l(x) (3.7)

This expansion is completely equivalent to eq.(3.1) (with n = N) both in terms
of accuracy and in number of expansion coefficients. However, as we have seen,
the wavelet projections dfn are defined as the difference between two consecu-
tive scaling projections, and since we know, for L2 functions, that the scaling
projections is approaching the exact function f , we also know that the wavelet
projections must approach zero. This means that as we increase the accuracy by
increasing N in eq.(3.7) we know that the wavelet terms we are introducing will
become smaller and smaller, and we can choose to keep only the terms that are
above some threshold. This makes the multiresolution representation preferred
since it allows for strict error control with a minimum of expansion coefficients.
This is the heart of wavelet theory.

Wavelet transforms

The filter matrices H(0), H(1), G(0) and G(1) allow us to change between the
representations eq.(3.1) and eq.(3.7). The two-scale relations of the scaling and
wavelet functions eq.(2.12) apply directly to the scaling coefficient vectors snl ,
and wavelet coefficient vectors dnl , and the coefficients on scale n are obtained
by the coefficients on scale n+ 1 through

snl = H(0)sn+1
2l +H(1)sn+1

2l+1

dnl = G(0)sn+1
2l +G(1)sn+1

2l+1

(3.8)
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This transformation is called forward wavelet transform or wavelet decompo-
sition of the scaling coefficients on scale n + 1. By doing this decomposition
recursively we can get from eq.(3.1) to eq.(3.7). Rearranging eq.(3.8) we arrive
at the backward wavelet transform or wavelet reconstruction

sn+1
2l = H(0)Tsnl +G(0)Tdnl

sn+1
2l+1 = H(1)Tsnl +G(1)Tdnl

(3.9)

where the transposed filter matrices are used.

It should be emphasized that these wavelet transforms do not change the func-
tion that is represented by these coefficients, they just change the basis set used
to represent the exact same function. This means that the accuracy of the rep-
resentation is determined only by the finest scale of which the coefficients were
obtained by projection, and a backward wavelet transform beyond this scale will
not improve our approximation (but it will increase the number of expansion
coefficients).

The true power of multiwavelets is that, by truncating eq.(3.7) locally whenever
the wavelet coefficients are sufficiently small, we end up with a space adaptive
basis expansion, in that we are focusing the basis functions in the regions of
space where they are most needed.

3.3 Multiresolution functions in d dimensions

The multidimensional function representation is obtained similarly to eq.(3.1)
by projection onto the multidimensional basis eq.(2.14)

f(x) ≈ fn(x) =
∑

l

∑
j

sn,fj,l Φnj,l(x) (3.10)

where the sums are over all possible translation vectors l = (l1, . . . , ld) for
0 ≤ li ≤ 2n − 1, and all possible scaling function combinations j = (j1, . . . , jd)
for 0 ≤ ji ≤ k. The scaling coefficients are obtained by the multidimensional
integral

sn,fj,l
def= 〈f,Φnj,l〉 =

∫
[0,1]d

f(x)Φnj,l(x)dx (3.11)

The wavelet components are given as

dfn(x) =
∑

l

∑
j

2d−1∑
α=1

dα,n,fj,l Ψα,n
j,l (x) (3.12)

where the l and j summations are the same as in eq.(3.10), and the α sum is over
all combinations of scaling/wavelet functions (excluding the pure scaling α = 0).
The expansion coefficients are obtained by the multidimensional projection

dα,n,fj,l
def= 〈f,Ψα,n

j,l 〉 =
∫

[0,1]d
f(x)Ψα,n

j,l (x)dx (3.13)
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We can express a multidimensional function f(x) by its multiresolution contri-
butions as for the monodimensional case

fN (x) =
∑

j

s0,fj,0Φ0
j,0(x) +

N−1∑
n=0

∑
l

∑
j

2d−1∑
α=1

dα,n,fj,l Ψα,n
j,l (x) (3.14)

Wavelet transforms in d dimensions

The d-dimensional filter matrices were obtained by tensor products of the monodi-
mensional filters. This means that by the tensor structure of the multidimen-
sional basis, we can perform the wavelet transform one dimension at the time.
This allows for the situation where the basis is represented at different scales
in different directions. Specifically, in two dimensions, the way to go from the
scaling plus wavelet representation on the square l at scale n to the pure scaling
representation in the four subsquares of l at scale n+ 1, we perform the trans-
form first in one direction by dividing the square into two rectangular boxes,
and then the other direction, dividing the two rectangels into four squares.

One important implication of this tensor structure is that the work done in the
d-dimensional transform scales linearly in the number of dimensions. If the full
d-dimensional filter matrix had been applied, the work would have scaled as the
power of the dimension, hence limiting the practical use in higher dimensions.
A more rigorous treatment of the multidimensional wavelet transforms can be
found in [13].

3.4 Addition of functions

The addition of functions in the multiwavelet basis is quite straightforward,
since it is represented by the mappings

V n + V n → V n

Wn +Wn →Wn (3.15)

This basically means that the projection of the sum equals the sum of the pro-
jections. In the polynomial basis this is simply the fact that the sum of two
k-order polynomials is still a k-order polynomial.

Consider the equation h(x) = f(x) + g(x). Projecting h onto the scaling space
yields

hn(x) = Pnh(x)
= Pn (f(x) + g(x))
= Pnf(x) + Png(x)
= fn(x) + gn(x) (3.16)

and similarly
dhn(x) = dfn(x) + dgn(x) (3.17)
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The functions f(x) and g(x) are expanded in the same basis set and the sum
simplifies to an addition of coefficients belonging to the same basis function and
can be done one scale at the time.

hn(x) = fn(x) + gn(x)

=
2n−1∑
l=0

k∑
j=0

sn,fj,l φ
n
j,l(x) +

2n−1∑
l=0

k∑
j=0

sn,gj,l φ
n
j,l(x)

=
2n−1∑
l=0

k∑
j=0

(
sn,fj,l + sn,gj,l

)
φnj,l(x) (3.18)

and similarly

dhn(x) =
2n−1∑
l=0

k∑
j=0

(
dn,fj,l + dn,gj,l

)
ψnj,l(x) (3.19)

The generalization to multiple dimensions is trivial, and will not be discussed
at this point.

3.5 Multiplication of functions

Multiplication of functions in the multiwavelet basis is somewhat more involved
than addition. The reason for this is that, in contrast to eq.(3.15), the product
is represented by the mapping [14]

V nk × V nk → V n2k (3.20)

This means that the product of two functions falls outside of the MRA and
needs to be projected back onto the scaling space sequence. This is easily seen
in our polynomial basis; the product of two piecewise degree ≤ k polynomials is
a piecewise polynomial of degree ≤ 2k, which cannot be exactly reproduced by
any piecewise degree ≤ k polynomial (other than in the limit V∞). In particular
this means that the product of two functions on a given scale ”spills over” into
the finer scales, in the sense that

V n × V n → V n ⊕
∞⊕

n′=n

Wn′ (3.21)

Working with a finite precision it is desirable to make the product as accurate
as each of the multiplicands. This is done by terminating the sum in eq.(3.21)
at a sufficiently large scale N .

V n × V n → V n ⊕
N−1⊕
n′=n

Wn′ = V N (3.22)

Assume now that n is the finest scale present in either of the multiplicands, and
N > n is the finest scale present in the product. An algorithm to determine the
maximum scale N needed in the result will be presented in the implementation
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part of this thesis, and in the following it is simply assumed that N is known a
priori. We know that

V n ⊂ V n+1 ⊂ · · · ⊂ V N

which means that the multiplication could just as well have been written

V N × V N → V N

where the representations of the multiplicands on scale N is obtained by a se-
ries of backward wavelet transforms. As pointed out before this will result in
an increase in the number of coefficients without changing the information that
we are able to extract from these functions. This oversampling of the multipli-
cands allow us to relate the scaling coefficients of the product on scale N to the
coefficiens of the multiplicands on the same scale.

Finally, when we have obtained the scaling coefficients of the product on scale N
we do a forward wavelet transform to obtain wavelet coefficients on the coarser
scales. We can now throw away all wavelet terms that are sufficiently small,
and we have an adaptive representation of the product.

Scaling function multiplication

Consider the equation h(x) = f(x) × g(x). We want to represent the function
h(x) at some scale N

hN (x) = PNh(x)

= PN (f(x)× g(x)) (3.23)

However, as we have seen, the projection of the product eq.(3.23) does not
equal the product of the projections, and we will actually have to perform this
projection. We will of course not have available the functions f(x) and g(x)
analytically, so the best thing we can do is

hN (x) ≈ PN
(
fN (x)× gN (x)

) def= PN h̃(x) (3.24)

The scaling coefficients of the product is approximated by the projection integral

sN,h
jh,l
≈
∫ 1

0

h̃(x)φNjh,l(x)dx

=
∫ 1

0

fN (x)gN (x)φNjh,l(x)dx

=
∫ 1

0

 k∑
jf=0

sN,f
jf ,l

φNjf ,l(x)

 k∑
jg=0

sN,gjg,lφ
N
jg,l(x)

φNjh,l(x)dx

= 2N
k∑

jf=0

k∑
jg=0

sN,f
jf ,l

sN,gjg,l

∫ 1

0

φ0
jf ,0(x)φ0

jg,0(x)φ0
jh,0(x)dx (3.25)

and if the scale N is chosen properly, the error in the coefficients can be made
negligeable compared to the total error in hN (x). We see that the multiplication
is related to a limited number of integrals, specifically (k + 1)3 different inte-
grals involving scale zero scaling functions, regardless of how many total basis
functions being used. A lot of these integrals will again be identical because of
symmetry.
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Multiplication in d dimensions

The generalization to multiple dimensions is quite straightforward, using the
notation of eq.(2.14)

sN,h
jh,l

= 2N
∑
jf

∑
jg

sN,f
jf ,l

sN,gjg,l

∫
[0,1]d

Φ0
jf ,0(x)Φ0

jg,0(x)Φ0
jh,0(x)dx

(3.26)

The only difference consists in the number of integrals, which grows exponen-
tially in the number of dimensions. The multidimensional integral can however
be decomposed into a product of monodimensional ones∫

[0,1]d
Φ0

jf ,0(x)Φ0
jg,0(x)Φ0

jh,0(x)dx

=
d∏
i=1

∫ 1

0

φ0
jfi ,0

(xi)φ0
jgi ,0

(xi)φ0
jhi ,0

(xi)dxi (3.27)

and we have again related all the integrals to the same small set of (k + 1)3

different integrals, even though the total number of basis functions quickly be-
comes millions and billions in several dimensions. However, the summations in
eq.(3.26) runs over all (k + 1)d different scaling function combinations of both
f and g, and the multiplication still seem to be a considerable task in multiple
dimensions.
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Chapter 4

Operator representation

When we now have a way of expressing an arbitrary function in terms of the
multiwavelet basis, and we have the possibility of doing some basic arithmetic
operations with these function representations, the next step should be to be
able to apply operators to these functions. Specifically, we want to be able to
compute the expansion coefficients of a function g(x), given the coefficients of
f(x) based on the equation

[Tf ](x) = g(x) (4.1)

4.1 Operator projection

When applying the operator we will only have an approximation of the function
f(x) available

[TPnf ](x) = g̃(x) (4.2)

and we can only obtain in the projected solution

[PnTPnf ](x) = Png̃(x) (4.3)

Using the fundamental property of projection operators PnPn = Pn we get

[PnTPnPnf ](x) = Png̃(x) (4.4)

We now define the projection of the operator T on scale n as

T ∼ nTn
def= PnTPn (4.5)

This approximation makes sense since limn→∞ Pn = 1. We can now represent
the entire operation on scale n

nTnfn = g̃n (4.6)

Here we should note the difference between g̃n and gn in that g̃n is not the pro-
jection of the true function g, but rather the projection of the true T operating
on the projected f , and one should be concerned of whether the error |g̃n − gn|
is comparable to |g−gn|, but it can be shown [1] that this will not be a problem
if f and g have comparable norms.
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4.2 Multiresolution operators

Making use of eq.(4.5) and eq.(3.5) we can decompose the operator into mul-
tiresolution contributions

T = P∞TP∞

= P 0TP 0 +
∞∑
n=0

(Pn+1TPn+1 − PnTPn)

= P 0TP 0 +
∞∑
n=0

[(Pn+1 − Pn)T (Pn+1 − Pn) +

(Pn+1 − Pn)TPn + PnT (Pn+1 − Pn)]

= P 0TP 0 +
∞∑
n=0

[QnTQn +QnTPn + PnTQn] (4.7)

and we simplify the notation with the following definitions, eq.(4.5) is repeated
for clearity

nAn
′ def= QnTQn

′
:Wn′ →Wn

nBn
′ def= QnTPn

′
:V n

′
→Wn

nCn
′ def= PnTQn

′
:Wn′ → V n

nTn
′ def= PnTPn

′
:V n

′
→ V n

(4.8)

By truncating the sum in eq.(4.7) we get a multiresolution representation of the
operator with finite precision

T ≈ NTN = 0T 0 +
N−1∑
n=0

( nAn + nBn + nCn) (4.9)

Standard representation

Suppose we have some a priori knowledge that the resulting function g is re-
quired to be refined to some global finest scale N in order to satisfy some
accuracy condition. The matrix representation of the operation on this scale is
simply

NTN





fN



=



gN



(4.10)
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where the representations of T and f on scale N are obtained by wavelet trans-
form from their respective finest scales. This matrix equation describes the
entire operation, and provided the scale N has been chosen properly, the result-
ing function g can be represented with the same accuracy as f . An adaptive
representation of g is obtained by performing a wavelet decomposition of gN

into its multiresolution components, throwing away all wavelet terms that are
sufficiently small.

There is (at least) one problem with this matrix representation; the matrix NTN

is dense, in the sense that it has generally only non-vanishing entries. This is a
numerical problem more that a mathematical one, and will lead to algorithms
that scale quadratically in the number of basis functions in the system, and
one of the main prospects of wavelet theory is to arrive at fast (linear scaling)
algorithms.

The way to approach this holy grail of numerical mathematics is to realize that
the matrices A, B and C will not be dense (at least for the type of operators
treated in this work), but rather have a band-like structure where their elements
are rapidly decaying away from their diagonals. The reason for this bandedness
of the matrices can be found in [3] and will not be discussed here, it suffices to
say that it stems from the vanishing moments property of the wavelet functions.

The way to achieve a banded strucure of the operator is thus to decompose it
according to eq.(4.9)

NTN = N−1TN−1 + N−1AN−1 + N−1BN−1 + N−1CN−1 (4.11)

The functions f and g can be decomposed to scale N − 1 by simple filter oper-
ations eq.(3.8). According to eq.(4.8) nTn and nCn produce the scaling part of
g, acting on the scaling and wavelet parts of f , respectively. Similarly, nAn and
nBn produce the wavelet part of g, by acting on the wavelet and scaling parts
of f , respectively. The matrix equation eq.(4.10) can thus be decomposed as

N−1TN−1 N−1CN−1

N−1BN−1 N−1AN−1





fN−1

dfN−1



=



gN−1

dgN−1


(4.12)

where the size of the total matrix is unchanged. What has been achieved by
this decomposition is a banded structure in three of its four components, leaving
only the N−1TN−1 part dense. We can now do the same decomposition of
this N−1TN−1 into more banded submatrices. The function components fN−1
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and gN−1 need to be decomposed as well. To keep everything consistent the
N−1BN−1 and N−1CN−1 parts of the operator will have to be transformed
accoringly. To proceed from here we need the following relations

nBn = QnTPn

= QnT (Pn−1 +Qn−1)

= QnTPn−1 +QnTQn−1

= nBn−1 + nAn−1 (4.13)

and similarly

nCn = PnTQn

= (Pn−1 +Qn−1)TQn

= Pn−1TQn +Qn−1TQn

= n−1Cn + n−1An (4.14)

which is the exact change in the operator that is taking place when we decompose
fn into fn−1 + dfn−1 and gn into gn−1 + dgn−1. The matrix equation will now
look like

N−2TN−2 N−2CN−2

N−2BN−2 N−2AN−2

N−2CN−1

N−2AN−1

N−1BN−2 N−1AN−2 N−1AN−1





fN−2

dfN−2

dfN−1



=



gN−2

dgN−2

dgN−1


(4.15)

We can develop this transformation recursively until we reach the coarsest scale.
This multiresolution matrix representation of the operator is called the standard
representation. Symbolically, we can do this decomposition of eq.(4.9) by recur-
sive application of eq.(4.13) and eq.(4.14) where we shift more of the operator
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Figure 4.1: Banded structure of the standard operator matrix.

into extremely narrow banded A-character.

NTN = 0T 0+
N−1∑
n=0

nCn +
N−1∑
n=0

nBn +
N−1∑
n=0

nAn

= 0T 0+
N−1∑
n=0

(
0Cn +

∑
n′<n

n′An

)
+

N−1∑
n=0

(
nB0 +

∑
n′>n

n′An

)
+
N−1∑
n=0

nAn

= 0T 0+
N−1∑
n=0

0Cn +
N−1∑
n=0

nB0 +
N−1∑
n=0

N−1∑
n′=0

nAn
′

(4.16)

By decomposing the full operator into its multiresolution contributions we have
obtained a sparse representation of the operator. The operator matrix will
specifically have a ”finger” structure, with a small number of bands of con-
tributing terms, all emanating from the top-left corner, see figure 4.1.
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4.3 Integral operators

We now turn our attention to a specific type of operator; the one-dimensional
integral operator given in the form

[Tf ](x) =
∫
K(x, y)f(y)dy (4.17)

where K is the two-dimensional operator kernel. The first step is to expand the
kernel in the multiwavelet basis

KN (x, y) =
∑
lx,ly

τN,Nlxly
φNlx(x)φNly (y) (4.18)

where the expansion coefficients are given by the integrals

τ
nx,ny
lxly

=
∫ ∫

K(x, y)φnxlx (x)φnyly (y)dxdy (4.19)

Inserting eq.(4.18) into eq.(4.17) yields

NTNfN (x) =
∫ ∑

lx,ly

τN,Nlxly
φNlx(x)φNly (y)

 f(y)dy

=
∑
lx,ly

τN,Nlxly
φNlx(x)

∫
f(y)φNly (y)dy (4.20)

where the last integral is recognized as the scaling coefficients of f

NTNfN (x) =
∑
lx,ly

τN,Nlxly
φNlx(x)sN,fly

(4.21)

We can now identify τN,Nlxly
as the matrix elements of NTN and eq.(4.21) is the

matrix equation eq.(4.10) written explicitly. As pointed out, the matrix NTN is
dense and we would generally have to keep all the terms in eq.(4.21), therefore
we want to decompose it to contributions on coarser scales. We introduce the
following definitions, eq.(4.19) is repeated for clearity

τ
nx,ny
lxly

=
∫ ∫

K(x, y)φnxlx (x)φnyly (y)dxdy

γ
nx,ny
lxly

=
∫ ∫

K(x, y)φnxlx (x)ψnyly (y)dxdy

β
nx,ny
lxly

=
∫ ∫

K(x, y)ψnxlx (x)φnyly (y)dxdy

α
nx,ny
lxly

=
∫ ∫

K(x, y)ψnxlx (x)ψnyly (y)dxdy

(4.22)
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Equation eq.(4.21) can then be decomposed as

[Tf ]N (x) =
∑
lx,ly

τN−1,N−1
lxly

φN−1
lx

(x)sN−1
ly

+
∑
lx,ly

γN−1,N−1
lxly

φN−1
lx

(x)dN−1
ly

+
∑
lx,ly

βN−1,N−1
lxly

ψN−1
lx

(x)sN−1
ly

+
∑
lx,ly

αN−1,N−1
lxly

ψN−1
lx

(x)dN−1
ly

(4.23)

where we can identify αlxly ,βlxly and γlxly as the matrix elements of A,B and
C, respectively, and eq.(4.23) is again the matrix equation eq.(4.12) written
explicitly. In this expression the last term involving the α coefficients will be
extremely sparse, and this sum can be limited to lx, ly values that differ by less
than some predetermined bandwidth |lx − ly| < ΛN−1,N−1. The rest of the
expression eq.(4.23) involves at least one scaling term, so we seek to decompose
them further.

The first term in eq.(4.23) can be decomposed in the same manner as eq.(4.21),
and the γ and β terms can be partially decomposed, following the arguments
of eq.(4.14) and eq.(4.13), respectively. If we do this all the way to the coarsest
scale, we obtain

[Tf ]N (x) = τ 0,0
00 φ

0
0(x)s0

0

+
N−1∑
ny=0

∑
ly

γ
0,ny
0ly

φ0
0(x)dnyly

+
N−1∑
nx=0

∑
lx

βnx,0lx0
ψnxlx (x)s0

0

+
N−1∑
nx=0

N−1∑
ny=0

∑
lx,ly

α
nx,ny
lxly

ψnxlx (x)dnyly

(4.24)

This is the explicit expression for the standard representation of an operator in
the multiwavelet basis eq.(4.16). In eq.(4.24) the majority of terms are included
in the last quadruple sum, which is limited to include only terms |lx − ly| <
Λnx,ny , making the total evaluation much more efficient than eq.(4.21).

4.4 The Poisson operator

In order to solve the Poisson equation using the methods described above, we
need to rewrite it to an integral form. The equation, in its differential form, is
given as

∇2V (x) = 4πρ(x) (4.25)

where ρ(x) is the known (charge) distribution, and V (x) is the unknown (elec-
trostatic) potential. It is a standard textbook procedure to show that the solu-
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tion can be written as the integral

V (x) =
∫
G(x,y)ρ(y)dy (4.26)

where G(x,y) is the Green’s function which is the solution to the fundamental
equation with homogeneous (Dirichlet) boundary conditions

∇2G(x,y) = δ(x− y)
G(x,y) = 0 ,x ∈ boundary

(4.27)

This equation can be solved analytically and the Green’s function is given (in
three dimensions) simply as

G(x,y) =
1

||x− y||
(4.28)

This is the well known potential arising from a point charge located in the po-
sition y, which is exactly what eq.(4.27) describes.

Numerical separation of the kernel

The Green’s function kernel as it is given in eq.(4.28) is not separable in the
cartesian coordinates. However, since we are working with finite precision we
can get by with an approximate kernel as long as the error introduced with
this approximation is less than our overall accuracy criterion. If we are able to
obtain such a numerical separation of the kernel, the operator can be applied in
one direction at the time, allowing us to use the expressions derived above for
one-dimensional integral operators to solve the three-dimensional Poisson equa-
tion. This is of great importance, not only because we do not have to derive
the d-dimensional operator equations, which is at best notationally awkward,
but also because it again reduces the scaling behavior to become linear in the
dimension of the system.

The Poisson kernel can be made separable by expanding it as a sum of Gaussian
functions, specifically

1
||r − s||

≈
Mε∑
κ=1

aκe
−bκ(r−s)2 (4.29)

where aκ and bκ are parameters that needs to be determined, and the number
of terms Mε, called the separation rank, depends on the accuracy requirement
and on what interval this expansion needs to be valid. Details of how to obtain
this expansion can be found in [1], and will not be treated here, but it should be
mentioned that the separation rank is usually in the order of 100, e.g. it requires
Mε = 70 to reproduce 1/r on the interval [10−5,

√
3] in three dimensions with

error less than ε = 10−8.
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Part II

Implementation
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Chapter 5

The MRChem program

5.1 Data structures

In the following a brief introduction is given to the important data structures
that are used in the MRChem program. This will introduce the nomenclature
used in the rest of the thesis.

Node

The node is the multidimensional box on which the set of scaling and wavelet
functions that share the same support are defined. The node is specified by its
scale n, which gives its size ([0, 2−n]d) and translation vector l = (l1, l2, . . . , ld),
which gives its position. The node holds the (k + 1)d scaling coefficients and
(2d − 1)(k + 1)d wavelet coefficients that share the same scale and translation.
It will also keep track of its parent and all 2d children nodes, giving the nodes
a tree-like structure.

Tree

The tree data structure is basically the multiwavelet representation of a func-
tion. The name originates from the fact that a one-dimensional function is
represented as a binary tree of nodes (octal tree in three dimesions) emanat-
ing from the single root node at scale zero. The tree keeps the entire tree of
nodes, from root to leaf, and each node keeps both the scaling and wavelet co-
efficients. This means that there is a redundancy in the function representation
(a non-redundant representation would be either to keep the scaling coefficients
at the root and the wavelet coefficients of all the nodes from root to leaf, or just
keep the scaling and wavelet coefficients of the leaf nodes only), but it proves
easier just to keep all these coefficients in memory, rather than having to ob-
tain the missing coefficients by filter operations (because they will all be needed
when we start manipulating these function trees by addition, multiplication
and operators).
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5.2 Adaptive algorithm

The algorithm used to obtain adaptive representations of functions was pre-
sented in [1]. This is a fully on-the-fly algorithm in the sense that one sets
out from the coarsest scale and refine the representation scale by scale locally
only where it is needed. This in oppose to the originally proposed algorithm
where one calculates the uniform representation eq.(3.1) on some finest scale
and then do a forward wavelet transform and discards all wavelet terms below
some threshold to obtain the adaptive representation eq.(3.7). One obvious ad-
vantage of this adaptive algorithm is that we do not need any a priori knowlegde
of the global finest scale.

Algorithm 1 Generation of adaptive Multiwavelet representation of a function
1: while number of nodes on current scale Ns > 0 do
2: for each node at current scale do
3: compute scaling and wavelet coefficients
4: if node needs to be refined then
5: mark node as non-terminal
6: allocate children nodes
7: update list of nodes at the next scale
8: else
9: mark node as terminal

10: end if
11: end for
12: increment scale
13: end while

The algorithm consists of two loops, the first runs over the ladder of scales, from
coarsest to finest, while the second is over the nodes present at the current scale.
Once the expansion coeffients of the current node are known, a split check is
performed based on the desired precision. If the node does not satisfy the ac-
curacy criterion, the node is marked as non-terminal and its children nodes are
allocated and added to the list of nodes needed at the next scale. If the node
does not need to be split, the node is marked as terminal and no children nodes
are allocated. In this way, once the loop over nodes on one scale is terminated,
the complete list of nodes needed on the next scale has been obtained. Now
the scale counter is incremented and the loop over nodes on the next scale is
started. The tree is grown until no nodes are needed at the next finer scale.

There are of course two points in this algorithm that need to be treated fur-
ther, the first being the actual computation of the expansion coefficients (line
3). This can be done in one of four ways (projection, addition, multiplication
or operator application) and will be treated in the subsequent sections. The
second point is how to perform the split check (line 4).

The split check is performed to decide whether or not the function is represented
accurately enough on the current node, based on a predefined relative precision
ε. Formally, this relative precision requires that

||f − fε|| < ε||f ||2 (5.1)
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where fε is our approximation of f . However, this check cannot be performed
since the true function f is generally not known. The check that will be per-
formed is based on the fact that the scaling projections will approach the exact
function with increasing scale. Consequently, the wavelet projections, which is
the difference between two consecutive scaling projections, must approach zero.
This means that we can use the norm of the wavelet coefficients on one node as
a measure for the accuracy of the function represented by this node, and we will
use the following threshold for the wavelet coefficients on the terminal nodes

||dnl || < 2−n/2ε||fε||2 (5.2)

A justification for this choice of thresholding can be found in [1] and references
therein. This algorithm is very general, and as pointed out it can be used to build
adaptive representations of functions regardless of how the expansion coefficients
are obtained, and in the following sections we will look at four different ways of
doing this.

5.3 Function projection

The first step into the multiresolution world will always have to be taken by
projection of some analytical function onto the multiwavelet basis. Only then
can we start manipulating these representations by additions, multiplications
and operators.

Legendre scaling functions

In a perfect world, the projection in eq.(3.2) could be done exactly, and the ac-
curacy of the projection would be independent of the choice of polynomial basis.
In the real world the projections are done with Gauss-Legendre quadrature and
the expansion coefficients sn,fj,l of f(x) are obtained as

sn,fj,l =
∫ 2−n(l+1)

2−nl

f(x)φnj,l(x)dx

= 2−n/2
∫ 1

0

f(2−n(x+ l))φ0
j,0(x)dx

≈ 2−n/2
kq−1∑
q=0

wqf(2−n(yq + l))φ0
j,0(yq) (5.3)

where {wq}
kq−1
q=0 are the weights and {yq}

kq−1
q=0 the roots of the Legendre poly-

nomial Lkq used in kq-th order quadrature.

By approximating this integral by quadrature we will of course not obtain the
exact expansion coefficients. However, it would be nice if we could obtain the
exact coefficients whenever our basis is flexible enough to reproduce the function
exactly, that is if f(x) is a polynomial of degree ≤ k. The Legendre quadrature
holds a (2k−1)-rule which states that the k-order quadrature is exact whenever
the integrand is a polynomial of order 2k − 1. By choosing kq = k + 1 order
quadrature we will obtain the exact coefficient whenever f(x) is a polynomial of
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degree ≤ (k+ 1) when projecting on the basis of k-order Legendre polynomials,
and we will use quadrature order k + 1 througout.

In the multidimensional case the expansion coefficients are given by multidi-
mensional quadrature

sn,fj,l = 2−dn/2
k∑

q1=0

k∑
q2=0

· · ·
k∑

qd=0

f(2−n(yq + l))
d∏
i=1

wqiφ
0
jp,0(yqi) (5.4)

using the following notation for the vector of quadrature roots

yq
def= (yq1 , yq2 , . . . , yqd) (5.5)

This quadrature is not very efficient in multiple dimensions since the number
of terms scales as (k + 1)d. However, if the function f is separable and can be
written f(x1, x2, . . . , xd) = f1(x1)f2(x2) · · · fd(xd), eq.(5.4) can be simplified to

sn,fj,l = 2−dn/2
d∏
i=1

k∑
qi=0

fi(2−n(yqi + li))wqiφ
0
ji,0(yqi) (5.6)

which is a product of small summations and scales only as d(k + 1).

The Legendre polynomials show very good convergence for polynomial functions
f(x), and are likely to give more accurate projections. However, most interest-
ing functions f(x) are not simple polynomials, and the accuracy of the Legendre
scaling functions versus a general polynomial basis might not be very different.

Interpolating scaling functions

By choosing the quadrature order to be k + 1 a very important property of the
Interpolating scaling functions emerges, stemming from the specific construction
of these functions eq.(2.10), and the use of the k + 1 order quadrature roots
and weights. The interpolating property eq.(2.11) inserts a Kronecker delta
whenever the scaling function is evaluated in a quadrature root, which is exactly
the case in the quadrature sum. This reduces eq.(5.3) to

sn,fjl =
2−n/2
√
wj

f(2−n(xj + l)) (5.7)

which obviously makes the projection k + 1 times more efficient.

In multiple dimensions this property becomes even more important, since it
effectively removes all the nested summations in eq.(5.4) and leaves only one
term in the projection

sn,fj,l = f(2−n(yj + l))
d∏
i=1

2−n/2
√
wji

(5.8)

This means that in the Interpolating basis the projection is equally effective
regardless of the separability of the function f .
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Obtaining the wavelet coefficients

The wavelet coefficients are formally obtained by the projection of the function
onto the wavelet basis, and we could derive expressions similar to the scaling
expressions based on quadrature. There are however some accuracy issues con-
nected to this wavelet quadrature, so we will take another approach that utilizes
the wavelet transform. We know that we can obtain the scaling and wavelet co-
efficients on scale n by doing a wavelet decomposition of the scaling coefficients
on scale n+ 1 according to eq.(3.8). Line 3 of the algorithm is thus performed
by computing the scaling coefficients of the 2d children of the current node by
the appropriate expression (Legendre or Interpolating), followed by a wavelet
decomposition. In this way, wavelet projections are not required.

Quadrature accuracy

We know that by using quadrature in the projection, we are only getting ap-
proximate scaling coefficients, and some remarks should be given on this matter.
Consider the quadrature performed at scale zero. In d dimensions this gives a
total number of (k + 1)d quadrature points distributed in the unit hypercube
[0, 1]d, while the quadrature on scale one will give (k+1)d quadrature points on
each of the 2d children cubes contained in the same unit hypercube. This will
obviousy increase the accuracy of the quadrature, and the scaling coefficients
obtained at scale one must be considered more accurate than the ones obtained
at scale zero. This means that by improving our representation of f by increas-
ing the scale, we are not only increasing the basis set, we are also increasing the
accuracy of every single expansion coefficient.

If we look back to the computation of wavelet coefficients above, we see that we
are gaining accuracy by doing the projection at scale n+1 followed by a wavelet
transform, compared to a projection of the scaling and wavelet terms separately
at scale n. This also means that once the adaptive algorithm has terminated and
we have a representation of satisfactory accuracy at some local finest scale, we
should perform a complete wavelet transform all the way from finest to coarsest
scale, which will update the expansion coefficients on the coarser scales to be of
the same quadrature accuracy as the coefficients at the finest scale.

5.4 Addition of functions

The recipe for the addition of two function trees is given quite intuitively by
eq.(3.16) and eq.(3.17) as a simple vector addition of the scaling and wavelet
coefficients on corresponding nodes

sn,hj,l = sn,fj,l + sn,gj,l

dn,hj,l = dn,fj,l + dn,gj,l

(5.9)

These expressions are independent of the type of scaling functions used. We see
that by applying the adaptive algorithm to build this addition tree, we auto-
matically end up with the correct nodal structure (refinement), and the correct
coefficients, and no treeparsing is required afterward to remove unneccesary
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nodes, or update non-terminal coefficients as for the projection.

If the situation arise where the algorithm tells us that a node is required in the
result that is not present in one of the trees representing f and g, this node
will have to be generated by wavelet transform before the addition can be car-
ried out. These generated nodes will only contain scaling coefficients because
the information about its wavelet coefficients is simply not available in the cur-
rent tree representation, and further projections would have to be carried out
to obtain this information. This will of course not be done, because once the
projections of the functions f and g are done, these representatons are consid-
ered independent functions and are no longer related to any analytical functions
(this relation will be lost anyway once you start manipulating the function by
operators).

It can also be noted that if it occurs that both the f and g nodes are missing,
there is no need to generate these nodes since no new information will be ob-
tained in their addition that is not already available at a coarser scale in the
result tree. The sum of these nodes will of course only have zero-valued wavelet
coefficients, and is by definition not needed in the result.

Addition accuracy

No absolute accuracy will be lost during an addition. The reason for this is
given by the relations eq.(3.15), which simply states that the projection of the
sum equals the sum of the projections. However, relative accuracy might be
lost if the additon reduces the norm of the function. If this is the case, each of
the functions f and g would have been projected with a higher wavelet norm
threshold compared to a direct projection of the analytical sum (this will lead
to the situation mentioned above where both the f and g nodes are missing).

5.5 Multiplication of functions

As it was presented in chapter three, the multiplication was a ”leaf-to-root”
algorithm that would start by doing the multiplication at some predetermined
finest scale, followed by a wavelet transform to obtain the nodes at coarser
scales, throwing away all nodes that are not needed. By doing the multipli-
cation this way there is no accuracy problems related to the multiplication,
provided that the finest scale N in eq.(3.22) is chosen properly. Since we now
are doing the multiplication on a finer scale than either f or g were originally
represented, no information from these functions is lost in the multiplication.

The projection integral in eq.(3.25) is again done by Gauss-Legendre quadrature
and we end up with two double summation

sN,h
jh,l
≈ 2N/2

k∑
q=0

wq

 k∑
jf=0

sN,f
jf ,l

φ0
jf ,0(yq)

 k∑
jg=0

sN,gjg,lφ
0
jg,0(yq)

φ0
jh,0(yq)

(5.10)
But what is a proper choice of finest scale N in the product? To avoid this
question it is desireable to incorporate the multiplication in the previous adap-

39



tive algorithm. To do this we need to be able to calculate the result at an
arbitrary scale n, that is not necessarily beyond the finest scales of f and g.
Using quadrature, all the information we need from the multiplicands is their
pointvalues in the quadrature roots {yq}kq=0 at scale n.

sn,h
jh,l
≈

k∑
q=0

wq (f(yq)× g(yq))φnjh,l(yq) (5.11)

But now the question arises of what scale the functions f and g shall be evalu-
ated. The best we can do is to evaluate f and g at their respective finest scales.
If we do this throughout the algorithm, there are still no accuracy issues, since
we are using our best approximations available for the f and g pointvalues,
which is simply the best we can achieve.

The problem with this approach is that we will now get expressions that couple
different scales of h, f and g. This will specifically mean that we can no longer
exploit the characteristic property of Interpolating wavelets for the evaluation
of the f and g pointvalues, since the quadrature roots on different scales do not
coincide. This means that in order to get a numerically efficient multiplication,
we need to relate the product on one scale to the multiplicants on the same
scale.

Legendre scaling functions

This uncoupling is easily done by using the expression in eq.(5.10) at an arbitrary
scale n

sn,h
jh,l
≈ 2n/2

k∑
q=0

wq

 k∑
jf=0

sn,f
jf ,l

φ0
jf ,0(yq)

 k∑
jg=0

sn,gjg,lφ
0
jg,0(yq)

φ0
jh,0(yq)

(5.12)
The generalization to multiple dimensions gives no surprises, but by expanding
the vector notation in d dimensions it becomes clear that multiplication will
become a time consuming process in the Legendre basis.

sn,h
jh,l
≈ 2dn/2

k∑
q1=0

k∑
q2=0

· · ·
k∑

qd=0

(( d∏
i=1

wqi

)

×

(
k∑

jf1 =0

k∑
jf2 =0

· · ·
k∑

jfd=0

sn,f
jf l

( d∏
i=1

φ0
jfi li

(yqi)
))

×

(
k∑

jg1=0

k∑
jg2=0

· · ·
k∑

jgd=0

sn,gjgl

( d∏
i=1

φ0
jgi li

(yqi)
))

×
d∏
i=1

φ0
jhi li

(yqi)

)
(5.13)

The scaling behavior of this expression is (k + 1)2d. From eq.(5.13) we can
see that the only function evaluations that are actually taking place concern the
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k+1 different scaling functions evaluated in the k+1 different quadrature roots.
These (k+1)2 function values need to be evaluated only once, and fetched from
memory whenever needed in the expression eq.(5.13), which will speed up the
process.

Interpolating scaling functions

Multiplication in the Interpolating basis in d dimensions follows exactly the
expression for the Legendre basis eq.(5.13), and now the true power of the
Interpolating scaling functions is revealed, in that it is specifically designed to
return Kronecker deltas when evaluated in the quadrature roots. Inserting this
property in eq.(5.13) we get

sn,h
jhl
≈ 2dn/2

k∑
q1=0

k∑
q2=0

· · ·
k∑

qd=0

(( d∏
i=1

wqi

)

×

(
k∑

jf1 =0

k∑
jf2 =0

· · ·
k∑

jfd=0

sn,f
jf l

( d∏
i=1

δjfi ,qi√
wqi

))

×

(
k∑

jg1=0

k∑
jg2=0

· · ·
k∑

jgd=0

sn,gjgl

( d∏
i=1

δjgi ,qi√
wqi

))

×
( d∏
i=1

δjhi ,qi√
wqi

))

= 2dn/2sn,f
jhl
sn,g

jhl

( d∏
i=1

√
wjhi

)
(5.14)

which leaves only one term in the evaluation of each coefficient of the product,
making the Interpolating basis vastly superior to the Legendre basis when it
comes to multiplication efficiency.

Obtaining wavelet coefficients

The calculation of the wavelet coefficients is done in the same way as for the
projection, by wavelet transform of the scaling coefficients at scale n+ 1. Line
3 of algorithm 1 is again obtained by calculation of the scaling coefficients of
the 2d children of the current node by the appropriate expression (Legendre or
Interpolating), followed by a wavelet decomposition.

Multiplication accuracy

Now we can see that some accuracy issues will arise. As before we are making
approximations of the coefficients based on the quadrature projection, but more
importantly, we are making this approximation based on point values of f and g
obtained at scale n, which may not resemble the true function at all. Formally,
however, this is not a problem, since we know that by increasing the scale we
are both improving the quadrature accuracy and improving the quality of the f
and g pointvalues, and we will approach the exact product in the limit of high
n. Obviously, by following this algorithm the accuracy of each coefficient will
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improve as we ascend the ladder of scales, and just as for the projection, we will
need to do a complete wavelet transform, from finest to coarsest scale in order
to update all non-terminal coefficients.

As for the addition the situation may arise where some nodes in f or g needs
to be generated by wavelet transform, but unlike the addition, we need to do
this also when the nodes are missing in both f and g. The reason for this is
that we are only dealing with scaling coefficients, which will be non-zero also
for ”generated” nodes.

5.6 Operator application

Applying the operator is a two-step procedure. First we need to set up the
operator by projecting it onto the multiwavelet basis. The application of the
operator is then obtained by performing the matrix-vector multiplication given
by eq.(4.15) to obtain the full multiresolution result.

For integral operators the projection of the operator reduces to a projection of
the 2d-dimensional kernel K(x,y) onto the multiwavelet basis. This is a func-
tion projection as good as any, and follows the projection algorithm described
previously in this chapter. In the case of the Poisson operator, we make separate
projections for each of the terms in the separable kernel expansion eq.(4.29), and
in a sense we get Mε different operators will be applied.

As was pointed out in chapter 4, by separating the Poisson kernel numerically,
we will be able to apply a one-dimensional operator three times to obtain the
full three-dimensional result, and in the following only a one-dimensional algo-
rithm for the operator application is presented. Applying this one-dimensional
algorithm to the correct terms in the d-dimensional case becomes a technical
issue, and more is said on this matter in [1].

The way to build the result tree adaptively would be to apply the operator piece
by piece, specifically one row at the time, to obtain the result scale by scale,
refining only where needed. The standard (S) way of doing this is to apply the
entire row, that is, applying all blocks on one row, to obtain the coefficients on
one node of the result based on the full multiresolution operator

g0 = 0T 0f0 +
N−1∑
n′=0

0Cn
′
dfn

′

dgn = nB0f0 +
N−1∑
n′=0

nAn
′
dfn

′

(5.15)

and based on this make the decision of whether to split the node, before moving
on to the next node and ultimately to the next scale. Note that if we are moving
beyond the finest scale of f , only the nB0 term of the operator need to be
considered, since dfn is then zero by definition, and the function representation
of f will never have to be extended beyond its finest scale in the S operator
application.
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Non-standard representation

By applying the operator the standard way, we improve our final result by
adding wavelet corrections one scale at the time, not altering what was already
there at the coarser scales. We will now introduce a somewhat different ap-
proach, where we do not apply the entire multiresolution operator on every
scale, but rather the monoresolution operator one scale at the time.

gn = nTnfn + nCndfn

dgn = nBnfn + nAndfn
(5.16)

This is the so-called non-standard (NS) way of applying operators, and the
matrix equation will now look like

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

N−2TN−2 N−2CN−2

N−2BN−2 N−2AN−2

N−1TN−1 N−1CN−1

N−1BN−1 N−1AN−1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

fN−2

dfN−2

fN−1

dfN−1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

gN−2

dgN−2

gN−1

dgN−1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(5.17)

The advantage of this operator application is that the coarse scale evaluations
will be more efficient, in that we are using only one of the terms in each of the
sums in eq.(5.15), and only when we reach the finest scale of the operator are
we applying the full multiresolution operator.

There are at least two disadvantages of the non-standard operator. The most
obvious being that the total matrix has grown in size, since we are now ex-
plicitly calculating the scaling coefficients on every scale. In our case this is
not that big an overhead, since we need these scaling coefficients anyway, and
in the S representation they would have to be obtained by wavelet transform
after the calculation of the wavelet coefficients. In d dimensions this is even less
of a problem since the scaling part is then only one of the 2d scaling/wavelet
contributions on each scale.

The other, more important disadvantage, is that it seems that we have to evalu-
ate the dense nTn submatrices all the way to the the finest scale, and this would
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shatter any hope for a linear scaling algorithm. The way around this problem
is to realize that the effect of nTn on fn is exactly what was calculated at the
previous scale, and instead of calculating this part again, we can do a wavelet
transform of the gn−1 and dgn−1 coefficients to obtain the nTn contribution
to gn. In this way only the coarsest scale T matrix will actually have to be
evaluated, and we re-gain our fast algorithm.

As was pointed out, we are not applying the full multiresolution operator until
we reach the finest scale, which means that the coefficients calculated at the
coarser scales are somewhat incomplete. However, the representation we have
on the finest scale will be complete, and a wavelet decomposition all the way
to the coarsest scale will update all non-terminal nodes to include the effect of
the full operator.

Another consequence of the NS form of the operator is that we might have to
extend the representation of f beyond its finest scale during the operator appli-
cation, since the scaling part of f will be non-vanishing at any scale. However,
at these nodes only the B part of the operator needs to be applied because the
wavelet coefficients are zero for generated nodes.

Adaptive algorithm

The application of the NS operator follows the same algorithm as before, but
with a few additional terms. First of all, we loop over the sum in the kernel

Algorithm 2 Algorithm for operator application

1: for each term in the kernel expansion K(x) =
∑M
κ=1Kκ(x) do

2: while number of nodes at current scale is Ns > 0 do
3: for each node at current scale do
4: for each operator component (O = α,β,γ or τ ) do
5: for each input node within bandwidth lx − ly < Λn,n do
6: if (||On,nlx−ly || · ||w

n,f
ly
|| > δ) then

7: apply operator wn,glx := wn,glx + On,nlx−lyw
n,f
ly

8: end if
9: end for

10: end for
11: if node needs to be refined then
12: mark node as non-terminal
13: allocate children nodes
14: update list of nodes at the next scale
15: add current node result to children by wavelet transform
16: end if
17: end for
18: increment scale
19: end while
20: end for

expansion. The reason for doing this, in contrast to adding these terms to one
kernel representation first, is that the different terms will have different band-
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widths, and by adding them all together, we would end up with a bandwidth
equal to the widest individual one.

The second additional term is the double loop in the evaluation of the expansion
coefficients, and the third difference is the wavelet transform after the allocation
of children nodes to obtain the contribution from the nTn part of the operator
for all but the coarsest scale. In the algorithm, O stands for the entries of any
of the operator components A,B,C and T , and w stands for both scaling and
wavelet coefficients.

One should note that there are three factors determining whether a specific
entry O

nx,ny
lx,ly

of the operator needs to be taken into account. Firstly, we need
only the operator at the current scale. Secondly, we need only the nodes that
are within the bandwidth, and finally, we use only the terms where the product
of the norms is above a given threshold (line 6 in algorithm 2). This greatly
reduces the number of terms we actually need to compute.

Obtaining the coefficients

The actual calculation of the coefficients is performed in the following way. In
the NS matrix equation, the wavelet coefficients are obtained by the γ and α
parts of the operator at any scale.

dgn(x) = nBnfn(x) + nAndfn(x)∑
lx

dn,glx ψ
n
lx(x) =

∑
lx

(∑
ly

(
βn,nlxlys

n,f
ly

+αn,nlxlyd
n,f
ly

)
ψnlx(x)

)

dn,glx =
∑
ly

(
βn,nlxlys

n,f
ly

+αn,nlxlyd
n,f
ly

)
(5.18)

In the calculation of the scaling coefficients, the τ part is included only for the
coarsest scale.

g0(x) = 0T 0f0(x) + 0C0df0(x)∑
lx

s0,g
lx
φ0
lx(x) =

∑
lx

(∑
ly

(
τ 0,0
lxly
s0,f
ly

+ γ0,0
lxly
d0,f
ly

)
φ0
lx(x)

)

s0,g
lx

=
∑
ly

(
τ 0,0
lxly
s0,f
ly

+ γ0,0
lxly
d0,f
ly

)
(5.19)

For the general scale n > 0 the τ part is substituted with a filter operation.

sn,glx=even =
(
H(0)Tsn−1,g

lx/2
+G(0)Tdn−1,g

lx/2

)
+
∑
ly

γn,nlxlyd
n,f
ly

sn,glx=odd =
(
H(1)Tsn−1,g

(lx−1)/2 +G(1)Tdn−1,g
(lx−1)/2

)
+
∑
ly

γn,nlxlyd
n,f
ly

(5.20)

In all of these expressions the summation over ly is limited to those that differ
from lx by less than the bandwidth |ly − lx| < Λn,n. More on the calculation of
this bandwidth if given in [1].
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Chapter 6

Results

In the following some numerical results obtained by the MRChem program is
presented. Some of what is presented are the results of previous work, but are
presented here to make the exposition more complete.

6.1 Function projection

The function projection as a whole was implemented by [1].

Grid adaptivity

To illustrate the power of a basis that adapts locally to the function it is trying
to represent, we will project the Gaussian function

f(x) = e−1000(x−x0)
2
, x0 = (0.2, 0.5, 0.5) (6.1)

in three dimensions. The Gaussian function is a multiresolution function in that
is has variations at all length scales, and an adaptive basis is crucial to represent
it accurately with a basis set of a manageable size.

Figure 6.1 show various plots of the spherical Gaussian. All plots are along the
line y = z = 0.5, and the six plots on the left hand side shows approximations
of f(x) as the projection on the scaling spaces V 0 through V 5 in the basis of
fifth order Legendre polynomials. The accuracy of the approximation is clearly
increasing with higher resolution. From scale 3 the function starts to resemble
a Gaussian, and at scale 5 the error is less than 10−2. The f5(x) projection is
expanded in the full basis of V 5 in three dimensions, consisting of 2dn = 32768
nodes, each containing (k+1)d = 216 basis functions. This is hardly an efficient
way of representing a spherical Gaussian.

The plots on the right hand side of figure 6.1 show the wavelet projections of
f(x) on scales 0 through 5. The wavelet projection on scale n is, by definition,
the difference between the scaling projections on scale n and n + 1, which can
be seen in the plots. The wavelet plots are obtained adaptively and all terms
that were sufficiently small (contributes less that 10−2 to the function) were left
out.
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Figure 6.1: Projection of the Gaussian function eq. (6.1) on scaling spaces V 0

through V 5 (left), and wavelet spaces W 0 through W 5 (right).
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Figure 6.2: Grid refinement in the adaptive representation of the Gaussian
function eq. (6.1)

The adaptive representation of f(x) with the same accuracy (10−2) corresponds
to using the sum of the scaling projection on scale 0 (top left scaling plot)
and the wavelet projection at scales 0 through 4 (top five wavelet plots to the
right). If all the wavelet terms had been kept this would result in an equivalent
expansion with respect to number of basis functions, but by throwing away small
wavelet terms, we arrive at 105 contributing nodes. Even though the number of
wavelet function on one node becomes (2d−1)(k+1)d = 1512, this significantly
reduces the number of expansion coefficients needed to represent the functions
with the same overall accuracy. Figure 6.2 shows the grid partitioning in the
adaptive representation of f(x), where we can see that the basis functions are
concentrated around the center of the Gaussian.

Accuracy

To test the accuracy of the projections we do pointwise evaluation of the error
compared to the analytic function. This test is more strict than what we can
really demand of the projection, since we only require the L2 norm of the error
to be within the accuracy threshold. Figure 6.3 shows the error, relative to the
norm, of two functions f(x) and g(x), evaluated in 2000 points along the line
given by y = z = 0.5. The functions are projected using 8th order Interpolat-
ing scaling functions, with various target accuracies ranging from 10−2 to 10−10.

The function f is the same as above, while g is a more diffuse Gaussian

f(x) = e−1000(x−x0)
2
, x0 = (0.200, 0.5, 0.5)

g(x) = e−100(x−x0)
2
, x0 = (0.485, 0.5, 0.5)

(6.2)

As can be seen from the plots in figure 6.3, the pointwise errors are consistently
below the requested accuracy.
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Figure 6.3: Pointwise relative error in the projection of the two Gaussians eq.
(6.2) on the line y = z = 0.5
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Figure 6.4: Plot of the two functions used in the test of addition and multipli-
cation

6.2 Addition of functions

The addition will be carried out using the following two functions

f(x) = e−1000(x−x0)
2

+ e−100(x−x1)
2
,

{
x0 = (0.200, 0.5, 0.5)
x1 = (0.485, 0.5, 0.5) (6.3)

g(x) = e−1000(x−x0)
2
− e−100(x−x1)

2
,

{
x0 = (0.800, 0.5, 0.5)
x1 = (0.515, 0.5, 0.5) (6.4)

which are shown in figure 6.4.

Grid adaptivity

The grid of the sum will never contain more nodes than the union of the separate
grids of f and g, and no refinement will take place in the sum that is not
present in either f or g. If the norm of the sum is bigger than the norm of each
individual function, the refinement of the sum might be truncated locally at a
coarser scale than the separate functions. Figure 6.5 and 6.6 shows the grids of
f and g separately, and figure 6.7 shows the grid of their sum, all obtained with
accuracy 10−6 using 8th order Interpolating scaling functions.

Accuracy

As it was pointed out, some relative accuracy might be lost during an addition
if the norm of the function is reduced. This is actually the case in our example
addition, but the square norm of the sum is only about half the norms of f
and g separately, and the error should be in the same order of magnitude. The
accuracy was tested the same way as for the projection; by pointwise calculation
of the error relative to the norm along the line y = z = 0.5, and the results are
shown in figure 6.9. In these plots we can see that the error is sometimes
marginally above the threshold, but considering the strictness of this test the
results are satisfactory.
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Figure 6.5: Grid refinement of the adaptive representation of the function f(x)
eq. (6.3) used in addition and multiplication

Figure 6.6: Grid refinement of the adaptive representation of the function g(x)
eq. (6.4) used in addition and multiplication
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Figure 6.7: Grid refinement of the adaptive representation of the function ob-
tained by addition of f(x) eq. (6.3) and g(x) eq. (6.4)

Figure 6.8: Grid refinement of the adaptive representation of the function ob-
tained by multiplication of f(x) eq. (6.3) and g(x) eq. (6.4)
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Figure 6.9: Pointwise relative error in the addition of the two functions eq. (6.3)
and eq. (6.4) on the line y = z = 0.5

6.3 Multiplication of functions

The multiplication is done with the same functions as the addition, eq.(6.3) and
eq.(6.4).

Grid adaptivity

The problem of grid adaptivity the case of the product of two functions is
more challenging than in the addition, since the grid of the product does not
necessarily resemble the grids of the multiplicands. In our example the narrow
peak in each of the functions f and g will vanish in the product, and the diffuse
peaks will multiply to one single peak, shifted to the center of the plot. The
grid of the product is shown in figure 6.8, and we see that the grid perfectly
adapts to represent the new function efficiently.

Accuracy

There were some accuracy issues related to the adaptive construction of the
product representation as it was presented in the previous chapter. By per-
forming the same accuracy test as above we can see from figure 6.10 that the
relative accuracy of the product falls consistently below the accuracy threshold,
except for the ε = 10−2 case, and the accuracy of the product is by all means
satisfactory.
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Figure 6.10: Pointwise relative error in the multiplication of the two functions
eq. (6.3) and eq. (6.4) on the line y = z = 0.5

For the multiplication one additional accuracy test is carried out, that considers
the L2 norm of the error. This test is done by projecting the analytical product
with accuracy two orders of magnitude higher, and looking at the norm of
the difference between the analytical projection and the wavelet multiplication.
The results are shown in table 6.3 and we see that the error falls way below the
threshold for any of the test calculations. In this table the computation time is
also included and we see that the Interpolating multiplication is very efficient.

k E2 Time k E2 Time k E2 Time
ε = 10−3 ε = 10−5 ε = 10−7

5 6.1e-06 < 1 7 4.4e-07 1 9 1.0e-09 1
6 5.1e-06 < 1 8 4.7e-09 1 10 1.7e-10 2
7 9.5e-06 < 1 9 3.0e-09 1 11 3.8e-11 2
8 1.2e-05 < 1 10 6.4e-09 1 12 2.2e-11 2
9 3.1e-06 < 1 11 3.9e-09 2 13 4.0e-11 2

ε = 10−4 ε = 10−6 ε = 10−8

6 8.9e-07 1 8 6.0e-09 1 10 1.7e-10 3
7 4.4e-08 1 9 1.0e-09 1 11 2.5e-11 3
8 5.0e-08 1 10 3.9e-10 1 12 9.5e-12 3
9 2.2e-07 1 11 3.0e-10 1 13 6.0e-12 3
10 1.1e-08 1 12 7.1e-10 2 14 6.6e-12 3

Table 6.1: Precision in multiplication. ε is the requested accuracy, k is the
polynomial order of the basis, E2 is the L2 norm of the relative error and time
is given in seconds.
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Figure 6.11: Potential g(x) to the right, given by the corresponding distribution
f(x) to the left, all calculated as the solution of the Poisson equation.

6.4 Operator application

The original implementation of the operator application was done by [1], which
arrived at a fully numerical solution of the Poisson equation in three dimensions

g(x) =
∫

1
||x− y||

f(y)dy (6.5)

Figure 6.11 shows line plots of the calculated potential given by Gaussian dis-
tributions with different exponenents, positioned in the center of the unit cube.

Accuracy

To test the accuracy of the operator application we apply it to a function f that
gives an analytic solution g

g(x) =
3∑
i=1

e−α(x−xi)
2

(6.6)

f(x) = ∇2g(x) =
3∑
i=1

(4α2|x− xi|2 − 6α)e−α(x−xi)
2

(6.7)

with α = 300, x1 = (0.5, 0.5, 0.5), x2 = (0.6, 0.6, 0.5) and x3 = (0.35, 0.6, 0.5).
The results of this test are given in table 6.2, where we can see that the norm of
the error is consistently below the threshold. These are updated results and the
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k E2 Time k E2 Time k E2 Time
ε = 10−3 ε = 10−5 ε = 10−7

5 4.0e-05 6 7 3.3e-07 17 9 2.7e-09 66
6 3.4e-05 3 8 3.4e-07 18 10 2.7e-09 49
7 3.1e-05 2 9 2.9e-07 10 11 2.7e-09 49
8 3.0e-05 3 10 2.9e-07 9 12 2.6e-09 52
9 2.9e-05 2 11 3.0e-07 9 13 2.6e-09 29

ε = 10−4 ε = 10−6 ε = 10−8

6 5.1e-06 11 8 4.4e-08 36 10 2.5e-10 108
7 3.2e-06 9 9 2.8e-08 29 11 2.5e-10 77
8 3.0e-06 5 10 2.8e-08 31 12 2.5e-10 95
9 3.0e-06 5 11 2.9e-08 16 13 2.4e-10 89
10 3.0e-06 3 12 2.8e-08 20 14 2.4e-10 54

Table 6.2: Precision in the application of the Poisson operator where ε is the
requested accuracy, k is the polynomial order of the basis, E2 is the L2 norm of
the error, and time is given in seconds.

improvements in computation time compared to what was presented in [1] is
due to the optimization that is discussed later. These improvements are making
the performance comparable to results obtained by Beylkin and coworkers [15].

6.5 Nuclear potential

An efficient linear scaling numerical Poisson solver with strict error control is of
course interesting in its own right, but the main goal of the MRChem program
is to carry out calculations on molecular systems, and a considerable amount
of work has been put into extending the applicability beyond the treatment of
single Gaussian distributions and into more interesting chemical systems. Accu-
rate and efficient calculation of the nuclear potential is important in any area of
computational chemistry and MRChem provides a method that is truly linear
scaling with system size.

The true nuclear potential is emanating from the point charges of the nuclei
in the system, which means that the charge distribution is a collection of delta
functions. Delta functions cannot be represented by the multiwavelet basis, but
by choosing very narrow Gaussian functions as nuclear charge distributions we
are able to calculate the nuclear potential by application of the Poisson operator.

Range of validity

By approximating the nuclear charge by a Gaussian distribution, we are mak-
ing an error in the potential whenever evaluated within the charge distribution,
that is within the radius where the charge is substantially (with respect to the
requested accuracy) different from zero. This means that there is a range of
validity of the potential, depending on the width of the nuclear Gaussian, and
by increasing the Gaussian exponent, we can make the validity range approach
the nuclear position.
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Figure 6.12: Plots of the potential from a hydrogen nucleus calculated using
different Gaussian exponents for the nuclear charge.

Figure 6.12 shows the true nuclear potential along with the one calculated us-
ing different nuclear exponents, and we can see that by increasing the exponent
from 102 to 108 we can make the range of validity of the calculated potential go
from r ∼ 10−1 to r ∼ 10−4.

We know that the nuclear potential has an analytical solution, and it might
seem unnecessary to obtain it by application of the Poisson operator. However,
the wavelet formalism does not sit well with singular functions, and a direct
projection of the r−1 potential is not desireable. On the other hand, if we
were able to obtain a smoothed nuclear potential with a similar validity range
as above, the direct projection of this potential might be more efficient than
the operator application. One such smoothed potential was obtained by the
numerical separation of the Poisson integral kernel eq.(4.29). This expansion
can be made valid with the same range and accuracy as the potential calculated
by the operator.

Linear scaling

One important aspect of the potential calculation is the scaling behavior with
respect to system size. The banded structure of the matrix representation of
the poisson operator gives prospects of linear scaling, and to test this prop-
erty we calculate the nuclear potential given by an increasing number of water
molecules. In this test both the number of nuclear charges and the volume
of the system was increased. The system was expanded in one direction only,
and the geometry of the 10H2O case is shown in figure 6.16 together with an
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Figure 6.13: Scaling behavior of the calculation of the nuclear potential using
the poisson operator and by direct projection of the kernel expansion
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Figure 6.14: Scaling behavior with respect to requested accuracy on the calcu-
lation of nuclear potential for four water molecules by operator application.
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Figure 6.15: Lineplot of the nuclear potential of 10 water molecules as calculated
by the Poisson operator. Line goes through the nuclear positions of the oxygen
atoms.

Figure 6.16: Isosurface plot of the nuclear potential of 10 water molecules as
calculated by the poisson operator.
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isosurface plot of the calculated potential.

Figure 6.15 shows the potential on the line that goes through the 10 oxygen
atoms in figure 6.16. The calculation was done using a nuclear exponent of 106

and the potential in figure 6.15 should be accurate to a distance of about 10−3

from each nuclear position. All calculations in figure 6.13 were done using a
nuclear exponent of 106 and accuracy 10−4, and we see a proper linear scaling
of the operator application.

Figure 6.13 also shows the computation time of the direct projection of the
kernel expansion to obtain the nuclear potential with the same accuracy and
range of validity, and there is no question that the projection is more efficient
than the operator application for nuclear potentials. Figure 6.14 shows the
computation time for the nuclear potential for the 4H2O system with different
accuracy, calculated by application of the Poisson operator. Here we can see
that the computation time more or less doubles when we increase the accuracy
by an order of magnitude.

6.6 Electronic potential

The calculation of the electronic potential is a bit different from the nuclear
potential in that there is no analytical solution and the calculation has to be done
by operator application. Obviously, in order to calculate the electronic potential
we need the electron density, and ultimately we would have MRChem optimizing
the density based on Density Functional Theory (DFT). For the time being the
electron density will be calculated using other Quantum Chemistry programs
(Dalton, CFOUR) which provides the density matrix and the corresponding
Gaussian basis set, which can then be projected onto the multiwavelet basis.

Linear scaling

The scaling behavior of the calculation of the electronic potential was obtained
the same way as for the nuclear potential; by calculation on an increasing num-
ber of water molecules. In these tests the electron density was projected for
up to ten non-interacting water molecules and the potential were calculated on
the entire system. Figure 6.18 shows the electronic potential on an isosurface of
the density for the system with 10 water molecules. Figure 6.17 shows the grid
partitioning used to represent the electronic potential.

Figure 6.19 shows the scaling behavior of the electronic potential calculation,
which shows a proper linear scaling. One should note that the computation
time of the electronic potential is almost an order of magnitude faster than the
calculation of the nuclear potential on the same system with the same accuracy.
The reason for this is that the electronic potential is much smoother than the
nuclear potential and a deeper refinement is required in the latter.
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Figure 6.17: Grid refinement of the adaptive representation of the electronic
potential of 10 water molecules.

6.7 Optimization

In the NS representation of the operator, the situation may arise where we
need a node of the input function f that is not present in the current tree-
representation of the function, that is, the node must be generated by wavelet
transform. This generated node is truly redundant in the tree representation,
and at first we could be tempted to just calculate it using the filters, use it if it
is needed in the operator application, and delete it immediately.

However, since we are dealing with a finite bandwidth of the operator, it is
likely that the same generated node will be needed to evaluate several nodes of
the result. In this case we would have to generate these nodes every time we
encounter them, making the algorithm slower. To deal with this we can decide
to store every new node as it is generated, which means that the next time the
very same node is required, we will have it available directly, and only when the
operator application has terminated these nodes are deleted.

A common limiting factor of finite element methods is the memory usage, since
the number of basis functions required becomes huge, especially in multiple
dimension. This is also the case for multiwavelets, and a typical function rep-
resentation in three dimensions contains some thousand nodes and each node
some thousand coefficients, making the total memory requirement to represent
one function approach the GB order of magnitude. This means that we should
strive to make the function representations as small as possible at any given
moment.
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Figure 6.18: Electronic potential in color on an isosurface of the electron density
for ten non-interacting water molecules.
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Figure 6.19: Computation time in the calculation of electronic potential for
different number of water molecules.
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It is therefore necessary to arrive at some compromise between the two ap-
proaches mentioned above, where we do not store all the generated nodes in
memory, but still do not have to generate them every time we need them. In the
operator algorithm there were three factors that limited the number of terms to
consider in the matrix-vector multiplication; the scale, the bandwidth and the
product of the norms. The latter enables one such compromise.

We can decide to keep only the norm of the generated node after it is obtained
and used the first time, while its coefficients are deleted. The additional memory
used to keep the norms is negligeable compared to the total function, and we are
now in the position to perform the last thresholding test of the generated nodes
without having to obtain their full set of coefficients every time, and only if the
norm-test tells us that the node is required, the wavelet transform is carried out
again.

This procedure makes sense only if many generated nodes needs to be consid-
ered in the first place, but the percentage of these that are actually needed in
the operation is small. If only a few generated nodes are required, it should be
possible to store them in memory altogether, and if more or less every node is
above the norm threshold, we would be better of just calculating the full node
with coefficients right away.

Table 6.3 shows some details of the electronic potential calculations performed
on the water molecules in the linear scaling test in the previous section. The
second column shows the number of original nodes in the electron density repre-
sentation. The third column shows the number of different nodes that needed to
be generated by wavelet transform during the application of the operator. The
fourth column gives the number of times these generated nodes were fetched
by the operator to test if the norm was sufficiently high, and the fifth column
shows the number of times this norm test said that the node actually needed to
be taken into account.

We can immediately see that since the number of times a generated node is
fetched is in the order of millions, the proposed algorithm where the nodes were
obtained by wavelet transform every time they were needed is bound to be in-
efficient. This is the way the original implementation was done, and this is why
the computation time in the results presented in [1] were some five times slower
that the results presented in table 6.2 in the previous section. The last column
in table 6.3 gives the computation time using this algorithm.

Secondly, we see that the number of different nodes that are generated by the
operator is 5-10 times the number of original nodes in the representation. In
three dimensions these generated nodes will contain only one 8th of the coef-
ficients of an original node since their wavelet coefficients will be zero. This
means that keeping all the generated nodes for later use will approximately
double the total memory requirement of representing the function. This will
however dramatically improve the computation time since now only some thou-
sand wavelet transforms needs to be carried out, in oppose to some millions in
the previous algorithm. The sixth column in table 6.3 shows the computation
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nH2O Nodes Time (sec)
Orig. Gen. Fetched Used Full mem. Opt. Min mem.

1 328 4026 3 · 106 17751 11 11 401
2 456 5378 4 · 106 23031 13 13 622
4 824 4448 4 · 106 22103 16 16 625
6 1128 5794 5 · 106 23784 19 19 849
8 1464 7200 7 · 106 28528 22 22 1008
10 1752 8834 1 · 107 35051 27 28 1484

Table 6.3: Number of nodes generated in the electron density during the calcu-
lation of the electronic potential for different number of water molecules.

time using the algorithm that keeps all the nodes and we can see a significant
improvement compared to the first algorithm.

Now one would expect that the compromising algorithm presented above would
give performances somewhere in between the two extremes, but as we can see
from column seven in the table, the computation time is practically the same as
for the fast ”full memory” algorithm, while the maximum number of generated
nodes with coefficients at any moment never exceeds 20. This means that we get
the best of both worlds and we have a fast algorithm where the representation
of the density function never grows noticably.
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Chapter 7

Discussion

In the current implementation of MRChem we have achieved a fully adaptive
construction of functions in any finite dimension which can be obtained by pro-
jection, addition, multiplication or application of the Poisson operator, and the
representations obtained are consistently within the accuracy threshold.

With the optimization step presented in this thesis we have improved the per-
formance of the code to give comparable results to the ones reported by Beylkin
and coworkers [15] for the solution of the Poisson equation. The operator ap-
plication is shown to be truly linear scaling with system size, both in the case
of (practically) point charges in the calculation of the nuclear potential, and for
more general charge distributions in the calculation of the electronic potential.

One aspect that is not treated in this thesis is the implementation of parallel
algorithms. The wavelet formalism is well suited for parallelization where the
work load is easily distributed by letting each processor calculate only parts
of the tree representation and the communication between processors during a
tree construction is limited to the function norm that is updated between every
scale in the adaptive algorithm. This norm is required for the refinement test of
each separate node. A lot of work has been put into the parallel implementation
an the current results looks promising.

An interface to other computational chemistry programs has been implemented,
where molecular geometries and a suitable starting guess for the electron density
can be obtained, and we are in the position to start implementing the Kohn-
Sham equations for the iterative solution of the electronic structure of molecular
systems.

The Kohn-Sham equations can be rewritten in an integral form in the same man-
ner as the Poisson equation, and the ground state can be obtained by iterative
solution of the following equation

ψ(x) = −2
∫
H(µ)(x,y)V (y)ψ(y)dy (7.1)

where H(µ) is the Helmholtz kernel which is given, for free boundary conditions
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in three dimensions, as

H(µ)(x,y) =
e−µ||x−y||

||x− y||
(7.2)

This kernel can be numerically separated in the same way as the Poisson kernel
as an expansion of Gaussians, and can be obtained to any accuracy and range
of validity [1]. In this way the solution of the Kohn-Sham equations becomes
very similar to the solution of the Poisson equation, and can be done using the
same machinery.

A current bottleneck in the molecular calculations is the projection of the elec-
tron density from the Gaussian basis set to the multiwavelet basis. Gaussian
functions are hard to reproduce by simple polynomials and the projection of
these functions is not cheap. Since the size of the density matrix grows as the
square of the number basis functions, the number of Gaussian projection quickly
becomes the limiting factor. In the current implementation the projection of
the density easily becomes several orders of magnitude more expensive than the
calculation of the potential given by this density.

However, the initial projection is meant only as a crude starting guess for the
SCF iterations and it is not necessary to employ an accurate expansion with a
large Gaussian basis. The initial projection can also be done with less accuracy
than what is required in the result, which will speed up the process.
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