
INF-3990

Master thesis in

Computer Science

Designing and evaluating the SCARF

(Scalable CAching layered Recommendation

and Feedback powered) system for

multimedia content providers

by

Torkil Grindstein

November 2009

Faculty of Science

Department of Computer Science

University of Tromsø





Abstract

This Master thesis covers the design and evaluation of a multimedia content
provider service. The design is scalable, both by means of storage, bandwidth
and user count. To make the system stand out compared to competitors,
there has been added design elements like a recommendation engine and a user
feedback system.

The system has been named SCARF, which is an abbreviation for Scalable
CAching layered Recommendation and Feedback powered system.

In order to do the evaluation part of the thesis, we have implemented a
simulator for the entire system, on which we have executed numerous test runs.



2

Acknowledgments

First of all, I want to express my sincere gratitude to my wife and children for
their tremendous patience with me during my work on this thesis, mostly on
evenings and nights for a long time. I would never have �nished, if it was not
for their support.

Secondly, I am honored to thank my supervisor Åge Kvalnes for his most
valuable contribution. His insight is tremendous.

Finally, help and support from other project fellows Professor Dag Johansen,
Ste�en Viken Valvåg, Tjalve Aar�ot, Lars Brenna, Tord Heimdal and Robin
Pedersen have been outmost valuable.

Thank you all!



Contents

1 Introduction 7

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Project context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related work 11

2.1 Peer-to-peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Exempli gratia . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Categorization of recommender systems . . . . . . . . . . 14
2.2.3 Privacy issues . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Design 17

3.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The supernodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Content administration . . . . . . . . . . . . . . . . . . . 21
3.2.2 Query interface and content indexing . . . . . . . . . . . . 21
3.2.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Neighbor topologies . . . . . . . . . . . . . . . . . . . . . 22

4 Implementation 25

4.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Simulating time . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Simulating popularity . . . . . . . . . . . . . . . . . . . . 26

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 The content provider . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 The supernodes . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 The end users . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.5 The indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.6 The topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.7 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.8 User feedback . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.9 Gossip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4 CONTENTS

4.2.10 Recommendations . . . . . . . . . . . . . . . . . . . . . . 33
4.2.11 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.12 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Testing 37

5.1 Small scale testing . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.1 Test running a small example . . . . . . . . . . . . . . . . 37

5.2 Large scale testing . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 The RING topology . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 The DOUBLERING topology . . . . . . . . . . . . . . . . . . 44
5.2.3 The TWORINGS topology . . . . . . . . . . . . . . . . . . . 45
5.2.4 The ALLCONNECTED topology . . . . . . . . . . . . . . . . . 47

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 51

6.1 What is achieved? . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Source �le listings 57

A.1 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.1.1 Simulation.java . . . . . . . . . . . . . . . . . . . . . . . 57
A.1.2 Supernode.java . . . . . . . . . . . . . . . . . . . . . . . 65
A.1.3 User.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.1.4 Topic.java . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.1.5 Content.java . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.6 Recommendation.java . . . . . . . . . . . . . . . . . . . . 81
A.1.7 Gossip.java . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.8 IndexElement.java . . . . . . . . . . . . . . . . . . . . . 84
A.1.9 IndexEntry.java . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.10 Event.java . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.11 CumulativeBandwidth.java . . . . . . . . . . . . . . . . . 89



List of Figures

2.1 Screen shot from the Last.fm web page. Here are presented speci�c
recommendations for the logged in user, based on an analysis of
the monitored user behavior, and a complex music categorization
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Screen shot from the personal YouTube recommendation page. . . 14

3.1 A simple overview of the components in the system. . . . . . . . . 18

3.2 A mock-up example on what the users' interface could look like.
On the top, there is a �eld to specify a search query (also referred
to as topic). Next comes the currently streamed video, with the
feedback functionality to the right. On the bottom, the three dif-
ferent recommendations are shown. . . . . . . . . . . . . . . . . . 20

4.1 A zipf distribution graphed by linear scales (left) and logarithmic
scales (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 This is how the Search Index look like when the system has run
its initialization steps. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 This is how the Search Index look like after running 1500 time
units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 This is a scaled down screen shot on how one of the screens are
setup to constantly monitor simulation test runs. It is included
here just to serve as an indicator on the amount of concurrent
things going on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Here is the output from the 10th test run where the injected con-
tent had popularity 1.0, and with the supernodes in a RING topology. 43

5.5 Here is the output from the 10th test run, where the injected
content had popularity 0.8, and with the supernodes in a RING

topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Here is the output from the 10th test run, where the injected con-
tent had popularity 1.0, and with the supernodes in a DOUBLERING

topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Here is the output from the 10th test run, where the injected con-
tent had popularity 1.0, and with the supernodes in a TWORINGS

topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



6 LIST OF FIGURES

5.8 Here is the output from the 10th test run, where the injected con-
tent had popularity 0.9, and with the supernodes in an ALLCONNECTED

topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.9 This graph shows how fast content with popularity 1.0 was dis-

tributed throughout the supernodes. . . . . . . . . . . . . . . . . . 49



Chapter 1

Introduction

1.1 Background

The scenario is a multimedia content provider and a set of users who stream
videos in accordance to their respective �elds of interests. The content provider's
two main interests are 1) to keep users consuming as much content as possible,
and 2) to attract as many users as possible. To achieve that, it is bene�cial for
the provider to be able to o�er recommendations to the users, based on their re-
spective interests and behavior history. A lot of research is done within the �eld
of recommendations (e. g., Andersen et al. [1], Zhang [46], Shepitsen et al. [37]),
and in order to provide useful recommendations, the server needs to know the
user somehow. The two major ways to gain knowledge about users are by im-
plicit and explicit user feedback (Oard et al. [31] and Zigoris et al. [48]). Implicit
user feedback approaches typically involve monitoring, storing and analyzing
user behavior, while explicit user feedback typically involves letting the user
explicitly educate the server on preferences and likes/dislikes. These approaches
are of course not mutually exclusive, and could (and should) be combined to gain
the best possible recommendation engine. Additionally, experiences from similar
users' behavior are valuable in designing a good recommendation scheme. To
de�ne similar users is a very challenging task, and examples of relevant research
can be found in Nisgav et al. [30] and in Gharemani et al. [13].

Another important issue the multimedia content provider needs to handle is
load. Streaming media resources requires a lot of bandwidth, and serving a large
number of users places huge demands on the connecting network. A commonly
applied approach is to replicate the multimedia content on multiple independent
servers that share as few links as possible on the network path leading to the
users that are consuming the content.

This thesis addresses these issues, and presents a design with solutions for
both the bandwidth limitation problem and the recommendation problem. The
bandwidth problem is solved by replication in a caching layer of servers, while
the recommendation problem is met with the design of a recommendation engine
that combines di�erent recommendation techniques. Among these techniques is
the inclusion of a system for collecting feedback from the end users, and applying
this feedback in the ranking algorithm.

7



8 CHAPTER 1. INTRODUCTION

1.2 Problem de�nition

The problem area addressed in this thesis is how a multimedia content provider
can o�er a scalable service, beyond limitations set by own software, hardware
and bandwidth. More speci�c, the required bandwidth is too high for a single
server, and the provider is unable to a�ord building up an own server park. We
divide the problem area into four di�erent sub-problems:

1. Investigate a distributed caching substrate for e�cient use of the network
between the content provider and the users.

2. Investigate use of recommendations as a means of input on how content
should be replicated across the caching substrate.

3. Investigate a recommendation scheme that balances traditional ranking,
user feedback, up-and-coming content, and brand new content.

4. Investigate how the feedback from the end users can be applied to minimize
the time it takes to maximize availability for popular content.

1.3 Methodology

Denning et al. [9] divided the methodology of computer science into three
disciplines:

Theory � based on mathematical principles.

Abstraction � based on experimental scienti�c methods.

Design � based on engineering.

However, Denning et al. argue that the three disciplines of computer science
are so interwined that they actually in practice are hard to separate from
each other. Trying to categorize the work done in this thesis ends up with a
conglomerate of the three disciplines. Theory is used to de�ne the problem,
abstraction to construct a solution model, and design is represented in the
implementation of a simulation.

1.4 Project context

This thesis was written under an umbrella owned by theWide Area Information
Filtering [12] (WAIF) project, which is a joint project between the University
of Tromsø [32], Cornell University [43] and UC San Diego [10].

WAIF's slogan is to get rid of the traditional computer, and focuses on
deriving new architectures and paradigms based on publish/subscribe models
instead of traditional client/server session-based interactions, which are most
common on the Internet today. An imperative goal is to enhance user expe-
rience by implementing intelligent systems based on recommendation engines,



1.5. OUTLINE 9

personalized �lters and user feedback. Environments of thousands, or even
millions of computers, can be available for single user tasks.

The work and results of this thesis is entirely in the WAIF project's spirit,
however developed independent of the rest of the WAIF subprojects.

1.5 Outline

The chapters of this thesis are outlined as follows: Chapter 2 discusses related
work, with focus on peer-to-peer technologies and recommendation engine so-
lutions. Chapter 3 details the design of SCARF, while chapter 4 focuses on
the actual implementation of the complete SCARF simulator. In chapter 5, the
testing of the simulation is discussed, while chapter 6 concludes the thesis and
gives some pointers to potential future activities, based on conclusions drawn
from the simulation results.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Related work

Traditionally, architectures for �le and information sharing have been centered
around the client/server model. This concept arose in the 1980s [21] and
describes the di�erent roles PCs had in small scaled computer networks. The
client is a requester of services, and the server is the provider of services. This is
still the most applied model for business applications being written today, as well
as for the main application protocols used on the Internet, e.g., HTTP, SMTP
and FTP. Details on the client/server model are presented in Schussel [36] and
Edelstein [11].

2.1 Peer-to-peer

The client/server representation is a very intuitive model of how to retrieve
wanted data or information on a network. However, given situations where
very many clients access the same server, or situations where retrieval of data
requires large amounts of bandwidth, then both the server and the server's
network become bottlenecks. Consequently, the clients do observe poor quality
of service.

This is the background for the peer-to-peer (P2P) paradigm. The idea is
as follows: If one client has downloaded data from a server, then it might
take the role as a server for other clients demanding the same piece of data.
This reduces the load on the main server, as well as distributes bandwidth
requirements throughout the network. As a side note, the P2P model was the
original system for the infant Internet back in the 1960s. In 1969, ARPANET,
which is considered the aboriginal Internet, was designed as a network of equal
peers, rather than a network of servers and clients [17].

In P2P systems, a major task to solve is to �nd a way for end users to actually
�nd the desired content. A distributed hash table (DHT) is a decentralized
lookup service, which distributes the responsibility for maintaining the service
among nodes in the system (Balakrishnan et al. [3], Kaashoek et al. [23] and
Monnerat et al. [28]). The �rst four DHTs were introduced more or less concur-
rently in 2001: Pastry (Rowstron et al. [35]), Tapestry (Zhao et al. [47]), Chord
(Stoica et al. [40]), and the Content Addressable Network (CAN, Ratnasamy et
al. [33]).

11



12 CHAPTER 2. RELATED WORK

The DHTs arose as a reaction to experiences with weaknesses in large P2P
systems, like the music sharing systems Napster (Carlsson et al. [7]) and Gnutella
(Ripeanu et al. [34]), as well as the anonymity provider Freenet (Clarke et al. [8]).

This is how these three systems addressed data lookup:

Napster used a centralized index server. When new peers joined the system,
they provided the central server with a list of locally hosted �les. This
list was then merged into the central index. A central component is a
single point of failure, and this design also made the system vulnerable to
attacks and lawsuits.

Gnutella avoided the single point of failure problem by basically broadcast-
ing each search query to all other nodes in the network. However, this
approach was signi�cantly less e�cient than the Napster approach.

Freenet also distributed the lookup process, and employed a heuristic key
based routing model. Here, each �le was associated with a key, and �les
with similar keys tended to cluster. It turned out that content usually
could be found in few steps, but the protocol could not guarantee that
wanted data would be found, even if present in the network.

2.2 Recommendations

Recommender systems typically employ information �ltering techniques to sug-
gest information items (books, movies, music, Internet sites, etc) to users, based
on the system's knowledge of user preferences.

This knowledge can be obtained either by explicitly telling the system about
the user's preferences, e.g., by �lling out forms, by letting the user rate known
content, or by implicitly learning user preferences, e.g. by monitoring the user's
activity and behavior, or by employing knowledge gained by monitoring user
behavior from users that are supposed to share interests with the actual user,
i.e. similar users. Combinations of explicit and implicit learning can be applied.

In cases where systems make recommendations based on similar user behav-
ior, there is one underlying basic assumption: Users with similar preferences

in the past are likely to share preferences in the future.
Back in 1992, Goldberg et al. [14] introduced the concept of collaborative

�ltering. It was a method for users to collaborate on a way to evaluate the degree
of interest on incoming mail in their Tapestry mail system. David Goldberg and
his team derived revolutionary algorithms, which later have been re�ned and a
lot of research have been done within the �eld ever since. With the tremendous
growth of e-commerce and social networking, the topic is hotter than ever.

2.2.1 Exempli gratia

On the Internet today, there exist numerous examples of how di�erent recom-
mendation systems are employed � some are subtle, others very obvious.

A newspaper front-page is a simple recommendation example. An editor
makes choices on behalf of an average reader's interests, and neither explicit nor



2.2. RECOMMENDATIONS 13

implicit user feedback is necessarily used. The editorial choices are probably
made based on a combination of several variables, like freshness, estimated
user impact and locality. However, some on-line newspapers (e.g., The New
York Times [42]) o�er their readers to open personal accounts, and hence make
both explicit (where the user states personal interests and/or rates articles) and
implicit (logging the articles read by the user) learning feasible. In this way,
users with own accounts can be presented with a totally personalized front page
for the newspaper.

Another popular service on the Internet is the Last.fm [26] music service.
Last.fm monitors the music users listen to, and derives recommendations along
several axis. Most obvious, Last.fm generates charts based on the most listened
to music during some preset time intervals (last week, last month, last year,
etc.). Within this category, Last.fm actually create numerous charts: �Top
artists� (most listened to artists), �Hyped artists� (artists with most increased
popularity recently), �Loved artists� (artists that users explicitly has �agged as
�loved�), and also all of the three mentioned chart types applied on speci�c songs
instead of artists.

Figure 2.1: Screen shot from the Last.fm web page. Here are presented speci�c
recommendations for the logged in user, based on an analysis of the monitored user
behavior, and a complex music categorization system.

Furthermore, Last.fm have devised a wide spanning categorization system
for music, which simpli�ed makes music taste measurable. This can be done
by attaching large amounts of metadata to each piece of content (artist or
song) � some manually and some algorithmically. (See �gure 2.1.) Values
of these metadata �elds can be stored and structured in a vector. This makes
it possible to compare di�erent users' music taste, and hence provide music
recommendations to users based on similar users' taste. To do this comparison,
algorithms for calculating mathematical vector distance can be applied (e.g.,
Euclidean distance [4]). Last.fm automatically generates a group of similar users,
called the user's neighborhood. Additionally, the user can manually compile a
group of friends, which makes it possible to compare music taste with friends,
and hence discover music previously unheared of.

The Internet service that is most similar to the SCARF system presented in
this thesis is YouTube [45]. YouTube is a video streaming provider that streams



14 CHAPTER 2. RELATED WORK

to millions of users, also creating recommendations based on similar content.
YouTube's solution to the scaling problem is to add disks, servers, and even
server parks on di�erent locations. Hence, one of YouTube's greatest challenges
is to generate software on top of the huge amount of hardware � software
that handles millions of users, and still serves user requests in a matter of
milliseconds.

Figure 2.2: Screen shot from the personal YouTube recommendation page.

One of the most recent services that has gained massive popularity is Spo-
tify [39], which hosts an enormous database of music. Millions of users stream
music on demand, and the music might in the process be cached on the client
computer. In the next step, this client can be the server for other clients
requesting the same song. Hence, we see that Spotify have addressed the
bandwidth bottleneck with a peer-to-peer based solution. This caching scheme
is processed totally invisible for the users. There are, of course, numerous
issues the developers must take care of in such a solution to prohibit unwanted
distribution of copyrighted material. However, these issues are beyond the scope
of this thesis to discuss.

2.2.2 Categorization of recommender systems

Burke [5] divides recommender systems into �ve main groups:

1. Collaborative-based recommendations. A collaborative-based rec-
ommendation system is based upon �nding similarities between users. In
order to do that, there must be generated a pro�le for each user. The
recommendation itself is then based upon comparing and matching di�er-
ent user pro�les. Users in systems like this typically rates items � ratings
that will be attributed to their user pro�le. A weakness with this ap-
proach is that new unrated items are not automatically entered in the
recommendation process � it needs to be found and rated by a user �rst.
Another weakness is that users with unusual tastes might su�er from a
relatively empty dataset with which to match. Among the advantages with
this approach is that it improves over time. The more data, the better



2.2. RECOMMENDATIONS 15

recommendation engine. Collaborative-based recommendation systems
might also discover cross-genre niches. An example of a relevant system
is Phoaks [41].

2. Content-based recommendations. Content-based recommendations
is based on matching items with similar attributes. In this approach a
user pro�le is also applied, attributed with items highly appreciated by the
user. For matching of items to be possible, information must be textually
extracted from the items. Hence, this type of recommendation is best
suited for textual based documents, and not for binary documents (like
music, images and videos). An advantage with content-based recommen-
dation is that it improves over time � the quality of the recommendation
improves with the amount of metadata. InfoFinder [25] is a system that
employs content-based recommendation.

3. Demographic-based recommendations. Based on the assumption
that people with a similar demographic pro�le share interests, it is possible
to produce pro�le speci�c recommendations. A demography pro�le can be
built on information like age, gender, location, education level, etc. The
idea is that people with similar background are likely to share interests.
A weakness of this approach is that the assumption is not valid for all
users. There are aberrancies within each demographic group. Like the
other recommendation techniques discussed above, this approach also has
the advantage of improving over time, as the datasets grow. An exam-
ple of a demographic-based recommendation system example is Lifestyle
Finder [24].

4. Utility-based recommendations. In a utility-based recommendation
system, history is not important. Each recommendable item is attributed
with di�erent utilities, and the user's current need is matched with these
metadata. Overlooking history can serve as both a weakness and an
advantage. It is a weakness because user behavior tends to repeat, and
it is an advantage in cases where user behavior and interest evolve and
change. It is easier to cope with user behavior changes. Several advanced
methods to provide this type of recommendations can be applied, and
Huang [20] compares some of these.

5. Knowledge-based recommendations. In a knowledge-based recom-
mendation system all items are attributed with knowledge on how the
item meets user speci�c needs. This approach does not either learn from
history, which might be considered both a weakness and an advantage. A
system like this is also dependent on that editors do a lot of work to insert
knowledge to the system. Examples of systems employing this recom-
mendation technique are intelligent on-line travel agencies and television
recommender programs. Shi [38] has implemented a system of the latter
category.



16 CHAPTER 2. RELATED WORK

2.2.3 Privacy issues

Using individually adapted recommendations has its obvious advantages as
discussed above, but one must be aware of a potential misuse of the personal
data the recommendation engine stores on your behalf. The knowledge the
recommendation engine acquires when learning to know your preferences and
tastes might be distributed to specialized advertisement providers, who use this
knowledge to generate personalized advertisements just for you. These aspects
of personalization contain ethical regards the users must be aware of. Even
though practically nobody really reads the personalization disclaimers of service
providers prior to establishing an account, one is strongly encouraged to do so.



Chapter 3

Design

SCARF, which is an abbreviation for Scalable CAching layered Recommen-

dation and Feedback powered, is a system designed to handle the needs of
a multimedia content provider that has too high bandwidth requirements for
a single network ingress/egress server installation. Although SCARF has been
instantiated in the form of a simulation engine, the simulation makes detailed
assumptions of an underlying system design. In this chapter we detail this
design.

Overall, SCARF employs a combination of three strategies in its design:

1. Employ a caching substrate. The idea is to distribute load from the
content provider to a number of nodes that can serve as the user entry
point to the server. Users will consume content from one of these nodes
instead of directly from a single server at the content provider.

2. Employ replication. We assume that, due to varying popularity, a single
node in the caching substrate is unable to serve all potential consumers of a
piece of multimedia content. Thus, content must be replicated to increase
the potential bandwidth for serving popular content. As a consequence,
an algorithm is needed to guide how the content is replicated across nodes
in the caching substrate.

3. Employ recommendations. There exist several multimedia providers
on the Internet. In order to attract users to this particular service, we need
to let the users �nd what they want as soon as possible, ideally sooner than
the competitor services. Therefore, SCARF integrates recommendations
as part of its basic architecture � recommendations are used both to guide
replication and as a means to guide users to content that may be of
interest.

3.1 Architecture overview

The architecture we have devised contains three main components, as can be
seen in �gure 3.1.

17



18 CHAPTER 3. DESIGN

Supernode Supernode Supernode

User UserUser User User

gossipgossip

Content provider

co
n

te
n

t

co
n

te
n

t

co
n

te
n

t

Figure 3.1: A simple overview of the components in the system.



3.1. ARCHITECTURE OVERVIEW 19

First, we have the content provider, which is responsible for storing the en-
tire corpus of multimedia content. New content initially enters content provider
storage. Second, we introduce a caching substrate consisting of supernodes
that serve content to consumers (users). To make a piece of content available
to users, the provider pushes the content to a supernode. The provider may
push content to more than one supernode initially, depending on assumptions
of immediate popularity.

Supernodes are organized in a peer-to-peer structure. Each supernode has
the following characteristics:

1. Ability to store a subset of the entire multimedia store from the content
provider.

2. Ability to connect to a set of users interested in multimedia content. A
supernode should not be connected to more users than it can handle,
mainly restricted by bandwidth limitations.

3. Ability to provide recommendations to users. The recommendation is
based on the search query speci�ed by the user, and works along three
di�erent axis:

(a) Rating � a combination of traditional rank provided by the content
provider, and feedback from users who already viewed this content,

(b) Up-and-coming content � content that has received recent good
user feedback, but not necessarily reached the rating level needed to
compete with content in the rating axis, and

(c) Fresh content � content that is very recently added to the local
store, not necessarily viewed by anyone yet.

This recommendation scheme is thoroughly discussed in section 4.2.10.

4. Ability to spread gossip to fellow supernodes. This means that when the
supernode detects that it serves content that is on a particular popularity
level, it noti�es all the neighbor supernodes about it. The supernode then
allows these neighbors to download the content to their own local stores,
if not already present. The gossip scheme is elaborated in section 4.2.9
and evaluation of di�erent neighbor architectures is found in section 4.2.2.

5. Keeps an own search index of its stored content. This is dynamically
updated, based on input from users, other supernodes and the content
provider.

Finally, we have the users, who basically consume multimedia content
streamed from a supernode. SCARF does not incorporate a scheme for how
a user locates a particular supernode. In our simulations this is done randomly.
Commonly applied approaches to this problem include DNS rotation [2], a
content provider web page that dynamically routes and assigns a user to a
server (in our case, a supernode), and others electing clients as supernodes [27].
After watching a video, the user determines whether this was good or bad, and



20 CHAPTER 3. DESIGN

sends this feedback to the providing supernode. Upon selecting next video to
watch, the user selects at random a video from one of the three recommendation
axis.

As stated in the introduction chapter, our approach in this thesis has been
simulation. To exemplify and clarify, a simpli�ed mock-up example on what the
users' interface could look like is shown in �gure 3.2.

Search query

Rate this:

Good!

Bad!

We also recommend:

Top rank Up-and-coming Brand new

Britney Spears

Figure 3.2: A mock-up example on what the users' interface could look like. On the
top, there is a �eld to specify a search query (also referred to as topic). Next comes the
currently streamed video, with the feedback functionality to the right. On the bottom,
the three di�erent recommendations are shown.

3.2 The supernodes

The three strategies discussed above chie�y involve the supernodes. In this
section we detail aspects of the supernode design, their capabilities, and their



3.2. THE SUPERNODES 21

responsibilities.

3.2.1 Content administration

Each supernode hosts a subset of the entire multimedia storage. There are two
ways a supernode can receive new content to its storage:

1. When the content provider updates its main repository of content with
new content, it pushes this to a subset of its supernodes.

2. When a supernode receives gossip about content from another supernode,
it may decide to download this content to its own storage.

When the supernode's storage is approaching its limits, it will start discard-
ing videos, and need to be sure that the discarded videos are ranked low along
all three axes.

3.2.2 Query interface and content indexing

On the supernode, all content can be looked up in a structured search index.
The search index lets the supernode look up all content based on particular
search terms.

The supernode annotates content with value attributes that can be used to
provide recommendations to the end users. Furthermore, the recommendation
engine has three di�erent views of the search index � each sorting the content
according to the di�erent recommendation axes.

By introducing a query interface, and hence allowing the user to specify
search terms, the user will �nd the wanted content faster than general content
browsing/directory lookup. The SCARF design itself does not exclude directory
based browsing. That could simply be implemented by queryless searches hidden
within each click.

3.2.3 Communication

The supernodes communicate with several parties in the architecture. These
communication peers are either the content provider, other supernodes or end
users.

The communication with the content provider mainly involves receiving
content pushed from the provider. Another type of communication, which we
have not focused on in the simulation, is to propagate aggregated user feedback
or view statistics back to the provider. From the perspective of the content
provider, obtaining such information can be useful, for example to adjust the
global ranking for all content (see section 4.2.4), or to integrate into a pay-per-
view scheme.

The communication with other supernodes involve gossip exchange and
potential downloading of new content. Gossip messages are sent whenever a
supernode detects that a particular video seems to be of high interest among
its users. Upon receipt of gossip messages, a supernode checks whether the



22 CHAPTER 3. DESIGN

particular video resides in its local store. If not, it will download the video from
either the referring supernode or from the content provider.

The communication with end users involve:

1. Search The user issues a search query to the supernode.

2. Recommendation Based on the search query and the local search index,
the supernode returns three recommended videos � one highly ranked, one
with recent high popularity, and the most recently added video (relevant
for the search query). These types of recommendations are throughout
this thesis referred to as the three axis of recommendation.

3. Streaming Upon receipt of the video recommendations, the user selects
one, and starts watching. The watching is done by streaming the content
from the supernode.

4. Feedback After watching the video, the user rates it, and the rating is
sent back to the supernode.

When the supernode receives the feedback from the user, its search index
is updated accordingly, and if a popularity trigger is �red, gossip about the
content is spread to other supernodes. How to de�ne the popularity trigger is
not trivial. First, some minimum number of users must have given feedback,
and the positive feedback percentage must be above a certain level. To optimize
these parameters needs a lot of research on real world data, and the optimal
values are perhaps impossible to derive. In the test simulations presented in
chapter 5, we have de�ned the trigger to �re if at least �ve of the seven �rst
viewers gave positive feedback. It is easy to change these to any values the
simulator administrator wants to try.

3.2.4 Neighbor topologies

We have argued about the importance of having a caching layer between end
users and the content provider. But we have not discussed how this substrate
should be internally organized. Intuitively, one may think that a fully connected
network of supernodes is the best, as the distance between any supernode is
just 1 hop. Then popular content will have a potential to reach fully cumulative
bandwidth very quickly. However, having this topology also �oods semi-popular
content in the same speed. It just needs to �re one popularity trigger to reach
the entire network. This might create a lot of unnecessary tra�c on the network,
and the supernodes will need to process discard routines more often. We believe
that running a series of experiments might provide some knowledge on which
topology that yields the best trade-o� between distribution rates and tra�c.
We did such experiments with the SCARF simulator, and the results can be
observed in chapter 5.

The SCARF simulation engine accommodates four di�erent topologies for
how the supernodes in the caching substrate are organized. These include:

1. Ring The simplest topology is the ring topology. In this case, each
supernode is connected to exactly one other supernode. So, if a trigger



3.2. THE SUPERNODES 23

in supernode Sn regarding content C for topic T �res, it noti�es only
supernode Sn+1 about this.

2. Double ring In this topology each supernode has two neighbors. Super-
node Sn will be connected to Sn−1 and Sn+1. This topology is sometimes
referred to as a bidirectional ring.

3. Two rings In a two ring topology, each supernode has two neighbors, but
as parts of two di�erent ring de�nitions.

4. Fully connected network In the fully connected network topology, each
supernode is connected to all the others.

There are several more topologies that could be investigated in future ver-
sions of the SCARF system.



24 CHAPTER 3. DESIGN



Chapter 4

Implementation

Setting up a complete running installation with thousands of machines and users
is outside the scope of this thesis. To verify algorithms and analyze e�ects of
the SCARF design, we have therefore implemented a simulation of the entire
system. This simulation handles tens of thousands of users, simultaneously
streaming content of di�erent topics from hundreds of supernodes, with a layer
of supernodes providing users with recommendations and other supernodes with
gossip. In this chapter we detail the implementation of the SCARF simulator.

4.1 Platform

The simulator is written in the java programming language, v. 1.6. All output
from the simulation are distributed in several formatted text based log �les, to
ease monitoring and execution evaluation. The simulator code can be found in
appendix A.1.

4.1.1 Simulating time

The SCARF simulator employs the notion of simulated time. As long as we apply
simulated time, the time units need not be close to real time measurements at
all, as long as events occur in correct order relative to each other. These issues
were introduced by Hoare [19] back in the seventies, and they were thoroughly
discussed in the Winter Simulation Conference in 1986 [18].

Each unit of time encompasses actions, such as:

• a user starting to watch a video,

• a user �nishing watching a video,

• a user rating a video,

• a supernode determines to spread gossip to other supernodes,

• a supernode receives gossip from another supernode,

• a supernode is updated with a new video, and

25



26 CHAPTER 4. IMPLEMENTATION

• new content arrives to the system,

For performance, two di�erent time simulation schemes are implemented
in SCARF. The �rst has a virtual clock which ticks once per iteration, and
runs through a queue of ongoing events, counting them down until termination.
This approach has the advantage of making it easy to manually monitor system
behavior, and one can implement more user friendly monitoring applications
on top of it. However, this method scales very badly, since it requires a lot of
processing. For instance, watching a video of length 200 will require at least
200 slots in the simulation.

The other approach to time simulation is commonly known as a Discrete
event simulation [18]. It works as follows: Each ongoing event is queued in an
event queue, sorted by expected time of termination. The event handler picks
an event from the beginning of the queue, and executes it in accordance with the
rules for that particular event type. The event processing might imply insertion
of one or more new events in the event queue, and these events �nd their place
in the event queue based on their expected time to occur. This method is
less computationally intensive than the �rst, as the number of calculations
is signi�cantly decreased, and the above mentioned example with a video of
length 200 will now only require 2 slots in the simulation. All tests described in
chapter 5 use a simulator con�guration of this type.

4.1.2 Simulating popularity

Writing simulator code for protocols and server algorithms is not the most
challenging task when writing a simulation for a large system. One of the hard
things to simulate is human behavior. In the SCARF system, this includes the
rules for when a user will rank a video as good or bad.

Guo et al. [16] claim that it is commonly agreed that web tra�c follows the
Zipf-like [29] distribution. Figure 4.1 shows the zipf distribution, both by linear
and logarithmic scales. However, media �le access does not necessarily follow
the patterns from general web tra�c. Guo et al. point to numerous empirical
research projects whose results are not conform, mostly because the analyses are
done on too small data volumes. Their own research is based on eight years of
data collection, and covers up to hundreds of millions of client requests. Their
conclusion is that multimedia web tra�c tends to follow a stretched exponential
distribution graph.

However, user behavior has evolved during this eight-year time period, and
saying that popularity is a function of access quantity is not valid. This is be-
cause availability and recommendations also highly in�uence what users watch.
A video with a the highest popularity potential might have never been seen by
anyone, just because it can not be found.

Furthermore, assuming that absolute popularity is possible to predict, it is
still next to impossible to deduce a generic formula for how to set this value
in a dynamic system. One could deduce a probabilistic function that generates
popularity values along the graph of such a function, but what will that value
really express? In SCARF, the users are given one boolean way of providing



4.2. ARCHITECTURE 27

Figure 4.1: A zipf distribution graphed by linear scales (left) and logarithmic scales
(right).

feedback � either good or bad, and we want all users to be able to reach as much
popular content as they want. We do not want the next most popular video to
be available for a reduced set of users.

The conclusion of this discussion is that it is not most important to generate
a popularity function as realistic as possible. The important thing is to just
have a popularity value, and analyze what this value does with the execution
of the entire SCARF system. We have implemented a hidden attribute for
each multimedia content, which serves as the popularity value, and this value is
simply a random number between 0 and 1. When a user have viewed a video, it
is generated another random number between 0 and 1, and if the former is higher
than the latter, the user will rate the video as good. It is simple, but it still
works as a reference for popularity. Nevertheless, the important contribution
from SCARF is how to act upon the user feedback.

4.2 Architecture

The SCARF design was described in chapter 3. Here we describe in more detail
how the SCARF simulator implements all aspects of the design. The following
subsections will describe the system's main actors in more depth.

4.2.1 The content provider

As seen from �gure 3.1 the content provider might look like an important entity
of the architecture. However, for simulation purposes, the role of the provider
can be reduced. The simulator assumes that the provider just stores a large
number videos, as well as once in a while to update its store with new content.
Hence the content provider is implemented more like a stub to the supernodes
in the system.

4.2.2 The supernodes

A supernode is de�ned by The Free Dictionary [6] as A user's computer in a
peer-to-peer network that acts as a relay between one user and another. Super-



28 CHAPTER 4. IMPLEMENTATION

nodes are typically established automatically by the peer-to-peer software based
on current network tra�c and the capabilities of the user's machine. Users
may have little or no control whether their machines become supernodes, or they
may have the option to not participate. In SCARF, the supernodes are de�ned
slightly di�erent. Here they constitute a one dimensional layer between the
content provider and the end users. How they are chosen to serve as supernodes
have not been thought of as relevant in our simulator. Lo et al. [27] discuss such
election protocols in depth.

Each supernode has the following characteristics:

id A unique identi�er throughout the system. Converted to a real world im-
plementation, this would represent a unique URI, but in our simulated
environment these are just positive integers.

users Each supernode is associated a prede�ned group of end users. Conse-
quently, each supernode needs a way to lookup, and address each end
user. This is done by keeping an array list of all connected end users in
the supernode class.

content All supernodes contain an evanescent store of multimedia content.
This must be stored in a way that it easily can be addressed upon re-
quest, both from end users and from other supernodes. The content must
be stored in a globally coherent namespace, to avoid misinterpretations
between supernodes, end users, and the provider storage.

index Each supernode administrates its own search index. They play by the
same globally set of rules, but as they know a di�erent set of users and
contain a di�erent set of contents, these indexes evolve independently
of the others. The index management is more thoroughly discussed in
section 4.2.5

neighbors Supernodes exchange information based on what they learn from
their attached end users. Each supernode must know where to �nd the
neighboring supernodes. How many neighboring supernodes each super-
node has depends of the topology under which the simulation is run. If
the topology is set to be a ring network, each supernode has one neighbor
(if the ring is directed) or two neighbors (if the ring is two-way). In a fully
connected topology, each supernode is connected to all the others. Results
of all testing show that the time it takes for popular content to spread to
all supernodes decreases with an inverse proportional ratio to the number
of connected neighbors.

communication Finally, the supernodes need communication interfaces both
to the end users and to the neighbors. That is, the end users must know
how to specify search terms, and how to provide feedback on viewed
content. Additionally, the supernode needs an implementation on how
to present the recommendations to the end users. The supernodes must
also have some way to convey own experiences of given content feedback
to the other supernodes � the latter known as gossip.



4.2. ARCHITECTURE 29

In the implementation there are other parameters as well, like log �le loca-
tion, index �le location, boolean parameters, etc, but these are so implementa-
tion speci�c that they are negligible for this discussion.

Neighbor topologies

There are numerous of ways to order the supernodes, and the SCARF simulator
implements four di�erent topologies.

1. RING � The RING topology orders all supernodes as a chain, each con-
nected with the next supernode, but not vice versa.

2. DOUBLERING � In the DOUBLERING topology, all supernodes are ordered in
a chain, with connection both ways.

3. TWORINGS � This topology implements two di�erent (one-directional)
rings, where each supernode has its place in both rings.

4. ALLCONNECTED � The topology where all supernodes can communicate
directly with all the others.

In the tests described in chapter 5, all topologies are tested.

4.2.3 The end users

The simulation of the end users is the only part of the entire system that tries
to simulate actions of human beings. In order to do that in a satisfactory
manner, we need to make some assumptions, and de�ne some limitations. These
assumptions and limitations must not be de�ned in a way that compromises the
model.

The assumptions and limitations can be seen by studying these most impor-
tant characteristics of the end users:

id All users must be uniquely de�ned. For simplicity, they are de�ned by
positive integers.

connection Each end user addresses one and only one supernode throughout
the simulation. As discussed in section 6.2 it would be interesting to
do some future investigations on performance improvements with a more
dynamical relationship between supernodes and end users, but SCARF
de�nes this as a �xed relationship. Hence, a user must know where to �nd
its supernode.

interest Every user is supposed to issue a search query to its supernode. This
search query is based on the user's current topic of interest. In order to
be able to control the number of parameters and in order to have enough
focus to compile valuable simulation results, we have de�ned a limited
vocabulary from which the search queries can be fetched. Test rounds
have been run with a vocabulary of just one word, and up to twenty
words. Results show that the size of the vocabulary has no particular



30 CHAPTER 4. IMPLEMENTATION

impact on the simulation result, and hence we limit all end user to do the
very same query throughout the entire run1.

content The end user will, after a few simulated seconds of decision making,
choose which content to watch, and our end user representation must
constantly know a) what piece is currently being watched, and b) which
content has been viewed earlier. How recommendation is done and how
the user chooses between the recommendation axes is addressed in sec-
tion 4.2.10.

4.2.4 Content

When the concept of content is used in this thesis, we always mean a multimedia
video available from the content provider, and also available from a subset of
the supernodes.

Most important characteristics are:

id Again, everything needs to be uniquely identi�ed. We keep it simple, and
use running numbers.

rank Since SCARF can be placed on top of an existing static ranking scheme,
we assume that every video already has a rank based on traditional ranking
algorithms. This initial rank is used as an important input to one of
the three recommendation axis � the rank recommendation axis. When
content is uploaded from the content provider to a supernode, the initial
ranking is attributed to the content. When that is said, as in the real
world, the computized rank does not necessarily re�ect the actual popu-
larity of the content. Hence, user input must also serve as input to the the
rank recommendation. And as users rate videos, an attribute known as
smart rank is constantly updated. See section 4.2.10 below for a detailed
description of smart rank.

topics Every piece of content is tagged with search terms for which the video
is thought of as relevant for the end user. These search terms constitute
a subset of the topic vocabulary discussed in section 4.2.3.

length Each video has a length parameter which the time simulation system
needs to know. In the implementation, each piece of content has a length
in the range from 10 to 300 time units � which for easier understanding
might be thought of as seconds. It is assumed that the end user watches
the movie to the end, prior to ranking it.

popularity In order to not make the user ranking completely random, and
hence practically useless, we have devised a hidden parameter to represent
the real popularity among end users. This parameter is an important input
to the algorithm for letting the end user rank viewed content. Popularity
simulation was discussed in section 4.1.2 above.

1That is, one particular user does not alter his/her search query, but two di�erent users
might issue two di�erent search queries.



4.2. ARCHITECTURE 31

distribution The same content will be distributed among the supernodes, and
one of the important missions with the entire simulation is to make sure
that popular content is distributed broader than less popular content.
This distribution characteristic is also a way of measuring a content's
cumulative bandwidth.

4.2.5 The indexes

In SCARF, all supernodes administer their own search indexes. This is one of
the most advanced data structures in the entire system. The search indexes are
sorted on topic, which in practice is the same as a search query speci�ed by a
user. For each topic, the supernode carries a list of index elements, which in
turn consist of:

content id The unique identi�er for a piece of content. This identi�er is
globally unique2.

base rank Each video is a priori ranked based on traditional ranking algo-
rithms. This traditional ranking value is stored in the index as the base
rank. When we start up our simulator, this is the only known ranking we
have on all content. For more details about the start-up and initialization,
see section 4.2.12. We do not consider calculation of this initial rank within
the scope of this thesis, so we simply employ a random based algorithm.
The base rank value is normalized to an integer between 0 and 99.

smart rank Since the SCARF system monitors user feedback on every video
shown, we have the opportunity to use this feedback to calculate an
improved ranking value. We use the base rank discussed right above as
the start-up value for the smart rank. When a user ranks a video as good,
we increase the smart rank value, and when a user ranks a video as bad,
we decrease it. Doing it this way, it is easy to monitor how really popular
pieces of content migrate higher on the smart rank than less popular
content. (Remember, each content has a hidden attribute containing a
value for the real popularity among end users (see section 4.2.4).) The
amount of increment and decrement is, however, not a trivial task to
determine. We have increased and decreased the smart rank value by 10
per feedback, but setting an optimal value3 for this might be set as a
task for future research. Probably, this number is impossible to �nd in a
simulated environment, and relies on subjective opinions.

counters We count each positive feedback and each negative feedback for all
videos. These counters are later used by the supernode to determine
whether to tip other supernodes about it. This tipping is what we refer
to as gossip in SCARF. For an elaboration, see section 4.2.9.

2By globally unique, we mean that when two (or more) supernodes contain content with
the same id, we speak of the very same piece of content.

3The incrementor/decrementor value need not be a constant, but can of course be
calculated as a function of the base rank, or of the previous value of the smart rank.



32 CHAPTER 4. IMPLEMENTATION

timestamp Whenever a new piece of content is added in the index, the su-
pernode attaches a timestamp for this event. Beware that this is not
the timestamp for when the content was added in the content provider's
main server, nor is it the timestamp for when it was added in the �rst
supernode. It is just the timestamp for when the video was added to
local storage (and hence totally new for all end users belonging to the
supernode). This timestamp is used whenever the supernode provides
recommendations along the freshness axis.

4.2.6 The topics

The topic class do not contain any other information than a unique identi�er
and a topic name, also known as search query. When the system is booted, a
prede�ned list of topics is submitted. This does not reduce the power of the
simulation, but enhances the ability to monitor the system's behavior. Every
supernode stores its search index based on topic.

4.2.7 Time

The time simulation is an essential driver of the system, and is discussed in
section 4.1.1.

4.2.8 User feedback

For simplicity, the user has the choice of rating content either as good or bad.
This feedback is as earlier explained used to calculate the smart rank for the
content. In a more advanced version, we could of course de�ne a broader scale
on which to give feedback, e. g., dice throws (1 � 6), or a scale from 1 � 10.
This might improve the smart rank, but not necessarily.

4.2.9 Gossip

In a computer communication protocol context, the term gossip is normally de-
�ned as information exchange with randomly chosen peers
(e. g., Astrolabe [44] and T-Man [22]), but in SCARF the term is used slightly
di�erent. In SCARF, the receiver of gossip messages are prede�ned, as the
system topology is prede�ned. That is, all simulations are run on top of di�erent
prede�ned topologies (e. g., ring, or fully connected networks). The term
gossip is chosen because of its semantics. Whenever all user feedback on a
particular piece of content C meets certain criteria, a supernode S noti�es each
of its neighbors4 S′1, . . . , S

′
i about that S's experience with feedback from users

interesting in topic T is that content C is very good.
From the other side, whenever S′1, . . . , S

′
i receive this message from S,

they immediately check their local indexes to see if they have the recommended
video already stored. If not, they simply request to download the video from the
content provider (or the referring supernode), and add it to the local index. They

4as de�ned by the current topology.



4.2. ARCHITECTURE 33

do not know that their users have the same preferences as the users belonging
to S, so the new content will be added with smart rank identical to the base
rank, feedback counters set to zero, and timestamp set to local download time.
Consequently, the video will be top ranked on the freshness axis. Given similar
feedback from their own users, this will also trigger the gossip criteria to be met,
and the epidemic is on its way.

So, to clarify, a supernode can recommend content to its neighbor supern-
odes, which is referred to as gossip. When the supernode recommends content
to its end users, we refer to this as recommendations. The latter is discussed in
section 4.2.10 below.

4.2.10 Recommendations

The three axis of recommendation have been referred and alluded to earlier.
Every time a user makes a search in a supernode's index, the supernode makes
three ranking lists of all relevant content:

1. Smart rank. As explained in section 4.2.5, the supernodes constantly
calculate a smart rank for each content piece (based on topic). So, when
determining what piece of content to recommend along this axis, it just
picks the one with the highest smart rank. Note also that the supernode
knows which videos each user already has viewed5, so these are excluded
from the ranking.

2. Up-and-coming. Based on the user feedback during the last period of
time (e. g., the last 10000 time ticks), the supernode is able to rank all
relevant content on what has been highly rated recently. This will allow
content that erroneously was given a low base rank to still gain attention
among the users.

3. Newcomers The third recommendation axis is just a ranking of when
content was added to the index � fresh content. If the content turns out to
be bad, it will soon be ranked down on the two other axes, simultaneously
as it of course loses freshness. If the content turns out to be really
appreciated by its watchers, it will gain credit in the two other axes while
losing freshness points, and consequently still get attention from future
viewers.

For simplicity, the users are programmed to randomly choose their videos
from the three recommendation axes. Real human users will probably prefer
one of the axes to the others, but eventual skews is assumed to be negligible.

To classify the three recommendation axes in accordance with the de�nitions
of the �ve di�erent classes of recommender systems discussed in section 2.2.2,
we will say that the smart rank recommendation axis and the up-and-coming
recommendation axis generally belong to the content-based recommendation
class, while the newcomers recommendation axis implements a utility-based
recommendation class.

5See section 4.2.3.



34 CHAPTER 4. IMPLEMENTATION

4.2.11 Events

The simulator is driven forward by a series of events. These are queued in a
chronological order. Each event are tagged with an event type, and all events
are among an assortment of 10 types.

The 10 event types are as follows:

1. USER_STARTS_WATCHING. When a user wants to watch a video, this event
is triggered. There are two possible outcomes of this event type:

(a) The supernode has provided at least one recommendation in ac-
cordance and response to the search query. Then the user starts
watching this video, and a new event of type USER_STOPS_WATCHING
is created and put on the event queue.

(b) If the supernode is unable to recommend any video in accordance
with the search query, then a new event of the same type
(USER_STARTS_WATCHING) is created and inserted in the event queue.
This simulates the user waiting for a random amount of time, and
then tries to search again, hoping that the supernode has received
new content within the �eld of interest.

2. USER_STOPS_WATCHING. This event is triggered when a user is �nished
watching a video. When this event is processed, the user will give a
feedback on the video � either good or bad. If the feedback is good,
the supernode must check if the criteria for sending gossip to neighbor-
ing supernodes are met. If the criteria are met, a new event of type
SUPERNODE_SPREADS_GOSSIP is queued. The simulator can also be run in a
verbose mode, and then there will be triggered a
SUPERNODE_RECALCULATION event in this step. The last event generated as
a consequence of USER_STOPS_WATCHING is a USER_IDLE event, which just
simulates the time period the user needs to decide which video to watch
next.

3. USER_IDLE. This is an event type used to simulate time periods when the
user is considering alternatives. Outcomes of this event are another event
of the same type, or an event of type USER_STARTS_WATCHING.

4. SUPERNODE_SPREADS_GOSSIP. When a supernode discovers that the crite-
ria for gossip spreading are met, this event is executed. The supernode
iterates through all of its neighboring supernodes, and sends each of them
the gossip message. The gossip is basically telling the other supernodes
that it has registered a high popularity for one video (given a speci�c search
query). This event will generate n instances of
SUPERNODE_RECEIVES_GOSSIP, where n equals the number of neighbors.

5. SUPERNODE_RECEIVES_GOSSIP. Upon receipt of a gossip event from a neigh-
boring supernode, a supernode will check if the gossiped video is present
in its own search index. If not, download from the content provider (or
the referring supernode). Otherwise, just ignore the gossip.



4.2. ARCHITECTURE 35

6. SUPERNODE_RECALCULATION. This is an event used in verbose mode, and
dumps the entire search index to a log�le.

7. NEW_CONTENT. Every now and then, new content is added. What happens
then is that a supernode is given a brand new video from the content
provider. This new video is added to the supernode's search index, and
will participate in the subsequent recommendation calculations. Finally,
another instance of NEW_CONTENT is queued, based upon the value of the
newContentFrequency attribute (described in section 4.2.12).

8. ADD_SUPER_CONTENT. In test runs, we have de�ned the term super content.
This is a video that the simulator administrator manually inserts into the
system at a given time. For instance, we can inject a video with popularity
1.0 (which we know that all users will rate as good) and monitor the time
it takes for the video to replicate itself to all supernodes in the system. A
SCARF goal is to minimize this time.

9. SYSTEM_PROGRESS. This is an event which is used to implement a progress
bar for the simulation. This is used to make it easier for the simulator ad-
ministrator to watch progress. Whenever an event of this type is executed,
another event of the same type is inserted in the queue.

10. SYSTEM_TERMINATION. When a simulation is started, one of the con�g-
uration parameters is the simulation time. So, when this event type is
executed, the system stops and prints out a relevant summary of the
simulation.

From the event type name, one can see that three of the events has a user
as the subject part of the event, three has a supernode as subject, two has
content and two has the system itself as subject. Some of the events also has an
object element. Hence, as seen from a developer the Event class has multiple
constructors.

For instance, the SUPERNODE_SPREADS_GOSSIP event has a subject supernode
and up to several object supernodes.

4.2.12 Initialization

Before a simulation can commence, there are several parameters must be spec-
i�ed and tasks must be completed. This is done in this order:

1. Generate all topics The vocabulary from which each search query will
be fetched is generated.

2. Generate content According to the con�guration parameter
numberOfVideos a start-up amount of content is created. These videos
are attributed with an identi�er, base rank, relevant topics, length and
the hidden popularity �eld.

3. Generate supernodes and users Con�guration parameters determine
how many supernodes and users the system will have. In this step we



36 CHAPTER 4. IMPLEMENTATION

generate all supernodes and all users, and �nally distribute the recently
created content to a subset of the supernodes. The start-up number of
videos per supernode is also con�gurable.

4. Generate neighborhood Based on the selected supernode topology, all
connections between supernodes are constructed.

5. Initialize search indexes All supernodes parse through their dedicated
content, and index everything based on topic.

6. Activate users The initial user activity is being packed in an event, and
put on the event queue. The timeframe between start-up time and when
all users shall be active is con�gurable, and each user enters the event
queue at a random time stamp within this timeframe.

7. Determine termination An event telling whether the simulation is over
is placed in the event queue.

8. Initialize new content generation The �rst content to be inserted after
start-up is placed in the event queue. Whenever this event is executed, a
similar event is installed.

9. Initialize the progress bar For the simulation's usability, it is good to
see how the system is progressing until termination.

After these steps, the simulator enters an in�nite loop6 where every part of
the system behaves as described in all the previous sections.

6Only terminated when the system termination event occurs.



Chapter 5

Testing

By modeling the real world, and converting this model to a simulation, it is
imperative to come up with well de�ned tests and provide means for how to
interpret all test results.

In this chapter, we describe the test scenarios used for testing the SCARF
simulator.

5.1 Small scale testing

The SCARF simulator has a large number of adjustable parameters. In order to
have faith in results from large scale testing, we need to have manually veri�ed
execution of small scale scenarios, even if they have no practical meaning for
giving interesting results per se.

5.1.1 Test running a small example

The very �rst test run serves as a proof of concept. That is, we run the system
until graceful termination, and carefully follow the evolution. We run the system
with quite low settings:

• numberOfSupernodes 3 � We run with 3 supernodes.

• usersPerSupernode 100 � We have 100 users per supernode, giving us
300 users altogether.

• availableTopics "parsons", "liverpool", "madrugada", "tromsø" �
we limit all searches to come from the vocabulary of these four search
terms. That also means that the search indexes are grouped by these four
terms.

• numberOfVideos 100 � We start out with 100 videos in the content
provider. This amount will grow as the simulation runs.

• numberOfVideosPerSupernode 40 � Each supernode starts out with
a random subset of the videos from the content provider � namely 40 out
of 100 videos.

37



38 CHAPTER 5. TESTING

• newContentFrequenzy 40 � This means that one of the supernodes
will be �lled with a new piece of content within the next 40 time units. It
will be added to the supernode's search index, and enters the algorithm
with similar rules as the rest of the content. Be, of course, aware that
this new content will score high on freshness. If it turns out to be an
appreciated video among its viewers, then the supernode will sense this
trend, and alert all neighboring supernodes about this.

• whenToTerminate 1500 � The simulation can in theory run forever,
but we want to stop it gracefully after a given time, in this case after 1500
time units.

• superNodeArchitecture RING � The supernode topology is also con-
�gurable. Implemented topologies are: RING (one-way ring topology),
DOUBLERING (two-way ring topology), TWORINGS (each supernode is a part
of two independent one-way ring topologies), and �nally ALLCONNECTED

(every supernode is fully connected to the other ones).

Running this system takes just a second in real time, and it produces several
kilobytes of logs.

Figure 5.1 is a screen shot of the search index for supernode 2 at time 0. We
see that the index is based on search topic, and each index element consists of
six columns:

• id The content identi�er.

• SmartRank The smart rank for this piece of content. About calculation
of smart rank, see section 4.2.5.

• BaseRank The start-up ranking, based on traditional ranking algorithms.
Note that the SmartRank and BaseRank values are identical at start-up.
This is because the supernodes in the beginning have received no feedback
from users.

• Positives A counter for all positive feedback for the actual video. It starts
out as 0.

• Negatives A counter for all negative feedback for the actual video. It is
also 0 at boot time.

• Added The timestamp at which the video was added in this index. Just
zeros in the beginning.

Figure 5.2 shows an excerpt of how the search index from �gure 5.1 has
evolved through 1500 time units. The search index is here sorted by smart
rank. If we look at the topic �liverpool�, we see that the highest ranked video
(with id 8) has a smart rank of 331. We also see that this supernode has
streamed this video to 24 users, and all of them said that it was good. Finally,
we can see that this video was added at time 476, which means that it was not



5.1. SMALL SCALE TESTING 39

Figure 5.1: This is how the Search Index look like when the system has run its
initialization steps.



40 CHAPTER 5. TESTING

Figure 5.2: This is how the Search Index look like after running 1500 time units.



5.2. LARGE SCALE TESTING 41

present in this supernode's store at start-up time. Hence, the neighbor1 must
have spread gossip about it based on feedback from own users during the �rst
476 time units.

If we look at the search index for the topic �tromsø�, we see on second place
a video that was added at time 848 (it has id 117). It had a very low base rank
(7), but it turned out to be a very popular video after all. The reason that users
were recommended this video in the �rst place, despite the low base rank, is
that it in the time after 848 was very highly ranked on the freshness axis.

Finally, inspecting the rest of this �gure (and the other logs) indicates that
the simulator works as expected.

Figure 5.3: This is a scaled down screen shot on how one of the screens are setup to
constantly monitor simulation test runs. It is included here just to serve as an indicator
on the amount of concurrent things going on.

5.2 Large scale testing

The execution of the small scale testing indicates that all elements of the
simulation works as planned. Now, we continue with more realistic simulations
to extract knowledge of behavior.

One of the main goals of SCARF is to make popular content replicated to as
many supernodes as possible, and as quickly as possible. What we have tested is

1Since this initial test run was executed in a RING topology, all supernodes have only one
neighbor.



42 CHAPTER 5. TESTING

the insertion of popular content at a given time, and then
monitored a) how many supernodes it spreads to, and b) how quickly this was
achieved.

Altogether 200 test executions have been run, and this is the applied con-
�guration:

• numberOfSupernodes 20

• usersPerSupernode 100 � We have 100 users per supernode, which
means 2000 users running in parallel.

• availableTopics "parsons", "liverpool", "madrugada", "tromsø" � a
vocabulary of four search terms.

• numberOfVideos 100

• numberOfVideosPerSupernode 40

• newContentFrequenzy 40

• whenToTerminate 10000

Two parameters were tuned:

• superNodeArchitecture � There were executed 50 test runs for each
of the four architectures.

• realPopularity � For each architecture, we executed test runs for con-
tent of realPopularity 1.0, content of popularity 0.9, and similar for
0.8, 0.7 and 0.6.

Each test con�guration was executed 10 times. The content that we monitor
was for every test inserted exactly at time 10.

5.2.1 The RING topology

In the RING topology, each supernode is attached to exactly one other. Hence,
for content that resides on one supernode, it must pass 19 steps2 of gossiping
before it has reached full cumulative bandwidth. For content of popularity 1.0,
it can be assumed that it will spread a lot faster than content with popularity
0.6. The latter might not even pass all 19 steps of gossip-ping.

2given 20 supernodes.



5.2. LARGE SCALE TESTING 43

Let us inspect the test results:

popularity 1.0 0.9 0.8 0.7 0.6

test run 1 3720 3253 −16 −4 −2
test run 2 3228 −11 −4 −2 −1
test run 3 3284 2924 −7 −5 −1
test run 4 3468 4136 −6 −1 −1
test run 5 3520 −2 −4 −6 −4
test run 6 3047 3966 −17 −6 −1
test run 7 3067 −9 −8 −1 −1
test run 8 3394 3640 −5 −5 −1
test run 9 7184 3921 −9 −2 −2
test run 10 3592 3770 −8 −1 −1

If the table entry is a positive integer, it indicates the number of time units it
took for the injected content to reach all 20 supernodes. If the entry is a negative
integer, it did not reach all supernodes. The negative number itself is a number
for how many supernodes it managed to spread to during the simulation. As
an example, see test run 2 for content of popularity 0.9. Its entry says �-11�,
which means two things: a) we could not measure the time to spread to all 20
supernodes, because it did not, and b) the content has replicated itself to 11
supernodes in the system.

Figure 5.4 shows output generated by the 10th test run where the injected
content had popularity 1.0. It is easy to follow the distribution by looking at the
timestamp for when the content was being present on the di�erent supernodes.

Figure 5.4: Here is the output from the 10th test run where the injected content had
popularity 1.0, and with the supernodes in a RING topology.

However, looking at the similar log for tracking the distribution of a video



44 CHAPTER 5. TESTING

with popularity 0.8, we see that it eventually reached a supernode where the
users did not �nd it good enough to trigger a gossip message to the next
supernode. Look at �gure 5.5, which shows the tracks for the 10th test run
for a video with popularity 0.8 (from the table above).

Figure 5.5: Here is the output from the 10th test run, where the injected content had
popularity 0.8, and with the supernodes in a RING topology.

To derive how fast and far the injected content reached, we can average over
the numbers:

popularity 1.0 0.9 0.8 0.7 0.6

avg time to reach all 3350 3659 N/A N/A N/A
number of nodes reached 20.0 16.2 8.4 3.4 1.5

We see that only content of popularity 0.9 and 1.0 reached every supernode,
and we see that the higher popularity, the faster spreading. Similarly, we see
that the higher popularity, the higher number of supernodes are reached by the
injected content.

These results are conform with the goal of SCARF.

5.2.2 The DOUBLERING topology

So, how would SCARF behave if we change the supernode topology to a double
ring? In this topology, the supernodes are still connected in a ring, but now
gossip is spread in both directions in the ring.

We did the same 50 tests for this topology, and got these results:

popularity 1.0 0.9 0.8 0.7 0.6

test run 1 2190 2170 3788 −4 −3
test run 2 1823 2421 −7 −1 −1
test run 3 1860 1788 −7 −1 −4
test run 4 1927 2047 −1 −6 −3
test run 5 2027 1866 −4 −6 −4
test run 6 1728 2139 −6 −1 −3
test run 7 1808 2035 1831 −11 −5
test run 8 1850 2792 −16 −7 −1
test run 9 2023 4200 −15 −11 −1
test run 10 1623 1995 2426 −4 −1

Compared with the results from the RING topology, we see that the real



5.2. LARGE SCALE TESTING 45

popular content reached full cumulative bandwidth signi�cantly faster. We also
see that content with popularity 0.8 here was able to achieve full cumulative
bandwidth for three runs.

See �gure 5.6 for the tracks of the 10th run for a video with popularity 1.0.
By looking at the supernode ids, it is shown that the content is spread both
ways in the ring.

Figure 5.6: Here is the output from the 10th test run, where the injected content had
popularity 1.0, and with the supernodes in a DOUBLERING topology.

Here are the average numbers from this table:

popularity 1.0 0.9 0.8 0.7 0.6

avg time to reach all 1886 2345 2681 N/A N/A
number of nodes reached 20.0 20.0 11.6 5.2 2.8

These numbers con�rm that popular content reached all supernodes faster.
It is also noteworthy that videos of popularity 0.9 reached all supernodes for
every test run with this topology. This did not happen when executing the tests
in the RING topology.

5.2.3 The TWORINGS topology

Will we see other behavior if we employ a topology where the supernodes are
connected in two independent rings? Or will the behavior be the same as for
the DOUBLERING?

These are the numbers:



46 CHAPTER 5. TESTING

popularity 1.0 0.9 0.8 0.7 0.6

test run 1 1807 1818 −10 2762 −1
test run 2 1723 1896 −9 −5 −1
test run 3 1895 1775 −1 −9 −3
test run 4 1850 2060 −8 −1 −1
test run 5 2069 2219 −1 −1 −1
test run 6 1767 2006 2911 −9 −9
test run 7 1675 1753 −3 −6 −1
test run 8 1868 2021 1900 −15 −1
test run 9 1806 2264 −19 −5 −3
test run 10 1653 2127 1952 −4 −5

Comparing the execution results from the DOUBLERING and the TWORINGS

topology indicates that the system behavior is more or less identical. The only
obvious di�erence is that one of the executions with a video of popularity 0.7

actually reached every supernode in the TWORINGS topology. However, one single
occurrence does not provide signi�cant results to state a conclusion.

See �gure 5.7 for the tracks of the 10th run for a video with popularity
1.0. Note how the content is spread along two di�erent rings, by watching the
supernode ids.

Figure 5.7: Here is the output from the 10th test run, where the injected content had
popularity 1.0, and with the supernodes in a TWORINGS topology.

Here are the average numbers:

popularity 1.0 0.9 0.8 0.7 0.6

avg time to reach all 1811 1993 2354 1762 N/A
number of nodes reached 20.0 20.0 11.1 7.5 2.6

We see that the videos reach all supernodes slightly faster in a TWORINGS



5.2. LARGE SCALE TESTING 47

topology than in a DOUBLERING. However, this deviation might very well be
caused by several occurrences of randomness within the entire system. The
number of reached supernodes is practically the same for the two topologies.

5.2.4 The ALLCONNECTED topology

For the �nal 50 test runs, we connect all supernodes with each other. A
consequence of that is that whenever a supernode triggers gossip, all supernodes
will be reached simultaneously.

Here are the test results:

popularity 1.0 0.9 0.8 0.7 0.6

test run 1 169 311 148 159 −1
test run 2 366 302 265 328 403
test run 3 341 318 179 −1 −1
test run 4 325 279 179 250 −1
test run 5 311 224 −1 429 −1
test run 6 172 194 260 192 −1
test run 7 303 187 234 −1 −1
test run 8 369 318 −1 298 −1
test run 9 281 335 359 159 359
test run 10 177 328 285 232 −1

These results are very di�erent from the previous. We see that every content
basically is interpreted as good or bad. And all results are actually made on the
supernode on which the content initially was inserted. If it on that supernode
turns out to be so good that it triggers gossip, it ends up on the entire system.
And this goes really fast. If the gossip trigger criteria are not met, then none of
the other supernodes are getting aware of its existence at all.

Look at the averages:

popularity 1.0 0.9 0.8 0.7 0.6

avg time to reach all 281 280 239 256 331
number of nodes reached 20.0 20.0 16.2 16.2 4.8

Actually, the content with popularity 0.8 was in these test runs the quickest
to reach all supernodes. This is merely because it was popular enough to
trigger the gossip criteria at the same time as users chose to watch this video
quicker than they chose to watch the ones with popularity 1.0 and 0.9. That
choice carries some randomness, and the users never know the actual popularity
variable.

See �gure 5.8 for the output of the 10th test execution with a fully connected
supernode topology, injected with a video with popularity 0.9. At time 328, we
see that enough users at supernode 0 have watched the video, given it a good
rating, and hence triggered a gossip from the supernode. As the protocol says
that a supernode always will include the videos about which they receive gossip,
all supernodes add this to their local indexes.



48 CHAPTER 5. TESTING

Figure 5.8: Here is the output from the 10th test run, where the injected content had
popularity 0.9, and with the supernodes in an ALLCONNECTED topology.

5.3 Discussion

The most important conclusion we can draw after running these simulations,
is that the main goal is achieved: Popular content is replicated throughout the
system, and the distribution speed is usually dependent on the popularity of
the content.

Figure 5.9 shows how fast the distribution throughout the system went for
the di�erent topologies. The y-axis shows time. At time 10, an item with
popularity 1.0 is inserted on one supernode. The x-axis tells how many nodes
on which this item is present. All four topologies are shown.

In a real world installation, a decision on which supernode topology to
employ must be taken, and we see that depending on the system's requirements
and limitations, di�erent topologies can be chosen. Perhaps running other
topologies than implemented in this SCARF simulation might give even better
results. There are numerous of topologies from which to choose. Cube topologies
of n dimensions could be tried, with various values of n. Also, sending the gossip
message to a random number of random other supernodes might give interesting
results.



5.3. DISCUSSION 49

Figure 5.9: This graph shows how fast content with popularity 1.0 was distributed
throughout the supernodes.



50 CHAPTER 5. TESTING



Chapter 6

Conclusion

6.1 What is achieved?

If a good Internet multimedia service turns out to be successful, and attract a
large number of users, there are basically just two ways to allow tremendous
growth:

1. Throw in piles of money to buy all needed server power and bandwidth.

2. Be smart enough with the design and deployment.

The most successful actors (like Google [15], YouTube [45], etc.) employ
combinations of these two alternatives. In academia, we prefer to search for
solutions for scalable problems in the second category.

In SCARF, it has been shown that the algorithms applied for popular content
to spread across the network makes it possible to serve a huge number of users
with a high percentage of popular content. This has been done by combining a
replication strategy, user feedback and a recommendation engine.

By looking at the problem de�nition in section 1.2, we identi�ed four tasks
that SCARF were supposed to solve.

1. The architecture � We have designed and implemented a simulation
for an architecture that o�oads work from a large content provider. In
addition, several topologies for the caching layer have been discussed and
implemented.

2. The feedback � SCARF allows users to provide positive or negative
feedback to all videos, and the design of the supernodes assures that the
feedback is collected and applied for the ranking algorithm.

3. The recommendation engine � In SCARF recommendation is done
along three di�erent axes. These axes covers 1) a �smart� ranking, 2)
up-and-coming trendy videos, and 3) fresh material.

4. The availability � Test results indicate that SCARF assures that the
time it takes to maximize availability for very popular content is reduced.

51



52 CHAPTER 6. CONCLUSION

We have throughout the thesis discussed some assumptions and simpli�ca-
tions. Still we believe that SCARF faithfully and realistically model the most
important aspects of a real implementation and deployment.

6.2 Future work

The most obvious thing to do to expand SCARF would be to implement and
deploy such a system in a real world setting. That requires a lot of money,
machines, locations, time, and users.

The real world deployment is unlikely, but there are still related theory that
could be interesting to dilate. In the SCARF implementation, a user will not
be able to �nd content on other servers than already present on the supernode
to which it belongs. The supernode does its best to provide all the interesting
media, but it would be very interesting to devise an architecture and protocols
that assure that all supernodes have an index of all available content from the
content provider. The users should be allowed to have an evanescent relationship
to its supernode, and schemes for roaming between supernodes could also be
developed.

The SCARF system is also built upon optimistic strategies, where a general
assumption on that everything works as planned is taken. To make this system
deployable, there are several fault-tolerance aspects that need to be solved.
The system is especially vulnerable if supernodes should be disconnected from
the network. In such cases, there needs to be emergency protocols for a) how
to redistribute the supernode's end users to other supernodes, and b) how
to regenerate the internal supernode network in accordance with the applied
supernode network topology.

Finally, some of the parameters used to con�gure a SCARF simulation are
set based on assumptions and simpli�cations. Examples of parameters that
could be tuned further are the popularity distribution, the gossip trigger, the
de�nition of trendy videos, and the smart rank algorithm. More research in
tuning these parameters might produce valuable results.



Bibliography

[1] Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abraham
Flaxman, Adam Kalai, Vahab Mirrokni, and Moshe Tennenholtz. Trust-
based recommendation systems: an axiomatic approach. In WWW '08:
Proceeding of the 17th international conference on World Wide Web, pages
199�208, New York, NY, USA, 2008. ACM.

[2] Scott M. Baker and Bongki Moon. Distributed cooperative Web servers.
Computer Networks: The International Journal of Computer and Telecom-
munications Networking, 31:1215�1229, 1999.

[3] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Looking up data in p2p systems. Commun. ACM, 46(2):43�48,
2003.

[4] Heinz Breu, Joseph Gil, David Kirkpatrick, and Michael Werman. Linear
time euclidean distance transform algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:529�533, 1995.

[5] Robin Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331�370, 2002.

[6] The Free Dictionary by Farlex.
http://encyclopedia2.thefreedictionary.com/.

[7] Bengt Carlsson and Rune Gustavsson. The rise and fall of napster - an
evolutionary approach. In AMT '01: Proceedings of the 6th International
Computer Science Conference on Active Media Technology, pages 347�354,
London, UK, 2001. Springer-Verlag.

[8] Ian Clarke, S. Oskar, On Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. In In
Workshop on Design Issues in Anonymity and Unobservability, pages 46�
66, 2000.

[9] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder,
Allen Tucker, A. Joe Turner, and Paul R. Young. Computing as a discipline.
Computer, 22(2):63�70, 1989.

[10] UC San Diego.
http://www.ucsd.edu/.

53



54 BIBLIOGRAPHY

[11] Herb Edelstein. Unraveling Cilent/Server Architecture. DBMS 7, May
1994.

[12] WAIF (Wide Area Information Filtering).
http://www.waif.cs.uit.no/.

[13] Masoumeh Ghahremani, Seyed-Amin Hosseini-Seno, and Rahmat Budi-
arto. A new approach for web applications examination before publishing.
Future Computer and Communication, International Conference on, 0:470�
473, 2009.

[14] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative �ltering to weave an information tapestry. Commun. ACM,
35(12):61�70, 1992.

[15] Google.
http://www.google.com/.

[16] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang.
Does internet media tra�c really follow zipf-like distribution? In SIG-
METRICS '07: Proceedings of the 2007 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 359�
360, New York, NY, USA, 2007. ACM.

[17] Daniel E. Hastings. Telecoms convergence consortium.

[18] James O. Henriksen, Robert M. O'Keefe, C. Dennis Pegden, Robert G.
Sargent, and Brian W. Unger. Implementations of time (panel). In
Douglas W. Jones, editor, WSC '86: Proceedings of the 18th conference
on Winter simulation, pages 409�416, New York, NY, USA, 1986. ACM.

[19] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666�677, 1978.

[20] Shiu-li Huang. Comparision of utility-based recommendation methods.
PACIS 2008 Proceedings, Paper 21, 2008.

[21] Carnegie Mellom Software Engineering Institute. Client/Server Software
Architectures�An Overview.
http://www.sei.cmu.edu/str/descriptions/clientserver.

[22] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topology
management. In Proceedings of Engineering Self-Organising Applications
(ESOA'05), July 2005.

[23] M. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed
hash table, 2003.

[24] Bruce Krulwich. Lifestyle �nder: Intelligent user pro�ling using large-scale
demographic data. AI Magazine, 18(2):37�45, 1997.



BIBLIOGRAPHY 55

[25] Bruce Krulwich and Chad Burkey. The info�nder agent: Learning user
interests through heuristic phrase extraction. IEEE Intelligent Systems,
12(5):22�27, 1997.

[26] Last.fm.
http://last.fm/.

[27] Virginia Lo, Dayi Zhou, Yuhong Liu, Chris Gauthierdickey, and Jun
Li. Scalable supernode selection in peer-to-peer overlay networks. In In
Proceedings of the 2nd International Workshop on Hot Topics in Peer-to-
Peer Systems, La, pages 18�25. IEEE, 2005.

[28] Luiz R. Monnerat and Claudio L. Amorim. D1ht: A distributed one hop
hash table. In Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 10 pp.+, April 2006.

[29] M. E. J. Newman. Power laws, pareto distributions and zipf's law,
December 2004.

[30] Aviv Nisgav and Boaz Patt-Shamir. Finding similar users in social
networks. In SPAA '09: Proceedings of the twenty-�rst annual symposium
on Parallelism in algorithms and architectures, pages 169�177, New York,
NY, USA, 2009. ACM.

[31] Douglas W. Oard and Jinmook Kim. Modeling information content using
observable behavior, 2001.

[32] University of Tromsø.
http://www.uit.no/.

[33] Sylvia Ratnasamy, Paul Francis, Scott Shenker, and Mark Handley. A scal-
able content-addressable network. In In Proceedings of ACM SIGCOMM,
pages 161�172, 2001.

[34] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications
for system. 2002.

[35] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware '01: Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, pages 329�350. Springer-Verlag,
2001.

[36] George Schussel. Client/Server Past, Present, and Future [online].
http://news.dci.com/geos/dbsejava.htm, (September, 2008).

[37] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized
recommendation in social tagging systems using hierarchical clustering.
In Proceedings of the 2008 ACM Conference on Recommender Systems
(RecSys 2008), pages 259�266, New York, NY, USA, October 2008. ACM.



56 BIBLIOGRAPHY

[38] Xiaowei Shi. An intelligent knowledge-based recommendation system.
pages 431�435, 2005.

[39] Spotify.
http://www.spotify.com/.

[40] Ion Stoica, Robert Morris, David Karger, Frans M. Kaashoek, and Hari.
Chord: A scalable peer-to-peer lookup service for internet applications,
2001.

[41] Loren Terveen, Will Hill, Brian Amento, David Mcdonald, and Josh Creter.
Phoaks: A system for sharing recommendations. Communications of the
ACM, 40(3):59�62, 1997.

[42] New York Times.
http://www.nytimes.com/.

[43] Cornell University.
http://www.cornell.edu/.

[44] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe:
A robust and scalable technology for distributed system monitoring,
management, and data mining. ACM Trans. Comput. Syst., 21(2):164�
206, 2003.

[45] YouTube.
http://www.youtube.com/.

[46] Xi-Zheng Zhang. Building personalized recommendation system in e-
commerce using association rule-based mining and classi�cation. In
Machine Learning and Cybernetics, 2007 International Conference on,
volume 7, pages 4113�4118, 2007.

[47] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 22(1), January 2004.

[48] Philip Zigoris and Yi Zhang. Bayesian adaptive user pro�ling with
explicit & implicit feedback. In CIKM '06: Proceedings of the 15th ACM
international conference on Information and knowledge management, pages
397�404, New York, NY, USA, 2006. ACM.



Appendix A

Source �le listings

A.1 Source code

A.1.1 Simulation.java

package master ;

import master . User ;
import master . Supernode ;
import master . Topic ;
import master . Event ;

import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

10 import java . u t i l . C o l l e c t i o n s ;
import java . u t i l . Comparator ;
import java . u t i l .Random ;
import java . u t i l . ArrayList ;
import java . u t i l . Pr ior i tyQueue ;

/∗∗
∗ Simulat ion . java
∗ Purpose : This i s the main c l a s s f o r running the e n t i r e s imu la to r .
∗ I t i n i t i a l i z e s a l l e lements o f the system , and runs un t i l

t e rminat ion .
20 ∗

∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/
pub l i c c l a s s S imulat ion {

s t a t i c Supernode [ ] supernodes ;
s t a t i c User [ ] u s e r s ;
s t a t i c ArrayList<Content> contents = new ArrayList<Content >() ;

30 s t a t i c Topic [ ] t o p i c s ;
s t a t i c boolean DEBUGMODE = f a l s e ;
s t a t i c enum superNodeArchitecture {RING, DOUBLERING, TWORINGS,

ALLCONNECTED} ;

s t a t i c Prior ityQueue<Event> eventQueue = new Prior ityQueue<Event>() ;

s t a t i c S t r ing l ogD i r e c t o ry = "/home/ t o r k i l /workspace/Master/ l og /
measures /" ;

s t a t i c S t r ing l o gF i l e = logD i r e c t o ry + "Simulat ion . l og " ;

/∗∗

57



58 APPENDIX A. SOURCE FILE LISTINGS

40 ∗ @param args
∗/
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
System . out . p r i n t l n ( " I 'm running ! " ) ;

// Generate n Supernodes , each with m Users . F i r s t , s e t some
cons tant s

f i n a l i n t numberOfSupernodes = 200 ;
f i n a l i n t usersPerSupernode = 200 ;
// f i n a l S t r ing [ ] ava i l ab l eTop i c s = {" parsons " , " l i v e r p o o l " , "

madrugada" , "tromsÃ¸" , " so r t l and " , "hamna" , " f l o dh e s t " , "
fÃ¥r ikÃ¥ l " } ;

f i n a l S t r ing [ ] ava i l ab l eTop i c s = {" parsons " , " l i v e r p o o l " , "madrugada"
, "tromsÃ¸" } ;

50 // f i n a l S t r ing [ ] ava i l ab l eTop i c s = {" parsons " , " l i v e r p o o l " } ;
f i n a l i n t numberOfVideos = 100 ;
f i n a l i n t numberOfVideosPerSupernode = 40 ;
f i n a l i n t newContentFrequenzy = 40 ; // The range from with in new

content w i l l be added
f i n a l i n t whenToTerminate = 10000 ;
f i n a l superNodeArchitecture a r c h i t e c t u r e = superNodeArchitecture .

ALLCONNECTED;

supernodes = new Supernode [ numberOfSupernodes ] ;
I n i t i a l i z e S y s t em ( usersPerSupernode , ava i l ab l eTop i c s , numberOfVideos ,

numberOfVideosPerSupernode , a r c h i t e c t u r e ) ;
i f (DEBUGMODE) DebugPrintSizes ( ) ;

60

// Build each supernode ' s index
f o r ( Supernode s : supernodes ) {

Bui ldIndex ( s ) ;
}

Random genera to r = new Random( ) ;

I n i t i a l i z e U s e r s ( ) ;

70 // Decide when to stop ( to prevent running wi ld . . . )
Event terminat ionEvent = new Event (whenToTerminate , "System" , 0 ,

Event . eventType .SYSTEM_TERMINATION, −1) ;
eventQueue . add ( terminat ionEvent ) ;

// Let new content appear (Make sure i t a r r i v e s a f t e r the super
content

Event newContentEvent = new Event(12+ genera tor . next Int (
newContentFrequenzy ) , "Content" , −1, Event . eventType .NEW_CONTENT,
−1) ;

eventQueue . add ( newContentEvent ) ;

// OK, here comes some s p e c i a l l y i n s e r t e d data , used f o r monitor ing
and performance measurement

// At time 10 i n s e r t a super v ideo on Supernode 1 . When w i l l i t be
a v a i l a b l e on every Supernode ?

80 Event superContentEvent = new Event (10 , "Content" , −1, Event .
eventType .ADD_SUPER_CONTENT, −1) ;

eventQueue . add ( superContentEvent ) ;

// Pr int p rog r e s s bar . . .
Event progressEvent = new Event (0 , "System" , 1 , Event . eventType .

SYSTEM_PROGRESS, −1) ;
eventQueue . add ( progressEvent ) ;

// Write out cumulat ive bandwidth s t a t s every 100 sec
// i f ( time % 100 == 0) {
// logCumulativeBandwidth ( time ) ;

90 // }



A.1. SOURCE CODE 59

// Let the game begin . . .
whi l e ( t rue ) {

i n t time ;
Event event ;
whi l e ( ! eventQueue . isEmpty ( ) ) {

// Pick the c l o s e s t event :
event = eventQueue . p o l l ( ) ;
time = event . timestamp ;

100 switch ( event . eventName ) {
case USER_STARTS_WATCHING:

i f ( event . ob j e c t Id < 0) { // The Supernode could not recommend
− t ry again !

Recommendation rec = supernodes [ u s e r s [ event . a c to r Id ] .
supernodeServer ] . recommend ( us e r s [ event . a c to r Id ] .
t o p i c I n t e r e s t , u s e r s [ event . a c to r Id ] . haveSeen ) ;

i f (DEBUGMODE) use r s [ event . a c to r Id ] . logRecommendation ( r ec ) ;
i n t newContentToWatch = rec . getRandomRecommendation ( ) ;
Event newEvent = new Event ( time + genera tor . next Int (30) , "

User" , event . actor Id , Event . eventType .
USER_STARTS_WATCHING, newContentToWatch ) ;

eventQueue . add ( newEvent ) ;
} e l s e {

// Watch video . . .
110 use r s [ event . a c to r Id ] . current lyWatching = contents . get ( event .

ob j e c t Id ) ;
u s e r s [ event . a c to r Id ] . t imeStartedWatching = time ;
i f (DEBUGMODE) use r s [ event . a c to r Id ] . logStartsWatching ( time ,

event . ob jec t Id , contents . get ( event . ob j e c t Id ) . l ength ) ;
// Set end time .
Event newEvent = new Event ( time + contents . get ( event . ob j e c t Id

) . length , "User" , event . actor Id , Event . eventType .
USER_STOPS_WATCHING, event . ob j e c t Id ) ;

eventQueue . add ( newEvent ) ;
}
break ;

case USER_IDLE:
// Time to watch a new video . . .

120 Recommendation rec = supernodes [ u s e r s [ event . a c to r Id ] .
supernodeServer ] . recommend ( us e r s [ event . a c to r Id ] .
t o p i c I n t e r e s t , u s e r s [ event . a c to r Id ] . haveSeen ) ;

i n t newContentToWatch = rec . getRandomRecommendation ( ) ;
i f ( newContentToWatch < 0) { // The supernode could not f i nd

anything appropr ia t e
i f (DEBUGMODE) use r s [ event . a c to r Id ] . l ogNoth ingAva i lab l e ( time )

;
Event nothingAvai lab leEvent = new Event ( time + genera tor .

next Int (60) , "User" , event . actor Id , Event . eventType .
USER_IDLE, −1) ;

eventQueue . add ( nothingAvai lab leEvent ) ;
} e l s e {

i f (DEBUGMODE) use r s [ event . a c to r Id ] . logRecommendation ( r ec ) ;
Event newVideoEvent = new Event ( time + genera to r . next Int (30) ,

"User" , event . actor Id , Event . eventType .
USER_STARTS_WATCHING, newContentToWatch ) ;

eventQueue . add ( newVideoEvent ) ;
130 }

break ;
case USER_STOPS_WATCHING:

// Video i s f i n i s h e d . Rate the video !
Topic t = use r s [ event . a c to r Id ] . current lyWatching . r e l evantTop i c s

[ 0 ] ;
Content c = use r s [ event . a c to r Id ] . current lyWatching ;
S t r ing ra t e = "" ;

// Update index



60 APPENDIX A. SOURCE FILE LISTINGS

f o r ( IndexEntry ind_entry : supernodes [ u s e r s [ event . a c to r Id ] .
supernodeServer ] . index ) {

140 f o r ( Topic t op i c : ind_entry . entry . keySet ( ) ) {
i f ( t op i c . equa l s ( t ) ) {

f o r ( IndexElement i e : ind_entry . entry . get ( t op i c ) ) {
i f ( i e . contentId == c . contentId ) {
// Found r i gh t index element , now update ranks /

counter s
i f ( u s e r s [ event . a c to r Id ] . current lyWatching .

r e a lPopu l a r i t y > generato r . nextDouble ( ) ) {
i e . numberOfPosit ives++;
i e . smartRank += 10 ; // This could be tuned
ra t e = "GOOD! " ;
// Decide whether t h i s p o s i t i v e ranking should l ead

to a go s s i p message to the ne ighbors
150 i f ( i e . numberOfPosit ives == 5 && i e .

numberOfNegatives <= 2) { // This could be
tuned

Event goss ipEvent = new Event ( time , "Supernode" ,
u s e r s [ event . a c to r Id ] . supernodeServer , Event .
eventType .SUPERNODE_SPREADS_GOSSIP, c , t ) ;

eventQueue . add ( goss ipEvent ) ;
}

} e l s e {
i e . numberOfNegatives++;
i e . smartRank = Math .max(0 , i e . smartRank−10) ;
r a t e = "BAD! " ;

}
i f (DEBUGMODE) {

160 use r s [ event . a c to r Id ] . logFinishedWatching ( time , c .
contentId , r a t e ) ;

Event supernodeEvent = new Event ( time , "Supernode" ,
u s e r s [ event . a c to r Id ] . supernodeServer , Event .

eventType .SUPERNODE_RECALCULATION, −1) ;
i f ( ! eventQueue . conta in s ( supernodeEvent ) ) {
eventQueue . add ( supernodeEvent ) ;

}
}

}
}

}
}

170 }

us e r s [ event . a c to r Id ] . justSawContent ( u s e r s [ event . a c to r Id ] .
current lyWatching ) ;

u s e r s [ event . a c to r Id ] . current lyWatching = nu l l ;

// I d l e a b i t be f o r e s t a r t i n g watching a new video
Event use r Id l eEvent = new Event ( time + generato r . next Int (30) ,

"User" , event . actor Id , Event . eventType .USER_IDLE, −1) ;
eventQueue . add ( use r Id l eEvent ) ;
break ;

case SUPERNODE_RECALCULATION:
180 supernodes [ event . a c to r Id ] . l ogEnt i r e Index ( ) ;

break ;
case SUPERNODE_SPREADS_GOSSIP:

supernodes [ event . a c to r Id ] . spreadGoss ip ( time , event . content ,
event . t op i c ) ;

f o r ( Supernode neighbor : supernodes [ event . a c to r Id ] . ne ighbors ) {
Event rece iveEvent = new Event ( time+1, "Supernode" , ne ighbor .

supernodeId , Event . eventType .SUPERNODE_RECEIVES_GOSSIP,
−1) ;

eventQueue . add ( rece iveEvent ) ;
}
break ;



A.1. SOURCE CODE 61

case SUPERNODE_RECEIVES_GOSSIP:
190 supernodes [ event . a c to r Id ] . r e c e i v eGos s i p ( time ) ;

break ;
case NEW_CONTENT:

Topic r e l a t edTop i c = top i c s [ gene rato r . next Int ( t op i c s . l ength ) ] ;
Topic [ ] r e l a t edTop i c s = new Topic [ 1 ] ;
r e l a t edTop i c s [ 0 ] = re l a t edTop i c ;
i n t contentId = contents . s i z e ( ) ;
Content newContent = new Content (

contentId , //
generato r . next Int (100) , // BaseRank i s in [ 0 , 99 ] −>

99 h ighe s t rank
200 r e la tedTop ic s , // Current ly only r e l e van t f o r

one top i c
generato r . next Int (291) + 10 // Assume length i s in [ 1 0 ,

300 ]
) ;
content s . add ( newContent ) ;
// Add to a supernode
i n t sn = genera tor . next Int ( supernodes . l ength ) ;
supernodes [ sn ] . addContent ( newContent , time ) ;
// Add to index
IndexElement i e = new IndexElement ( newContent . contentId ,

newContent . baseRank , time ) ;
supernodes [ sn ] . addIndexElementToIndex ( newContent . r e l evantTop i c s

[ 0 ] , i e ) ;
210

// Let yet another v ideo be a v a i l a b l e . . .
Event moreNewContentEvent = new Event ( time + genera tor . next Int (

newContentFrequenzy ) , "Content" , −1, Event . eventType .
NEW_CONTENT, −1) ;

eventQueue . add (moreNewContentEvent ) ;
break ;

case ADD_SUPER_CONTENT:
Topic r e lTop i c = top i c s [ gene ra to r . next Int ( t op i c s . l ength ) ] ;
Topic [ ] r e lTop i c s = new Topic [ 1 ] ;
r e lTop i c s [ 0 ] = re lTop i c ;
i n t cId = contents . s i z e ( ) ;

220 Content superContent = new Content (
cId , //
100 , //
re lTop ic s , //
100 , // Length i s 100
1 . 0 , // Super popu la r i ty
t rue // Super content

) ;
content s . add ( superContent ) ;
logSuperContentCreat ion ( time , superContent , 0) ;

230 supernodes [ 0 ] . addContent ( superContent , time ) ;
IndexElement i = new IndexElement ( superContent . contentId ,

superContent . baseRank , time ) ;
supernodes [ 0 ] . addIndexElementToIndex ( superContent .

r e l evantTop i c s [ 0 ] , i ) ;
break ;

case SYSTEM_PROGRESS:
i f ( event . a c to r Id == 1) {
System . out . p r i n t l n ( "\ nProgress . . . " ) ;
System . out . p r i n t l n ( "

====================================================================================================
" ) ;

} e l s e {
System . out . p r i n t ( " | " ) ;

240 }
i n t p r o g r e s s S l o t = whenToTerminate / 100 ;
Event nextProgressS lotEvent = new Event ( event . timestamp +

prog r e s sS l o t , "System" , −1, Event . eventType .SYSTEM_PROGRESS



62 APPENDIX A. SOURCE FILE LISTINGS

, −1) ;
eventQueue . add ( nextProgressS lotEvent ) ;
break ;

case SYSTEM_TERMINATION:
f o r ( Supernode s : supernodes ) {

s . l ogEnt i r e Index ( ) ;
}
System . out . p r i n t l n ( "\nThe system s u c c e s s f u l l y ends a f t e r " +

event . timestamp + " seconds . " ) ;
250 System . e x i t (0 ) ;

// Should not be here . . .
d e f au l t :
System . out . p r i n t l n ( "Terminating due to unknown event : " + event

. eventName . t oS t r i ng ( ) ) ;
System . e x i t (0 ) ;

}
}

}
}

260

// Determine when each User should s t a r t watching .
// Current a lgor i thm s e l e c t s that user should be a c t i v e with in 30

seconds , uni formly
p r i va t e s t a t i c void I n i t i a l i z e U s e r s ( ) {
Random genera to r = new Random( ) ;
f o r ( User u : u s e r s ) {
// Determine which video to watch
Recommendation rec = supernodes [ u s e r s [ u . u se r Id ] . supernodeServer ] .

recommend ( us e r s [ u . use r Id ] . t o p i c I n t e r e s t , u s e r s [ u . u se r Id ] .
haveSeen ) ;

i f (DEBUGMODE) use r s [ u . u se r Id ] . logRecommendation ( r ec ) ;
i n t newContentToWatch = rec . getRandomRecommendation ( ) ;

270

Event newEvent = new Event ( genera to r . next Int (30) , "User" , u . userId ,
Event . eventType .USER_STARTS_WATCHING, newContentToWatch ) ;

eventQueue . add ( newEvent ) ;
}

}

p r i va t e s t a t i c void I n i t i a l i z e S y s t em ( i n t usersPerSupernode , S t r ing [ ]
top i ca r ray , i n t numberOfVideos , i n t numberOfVideosPerSupernode ,
superNodeArchitecture a r c h i t e c t u r e ) {

Random genera to r = new Random( ) ;
t op i c s = new Topic [ t op i c a r r ay . l ength ] ;

280 // Generate t op i c s
f o r ( i n t t op i c Id = 0 ; t op i c Id < top i ca r r ay . l ength ; t op i c Id++) {
Topic newTopic = new Topic ( top ic Id , t op i c a r r ay [ t op i c Id ] ) ;
t o p i c s [ t op i c Id ] = newTopic ;

}

// Generate content
f o r ( i n t contentId = 0 ; content Id < numberOfVideos ; contentId++) {
Topic r e l a t edTop i c = top i c s [ gene rato r . next Int ( t op i c s . l ength ) ] ;
Topic [ ] r e l a t edTop i c s = new Topic [ 1 ] ;

290 r e l a t edTop i c s [ 0 ] = re l a t edTop i c ;
Content newContent = new Content (

contentId , //
generato r . next Int (100) , // BaseRank i s in [ 0 , 99 ] −> 99

h ighe s t rank
re la tedTop ic s , // Current ly only r e l e van t f o r one

top i c
generato r . next Int (291) + 10 // Assume length i s in [ 1 0 , 300 ]

) ;
content s . add ( newContent ) ;



A.1. SOURCE CODE 63

System . out . p r i n t l n ( "Generated new content : " + contents . get (
contentId ) . getContentId ( ) + " , " + contents . get ( contentId ) .
getBaseRank ( ) + " , " + contents . get ( contentId ) .
getRelevantTopics ( ) [ 0 ] . getTopicName ( ) + " , " + contents . get (
contentId ) . getLength ( ) ) ;

}
300

// Generate supernodes and us e r s . And add content to supernodes
u s e r s = new User [ supernodes . l ength ∗ usersPerSupernode ] ;
System . out . p r i n t l n ( " I n i t i a l i z i n g " + supernodes . l ength + " supernodes

, each with " + usersPerSupernode + " use r s . . . " ) ;
f o r ( i n t supernodeId = 0 ; supernodeId < supernodes . l ength ;

supernodeId++) {
System . out . p r i n t l n ( "Generating Supernode " + supernodeId + " . . . " ) ;
supernodes [ supernodeId ] = new Supernode ( supernodeId ) ;
f o r ( i n t use r Id = 0 ; use r Id < usersPerSupernode ; use r Id++) {

User newUser = new User ( use r Id + supernodeId ∗usersPerSupernode ,
supernodeId , t op i c s [ gene ra to r . next Int ( t op i c s . l ength ) ] ) ;

System . out . p r i n t l n ( " . . . generated user with id " + newUser .
getUserId ( ) + " and i n t e r e s t " + newUser . g e tTop i c In t e r e s t ( ) .
topicName +

310 " ( be long ing to supernode " + newUser . getSupernodeServer ( ) +
" ) . " ) ;

u s e r s [ u se r Id + supernodeId ∗usersPerSupernode ] = newUser ;
supernodes [ supernodeId ] . addUser ( newUser ) ;

}
f o r ( i n t content Id = 0 ; contentId < numberOfVideosPerSupernode ;

contentId++) {
supernodes [ supernodeId ] . addContent ( contents . get ( genera to r . next Int

( contents . s i z e ( ) ) ) , 0) ;
}

}

// Set up Supernode neighborhood .
320 I n i t i a l i z eNe i ghbo rhood ( a r c h i t e c t u r e ) ;

}

p r i va t e s t a t i c void In i t i a l i z eNe i ghbo rhood ( superNodeArchitecture arch )
{

switch ( arch ) {
case RING:

f o r ( Supernode s : supernodes ) {
s . addNeighbor ( supernodes [ ( s . supernodeId+1) % supernodes . l ength ] ) ;

}
re turn ;

330 case DOUBLERING:
f o r ( Supernode s : supernodes ) {

s . addNeighbor ( supernodes [ ( s . supernodeId+1) % supernodes . l ength ] ) ;
s . addNeighbor ( supernodes [ ( s . supernodeId+supernodes . length −1) %

supernodes . l ength ] ) ;
}
re turn ;

case TWORINGS:
f o r ( Supernode s : supernodes ) {

s . addNeighbor ( supernodes [ ( s . supernodeId+1) % supernodes . l ength ] ) ;
s . addNeighbor ( supernodes [ ( s . supernodeId+(supernodes . l ength / 2) )

% supernodes . l ength ] ) ;
340 }

case ALLCONNECTED:
f o r ( Supernode s : supernodes ) {

f o r ( i n t i = 0 ; i < supernodes . l ength ; i++) {
i f ( s . supernodeId != i ) { // Should not send go s s i p to o n e s e l f

. . .
s . addNeighbor ( supernodes [ i ] ) ;

}
}



64 APPENDIX A. SOURCE FILE LISTINGS

}
re turn ;

350 }
re turn ;

}

p r i va t e s t a t i c void logCumulativeBandwidth ( i n t time ) {
ArrayList<CumulativeBandwidth> bws = new ArrayList<

CumulativeBandwidth >() ;
f o r ( Content c : content s ) {
bws . add (new CumulativeBandwidth ( c . contentId , c . cumulativeBandwidth )

) ;
}
Comparator<CumulativeBandwidth> comp = new CumulativeBandwidth .Comp( )

;
360 Co l l e c t i o n s . s o r t (bws , comp) ;

t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l ogD i r e c t o ry + "bandwidths . l og " ,

t rue ) ;
l og . wr i t e ( "Time " + St r ing . format ( "%4d" , time ) + " : Here are the

cumulat ive bandwidths : \ n" ) ;
f o r ( i n t i = 0 ; i < bws . s i z e ( ) ; i++) {

log . wr i t e ( "Content " + St r ing . format ( "%4d" , bws . get ( i ) . contentId )
+ " : " + St r ing . format ( "%3d" , bws . get ( i ) . bandwidth ) + "\n" ) ;

}
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whoops : Could not l og cumulat ive bandwidths : "

+ ex . getMessage ( ) ) ;
370 }

bws . c l e a r ( ) ;
r e turn ;

}

p r i va t e s t a t i c void logSuperContentCreat ion ( i n t time , Content
newContent , i n t supernodeId ) {

t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "Time " + St r ing . format ( "%4d" , time ) + " : Supernode " +

St r ing . format ( "%2d" , supernodeId ) + " : Super content with id "
+ newContent . contentId + " generated . \ n" ) ;

l og . c l o s e ( ) ;
380 } catch ( IOException ex ) {

System . out . p r i n t l n ( "Whops : Could not l og super content c r e a t i on : "
+ ex . getMessage ( ) ) ;

}

}

p r i va t e s t a t i c void Bui ldIndex ( Supernode s ) {
System . out . p r i n t ( "Bui ld ing index f o r supernode " + s . getSupernodeId ( )

+ " . . . " ) ;
f o r ( Content c : s . getServesContent ( ) ) {

IndexElement i e = new IndexElement ( c . contentId , c . baseRank , 0) ;
390 s . addIndexElementToIndex ( c . r e l evantTop i c s [ 0 ] , i e ) ;

}
System . out . p r i n t l n ( "Done ! " ) ;
s . l ogEnt i r e Index ( ) ;

}

p r i va t e s t a t i c void DebugPrintSizes ( ) {
System . out . p r i n t l n ( "Here are the s i z e s o f the system : " ) ;
System . out . p r i n t l n ( "Supernodes : " + supernodes . l ength ) ;
System . out . p r i n t l n ( "Users : " + use r s . l ength ) ;

400 System . out . p r i n t l n ( "Contents : " + contents . s i z e ( ) ) ;
System . out . p r i n t l n ( "Topics : " + top i c s . l ength ) ;



A.1. SOURCE CODE 65

System . out . p r i n t l n ( "Contents per supernode : " ) ;
f o r ( i n t i =0; i < supernodes . l ength ; i++) {
System . out . p r i n t l n ( " " + i + " : " + supernodes [ i ] . getServesContent

( ) . s i z e ( ) ) ;
}

}
}

A.1.2 Supernode.java

package master ;

import master . User ;
import master . Content ;
import master . Recommendation ;
import master . Gossip ;
import master . IndexEntry ;
import master . IndexElement ;

10 import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;
import java . u t i l . ArrayList ;
import java . u t i l . C o l l e c t i o n s ;
import java . u t i l . Comparator ;

/∗∗
∗ Supernode . java
∗ Purpose : This i s the c l a s s r ep r e s en t i ng a l l supernodes in the system .
∗ I t takes care o f content , a l o c a l s earch index , and l i s t s o f

20 ∗ connected us e r s and neighbor supernodes .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/
pub l i c c l a s s Supernode {

i n t supernodeId ;
ArrayList<User> se rv ingUse r s = new ArrayList<User >() ;
ArrayList<Content> servesContent = new ArrayList<Content >() ;

30 ArrayList<IndexEntry> index = new ArrayList<IndexEntry >() ;
ArrayList<Supernode> ne ighbors = new ArrayList<Supernode >() ;
ArrayList<Gossip> incomingGossip = new ArrayList<Gossip >() ;
boolean needsReca l cu la t i on = f a l s e ;

S t r ing l ogD i r e c t o ry = "/home/ t o r k i l /workspace/Master/ l og / supernodes /" ;
S t r ing l o gF i l e ;
S t r ing indexF i l e ;
S t r ing measureFi le ;

40 enum sortBy {RANK, FORM, TIME} ;

pub l i c Supernode ( i n t supernodeId ) {
t h i s . supernodeId = supernodeId ;
t h i s . l o gF i l e = logD i r e c t o ry + "Supernode−" + supernodeId + " . l og " ;
t h i s . i ndexF i l e = logD i r e c t o ry + "Supernode−" + supernodeId + "−index .

l og " ;
t h i s . measureFi le = logD i r e c t o ry + " . . / measures / Simulat ion . l og " ;

logSupernodeCreat ion ( ) ;
}

50

pub l i c i n t getSupernodeId ( ) {
re turn supernodeId ;

}



66 APPENDIX A. SOURCE FILE LISTINGS

pub l i c void setSupernodeId ( i n t supernodeId ) {
t h i s . supernodeId = supernodeId ;

}

pub l i c ArrayList<User> getServ ingUser s ( ) {
60 r e turn s e rv ingUse r s ;

}

pub l i c void s e tSe rv ingUse r s ( ArrayList<User> se rv ingUse r s ) {
t h i s . s e rv ingUse r s = se rv ingUse r s ;

}

pub l i c ArrayList<Content> getServesContent ( ) {
re turn servesContent ;

}
70

pub l i c void setServesContent ( ArrayList<Content> servesContent ) {
t h i s . servesContent = servesContent ;

}

pub l i c ArrayList<IndexEntry> getIndex ( ) {
re turn index ;

}

pub l i c void se t Index ( ArrayList<IndexEntry> index ) {
80 t h i s . index = index ;

}

pub l i c boolean i sNeedsReca l cu l a t i on ( ) {
re turn needsReca l cu la t i on ;

}

pub l i c void se tNeedsReca l cu la t i on ( boolean needsReca l cu la t i on ) {
t h i s . needsReca l cu la t i on = needsReca l cu la t i on ;

}
90

pub l i c ArrayList<Supernode> getNeighbors ( ) {
re turn ne ighbors ;

}

pub l i c void setNe ighbors ( ArrayList<Supernode> ne ighbors ) {
t h i s . ne ighbors = ne ighbors ;

}

pub l i c void addUser ( User newUser ) {
100 t h i s . s e rv ingUse r s . add ( newUser ) ;

logUserAdd ( newUser . getUserId ( ) ) ;
}

pub l i c void addNeighbor ( Supernode newNeighbor ) {
t h i s . ne ighbors . add ( newNeighbor ) ;

logNeighborAdd ( newNeighbor . getSupernodeId ( ) ) ;
}

110

pub l i c void addContent ( Content newContent , i n t time ) {
// Ver i f y that the content i s not a l r eady pre sent
boolean contentAlreadyPresent = f a l s e ;
f o r ( Content presentContent : servesContent ) {

i f ( presentContent . contentId == newContent . contentId ) {
contentAlreadyPresent = true ;
cont inue ;

}
}

120 i f ( ! contentAlreadyPresent ) {



A.1. SOURCE CODE 67

t h i s . servesContent . add ( newContent ) ;
logContentAdd ( time , newContent ) ;
newContent . cumulativeBandwidth++;
newContent . logServedBy ( t h i s . supernodeId , time ) ;

}
}

pub l i c void removeContent ( Content c ) {
t h i s . servesContent . remove ( c ) ;

130 }

pub l i c void addIndexElementToIndex ( Topic t , IndexElement i e ) {
// Check i f t op i c i s p re sent
f o r ( IndexEntry indexEntry : index ) {

i f ( indexEntry . entry . containsKey ( t ) ) { // Yes , and j u s t add another
element

indexEntry . entry . get ( t ) . add ( i e ) ;
r e turn ;

}
}

140 // Could not f i nd top ic , hence a new entry i s r equ i r ed
IndexEntry newEntry = new IndexEntry ( t , i e ) ;
index . add ( newEntry ) ;

}

pub l i c void removeFromIndex ( Topic t , IndexElement i e ) {
// Find c o r r e c t t op i c
f o r ( IndexEntry indexEntry : index ) {

i f ( indexEntry . entry . containsKey ( t ) ) { // Yes
indexEntry . entry . get ( t ) . remove ( i e ) ;

150 logRemovalFromIndex ( t , i e ) ;
r e turn ;

}
}

}

p r i va t e i n t recommendByField ( ArrayList<IndexElement> elements ,
ArrayList<Integer> haveSeen ) {

f o r ( IndexElement e : e lements ) {
i f ( e . contentId >= 0) {

i f ( haveSeen . s i z e ( ) > 0) {
160 boolean thisOneIsNew = true ;

f o r ( i n t i =0; i < haveSeen . s i z e ( ) ; i++) {
i f ( e . contentId == haveSeen . get ( i ) ) { // Video a l r eady seen

. . .
thisOneIsNew = f a l s e ;

}
}
i f ( thisOneIsNew ) {
re turn e . content Id ;

}
} e l s e {

170 r e turn e . content Id ;
}

}
}
// Sorry , couldn ' t recommend anything to you . . .
r e turn −1;

}

pub l i c Recommendation recommend ( Topic t , ArrayList<Integer> haveSeen ) {
Recommendation rec = new Recommendation(−1 , −1, −1) ;

180 f o r ( IndexEntry i e : index ) {
i f ( i e . entry . containsKey ( t ) ) {
so r t Index ( i e . entry . get ( t ) , sortBy .RANK) ;
r e c . rankRecommentation = recommendByField ( i e . entry . get ( t ) ,



68 APPENDIX A. SOURCE FILE LISTINGS

haveSeen ) ;
so r t Index ( i e . entry . get ( t ) , sortBy .FORM) ;
r ec . upAndComingRecommendation = recommendByField ( i e . entry . get ( t ) ,

haveSeen ) ;
so r t Index ( i e . entry . get ( t ) , sortBy .TIME) ;
r e c . newcomerRecommendation = recommendByField ( i e . entry . get ( t ) ,

haveSeen ) ;
}

}
190 r e turn rec ;

}

pub l i c s t a t i c c l a s s Comp implements Comparator<IndexElement> {
pr i va t e sortBy sortOn ;

pub l i c Comp( sortBy sortOn ) {
t h i s . sortOn = sortOn ;

}

200 @Override
pub l i c i n t compare ( IndexElement o1 , IndexElement o2 ) {

switch ( sortOn ) {
case RANK:

return new In t eg e r ( o2 . smartRank ) . compareTo ( o1 . smartRank ) ;
case FORM:

return new In t eg e r ( o2 . numberOfPosit ives − o2 . numberOfNegatives ) .
compareTo ( o1 . numberOfPosit ives − o1 . numberOfNegatives ) ;

case TIME:
re turn new In t eg e r ( o2 . timeAdded ) . compareTo ( o1 . timeAdded ) ;

}
210 r e turn −1;

}
}

pub l i c void spreadGoss ip ( i n t time , Content c , Topic t ) {
Gossip g = new Gossip ( c , t ) ;
f o r ( Supernode neighbor : t h i s . ne ighbors ) {

ne ighbor . incomingGossip . add ( g ) ;
logSpreadGoss ip ( time , neighbor , g ) ;

}
220 r e turn ;

}

pub l i c void r e c e i v eGos s i p ( i n t time ) {
Gossip g = new Gossip ( ) ;
whi l e ( t h i s . incomingGossip . s i z e ( ) > 0) {

// Check i f t h i s Supernode a l r eady s e r v e s the goss ipped content
g = th i s . incomingGossip . get (0 ) ;
logRece ivedGoss ip ( time , g ) ;
i f ( ! t h i s . servesContent . conta in s ( g . content ) ) {

230 t h i s . addContent ( g . content , time ) ;
// Add to index
IndexElement i e = new IndexElement ( g . content . contentId , g . content

. baseRank , time ) ;
t h i s . addIndexElementToIndex ( g . content . r e l evantTop i c s [ 0 ] , i e ) ;

}
t h i s . incomingGossip . remove (0 ) ;

}
re turn ;

}

240 pr i va t e void sor t Index ( ArrayList<IndexElement> unsorted , sortBy sortOn )
{

Comparator<IndexElement> comp = new Comp( sortOn ) ;
Co l l e c t i o n s . s o r t ( unsorted , comp) ;

}



A.1. SOURCE CODE 69

pr i va t e void logSupernodeCreat ion ( ) {
t ry {

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "

#######################################################################################\
n" ) ;

l og . wr i t e ( "#\n" ) ;
250 l og . wr i t e ( "# Supernode " + supernodeId + " s u c c e s s f u l l y c r ea ted . \ n"

) ;
l og . wr i t e ( "#\n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og supernode c r e a t i on : " + ex

. getMessage ( ) ) ;
}

}

p r i va t e void logUserAdd ( i n t use r Id ) {
t ry {

260 Fi l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "User " + use r Id + " i s now served . \ n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og adding o f user : " + ex .

getMessage ( ) ) ;
}

}

p r i va t e void logNeighborAdd ( i n t supernodeId ) {
t ry {

270 Fi l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( " I am now a neighbor with Supernode " + supernodeId + " . \

n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og adding o f ne ighbor : " + ex

. getMessage ( ) ) ;
}

}

p r i va t e void logSpreadGoss ip ( i n t time , Supernode neighbor , Gossip g ) {
t ry {

280 St r ing l o gS t r i n g = " I spread go s s i p about " + g . content . contentId +
" f o r t op i c " + g . t op i c . topicName + " to Supernode " +
neighbor . supernodeId + " . \ n" ;

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( l o gS t r i n g ) ;
l og . c l o s e ( ) ;

// i f ( g . content . i sSuperContent ) {
// F i l eWr i t e r measure = new Fi l eWr i t e r ( measureFi le , t rue ) ;
// measure . wr i t e ( t h i s . supernodeId + " ( time = " + time + " ) : " +

l ogS t r i n g ) ;
// measure . c l o s e ( ) ;
// }

} catch ( IOException ex ) {
290 System . out . p r i n t l n ( "Whops : Could not l og spread ing o f go s s i p : " +

ex . getMessage ( ) ) ;
}

}

p r i va t e void logRece ivedGoss ip ( i n t time , Gossip g ) {
t ry {

St r ing l o gS t r i n g = " I r e c e i v ed go s s i p about " + g . content . contentId
+ " f o r t op i c " + g . t op i c . topicName + " . \ n" ;

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;



70 APPENDIX A. SOURCE FILE LISTINGS

l og . wr i t e ( l o gS t r i n g ) ;
l og . c l o s e ( ) ;

300 // i f ( g . content . i sSuperContent ) {
// F i l eWr i t e r measure = new Fi l eWr i t e r ( measureFi le , t rue ) ;
// measure . wr i t e ( t h i s . supernodeId + " ( time = " + time + " ) : " +

l ogS t r i n g ) ;
// measure . c l o s e ( ) ;
// }

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og r e c e i v a l o f go s s i p : " + ex

. getMessage ( ) ) ;
}

}

310 pr i va t e void logContentAdd ( i n t time , Content c ) {
t ry {

St r ing l o gS t r i n g = "Content " + c . contentId + " i s now sto r ed . \ n" ;
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( l o gS t r i n g ) ;
l og . c l o s e ( ) ;
i f ( c . i sSuperContent ) {
F i l eWr i t e r measure = new Fi l eWr i t e r ( measureFi le , t rue ) ;
measure . wr i t e ( "Time " + St r ing . format ( "%4d" , time ) + " : Supernode

" + St r ing . format ( "%2d" , t h i s . supernodeId ) + " : Super
content with id " + c . contentId + " added . \ n" ) ;

measure . c l o s e ( ) ;
320 }

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og adding o f content : " + ex .

getMessage ( ) ) ;
}

}

p r i va t e void logRemovalFromIndex ( Topic t , IndexElement i e ) {
t ry {

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "Content " + i e . contentId + " i s now removed from my

index ( under t op i c " + t . topicName + " ) . \ n" ) ;
330 l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og removal from inde : " + ex .

getMessage ( ) ) ;
}

}

pub l i c void logEnt i r e Index ( ) {
t ry {

F i l eWr i t e r l og = new Fi l eWr i t e r ( indexFi l e , t rue ) ;
l og . wr i t e ( "\nHere i s the e n t i r e index f o r Supernode " + supernodeId

+ " : \ n" ) ;
340 f o r ( IndexEntry top i c : index ) {

f o r ( Topic t : t op i c . entry . keySet ( ) ) {
l og . wr i t e ( " Topic " + t . topicName + "\n" ) ;
so r t Index ( t op i c . entry . get ( t ) , sortBy .RANK) ;
f o r ( IndexElement content : t op i c . entry . get ( t ) ) {

i f ( content . contentId >= 0) {
log . wr i t e ( " Id " + St r ing . format ( "%3d" , content .

contentId ) +
" : SmartRank " + St r ing . format ( "%3d" , content . smartRank

) +
" , BaseRank : " + St r ing . format ( "%3d" , content . baseRank )

+
" , Po s i t i v e s : " + St r ing . format ( "%2d" , content .

numberOfPosit ives ) +
350 " , Negat ives : " + St r ing . format ( "%2d" , content .

numberOfNegatives ) +



A.1. SOURCE CODE 71

" , Added : " + St r ing . format ( "%4d" , content . timeAdded ) +
" . \ n" ) ;

}
}

}
}
log . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og the index : " + ex .

getMessage ( ) ) ;
360 }

}
}

A.1.3 User.java

package master ;

import master . Content ;
import java . u t i l . ArrayList ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

/∗∗
∗ User . java

10 ∗ Purpose :
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/
pub l i c c l a s s User {

i n t use r Id ;
i n t supernodeServer = −1;
Topic t o p i c I n t e r e s t ;

20 Content current lyWatching = nu l l ;
i n t timeStartedWatching ;
ArrayList<Integer> haveSeen = new ArrayList<Integer >() ;

S t r ing l ogD i r e c t o ry = "/home/ t o r k i l /workspace/Master/ l og / us e r s /" ;
S t r ing l o gF i l e ;

/∗∗
∗ Constructor . I t s e t s use r Id and supernodeServer
∗

30 ∗ @param user Id The user id o f the newly c rea ted user
∗ @param supernodeServer The id f o r the supernode to which r eque s t s

w i l l be sent
∗/
pub l i c User ( i n t userId , i n t supernodeServer ) {

t h i s . u se r Id = user Id ;
t h i s . supernodeServer = supernodeServer ;
t h i s . l o gF i l e = logD i r e c t o ry + "User−" + user Id + " . l og " ;

logUserCreat ion ( ) ;
}

40

/∗∗
∗ Constructor . I t s e t s userId , supernodeServer and t o p i c I n t e r e s t
∗
∗ @param user Id The user id o f the newly c rea ted user
∗ @param supernodeServer The id f o r the supernode to which r eque s t s

w i l l be sent
∗ @param t o p i c I n t e r e s t Some top i c the user w i l l s earch f o r
∗/



72 APPENDIX A. SOURCE FILE LISTINGS

pub l i c User ( i n t userId , i n t supernodeServer , Topic t o p i c I n t e r e s t ) {
t h i s . u se r Id = user Id ;

50 t h i s . supernodeServer = supernodeServer ;
t h i s . t o p i c I n t e r e s t = t o p i c I n t e r e s t ;
t h i s . l o gF i l e = logD i r e c t o ry + "User−" + user Id + " . l og " ;

logUserCreat ion ( ) ;
}

/∗∗
∗ Getter f o r use r Id
∗

60 ∗ @return This u s e r s user id
∗/
pub l i c i n t getUserId ( ) {

re turn use r Id ;
}

/∗∗
∗ Se t t e r f o r use r Id
∗
∗ @param user Id The user id to be s e t

70 ∗/
pub l i c void se tUser Id ( i n t use r Id ) {

t h i s . u se r Id = user Id ;
}

/∗∗
∗ Getter f o r t o p i c I n t e r e s t
∗
∗ @return The user ' s t op i c o f i n t e r e s t
∗/

80 pub l i c Topic g e tTop i c In t e r e s t ( ) {
re turn t o p i c I n t e r e s t ;

}

/∗∗
∗ Se t t e r f o r t o p i c I n t e r e s t
∗
∗ @param t o p i c I n t e r e s t The user ' s t op i c o f i n t e r e s t
∗/
pub l i c void s e tTop i c I n t e r e s t ( Topic t o p i c I n t e r e s t ) {

90 t h i s . t o p i c I n t e r e s t = t o p i c I n t e r e s t ;
}

/∗∗
∗ Getter f o r supernodeServer
∗
∗ @return The user ' s connected supernode s e r v e r id
∗/
pub l i c i n t getSupernodeServer ( ) {

re turn supernodeServer ;
100 }

/∗∗
∗ s e t t e r f o r supernodeServer
∗
∗ @param supernodeServer The user ' s connected supernode s e r v e r id
∗/
pub l i c void setSupernodeServer ( i n t supernodeServer ) {

t h i s . supernodeServer = supernodeServer ;
logSetSupernode ( ) ;

110 }

/∗∗
∗ Getter f o r getCurrentlyWatching



A.1. SOURCE CODE 73

∗
∗ @return The id o f the multimedia content cu r r en t l y being watched by

the user
∗/
pub l i c Content getCurrentlyWatching ( ) {

re turn current lyWatching ;
}

120

/∗∗
∗ Se t t e r f o r getCurrentlyWatching
∗
∗ @param current lyWatching The id o f the multimedia content cu r r en t l y

being watched by the user
∗/
pub l i c void setCurrent lyWatching ( Content current lyWatching ) {

t h i s . current lyWatching = current lyWatching ;
}

130 /∗∗
∗ Getter f o r timeStartedWatching
∗
∗ @return The timestamp when the user s t a r t ed to watch cu r r en t l y

watched video
∗/
pub l i c i n t getTimeStartedWatching ( ) {

re turn timeStartedWatching ;
}

/∗∗
140 ∗ Se t t e r f o r timeStartedWatching

∗
∗ @param timeStartedWatching The timestamp when the user s t a r t ed to

watch cu r r en t l y watched video
∗/
pub l i c void setTimeStartedWatching ( i n t timeStartedWatching ) {

t h i s . t imeStartedWatching = timeStartedWatching ;
}

/∗∗
∗ Checking whether the user i s ac t ive , meaning cu r r en t l y watching , or

not
150 ∗

∗ @return boolean value t e l l i n g whether the user i s watching or not
∗/
pub l i c boolean i sAc t i v e ( ) {

i f ( current lyWatching == nu l l ) {
re turn f a l s e ;

} e l s e {
re turn true ;

}
}

160

/∗∗
∗ Method to update l i s t o f watched content
∗
∗ @param c The content id o f the r e c en t l y watched video
∗/
pub l i c void justSawContent ( Content c ) {

haveSeen . add ( c . content Id ) ;
}

170 /∗∗
∗ Method that l o g s user c r e a t i on in a human readab le manner
∗ No parameters or re turn va lue s
∗/
p r i va t e void logUserCreat ion ( ) {



74 APPENDIX A. SOURCE FILE LISTINGS

St r ing supernodeStr ing ;
i f ( supernodeServer != −1) {
supernodeStr ing = " ( served by Supernode " + In t eg e r . t oS t r i ng (

supernodeServer ) + " ) . " ;
} e l s e {

supernodeStr ing = " . " ;
180 }

St r ing top i c ;
i f ( t o p i c I n t e r e s t != nu l l ) {

t op i c = " with i n t e r e s t \"" + t o p i c I n t e r e s t . topicName + "\"" ;
} e l s e {

t op i c = "" ;
}
t ry {

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "\n\n\n\n\n\n\n\n\n\n\n\n\n\n" ) ;

190 l og . wr i t e ( "
#######################################################################################\
n" ) ;

l og . wr i t e ( "#\n" ) ;
l og . wr i t e ( "# User " + use r Id + top i c + " s u c c e s s f u l l y c r ea ted " +

supernodeStr ing + "\n" ) ;
l og . wr i t e ( "#\n\n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og user c r e a t i on : " + ex .

getMessage ( ) ) ;
}

}

200 /∗∗
∗ Method that l o g s the connect ion between the user and a supernode
∗ No parameters or re turn va lue s
∗/
p r i va t e void logSetSupernode ( ) {

t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( " SupernodeServer i s now s e t to " + supernodeServer + " . \ n

" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
210 System . out . p r i n t l n ( "Whops : Could not l og s e t t i n g o f supernode

s e r v e r : " + ex . getMessage ( ) ) ;
}

}

/∗∗
∗ Method that l o g s which three recommendations i t r e c e i v ed from i t s

supernode
∗ No parameters or re turn va lue s
∗
∗ @param rec The recommendation ob j e c t conta in ing a l l th ree

recommendatations
∗/

220 pub l i c void logRecommendation (Recommendation rec ) {
t ry {

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "My Supernode recommends ( f o r t op i c " + th i s .

t o p i c I n t e r e s t . topicName + " ) : " ) ;
l og . wr i t e ( "Rank : " + rec . rankRecommentation + " , form : " + rec .

upAndComingRecommendation + " , time : " + rec .
newcomerRecommendation + " . \ n" ) ;

l og . c l o s e ( ) ;
} catch ( IOException ex ) {

System . out . p r i n t l n ( "Whops : Could not l og recommendation : " + ex .
getMessage ( ) ) ;



A.1. SOURCE CODE 75

}
}

230

/∗∗
∗ Method that l o g s when a user s t a r t s to watch a video
∗
∗ @param time The timestamp when the user s t a r t s watching
∗ @param content id The video ' s id
∗ @param length The length o f the v ideo
∗/
pub l i c void logStartsWatching ( i n t time , i n t content id , i n t l ength ) {

t ry {
240 Fi l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;

l og . wr i t e ( "At time " + time + " I s t a r t watching content " +
content id + " ( with l ength " + length + " ) . \ n" ) ;

l og . c l o s e ( ) ;
} catch ( IOException ex ) {

System . out . p r i n t l n ( "Whops : Could not l og s t a r t watching : " + ex .
getMessage ( ) ) ;

}
}

/∗∗
∗ Method that l o g s that a user i s s t i l l watching a s p e c i f i c p i e c e o f

content .
250 ∗ This method i s only c a l l e d when the time s imu la t i on t i c k s once per

time un i t .
∗ Usual ly , the other time s imu la t i on method i s app l i ed .
∗
∗ @param time The cur rent timestamp
∗ @param content id The video ' s id
∗ @param t imeLef t The number o f time un i t s u n t i l the v ideo i s

f i n i s h e d
∗/
pub l i c void l ogS t i l lWatch ing ( i n t time , i n t content id , i n t t imeLef t ) {

t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;

260 St r ing t l = ( ( In t eg e r ) t imeLef t ) . t oS t r i ng ( ) ;
i f ( ( t imeLef t % 100) == 0) {
log . wr i t e ( "C" ) ;

} e l s e i f ( ( t imeLef t % 10) == 0) {
log . wr i t e ( "X" ) ;

} e l s e i f ( t imeLef t < 10) {
log . wr i t e ( t l ) ;

} e l s e {
l og . wr i t e ( " . " ) ;

}
270 l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og f i n i s h e d watching : " + ex .

getMessage ( ) ) ;
}

}

/∗∗
∗ Method that l o g s when a user i s f i n i s h e d watching a s p e c i f i c v ideo
∗
∗ @param time The cur rent timestamp

280 ∗ @param content id The video ' s id
∗ @param rat e The user ' s eva lua t i on o f the v ideo − e i t h e r "good" or

"bad"
∗/
pub l i c void logFinishedWatching ( i n t time , i n t content id , S t r ing ra t e ) {

t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "\nAt time " + time + " I f i n i s h e d watching content " +



76 APPENDIX A. SOURCE FILE LISTINGS

content id + " and rated i t " + ra t e + "\n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og f i n i s h e d watching : " + ex .

getMessage ( ) ) ;
290 }

}

/∗∗
∗ Method that l o g s that the supernode i s out o f recommendations f o r

the u s e r s
∗ t op i c o f i n t e r e s t . In the ca s e s where t h i s happens , the u s e r s s tays

i d l e f o r some
∗ time , and checks with the supernode l a t e r i f something new has

a r r i v ed .
∗
∗ @param time The cur rent timestamp
∗/

300 pub l i c void logNoth ingAva i lab l e ( i n t time ) {
try {

F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "At time " + time + " my Supernode could not recommend

anything . . . \ n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og no a v a i l a b i l i t y : " + ex .

getMessage ( ) ) ;
}

}
}

A.1.4 Topic.java

package master ;

/∗∗
∗ Topic . java
∗ Purpose : This c l a s s conta in s needed in fo rmat ion per t op i c ( search

que r i e s )
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗

10 ∗/
pub l i c c l a s s Topic {

i n t t op i c Id ;
S t r ing topicName ;

/∗∗
∗ Constructor s e t t i n g an id and top i c name
∗
∗ @param top i c Id The id f o r t h i s t op i c
∗ @param topicName The top i c ( search query ) name

20 ∗/
pub l i c Topic ( i n t top ic Id , S t r ing topicName ) {

t h i s . t op i c Id = top i c Id ;
t h i s . topicName = topicName ;

}

/∗∗
∗ Getter f o r t op i c Id
∗
∗ @return The id f o r t h i s t op i c

30 ∗/
pub l i c i n t getTopicId ( ) {



A.1. SOURCE CODE 77

r e turn top i c Id ;
}

/∗∗
∗ Se t t e r f o r t op i c Id
∗
∗ @param top i c Id The id f o r t h i s t op i c
∗/

40 pub l i c void setTopic Id ( i n t t op i c Id ) {
t h i s . t op i c Id = top i c Id ;

}

/∗∗
∗ Getter f o r the topicName
∗
∗ @return A s t r i n g conta in ing the name o f the t op i c
∗/
pub l i c S t r ing getTopicName ( ) {

50 r e turn topicName ;
}

/∗∗
∗ Se t t e r f o r the topicName
∗
∗ @param topicName A s t r i n g conta in ing the name o f the t op i c
∗/
pub l i c void setTopicName ( St r ing topicName ) {

t h i s . topicName = topicName ;
60 }

}

A.1.5 Content.java

package master ;

import java . u t i l .Random ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

import master . Topic ;

/∗∗
10 ∗ Content . java

∗ Purpose : This c l a s s s t o r e s multimedia content
∗ Among a t t r i b u t e s are ranking , l ength and f o r which search
∗ que r i e s i t i s i n t e r e s t i n g . I t a l s o conta in s a hidden

a t t r i b u t e
∗ f o r how popular i t _really_ i s among us e r s .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/

20 pub l i c c l a s s Content {
i n t contentId ;
i n t baseRank ;
Topic [ ] r e l evantTop i c s ;
i n t l ength ;
double r e a lPopu l a r i t y ;
boolean isSuperContent = f a l s e ;
i n t cumulativeBandwidth ;

S t r ing l ogD i r e c t o ry = "/home/ t o r k i l /workspace/Master/ l og / contents /" ;
30 St r ing l o gF i l e ;

Random genera to r = new Random( ) ;



78 APPENDIX A. SOURCE FILE LISTINGS

/∗∗
∗ Constructor . I t s e t s contentId , baseRank , r e l evantTop i c s and length
∗
∗ @param contentId The content id f o r t h i s v ideo
∗ @param baseRank The base ( o r i g i n a l ) ranking value f o r t h i s v ideo
∗ @param re l evantTop i c s The t op i c s f o r which t h i s content s h a l l

produce search r e s u l t s
∗ @param length The video ' s l ength in terms o f time un i t s

40 ∗/
pub l i c Content ( i n t contentId , i n t baseRank , Topic [ ] r e l evantTopics , i n t

l ength ) {
t h i s . contentId = contentId ;
t h i s . baseRank = baseRank ;
t h i s . r e l evantTop i c s = re l evantTop i c s ;
t h i s . l ength = length ;
t h i s . r e a lPopu l a r i t y = generato r . nextDouble ( ) ;
t h i s . cumulativeBandwidth = 0 ;
t h i s . l o gF i l e = logD i r e c t o ry + "Content−" + contentId + " . l og " ;

50 l ogContentsCreat ion ( ) ;
}

/∗∗
∗ Constructor . I t s e t s contentId , baseRank , re l evantTopics , length ,

popu la r i t y and more
∗
∗ @param contentId The content id f o r t h i s v ideo
∗ @param baseRank The base ( o r i g i n a l ) ranking value f o r t h i s v ideo
∗ @param re l evantTop i c s The t op i c s f o r which t h i s content s h a l l

produce search r e s u l t s
∗ @param length The video ' s l ength in terms o f time un i t s

60 ∗ @param popu la r i ty The video ' s r e a l popu la r i ty . Used as hidden
value and important in eva lua t i on

∗ @paran i sSuper Boolean value t e l l i n g i f t h i s i s so c a l l e d " super
content " , which everybody l i k e s .

∗ Used f o r t e s t i n g and eva lua t i on .
∗/
pub l i c Content ( i n t contentId , i n t baseRank , Topic [ ] r e l evantTopics , i n t

length , double popular i ty , boolean i sSuper ) {
t h i s . contentId = contentId ;
t h i s . baseRank = baseRank ;
t h i s . r e l evantTop i c s = re l evantTop i c s ;
t h i s . l ength = length ;
t h i s . r e a lPopu l a r i t y = popu la r i ty ;

70 t h i s . cumulativeBandwidth = 0 ;
t h i s . i sSuperContent = i sSuper ;
t h i s . l o gF i l e = logD i r e c t o ry + "Content−" + contentId + " . l og " ;

logContentsCreat ion ( ) ;
}

/∗∗
∗ Getter f o r contentId
∗

80 ∗ @return The content ' s id
∗/
pub l i c i n t getContentId ( ) {

re turn contentId ;
}

/∗∗
∗ Se t t e r f o r contentId
∗
∗ @param content id The content ' s id

90 ∗/



A.1. SOURCE CODE 79

pub l i c void setContentId ( i n t contentId ) {
t h i s . contentId = contentId ;

}

/∗∗
∗ Getter f o r baseRank
∗
∗ @return The video ' s base rank
∗/

100 pub l i c i n t getBaseRank ( ) {
re turn baseRank ;

}

/∗∗
∗ Se t t e r f o r baseRank
∗
∗ @param baseRank The video ' s base rank
∗/
pub l i c void setBaseRank ( i n t baseRank ) {

110 t h i s . baseRank = baseRank ;
}

/∗∗
∗ Getter f o r r e l evantTop i c s
∗
∗ @return The video ' s r e l e van t t op i c l i s t
∗/
pub l i c Topic [ ] getRelevantTopics ( ) {

re turn re l evantTop i c s ;
120 }

/∗∗
∗ Se t t e r f o r r e l evantTop i c s
∗
∗ @param re l evantTop i c s The video ' s r e l e van t t op i c l i s t
∗/
pub l i c void setRe levantTopics ( Topic [ ] r e l evantTop i c s ) {

t h i s . r e l evantTop i c s = re l evantTop i c s ;
}

130

/∗∗
∗ Getter f o r l ength
∗
∗ @return The video ' s l ength in time un i t s
∗/
pub l i c i n t getLength ( ) {

re turn l ength ;
}

140 /∗∗
∗ Se t t e r f o r l ength
∗
∗ @param length The video ' s l ength in time un i t s
∗/
pub l i c void setLength ( i n t l ength ) {

t h i s . l ength = length ;
}

/∗∗
150 ∗ Getter f o r r e a lPopu l a r i t y

∗
∗ @return The video ' s r e a l popu la r i ty among use r s
∗/
pub l i c double getRea lPopu lar i ty ( ) {

re turn r e a lPopu l a r i t y ;
}



80 APPENDIX A. SOURCE FILE LISTINGS

/∗∗
∗ Se t t e r f o r r e a lPopu l a r i t y

160 ∗
∗ @param rea lPopu l a r i t y The video ' s r e a l popu la r i ty among us e r s
∗/
pub l i c void se tRea lPopu la r i ty ( double r e a lPopu l a r i t y ) {

t h i s . r e a lPopu l a r i t y = r ea lPopu l a r i t y ;
}

/∗∗
∗ Boolean test on whether the video i s " super content " (what everybody

l i k e s )
∗

170 ∗ @return The boolean value i nd i c a t i n g whether t h i s i s " super content
" or not

∗/
pub l i c boolean isSuperContent ( ) {

re turn isSuperContent ;
}

/∗∗
∗ Se t t e r f o r i sSuperContent
∗
∗ @param isSuperContent The boolean value t e l l i n g whether t h i s i s "

super content " or not
180 ∗/

pub l i c void setSuperContent ( boolean isSuperContent ) {
t h i s . i sSuperContent = isSuperContent ;

}

/∗∗
∗ Getter f o r cumulativeBandwidth
∗
∗ @return The cumulat ive bandwidth f o r t h i s v ideo . This i s a func t i on

o f the number o f
∗ supernodes who host t h i s v ideo

190 ∗/
pub l i c i n t getCumulativeBandwidth ( ) {

re turn cumulativeBandwidth ;
}

/∗∗
∗ Se t t e r f o r cumulativeBandwidth
∗
∗ @param cumulativeBandwidth The cumulat ive bandwidth f o r t h i s v ideo .

This i s a func t i on o f the number o f
∗ supernodes who host t h i s v ideo

200 ∗/
pub l i c void setCumulativeBandwidth ( i n t cumulativeBandwidth ) {

t h i s . cumulativeBandwidth = cumulativeBandwidth ;
}

/∗∗
∗ Method that l o g s content c r e a t i on in a human readab le manner
∗ No parameters or re turn va lue s
∗/
pub l i c void logContentsCreat ion ( ) {

210 t ry {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
l og . wr i t e ( "################## Created ###################\n" ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og content c r e a t i on : " + ex .

getMessage ( ) ) ;
}



A.1. SOURCE CODE 81

}

/∗∗
220 ∗ Method that l o g s which supernode that s e r v e s t h i s content

∗
∗ @param supernodeId The id o f the hos t ing supernode
∗ @param time The timestamp f o r when the supernode added t h i s v ideo
∗/
pub l i c void logServedBy ( i n t supernodeId , i n t time ) {

try {
F i l eWr i t e r l og = new Fi l eWr i t e r ( l o gF i l e , t rue ) ;
S t r ing lmsg = St r ing . format ( "At time %4d I am served by Supernode

%2d (%2d) \n" +
"" , time , supernodeId , t h i s . cumulativeBandwidth ) ;

230 l og . wr i t e ( lmsg ) ;
l og . c l o s e ( ) ;

} catch ( IOException ex ) {
System . out . p r i n t l n ( "Whops : Could not l og content served by : " + ex .

getMessage ( ) ) ;
}

}
}

A.1.6 Recommendation.java

package master ;

import java . u t i l .Random ;

/∗∗
∗ Recommendation . java
∗ Purpose : This c l a s s s t o r e s recommendations o f a l l th ree k inds
∗
∗ @author Tork i l Gr indste in

10 ∗ @version 1 .0
∗
∗/
pub l i c c l a s s Recommendation {

i n t rankRecommentation ;
i n t upAndComingRecommendation ;
i n t newcomerRecommendation ;

Random genera to r ;

20 /∗∗
∗ Constructor , s e t t i n g three recommended contents ( each along each

ax i s )
∗ The c a l l e r o f the con s t ruc to r has a way o f nowing f o r which content

these recommendations apply .
∗
∗ @param rankRecommentation The content id f o r the recommendation

based on smartRank
∗ @param upAndcomingRecommendation The content id f o r the

recommendation based on up−and−coming v ideos
∗ @param newcomerRecommendation The content id f o r the recommendation

based on brand new mate r i a l
∗/
pub l i c Recommendation ( i n t rankRecommentation , i n t

upAndcomingRecommendation , i n t newcomerRecommendation ) {
t h i s . rankRecommentation = rankRecommentation ;

30 t h i s . upAndComingRecommendation = upAndcomingRecommendation ;
t h i s . newcomerRecommendation = newcomerRecommendation ;
t h i s . gene ra to r = new Random( ) ;

}



82 APPENDIX A. SOURCE FILE LISTINGS

/∗∗
∗ Getter f o r the rankRecommendation
∗
∗ @return The content id f o r the recommendation based on smartRank

40 ∗/
pub l i c i n t getRankRecommentation ( ) {

re turn rankRecommentation ;
}

/∗∗
∗ Se t t e r f o r the rankRecommendation
∗
∗ @param rankRecommentation The content id f o r the recommendation

based on smartRank
∗/

50 pub l i c void setRankRecommentation ( i n t rankRecommentation ) {
t h i s . rankRecommentation = rankRecommentation ;

}

/∗∗
∗ Getter f o r the upAndComingRecommendation
∗
∗ @return The content id f o r the recommendation based on recen t

popu la r i t y
∗/
pub l i c i n t getUpAndcomingRecommendation ( ) {

60 r e turn upAndComingRecommendation ;
}

/∗∗
∗ Se t t e r f o r the upAndComingRecommendation
∗
∗ @param upAndcomingRecommendation The content id f o r the

recommendation based on recen t popu la r i ty
∗/
pub l i c void setUpAndcomingRecommendation ( i n t upAndcomingRecommendation )

{
t h i s . upAndComingRecommendation = upAndcomingRecommendation ;

70 }

/∗∗
∗ Getter f o r the newcomerRecommendation
∗
∗ @return The content id f o r the recommendation based on f r e s hn e s s
∗/
pub l i c i n t getNewcomerRecommendation ( ) {

re turn newcomerRecommendation ;
}

80

/∗∗
∗ Se t t e r f o r the newcomerRecommendation
∗
∗ @param newcomerRecommendation The content id f o r the recommendation

based on f r e s hn e s s
∗/
pub l i c void setNewcomerRecommendation ( i n t newcomerRecommendation ) {

t h i s . newcomerRecommendation = newcomerRecommendation ;
}

90 /∗∗
∗ Method that r e tu rn s the content id o f one randomly chosen

recommendation ax i s
∗
∗ @return The content id f o r a recommendation , randomly chosen among

the three ax i s



A.1. SOURCE CODE 83

∗/
pub l i c i n t getRandomRecommendation ( ) {

i n t r ec = generato r . next Int (3 ) ;

i f ( r e c == 0) re turn rankRecommentation ;
e l s e i f ( r e c == 1) return upAndComingRecommendation ;

100 e l s e i f ( r e c == 2) return newcomerRecommendation ;
e l s e re turn −1;

}
}

A.1.7 Gossip.java

package master ;

/∗∗
∗ Gossip . java
∗ Purpose : This c l a s s conta in s goss ip , that i s combinat ions o f contents

and t op i c s .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗

10 ∗/
pub l i c c l a s s Gossip {

Content content ;
Topic t op i c ;

/∗∗
∗ Null c on s t ruc to r
∗
∗/
pub l i c Gossip ( ) {

20 }

/∗∗
∗ Constructor s e t t i n g both content and top i c
∗
∗ @param c The content to go s s i p about
∗ @param t The top i c f o r which the content i s r e l e van t
∗/
pub l i c Gossip ( Content c , Topic t ) {

t h i s . content = c ;
30 t h i s . t op i c = t ;

}

/∗∗
∗ Getter f o r the content
∗
∗ @return The content o f the go s s i p
∗/
pub l i c Content getContent ( ) {

re turn content ;
40 }

/∗∗
∗ Se t t e r f o r the content
∗
∗ @param c The content to spread go s s i p about
∗/
pub l i c void setContent ( Content c ) {

t h i s . content = c ;
}

50

/∗∗



84 APPENDIX A. SOURCE FILE LISTINGS

∗ Getter f o r the top i c
∗
∗ @return The top i c f o r which a s p e c i f i c content i s r e l e van t
∗/
pub l i c Topic getTopic ( ) {

re turn top i c ;
}

60 /∗∗
∗ Se t t e r f o r the t op i c
∗
∗ @param t The top i c f o r which a s p e c i f i c content i s r e l e van t
∗/
pub l i c void setTopic ( Topic t ) {

t h i s . t op i c = t ;
}

}

A.1.8 IndexElement.java

package master ;

/∗∗
∗ IndexElement . java
∗ Purpose : This c l a s s s t o r e s e lements used in the search indexes .
∗ Att r ibute s are ranks , counter s and timestamp when added in

the index .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0

10 ∗
∗/
pub l i c c l a s s IndexElement {

i n t contentId ;
i n t smartRank ;
i n t baseRank ;
i n t numberOfPosit ives = 0 ;
i n t numberOfNegatives = 0 ;
i n t timeAdded = 0 ;

20 /∗∗
∗ Constructor s e t t i n g contentId , baseRank , smartRank and time
∗
∗ @param contentId The content id f o r the content to be indexed
∗ @param baseRank The base rank f o r the content to be indedexed .
∗ @param time The timestamp f o r when the content was added to the

index
∗/
pub l i c IndexElement ( i n t contentId , i n t baseRank , i n t time ) {

t h i s . contentId = contentId ;
t h i s . baseRank = baseRank ;

30 t h i s . smartRank = baseRank ;
t h i s . timeAdded = time ;

}

/∗∗
∗ Getter f o r the content id
∗
∗ @return The content id f o r the indexed element
∗/
pub l i c i n t getContentId ( ) {

40 r e turn contentId ;
}

/∗∗



A.1. SOURCE CODE 85

∗ Se t t e r f o r the content id
∗
∗ @param contentId The content id f o r the indexed element
∗/
pub l i c void setContentId ( i n t contentId ) {

t h i s . contentId = contentId ;
50 }

/∗∗
∗ Getter f o r the smartRank
∗
∗ @return The smartRank value f o r the indexed element
∗/
pub l i c i n t getSmartRank ( ) {

re turn smartRank ;
}

60

/∗∗
∗ Se t t e r f o r the smartRank
∗
∗ @param smartRank The smartRank value f o r the indexed element
∗/
pub l i c void setSmartRank ( i n t smartRank ) {

t h i s . smartRank = smartRank ;
}

70 /∗∗
∗ Getter f o r the baseRank
∗
∗ @return The baseRank f o r the indexed element
∗/
pub l i c i n t getBaseRank ( ) {

re turn baseRank ;
}

/∗∗
80 ∗ Se t t e r f o r the baseRank

∗
∗ @param baseRank The baseRank f o r the indexed element
∗/
pub l i c void setBaseRank ( i n t baseRank ) {

t h i s . baseRank = baseRank ;
}

/∗∗
∗ Getter f o r the numberOfPosit ives

90 ∗
∗ @return The number o f p o s i t i v e feedback given by use r s f o r the

indexed element
∗/
pub l i c i n t getNumberOfPosit ives ( ) {

re turn numberOfPosit ives ;
}

/∗∗
∗ Se t t e r f o r the numberOfPosit ives
∗

100 ∗ @param numberOfPosit ives The number o f p o s i t i v e feedback given by
us e r s f o r the indexed element

∗/
pub l i c void setNumberOfPosit ives ( i n t numberOfPosit ives ) {

t h i s . numberOfPosit ives = numberOfPosit ives ;
}

/∗∗
∗ Getter f o r the numberOfNegatives



86 APPENDIX A. SOURCE FILE LISTINGS

∗
∗ @return The number o f negat ive feedback given by use r s f o r the

indexed element
110 ∗/

pub l i c i n t getNumberOfNegatives ( ) {
re turn numberOfNegatives ;

}

/∗∗
∗ Se t t e r f o r the numberOfNegatives
∗
∗ @param numberOfNegatives The number o f negat ive feedback given by

us e r s f o r the indexed element
∗/

120 pub l i c void setNumberOfNegatives ( i n t numberOfNegatives ) {
t h i s . numberOfNegatives = numberOfNegatives ;

}

/∗∗
∗ Getter f o r the timeAdded
∗
∗ @return The timestamp f o r when the content was indexed
∗/
pub l i c i n t getTimeAdded ( ) {

130 r e turn timeAdded ;
}

/∗∗
∗ Se t t e r f o r the timeAdded
∗
∗ @param timeAdded The timestamp f o r when the content was indexed
∗/
pub l i c void setTimeAdded ( i n t timeAdded ) {

t h i s . timeAdded = timeAdded ;
140 }

}

A.1.9 IndexEntry.java

package master ;

import java . u t i l .Map;
import java . u t i l . HashMap ;
import java . u t i l . ArrayList ;

/∗∗
∗ IndexEntry . java
∗ Purpose : This c l a s s s t o r e s e n t r i e s in the search index .

10 ∗ One entry i s a map from a search query ( aka top i c ) to a l i s t
∗ o f IndexElement ob j e c t s .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/
pub l i c c l a s s IndexEntry {
Map<Topic , ArrayList<IndexElement>> entry = new HashMap<Topic ,

ArrayList<IndexElement>>() ;

20 /∗∗
∗ Null c on s t ruc to r
∗
∗/
pub l i c IndexEntry ( ) {
}



A.1. SOURCE CODE 87

/∗∗
∗ Constructor , i n s t a l l i n g one entry in the index
∗

30 ∗ @param entry An index entry , c o n s i s t i n g o f a mapping from a top i c to
a l i s t o f

∗ IndexElement ob j ec t s , which b a s i c a l l y are content
∗/
pub l i c IndexEntry (Map<Topic , ArrayList<IndexElement>> entry ) {

t h i s . entry = entry ;
}

/∗∗
∗ Constructor , j u s t adding one s p e c i f i c index element to a top i c
∗

40 ∗ @param t The r e l e van t t op i c
∗ @param i e The index element to add f o r t h i s t op i c
∗/
pub l i c IndexEntry ( Topic t , IndexElement i e ) {

ArrayList<IndexElement> newList = new ArrayList<IndexElement >() ;
newList . add ( i e ) ;
entry . put ( t , newList ) ;

}
}

A.1.10 Event.java

package master ;

/∗∗
∗ Event . java
∗ Purpose : This c l a s s s t o r e s event in fo rmat ion . Events are queued to be
∗ executed in a ch r ono l o g i c a l order . Numerous event types are

de f ined .
∗
∗ @author Tork i l Gr indste in
∗ @version 1 .0

10 ∗
∗/
pub l i c c l a s s Event implements Comparable<Object> {

in t timestamp ;
St r ing ac to r ;
i n t ac to r Id ;
eventType eventName ;
i n t ob j e c t Id ; // Can be contentId , userID , etc , depending on the

eventType
Content content ;
Topic t op i c ;

20

enum eventType {
USER_STARTS_WATCHING,
USER_STOPS_WATCHING,
USER_IDLE,
SUPERNODE_SPREADS_GOSSIP,
SUPERNODE_RECEIVES_GOSSIP,
SUPERNODE_FETCHES_VIDEO_FROM_SERVER,
SUPERNODE_RECALCULATION,
NEW_CONTENT,

30 ADD_SUPER_CONTENT,
SYSTEM_PROGRESS,
SYSTEM_TERMINATION

}

/∗∗
∗ Constructor . I t s e t s timestamp , ac to r / ob j e c t i n f o and event type



88 APPENDIX A. SOURCE FILE LISTINGS

∗
∗ @param timestamp Def ine s when an event i s scheduled to occur
∗ @param acto r The ac to r ( sub j e c t ) o f the event . E . g . , "System" or "

Content"
40 ∗ @param acto r Id The id ( i f e x i s t s ) f o r the ac to r

∗ @param eventName The event type . Po s s i b l e cho i c e s are from the l i s t
above , "eventType"

∗ @param ob j e c t Id I f the event has an object , t h i s i s the object ' s id
∗
∗ To understand acto r vs object , th ink o f the event that a user s t a r t s

to watch a video .
∗ Then the user i s the actor , and the video i s the ob j e c t .
∗ Mark that not a l l events have ob e j c t s .
∗/
pub l i c Event ( i n t timestamp , St r ing actor , i n t actorId , eventType

eventName , i n t ob j e c t Id ) {
t h i s . timestamp = timestamp ;

50 t h i s . ac to r = acto r ;
t h i s . a c to r Id = acto r Id ;
t h i s . eventName = eventName ;
t h i s . ob j e c t Id = ob j e c t Id ;

}

/∗∗
∗ Constructor . I t s e t s timestamp , ac to r / ob j e c t i n f o and event type
∗
∗ @param timestamp Def ine s when an event i s scheduled to occur

60 ∗ @param acto r The ac to r ( sub j e c t ) o f the event . E . g . , "System" or "
Content"

∗ @param acto r Id The id ( i f e x i s t s ) f o r the ac to r
∗ @param eventName The event type . Po s s i b l e cho i c e s are from the l i s t

above , "eventType"
∗ @param content The content app l i c ab l e f o r t h i s event
∗ @param top i c The top i c app l i c ab l e f o r t h i s event
∗/
pub l i c Event ( i n t timestamp , St r ing actor , i n t actorId , eventType

eventName , Content content , Topic t op i c ) {
t h i s . timestamp = timestamp ;
t h i s . ac to r = acto r ;
t h i s . a c to r Id = acto r Id ;

70 t h i s . eventName = eventName ;
t h i s . content = content ;
t h i s . t op i c = top i c ;

}

/∗∗
∗ Method to dec ide the ch r ono l o g i c a l order o f two events
∗
∗ @param o The other ob j e c t to compare to t h i s
∗ @return −1 i f " t h i s " event occurs be f o r e " that "

80 ∗ @return 0 i f the events occur s imu l taneous ly
∗ @return 1 i f " that " event occurs be f o r e " t h i s "
∗/
pub l i c i n t compareTo ( Object o ) {

Event that = (Event ) o ;
i f ( t h i s . timestamp < that . timestamp ) re turn −1;
i f ( t h i s . timestamp > that . timestamp ) re turn 1 ;
r e turn 0 ;

}

90 /∗∗
∗ Getter f o r the timestamp value
∗
∗ @return The timestamp f o r the event
∗/
pub l i c i n t getTimestamp ( ) {



A.1. SOURCE CODE 89

r e turn timestamp ;
}

/∗∗
100 ∗ Se t t e r f o r the timestamp value

∗
∗ @param timestamp The timestamp to s e t f o r the event
∗/

pub l i c void setTimestamp ( i n t timestamp ) {
t h i s . timestamp = timestamp ;

}

/∗∗
110 ∗ Getter f o r the ac to r

∗
∗ @return The acto r o f the event
∗/
pub l i c S t r ing getActor ( ) {

re turn ac to r ;
}

/∗∗
∗ Se t t e r f o r the ac to r

120 ∗
∗ @param acto r The ac to r to s e t f o r t h i s event
∗/
pub l i c void setActor ( S t r ing ac to r ) {

t h i s . ac to r = acto r ;
}

/∗∗
∗ Getter f o r the ac to r id
∗

130 ∗ @return This event ' s ac to r id
∗/
pub l i c i n t getActorId ( ) {

re turn ac to r Id ;
}

/∗∗ Se t t e r f o r the ac to r id
∗
∗ @param acto r Id The ac to r id to s e t f o r t h i s event
∗/

140 pub l i c void se tActor Id ( i n t ac to r Id ) {
t h i s . a c to r Id = acto r Id ;

}
}

A.1.11 CumulativeBandwidth.java

package master ;

import java . u t i l . Comparator ;

/∗∗
∗ CumulativeBandwidth . java
∗ Purpose : This c l a s s i s used to measure how much bandwidth s p e c i f i c

p i e c e s o f
∗ content has a v a i l a b l e .
∗

10 ∗ @author Tork i l Gr indste in
∗ @version 1 .0
∗
∗/



90 APPENDIX A. SOURCE FILE LISTINGS

pub l i c c l a s s CumulativeBandwidth {
i n t contentId ;
i n t bandwidth ;

/∗∗
∗ Constructor . I t s e t s contentId and bandwidth

20 ∗
∗ @param contentId The content id f o r a v ideo
∗ @param bandwidth The cumulat ive bandwidth f o r the video . Cumulative

bandwidth
∗ i s a func t i on o f the number o f s e rv ing supernodes
∗/
pub l i c CumulativeBandwidth ( i n t contentId , i n t bandwidth ) {

t h i s . contentId = contentId ;
t h i s . bandwidth = bandwidth ;

}

30 /∗∗
∗ Getter f o r contentID
∗
∗ @return The video ' s content id
∗/
pub l i c i n t getContentId ( ) {

re turn contentId ;
}

/∗∗
40 ∗ Se t t e r f o r contentID

∗
∗ @param contentId The video ' s content id
∗/
pub l i c void setContentId ( i n t contentId ) {

t h i s . contentId = contentId ;
}

/∗∗
∗ Getter f o r bandwidth

50 ∗
∗ @return The video ' s cumulat ive bandwidth
∗/
pub l i c i n t getBandwidth ( ) {

re turn bandwidth ;
}

/∗∗
∗ Se t t e r f o r bandwidth
∗

60 ∗ @param bandwidth The video ' s cumulat ive bandwidth
∗/
pub l i c void setBandwidth ( i n t bandwidth ) {

t h i s . bandwidth = bandwidth ;
}

/∗∗
∗ Method f o r comparing two cumulativeBandwidth ob j e c t s
∗
∗ @return The bandwidth o f the v ideo with h i ghe s t cumulat ive

bandwidth
70 ∗/

pub l i c s t a t i c c l a s s Comp implements Comparator<CumulativeBandwidth> {

@Override
pub l i c i n t compare ( CumulativeBandwidth o1 , CumulativeBandwidth o2 ) {

re turn new In t eg e r ( o2 . bandwidth ) . compareTo ( o1 . bandwidth ) ;
}

}



A.1. SOURCE CODE 91

}


