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Figure 0.1: Cite: “The front of the new Norwegian bank note shows a portrait of Kristian
Birkeland against a stylized pattern of the aurora and a very large snowflake. Birkeland’s
terrella experiment, which consisted of a small, magnetized sphere representing the Earth
suspended in an evacuated box, is shown on the left. When subjected to an electron beam a
glow of light would appear around the magnetic poles of the terrella, simulating the aurora.
The back of the note shows a geographic map of the north polar regions including Scandinavia
on the right and northern Canada on the bottom. A ring encircling the magnetic dip pole
(located near Resolute, Canada) symbolizes the location of auroral phenomena including the
satellite-determined statistical location of Birkeland currents. Birkeland’s original depiction
of field-aligned currents published in 1908 is shown in the lower right corner” [17].
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Abstract

In this thesis we have analyzed the Auroral Electrojet (AE) Index over the years
2000 to 2005, a time series consisting of over 3 000 000 data points. The aim is to
describe this data as a multi-fractal stochastic process. We first introduce a class of
random multiplicative measures, which provide the multi-fractality in the stochastic
processes that will be defined later. We also review the theory of fractal dimensions and
scaling functions, before introducing the Multifractal Model of Asset Returns (MMAR),
[15].

The scaling properties of various versions of the MMAR model are compared with
the scaling function of the AE Index, and through this we describe the multi-fractal
properties of the AE Index.

Additionally, we have studied probability density functions (pdf) at different time
scales, and used this to compare the stochastic models with the AE data.

Finally we have tested our diagnostic tools on simulated multi-fractal models. These
experiments show that the methods are capable of detecting multi-fractality. The
results are good if we average over several independent realizations of the processes.
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1 Introduction

An elctrojet is an electric current in the E-region of the Earth’s ionosphere. They are
generally divided into the Equatorial Elecrojet, above the magnetic equator, and the Auroral
Electrojets (AE) near the northern and southern polar circles. The AE currents are carried
primarily by electrons at altitudes from 100 to 150 km.

The AE Index is derived from geomagnetic variations in the horizontal component of
the magnetic field observed at selected observatories along the auroral zone in the northern
hemisphere. It is recorded with 1 minute resolution. Until 2004, the AE Index was derived
from 12 magnetometers, with five of them lying north of the Arctic Circle, see figure Ap-
pendix 6.1 [21], [13]. The data is normalized for each station by averaging the data of the
five international quietest days of the month. Then among the data from all the stations at
each given universal time (UT), the largest and smallest values are selected. The difference
of the largest (AU) and the smallest (AL) values defines the AE Index. The AU and AL
indices are intended to express the strongest current intensity of the eastward and westward
auroral electrojets respectively. Thus the AE Index represents the overall activity of the
electrojets [13], [5].

The influence of the solar wind plasma and the interplanetary magnetic field on the
magnetosphere is a central theme in solar-terrestrial physics. The AE Index is now widely
used by researches in physics, aeronomy, studies of sub-storm morphology, the behavior of
communication satellites, radio propagation and scintillation, and the coupling between the
interplanetary magnetic field and the Earth’s magnetosphere [10]. Moreover there is an
ongoing debate whether global climatic changes are related to the sun spot activity. The AE
Index provides information which is central to this question.

In this thesis we study the fluctuations of the AE Index on time scales up to 102 minutes.
These are called the sub-storm scales, and the fluctuations we investigate are belived to
characterize the complex internal dynamics of the magnetosphere.

When studying the dynamics of complex systems such as the magnetosphere, we are
primeraly interested in extracting robust characteristics of the underlying dynamics. We will
investigate the stochastic properties using fractal modeling and try to classify the structure
of the family of probability density functions.

It is interesting to note that the models we apply to investigate the AE Index actually
are borrowed from the modern theory of financial time series. The development of this
theory started with Bachelier (1900) [1] who focused on independent and normal distributed
fluctuations as a probabilistic description of financial prices. Actual data tend though to
have temporal dependence. Also, the tails of the pdfs of observed data are found to exhibit
fatter tails than a normal distribution.

Later with Engle (1982) [8] and Bollerslev (1986) [3] models such as ARCH/ GARCH
became popular. Developments like FIGARCH (Baillie, Bollerslev and Mikkelsen (1996) [2])
took the models closer to the actual financial data.

Multi-fractal measures were introduced in Mandelbrot (1972) [14] and have been applied
to many physical phenomena such as the distribution of turbulent dissipation, stellar matter,
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mineral composition and much more. Recently, multi-fractals have also been proposed as a
description of finacial data. Multifractality can be seen as a property of certain measures,
and combining such measures with self-similar stochastic processes produce so-called multi-
fractal processes. Therefore, multifractality will be referred to both measures and processes
depending on the object at hand. The Multifractal Model of Asset Returns (MMAR) of
Mandelbrot [15], is a spesific class of stochastic processes designed to describe multifractality
in financial time series. We will try to investigate whether the MMAR model gives a useful
description of the AE Index. Through construction of scaling functions we want to determine
the multifractality of the AE Index. Further we will look at probability density functions
(pdf) and compare theoretical results for our models with estimated pdfs in the AE Index.
As an inspection we will study synthetic data to see if we can accurately estimate scaling
functions.

The thesis is structured as follows: In section 2 we introduce the simplest multi-fractal
measure, a Bernoulli measure. An extension to Markov measures follows. Then we will look
at singularity spectra of measures and curves. In section 3 we introduce probability density
functions. We analyse the AE Index and apply the tools we have introduced so far. In the
last section we test our diagnostic tools on simulated MMAR models.

We remark that the MMAR model is a composition of a fractional Brownian motion
with the distribution function of a random measure on the real line. In the construction of
Mandelbrot, this random measure is a so-called log-normal multiplicative cascade. In order to
better describe the AE Index we have modified the construction so that the multifractality
is given by randomized Bernoulli measures or randomized Markov measures. We briefly
consider log-normal cascades in section 3.2.
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2 Multi-fractal Stochastic Processes

In this section we introduce the stochastic processes that will be considered in this thesis. We
begin by constructing and randomizing multi-fractal measures on the interval. In sections
2.3-2.6 we use these random measures to define multi-fractal stochastic processes.

2.1 The Iterative Multiplicative Binomial Measure

The binomial measure, the Bernoulli measure or sometimes the Besicovitch measure, is the
simplest multi-fractal measure on the interval I = [0, 1]. We construct an iterated function
system defined by maps g1, ..., gN : I → I. Where gi = aix + bi with ai ∈ (0, 1) and
int(gi(I)) ∩ int(gj(I)) = ∅ for i 6= j. We choose:

gi =
x

N
+
i− 1

N
.

Define ∆i1,...,in = g1 ◦ ... ◦ gn(I). Let Σ+
N = {1, ..., N}N = {(i1i2i3...)|ik ∈ {1, ..., N}} and

χ : Σ+
N → I be given by

χ : i = (i1i2i3...) 7→ unique element of
⋂
n≥1

∆i1,...,in . (2.1)

The map χ is continuous, so we can construct a Borel measure ν on I by choosing a Borel
measure µ on Σ+

N . Let ν = χ∗µ i.e.

ν(∆i1,...,in) = µ(χ−1(∆i1,...,in)) = µ([i1...in]),

where
[i1 · · · in] =

{
j ∈ Σ+

N |j1 = i1, ..., jn = in
}

is the cylinder of the finite sequence i1, ..., in. We choose numbers P1, ..., PN ∈ (0, 1) where
P1 + ...+ PN = 1 and define measures by

ν(∆i1,...,in) = µ([i1...in]) = Pi1 · · ·Pin .
Given µ (does not have to be a Bernoulli measure) we can construct a random measure.

Let TN be the set of all sequences on the form

k = (k1...kNk11...k1N ...k21...k2N ...kNNk111...)

where ki1...in ∈ {1, ..., N}, and for all i1, ..., in : {ki1...in|ik = 1, ..., N} = {1, ..., N}. Then
{[ki1ki1i2 ...ki1...in ] |ik = 1, ..., N} = {[i1 · · · in] |ik = 1, ..., N}, and TN ' Σ+

N !. We can now let
the uniform Bernoulli measure on Σ+

N ! induce a probability measure u on TN . LettingM(I)
be the space of Borel probability measures on the interval I, we define a random measure:

(TN ,B, u)→M(I)

k → νk
(2.2)
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where νk = χ∗µk and µk([i1...in]) = µ([ki1ki1i2 ...ki1...in ]).
For a Bernoulli measure with N = 2 the construction is as follows:
At stage k = 0 we start with the uniform probability measure µ0 on I = [0, 1]. In step

k = 1, the measure µ1 uniformly spreads mass P1 on the subinterval ∆1 =
[
0, 1

2

]
and mass

P2 on subinterval ∆2 =
[

1
2
, 1
]
. In the next step, k = 2, the subinterval ∆1 =

[
0, 1

2

]
is split

into two subintervals ∆11 =
[
0, 1

4

]
and ∆12 =

[
1
4
, 1

2

]
, each given a fraction (P1 and P2) of the

mass P1. The same procedure is applied to the subinterval ∆2 =
[

1
2
, 1
]
. We obtain:

µ2

(
0,

[
1

4

])
= P1P1 , µ2

([
1

4
,
1

2

])
= P1P2 , µ2

([
1

2
,
3

4

])
= P2P1 , µ2

([
3

4
, 1

])
= P2P2.

Iterating this procedure generates an infinite sequence of measures.
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Figure 2.1: Densities of a simple iterated procedure with probabilities P1 = 1/3 and P1 = 2/3.
N = 2. (a): Iteration k = 2. (b): Iteration k = 3. (c): Iteration k = 4. (d): Iteration k =
12.

The limit of this infinite sequence is a binomial measure (or a Bernoulli measure on the
interval). A simple binomial measure is illustrated in figure 2.1. The binomial measure is a
singular probability measure since it has no density. Because of the relation P1 +P2 = 1, and
noting that each stage of the multiplicative cascade preserves the mass, we call the procedure
conservative.
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Instead of choosing the allocation of mass in a strict deterministic way, we can extend
the procedure to include randomness. At each subinterval in the iterated procedure the mass
is distributed using a random “treestructure”, breaking down the intervals according to the
random element k ∈ TN . This is further explained by M. Rypdal (2009) [19] and discussed
in assignment by M.S. (2009) [20]. An example of a random Bernoulli measure is shown in
figure 2.2.
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Figure 2.2: Random measure with iteration k = 11.

2.1.1 Generalization to Markov Measures

Further extensions can be to consider a Markov measure µM. Let ‖πij‖ be a N ×N matrix
with πij ∈ (0, 1) and for all j :

∑
j πij = 1. Let P = (P1, ..., PN)T be a normalized (P1 + ...+

PN = 1) eigenvector of πT and define the measure as:

νM(∆i1,··· ,in) = µM([i1, ..., in]) = Pi1πi1i2πi2i3 · · · πin−1in . (2.3)

The randomization of a Markov measure follows 2.2.

2.2 The Multi-fractal Spectrum

A multi-fractal object can be caracterized by its so-called singularity spectrum. For mea-
sures, this spectrum consists of the Hausdorff dimensions of the level sets of the pointwise
dimensions. For curves, such as the realzations of a stochastic process, the singularity spec-
trum is constructed from the Hausdorff dimensions of the level sets of the local Hölder
exponents. We start by considering the multi-fractal spectrum of a Bernoulli measure on
the interval.
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2.2.1 Hausdorff dimension

The Hausdorff-Besicovitch dimension is defined as follows: For Z ⊆ R, let

mα(Z) = lim
ε→0

inf
diam(U)≤ε

∑
U∈U

diam(U)α

where the infimum is taken over all open covers of Z with diameter ≤ ε.
Assume that mα(Z) < +∞. Let β > α. Then

mβ(z) = lim
ε→0

inf
diam(U)≤ε

∑
U∈U

diam(U)αdiam(U)β−α

≤ lim
ε→0

εβ−α inf
diam(U)≤ε

∑
U∈U

diam(U)α = 0.

This shows that there exists a number αc such that mα(Z) = +∞ for α < αc and mα(Z) = 0
for α > αc. The Hausdorff dimension is:

dimH(z) = αc = inf {α | mα(z) = 0} .

For a Borel measure ν on R the pointwise dimensions are

dν(x) = lim
ε→0

log ν(Bε(x))

log ε
,

where Bε(x) is a ε-ball centered in x.

Actually we consider the upper and lower limits: dν(x) = limε→0
log ν(Bε(x))

log ε
and dν(x) =

limε→0
log ν(Bε(x))

log ε
. If dν(x) 6= dν(x) then the pointwise dimension is not defined at x, and x is

considered an irregular point.
The multi-fractal spectrum of the measure ν is:

fν(α) = dimH {x ∈ R | dν(x) = α}

where dimH denotes Hausdorff dimension.
M. Rypdal (2009) [19] gives a detailed explanation of how to calculate the multi-fractal

spectrum of a Bernoulli-measure. Let N = 2 for simplicity. We will consider µq to be a
Bernoulli measure on Σ+

2 which induces a measure νq = χ∗µq on the interval. The measure
µq is defined by the probabilities

P
(q)
1 = λT1 P

q
1

P
(q)
2 = λT2 P

q
2 ,

where P1, P2 are the probabilities that define µ, and λ1, λ2 are the contraction rates for the
iterated function system that define the map χ : Σ+

2 → I. We must require that:

P
(q)
1 + P

(q)
2 = 1.
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This can be written as
λT1 P

q
1 + λT2 P

q
2 = 1. (2.4)

Clearly T is dependent on q. We differentiate equation 2.4 and obtain

−T ′(q) =
(logP1)P

(q)
1 + (logP2)P

(q)
2

(log λ1)P
(q)
1 + (log λ2)P

(q)
2

.

Let P̂ , λ̂: Σ+
2 → R be the simple functions P̂ (i) = Pi1 and λ̂(i) = λi1 respectivly. Then

the following holds: ∫
log P̂ dµq = logP1µq([1]) + logP2µq([2])

= (logP1)P
(q)
1 + (logP2)P

(q)
2 .

This gives

−T ′(q) =

∫
log P̂ dµq∫
log λ̂dµq

.

The measures µq are Bernoulli measures, and all Bernoulli measures are ergodic with
respect to the shift map. Thus we can apply Birkhoff’s theorem:∫

log P̂ dµq = lim
n→+∞

1

n

n−1∑
k=0

log P̂ (σki)

= lim
n→+∞

1

n

n−1∑
k=0

logPik

for µq-almost all i ∈ Σ+
2 , where σ : Σ+

2 → Σ+
2 is the (forward) shift map defined by:

σ(i1i2i3 . . .) = (i2i3 . . .).

Hence, for µq-almost all i ∈ Σ+
2 , we have

−T ′(q) =

∫
log P̂ dµq∫
log λ̂dµq

= lim
n→+∞

∑n−1
k=0 logPik∑n−1
k=0 log λik

= lim
n→+∞

logPi1 · · ·Pin
log λi1 · · ·λin

= lim
n→+∞

log µ([i1...in])

log diam(∆i1...in)

= lim
n→+∞

log ν([∆i1...in ])

log diam(∆i1...in)

= lim
n→0

log ν(Bε(χ(i)))

log ε
= dν(χ(i)).
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We define α(q) = −T ′(q) and Kα(q) = {x ∈ I | dν(x) = α(q)}, where x = χ(i). It follows
that νq(Kα(q)) = 1. Next we observe that for χ(i) ∈ Kα(q):

dνq(χ(i)) = lim
n→+∞

log ν(∆i1...in)

log diam(∆i1...in)

= lim
n→+∞

logP
(q)
i1
· · ·P (q)

in

log λi1 · · ·λin

= lim
n→+∞

log(λTi1P
(q)
i1

) · · · (λTinP
(q)
in

))

log λi1 · · ·λin

= T + q lim
n→+∞

logPi1 · · ·Pin
log λi1 · · ·λin

= T + qdν(x)

= T + qα(q).

Since νq(Kα(q)) = 1 and dνX(x) = T + qα(q) for all x ∈ Kα(q), we must have dimHKα(q) =
T + qα(q). This actually follows from a theorem of L. S. Young [16]. To summarize:

dimHKα(q) = f(α(q)) = T (q) + qα(q)

α(q) = −T ′(q)
λ
T (q)
1 P q

1 + λ
T (q)
2 P q

2 = 1.

(2.5)

We note that T (q) is known as a scaling function of the measure. f(α) is related to T by a
Legendre transform fν(α(q)) = Tν(q) + qα(q).

2.3 Multi-fractal Time

We will now demonstarte how a random multi-fractal measure can be used to construct a
multi-fractal stochastic process. We begin by constructing a process {Θµ(t) | t ∈ [0, 1]}. This
process will be called the multi-fractal time, and it is defined by

Θµ(t) : (TN ,B, u)→ R
Θµ(t)(k) = νk([0, t])

where (TN ,B, u) are defined as in section 2.1.
We define the structure function of the stochastic process {Θµ(t)}:

Sq(∆t) = E [Θµ(∆t)q] .
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For ∆t = N−n we observe that:

E [Θµ(∆t)q] =

∫
νk([0,∆t])

qdx(k)

=
1

Nn

∑
k1,k11,...,k1...1

µk ([1...1])q

=
1

Nn

∑
k1,k11,...,k1...1

µ ([k1k11...k1...1])q

=
1

Nn

∑
i1,i2,...,in

µk ([i1i2...in])q .

Define a scaling function ζΘµ(q) by E [Θµ(∆t)q] ∼ d(q)∆tζΘµ (q) and observe that:

ζΘµ(q) = lim
n→∞

logE
[
ζΘµ

(
1
Nn

)q]
logN−n

= lim
n→∞

−n logN + log
∑

i1,...,in

µ ([i1...in])q

−n logN

= 1 + Tν(q) = 1 +
1

q − 1
Dq(χ∗µ),

where Dq(ν) is the Hentschel-Procaccia dimension spectrum as mentioned by Pesin [16].
The structure functions Sq(∆t) = E [Θ(∆t)q] and scaling functions ζ(q) are important

constructions for analysis of mulit-fractal stochastic processes. We will discuss these objects
in more detail in the following sections.

2.4 Multifractality

A self-similar stochastic process {X(t)|t ≥ 0} satisfy the scaling rule:

X(ct)
d
= cHX(t),

where
d
= denotes equality in distribution.

When considering multi-fractal processes one must generalize this relationship. We as-
sume there exists an independent process {M(c)} that satisfies:

X(ct)
d
= M(c)X(t). (2.6)

A self-similar process will then satisfy M(c) = cH . With stationary increments, the scaling
become:

X(t+ c∆t)−X(t)
d
= M(c) [X(t+ ∆t)−X(t)] .

We require that if 0 < a, b ≤ 1 the process M takes positive values and the random
scaling factors satisfy:

10



M(ab)
d
= M1(a)M2(b),

where M1 and M2 are independent copies of M . Assuming the expectation is finite we get
E[M(ab)q] = E[M(a)q]E[M(b)q] for all q ≥ 0. With finite moments, the process M satisfies:

E[M(c)q] = cζ(q).

Under these conditions we say that X(t) has scaling-properties. We then have

E [|X(∆t)|q] = E [|M(∆t)|q] E [|X(1)|q]
= c(q)∆tζ(q),

(2.7)

with c(q) = E [|X(1)|q].
We will later consider a more detailed explanation of the scaling function ζ(q). A self-

similar process, such as a fractional Brownian motion, is mono-fractal with scaling function
ζ(q) = Hq. Thus it is a linear function. Brownian motion gives ζ(q) = q/2.

According to Mandelbrot (1997) [15] a multi-fractal stochastic process may be defined as
the following:

Definition 2.1. A stochastic process {X(t)} is called multi-fractal if it has stationary in-
crements and satisfies:

E([|X(∆t)|q]) = c(q)∆tζ(q) , for all t ∈ T , q ∈ Φ

where T and Φ are intervals on the real line, ζ(q) and c(q) are functions with domain Φ.
Moreover, we assume that T and Φ have positive lengths, and that 0 ∈ T , [0, 1] ⊆ Φ. If ζ(q)
is linear the process is called mono-fractal, and if ζ(q) is strictly concave we have a truly
multi-fractal process.

A more general definition would be that the limit

ζ(q) = lim
∆t→0

log [|X(∆t)|q]
log ∆t

exists for all q in an open interval I ⊆ R, with ζ(q) being strictly concave on I.
The structure function is a concave function as shown in equation (2.6). If q = 0 we get

ζ(0) = 0 regardless of the process at hand.
As long as the moments exists, a self similar process {X(t) | t ≥ 0} with self similarity

exponent H, satisfies the relation X(∆t)
d∼ ∆tHX(1) and E(| X(∆t) |q) = ∆tHqE(| X(1) |q).

Hence
ζ(q) = Hq.

In the case of self-similar processes with linear structure function, the scaling behavior
is determined by a unique parameter H. The scaling function is then called uniscaling,
unifractal or monofractal.
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2.5 Construction of the MMAR Model

We start by defining fractional Brownian motion:

Definition 2.2. Let H ∈ (0, 1]. A Gaussian process {BH(t) | t ≥ 0} is a fractional Brownian
motion if

• E [BH(t)] = 0 , ∀t ≥ 0

• E [BH(1)2] < +∞

• E [BH(t) BH(s)] = 1
2

[
t2H + s2H − |t− s|2H

]
E[BH(1)2]

If E [BH(1)2] = 1 we say that we have a standard fractional Brownian motion. A Brow-
nian motion is a special case of the fractional Brownian motion with H = 1/2. It is easy to
show that BH(t) is H-self-similar and has stationary increments.

Let the process {Θµ(t) | t ∈ [0, 1]} where Θµ(t)(k) = νk([0, t]) and ν = χ∗µ be as con-
structed in section 2.1 or 2.1.1. Let {BH(t) | t ≥ 0} be a fractional Brownian motion defined
on a probability space (Ω,F ,m). We define a stochastic process {XH,µ(t) | t ∈ [0, 1]} by:

XH,µ(t) : (Ω× TN ,F ⊗ B,m× u)→ R
XH,µ(t)(ω, k) = BH(Θµ(t)(k))(ω).

The structure function of such a compound process is:

Sq(∆t) = Em×u [|XH,µ(∆t)(ω, k)|q] .

We find that

E [|XH,µ(∆t)|q] =

∫
Ω×TN

|BH(Θµ(∆t)(k))|q d(m× u)

=

∫
TN

∫
Ω

|BH(Θµ(∆t)(k))|q dm(ω)

 du(k)

=

∫
TN

c(q)Θµ(∆t)(k)Hqdu (k)

= c(q)Eu
[
Θµ(∆t)Hq

]
.

The scaling function is then:

ζXH,µ(q) = lim
∆t→∞

logE [|XH,µ(∆t)(ω, k)|q]
log ∆t

= lim
∆t→∞

log c(q) + logE [|XH,µ(∆t)(ω, k)|q]
log ∆t

= ζΘµ(Hq).

A theorem given by M. Rypdal [19]:

12



Theorem 2.1. Let {X(t) | 0 ≤ t ≤ 1} be a compound process (MMAR-process) generated
from a σ-invariant measure µ ∈M(Σ+

2 ). Then

• {X(t)} has stationary increments.

• ζXH,µ(q) = 1 + Tχ∗µ(Hq)

For a standard Brownian motion B(t) the scaling function is ζB(q) = 1 + Tν(
q
2
). In

general, knowing that Tν(1) = 0 we can find the Hurst exponent H as ζX( 1
H

) = 1.

2.6 Structure Functions

Let {X(t)|t ≥ 0} be a real valued stochastic process. We define the structure functions as:

Sq(∆t) = E[|X(∆t)|q].

If the stochastic process has stationary increments we have:

For all t ≥ 0 : Sq(∆t) = E[|X(t+ ∆t−X(t)|q],

and if the process is self-similar with exponent H:

(a > 0) : Sq(a∆t) = E[|Xa(∆t)|q] = aHqE [|X(∆t)|q] = aHqSq(∆t)

⇒ Sq(∆t) = c(q)∆tHq.

We define the scaling function ζ(q) by the relation

Sq(∆t) ∼ ∆tζ(q) as ∆t→ 0,

i.e.

ζ(q) = lim
∆t→0

logSq(∆t)

log ∆t
.

Using Hölders inequality and letting t ∈ (0, 1), we get:

E[|X(∆t)|tq+(1−t)q′ ] = E[(|X(∆t)|q)t(|X(∆t)|q′)1−t] ≤ E[|X(∆t)|q]tE[|X(∆t)|q′ ]1−t

(for ∆t < 1)⇒ lim
∆t→0

logStq+(1−t)q′(∆t)

log ∆t

≥ lim
∆t→0

t
logSq(∆t)

log ∆t
+ lim

∆t→0
(1− t) logSq′(∆t)

log ∆t

⇒ ζ(q) is a concave function.

When considering processes defined over unbounded intervals we can only determine
multiscaling over bounded intervals. The range of such bounds may be defined on arbitrarily
large time intervals. In practice time series are always finite. We may restrict to studying
processes on the interval I = [0, 1].
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2.7 Structure functions for Measures

Let µ be a Borel measure on Σ+
N and ν = χ∗µ be the induced measure on the interval I with

respect to the map χ constructed in section 2.1. Define the structure function of ν as

Sq(∆t) =
∑
i1,...,in

µ([i1...in])q.

The scaling function is assumed to satisfy the relation: Sq(∆t) ∼ ∆tTν(q). In a more general
setting the scaling function of the measure is:

Tν(q) = lim
ε→0

log infUε
∑

U∈Uε , ν(U)q

log ε
,

where infimum is taken over all ε-covers of Uε of I. For a random measure νk = χ∗µk as
constructed in section 2.1 (section 2.1.1) we have:

Tνk(q) = Tν(q) = lim
n→∞

log
∑
i1...in

µ([i1...in])q

log ∆t
.

If µ is a Bernoulli-measure we have

Tνk(q) = lim
n→∞

log
∑
i1...in

(pqi1 · · · p
q
in

)n

−n logN
= lim

n→∞

log(pq1 + ...+ pqN)n

−n logN
= − log(pq1 + ...+ pqN)

logN
,

where ∆t = N−n.

2.7.1 Markov Measures

If µ is a Markov measure with transition matrix π, then

Tν(q) = −
log ρ(

∥∥πqij∥∥)

logN
(2.8)

where ∆t = N−n and ρ denotes the spectral radius. Function 2.8 is a special case of Bowen’s
equation [16].
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3 Analysis of the Auroral Electrojet Index
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Figure 3.1: The logarithmic AE Index and its increments.

Let XAE(t) denote the AE Index. We will study the time series YAE(t) = logXAE(t).
We take the logarithm in order to make the data better suited for modeling with stochastic
processes with stationary increments. This is the same transformation that is (always)
applied to financial price data. In fact, for positive time series, such as financial data or
the AE Index, there is often a relationship between the amplitude of the increment at time
t and the value of the signal at time t. Such a relationship is inconsistent with stationary
increments. however, this effect (more of less) vanishes after we have taken the logarithm
of the signal. A segment of YAE(t) is shown in figure 3.1. In total we consider 3 156 480
data points of the AE Index over the years 2000 to 2005. We will try to extract some robust
structures that can characterize the underlying physical processes in the formation of the
AE currents.

In figure 3.2(a) we have shown the structure functions of the AE Index with q from 1
to 7, and over time scales from 21 to 28. We have taken log-log values of the structure
functions to make linear comparisons. The scaling function as shown in figure 3.2(b) suggest
multi-fractal behavior. The dotted intersection at ζ( 1

H
) = 1 indicate the Hurst exponent of

the outer process at about 0.41.
The process |YAE(t+1)−YAE|

1
H can be seen as an approximation to the underlying mea-

sure with distribution function Θ(t). In figure 3.3 we have estimated the structure functions
of this extracted measure. The scaling function of the measure Tν(q) almost overlaps the the
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Figure 3.2: (a): The structure functions of the AE Index for values of q from 1 to 7, and time
scales from 21 to 28. (b): The estimated scaling function (least squares method). The dotted
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H
) = 1 indicate the estimated Hurst exponent H = 0.41. The continuous

concave curve is the computed scaling function of the AE Index.
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P2 = 1− P1.

scaling function of the AE Index when we apply the relation ζX(q) = 1 + Tν(Hq).
For a Bernoulli measure with probabilities P = {P1, P2}, where P1 + P2 = 1, the corre-

sponding theoretical scaling function is ζ(q) = − log(P q1 +P q2 )

log 2
. The probabilities that best fit

the scaling function of the AE Index were found to be P1 = 0.26 and P2 = 1 − P1, as seen
in figure 3.4.

The observed multi-fractality gives reasons to discuss the dimension function Dq as given
by i.a. Feder 1989 [9]. The spectrum of fractal dimensions Dq for the AE Index is shown in
figure 3.5. A monofractal measure would give constant Dq. For Bernoulli measures Dq equals
the Hentchel-Procaccia dimension spectrum defined earlier. The multi-fractal spectrum of
the AE Index is shown in figure 3.6 where α is the pointwise dimensions of the extracted
measure.

3.1 Probability Density Functions

In the MMAR model the probability density function(s) (pdf) PX,t(x), of X(t), are

PX,t(x) =

∫
(PB,s(x) Pθ,t(s))ds, (3.1)

where we recall that BH(t) and θ(t) are independent.
We know that BH(t) is H-self similar:

BH(at)
d
= aHB(t) for all a > 0.
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Figure 3.6: The multi-fractal spectrum of the AE Index calculated from the extracted mea-
sure via the Legendre transform.
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Substituting x = az where dz
dx

= 1
a

and z = x
a

we get

PB(x) = PZ(z)
dz

dx

= PZ

(x
a

) 1

a
⇓

PB,at(x) =
1

aH
PB,t

( x

aH

)
.

Hence PB,t(0) ∼ t−H .
By definition of fractional Brownian motion we have expectation

E [BH(∆t)] = 0

for all ∆t ≥ 0, and
BH,s(x) ∼ N(0, σB(s)).

The variance Var(BH(∆t)) satisfies the relation Var(BH(∆t)) = E [B2
H(∆t)] = ∆t2H . Thus

σB = sH , where H is the Hurst exponent. The pdf of BH(t) is then

PB,s(x) =
1√

2πs2H
exp

(
− x2

2s2H

)
,

where the peak scales as PB,s(0) = 1√
2π
s−H ∼ s−H .

Considering the probability density function in equation 3.1 we can find the scaling of
the peaks of PX,t as:

PX,t(0) =
1√
2π

∫ (
s−H Pθ,t(s)

)
ds

=
1√
2π
E
[
θ(t)−H

]
∼ tζθ(−H) = tζX(−1).

(3.2)

We note that ζX(−1) may not exist. However, we can just extend the definition of ζX(q) to
all q ∈ R through the formula

ζX(q) = ζΘ(Hq).

Let the scaling exponent ν be defined by PX,∆t(0) ∼ ∆t−ν .
Then ζX(−1) = −ν. In the AE dataset we found ν to be approximately 0.52. This is

found from estimations of peaks of pdf, see figure 3.7. We can check this result in figures
3.3(b) and 3.4. Observing that H 6= ν indicate multi-fractal behavior, supporting a curvature
of the scaling function. A monofractal process would yield equality of the scaling parameters,
i.e. H = ν.

19



100 101 102 103 104 105 106
10-1

100

101

Dt

Pe
ak

of
pd

f:
P

X
,D

tH0
L

Figure 3.7: Estimating ν by the scaling of the peaks of PX,t. We found ν to be approximately
0.52.

3.2 Log-normal Multiplicative Cascades

Let Θ(t) = m([0, t]) where m is a random multi-fractal measure on I = [0, 1]. The measure
can be constructed as a b-adic multiplicative cascade. A b-adic interval is

∆i1,...,in =

[
(0.i1i2...in)b, (0, i1i2...in)b +

1

bn

]
.

The measure of a b-adic interval is defined as

m(∆i1,...,in) = ωi1ωi1i2 ...ωi1,...,inMi1,...,in ,

where ωi are independent, identically distributed, non-negative random variables and

Mi1,...,in = lim
k→+∞

∑
j1,...,jk

ωi1...inj1ωi1...inj1j2 · · ·ωi1...inj1...jk .

as defined by Mandelbrot, Fisher and Calvet 1997 [15].
We assume E [ω] = 1

b
, thus on an average conserving the mass at each step in the

construction. We choose to let ω have a log-normal distribution with parameters µ and σ.
For this distribution the relations for the mean and variance are (i.a. Edwin and Kunio [7]):

E [ω] =
1

b
= exp

(
µ+

1

2
σ2

)
µ = −1

2
σ2 − log(b).
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At construction level n ∈ N:

E

[∏
k≤n

ωi1...ik

]
= nµ = − log ∆t

log b

(
−1

2
σ2 − log(b)

)
=

σ2

2 log b
log ∆t+ log ∆t

= (1 + λ) log ∆t

where λ = σ2

2 log b
and σ is the standard deviation of logω, and ∆t = b−n. We have

Var

(∏
k≤n

ωi1...ik

)
= (exp

(
σ2
)
− 1) exp

(
2µ+ σ2

)
= nσ2

= − log ∆t

log b
σ2 = −2λ log ∆t.

The distribution of this product is the log-normal with pdf

Pθ,∆t(x) =
1

x
√
−4πλ log ∆t

exp

(
−(log x− (1 + λ) log ∆t)2

−4λ log ∆t

)
. (3.3)

We then have an expression of the probability density function of the process X(t):

PX,∆t(x) =

∫ +∞

0

(PBs(x) Pθ,∆t(s)) ds

=

∫ +∞

0

1√
2πs2H

exp

(
− x2

2s2H

)
Pθ,∆t(s)ds,

(3.4)

where Pθ,∆t(s) is given by equation 3.3.
By Mandelbrot, Fisher and Calvet [15] we known that the scaling function of the time

process is ζθ(q) = logbE [ωq]. It follows that ζX(q) = ζθ(Hq) = logbE
[
ωHq

]
:

E
[
θ(∆t)Hq

]
=

∫ +∞

0

sHqPθ(s)ds

=

∫ +∞

0

sHq−1

√
−4πλ log ∆t

exp

(
−(log s− (1 + λ) log ∆t)2

−4λ log ∆t

)
ds

∼ ∆tHq(1+λ−Hqλ)

⇓
ζX(q) = (1 + λ)Hq − λ(Hq)2.

(3.5)

From the AE Index we found the Hurst exponent to be H = 0.41 through the relation
ζX( 1

H
) = 1. Solving the scaling function in equation 3.5 knowing ζX(−1) = −ν we get:

λ =
ν −H

H(1 +H)
≈ 0.19.
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Figure 3.8: Pdfs of PY,∆t with the parameters estimated from the AE Index: H = 0.41,
ν = 0.52 and λ = 0.19.

A plot of the pdfs of YAE(t+ ∆t)−YAE(t) using the estimated parameters found from the
AE Index is shown i figure 3.8.

Better results are found in the case where Θ(t) is induced by a random Bernoulli-measure.
As previous we choose time increment ∆t = 2−n. The scaling function of the process X(t)
becomes:

ζX(q) = 1−
log
(
PHq

1 + PHq
2

)
log 2

,

and for the AE data set we found Hurst exponent H = 0.41 and ν = 0.52. Using the relation
ζX(−1) = −ν, the probabilities are:

P−H1 − P−H2 = 2ν+1

⇓
P1 = 0.26 and P2 = 1− P1.

Using equation 3.4 we find the probability density function to X(t+∆t)−X(t) when the
time process is the distribution function of a random Bernoulli measure. Remembering that
the time process is defined as Θµ(t)(k) = (χ∗µk)([0, t]), the mass of ∆i1,...,in is a product on
the form s = Pi1 · · ·Pin = P k

1 P n−k
2 . Suppose that we have n independent trials, each with

probability P1 of “success” and P2 of “failure”. The number of successes that occur in the
n trials are then said to be binomial random distributed with parameters (n, p) (i.a. Ross
[18]). For ∆t = 2−n the probability density function of the increment Θ(t + ∆t) − Θ(t) is
then:

Pθ,∆t(s) =
1

2n

n∑
k=0

(
n

k

)
δ(s− PHk

1 P
H(n−k)
2 ),

where δ is the delta function. Applying to the equation 3.4 gives the probability density
function of the process X(t):
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PX,∆t(x) =
1√

2π2n

n∑
k=0

(
n

k

)
PHk

1 P
H(n−k)
2 exp

(
− x2

2P 2Hk
1 P

2H(n−k)
2

)
. (3.6)
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Figure 3.9: The probability density functions of YAE(t+ ∆t)− YAE(t) for ∆t = 20, ..., 26.

In figure 3.10 we model the pdfs for the AE Index using the probabilities and parameters,
P1 = 0.26, H = 0.41, and ν = 0.52. Replacing the parameters in equation 3.6 we find
appropriate theoretical distributions for the AE dataset.

In figure 3.11 we notice an agreement with overlapping spreading of tails in the pdfs for
varying ∆t in the AE Index compared with the constructed model (represented as dashed
curves). In the AE dataset we estimate distributions for time scales from 20 to 26. Best
estimates are found with the time scales from 2−6 to 2−11 in the model.

In figure 3.12 we have compared the AE Index with a Brownian motion which scales
as a monofractal. This gives collapsing and overlapping probability density functions, with
shapes that are independent of time scale ∆t.

Takalo et al. [22] used fractional Brownian motion as a model of the auroral indices. Some
discuss the use of truncated Lévy motions i.a. Kabin and Papitashvili 1998 [12] suggesting
a closer relation to Lévy flights representing the interplanetary magnetic field; Consolini et
al. 1997 [6] mention that magnetic field fluctuations in the polar cap seem to be compatible
with truncated Lévy flight processes; Hnat et al. 2002 [11] stating that the pdf of the velocity
and magnetic field fluctuations are well described by the Gamma distribution arising from
a finite range Lévy walk; Bruno et al. 2004 [4] find pdfs resembling Lévy flight behavior
of interplanetary solar-wind fluctuations in the inner heliosphere. Fractional Lévy motion
has been applied representing AE Index among other space plasma physics time series, in
Watkins [23]. The AE dataset has a scaling function which arguably flattens out near 1 for
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Figure 3.10: Modeling of pdfs for the AE Index. The modeling process is a compound
fractional Brownian motion with the distribution function of a Bernoulli measure. The
probabilities and parameters are those related to the AE Index i.e. P1 = 0.26, P2 = 1− P1,
H = 0.41, and ν = 0.52.

higher values of q. This does not require a multiplicative process to explain such property.
The concave behavior can be understood as a bifractality of the truncated fractional Lévy
motion. Due to numerical estimations a curved break around 1 is expected.

As is seen in figure 3.14 there is little support of the AE Index being a monofractal
random process. Certainly Lévy motions have non-Gaussian distributions, but they are self-
similar and the pdfs should collapse upon each other under re-scaling with respect to the
exponent ν.
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Figure 3.11: (a): Comparing the pdfs of the AE Index with the constructed model with
distribution function of a Bernoulli measure, in figure 3.10. The pdfs of AE Index are
represented as the continuous curves. The estimated pdfs are represented as the dashed
curves. (b): Comparisons with the pdfs in figure 3.8.
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Figure 3.12: (a): Realization of a Brownian motion. (b): The corresponding increments.
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Figure 3.13: Re-scaled pdfs of Y (t+ ∆t)− Y (t) where Y (t) is a Brownian motion.

-15 -10 -5 0 5 10 15
10-5

10-4

0.001

0.01

0.1

Dy

D
t-

Ν
P

y,
D

tHD
y�D

tΝ
L

Figure 3.14: Comparing pdfs of a Brownian motion with the pdfs constructed from the AE
Index. The pdfs of the Brownian motion are represented as the continuous curves. The
estimated pdfs, of the AE Index, are represented as the dashed curves.

26



4 Conclusion

We have analysed the AE Index over the years 2000 to 2005, and in total of over 3 000
000 data points. Using MMAR-models we have constructed scaling functions of different
processes which we have compared with scaling function of the AE Index. Through testing
of the scaling functions, determination of fractal dimensions, and considering the shape of
the pdfs we have been able to classify multi-fractal properties of the AE Index.

We have applied a compound stochastic process with a random Bernoulli measure. The
parameters of the measure were estimated to P1 = 0.26, P2 = 0.74. The Hurst exponent was
estimated by ζ( 1

H
) = 1, and ν which is defined by ζ(−1) = −ν. In the AE Index we found

ν to be approximately ν = 0.52. The Hurst exponent of the AE Index was estimated to be
0.41. Observing that ν 6= H is an indication of multifractality. The MMAR-model seems to
describe the fluctuations in the AE Index well.

Additionally, we have studied probability density functions (pdf) at different time scales
Finding exact expressions of the pdfs, using the parameters estimated from the AE In-
dex, produced results comparable with the numerical pdf of the AE Index. We discovered
non-Gaussian distribution and spreading of tails for varying time scales in the AE Index,
demonstrating deviation from self-similarity. These are characteristics related to multifrac-
tality.

Finally we have tested our diagnostic tools on simulated MMAR models. These ex-
periments show that the methods are capable of detecting multifractality, related to the
calculation of scaling functions. The results are good if we average over several independent
realizations. More details of these findings are in the following chapter.
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5 Testing of Methods on Synthetic Data

In this section we simulate various processes in order to test our diagnostic methods.

5.1 Brownian Motion
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Figure 5.1: (a): Realization of a Brownian motion. (b): Several realizations of a Brownian
motion.

In figure 5.1 we have shown realizations of a Brownian motion. A Brownian motion
have self similarity exponent H = 1/2. We will mainly use Brownian motion, rather than
fractional Brownian motion, as a model of the “outer” process, since the accuracy of our
methods appear to be better for H ≈ 0.5.
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Figure 5.2: (a): Structure functions of a Brownian motion for q = 1, 2, ..., 8. The process is
simulated with 105 data points. (b): Calculated scaling function using least squares method.

In figure 5.2 (a) we show the structure functions Sq(∆t) = E [|B(∆t)|q] of a Brownian
motion for integer q = 1, 2, ..., 8. We find the linear approximation, using least squares
method, from the structure functions. In figure 5.2(b) we show a good linear fit to the
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scaling function ζ(q) = Hq, with H = 0.49. This is in accordance with the theoretical Hurst
exponent H = 1/2. This diagnostic tool seems to work well on monofractal processes.

5.2 Multi-fractal Processes
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Figure 5.3: (a): Density of an approximation to a random measure. Here we have constructed
a Bernoulli measure µ as introduced in section 2.1. (b): A multi-fractal process where the
time process Θ(t) is based on a Bernoulli measure.

In figure 5.3(a) a random Bernoulli measure is constructed from an iterative procedure
as introduced in section 2.1. In figure 5.3(b) we show a realization of the compound multi-
fractal process. Visually it can be hard to distinguish from a monofractal realization. If the
Hurst exponent H of a multi-fractal realization is the same as of a monofractal sample, then
the multi-fractal realization will tend to be more jagged and fluctuating in its appearance.
This is however not reliable evidence of multi-fractality.
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Figure 5.4: (a): Structure functions of a simulated multi-fractal process. (b): The corre-
sponding scaling function. From ζ( 1

H
) = 1 we find H = 0.51.

In figure 5.4 the structure functions and scaling function are computed from a Brown-
ian motion composed with the distribution function of a random Bernoulli measure. The
empirical Hurst exponent was found to be 0.51 which is close to the actual Hurst exponent,
H = 1/2. The dotted line represents a linear function with slope Hq as would be the case
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of a monofractal process. The concave scaling function confirms the multi-fractal behavior,
as expected.

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0005

0.0010

0.0015

0.0020
D

en
si

ty
of

ap
pr

ox
im

at
io

n

HaL

0 10 000 20 000 30 000

0

1000

2000

3000

4000

5000

t

B
HΘ

@0
,tD

L

HbL

æ
æ

æ
æ

æ
æ

æ
æ

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç

ç

ç

ç

á

á

á

á

á

á

á

á

0 1 2 3 4 5
0

2

4

6

8

10

12

log 2Dt

lo
g

S q
 I2

D
t M

S q
 H2

L

HcL

æ

æ

æ

æ

æ

æ

æ

æ

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

q

Ζ
HqL

HdL

Figure 5.5: (a): Density of approximation to the random Bernoulli measure. (b): Realization
of the MMAR-process with Hurst exponent H = 1/2. (c): Structure functions of the
MMAR-process for q = 1, ..., 7 and time scales from 21 to 28. (d): Scaling function of the
MMAR-process calculated using least squares method The Hurst exponent is found to be
0.50.

Making use of the estimated Hurst exponent we compute |X(t + ∆t) − X(t)| 1
H where

X(t) = B(Θ(t)). This is an approximation to the measure “hidden” in the MMAR-process.
By construction we have defined a specific measure for this MMAR-process realization.

We have the possibility to compare the actual measure and the extracted measure, as shown
in figure 5.6. By comparison we see clear similarities.

In figure 5.7 we see reasonable similarities between the distribution functions of the (con-
tinuous curve) measure and (dashed) the extracted measure. We have made normalization
of the extracted measure on the unit interval.

The scaling function of the realization of the MMAR-process ζ(q) can be compared
with the scaling function of ζΘ(Hq) = 1 + Tν(Hq) where Tν(Hq) is the scaling function of
the extracted measure. We see reasonable overlapping curves in figure 5.8(a). The scaling
function computed in 5.5(d) is represented as the bounded continuous curve. The theoretical
scaling function from relation ζX(q) = 1 + ζν(Hq) is represented as the dashed line. We find
almost identical results when using the exact expression of the Bernoulli measure, where the

scaling function of the measure is: Tν(q) = − log(P q1 +P q2 )

2
. This is seen i figure 5.8(b).
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Figure 5.6: Comparing the extracted measure of the realization and the constructed mea-
sure for this realization. (a): The extracted measure (b): The actual measure used in the
construction of the process.
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Figure 5.10: The multi-fractal spectrum for the extracted measure of a multi-fractal stochas-
tic process.

Another point of view is to consider the multi-fractal spectrum. In figure 5.10 the spec-
trum shows appreciable multi-fractality. So far we have mostly considered Bernoulli mea-
sures. In figure 5.11 we constructed a process with a Markov measure as the multi-fractal
time component. In figure 5.11(a) we see the Markov measure visually having strong sim-
ilarities to the Bernoulli measure. In fact if π11 = π21 and π12 = π22 we get the Bernoulli
measure. Considering the structure functions of the MMAR-process in (c) and the esti-
mated scaling function in (d) we find the Hurst exponent to be H = 0.46. The actual Hurst
exponent is H = 1/2. We also notice a concave scaling function. So far there is nothing
essentially different of what we would get using a simple Bernoulli measure. The mayor
differences lies in the construction of the Markov measure where we have to determine more
free parameters. In our situation we have a probability matrix

Π =

(
π11 π21

π12 π22

)
=

(
1
4

3
4

1
3

2
3

)
.

A comparison of the estimated scaling function with the theoretical scaling function
following the relation

ζX(q) = 1−
log ρ

(∥∥∥πHqij ∥∥∥)
log 2

is shown in figure 5.12. Our experience is that modeling with a Markov measure requires
larger samples to ensure satisfactory results, as compared to Bernoulli measures. It could
be of interest to further expanding the Markov measure to higher order measures but this is
not discussed in this paper.
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Figure 5.11: (a): Density of approximation to a random measure. (b): Realization of
X(t) = B(Θ(t)) where Θ(t) is the distribution function of a randomized Markov measure.
(c): Structure functions of the process. (d): Estimated scaling function of the process and
calculation of the Hurst exponent which is found to be H = 0.46.
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5.2.1 Fractional Brownian Processes as the “outer” process
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Figure 5.13: (a): Density of approximation to Bernoulli measure. (b): A realization of
X(t) = BH(Θ [0, t]) with H = 2/5. (c): Structure functions of the process. (d): The related
Scaling function. The Hurst exponent is found to be 0.38. This is close to the actual value
H = 2/5.

We now consider the case where the “outer” process is a fractional Brownian motion
and Θ(t) is the distribution function of a random Bernoulli measure. In figure 5.13(b)
the fractional Brownian motion has H = 2/5. The process is constructed from an inverse
Fourier method. In figure 5.13(a) the random iterated measure corresponds to the previously
discussed Bernoulli measure. As shown in figure 5.13(c) we find the structure functions which
give the estimated scaling function in (d). The structure functions are close to linear, making
it easy to find linear approximation of the structure functions. In (d) we notice the concave
scaling function gives the Hurst exponent H = 0.38.

A realization of the process |X(t + ∆t) − X(t)| 1
H where X(t) = B (Θ(t)) is shown in

figure 5.14(a). By construction we know the exact measure. This is shown in (b).
In figure 5.15 we compare the distribution functions of the measures of figure 5.14(a).

Slight deviations are expected but generally we will conclude it to be a good approximation.
We compare the scaling function of the multi-fractal process with the scaling function of
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Figure 5.14: (a): The increments of the process at powers of 1
H

represents the extracted
measure. (b): Density of an approximation to the constructed measure.
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Figure 5.15: Comparisons between the constructed Θ(t), represented by the dashed curve,
and the extracted Θ(t) of the process, represented as the continuous curve.
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Figure 5.16: (a): The theoretical scaling function, represented as the dashed curve, from the
relation ζ(q) = 1 + Tν(Hq). The solid curve that almost overlaps the dashed curve is the
scaling function found from the multi-fractal process. (b): The theoretical scaling function

of a Bernoulli measure
(
Tν(q) = − log(P q1 +P q2 )

log 2

)
as the dashed curve, and is compared with the

scaling function of the multi-fractal process.

the extracted measure following the relation ζX(q) = 1 + Tν(Hq) where X is the compound
process, and Tν is the scaling function of the extracted measure. This can be seen in figure
5.16(a). We also compare the scaling function with a the theoretical expression Tν(q) =

− log(P q1 +P q2 )

log 2
. This reveals similar overlapping results as shown in figure 5.16(b). Here we

found P1 = 0.33 and P2 = 1 − P1 which is almost equal to the true probabilities, i.e.
P1 = 1/3 and P2 = 1− P1.

The spectrum of dimensions of the process reveal the multi-fractality of the process, as
is shown in figure 5.17. Figure 5.18 shows a non-trivial singularity spectrum, as is expected
from the model. These tests indicate multi-fractal behavior.
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Figure 5.17: The dimension spectrum Dq(µ) for the process X(t) = BH (Θ(t)).
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Figure 5.18: The multi-fractal spectrum for the process X(t) = BH (Θ(t)).
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5.3 Modeling Remarks

In several plots of Appendix 6.2 to 6.13 we see structure functions and scaling functions for
realizations of different length. It seems that longer realizations tend to give more reliable
results. Making statistical statements upon too short realizations will be deceptive.

When modeling we can always compute an estimate for the Hurst exponent and compare
with the actual Hurst exponent. In figures (Appendix 6.2 to 6.13) the estimated Hurst
exponent was found to vary between 0.47 and 0.54 when the true Hurst exponent is H = 1/2.
Large deviations between estimated and actual Hurst exponents should encourage us to
increase the resolution. This is true especially when considering structure functions of larger
order.
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Figure 5.19: Errorbar plot of the scaling function of 20 realizations of a Brownian motion
composed with the distribution function of a Bernoulli measure. Each of length 211. The
solid curve represents the average scaling function.

It would be a good approach trying to average several realizations. In figure 5.19 we have
20 realizations of the process. Each of length 211. The solid concave curve is the estimated
average scaling function of the 20 realizations, and as expected gives a rather satisfactory
estimate. The error bars represent the greatest departures of the most crooked scaling
functions for each q. From this figure 5.19 it would seem questionable to conclude concave
behavior since it is possible that the actual scaling might even be linear. For small moments
there is little difference between the average and each realization. Naturally higher moments
require more data thus giving increasing errors. We would be encouraged to increase the
datasets, and in fact this does give much better estimates.

Making a more diversified error plot of several averaged realizations gives an interesting
result. As shown in figure 5.20 we see a tendency that the scaling functions are more concave
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box-whisker plots more strictly estimating the extreme values. Each realization is of length
211.
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than contrary. The average scaling function is maintained and most of the realizations are
found relatively close to it. The error boxes are box-whisker-plots and are bounded by dashed
curves maintaining the greatest deviating scaling function estimates.
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Figure 5.21: (a): Measure constructed with a 3-adic partitioning of the unit interval into
subintervals. (b): The corresponding composite process.
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Figure 5.22: (a): Structure functions of the compound process with the 3-adic measure. (b):
Scaling function and estimated Hurst exponent H = 0.51.

Instead of the dyadic Bernoulli measure one might change the partitioning. A 3-adic
partitioning of the unit interval into subintervals at each stage is shown in figure 5.21. It
might seem to be good relations between such an approach and the estimated improvements
of the structure functions and thus also the scaling function as shown in figure 5.22. Here
we got an estimated Hurst exponent of H = 0.51 which is reasonable.

Several realizations with this multi-fractal process are averaged in figure 5.23 obtaining
the average scaling function. Here each sample path is of length 37. The probabilities
in the iterated measure are P =

{
1
4
, 1

2
, 1

4

}
. It is noticeable in Appendix figures 6.14 to

6.25 that increasing resolution and number of sample paths influence the estimated scaling

41



æ

æ

æ

æ

æ

æ

æ

æ

1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

q

Ζ
HqL

Figure 5.23: Average scaling function over several realizations with box-whisker plots more
strictly estimating the extreme values. The underlying process is a composition of a Brownian
motion and the distribution function of a 3-adic Bernoulli measure. Each realization is of
length 37.
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function. Generally larger samples tend to ensure improved results. With a higher number
of averaged scaling functions the diagnostic tools seems to give good results at the cost of
increased computation time. The figures in the Appendix 6.14 to 6.25 consists of several
averaged scaling functions.
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6 Appendix
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Figure 6.1: The 12 magnetometers deriving AE data by 1992 (2004) [13].
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Figure 6.2: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 214 (c): Structure function (d):
scaling function
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Figure 6.3: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 214 (c): Structure function (d):
scaling function
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Figure 6.4: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 214 (c): Structure function (d):
scaling function
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Figure 6.5: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 214 (c): Structure function (d):
scaling function
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Figure 6.6: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 215 (c): Structure function (d):
scaling function
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Figure 6.7: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 215 (c): Structure function (d):
scaling function
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Figure 6.8: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 215 (c): Structure function (d):
scaling function
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Figure 6.9: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 215 (c): Structure function (d):
scaling function
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Figure 6.10: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 216 (c): Structure function (d):
scaling function
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Figure 6.11: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 216 (c): Structure function (d):
scaling function
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Figure 6.12: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 216 (c): Structure function (d):
scaling function
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Figure 6.13: (a): Bernoulli measure (b): Brownian motion combined with the distribution
function of the measure shown in (a). Number of points: 216 (c): Structure function (d):
scaling function
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Figure 6.14: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 211. Number of repetitions: 40.
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Figure 6.15: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 212. Number of repetitions: 40.
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Figure 6.16: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 213. Number of repetitions: 40.
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Figure 6.17: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 214. Number of repetitions: 40.
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Figure 6.18: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 211. Number of repetitions: 100.
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Figure 6.19: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 211. Number of repetitions: 200.
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Figure 6.20: Average scaling function of a Brownian motion composed with the distribution
function of a 3-adic Bernoulli measure. Number of points: 37, with a 3-adic iterated measure.
Number of repetitions: 40.
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Figure 6.21: Average scaling function of a Brownian motion composed with the distribution
function of a 3-adic Bernoulli measure. Number of points: 37, with a 3-adic iterated measure.
Number of repetitions: 100.
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Figure 6.22: Average scaling function of a fractional Brownian motion (H = 2/5) composed
with the distribution function of a Bernoulli measure. Number of points 211. Number of
repetitions: 40.
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Figure 6.23: Average scaling function of a fractional Brownian motion (H = 3/5) composed
with the distribution function of a Bernoulli measure. Number of points: 210. Number of
repetitions: 100.
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Figure 6.24: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 211. Number of repetitions: 40.
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Figure 6.25: Average scaling function of a Brownian motion composed with the distribution
function of a Bernoulli measure. Number of points: 211. Number of repetitions: 70.
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