
INF-3981

Master’s Thesis in

Computer Science

Improving Freshness of Web-Extracted

Metadata

by

Tord-Arne Heimdal

December, 18th, 2009

Faculty of Science & Technology
Department of Computer Science

University of Tromsø

Abstract

Live video search is emerging as a platform for multimedia production and
entertainment service. Such systems rely on a stream of live video and meta-
data describing the video content. A high quality source for such metadata
can be found on the web. Identifying and extracting metadata from web
pages can be done by crawling and scraping. However, general crawler po-
liteness rules limit per-site polling frequency, and therefore the freshness of
the retrieved data is also limited.

In this thesis we present a metadata extraction system capable of com-
bining high metadata freshness, while at the same time adhering to polling
politeness rules. To achieve this, the proposed solution uses a pool of web
sources containing overlapping information scheduled in a round-robin fash-
ion. Our experiments and analysis show that our system is capable of keep-
ing the average metadata freshness higher than any single-source solution,
while at the same time adhere to polling politeness rules.

i

Acknowledgements

First, I would like to thank H̊avard D. Johansen, my supervisor, for letting
med work with him on this thesis. Also, his valuable feedback, support, and
knowledge about scientific work has been much appreciated.

Thanks to Professor Dag Johansen, my co-adviser, for valuable ideas and
epidemic enthusiasm, and to all the members of the iAD project.

Thanks to my fellow students and friends during the last five years, Børge
Jakobsen, Robin Pedersen, and Joakim Simonsson.

Also, thanks to the technical staff at the Computer Science Department,
for support, and to Jan Fuglesteg for all help during my student years.

Special thanks to my family & friends.

iii

Contents

1 Introduction 1
1.1 Problem Definition . 2
1.2 Scope and Limitations . 2
1.3 Method and Approach . 2
1.4 Outline . 3

2 Background and Related Work 5
2.1 Football Metadata Sources . 5

2.1.1 Yahoo! Sports . 5
2.1.2 Live Goals . 9
2.1.3 Sky Sports . 12
2.1.4 Comparison . 15

2.2 Web Extraction . 16
2.3 Web mining . 17

2.3.1 Crawling The Web . 17
2.3.2 Scraping The Web . 18

3 Design and Implementation 21
3.1 System Architecture . 21
3.2 Orchestrator . 22

3.2.1 Implementation . 23
3.3 Crawler and Scraper . 25

3.3.1 Implementation . 26
3.4 Database . 31

4 Evaluation 33
4.1 Raw-Data Gathering . 33
4.2 Scraping Experiment . 34
4.3 Event Completeness Analysis 37
4.4 Freshness Analysis . 38

5 Conclusions 41
5.1 Concluding Remark . 41
5.2 Future Work . 41

v

A Source Code 47
A.1 Orchestrator . 47
A.2 Crawler, Scraper and Mysql Interface 50
A.3 Experiment . 57

List of Figures

2.1 Overview Yahoo! Eurosport 6
2.2 Yahoo! Slider Feature . 7
2.3 Yahoo! Sample HTML code 9
2.4 Live Goals Site Layout . 10
2.5 Live Goals Player Stats . 11
2.6 Sky Sports Layout . 12
2.7 Sky Sample HTML code . 14

3.1 System Architecture . 22
3.2 Crawling Process Flow Diagram 25
3.3 Scraping Process . 26
3.4 Firebug XPath Extraction . 29
3.5 Database Entity Relationship Model 32

4.1 Event Distribution . 38
4.2 Freshness Per Event . 39
4.3 Average Freshness . 40

vii

List of Tables

2.1 Match Facts . 15
2.2 Events . 16

4.1 Source Urls . 33
4.2 Scraping Experiment Statistics 36
4.3 Comments Source Distribution Statistics 37

ix

Chapter 1

Introduction

Live video search is emerging as a platform for multimedia production and
entertainment services [15]. Such systems rely on a stream of live video
and metadata describing the video content. This allows composition of
personalized videos that can be played out as one continuous stream on-the-
fly. However, the quality of these services depends on how fast the video
can be made searchable and presented to the user. Therefore, the rate at
which the system gains access to fresh metadata is very important.

A key input to such systems are text-based metadata that describes the
video content minute for minute. Such metadata can be generated in many
ways, ranging from automatic extraction by analyzing the live video with
different techniques like audio-to-text conversion [29, 19] and feature de-
tectors, to manual human generated annotations. The precision and recall
numbers possible to attain by using automatically generated metadata will
however vary according to the tool used, and even the best tools available
are not able to detect all important events in a video stream with audio
included. As an example, if we look at a soccer video containing an audio
track with commenting, audio-to-text generation of metadata is possible.
However, it is ineffective on audio tracks that contains little or unclear com-
mentary speech, resulting in only low-quality metadata. We also have closed
captioning, which is a direct transcript from speech to text, but it will often
contain information that is irrelevant to the game, and it also lacks a well
defined structure. Another important aspect, is that most of the automatic
extraction techniques are very cpu demanding, and might take longer time
to execute than the video itself. Therefore, the performance of such tools are
not able to provide a live search system with data that is accurate enough,
and at a frequency rate that is acceptable.

Humans are generally good at analyzing complex video data in real time.
However, the process of manually annotating videos is often time consuming
and tedious. Fortunately companies are willing to invest human resources
for this task. As such, there exists a large pool of human generated, semi-

1

structured and live updated information available on the web. For instance,
several news sites provides live comments for soccer matches with important
event information published on a minute-to-minute basis. Examples of such
sites are Sky Sports 1, Live Goals 2 and Yahoo! Sports3. Because of the
high update frequency, and good accuracy, this metadata is well suited for
indexing a live video stream.

1.1 Problem Definition

Although the high quality metadata is readily available, it is generally only
published as Hypertext Markup Language (HTML) data on Internet web
servers. Such data can be extracted automatically using existing technolo-
gies like crawling and scraping. This can be done by launching a site specific
crawler identifying a specific web page containing the data we want to ex-
tract. And then we create a site specific scraper capable of identifying and
retrieving the wanted data. However, general crawler politeness rules limit
per-site polling frequency, and therefore the freshness of the retrieved data
is also limited. This is particularly limiting on the freshness in scenarios
where multiple pages per-site must be monitored for updates.

This thesis shall study the problem of identifying and extracting
video metadata from web sources for the purpose of feeding a live
system with fresh data.

The goal is to construct a prototype metadata extraction system, that can
combine hight metadata freshness while at the same time adhering to polling
politeness rules.

1.2 Scope and Limitations

This thesis will use the soccer domain whenever there is need for data or
concrete examples. Our thesis will not be focusing on a complete implemen-
tation of the proposed system design for live metadata gathering. Rather
we will implement the parts that are necessary for performing our freshness
and completeness analysis.

1.3 Method and Approach

The report from the ACM task Force on Core of Computer Science has divided
computer science into three major paradigms [27].

1www.skysports.com
2www.livegoals.com
3www.eurosport.yahoo.com

2

• Abstraction where scientists uses an already deployed model, sys-
tem or algorithm to simulate a process. In this approach, progress
comes from testing, studying, and analyzing the simulation.

• Theory is the approach where the scientists tries to understand the
underlying mathematical ideas. He poses theorems and seeks to prove
them in order to find relationships.

• Design is the third approach where scientists tries to use their knowl-
edge to build a solution after formulating a problem. By working sys-
tematically, testing, and comparing results, the engineer seeks to find
the best solution to a problem.

Our main approach have been on the design, because we will design and
prototype a system capable of extracting fresh metadata from web sources.
However, we have also worked within the abstraction domain, in order to
analyze our system design and implementation.

1.4 Outline

This section have described the background, and defined the problem and
scope of this thesis. The rest of the thesis is organized as follows. Chapter 2
contains a thorough analysis of three football metadata sources, introduces
the area of web extraction and related work in that field. Chapter 3 describes
our system design and implementation, followed by Chapter 4, where we
describe our experiments and evaluate them. Finally, in Chapter 5, we
conclude our work, findings, and outline future work.

3

4

Chapter 2

Background and Related
Work

In this chapter we first give a thorough analysis of three web sites providing
live soccer commenting features. Then we introduce web data and how
we can exploit the semi-structured features of web data when mining for
structured data. After the introduction, we give a brief overview of the two
fields Crawling the web and Scraping the web.

2.1 Football Metadata Sources

In this section we compare the information available at three different sites
that provides information about Premier League football matches. The sites
we analyzed were Sky Sports 1, Live Goals 2 and Yahoo! Sports3.

The survey will give a general description of each site and describe the
general layout. Then it will dig deeper into the information and content
available at each one. In this setting the content described will be infor-
mation that is residing in some kind of HTML structure that is common
for each football match described, and therefore is possible to detect and
retrieve as structured information.

In addition to content description, we will give a brief description of the
HTML structures that each match description page is built upon.

2.1.1 Yahoo! Sports

Yahoo! Sports web site is a collaboration between the american internet in-
formation company Yahoo! Inc. and the company behind europe’s leading
sports multimedia platform, the France based company Eurosport Group.

1www.skysports.com
2www.livegoals.com
3www.eurosport.yahoo.com

5

Figure 2.1: Overview Yahoo! Eurosport

They united in 2007 to create a major new online experience for sports fans
in UK & Ireland, Spain, Italy and Germany. Their vision 4 is to unite Eu-
rosport’s high quality editorial content with Yahoo!’s social media platform,
to create a winning combination for sport fans. Their site contains informa-
tion about several sports, including football, cricket, tennis, rugby, formula
one, golf and several winter sports.

Figure 2.1 is a screenshot of the site displaying a football match between
Manchester United and Sunderland. As can be seen in the figure, the layout
consists of a site header with advertisement, general information, searching,
and navigation. The horizontal navigation bar allowing the user to navigate
from any page to any major sport. The right center side of the site is used
for advertisement, and displaying dynamic information relevant to the sport
category you are browsing. In the bottom left corner of the screenshot in
Figure 2.1, the information displayed is live scoring update from ongoing
matches and the league tables for the four top leagues in England. The left
center side of the site is used for displaying the main content, in this case
the football match page. The bottom section of the site contains copyright
information, and links to more information about the site. In addition there
is a navigation box with links to all the sports that the site is writing about,

4http://help.yahoo.com/l/uk/yahoo/sport/general/what_is.html

6

Figure 2.2: Yahoo! Slider Feature

and information about other online services Yahoo! offers. Their End User
License Agreement 5 (EULA) states among other things that the site content
can only be used for non-commercial purposes.

2.1.1.1 Content

The available content can be classified as either match facts or match events.
Examples of match facts are the name of the teams playing and name of the
stadium where the match is played. Events are happenings occurring during
the match that can be timestamped. For instance, a goal is scored or the
referee blows the whistle for half time. Some content lands in the middle.
For instance, the match result is changed dynamically when a goal event
occurs. However, this information will also be detected when monitoring
new events.

At this site the match facts available are: home- and away teams, result,
captains of both teams, the match date, lineups, managers, match stadium,
injuries, suspensions, and match status. The lineup includes information
about available substitutes. Injuries are players not available to play on
each team, because of injuries in front of the game. Suspensions are players
not available because they have received to many bookings earlier in the
season, and are therefore illegible for the match at hand. Match status
identifies if the match is not started, started or finished.

The site also has a few features handling events during the game. For
instance, a live event description feature, see figure 2.1 and 2.2. In this
live feature the user is live updated with detailed game events like goals,

5http://uk.docs.yahoo.com/info/terms.html

7

bookings, substitutions, time added, and other interesting events occurring
during the game. Each comment is timestamped with minute granularity,
and events happening in overtime are timestamped by adding how many
minutes over 90 minutes the event happened (e.g. 90+5’). Because of the
rather rough granularity, some events will have the same timestamp, and
the only ordering available is then which event were posted first. Each
major event is also accompanied by an illustrating icon in the comment.
For instance, a comment describing a goal will be accompanied by a football
icon, and a tackle resulting in a yellow card will be accompanied by a yellow-
card icon. There is also a nice feature, see Figure 2.2, allowing the user to
select events on a timeline, or use a slider for looking up a specific comment
describing an important match event. When an event is selected, the live
commentary list is scrolled to the selected point in time and the comment
can easily be read. In addition to the live commentary, there is also available
a summary tab, and when it is selected, only the major events like goals, red
cards and big chances are displayed in the commentary.

Another feature is live updating of the two teams, lineups by using a
football field image with the names of the starting players distributed across
the field at their playing positions. When, for instance a substitution is
made, the player on the field is marked with a red arrow illustrating that
he has left the field. In addition there is a table underneath the field, where
the available substitutions are. When a player is sent on the field, this is
marked by a green arrow and a timestamp stating when the substitution
was made. Other events like goals and bookings are also marked on the field
by adding a football- or card-icon above the name of the player involved.

After the match has been played there is also added a link and intro-
duction to a comprehensive match article describing the game. When it
comes to user generated information, registered users are allowed to leave
comments on the match page. Registration is free. It is also possible to
comment on the match article, and rate the article by clicking a buzz up
icon.

2.1.1.2 Data

All the pages on the site describing premier league football matches have
the same basic Hypertext Markup Language (HTML) structure. General
match information, like home- and away team, match date, and status, is
placed on top in a table like fashion by the use of HTML <div> tags and
Cascading Style Sheets (CSS) formatting, see Figure 2.3. Underneath is
the introduction and link to the match article, which is also placed in a
<div> structure of its own. Then comes the live commentary, summary
and timeline slider structures. By the use of JavaScript and another set of
<div> tags, it is possible to choose either live commentary or summary by
clicking on links presented as tabs on the page. Both the live comments and

8

<div class="bd matchresults matchresultsafter">
<div class="hd">

<div class="wrapper">
<h2>

Saturday October 3, 2009
Finished
Old Trafford

</h2>
</div>

</div
</div>

Figure 2.3: Yahoo! Sample HTML code

summary comments are presented by using an HTML unordered list tag. To
create the live team lineup section, they have placed an image of an empty
field on the page, and then created and placed an unordered list with the
names of the players in the starting lineup on top the image. This is done by
using styling tricks that makes it possible to specify placement on the page
down to the pixel. The substitutes for each of the teams is also placed in an
unordered list inside a <div>. On the bottom is another <div> structure
with an unordered list containing the user generated comments.

The rigid structure of the HTML match pages makes it easy to identify
structured information on the Yahoo! site. It will be relatively easy to
traverse the list of live commentary, and for instance identify the events by
looking for a specified image tag.

2.1.2 Live Goals

The Live Goals site domain is registered on LiveGoals.com, located in Hellerup,
Denmark. There is little information available about the company behind,
their vision and purpose. Although, the index page header states that the
site provides football livescore, result & fixtures with live commentary from
soccer matches world wide. The financial motive for the site seems to be live
betting. in addition, they sell advertisement towards betting companies, and
provide links to several betting sites. They also provide live betting odds
from many of the major betting sites 6.

The screenshot in Figure 2.4 shows the site layout when displaying a live
match. As can be seen, the layout consists of a header containing available
languages, some contact-, advertising- and site map links, and a text de-
scribing the content of the current main page. Underneath the header is a
horizontal navigation bar, containing links to all the major features of the
site. The left side of the site contains different kinds of navigational links,
as popular leagues, international events, scandinavian leagues, and also dif-
ferent advertisement boxes. On the right side there are more advertisement

6Bet365, Expekt, Ladbrokes, Betsafe, Unibet

9

Figure 2.4: Live Goals Site Layout

boxes and also video highlights, free live streaming, and football news from
some major news sites, like the British Broadcasting Corporation. There is
also links to partner sites on the bottom of the right side. In the middle is
the main content of the site, containing the information about the football
match.

2.1.2.1 Content

In comparison with Yahoo! Sports, Live Goals does not have match facts
about team captains and suspensions. But is has attendance information,
telling the official number of peoples attending the match, and the name of
the referee.

When it comes to live features, also Live Goals has live commentary, a
summary section, and live lineup information. The live commentary section
has minute granularity. Event detection is possible by identifying images for
each specific event. The summary section displays goal-, and booking-events.
Each such event contains event time, event image and the name of the player

10

Figure 2.5: Live Goals Player Stats

involved. This summary can easily be parsed to retrieve structured data.
In the live lineup feature the major events; bookings, goals and substitutes,
are depicted by images behind the player involved. As mentioned in the
introduction, the site has a betting focus, and each game has a live odds
box displaying game odds at some of the major online betting sites. Live
Goals also has a player stats feature, see Figure 2.5, consisting of a football
field with player jerseys, including numbers, on it. And as can be seen in
the figure, it is possible to view player stats like goals, shots on target, shots
off target, and offsides by moving the mouse pointer on top of the wanted
player jersey.

And, as the Yahoo! site, registered users are allowed to comment on the
games.

2.1.2.2 Data

Similarly to the Yahoo! Sport site, Live Goals pages describing premier
league matches also have a common HTML structure. The common struc-
ture consists of a main <div> and several nested <div> tags and tables
for the content described above. The event-information div contains a ta-
ble with the name of the teams playing and the result of the game. There
are also two <div> tags for each of the teams lineups, and they are called
hometeam-lineup and awayteam-lineup, respectively. The div containing in-
formation about stadium, spectators, and referee, is nameless. Then there
is a eventCenterPane div, containing five other <div> tags for game sum-
mary, game stats, live odds, live commentary and player stats. The game

11

box div contains a table with two other <div> tags, one for each team’s
incidents. Game stats are listed in a table inside the outer div. Also the live
odds <div> contains a table where the odds are displayed. There is also a
table structure inside the live commentary <div>, holding each comment
published on the site. Finally, the players stats <div> contains a player
field <div>, and several jersey image <div> tags with specific coordinates
for each jersey. The players statistics are displayed by the use of a javascript
snippet activated by a mouse over effect, displaying a popup box over each
jersey.

On the bottom is a commentary-section <div>, where each user com-
ment is displayed inside a nameless <div>.

2.1.3 Sky Sports

Figure 2.6: Sky Sports Layout

Sky Sports is owned by British Sky Broadcasting, which is a company that
operates a subscription television service in the UK and Ireland. They have

12

for many years had exclusive broadcasting rights for Premiership football,
and this have been the foundation of their success. Although their main
focus is on producing TV content, they have also committed resources into
their online services. And the Sky Sports site covers all the popular sports in
UK and Ireland. This includes football, cricket, rugby, golf, tennis, boxing,
and formula one, among others.

Figure 2.6 is an overview of the site layout covering a Premier League
match. As the figure shows, the top of the page consists of different horizon-
tal navigation bars, advertisement, and a search box. Then comes the Sky
Sports logo with links to three featured articles. Underneath that comes the
main navigation bar for navigating between the different sports covered by
Sky. Based on the the chosen sport another navigation bar pops up under-
neath the main navigation bar, enabling browsing to the major events for
that sport. At the bottom comes the main content space, and in Figure 2.6,
this is a page covering a Premier league match.

2.1.3.1 Content

In comparison with the other two sites, Sky Sports have most of the same
information when it comes to the match facts. However, it does not have
information about team captains or team managers available. But in addi-
tion to the two other sites, it has information information about yellow and
red cards without doing any live comment event detection.

When it comes to other features, Sky Sport have most of the same fea-
tures as the other two, and even some more. Although, it does not have a
countdown feature, as Yahoo!, and no match status field as both the other
two have. Also, there is no live odds feature present.

Their live commenting section has minute granularity, similarly to the
other sites. Event type detection is also possible by looking for event spe-
cific image url’s. The summary section displays major events like goals,
substitutions and booking, no different from the other sites when it comes
to content. The live lineup feature also includes player ratings, and as the
others information about booking and substitutions made.

Similarly to the Yahoo! Sports site, the Sky Sport site has an after
match article. What makes it different is a comprehensive match statistics
section containing information as possession, territorial advantage, shots on
and off target, tackles and tackles success, and more. The article page also
has special section about goal of the match, man of the match, save of the
match, and talking point. The three first are described and justified, and
the talking point is an description of the match event that most likely will
be the hearth of the post-match discussion.

Sky also has a comprehensive pre-match information as statistics about
their last meetings and their resent results against other teams. There is also
a preview article discussing the teams resent performances, current injuries

13

and it also suggests possible starting lineups. And finally they have a result
prediction.

When it comes to user interaction, they have a feature where the users
can rate the players with point from one to ten. The average is computed
and presented for each of the team squads.

2.1.3.2 Data

The main content for each game description consists of a match header,
which is several nested <div> tags containing the teams logos, names, the
result, the event, date, game starting time, stadium, and attendance. For
navigation between the major features offered in the match coverage, Sky
has chosen to implement a navigation bar rendered as tabs. This tab bar
is static and built up by using special styling for an unordered list with
links to the different features, see Figure 2.7 for code sample. The match
facts page, see Figure 2.6, contains the live lineup and summary feature. An
Adobe flash object is used to render the summary data, which makes the
information unavailable in ordinary HTML format. This because the data
is only possible to access through an Adobe flash player. For the live lineup,
they have used a couple of tables inside a div. The preview page contains
no fancy structures, a div with paragraphs for the article content. The same
is done for the live commentary content. Additionally, the math report
contains additionally a couple of tables for the statistics summary. The
player ratings page is built upon a form for picking up the rating chosen by
the user, to align the data they have used a couple of tables in combination
with styling.

<div class="ss-tabs ss-tab-style1 ">
<ul class="anchors">
<li id="match-tab-facts" class="tabs-selected">
Match Facts

<li id="match-tab-preview">
Preview

<li id="match-tab-live">
Live Commentary

<li id="match-tab-report">
Match Report

<li id="match-tab-ratings">
Player ratings

</div>

Figure 2.7: Sky Sample HTML code

14

2.1.4 Comparison

In summary, the three sites we have surveyed have overlapping content when
it comes to match facts, live event descriptions and features. Sky has the
most complete picture by covering a wide variety of pre-match information,
minute granularity live commenting, and a comprehensive post-match article
and statistics section. Live Goals and Yahoo! have very similar information,
although Live Goals have a statistics section that is not present at Yahoo!.

In Table 2.1 and Table 2.2 we have categorized and compared the in-
formation available at each site. The categories are Match facts and Live
Events. When analyzing the information, we have considered if the infor-
mation on the HTML page has some structure in it that allows for easy
identification and retrieval. An example is the home-team- and away-team-
names, on each site this information is in a specific structure and therefore
easy to retrieve by extracting that structure from the page. Another exam-
ple is live commenting events like yellow and red cards. These events have an
image url related to it, and therefore it will be easy to identify comments de-
scribing such events. On the other side we have match articles. Although,
containing a lot of useful information and event descriptions, there is no
structure that enables identification of these, making it difficult to identify
any structured information.

Sky Sports Live Goals Yahoo!
Attendance yes yes no
Away team yes yes yes
Captains no no yes
Date yes yes yes
Home team yes yes yes
Lineup yes yes yes
Managers no yes yes
Result yes yes yes

Table 2.1: Match Facts

As can be seen in Table 2.1, all three sites have the most common match
facts available. Sky is missing captains- and managers names, but this is
not that crucial. Live Goals is only missing captains, and Yahoo! is missing
attendance information.

When it comes to live event information, see Table 2.2, they have a lot
of common information. The most important events like, goals, bookings,
live lineup, half- and end-time whistle is detectable and extractable.

15

Sky Sports Live Goals Yahoo!
Goal yes yes yes
Penalty yes no no
Yellow card yes yes yes
Red card yes yes yes
Offside no no yes
Own goal no yes no
Lineup yes yes yes
Half-time yes yes yes
Full-time yes yes yes
Substitution yes no yes
Special no no yes

Table 2.2: Events

2.2 Web Extraction

Extracting structured data from unstructured- and semi-structured web
data is an old field of study [1] [10] [13], and the fact that most web pages
have some structure can be exploited to generate structured data.

A semi-structured document, like for instance web pages, are organized
and grouped together in semantic entities, which may or may not have the
same attributes. The order of the attributes might not be important, and
not all attributes may be required. Also the size and type of the same
attributes in a group may differ. And it is obvious that it is much harder to
query and retrieve information from such sources, as opposed to structured
information sources like databases.

Anyhow, semi-structured means that there is some structure in the docu-
ment that can be identified and extracted. Web pages are, for the most part,
built up by HTML code and clean text. The structure in these documents
comes from the HTML tags used to build up the page. If a set of similar
structured HTML documents are describing similar content, the identifiable
information can be semantically identical. The information can then be ex-
tracted and put in a database, and then we have created structured data
from the semi-structured web content.

An example of such semantically equal pages are the Premier league
match pages described in Section 2.1. Each site has a unique way of build-
ing up their web pages describing a match, and all pages describing matches
on a site have identical HTML structures, although the content is different.
Because of recurring page structures within a site, we can create one wrap-
per, and extract structured match information from all the pages on that
site which describes premier league matches. And finally put the extracted
information in a database for later retrieval.

Wrappers are specialized pieces of software that parses through web data

16

looking for structure that identify data of interest and maps that data to a
suitable format as for example a relational table.

2.3 Web mining

Web mining [6], or the art of searching for valuable information in the ever
growing ocean of information available on the world wide web, consists of
two major operations. The first is to find and extract web pages that might
contain valuable information, also called Web crawling or spidering. The
second is to identify and extract wanted information by creating cite specific
wrappers, often called web scraping. In the following sections we will give a
brief introduction to the two above mentioned areas.

2.3.1 Crawling The Web

A web crawler is usually given a set of starting url’s as a starting point
for the crawl. Then the crawler parses through each seed page harvesting
hyperlinks leading to other pages on the same site or possibly pages on
another site. The harvested hyperlinks are recursively visited according to
a set of polices controlling how thorough the crawl should be. For most
crawling projects the crawl need to be substantially limited and executed
with smartness, the reason for this is the share volume of web pages on the
web, available bandwidth and time.

To limit a crawl we can apply a selection policy stating which links to
follow and thereby which pages to download. This selection policy should
be based on the purpose of the crawl. For instance, is the purpose to only
parse HTML content and avoid other content types, we limit the crawler
to only download HTML content and drop all other types. If we want to
harvest pages from a particular site, we do a path-ascending crawl [8] by
starting with the index page of the site, identify all links out from that page
and follow each one looking for new links to follow. If the purpose is to
gather information about a particular subject or topic, we can do a focused
crawl [7] [21] [22]. When executing a focused crawl we want to identify
interesting pages without actually downloading them, and this is a difficult
problem. One way of predicting the content is to use the anchor text of the
hyperlink as a hint to what the content will be. Some projects [20] [25] aim
to crawl the deep web [4], which refers to the content hidden behind HTML
forms. To apprehend information behind such forms, a user must submit a
form with valid input values. Implementing crawlers able to deal with this
complexity, is a complex task.

The web is constantly changing, pages are added, modified and deleted.
Outdated information is less valuable for many systems, therefore, pages
have to be re-visited at some frequency. Two possible approaches are uni-
form- and proportional re-visiting, where the uniform approach all pages in a

17

collection is re-visited with the same frequency. Or proportional re-visiting,
which involves re-visiting pages proportional to the update frequency of the
page.

Because web crawlers can retrieve data in much faster pace and depth
than humans browsing manually, they can put to much load on a web server
and therefore cripple its performance. Users might receive poorer service
quality because of this, which is not acceptable. Therefore web crawlers
must act in a polite manner, and adhere to crawling policies and politeness
norms that limits the polling frequencies to an acceptable level. Several
polling frequency intervals have been proposed, but one of the first was from
Koster 7, who suggested a polling frequency of 60 seconds. This frequency
has been shown to be to large, and most crawlers today use a more aggressive
polling frequency. Also dynamic polling frequencies are used. Dynamic
polling can for instance be based on the download rate of the first page
retrieved from a site, as described in [14].

The web is very large, and therefore there is need for parallelizing the
crawling process to achieve maximized download rate. This can be done by
running multiple instances of a crawler and orchestrate the different crawler
by using a scheduling algorithm. The scheduler must especially deal with
duplicate url’s to avoid download the same page several times. When crawl-
ing the whole web, a distributed crawler must be used, which uses a cluster of
computers to perform the crawl efficiently. An example of such a distributed
crawler is Nutch[23].

2.3.2 Scraping The Web

Scraping the web is about extracting structured information from semi-
structured web data. Web data is described as semi-structured because
HTML code imposes some structure that can help identify and retrieve
structured data from a web page. Wrappers are pieces of software that are
implemented specifically for parsing through text looking for structure that
can be used to identify information pieces. Wrappers are often created for
a specific task, and an example in this thesis domain can be a wrapper
implemented for extracting live commentary text for specific events. For
instance a wrapper unleashed on a Yahoo! match description page, looking
for match comments describing scored goals or yellow cards.

There are several approaches for creating wrappers, and [18] gives a
brief survey over web data extraction tools where they have identified and
described the following groups.

Languages for wrapper development which are languages especially de-
signed to assist users in constructing wrappers. Examples of such
languages are Minerva [9], and Web-OQL [3].

7http://www.robotstxt.org/guidelines.html

18

HTML-aware tools are tools that rely on inherent structural features of
HTML documents for accomplishing data extraction. Example tools
are W4F [28] and RoadRunner [10].

NLP-based tools uses Natural Language Processing (NLP) techniques to
learn extraction rules for extracting relevant data existing in natu-
ral language documents. This technique works best on HTML pages
consisting of free-text. Representative tools are RAPIER [5] and
SRV [12].

Wrapper-induction tools generate delimiter-based extraction rules de-
rived from training examples. In comparison with NLP-based tools,
they do not rely on linguistic constraints, but rather in formatting
features that implicitly delineate the structure of the pieces of data
found. Tools using this approach are WIEN [16] and SoftMealy [24].

Modeling-based tools are tools that, given a target structure of objects
of interest, try to locate in Web pages portions of data that implicitly
conform to that structure. The structure provided is built up by mod-
eling primitives like tuples, lists. NoDose [1] and DEByE [17, 26] are
examples of tools using this approach.

Ontology-based tools differ from he other tools described above, in the
sense that they do not rely on any structural presentation features for
the data within a document. Instead extraction is accomplished by
relying on the data. This can be done by identifying a specific domain
application, and then use an ontology to locate constants present in
the page and to construct objects with them. An example is a on-
tology based tool developed by the Brigham Young University Data
Extraction Group [11].

One thing to keep in mind when scraping web data, is that web sites
might update their design at some point. When that happens, wrappers
might have to be updated. Rewriting wrappers is tedious work, but still
most wrappers are updated manually due to the fact that fully automatic
wrapper generation is very hard.

19

20

Chapter 3

Design and Implementation

This chapter starts by describing the system architecture, before explaining
the design and implementation details for each of the major system compo-
nents.

3.1 System Architecture

Our system is one part in a larger live video search service. This service
is in need of fresh web metadata for annotating live videos. Our system is
responsible for extracting the metadata from a pool of web sources contain-
ing overlapping information. As shown in Chapter 2.1.4, these exists. Our
solution is based on the idea that we can use the pool of web sources with
overlapping data, and ensure that no single source is overloaded, while still
keeping the data at a reasonable freshness rate.

Our system architecture consists of four main components: an orches-
trator, a crawler, a scraper, and a database for storing the extracted web
data, as shown in Figure 3.1. The orchestrator is in charge for scheduling
the crawler to fetch the HTML pages from its specified web source. And in
order to schedule the targeted crawls correctly, the orchestrator must main-
tain metadata about crawling statistics for each individual web source. This
way the orchestrator can judge which site to pull data from in each update
interval.

The pool of web sources connected to the system must have a minimum
set of overlapping information that is possible to detect. In the soccer do-
main this is for instance goals, bookings, and substitutions. Sources can
have additional information that is not overlapping. This will allow our sys-
tem to gather more information whenever these sources are pulled. Also, the
web sources must contain recurring HTML structures that allows for data
identification and retrieval. The crawler must be able to identify specific
pages containing the information wanted from each web source, download
and store those page for later to be processed by the scraper. The scraper

21

� ����� ��� �� �

	 ��
 �� �

������ ��

� � ��� ����

� �

� 	

�

� �

�������

��

��� ���� ���� ���� �

Figure 3.1: System Architecture

will parse the downloaded pages, and try to identify and extract the wanted
data, and finally store it as structured data for later retrieval. A relational
database will be used for persistent storage of the extracted data.

3.2 Orchestrator

The orchestrator triggers the crawler to fetch the wanted HTML page from
a chosen web source, and then initiate the scraper to identify and extract the
wanted data. The orchestrator keeps track of crawl statistics for each source,
including last pulling time, download time, failure rate, and timestamp of
last discovered event. Based on the crawl statistics and the wanted data
freshness, the orchestrator dynamically schedules the pulling interval and
which site to pull from. In our current implementation, the orchestrator
follows a Round-Robin based schedule - this ensures a balanced load on each
source. However, if a source seems to be responding slowly, the next non-
struggling source will be selected instead. This keeps the freshness rate at
the required level, while ensuring that struggling sources are not overloaded

22

more than they already are.
The orchestrator is initialized with a default pulling interval and have the

ability to initiate a crawler and scraper capable of downloading, identifying
and extracting information from the available sources. First the orchestrator
selects one of the sources to pull from. This triggers the crawler, which
then identifies and downloads the wanted HTML page. The scraper then
takes over and parses through the HTML content, identifies and extracts
the wanted information, before executing an update query to the database
where the scraped data is stored. When the crawling and scraping is done,
and the data is persistently stored, the orchestrator updates its metadata
with crawling statistics for the selected source.

At the next update interval, the next source in line is selected, and the
above procedure is repeated. When all sources have been pulled, the orches-
trator takes into account the gathered crawling statistics when selecting the
next source to pull from.

3.2.1 Implementation

The orchestrator is implemented as a python process, which schedules and
executes the focused crawl for the wanted duration with a specified polling
interval. The orchestrator must be initialized with information about dura-
tion, available source configurations for scheduling, and default polling in-
terval. Before executing the main loop, an initial configuration index must
be selected, which will be the first source scheduled. Also, a count variable,
keeping track of how many times the scraper has been executed, must be
initialized with zero.

To execute the crawling process for the wanted duration and freshness
rate, we have implemented a while loop running as long as the execution
count is below the value that is set by duration/polling-interval. To enforce
the polling frequency we execute a sleep function at the end of the loop.
The code below controls the loop execution.

Main loop
Executed for wanted duration with set polling interval
while count < duration/polling_interval:

Record start time
startTime = time.time()

== CODE HANDLING SCHEDULING AND CRAWL EXECUTION ==

Record stop time
stopTime = time.time()

Update number of crawls
count += 1

Set sleeping interval and sleep
timeTaken = stopTime - startTime
if polling_interval - timeTaken < 3:

23

time.sleep(polling_interval)
else:

time.sleep(polling_interval - timeTaken)

The Round-Robin scheduling is implemented by having a list of source
configurations, which are iterated over. As the code below shows; this is
simply done by having a list index variable that is updated for each iteration.

Select the scheduled configuration
conf_id = source_configurations[conf_index]

== Execute the crawler and scraper as a subprocess ==

Round-Robin schedule the available source configurations
if conf_index < 2:

conf_index += 1
else:

conf_index = 0

To trigger the cite specific scraper, the orchestrator process starts an-
other Python process carrying out the job. This is done through the Python
subprocess module 1. The scraper process is executed with a configuration
id parameter, which is the primary key for a source specific crawling con-
figuration, which will be retrieved from the database by the scraper during
setup. The other parameters are standard setup for executing the scraper.
The code below shows the complete scraper execution implementation:

Execute the crawler and scraper as a subprocess
Set the scheduled scrape configuration id as parameter
try:

subprocess.Popen(
["python " + orch_config.SCRAPY_SCRIPT_PATH + "scrapy-ctl.py " + \
"crawl match_spider" +\
" --nolog " +\
"--set CRAWL_ID=’"+str(conf_id)+"’"
], shell=True)

except:
print "Error running scraper"

The orchestrator is also responsible for updating the individual sources
crawl-configurations with information about the last timestamp gathered
for each scraping. This is implemented by invoking a function querying the
database for information about last timestamp, then this value is written to
the configurations residing in the database by executing an update query
for each configuration individually. The implementation code can be found
in Appendix A.

When the duration is over, and the loop is done, the orchestrator process
stops executing.

1http://docs.python.org/library/subprocess.html

24

3.3 Crawler and Scraper

The crawler and scraper is designed to operate intimately; one finding and
downloading the HTML page containing the wanted information, and the
other parsing through the content, identifying and extracting the wanted
information.

The crawler starts from a specified seed url, downloads the HTML page
and analyzes the links. The links are analyzed based on a set of rules, pages
linked to are classified either as follow through links, information links or
links to be discarded. Follow through links are links to pages that contains
other links that might lead to pages that contains the information we want
to scrape. The crawler downloads pages these links point to, and analyzes
these pages links in the same matter as the seed url. Information links are
links to pages that contains the information we want to scrape. When an
information link is discovered, the crawler downloads the HTML content
and makes it available for the scraper. Discarded links are links identified
as not containing the wanted information, and not containing links to pages
that might contain links to pages with the wanted information. And as
the name suggests, these links are thrown away. Figure 3.2 illustrates the
crawling process.

����
���

� ��	

�
�����

��

� ������

� �� ���

�� ���� ��� ��� �

����!��

Figure 3.2: Crawling Process Flow Diagram

After the crawler has found and provided the wanted HTML page, the
scraper takes over. As mentioned several times, the scraper shall identify
and extract the information we want from the page. In Chapter 2.2 we
mentioned several approaches to create wrappers capable of identifying and
extracting the information we want from a specific web page. Our approach
fall under the HTML-aware tools category, because it takes advantage of
inherent structural features of HTML documents. We have done this by
identifying recurring HTML structures where the information we want re-
sides. The identification is made possible by using the XPath query lan-
guage [2], which is a language originally designed for querying information
in Extensible Markup Language documents (XML). However, this language

25

can also be used to query for information in HTML structured documents,
which is suitable for our needs. After the data location have been identified,
the data is retrieved. However, the retrieved data might not be suitable for
direct insertion into the database, because there can be unwanted characters
or other unwanted information. Therefore, the data is cleaned before inser-
tion, this way we also ensure that the data is in the correct format before
sending it to the database. Figure 3.3 illustrates the scraping process.

��� �
���

��� � �

�������

���� �� ���� ���

��� ����
������ ���

��� ����
����
 ��� ��

Figure 3.3: Scraping Process

3.3.1 Implementation

Our crawler and scraper implementation have been written by using a
Python framework called Scrapy 2, which is an open source framework in-
tended for crawling web sites and extracting structured data from their
pages.

When writing a site-specific crawler and scraper in Scrapy, four major
components must be implemented. First the crawler itself, which will start
from a specified seed url and work its way through the site by jumping from
link to link retrieving wanted pages and providing them to the scraping
functionality of the framework. Second is the scraper functionality, which is
implemented as a HTML content parser. The framework provides a func-
tionality called HtmlXPathSelector, which enables the programmer to use
a XPath to identify and query a specific HTML structure for its text con-
tent in any HTML page. By using this functionality the parser is able to
pin-point and query for each wanted piece of structured information in a
page.

All information scraped from a specific page must be stored in an item
object. And that is the third component required by the framework, namely
a model that defines all the structured data we want to extract from a specific
page. The model is implemented by inheriting an item class which enables
certain capabilities that allows for convenient storing of the structured data
at gathering time and easy access to the structured data after retrieval.

2http://scrapy.org/

26

The item is also used as an inter-process communication object, which
bring us to the fourth component of the framework, namely the item pipeline.
Each scraped item is sent to this pipeline, which typically will clean the raw
extracted data, validate it, format it, and lastly store it persistently. The
following subsections will give more implementation specific details for each
component mentioned above.

3.3.1.1 Initialization

As mentioned in Section 3.2.1, the orchestrator executes the Scrapy script
with a parameter called crawling id. During initialization the Scrapy process
uses the crawling id when executing a query retrieving the source specific
crawl configuration. The crawl configuration contains information about
match id, source, seed url, rule, and last timestamp. The seed url is then used
to initiate the list of start urls, and the rule is used to create a rule identifying
the page that should be scraped. The other configuration variables are used
later on in the system.

3.3.1.2 Crawler

As mentioned in the introduction, the crawler starts from a specified seed
url, downloads the page and start examining the links in that page.

When implementing the crawler functionality in Scrapy we first specify
the seed url, and this is done by writing the following code:

start_urls = [
"http://domain1.com"

]

The link analysis functionality is implemented by specifying rules that
the crawler must follow when examining each individual link. A rule is
created by specifying a Link Extractor object, which defines how each link
will be treated. The Link Extractor object is created by specifying a regular
expression describing a format the url must conform to, to be downloaded
and scraped, downloaded and link analyzed, or discarded. To specify what
shall be done with the links that conforms to a rule, different arguments must
be given to the link Extractor object. For instance, if a link is identified as
a link to a page that shall be scraped, a callback argument must be added.
The callback argument is a string with the name of the scraper that will
be called for each link extracted with the specified rule. Rules created for
identifying links to pages that must be downloaded and link analyzed must
contain a boolean argument follow. Following is a code sample specifying
a rule that identifies the url to be scraped:

rules = (
Identify links going to soccer match details
rule = "http://domain1.com/pl0809[ˆ\s/]+-[ˆ\s/]+-\d+\.html"
Rule(SgmlLinkExtractor(allow=(rule,)), callback=’parse_match’),

)

27

As you can see, this rule contains a rather complex regular expression
specifying how url paths to soccer match details pages looks like. All links
that match the regular expression is downloaded and provided to the call-
back function parse match which is the scraper that is implemented to ex-
tract the wanted information from that specifically structured page.

3.3.1.3 Scraper

After being invoked by the framework, the scraper has access to the HTML
content of the page that shall be scraped. Then the scraper must be able
to pin-point the structured data we want to extract. As mentioned in Sec-
tion 3.3.1, this is done by using the HtmlXPathSelector, which has a method
that is called select. The select method takes an XPath and uses it to
identify and extract the exact HTML structure where the data we want is
residing. A clever way of retrieving the XPath for a specific piece of data in a
page is by using the Firefox 3 plugin Firebug 4. As can be see in Figure 3.4,
the XPath for the highlighted text can easily be retrieved. The resulting
XPath will look like the following:

/html/body/div/div[10]/div[3]/div/div/span/div[4]/table/tbody/tr[2]/td

If we provide this XPath to the select method we can extract the
number of goals for the home team in that specific match. During imple-
mentation we discovered that this method is not perfect, because the XPath
given by Firebug is wrong sometimes. The error lies in that Firebug is not
able return the exact XPath, often the two or three last elements of the path
is incorrect. However, it gives a very good starting point for identifying the
exact XPath, and by back tracking the given interactively in Firebug, it goes
rather quick to identify the correct one.

The select method can return both a HTML structure object that can be
further examined with another select call, or it can return the text residing
inside the extracted HTML structure. The following code show how the
number of goals is retrieved from the selected HTML structure:

item[’homeScore’] = hxs.select(’/html/body/div/div[2]/span[1]/text()’).extract()[0]

If you look closely at the XPath given as parameter to the select call,
you can see “text()” at the end. This specifies that we want the text data
residing in the structure. The extract method returns a list containing
this text, and we retrieve the text by specifying index zero, because the list
only contains the one text we want.

In our case we also wanted to extract live comments residing in a HTML
list structure. We solved this by selecting the list structure and then loop

3http://www.mozilla-europe.org/no/firefox/
4http://getfirebug.com/

28

Figure 3.4: Firebug XPath Extraction

through all of the elements in that list extracting all the comments by doing
a second select call. Then by using another set of third level select
calls we extracted the wanted information we wanted from each comment.
To avoid duplicate comments when returning to the same HTML page sev-
eral times, we kept track of the timestamp of the last comment retrieved.
We then compare the timestamp of each possible new comment to that
timestamp, and if the new comment timestamp is older than, or as old as
the last recorded timestamp, we throw it away.

When the scraping is done, all of the retrieved data is put in an item
object, along with the crawl configuration settings, before being passed to
the pipeline by the framework.

3.3.1.4 Items

Items objects are simple containers used to collect the scraped data. A
dictionary-like API with convenient syntax is provided for declaring available
fields. We implemented an item for storing scraped soccer match information
in the following way:

29

Model that defines a soccer match item

class MatchScraperItem(Item):

crawl id
crawl_id = Field()

match id
match_id = Field()

item source
source = Field()

source timestamp
source_timestamp = Field()

number of goals scored by home team
home_score = Field()

number of goals scored by away team
away_score = Field()

all live comments
comments = Field()

pass

As can be seen, the item implementation is very simple and straight
forward. And we also added some configuration variables to the item. This
because items is a natural communication point between the scraper and
pipeline, and therefore we used them as inter-process communication objects
as well.

The API provided for accessing created items is also easy to use, it makes
it easy to access a single field or even iterate through all fields by retrieving
a dictionary with all field keys and values. It is also possible to extend the
item object capabilities, but this was not necessary for our purposes.

3.3.1.5 Pipelines

After a page has been scraped and the item is filled with scraped infor-
mation, it is handed over to the pipeline. As mentioned, the pipeline is
responsible for cleansing the scraped data and storing it persistent. Our
pipeline implementations is very compact, as can be seen in the code below:

30

Pipeline storing items in database

import mysql_interface

class MatchScraperPipeline(object):

def process_item(self, domain, item):

crawl_id = item[’crawl_id’]
match_id = item[’match_id’]
source = item[’source’]
home_score = item[’home_score’]
away_score = item[’away_score’]
comments = item[’comments’]

connect to database
db = mysql_interface.MysqlInterface()

update match score
db.update_match_score(match_id, home_score, away_score)

update match comments
i = 0
for comment in item[’comments’]:

db.add_match_comment(match_id, comment[’timestamp’], "blank", \
comment[’comment’], source)

update last comment for current source
db.update_last_timestamp(crawl_id, last_timestamp)

return item

During the scraper implementation we discovered that the data we sent
to the pipeline did not need any cleansing or re-formatting, and that is one
of the main reasons for the code being compact. Our pipeline have two main
purposes; the first is to update the database table match with information
about how many goals each of the two teams have scored, and the second is
to put all comments in the database table comments.

The pipeline is also made responsible for updating the crawl configura-
tion with the last timestamp found in a comment. To communicate with
the database, we have implemented a mysql interface which is used by the
pipeline object, this interface will be described in the following section.

3.4 Database

The main purpose of the database is to store scraped data, in addition, it
is used for interprocess communication between the orchestrator and the
scraper framework. Figure 3.5 shows the entity relationship model the
database implementation is based on. As can be seen, we have the crawl
configuration entity for storing the information needed by the scraper. The
entity has a many-to-one relationship to the match entity, which means that
a specific crawl configurations is concerned about a specific match, and that
a certain match can be updated by several crawl configurations. The match

31

entity has a one-to-many relationship with the comment entity, which means
that one match can have several comments, but each comment can only be
related to one match.

��
�� ��

���� � ��
�	� �
�
� �
� ��

���
�� �� �� �

�� ��� 	 �
�� �
�� �
�� �
�� �
�� �
�� �

��
��

� ��� � � 	� ���� �� �	�

��
�� �
�	� �
����

�	� � �
	 ��
�� �� �
	 ��

�� ��� 	 �
�� �

�� �
�� �
�� �
�� �

��
��

� �
�

��
� �
� ��

�� �� �� �

	�� ��
�	� �
�

��� �� �� �

�� ��� 	 �
�� ��	 �� ���

����
��

�� �
�� �
�� �
�� �

�� �� �� �
��� 	 �

�	�� �� �

� ��

�

Figure 3.5: Database Entity Relationship Model

In our implementation we have chosen to use a MySQL 5 database. And
to ease the interaction with the database we have implemented an python
interface based on the external python module MySQLdb 6 handling our
most common queries. See Appendix A for implementation details.

5http://www.mysql.com/
6urlhttp://sourceforge.net/projects/mysql-python/

32

Chapter 4

Evaluation

This chapter starts by explaining how we collected our raw-data set, finally
we will describe the experiment where we launched our scraper on the gath-
ered data, then we will analyze the scraped data and discuss completeness
and freshness.

4.1 Raw-Data Gathering

To enable repeatable experiments, and the possibility to compare different
configurations when analyzing freshness and completeness, we needed a set
of raw-data. The focus of our raw-data gathering were a Premier League
soccer match between Liverpool FC and Arsenal FC the 13th of December
2009. This match was chosen because it was a high stakes game were we
anticipated several major events like goals and bookings would occur. The
data sources we used were the three soccer sites analyzed in Chapter 2.1,
the urls can be seen in Table 4.1

http://uk.eurosport.yahoo.com/football/premier-league/
2009-2010/liverpool-arsenal-282896.html
http://www.skysports.com/football/match_commentary/0,
19764,11065_3205392,00.html
http://www.livegoals.com/gamecenter/liverpool-vs-arsenal-13-12-2009

Table 4.1: Source Urls

To gather the raw HTML data we implemented a simple Python script,
see Appendix A. The script was configured to download the above HTML
pages at a polling interval of 30 seconds. Each version is saved to disk with
a filename describing the source, version number, and file creation time, in
the following manner.

-rw-r--r-- 1 tord tord 167542 2009-12-13 17:28 yahoo-56-1260721695.252973.html
-rw-r--r-- 1 tord tord 168480 2009-12-13 17:28 yahoo-57-1260721725.322187.html
-rw-r--r-- 1 tord tord 165957 2009-12-13 17:29 yahoo-58-1260721755.266330.html

33

In addition the script creates a statistics file with an entry for each
downloaded page. Each entry contains information about; version, start
time, end time, and filename. Both start and stop time is a floating point
number expressed in seconds since the epoch, in UTC 1. Start time is logged
right before starting downloading the wanted page, and stop time is logged
right after the page is downloaded. This enables us to calculate the total
downloading time of the page. See below for example entries.

0 1260720017.052713 1260720017.567754 sky-0-1260720017.252011.html
1 1260720047.069432 1260720047.543971 sky-1-1260720047.275525.html
2 1260720077.090556 1260720077.631078 sky-2-1260720077.290289.html

During testing we discovered that network errors could occur, caused
by the sources web servers denied our requests. To handle these errors, we
implemented exception handling ensuring that the script would continue on
and fetch the next version. During the final runs we observed no errors.

To gather the data, three versions of the script was executed concur-
rently, one for each source url. The scripts ran over a duration of two hours.
The gathered HTML files were put in a separate directory for each source.
All three scripts were executed on the same computer, which was a Dell
Precision 290 running a 64-bit Microsoft Windows 7 operating system, on
an Intel Q6600 Quad core CPU (each core 2.4GHz), with 4 gigabytes of
memory. The resulting raw data set consisted of 231 different HTML page
versions for each source.

4.2 Scraping Experiment

The purpose of the scraping experiment was to test our scrapers ability to
extract data from the raw HTML data gathered. Collect a data set of live
comments for analyzing freshness and completeness. And also enable repeat-
able experiments, and the possibility to compare different configurations.

The experiment was executed by modifying the Orchestrator implemen-
tation, described in Subsection 3.2.1, to work on the 693 HTML pages col-
lected from the three sources. And as our scraper implementation required
an url to work, we installed a local Apache Web Server 2, serving the gath-
ered pages. One of the modifications done on the Orchestrator were that
we needed to read the stats file from each of the slurps. This to create a
python dictionary 3 for each of the sources containing information about
start time, stop time, and filename. As dictionary key we used the HTML
page version number. We could then further modify the code to iterate

1UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or
GMT)

2http://httpd.apache.org
3http://docs.python.org/tutorial/datastructures.html#

dictionaries

34

through this dictionary and execute an update query to the source specific
scraper configuration and change the seed url for each scraping iteration.
We also changed the control of the main loop to instead of executing at a
certain frequency for a duration of time, to execute 231 times. As this was
the number of HTML page versions we had for each source. In addition
we had to change the scraper launching code to deal with the fact that we
had to block until each scraping was done. This because the scraper relies
on timestamp updates retrieved from the database, and this information
must be updated after a scraping is finished before another scraping can be
executed.

We also had to expand the database model to handle some extra infor-
mation. The crawl configuration table had to be expanded with a current
source timestamp to store the stop time of the downloaded page relative
to the start time of the first downloaded page version for the source. And
to enable freshness analysis on the gathered data, we had to expand the
comments table with a column called source timestamp, which is collected
from the new column added to the crawl configuration and inserted in each
comment by the scraper.

Some minor modification had to be made to the scraper also, for instance
to handle the new source timestamp information, we had to expand the item
with a new field, and update each source specific extraction code to put this
information into the scraped item. The pipeline and MySQL interface also
had to be modified to deal with this. We also decided to skip extracting the
home and away scores, because we were only interested in the comments,
and in addition experienced some problems with the Yahoo HTML pages
for the six first minute of the game. The problem seemed to stem from the
fact that the Yahoo pages did not display the score for these first minutes,
and therefore the HTML structures the scraper relied on was corrupted. We
later on discovered that this also corrupted the comments extraction for the
same six minutes.

Another experience we had was that all of the Sky HTML pages created
a to many redirects exception in the scraper framework code. After inves-
tigation we discovered that these pages contained some piece of javascript
code that triggered a page refresh after a certain time, and when we re-
moved this piece of code the Sky scraper code functioned as supposed to.
One problem was that we had 230 pages left where this piece of code had
to be removed, however we solved this by using the below Python script.

import os
import sys

dictionary for slurp information
sky = {}

CREATE DICTIONARY WITH INFORMATION ABOUT ALL SKY FILES
f = open("sky_stat.dat")
i = 1

35

for line in f.readlines():
if i == 1:

i = 2
continue

run = line.split(" ")
sky[run[0]] = {’start’: run[1], ’stop’: run[2], ’html’: run[3]}

f.close()

FOR EACH HTML FILE
for key, value in sky.items():

print value[’html’]

OPEN FILE
f = open(value[’html’].replace("\n", ’’), ’r’)

CREATE LIST OF ALL LINES IN HTML FILE
data_list = f.readlines()

f.close()

REMOVE LINES CONTAINING JAVASCRIPT CODE TRIGGERING REFRESH
del data_list[87:99]

REWRITE FILE WITH NEW LIST OF LINES
f = open(value[’html’].replace("\n", ’’), ’w’)
f.writelines(data_list)
f.close()

After the code modifications, HTML editing and Web server setup, we
executed three separate runs, one for each of the sources. Each run scraped,
timestamped and stored the comments in the MySQL database.

The resulting experiment statistics can be found in Table 4.2. As can
be seen, the total number of comments extracted from those 693 pages is
287. However the slurping period started a couple of minutes before the
actual match started and ran for a couple of minutes after the match had
finished. In addition the match had a fifteen minute break in the middle,
where no comments where added. Hence, not all page versions contains new
comments. 287 comments mean that an accumulated comments rate for all
sources per minute in this 90 minute game is about 3.2. However, as antici-
pated many of the comments will be overlapping information describing the
same events.

Number of sources 3
Total number of pages 693
Total number of comments extracted 287
Average accumulated rate per game minute 3.2
Average rate per game minute 1.06

Table 4.2: Scraping Experiment Statistics

Table 4.3 contains statistics over comments distribution and rate per
source. As the table shows.Livegoals have a much higher average comments

36

rate per match minute than the other two. Which means that they con-
tribute more to the comments pool and that they could have shorter texts
spread over several comments per minute or that they describe each event
more thoroughly. Or perhaps they describe more events than the other two
sources, although the event might have less importance to the match.

Source Number comments Average rate per game minute
Yahoo 66 0.73
Sky 76 0.84

Livegoals 145 1.6

Table 4.3: Comments Source Distribution Statistics

4.3 Event Completeness Analysis

In this analysis we identified important events among the comments ex-
tracted in the scraping experiment. The events we chose to identify were:
game start, goals, yellow cards, red cards, substitutions, and start second half.
According to the official game statistics 4, these important events should
amount to seventeen in total during the game. Tree goals, six substitutions,
six yellow cards, and of course start of first half and start of second half.
What we wanted to investigate was event overlap between the sources, and
to look at the event distribution over the 105 (two times 45 minutes, plus a
15 minute break) game minutes.

What we discovered was that the Sky and Yahoo! scrapings, had sixteen
sixteen of the comments containing the wanted event descriptions. The one
missing was a substitution happening in overtime, that the scraper missed
due to the fact that this feature was not implemented. However, the Live-
goals scraper also missed a couple of the substitutions at the end, but before
the overtime. The reason for that is how the scraper avoids duplicate detec-
tions, and therefore risks to throw away some comments if there are several
comments in the same minute that are spread over more than one file ver-
sion. Naturally this did not inflict the other two sources, because their
comments rate per minute is below one.

Figure 4.1 shows the event distribution during the game time relative to
the timestamp of the first source detecting the start signal, and the events
tagged in the timeline by the timestamp of the first source detecting the
event. As the graph shows, only four events occur in the first half of the
game, and therefore most of the events happen in the second half. The event
rate also seems to increase the further into the game we are. This can be
explained naturally by looking at the events we are detecting, because in

4http://www.premierleague.com/page/MatchReports/0,,12306 48593,00.html

37

most games the substitutions are carried out in the second half and most of
the time at the end.

Before carrying out the freshness analysis, we manually inserted the two
comments that the livegoals scraper did not retrieve, this to have a complete
overlap of events between the sources. We also removed the start signal
event, as this were to be used as reference point only.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

N
um

be
r

of
 e

ve
nt

s

Game minutes

Figure 4.1: Event Distribution

4.4 Freshness Analysis

The purpose of the analysis was to compare the metadata freshness attained
using a single source versus our system using three sources.

Freshness can be quantified as the time elapsed between an event is
possible to detect, and when it is actually detected by our system. For
instance, if the earliest possible point of detecting an event is 167 seconds
into the game, and it is detected 180 seconds into the game, the freshness is
13. Therefore, as experiment baseline we used the earliest possible point of
detection by simulating pulling as often as required. We did this by using
our gathered raw data statistics, and created the baseline by selecting the
HTML source timestamp that contained the event at the earliest point.

Our experiment configuration used a 60 second polling interval per site,
as this polling interval is a reasonable visiting policy cite. The polling in-
terval allowed our system to carry out a 20 second Round-Robin scheduled
polling algorithm alternating between the three sites, resulting in a 60 sec-
ond polling interval per site. The polling intervals were scheduled to start

38

from the timestamp of the first source detecting the match start signal.
Figure 4.2 shows the freshness in seconds per event for one source versus

our system using three sources. As can be seen, using three sources we
are able to attain better freshness for each event, versus the single source
approach. However, this is a best case scenario, as we might not be able
to retrieve data from the source detecting the event first. This because
the second or third best source might not contain the event in that polling
interval, perhaps causing our system several more polling intervals before
apprehending the event. Although this might happen, our system will in
general be able to detect the event faster than a single source approach.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
re

sh
ne

ss
 (

se
co

nd
s)

Event

1 source
3 sources

Figure 4.2: Freshness Per Event

Figure 4.3 shows the average freshness for each of the three sources alone
and the average freshness when using all three combined. All three sources
alone have a relatively high freshness difference compared to the baseline.
But combined they achieve higher freshness, showing that our system can
achieve higher freshness than other systems relying only on a single source.
However, also here we must consider the fact that our scheduler will not
be able to retrieve data from the source detecting the event first. And by
that the average freshness will not be as good as in the best case scenario,
although the potential is there.

39

 0

 20

 40

 60

 80

 100

 120

 140

’yahoo’ ’livegoals’ ’sky’ ’combined-sources’

F
re

sh
ne

ss
 (

se
co

nd
s)

Figure 4.3: Average Freshness

40

Chapter 5

Conclusions

In this thesis we have addressed the problem of identifying and extracting
video metadata from web sources. We have focused on combining high meta-
data freshness while at the same time adhering to general polling politeness
rules. We proposed a solution using a pool of web sources containing over-
lapping information to improve the metadata freshness versus a single-source
approach.

5.1 Concluding Remark

Our experiments have shown that we are able to identify and extract wanted
metadata from several web sources, which can be further analyzed to retrieve
structured information for annotating videos. The experiments also show
that our approach is capable of retrieving metadata with higher freshness
than any single-source approach. However, further improvement might be
gained by implementing a more advanced scheduling algorithm than our
round-robin.

5.2 Future Work

Future work would be to improve on our current scraping functionality.
For instance, the duplicate detection code is not working perfectly well for
sources with a higher comments rate than one per minute. A potential so-
lution to this problem is to develop another more advanced algorithm for
duplicate detection. To tackle HTML pages using javascript to automati-
cally refresh pages, we would like to make some adjustments to the Scrapy
framework. We would like to increase the source pool by identifying other
possible web sources, and develop HTML content scrapers for these.

Further investigation into more advanced scheduling algorithms. For
instance, taking advantage of source specific live update intervals, and adjust
the scheduling based on the time each source is updated. It would also be

41

interesting to execute a large scale live system experiment, and address the
problems that would occur in such a scenario. Finally it would be interesting
to look into automatic event detection in the raw data material we used in
our study. And by implementing that, be one step closer a system capable
of delivering fresh event metadata for live video annotation.

42

References

[1] Brad Adelberg. Nodose—a tool for semi-automatically extracting struc-
tured and semistructured data from text documents. pages 283–294,
1998.

[2] Don Chamberlin Mary F. Fernandez Michael Kay Jonathan Robie An-
ders Berglund, Scott Boag and Jrme Simon. Xml path language (xpath)
2.0, December 2007.

[3] Gustavo O. Arocena and Alberto O. Mendelzon. Weboql: Restructur-
ing documents, databases, and webs. pages 24–33, 1998.

[4] M. K. Bergman. The Deep Web: Surfacing Hidden Value., 2001.

[5] Mary Elaine Califf and Raymond J. Mooney. Relational learning of
pattern-match rules for information extraction. pages 328–334, 1999.

[6] Soumen Chakrabarti. Data mining for hypertext: a tutorial survey.
SIGKDD Explor. Newsl., 1(2):1–11, 2000.

[7] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused
crawling: a new approach to topic-specific web resource discovery. vol-
ume 31, pages 1623–1640, New York, NY, USA, 1999. Elsevier North-
Holland, Inc.

[8] Viv Cothey. Web-crawling reliability. J. Am. Soc. Inf. Sci. Technol.,
55(14):1228–1238, 2004.

[9] Valter Crescenzi and Giansalvatore Mecca. Grammars have exceptions.
Inf. Syst., 23(9):539–565, 1998.

[10] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRun-
ner: automatic data extraction from data-intensive web sites. ACM,
New York, NY, USA, 2002.

[11] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W. Lons-
dale, Y.-K. Ng, and R. D. Smith. Conceptual-model-based data extrac-
tion from multiple-record web pages. Data Knowl. Eng., 31(3):227–251,
1999.

43

[12] Dayne Freitag. Machine learning for information extraction in informal
domains. Mach. Learn., 39(2-3):169–202, 2000.

[13] Joachim Hammer, Hector G. Molina, Junghoo Cho, Arturo Crespo,
and Rohan Aranha. Extracting semistructured information from the
web. 1997.

[14] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, pages 219–229, December 1999.

[15] Dag Johansen, H̊avard Johansen, Tjalve Aarflot, Joseph Hurley, Åge
Kvalnes, Cathal Gurrin, Sorin Zav, Bjørn Olstad, Erik Aaberg, Tore
Endestad, Haakon Riiser, Carsten Griwidz, and P̊al Halvorsen. Davvi:
a prototype for the next generation multimedia entertainment platform.
In MM ’09: Proceedings of the seventeen ACM international conference
on Multimedia, pages 989–990, New York, NY, USA, 2009. ACM.

[16] Nicholas Kushmerick. Wrapper induction: efficiency and expressive-
ness. Artif. Intell., 118(1-2):15–68, 2000.

[17] Alberto H. F. Laender, Berthier Ribeiro-Neto, and Altigran S. da Silva.
Debye - date extraction by example. Data Knowl. Eng., 40(2):121–154,
2002.

[18] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva,
and Juliana S. Teixeira. A brief survey of web data extraction tools.
SIGMOD Rec., 31(2):84–93, 2002.

[19] Chunxi Liu, Qingming Huang, Shuqiang Jiang, Liyuan Xing, Qixiang
Ye, and Wen Gao. A framework for flexible summarization of racquet
sports video using multiple modalities. Comput. Vis. Image Underst.,
113(3):415–424, 2009.

[20] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex
Rasmussen, and Alon Halevy. Google’s deep web crawl. Proc. VLDB
Endow., 1(2):1241–1252, 2008.

[21] F. Menczer. ARACHNID: Adaptive Retrieval Agents Choosing Heuris-
tic Neighborhoods for Information Discovery. In Proc. 14th Interna-
tional Conference on Machine Learning, pages 227–235, San Francisco,
CA, 1997. Morgan Kaufmann.

[22] Filippo Menczer and Richard K. Belew. Adaptive information agents
in distributed textual environments. pages 157–164, 1998.

[23] José E. Moreira, Maged M. Michael, Dilma Da Silva, Doron Shiloach,
Parijat Dube, and Li Zhang. Scalability of the nutch search engine.
pages 3–12, 2007.

44

[24] Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrap-
per induction for semistructured information sources. Autonomous
Agents and Multi-Agent Systems, 4(1-2):93–114, 2001.

[25] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading
textual hidden web content through keyword queries. pages 100–109,
2005.

[26] Berthier Ribeiro-Neto, Alberto H. F. Laender, and Altigran S. da Silva.
Extracting semi-structured data through examples. pages 94–101, 1999.

[27] Eric Roberts, Russ Shackelford, Rich LeBlanc, and Peter J. Den-
ning. Curriculum 2001: interim report from the acm/ieee-cs task force.
SIGCSE Bull., 31(1):343–344, 1999.

[28] Arnaud Sahuguet and Fabien Azavant. Building intelligent web appli-
cations using lightweight wrappers. Data Knowl. Eng., 36(3):283–316,
2001.

[29] Dian Tjondronegoro, Yi-Ping Phoebe Chen, and Binh Pham. Sports
video summarization using highlights and play-breaks. pages 201–208,
2003.

45

46

Appendix A

Source Code

A.1 Orchestrator

Listing A.1: ”Orchestrator”
1 #!/usr/bin/env python
2

3 """
4 Orchestrator process for web data extraction system
5 """
6

7 import sys
8 import getopt
9 import datetime

10 import time
11 import logging
12 import orch_config
13 import subprocess
14 import MySQLdb
15

16 __author__ = "Tord Heimdal"
17 __copyright__ = "Copyright 2009, VMGF project"
18 __credits__ = ["Tord Heimdal"]
19 __license__ = "?"
20 __version__ = "beta"
21 __maintainer__ = "Tord Heimdal"
22 __email__ = "theimdal@gmail.com"
23 __status__ = "Development"
24

25 # Function that updates the given configurations with the last
timestamp

26 # collected.
27 #
28 # source_configurations = list of id’s for source configurations
29 #
30 def update_configs_with_timestamp(source_configurations):
31

32 # Connect to database and get cursor
33 conn = MySQLdb.connect(host="whitebox.td.org.uit.no", user="root",

\
34 passwd="kpax", db="master")
35 cursor = conn.cursor()
36

47

37 # Query and fetch last recorded timestamp
38 try:
39 cursor.execute("select * from comments ORDER BY timestamp DESC

")
40 result = cursor.fetchone()
41 last_timestamp = result[2]
42 except:
43 print "Error retrieving last_timestamp: ", sys.exc_info()[0]
44 return
45

46 # Update all configurations with the last found timestamp
47 for config in source_configurations:
48 try:
49 cursor.execute("UPDATE crawl_configuration SET

last_timestamp=%s WHERE id=%s", (last_timestamp, config
))

50 except:
51 print "Error updating configuration: ", sys.exc_info()[0]
52 return
53

54 print "Configurations updated"
55

56 return
57

58 def main(argv):
59

60 # Set system duration
61 duration = 2 * 60 * 60 # in seconds
62

63 # Set source configurations for scheduling
64 source_configurations = [7, 8, 9]
65

66 # Set the wanted polling interval
67 polling_interval = 30 # in seconds
68

69 # Initiate count variable - which tells how many times we have
polled for

70 # information.
71 count = 0
72

73 # Set the configuration index - which tells which index the
scheduled

74 # source configuration is at.
75 conf_index = 0
76

77 # Main loop
78 # Executed for wanted duration with set polling interval
79 while count < duration/polling_interval:
80

81 # Record start time
82 startTime = time.time()
83

84 # Select the scheduled configuration
85 conf_id = source_configurations[conf_index]
86 print "CONFIG " + str(conf_id) + " scheduled"
87

88 # Execute the crawler and scraper as a subprocess
89 # Set the scheduled scrape configuration id as parameter
90 try:
91 subprocess.Popen(
92 ["python " + orch_config.SCRAPY_SCRIPT_PATH + "scrapy-

ctl.py " + \

48

93 "crawl match_spider" +\
94 " --nolog " +\
95 "--set CRAWL_ID=’"+str(conf_id)+"’"
96], shell=True)
97 except:
98 print "Error running scraper"
99

100 print "Scraping " + str(count) + " done"
101

102 # Invoke function updating configurations with the
last_timestamp found

103 try:
104 update_configs_with_timestamp(source_configurations,

source_configurations[conf_index])
105 except :
106 print "Unexpected error:", sys.exc_info()[0]
107

108 # Round-Robin schedule the available source configurations
109 if conf_index < 2:
110 conf_index += 1
111 else:
112 conf_index = 0
113

114 print "Next config " + str(source_configurations[conf_index])
115

116 # Record stop time
117 stopTime = time.time()
118

119 # Update number of crawls
120 count += 1
121

122 # Set sleeping interval
123 timeTaken = stopTime - startTime
124 if polling_interval - timeTaken < 3:
125 time.sleep(polling_interval)
126 else:
127 time.sleep(polling_interval - timeTaken)
128

129 print "done crawling"
130 sys.exit()
131

132 if __name__ == ’__main__’:
133 main(sys.argv[1:])

Listing A.2: ”Orchestrator configuration”
1 #!/usr/bin/env python
2

3 """
4 Module containing all configuration for the Orchestrator service
5 """
6

7 __author__ = "Tord Heimdal"
8 __copyright__ = "Copyright 2009, VMGF project"
9 __credits__ = ["Tord Heimdal"]

10 __license__ = "?"
11 __version__ = "beta"
12 __maintainer__ = "Tord Heimdal"
13 __email__ = "theimdal@gmail.com"
14 __status__ = "Development"
15

16 # Configuration constants

49

17

18 SCRAPY_SCRIPT_PATH = "../scrapy/match_scraper/"
19 LOG_FILENAME = "/home/tord/master/orchestrator/log.out"
20 MYSQL_SERVER_ADDRESS = "whitebox.td.org.uit.no"

A.2 Crawler, Scraper and Mysql Interface

Listing A.3: ”Match scraper”
1

2 import sys
3 import re
4 from scrapy.contrib.spiders import CrawlSpider, Rule
5 from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
6 from scrapy.selector import HtmlXPathSelector
7 from match_scraper.items import MatchScraperItem
8 from scrapy.conf import settings
9 import match_scraper.mysql_interface

10

11

12 class MatchSpider(CrawlSpider):
13

14 domain_name = "match_spider"
15

16 # Retrieve crawl id argument
17 crawl_id = str(settings[’CRAWL_ID’])
18

19 # query for crawl configuration
20 try:
21 db = match_scraper.mysql_interface.MysqlInterface()
22 conf = db.fetch_configuration(crawl_id)
23 except Exception as inst:
24 print "Database connection error."
25 sys.exit(1)
26

27 # init configuration
28 match_id = conf[4]
29 source = conf[3]
30 seed_url = conf[2]
31 last_timestamp = conf[5]
32 last_source_timestamp = conf[6]
33 source_timestamp = conf[7]
34

35 print
"=="

36 print "CONFIGURATION"
37 print

"=="

38 print "source: " + source
39 print "seed url: " + seed_url
40 print

"=="

41

42 seed = "http://localhost/" + seed_url
43 start_urls = [seed]
44

45 # evaluate current timestamp against last_timestamp and
last_source_timestamp

50

46 def evaluate_timestamp(self, current, last_timestamp,
last_source_timestamp):

47

48 # compare timestamp to last gathered global comment and last
gathered

49 # source comment
50 if(len(current) <= 2):
51 if(int(current) < int(last_timestamp) or int(current) <=

int(last_source_timestamp)):
52 return True
53 else:
54 if(int(current[0:2]) < int(last_timestamp) or int(current)

<= int(last_source_timestamp)):
55 return True
56

57 return False
58

59 # dispatch page to correct parser
60 def parse_start_url(self, response):
61

62 # if yahoo
63 if(self.source == "yahoo"):
64 return self.yahoo(response)
65 # if sky
66 elif(self.source == "sky"):
67 return self.sky(response)
68 # if livegoals
69 else:
70 return self.livegoals(response)
71

72

73 # LIVEGOALS parser
74 def livegoals(self, response):
75 hxs = HtmlXPathSelector(response)
76 items = []
77 item = MatchScraperItem()
78

79 # Add identification info
80 item[’crawl_id’] = self.crawl_id
81 item[’match_id’] = self.match_id
82 item[’source’] = self.source
83 item[’source_timestamp’] = self.source_timestamp
84

85 # scrape summary information
86 try:
87 score = hxs.select(’//*[@id="event-result"]/text()’).

extract()[0]
88 item[’home_score’] = score[0]
89 item[’away_score’] = score[2]
90 except:
91 pass
92 print "Skipped summary info due to error in parsing."
93

94 # scrape match comments
95 comments = []
96 commentList = hxs.select(’//*[@id="Commentary-Contents"]’)
97

98 for comment in commentList.select(’.//tr’):
99

100 # error handling
101 try:
102

51

103 tmp = {}
104

105 # extract time information from class variable u’min0
comment380950033’

106 timeString = comment.select(’td[1]/text()’).extract()
[0]

107 timeString = re.sub("\D", "", timeString)
108

109 if len(timeString) == 3:
110 tmp["timestamp"] = timeString[0:2]
111 else:
112 tmp["timestamp"] = timeString
113

114 skip_comment = self.evaluate_timestamp(tmp["timestamp
"], self.last_timestamp, self.last_source_timestamp
)

115

116 if skip_comment:
117 continue
118

119 # extract comment
120 try:
121 tmp["comment"] = comment.select(’td[3]/text()’).

extract()[0]
122 except:
123 tmp["comment"] = comment.select(’td[3]/strong/text

()’).extract()[0]
124

125 # append the new event to the comments list
126 comments.append(tmp)
127

128 except:
129 pass
130 print "Skipped comment due to error in parsing"
131

132 item[’comments’] = comments
133

134 items.append(item)
135

136 return items
137

138 # SKY parser
139 def sky(self, response):
140 hxs = HtmlXPathSelector(response)
141 items = []
142 item = MatchScraperItem()
143

144 # Add identification info
145 item[’crawl_id’] = self.crawl_id
146 item[’match_id’] = self.match_id
147 item[’source’] = self.source
148 item[’source_timestamp’] = self.source_timestamp
149

150 # scrape summary information
151 try:
152 score = hxs.select(’/html/body/div/div[9]/div[1]/div/div/

table/tbody/tr/td[2]/text()’).extract()[0]
153 score = score.replace(’\t’, ’’).replace(’\n’, ’’).replace(’

’, ’’)
154 item[’home_score’] = score[0]
155 item[’away_score’] = score[2]
156 except:

52

157 print "Skipped summary info due to error in parsing."
158 pass
159

160 # scrape match comments
161 comments = []
162 commentList = hxs.select(’/html/body/div/div[9]/div[3]/div/div/

span/div[4]’)
163

164 for comment in commentList.select(’.//p’):
165

166 # error handling
167 try:
168

169 tmp = {}
170

171 # extract time information from class variable u’min0
comment380950033’

172 timeString = comment.select(’b/text()’).extract()[0]
173 tmp["timestamp"] = timeString.replace(’ ’, ’’)
174

175 skip_comment = self.evaluate_timestamp(tmp["timestamp
"], self.last_timestamp, self.last_source_timestamp
)

176

177 if skip_comment:
178 continue
179

180 # test to check if the <p> is a real comment - skip it
if not

181 try:
182 cast = int(tmp["timestamp"][0])
183 except:
184 print "Skipped comment without time reference"
185 raise
186

187 # extract comment
188 tmp["comment"] = comment.select(’text()’).extract()[0]
189

190 # append the new event to the comments list
191 comments.append(tmp)
192

193 except:
194 print "Skipped comment due to error in parsing"
195 pass
196

197

198 item[’comments’] = comments
199

200 items.append(item)
201

202 return items
203

204

205 # YAHOO parser
206 def yahoo(self, response):
207 hxs = HtmlXPathSelector(response)
208 items = []
209 item = MatchScraperItem()
210

211 # Add identification info
212 item[’crawl_id’] = self.crawl_id
213 item[’match_id’] = self.match_id

53

214 item[’source’] = self.source
215 item[’source_timestamp’] = self.source_timestamp
216

217 # scrape summary information
218 try:
219 item[’home_score’] = hxs.select(’/html/body/div/div[2]/div/

div/div[2]/div[2]/h3/span[1]/text()’).extract()[0]
220 item[’away_score’] = hxs.select(’/html/body/div/div[2]/div/

div/div[2]/div[2]/h3/span[3]/text()’).extract()[0]
221 except:
222 print "Skipped summary info due to error in parsing."
223 pass
224

225

226 # scrape match comments
227 comments = []
228 commentList = hxs.select(’/html/body/div/div[2]/div/div/ul/li

[1]/div/div[2]/ul/li’)
229

230 for comment in commentList:
231 try:
232 tmp = {}
233

234 # extract time information from class variable u’min0
comment380950033’

235 timeString = comment.select("@class").extract()[0]
236 tmp["timestamp"] = timeString[:5].replace("min", "").

replace(" ", "")
237

238 skip_comment = self.evaluate_timestamp(tmp["timestamp
"], self.last_timestamp, self.last_source_timestamp
)

239

240 if skip_comment:
241 continue
242

243 # skip event at time 0
244 if tmp["timestamp"] == "0":
245 continue
246

247 # extract comment from span[2] text value
248 tmp["comment"] = comment.select("span[2]/text()").

extract()[0]
249

250 # append the new event to the comments list
251 comments.append(tmp)
252 except:
253 print "Skipped comment due to error in parsing"
254 pass
255

256

257 item[’comments’] = comments
258

259 items.append(item)
260

261 return items
262

263 SPIDER = MatchSpider()

Listing A.4: ”Match item”
1 # Define here the models for your scraped items

54

2 #
3 # See documentation in:
4 # http://doc.scrapy.org/topics/items.html
5

6 from scrapy.item import Item, Field
7

8 class MatchScraperItem(Item):
9

10 # crawl id
11 crawl_id = Field()
12

13 # match id
14 match_id = Field()
15

16 # item source
17 source = Field()
18

19 # source timestamp
20 source_timestamp = Field()
21

22 # number of goals scored by home team
23 home_score = Field()
24

25 # number of goals scored by away team
26 away_score = Field()
27

28 # all live comments
29 comments = Field()
30

31 pass

Listing A.5: ”Item pipeline”
1 # Pipeline storing items in database
2

3 import mysql_interface
4

5 class MatchScraperPipeline(object):
6

7 def process_item(self, domain, item):
8

9 crawl_id = item[’crawl_id’]
10 match_id = item[’match_id’]
11 source = item[’source’]
12 home_score = item[’home_score’]
13 away_score = item[’away_score’]
14 comments = item[’comments’]
15 source_timestamp = item[’source_timestamp’]
16

17 # connect to database
18 db = mysql_interface.MysqlInterface()
19

20 # update match score
21 db.update_match_score(match_id, home_score, away_score)
22

23 # update match comments
24 i = 0
25 for comment in item[’comments’]:
26 db.add_match_comment(match_id, comment[’timestamp’], "blank

", \
27 comment[’comment’], source,

source_timestamp)

55

28

29 if i == 0:
30 last_timestamp = comment[’timestamp’]
31 i += 1
32

33 # update last comment for current source
34 db.update_last_timestamp(crawl_id, last_timestamp)
35

36 return item

Listing A.6: ”Scraper settings”
1 # Scrapy settings for match_scraper project
2 #
3 # For simplicity, this file contains only the most important settings

by
4 # default. All the other settings are documented here:
5 #
6 # http://doc.scrapy.org/topics/settings.html
7 #
8 # Or you can copy and paste them from where they’re defined in Scrapy:
9 #

10 # scrapy/conf/default_settings.py
11 #
12

13 import match_scraper
14

15 BOT_NAME = ’match_scraper’
16 BOT_VERSION = ’1.0’
17

18 SPIDER_MODULES = [’match_scraper.spiders’]
19 NEWSPIDER_MODULE = ’match_scraper.spiders’
20 DEFAULT_ITEM_CLASS = ’match_scraper.items.MatchScraperItem’
21 USER_AGENT = ’%s/%s’ % (BOT_NAME, BOT_VERSION)
22 ITEM_PIPELINES = [’match_scraper.pipelines.MatchScraperPipeline’]

Listing A.7: ”Mysql interface”
1 import MySQLdb
2

3 class MysqlInterface():
4

5 # constructor
6 def __init__(self):
7 self.conn = MySQLdb.connect(host="whitebox.td.org.uit.no", user

="root",\
8 passwd="kpax", db="master")
9 self.cursor = self.conn.cursor()

10 pass
11

12 # method that returns last timestamp for all comments
13 def get_last_timestamp(self):
14 try:
15 self.cursor.execute("select * from comments ORDER BY \
16 timestamp DESC")
17 return self.cursor.fetchone()
18 except:
19 print "Error in get_last_timestamp: ", sys.exc_info()[0]
20

21 # Method that updates a given crawl configuration with the given
timestamp

56

22 def update_last_timestamp(self, crawl_id, timestamp):
23 try:
24 self.cursor.execute("UPDATE crawl_configuration SET\
25 last_source_timestamp=%s WHERE id=%s",

\
26 (timestamp, crawl_id))
27 except:
28 print "Error updating last timestamp"
29

30 # Method that returns a given crawl configuration
31 def fetch_configuration(self, crawl_id):
32 try:
33 self.cursor.execute("select * from crawl_configuration

where \
34 id =%s", (crawl_id,))
35 return self.cursor.fetchone()
36 except:
37 print "Mysql error when retrieving configuration"
38

39 # Method that updated a specific match with the given home and away
goals

40 def update_match_score(self, match_id, home, away):
41 try:
42 self.cursor.execute("UPDATE master.match SET \
43 home_score=%s, away_score=%s WHERE id=%

s", \
44 (home, away, match_id))
45 except:
46 print "Mysql error when updating match score"
47

48 pass
49

50 # Method that inserts a given comment data into the database
51 def add_match_comment(self, match_id, timestamp, event, comment, \
52 source, source_timestamp):
53 try:
54 self.cursor.execute("INSERT INTO comments (match_id,

timestamp, \
55 event, comment, source,

source_timestamp) \
56 VALUES(%s, %s, %s, %s, %s, %s)",\
57 (match_id, timestamp, event, comment,

source, \
58 source_timestamp))
59 except:
60 print "Mysql error when adding match comment"
61

62 pass

A.3 Experiment

Listing A.8: ”Experiment script”
1

2 #!/usr/bin/env python
3

4 """
5 Experiment script
6 """
7

8 import sys

57

9 import os
10 import getopt
11 import datetime
12 import time
13 import logging
14 import orch_config
15 import subprocess
16 import MySQLdb
17

18 __author__ = "Tord Heimdal"
19 __copyright__ = "Copyright 2009, VMGF project"
20 __credits__ = ["Tord Heimdal"]
21 __license__ = "?"
22 __version__ = "beta"
23 __maintainer__ = "Tord Heimdal"
24 __email__ = "theimdal@gmail.com"
25 __status__ = "Development"
26

27

28 # Funcion parsing and retrieving slurp stats
29 def retrieve_slurp_stats():
30 # change to www dir
31 os.chdir("/home/tord/master/www/")
32

33 # dictionaries for slurp information
34 yahoo = {}
35 sky = {}
36 livegoals = {}
37

38 # create yahoo dict
39 f = open("yahoo_stat.dat")
40 i = 1
41 for line in f.readlines():
42 if i == 1:
43 i = 2
44 continue
45 run = line.split(" ")
46 yahoo[run[0]] = {’start’: run[1], ’stop’: run[2], ’html’: run

[3]}
47

48 f.close()
49

50 # create sky dict
51 f = open("sky_stat.dat")
52 i = 1
53 for line in f.readlines():
54 if i == 1:
55 i = 2
56 continue
57 run = line.split(" ")
58 sky[run[0]] = {’start’: run[1], ’stop’: run[2], ’html’: run[3]}
59

60 f.close()
61

62 # create livegoals dict
63 f = open("livegoals_stat.dat")
64 i = 1
65 for line in f.readlines():
66 if i == 1:
67 i = 2
68 continue
69 run = line.split(" ")

58

70 livegoals[run[0]] = {’start’: run[1], ’stop’: run[2], ’html’:
run[3]}

71

72 f.close()
73

74 return [yahoo, sky, livegoals]
75

76 # Function that updates the given configurations with the last
timestamp

77 # collected.
78 #
79 # source_configurations = list of id’s for source configurations
80 #
81 def update_configs_with_timestamp(source_configurations):
82

83 # Connect to database and get cursor
84 conn = MySQLdb.connect(host="whitebox.td.org.uit.no", user="root",

\
85 passwd="kpax", db="master")
86 cursor = conn.cursor()
87

88 # Query and fetch last recorded timestamp
89 try:
90 cursor.execute("select * from comments where match_id=7 and

source=’livegoals’ ORDER BY timestamp DESC")
91 result = cursor.fetchone()
92 last_timestamp = result[2]
93 except:
94 print "Error retrieving last_timestamp: ", sys.exc_info()[0]
95 return
96

97 # Update all configurations with the last found timestamp
98 for config in source_configurations:
99 try:

100 cursor.execute("UPDATE crawl_configuration SET \
101 last_timestamp=%s WHERE id=%s", \
102 (last_timestamp, config))
103 except:
104 print "Error updating configuration: ", sys.exc_info()[0]
105 return
106 return
107

108 # Function that insert the correct seed url into the given
configuration

109 def update_configuration(count, conf_id, slurp):
110

111 # Connect to database and get cursor
112 conn = MySQLdb.connect(host="whitebox.td.org.uit.no", user="root",

\
113 passwd="kpax", db="master")
114 cursor = conn.cursor()
115

116 # Update specified configuration with new seed url
117 new_seed = slurp[str(count)][’html’].replace("\n", ’’)
118 source_timestamp = slurp[str(count)][’stop’]
119 try:
120 cursor.execute("UPDATE crawl_configuration SET seed_url=%s, \
121 current_source_timestamp=%s WHERE id=%s", \
122 (new_seed, source_timestamp[0:10],conf_id))
123 except:
124 print "Error updating configuration with new seed: ", sys.

exc_info()[0]

59

125

126 return
127

128 def main(argv):
129

130 # Set source configurations for scheduling
131 source_configurations = [12]
132

133 # controll the number of iterations done
134 count = 0
135

136 # Set the configuration index - which tells which index the
scheduled

137 # source configuration is at.
138 conf_index = 0
139

140 # EXPERIMENT STATS
141 slurp_stats = retrieve_slurp_stats()
142

143 # Main loop
144 # Executed for wanted duration with set polling interval
145 while count < 231:
146

147 # Select the scheduled configuration
148 conf_id = source_configurations[conf_index]
149

150 # update configuration with correct html version
151 update_configuration(count, conf_id, slurp_stats[2])
152

153 # Execute the crawler and scraper as a subprocess
154 # Set the scheduled scrape configuration id as parameter
155 retval = subprocess.call(
156 ["python " + orch_config.SCRAPY_SCRIPT_PATH + "scrapy-ctl.

py " + \
157 "crawl match_spider" +\
158 " --nolog " +\
159 "--set CRAWL_ID=’"+str(conf_id)+"’"
160], shell=True)
161

162 print "RETURN VALUE: " + str(retval)
163

164 # Invoke function updating configurations with the
last_timestamp found

165 try:
166 update_configs_with_timestamp(source_configurations)
167 except :
168 print "Error updating configs with last timestamp"
169 count += 1
170

171 if __name__ == ’__main__’:
172 main(sys.argv[1:])

Listing A.9: ”Yahoo polling script”
1 # -*- coding: utf-8 -*-
2 #!/usr/bin/env python
3 import urllib2, time, os.path, os
4

5

6 # Config
7 dest = "yahoo_liverpool_arsenal"
8 name = "yahoo"

60

9 src = "http://uk.eurosport.yahoo.com/football/premier-league/2009-2010/
liverpool-arsenal-282896.html"

10 length = 2 * 60 * 60 # in seconds
11 wait = 30
12 ###########
13

14 try:
15 os.mkdir(dest)
16 except:
17 pass
18

19

20 statfile = file(os.path.join(dest,"stat.dat"), "w")
21 statfile.write("#filename start stop\n")
22

23 count = 0
24 error = False
25 while count < length/wait:
26

27 startTime = time.time()
28 try:
29 u = urllib2.urlopen(src)
30 fn = "%s-%d-%f.html" % (name, count , time.time())
31 f = file(os.path.join(dest, fn), "w")
32 data = u.read()
33 f.write(data)
34 f.close()
35 except:
36 error = True
37 print time.ctime(), "error downloading page nr ", count
38 finally:
39 stopTime = time.time()
40 if not error:
41 statfile.write("%d %f %f %s\n" % (count, startTime,

stopTime, fn))
42 print time.ctime(), "downloaded nr ", count
43 else:
44 error = False
45 count += 1
46

47 timeTaken = stopTime - startTime
48 if wait - timeTaken < 3:
49 time.sleep(wait)
50 else:
51 time.sleep(wait - timeTaken)

Listing A.10: ”Sky polling script”
1 # -*- coding: utf-8 -*-
2 #!/usr/bin/env python
3 import urllib2, time, os.path, os
4

5

6 # Config
7 dest = "sky_liverpool_arsenal"
8 name = "sky"
9 src = "http://www.skysports.com/football/match_commentary/0,19764,11065

_3205392,00.html"
10 length = 2 * 60 * 60 # in seconds
11 wait = 30
12 ###########
13

61

14 try:
15 os.mkdir(dest)
16 except:
17 pass
18

19

20 statfile = file(os.path.join(dest,"stat.dat"), "w")
21 statfile.write("#filename start stop\n")
22

23 count = 0
24 error = False
25 while count < length/wait:
26

27 startTime = time.time()
28 try:
29 u = urllib2.urlopen(src)
30 fn = "%s-%d-%f.html" % (name, count , time.time())
31 f = file(os.path.join(dest, fn), "w")
32 data = u.read()
33 f.write(data)
34 f.close()
35 except:
36 error = True
37 print time.ctime(), "error downloading page nr ", count
38 finally:
39 stopTime = time.time()
40 if not error:
41 statfile.write("%d %f %f %s\n" % (count, startTime,

stopTime, fn))
42 print time.ctime(), "downloaded nr ", count
43 else:
44 error = False
45 count += 1
46

47 timeTaken = stopTime - startTime
48 if wait - timeTaken < 3:
49 time.sleep(wait)
50 else:
51 time.sleep(wait - timeTaken)

Listing A.11: ”Livegoals polling script”
1 # -*- coding: utf-8 -*-
2 #!/usr/bin/env python
3 import urllib2, time, os.path, os
4

5

6 # Config
7 dest = "livegoals_liverpool_arsenal"
8 name = "livegoals"
9 src = "http://www.livegoals.com/gamecenter/liverpool-vs-arsenal

-13-12-2009"
10 length = 2 * 60 * 60 # in seconds
11 wait = 30
12 ###########
13

14 try:
15 os.mkdir(dest)
16 except:
17 pass
18

19

62

A.3. EXPERIMENT 63

20 statfile = file(os.path.join(dest,"stat.dat"), "w")
21 statfile.write("#filename start stop\n")
22

23 count = 0
24 error = False
25 while count < length/wait:
26

27 startTime = time.time()
28 try:
29 u = urllib2.urlopen(src)
30 fn = "%s-%d-%f.html" % (name, count , time.time())
31 f = file(os.path.join(dest, fn), "w")
32 data = u.read()
33 f.write(data)
34 f.close()
35 except:
36 error = True
37 print time.ctime(), "error downloading page nr ", count
38 finally:
39 stopTime = time.time()
40 if not error:
41 statfile.write("%d %f %f %s\n" % (count, startTime,

stopTime, fn))
42 print time.ctime(), "downloaded nr ", count
43 else:
44 error = False
45 count += 1
46

47 timeTaken = stopTime - startTime
48 if wait - timeTaken < 3:
49 time.sleep(wait)
50 else:
51 time.sleep(wait - timeTaken)

