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(is paper presents an optimal design of a hybrid wind turbine/PV/battery energy system for a household application using a
multiobjective optimization approach, namely, particle swarm optimization (PSO). (e ultimately optimal component selection
of the hybrid renewable energy system (HRES) is suggested by comprehensively investigating the effects of various factors on the
cost-reliability relation, such as the mounting orientation, temperature on the PV modules, wind turbine hub height, different
types of batteries, and different load profiles. (e optimization results show the feasibility of HRES for a single-family household
demand in the arctic region of Tromsø, Norway. As we will discuss in the results, an HRES operating in such a region can achieve
great energy-autonomous levels at a reasonable cost partially thanks to the cold climate. (e mounting structure and temperature
effects on the PV modules and the battery type can significantly change the system performance in terms of cost and reliability,
while a higher wind turbine hub offers little improvement.(e result suggests an optimal HRES consisting of a wind turbine with a
swept area of 21m2 and a hub height of 12m, a PV system of 12m2 with 2-axis tracking, and a battery bank of 3 kWh.(is system
will achieve 98.2% in self-reliance. Assuming that the system lifetime is 20 years, the annual cost is about 900 USD. Even though
this study focuses on an HRES for a single-family application in the arctic, such an approach can be extended for other ap-
plications and in other geographical areas.

1. Introduction

(e use of renewable energy devices is environmentally
benign and can in most situations replace fossil energy
usage. Benefiting from government incentives and public
support, the share of renewable energy production has been
increasing rapidly in recent years [1]. It is also worth
mentioning that the recent developments of supportive
technologies (such as batteries and semiconductor devices)
have also contributed to a decrease in cost and an increase in
stability of new renewable energy systems, thereby making
them more attractive to consumers. Among all new re-
newable energy technologies, wind and solar energy are the
most widely used technologies because they are mature and
cost-effective and both resources are available practically
anywhere on Earth.

Solar and wind energy, however, have one fundamental
issue that disheartens consumers: the intermittent

characteristics. Both photovoltaic (PV) cells and wind tur-
bines (WT) convert natural resources into electrical energy,
but their outputs are highly dependent on the actual
availability of resources.(is dependence severely affects the
reliability of the renewable energy system (RES). To mitigate
and even eliminate the output fluctuation of the RES, energy
storage units are usually employed as summarized by Khare
et al. in [2]. (e integration of energy storage into RES,
unfortunately, leads to a cost increase of the system. (e
capacity of the storage system is determined based on the
peak load demand, and it becomes considerably larger for a
standalone RES since several margin hours are required.
(erefore, it is necessary to optimize the components of the
RES to meet the load demands with minimum cost and high
reliability.

Sizing components of a standalone hybrid renewable
energy system (HRES) is a challenging task. Compromises
between its capacity to deliver at all times (reliability) and
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cost have to be made. An optimal sizing method is required
to minimize the cost while ensuring the reliability of the
system under the intermittent generation of renewable
energy sources. Sizing components of a hybrid renewable
system will directly affect its energy reliability and cost-ef-
fectiveness. Oversizing components can improve the system
performance but does also result in an increased cost, hence
reducing the cost-effectiveness of the system and vice versa.
Unfortunately, the system reliability and cost-effectiveness
are conflicting objectives, implying that an improvement of
one objective can result in an inevitable degradation of the
other. (erefore, an optimization problem arises to opti-
mally size its components and to find the best compromise
between them. (e optimization result can help the deci-
sion-maker to determine a desired tradeoff among the de-
sign objectives with different preferences.

Many studies have carried out optimal sizing of an
autonomous HRES. In a research paper, Ekren and Ekren
introduced a statistical and mathematical method called
response surface metamodels (RSM) to obtain the relation
between the system cost and the system components [3].
Another study by Traore proposed a method for optimal
sizing of wind/solar off-grid microgrid system using an
enhanced genetic algorithm (GA) in [4]. In recent years,
swarm intelligence-based optimization algorithms, e.g.,
particle swarm optimization (PSO), have been widely used in
size optimization of hybrid systems or microgrids due to its
simplicity and good convergence. Sawle et al. implemented
both GA and PSO algorithm for optimal planning of a PV-
wind-biomass system with energy storage and a backup
diesel generator in [5]. (e result suggests that PSO is more
efficient for planning of HRES than GA. Since the PSO can
be extended for multicriteria problems, it provides users
with the flexibility to customize the problem constraint that
fits any specific requirements. In another study, Mohamed
et al. proposed an optimal sizing method for HRES to
maximize the energy generation and meet the load con-
sumption at optimal cost and reliability considering smart
grid load management algorithm [6]. Wang and Singh
further utilized the PSO algorithm for optimal sizing of
hybrid power system by considering multiple criteria in-
cluding cost, reliability, and emission in [7].

Most of the mentioned studies focus on optimal sizing
components of HRES with multiple objectives, e.g., cost,
reliability, and emission. Very few of them considered the
sensitivity of system parameters that could considerably
change the design performances, such as solar irradiation
and wind speed conditions. Furthermore, none of the studies
has been conducted for HRES in harsh weather conditions
like in the artic, where the temperature, solar irradiation, and
wind speed could be extreme.(ose extreme conditions can,
in practice, happen simultaneously. (erefore, optimal
sizing of an HRES in this region requires a new approach,
found in this publication.

In this paper, a PSO-based optimization algorithm is
applied for sizing components of an HRES in an arctic
region. Because of the extreme site, at 69°N latitude, the
system of interest will experience harsh working conditions.
(e system will be subjected to low-density horizontal solar

irradiation, midnight sun in the summer, and no sun at all
for two months. Furthermore, the cold temperatures give
rise to a higher air density which is positive for wind power.
Cold temperature is also positive for PV since the efficiency
of standard silicon PV panels increases by about 0.5% per
one-degree lower temperature as investigated by Dubey et al.
in [8]. (e harsh conditions at 69°N require special con-
sideration when installing a wind and/or solar power system.
For the PV system, a significant increase in power pro-
duction can be obtained by mounting the panels at an
optimum tilt angle or by adding a 1- or 2-axis tracking
system that points the panels directly to the sun. PV systems
installed at high latitudes receive the greatest benefit from a
tracking system as reported by Huld et al. in [9].

To provide a fair assessment of standalone HRES at high
latitudes, this study performs an optimal component sizing
considering the effects of costs, PV system mounting angle,
addition of a PV tracking system, wind turbine hub height,
and cold temperatures.

2. InputDataforOptimalComponentSizingofa
Hybrid Wind/Solar Energy System

To solve the optimization problem of component sizing for a
hybrid wind/solar energy system, reliable datasets of wind
speed, solar irradiation, and load consumption are required.
(e fundamental wind speed and irradiation data were
acquired at a meteorological station and used to estimate the
power generation of the hybrid energy system. (e load
demand data was generated by a stochastic load model,
which realistically can reproduce different household loads
over days and seasons. (is load model was developed by
Widén et al. in [10, 11]. In the following sections, these data
are described in detail.

2.1. Weather Data. (e case study for this application is an
HRES installed in Tromsø, Norway, located at latitude 69°N.
(e weather data for Tromsø are measured at the Holt
meteorological station provided by the Agriculture Mete-
orological Service (Landbruksmeteorologisk Tjeneste,
LMT), Bioforsk, to provide scientific data for weather
forecast as well as research [12]. (e wind measurements are
performed by anemometers at the height of two meters
above the ground. (e data from Holt is chosen because the
station is located at an open terrain with primarily laminar
flow, making the collected data reliable. (e global irradi-
ation, which is the sum of the direct and diffuse radiation, is
measured by a pyranometer on a horizontal surface. (e
instruments used at all Bioforsk’s weather stations are either
of the type CM11 or of the type CM3 from Kipp & Zonen for
the global irradiation and anemometers from Vector or
Friedrichs for the wind measurements [13]. (e data used in
this study were collected during the year 2015 and averaged
over 60 minutes to obtain hourly values.

Tromsø is located above the Arctic Circle and experi-
ences a subarctic climate. (e winter is dark as the sun is not
visible from November 21 to January 21, so an energy
generation system based solely on PV cannot be used.

2 Journal of Renewable Energy



Instead, a wind turbine can be used or a combination of PV
and a wind turbine. (e wind potential during the winter is
higher and compensates for the lack of solar energy to some
extent. Daylight becomes long between the equinoxes, and
the midnight sun appears from May 21 to July 21. (is is an
advantage for a PV system installed in this area in addition to
the cold temperature effect which naturally boosts silicon
module efficiencies with a factor of 0.5%K−1 based on re-
search by Kleven in [14]. Furthermore, lower temperatures
mean higher air densities, which is positive for wind power
generation. (e average summer temperature in Tromsø
approximates 5.9°C [15]. When estimating the power pro-
duction of a PV system in regions with snow cover for a
significant period of the year, normally from November to
April, the reflection albedo effect which increases the solar
energy generation is worth considering. Bifacial PV panels
and tracking systems are also effective solutions for utilizing
reflected energy from snow surfaces and the 360-degree
revolving sun path during summer.

For a hybrid wind-solar system, an anticorrelation of
wind and solar resources is preferred. An investigation of
solar and wind correlation in Tromsø was done by Solbakken
et al. in [13]. (e results show that the correlation coefficient
for hourly values is so weak that no conclusion can be drawn
about the relationship between solar and wind power.
However, for longer timescales, monthly, the correlation
coefficient becomes negative with increased magnitudes
indicating a stronger complementary characteristic of wind
and solar power in Tromsø.

(e wind data at the Holt station is measured at the
altitude of two meters above ground, which needs to be
extrapolated to estimate the actual wind speed at the altitude
of the wind turbine hub. (e vertical distribution of wind
speed can be estimated using this logarithmic expression:

vh � vref
ln h/z0( 􏼁

ln href /z0( 􏼁
, (1)

where vh is the wind speed at a certain height (m/s), vref is the
reference wind speed measured at a reference height (m/s), h
is the height for vh, href is the reference height, and z0 is the
roughness length in the current wind direction. (e
roughness length is the distance above ground level where
the wind speed theoretically should be zero and it varies with
landscape type. A landscape with many trees and tall
buildings has long roughness length, while the water surface
and completely open terrain with a smooth surface have a
near-zero length. (e Holt weather station is located at an
open terrain with some scattered houses and trees; therefore,
the landscape is categorized in roughness class 1.5 with a
roughness length of 0.055m. (e common heights of a
small-scale wind turbine hub are 9m, 12m, or 15m, and the
effect of wind turbine hub height will be studied in this
paper.

2.2. Stochastic Load Model. (e stochastic load model de-
veloped by Widén et al. is used for the generation of do-
mestic load demand data for the optimization problem
[10, 11]. (e model offers high flexibility in selecting the

load profiles for various applications while retaining all key
features in empirically measured data, including end-use
composition, diurnal and annual variation of the total
demand and individual end-user, and demand variation
over different time scales in individual households. (e
details on the stochastic load model can be described as
follows.

(e model framework can be split into two successive
steps. First, it generates synthetic activity patterns for each
household member using the Markov chain model. Each
member can be assigned to one of the three states that are
“absent,” “present and active,” and “present and inactive”
at each discrete time step. (e Markov chain model also
defines the list activities of which a person in the house
performs one at each time step. (ese activities are away,
sleeping, cooking, dishwashing, washing, watching TV,
using a computer, using audio devices, and others. When
the time step changes, there is a transition possibility of the
person from the current state to another, including the
possibility of staying in the same state. Using these as-
sumptions, the activity pattern for each member of the
household is generated to be used in the second step. In this
step, each activity in the Markov chain model corresponds
to different electricity end-uses that are prescribed. (e
timing of the appliance load is complicated since it varies
differently for specific appliances. Additionally, the sharing
of appliances such as dishwashing, washing, or cooking and
the operation mode of each appliance add more complexity
to the model. Considering all the factors, the model con-
verts the activity patterns into electrical consumption. (e
load demands reproduced by the model were successfully
validated by comparing it to an empirical dataset and are
therefore valid to use as inputs for the optimization
problem [10].

For the investigation of the hybrid energy system, two
load profiles for a detached house, one with 5 people and the
other with 3 people, were generated. From the load model, it
is observed that the detached house with 5 people consumes
6300 kWh a year while the other’s consumption is
4380 kWh. (ose consumption amounts are approximate to
the typical yearly consumption of a Norwegian household. It
should be noted that this electricity consumption excludes
energy for heating purposes. Heating could and should be
supplied via another low exergy energy source such as
bioenergy.

2.3. Modeling of Hybrid Renewable Energy System
Components. In this section, mathematical models of the
wind turbine, the PV modules, and the batteries, which are
used for formulating the optimization problem, are
discussed.

2.3.1. Wind Turbine Model. For a given wind turbine, its
generated power varies with the wind speed that sweeps its
rotor blades. (e power generation is also proportional to
the swept area of the blades, air density, and energy con-
version efficiency. Hence, it is given by
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PWT(t) �

0 ](t)< ]ci or ](t)> ]co

0.5ρ]3AWTηWTηConvWT ]ci < ](t)< ]ra

PratedAWTηWTηConvWT ]ra < ](t)< ]co

⎧⎪⎪⎨

⎪⎪⎩
,

(2)

where Prated is the rated power of the WT (kW); ρ is air
density (kg/m3); AWT is the swept area of the wind turbine
(m2); υ is the wind speed at time t (m/s); υci, υra, and υco are
the cut-in wind speed, rated wind speed, and cut-out wind
speed (m/s), respectively; and ηWT and ηConv are the effi-
ciency of the WT and converters associated with it. (e air
density is a function of temperature and pressure expressed
as

ρ �
p

RspecificT
, (3)

where ρ is the air density (kg/m3), p is the absolute pressure
(Pa), T is the absolute temperature (K), and Rspecific is a
specific gas constant for dry air (J/kg.K). A cold temperature
increases the air density, thereby increasing the energy
production of the wind turbine.

It has been proven that, for any wind-driven generator,
the maximum factor of 0.59 of the theoretical energy can be
extracted from the wind potential regardless of the turbine
parameters. In practical design, due to the deficiency in
mechanical electrical energy losses and electrical energy
conversion losses, the efficiency of a WT is degraded further
to a normal efficiency of 30% to 35%.

2.3.2. Photovoltaic Array Model. Based on the irradiation
data and the specification of a PV system, its output power
can be estimated by the following equation:

PPV(t) � G(t)APVηPVηCon, (4)

where G(t) is the global inclined irradiation (kW/m2);APV is
the PV area (m2); ηPV is the PV efficiency, and ηCon is the
conversion efficiency of the power converter. (e inclined
irradiation G(t) is estimated from the horizontal irradiation
as in the following equation [16]:

G(t) � H(t)
sin(α + β)

sin α
+ H(t)ρg

1 − cos β
2

􏼠 􏼡, (5)

where H(t) is the horizontal irradiation at time t, β is the tilt
angle of the PV panel, ρg is the ground reflectance (albedo),
and α is the sun elevation angle which can be calculated by
α � 90 − φ + δ (φ is the latitude of the PV panel site; δ is the
declination angle). (e declination angle is calculated as
follows:

δ � 23.45° sin
360
365

(d + 284)􏼔 􏼕, (6)

where d is the day of the year with January 1 as d� 1.
In Tromsø, the albedo index significantly varies over the

year, which is estimated to be 0.8 from November to March,

0.5 in April, 0.2 fromMay to September, and 0.4 in October,
respectively. (ese albedo values are estimated by the au-
thors’ knowledge from living in this region for a decade.

To obtain optimal irradiation on the surface of a fixed PV
panel, its tilt angle β is chosen based on the latitude of the
installation site.(e optimal tilt angle for PV panels installed
in the northern parts of Scandinavia ranges from 40 to 90°.
Higher angles are needed not only to match the low standing
sun but also because snow slides off at higher inclinations
easier. Even wall-mounted panels can be advantageous in
some locations.

Solar cell parameters are sensitive to temperature, and
the parameter that is most affected by the temperature is the
open-circuit voltage. Variation in the open-circuit voltage,
in turn, affects the cell efficiency. As the temperature de-
creases, the cell efficiency increases with a factor of around
0.5%C−1 [8]. It should be noted that the cell or module
efficiency claimed by the manufacturer is tested under the
standard testing conditions (25°C, AM1.5, and 1000W/m2).

(e estimation of the cell efficiency requires knowing the
surface temperature of the PV cells. Modeling the cell’s
surface temperature or the module surface temperature is a
challenging task, and it is not in the scope of this study.
(erefore, the authors suggest a simple method to estimate
the module surface temperature based on the ambient
temperature measured at Holt weather station and the in-
creased temperature on the surface of a module due to the
solar irradiance. (is observation has been conducted on a
PV system at UiT in Tromsø, Norway, for three years, and it
suggests that the module temperature is almost unchanged if
the solar irradiance is less than 200W/m2. (e module
temperature increase is around 5°C, 10°C, and 20°C when the
radiation density is 200–400W/m2, 400–600W/m2, and
above 600W/m2, respectively. (e real temperature men-
tioned later in this paper refers to the module surface
temperature estimated using this proposed method.

2.3.3. Battery Model. Lead-acid batteries have commonly
been used for renewable energy systems since its cost used to
be more affordable as compared to that of other types of
batteries such as Li-ion batteries. However, the price of Li-
ion batteries is rapidly decreasing, making them more
competitive with conventional battery technology as sum-
marized by Curry in [17]. For any battery-based application,
knowing the current capacity of a battery in use is important
since it represents how much energy can be discharged to
supply the load. (e State-of-Charge (SOC) is defined as
follows [7].

SOC(t) � SOC(t − 1) ±
PBT(t)

VBT(t)
Δt, (7)

where SOC(t) and SOC(t− 1) are the current and previous
SOC of the battery, respectively; Pbat(t) is the power charge/
discharge of the battery at time t (the sign “+” when the
battery is charged and “−” when it is discharged); and VBT(t)
is the battery voltage.
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2.4. Optimization Problem Formulation and Its Constraints.
By formulating and solving an optimization problem for the
system design stage, we aim at finding the best combination
of the renewable source specifications, that is, photovoltaic
array area (APV), wind turbine swept area (AWT), and battery
nominal capacity (CBT) based on the sets of weather and
power consumption data achieved through a year. To obtain
a high reliability, the data is acquired hourly; therefore, the
number of data points in each set is 365 (days)× 24
(hours)� 8760 (hours).

2.4.1. Objective Function. Multiple objectives can be defined
to design an HRES such as cost, reliability, and emission.
However, in this study, the system reliability and cost
consideration are the primary objectives used for system
design.

(1) Objective 1. Self-Reliance Due to the intermittence of
renewable energy sources, the self-reliance of the hybrid
system is considered as the most important objective in the
design process. To measure the reliability of a hybrid system,
the energy index of self-reliance (EISR) is introduced and it
is calculated as follows [7]:

EISR � 1 − UME, (8)

where UME is the total unmet energy which can be cal-
culated by (6) and it should be minimized.

UME �
􏽐

T
t�1 PBTmin + Pd(t) − PWT(t) − PPV(t) − PSOC(t)( 􏼁

E
,

(9)

where T is the operational duration under consideration
(T� 8760 h); PWT(t), PPV(t), PSOC(t) , and Pd(t) are the wind
power, solar power, battery power, and demand at time t;
Pbatmin is the minimum power that should be maintained in
the battery (limited at 20% SOC); and E is the yearly energy
demand.

(2) Objective 2. Cost (e total cost of a hybrid system is the
sum of the initial cost and the operation and maintenance
cost, and it should be minimized [7].

COST �
􏽐i�WT,PV,BT Ii + OMi( 􏼁

Np

, (10)

where Ii is the installation cost for the equipment i; OMi is
the operation and maintenance cost for the equipment i; and
NP is the lifespan of system (20 years). Here, we assume that
the lifespan of the system does not exceed the lifetime of both
WT and PV (20 years). Due to this assumption, the initial
costs of PV panels and WTare proportional to their cost per
unit (USD/year) and size (m2). (e initial cost of the battery,
however, depends also on its lifespan since the battery has
shorter service time as compared to that of PV and WT
components. To estimate the operation and maintenance
cost, the interest and escalation rates are also considered [7].

For the PV panel:

(e initial cost is

IPV � αPVAPV, (11)

where αPV is the per-unit cost of PV (USD/m2) and APV
is the size of PV panels (m2).
(e operation and maintenance cost is

OMPV � αOMPVAPV 􏽘

Np

i�1

1 + ]
1 + c

􏼠 􏼡

i

, (12)

where αOMPV is the yearly per-unit cost of PV (USD/
year/m2), v is the escalation rate, and c is the interest
rate.

For the WT generator:

(e initial cost is

IWT � αWTAWT, (13)

where αWT is the per-unit-area cost of WT (USD/m2)
and AWT is the size of the swept area (m2).
(e OM cost is

OMWT � αOMWT
AWT 􏽘

Np

i�1

1 + ]
1 + c

􏼠 􏼡

i

, (14)

where αOMWT is the yearly per-unit-area cost of WT
(USD/year/m2), v is the escalation rate, and c is the
interest rate.

For the battery storage:

(e initial cost is

IBT � αBTPBT CAP 􏽘

Xb

i�1

1 + ]
1 + β

􏼠 􏼡

(1− i)Nb

, (15)

where αBT is the per-unit-energy cost of WT (USD/
Wh), PBT CAP is the nominal capacity of the battery
bank (Wh), Xb is the number of times of battery re-
placement, and β is the inflation rate.
(e OM cost is

OMBT � αOMBT
PBT CAP 􏽘

Np

i�1

1 + ]
1 + c

􏼠 􏼡

i

. (16)

(e data used in the simulation program are given in
Table 1 [7].

(3) Constraint Conditions. For any period, t, the total power
of the system must supply load demand with certain reli-
ability. Hence, we have
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PWT(t) + PPV(t) + PBT(t)≥ (1 − k)Pd(t), (17)

where k is the ratio of the maximum permissible unmet
power; PWT(t), PPV(t), Pbat(t), and Pd(t) are the WT power,
PV power, battery power, and power demand at t, respec-
tively. Furthermore, the swept area of theWT, the area of the
PV array, and battery’s capacity should be within a certain
range:

AWTmin ≤AWT ≤AWTmax,

APVmin ≤APV ≤APVmax,

CBTmin ≤CBT ≤CBTmax.

(18)

(ese size constraints are given in Table 1.

2.4.2. Optimization Algorithm. Particle swarm optimiza-
tion (PSO), developed by Kennedy and Eberhart, is a
computational intelligence-based technique that can be
effectively applied to different optimization problems of
power systems [19]. Assume that a swarm has N particles
and that x and v denote the particle position and its flying
speed in the search space. Each particle of a swarm con-
tinuously records its best value achieved during the search.
(is value is called pbest while the best particle of the
swarm is denoted by gbest. On each iteration, the current
velocity of each particle is updated based on its current
velocity, the particle’s local information, and the global

swarm information. (e particle’s position is then updated
using the new particle’s velocity.

v(t + 1) � wv(t) + c1r1(pbest(t) − x(t))

+ c2r2(gbest(t) − x(t)),

x(t + 1) � x(t) + v(t + 1),

(19)

where t is the counter of generation; w is the inertia weight
factor; c1 and c2 are acceleration constants; r1 and r2 are the
uniform random values in the range of [0, 1]; and v(t) and
x(t) are the velocity and position of the particle in generation
t (Algorithm 1).

To deal with multiobjective problems where individual
objectives cannot be satisfied simultaneously, the conven-
tional PSO has been modified to multiple-objective PSO
(MOPSO) based on a Pareto front, and it can be described in
the above pseudocode as presented by Coello et al. in
[20, 21]. Clearly, for multiobjective optimization, the solu-
tion is not a single solution. Instead, it gives a set of different
nondominated solutions (the Pareto optimal set). (ere are
three key issues when extending the conventional PSO al-
gorithm for use in the multiobjective problem: (1) to select
leader particles to be used as references to nondominated
solutions; (2) to retain the nondominated solution over the
search to report solutions that are nondominated to all the
pass solutions; (3) to maintain the diversity in the swarm to
avoid converging to a single solution.

3. Results and Discussions

(e MOPSO optimization program was written and run in
MATLAB software. To initiate the MOPSO algorithm, the
number of particles in the swarm was set to be 70 particles
and the maximum iteration was set to 50. It should be noted
that increasing the number of particles and iterations will
affect the running time of the program. (e total running
time of each simulation on a standard desktop computer
with the above configurations is 30 minutes. (e execution
time can be reduced by optimizing the weather data pro-
cessing time and by introducing a stopping criterion for the
optimization algorithm; however, this will be considered in
future work.

(e HRES in this study consists of a PV system, a wind
turbine, and a battery bank, which need to be sized through
the cost-reliability relationship.(e PV panels correspond to
commercial state-of-the-art products and have a standard
testing condition (STC) efficiency of 21%. A horizontal wind
turbine is chosen because the horizontal type has a higher
energy conversion efficiency compared to the vertical type.
(e storage elements of the system are lithium-ion (Li-ion)
batteries. Despite their higher initial cost, Li-ion batteries
show superior characteristics compared to the conventional
lead-acid batteries. Moreover, if we take the cycle life and
maintenance cost over the project lifetime into the analysis,
the cost of the Li-ion batteries may be cheaper than that of
the lead-acid batteries.

(e following scenarios will be investigated for the
optimal sizing problem of the hybrid renewable energy
system: (1) a system with PV panels mounted at different

Table 1: Data used in the simulation program.

Parameter Value
Lifespan of project (Np) 20 years
Lifespan of PV (NPV) 30 years
Lifespan of WT (NWT) 20 years
Lifespan of lead-acid battery at 50% DOD (Nbat)
[18] 3 years

Lifespan of Li-ion battery at 80% DOD (Nbat) [18] 12 years
Efficiency of WT (ηWT) 32.75%
Cut-in wind speed (vci) 3.0m/s
Cut-out wind speed (vco) 22.0m/s
Survival wind speed 45.0m/s
Rated wind speed (vr) 10.0m/s
Inflation rate (β) 9%
Interest rate (c) 12%
PV panel price 350USD/m2

WT price [7] 384USD/m2

Lead-acid battery price [7] 100USD/
kWh

Li-ion battery price [17] 156USD/
kWh

WT max. area (AWTmax) 30m2

WT min. area (AWTmin) 1m2

PV max. area (APVmax) 25m2

PV min. area (APVmax) 1m2

Battery max. capacity 20 kWh
Battery min. capacity 1 kWh
Converter eff. (ηConv) 95%
Efficiency of PV (ηPV) 21%
Optimum PV tilt angle (β) 65°
Tromsø latitude 69.4°N
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tilt angles: on a horizontal surface, at an optimum fixed
tilt angle, and with an integrated two-axis tracking sys-
tem; for these simulations, the wind turbine hub height is
fixed to 12m and batteries are Li-ion batteries; (2) a
system with PV panels mounted at an optimum tilt angle,
a wind turbine at 12m hub height, and Li-ion batteries
working under the standard testing conditions (STC)
temperature (25°C) and at real surface temperature; (3) a
system with PV panels mounted at an optimum tilt angle,
with Li-batteries and with the wind turbine installed at
different hub heights; (4) a system with PV panels
mounted at an optimum tilt angle, with a wind turbine at
12m hub height but with different types of batteries: lead-
acid batteries and Li-ion batteries; (5) a system with PV
panels mounted at an optimum tilt angle, with a wind
turbine at 12m hub height and Li-ion batteries but with
varying load profiles.

3.1. Case Study 1:�e Effects of PVModules Configuration on
the Cost-Reliability Relationship of the Hybrid Renewable
System. Figure 1 represents the simulation results (Pareto
fronts) of the optimal sizing problem for a hybrid system
connected to a detached house with different tilt angles of
PV panels: PV panels mounted on a horizontal surface, at
a fixed optimum angle toward the south, and on a two-
axis tracking system. (e hybrid energy system uses Li-
ion batteries as storage devices. (e wind turbine hub
height is 12 m above ground. (e module surface tem-
peratures are estimated based on measured data from the
Holt weather station. As discussed previously, due to its
high latitude at 69.4°N, Tromsø receives poor solar ir-
radiation on a horizontal surface. (erefore, in practice,
it is always recommended that the PV panels are mounted
at a high tilt angle to maximize the available energy
generation. For Tromsø area, the optimum tilt angle is
around 65° [14]. In the result, from top to bottom are the
cost-reliability curves for the cases when the PV modules
are mounted horizontally, the PV is mounted at an op-
timal fixed tilt angle, and the hybrid system has a 2-axis
tracking system, respectively. (e curve on top indicates
the worst case while the one at the bottom represents the

best case. (is is obvious since the PV modules mounted
horizontally receive less solar irradiance than the other
cases do.

(e effect of the tilt angle of the PV system can be seen in
Figure 1. (e cost-reliability curves show that the hybrid
system with PV panels mounted at a fixed optimum angle
toward the south is close to self-reliance (1.8% of unmet
energy) at the cost of USD 921 per year. (is cost includes
the initial cost and the operation and maintenance cost per
year over the lifetime of the hybrid system (assumed to be 20
years in this study). In the case of the same system with PV
panels installed horizontally, at the same cost, the mismatch
energy increases to 3.5% a year. (e difference becomes
obvious when the cost reduces; for example, at the cost of
USD 600 per year, the systems with PV modules mounted at
optimal angle suffer much less energy mismatch compared
to the system with horizontally mounted PV modules (3.5%
vs. 11.4%).

To further utilize the available solar resource, a two-axis
tracking system can be utilized. (e tracking systems con-
tinuously adjust the tilt angle of the PV panels so that they
follow the path and always point directly to the sun. In this
way, the PV panels capture the maximum possible daily
radiation. Comprehensive studies on the effect of the
tracking system for PV panels were discussed in [9, 14]. For
high-latitude areas, the relative energy gain of a two-axis
tracking system compared to a fixed optimum angle system
is about 40–50%.

Integrating an axis tracking system into the PV system
complicates the hybrid system with required electric motors,
sun direction sensors, and control algorithms. (is adds an
increased cost not only in the installation but also in the

Start
Initialize swarm, velocities, and best positions
Evaluate each of the particles in swarm
Initialize external repository
While (maximum iteration not reached) Do

For each particle
Compute the speed of each particles
Update the new position of each particle
Evaluate new position

Update best position and external repository
End for

End while
End

ALGORITHM 1: PSO algorithm pseudocode.

Effect of mounting angle on cost-reliability function
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Figure 1: (e cost-reliability curves of a hybrid wind/solar system
for a detached house of 5 people with different tilt angles of PV
panels (wind turbine hub height: 12m; battery type: Li-ion bat-
teries; using measured weather data from Holt; yearly consump-
tion: 6300 kWh).
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operation and maintenance of the system. In general,
Axaopoulos et al. stated that adding the two-axis tracking
capability to a PV system leads to a 30% increase in the total
cost [22–24]. (is includes the installation cost and the
maintenance cost of the tracking system. Considering the
energy gain factor and the cost increase when adding a
tracking system, the cost-reliability curve of the hybrid
system with a two-axis tracking system is also illustrated in
Figure 1.

At present, there are only a few two-axis tracking and
fixed tilt angle PV systems installed at a similar high latitude
[14]. However, a high-latitude region, where the solar ir-
radiation density is low at a horizontal surface and the sun
moves 360 degrees around the horizon, receives the greatest
benefit from the two-axis tracking system. Consequently, a
two-axis tracking system can be a promising solution for the
development of solar energy in this region.

3.2. Case Study 2:�eEffects of ColdTemperatures on theCost-
Reliability Relationship of the Hybrid Renewable System.
In Tromsø, the average temperature from February to Oc-
tober is 5.3°C (recorded for 2017). (is anticipates a sig-
nificant improvement of the PV production, hence the cost-
reliability relationship. To achieve high accuracy, an hourly
resolution of temperature data is used to estimate the var-
iation of the cell’s efficiency and the air density with the
temperature.

(e system configuration used in this case is identical to
the system studied in case 1 with the PV mounted at 65°
toward south, wind turbine at 12m height, and Li-ion
batteries. Two temperature conditions are used: one at a
standard temperature of 25°C, and the other condition uses
the real module temperature based on data recorded for 1
year at the Holt station. Both temperature conditions have
the added module surface temperature increase, defined at
the end of Section 3.2, embedded in the simulation. As can
be seen in Figure 2, the curve displacement reveals a con-
siderable impact of temperature where the cold tempera-
tures naturally add significant improvement in the system
performance.

3.3. Case Study 3:�eEffects ofWindTurbinesHubHeights on
the Cost-Reliability Relationship of the Hybrid Renewable
System. (e impact of the windmill’s tower height is also
investigated in this paper. Due to the difference between the
anemometer and the windmill hub’s altitude, the measured
wind data is extrapolated to estimate the actual wind speed at
the hub altitude using (1).

Figure 3 represents the simulation results for a hybrid
energy system using Li-ion batteries connected to a detached
house with three commonly used wind turbine hub heights
(9m, 12m, and 15m). (e PV panels are mounted at a fixed
tilt angle of 65° toward the south in this case. (e results
show a small variation of the curves when the height dif-
ference is 3m. As the curves are only slightly different, it is
suggested that the added cost of building extra height for the
hub is not motivating.

3.4. Case Study 4: �e Effects of Battery Types on the Cost-
Reliability Relationship of the Hybrid Renewable System.
Lead-acid batteries have been commonly used as the storage
devices of hybrid renewable energy systems. However,
lithium-based batteries have become increasingly common
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Figure 2: (e effect of cold temperature on cost-reliability rela-
tionship of the hybrid wind/solar energy system for a detached
house of 5 people (PV panels tilt angle: 65° toward south; wind
turbine hub height: 12m; battery type: Li-ion batteries; yearly
consumption: 6300 kWh).

Effect on wind turbine hub height on cost-reliability
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Figure 3: (e effect of wind turbine height on cost-reliability
relationships of a hybrid wind/solar energy system for a detached
house of 5 people (PV panels tilt angle: 65° toward the south; battery
type: Li-ion batteries; using measured weather data from Holt;
yearly consumption: 6300 kWh).
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in various applications due to the affordability. Li-ion bat-
teries offer higher depth of discharge (DOD) and cycle life
energy capacity than lead-acid batteries. A typical lead-acid
battery lasts for 1000 to 1200 cycles at 50% DOD, a rate
which is heavily influenced by the operating conditions,
while a Li-ion battery has an average cycle life of 2,000 at 80%
DOD [17]. (e Li-ion batteries are also lighter with the
weight of one-third lead-acid batteries at the same capacity.
(erefore, when calculating the cost of the energy storage
system, it is important to consider the expense for shipping,
installation, and maintenance, along with the initial cost of
the battery. Since Li-ion batteries do not require regular
maintenance and have a significantly higher cycle life, the
cost for lead-acid batteries may be higher in the long run
when considering the lifetime cost of each energy source.

(e foregoing anticipation is proven by simulation, and
the results are shown in Figure 4. (e simulation parameters
for this simulation are also given in Table 1 with the initial
cost of the lead-acid battery being USD 100/kWh and that of
the Li-ion battery being USD 156/kWh. Additionally, the PV
panels are mounted at a fixed tilt angle of 65° toward the
south. (e wind turbine hub height is 12m, and the tem-
perature used is the measured data at Holt. As indeed seen,
even though the initial cost of the Li-ion battery is signif-
icantly higher than that of the lead-acid battery, its cycle life,
cost of maintenance, and energy capacity compensate for the
initial cost and make the hybrid system with Li-ion batteries
significantly cheaper than the one using lead-acid batteries.
At about USD 900 per year, the optimal system employs a
2.9 kWh Li-ion battery bank and has only 1.8% annual
unmet energy. Correspondingly, the system with a lead-acid
battery needs a capacity of 3.5 kWh. (e lead-acid battery-
based system also suffers a significant energy deficiency of
18.3% of the annual energy demand.

3.5. Case Study 5: �e Effects of Load Profiles on the Cost-
Reliability Relationship of the Hybrid Renewable System.
(e last factor of which the effect on the cost-reliability curve
of the hybrid wind/solar system is shown in Figure 5 is the
load profile. To examine the impact of the load patterns on
the system performance, the same system configuration
studied in Figure 1 that used a detached house load with 5
people is also simulated here for a decreased load with only 3
people. As the load demand decreases in the case of the
house with 3 occupants, the cost and thus the size of the
hybrid energy system are considerably reduced (observe that
the y-axis starts at −0.3 in Figure 5). In terms of reliability,
from the cost of about USD 230, the system starts generating
excessive energy that might need an optimal using strategy,
for example, pumping the abundant energy to the grid,
curtailment, or changing the load pattern.

As previously discussed in the stochastic load model, the
activity pattern greatly depends on user behaviors. (ere-
fore, users may change their habit of using appliances in the
household to reduce the load demand, thereby reducing the
size and cost of the hybrid renewable system.

Table 2 provides quantitative configurations of the hy-
brid energy systems studied previously, where System 1 is the

hybrid energy system with PV panels mounted at 65° south,
wind turbine height of 12m, and Li-ion batteries (Figure 1);
System 2 shares the same configurations of wind turbine and
batteries with System 1, but the PV panels have two-axis
tracking systems (Figure 1); and System 3 shares the same
configurations of wind turbine and PV panels with System 1,

Effect of load consumption profiles on
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Figure 5: (e cost-reliability comparison of two identical systems
connected to different households (PV panels tilt angle: 65° toward
south; wind turbine hub height: 12m; battery type: Li-ion batteries;
using measured weather data from Holt).

Effect on battery technology on cost-reliability function
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Figure 4: (e effect of battery types on the cost-reliability rela-
tionship of a hybrid wind/solar system developed for a detached
house of 5 people (PV panels, tilt angle: 65° toward south; wind
turbine hub height: 12m; using measured weather data from Holt;
yearly consumption: 6300 kWh).
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but with lead-acid batteries (Figure 4). (e measured
weather data from Holt have been used in all the three cases.

From the simulation results, each system is quantified
with 3 design options that consist of the wind turbine swept
area, the PV area, the battery capacity, and its corresponding
cost and reliability (unmet energy).

Bifacial PV technology should also be investigated since
it adds a 10–15% increase in yearly production as observed
from testing an existing PV system in Tromsø. In this study,
only 1 year of weather and load data were used. To improve
the simulation results, longer datasets should be used, and it
will also be studied in future work.

3.6. Validation of Proposed Method. To verify the optimi-
zation results, an as identical as possible system to System 2
in Table 2 was built and run in the HOMER software [25].
(e measured global horizontal irradiance, wind speed, and
temperature from the Holt meteorological station were
imported as inputs to HOMER. (e load profile generated
by the stochastic loadmodel for a detached house of 5 people
was also imported to the HOMER simulation. (e simu-
lation results by HOMER are given in Table 3.

As can be seen from Table 3, the simulation results by the
proposed method and the HOMER software closely match,
validating the proposed method.

4. Conclusions

(e study shows the important result that it is indeed feasible
and cost-effective to install a standalone hybrid renewable
energy system in an arctic region of Scandinavia to power a
single-family house with electricity. (e result is fascinating
when putting into perspective the fact that the region is
above the Arctic Circle with midwinter darkness at 69°N and
experiences cold temperatures.

(e paper represents a comprehensive study on the
impact of various factors on component sizing of a hybrid
wind/solar energy system using a multiobjective PSO

algorithm. (e result outlines the advantages of operating a
hybrid wind/solar system in an arctic region and more im-
portantly shows the feasibility of hybrid wind/PV systems in
high-latitude regions in terms of economic concern and re-
liability.(e optimal system costs about 900$ per year, has 2%
unmet energy per year, and consists of a 12m2 PV system, a
21m2 wind power system, and a 3 kWh battery storage
system. (e optimization parameter “unmet energy” is rarely
used in related works. Having a system that is cost-effective
but has 2% unmet energy is an interesting case. Two percent
of the year represents 175 hours or about one week in time.
(ese hours will not occur in a consecutive order but rather be
spread out during a few occasions during the winter months.
In our work, we have excluded heating from the simulation so
the house and inhabitants can still be kept warm by using, for
example, bioenergy. However, an interesting question re-
mains; how many hours with no access to electricity can an
off-grid house in the arctic accept? (is question should be
addressed in further cross-disciplinary studies.

In future work, the attained method can be applied to
select the most suitable options among different system
configurations and optimization targets or to find the best
installation site for a hybrid renewable energy system.
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Table 2: Illustrative system configurations for various hybrid renewable energy systems from the component optimal sizing results.

Config. options Cost/year (USD) Unmet energy (%) WT swept area (m2) PV area (m2) Bat. capacity (kWh)

System 1
Opt1.1 921 1.8 21.2 11.6 2.9
Opt1.2 791 6.0 19.7 10.2 2.9
Opt1.3 632 9.6 17.9 9.8 2.9

System 2
Opt2.1 900 3.2 21.2 10.6 3.0
Opt2.2 617 2.7 17.9 7.1 3.0
Opt2.3 469 9.8 13.5 6.5 2.8

System 3
Opt3.1 993 18.2 24.3 11.0 3.5
Opt3.2 491 33.5 11.7 6.0 2.3
Opt3.3 399 39.9 8.3 4.5 2.4

(ese design options provide a useful suggestion when selecting components for hybrid wind/solar energy system. Depending on the design objectives, the
most suitable option can be chosen accordingly.

Table 3: Result comparison by the proposed method and HOMER software.

Cost ($/year) Unmet energy (%) WT swept area (m2) PV area (m2) Bat. capacity (kWh)
Proposed method 469 9.8 13.5 6.5 2.8
HOMER 494 5.0 12.6 6.4 3
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