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The notion that food intake is controlled by two parallel processes - so-called homeostatic and hedonic feeding 
- is a well-established dichotomy in the feeding literature (e.g., 1 - 4). Within this conceptualization, 
homeostatic processes ensure that we eat when hungry and stop eating once sated, so that food intake 
matches energy expenditure. It has been proposed that these processes act in parallel with, and can be 
overridden by, hedonic processes, which encompass the rewarding, palatable and pleasurable properties of 
food, often involving learning and habit. As such, hedonic feeding has been invoked to explain how obesity has 
become rampant despite the presence of adaptive homeostatic mechanisms that should guard against excess 
consumption (e.g., 5 - 6). As befits the idea of parallel, often competing processes, it was thought that 
homeostatic and hedonic feeding are generated via distinct underlying mechanisms. Homeostatic feeding has 
been described as the function of peripheral signals (e.g., gastrointestinal satiation and satiety signals, 
adiposity signals), and certain brain regions (e.g. hypothalamus and nucleus of the solitary tract), while hedonic 
feeding involves other brain areas including mesolimbic circuits and the neurotransmitter dopamine.  

Although this parallel process model has been highly influential and permeated the field, an ever growing body 
of evidence suggests that the distinction is less clear-cut than previously thought. In fact, recent research 
points to homeostatic and hedonic processes being intertwined and heavily dependent on the same underlying 
structures (e.g., 7 - 10). These interactions are evident in the abundance of reciprocal projections between 
brain regions traditionally considered to be part of the homeostatic or hedonic circuitry. Further, many of the 
peripheral hormones that influence feeding, traditionally considered to be homeostatic signals, act more 
broadly in the brain than previously appreciated, including effects in the mesolimbic reward system. This 
special issue of Physiology and Behavior provides a collection of papers that should challenge and inform 
thinking about the dichotomy between homeostatic and hedonic feeding, and consider whether other 
frameworks for the interaction between homeostatic drive states and reward mechanisms may be more useful 
to the field in the future.  

Many papers in this issue address the ways in which hormones and brain circuitry traditionally considered to 
be homeostatic mechanisms control feeding, at least in part, through actions on reward systems, and affect 
broader aspects of learning and motivated behavior. Kern and Mietlicki-Baase (11) review literature on the 
pancreatic hormone amylin and describe how it acts at receptors throughout the brain to impact motivated 
behavior including eating and alcohol intake. Konanur and colleagues (12) report that glucagon-like peptide 1 
receptor activation suppresses phasic dopamine responses to food-predictive cues, providing new insight into 
how this caudal brainstem neuropeptide may impact motivation. The lateral hypothalamus has long been 
acknowledged as a site where homeostatic and hedonic signals interface (13), and the paper by Lee and 
colleagues (14) proposes a role for hypothalamic orexin and melanin-concentrating neurons in mediating 
behavioral transitions necessary for feeding. The review by Burdakov and Peleg-Raibstein (15) argues that 
despite its longstanding association with homeostasis and other regulatory functions, the hypothalamus has a 
primary role in memory updating. Carr (16) reviews cellular mechanisms by which food restriction modules the 
rewarding value of drugs and associated cues, and hypothesizes that this is an adaptive response to food 
scarcity.  

Some of the papers in this collection address how non-homeostatic factors such as context and cues may 
impact eating and food choices. Greiner and Petrovich (17) present data suggesting that while rats initially 
show neophobia to novel food, they come to prefer that food with repeated testing, and in contrast, novel 
environment has a robust intake-suppressive effect that appears to be longer-lasting in females. Sadler and 
colleagues (18) explored the characteristics associated with sensitivity to food reward in humans, and report 
that BMI and susceptibility to food cues may be important factors.  



 

Two papers deal with the ways in which fatty acids impact ingestive behavior. Figlewicz and Witkamp (19) 
provide a comprehensive review on the role of fatty acid signaling in the control of feeding. Zhao and 
colleagues (20) report evidence that the sequalae of gastrointestinal infusion of fatty acids alters sensitivity to 
food but not to other types of reward.  

Finally, several reviews in this collection focus on disorders including obesity. Ferrario (21) reviews data 
supporting the idea that individual differences in incentive motivation and NAc plasticity play a role in 
vulnerability to obesity and difficulty in maintaining weight loss. The influential concept of “liking” and “wanting” 
as dissociable components of reward is reviewed by Morales and Berridge (22), who discuss neural 
mechanisms and clinical implications. Berthoud and colleagues (23) examine the question of why overeating 
and obesity happen given the existence of homeostatic regulation of eating, and put forth a hypothesis for how 
obesogenic environments impact the brain circuitry central to both energy homeostasis and food reward. Lowe 
and colleagues (24), review the literature on individual differences in weight variability, and suggest that higher 
weight variability, independent of baseline BMI, is predictive of future weight gain and may be a risk factor for 
poor clinical outcomes. 

Together, the papers of this special issue provide an update on the traditional homeostatic vs. hedonic model, 
and suggest a number of future directions for new research. 
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