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Machine learning is proving vital for cell-scale optical 
microscopy image and video analysis for studies in the life 
sciences1–7, including major tasks such as cell segmenta-

tion, tracking, classification and population analytics. However, arti-
ficial intelligence and machine learning solutions are lacking for the 
analysis of small and dynamic subcellular structures such as mito-
chondria and vesicles. This affects how subcellular mechanisms are 
studied in life-science studies. First, only small-scale analyses can 
be conducted—via tedious manual annotations (Fig. 1a) and with 
limited conclusiveness owing to manual subjectivity (Fig. 1b) and 
the small statistical sample size. Second, because machine learn-
ing methods are rare in live-cell analysis because of the difficulties 
of annotation, other forms of quantitative statistical analyses such 
as fluorescence correlation spectroscopy are used instead. Third, 
electron microscopy image analysis is used for subcellular morpho-
logical investigations, but this does not provide the perspective of 
real-time unfolding of subcellular mechanisms. The information 
acquired using these techniques is valuable, but a computer-vision 
(CV) centric approach for observing live-cell subcellular processes 
holds an untapped potential for gaining unprecedented insights.

The segmentation of subcellular structures is a fundamental step 
towards realizing CV of subcellular mechanisms. Our interest lies in 
segmenting small and dynamic subcellular structures in cells from 
fluorescence microscope images. This is an immensely difficult task 
because of the small sizes of subcellular structures with respect to 
both the optical and digital resolutions of the microscopes. The 
structures often have dimensions on the order of 100–1,000 nm, 
while the pixel size in microscope images is generally 80–120 nm 
and the optical-resolution limit of advanced live-cell-compatible 
microscopes is typically 200–300 nm. This means that the details of 
the structures are often lost. Furthermore, the point spread function  

(PSF) of optical microscopes induces a three-dimensional (3D) 
blur, as a result of which out-of-focus structures appear with dif-
ferent intensities and blurring profiles to those that are in focus. 
Accordingly, the segmentation of out-of-focus structures is often 
inaccurate. There are also other problems. Small structures have 
few binding locations for fluorophores, resulting in a low fluores-
cence intensity per structure. Small structures in living cells are 
highly dynamic and demand high-speed imaging (10–100 ms per 
frame), thus requiring short exposure times and limited fluores-
cence intensity. The signal-to-noise ratio is thus quite poor (2 to 4 in 
our experiments), which compounds the difficulty of segmentation. 
The great variability in the structures and the possibility of mul-
tiple overlapping structures creating high-intensity spots further 
complicate matters. These challenges are discussed in more detail in 
Supplementary Note 1 and Supplementary Fig. 1.

Image-processing techniques such as the popular Otsu 
approach8 are consequently grossly inaccurate and contribute to 
large errors in conclusions about subcellular structures, as shown 
in the analytics results in Fig. 1a. Therefore, despite being fast  
(Fig. 1a), these techniques are not good candidates for performing 
subcellular analyses. Semi-supervised solutions also exist9, but these 
are prone to subjectivity and tediousness, similar to manual segmen-
tation. Supplementary Note 2 discusses the existing approaches in 
more detail, including manual annotation (Supplementary Fig. 2). 
Meanwhile, deep learning solutions hold promise for both live-cell 
analysis and large-scale systematic studies.

Interestingly, deep learning solutions optimized for cell-scale 
optical microscopy data10 cannot simply be translated to subcellu-
lar scales because of the problems associated with digital and opti-
cal resolution and noise. In general, generating ground truth (GT) 
through manual segmentation over large datasets is considered the 
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physical aspects assists the deep learning models in learning to compensate, to a great extent, for the limitations of physics and 
the instrument. We show extensive results on the segmentation of small vesicles and mitochondria in diverse and independent 
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only way to create training datasets. However, generating correct 
GT manually for fluorescent images of small subcellular struc-
tures is not possible, as the inaccuracy of every pixel contributes 
a non-negligible amount of error. Consequently, challenging sub-
cellular structures such as mitochondria and vesicles have received  
less attention.

In this Article, we present a new physics-rooted deep learning 
approach for solving the GT deficiency in subcellular segmentation 
(Fig. 1). There are two key parts to our approach: (1) physics-based 
simulation-supervised learning, in which a supervised training 
dataset is created by simulating noisy microscope images, and (2) 
physics-based GT for generating the target segmentation in super-
vised learning. The simulation-supervised approach is a form of 
synthetic data-oriented approach. We present a short study about 
the ineffectiveness of synthetic data generation for our application 
in Supplementary Note 3 and Supplementary Fig. 3. Supplementary 
Note 4 presents a discussion on other known simulators for optical 

microscopy with relevance to our problem and assesses the possi-
bility of using super-resolution microscopy for generating synthetic 
microscopy datasets.

In our simulation-supervised approach, the training data are 
generated using a physics-based simulator that simulates everything 
from the binding location of an individual fluorescent molecule and 
its photokinetics to the 3D geometry of the subcellular structure on 
which fluorescent molecules are present, as well as the microscope 
instrument and noise characteristics. In addition, the physics-based 
simulation allows us to design a physics-based GT approach that is 
unbiased by the microscope instrument, free of manual subjectivity 
of segmentation, and assures that a particular geometry and fluo-
rescent labelling result corresponds to a unique GT. This simulation 
engine and physics-based GT generates notably better and unbiased 
segmentation than expert-generated manual GT (Fig. 1b).

In this Article, we show that our simulation-supervision 
approach allows good-quality segmentation with a variety of deep 
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Fig. 1 | The motivation and approach for simulation-supervised deep learning. a, The time required for segmenting 30 frames from the 
LiveEpi1RatMitoRed dataset. Statistical analysis demands highly accurate segmentation (mitochondria branch length is shown as an example). Manual 
segmentation is the most reliable approach but is time consuming. Unsupervised methods such as Otsu generate inaccurate statistics due to inaccurate 
segmentation. Other methods suffer from different problems (Supplementary Note 2). ADM, adrenomedullin. b, Manual segmentation features variability 
related to the annotator’s knowledge and expertise (manual GT 2 is an expert), so is unsuitable for supervised learning (Supplementary Note 1). c, The 
conventional approach employs manual segmentation. d, The proposed approach constructs a simulation-supervised training dataset with physics-based 
unambiguous GT. e, The proposed simulation-based data generation consists of six steps (illustrated for mitochondria, but the method is generalizable  
to any structure). (1) The 3D geometry of the structure is computed. (2) The locations and photokinetics of the fluorescent molecules are generated.  
(3) and (4) The microscope’s 3D point spread function is applied to generate synthetic images. (5) Realistic noisy images are computed using a 
microscopy noise model. Scale bars, 1 μm. (6) The segmentation mask is computed from the noise-free image. The noisy image and the segmentation form 
one data pair in the simulation-supervised dataset. See Supplementary Notes 5–7 and Supplementary Fig. 7 for details of the simulation engine and the GT 
techniques. f, The proposed physics-based GT projects the locations of the fluorescent molecules on the lateral plane, then max-pools the projections by 
the microscope’s pixel size, and finally performs binarization to form the GT. Neither the microscope nor the noise affect the GT.
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learning approaches, indicating its suitability for resolution-limited, 
noise-afflicted and GT-deficient subcellular microscopy data anal-
ysis. It can be applied across a variety of experimental conditions 
and cell types (Fig. 2) to segment organelles for which training 
was performed using simulation-supervised datasets (for exam-
ple, mitochondria). We demonstrate the generalizability of our 
approach across microscopes through transfer learning (Fig. 3) and 
the possibility of performing multi-class classification, tracking and 
morphology-associated analytics at the scale of individual mito-
chondria (Figs. 4 and 5). We are also able to identify and analyse the 
interaction of mitochondria and vesicles inside living cells (Fig. 5).

Results on segmentation
We present the results of segmenting two types of subcellu-
lar entity—mitochondria and vesicles—in nine datasets of liv-
ing and fixed cells (the datasets are described in Supplementary 
Fig. 4). Mitochondria and vesicles were chosen because they are 
interesting cases. Mitochondria are highly dynamic, tubular and 
shape-changing, with diameters close to the optical-resolution 
limit (200–300 nm) and lengths easily exceeding the depth of the 
focal field, rendering their segmentation challenging. Vesicles have 
simple geometries but vary significantly in size, with some being 
smaller than the optical-resolution limit and comparable to the digi-
tal resolution (pixel size of ~100 nm) and others being much larger. 
They thus present large variability in optical intensity and visibility. 
In fact, as our results indicate, vesicles are more challenging to seg-
ment than mitochondria, despite having a more simple geometry. 
Another point of interest is that subcellular mechanisms involving 
mitochondria and their interactions with vesicles such as endo-
somes and lysosomes are crucial for cell homeostasis and relevant 
for understanding disease development11.

Physics-based simulation-supervised dataset and deep learning. 
Our simulation engine includes separate modules for the geometry 
of the subcellular organelles and labelling, the photokinetics of fluo-
rescence, the microscope and image simulator, the noise simulator 
and the GT simulator. A detailed description of the six-step process 
(Fig. 1e) is presented in Supplementary Note 5 and Supplementary 
Fig. 5. This is extensible to further varieties of subcellular structures, 
microscopes and labelling protocols. At present it includes mitochon-
dria and vesicle geometries (Supplementary Table 1), the ability to 
simulate epifluorescence and Airyscan microscopes (Supplementary 
Table 2), as well as surface labelling of vesicles and mitochondria. 
The simulation of photokinetics12 is important for high-speed micro-
scope videos (on the scale of milliseconds per frame) to model 
frame-to-frame variability. The modules are customizable to include 
other photokinetic and noise models. We created six simulation 
datasets, considering the two subcellular structures and three micro-
scopes (Supplementary Table 3). Of these, datasets SimEpi1Mito and 
SimEpi1Vesi contain 7,000 images each. The other datasets contained 
3,000 images each so as to explore the impact of the size of the simu-
lation dataset on the accuracy of segmentation and the possibility of 
performing transfer learning across different microscopes.

We tested the efficacy of our simulation-supervised training as a 
suitable paradigm by using U-Net13 (Supplementary Fig. 6) in con-
junction with five state-of-the-art backbone networks. We found 
that Inception-V3 and EfficientNet-B3 generally performed best, 
although the other networks also performed robustly. For all further 
results we used the EfficientNet-B3 backbone. Details of the results 
are provided in Supplementary Note 6 and Supplementary Table 4.  
We also found that the performance is stable when the training 
dataset contains 3,000 or more simulation-supervised data samples 
(Supplementary Table 5).
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Fig. 2 | Examples of the segmentation of vesicles and mitochondria in living cells imaged using epifluorescence microscope Epi 1 and segmented 
using the proposed approach. a, Images of H9C2 cells (rat cardiomyoblasts) cultured under normal cell growth conditions as well as cells subjected to 
an hour of hypoxia up to several minutes before imaging. Changes in mitochondrial morphology are evident in the segmentation. Furthermore, although 
the membrane marker labels diverse membranous structures, the simulation-supervised deep learning model segments the vesicles and disregards the 
rest. b, The segmentation results for mitochondria in human cancer cells. The zoom-in of region 1 shows the ability of the proposed method to deal with 
low-intensity and low-contrast structures. The zoom-in of region 2 shows the ability to segment relatively dense mitochondrial structures while retaining 
details. Scale bars, 5 μm.
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Physics-based GT. The physics-based simulator provides us with a 
unique opportunity to test different strategies for GT segmentation 
(Supplementary Note 7). Because the raw microscope images are 
generated before inclusion of the noise model, we explored the use 
of noise-free images with conventional morphological processing 
for generating the GT. We evaluated Otsu’s thresholding8 as well as 
Otsu’s thresholding followed by morphological erosion by a kernel 
of the size of the microscope PSF to compensate for the blur of the 
microscope. A third technique was explored considering the role of 
noise in affecting how well an expert can segment images. For this, 
we thresholded using the noise level. Finally, we used the projection 
of the actual emitter distribution on the image plane directly as a 
mechanism of physics-based GT, as shown in Fig. 1f. This approach 
is not affected by the PSF or the noise level, and provides a unique 
unambiguous GT for a given sample. Supplementary Fig. 7 shows a 
comparison of these different methods for generating the GT.

We compared the four GT methods to identify which was the 
best strategy (Supplementary Note 7 and Supplementary Table 6).  
We found that the physics-based GT allows the deep learning 
models to perform better than the other GT mechanisms. Even a 
visual comparison of physics-based GT with a manual expert’s seg-
mentation (manual GT 2), as presented in Fig. 1b, presents a very 
good match. It also outperforms expert annotations in the chal-
lenging situations of out-of-focus structures and high noise levels 
(Supplementary Fig. 1c,d).

We also assessed the sensitivity of the performance of 
simulation-supervised training to important aspects of simulation 
(Supplementary Note 8). We note that our approach performs better 
if the simulation conditions closely match the experimental condi-
tions (Supplementary Table 6 and Supplementary Fig. 8). The sensi-
tivity of our approach contributes to good selectivity.

Comparison with contemporary techniques. We compared the 
performance of current methods used for segmenting subcellular 
structures from optical microscope images, namely (1) automated 
image-processing techniques such as Otsu-based thresholding8, adap-
tive thresholding14 and backpropagation15, (2) semi-automatic seg-
mentation techniques9 and (3) the proposed simulation-supervised 
deep learning approach. The details of applying these methods 
are presented in the Methods. Table 1 presents the mean intersec-
tion over union (mIOU) values and the F1 scores. For the proposed 
method, we trained one deep learning model each for mitochondria 
and vesicles and used them with their corresponding test datasets. 
For the simulated test data of SimEpi1Mito and SimEpi1Vesi with 
physics-based GT, the proposed approach gives an advantage of 
~10% for mitochondria and ~18% for vesicles.

We assessed whether the simulation-supervised training 
approach presents advantages over training a fresh and a pre-trained 
network with manually annotated GT (Supplementary Note 9 and 
Supplementary Table 7). Our results show that, even when manual 
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Fig. 3 | Transfer learning allows easy adaptation of our approach across different microscopes. a, A schematic depiction of transfer learning. Transfer 
learning involves using an existing deep learning model that has already been trained on a large simulation-supervised dataset from another optical 
fluorescence microscope and re-training this existing network using a small simulation-supervised dataset that has been custom created for the 
microscope of interest. b, Transfer learning can be done across two similar microscopes. A model pre-trained on simulation-supervised large data of 
microscope Epi 1 has been re-trained using small simulation-supervised data of microscope Epi 2 and applied on a living cell imaged using Epi 2 (datasets: 
LiveEpi2RatMitoRed, LiveEpi2RatMitoGreen and LiveEpi2RatVesiFarRed). Training across microscopes is sufficient; there is no need to train across 
dyes, as shown using tandem tagged mitochondria. c, Transfer learning is possible across different types of microscope as well. A model pre-trained 
on simulation-supervised large data of microscope Epi 1 has been re-trained using small simulation-supervised data of Airyscan microscope Airy 1 and 
applied on fixed cells imaged using Airy 1 (datasets: FixedAiry1RatMitoGreen and FixedAiry1RatMitoRed). Scale bars, 5 μm.
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annotation is used as the GT, the proposed simulation-supervised 
training approach outperforms training using the manually anno-
tated dataset. We also assessed whether it helps to use a larger 

dataset with manual annotation generated by a sophisticated 
consensus-based annotation approach. We evaluated manual anno-
tations by 12 scientists with the relevant background and obtained 
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consensus on the GT. The consensus was quite unreliable, even 
with multiple annotators (Supplementary Fig. 2 and Supplementary 
Note 2). Also, the performance evaluation showed a large stan-
dard deviation as well as a large difference from the performance 
obtained with the physics-based GT (Supplementary Note 9 and 
Supplementary Table 8). Furthermore, the time taken by different 
annotators ranged from 3 to 10 min for annotating eight mitochon-
dria in five small images. This task could thus prove considerably 
demanding in terms of resources if a large pool of annotators were 
employed for generating annotations for a sufficiently large dataset.

Live-cell segmentation results. We generated results on the 
live-cell datasets LiveEpi1RatMitoRed, LiveEpi1RatVesiFarRed and 
LiveEpi1HuMitoGreen. These datasets were acquired on epifluores-
cence microscope Epi 1 and manually annotated by an expert. Table 1 
presents the mIOU values and F1 scores. The simulation-supervised 
deep learning method provides mIOU values of 74–76% and out-
performs the closest method by 7–8% for mitochondria and ~13% 
for vesicles. A qualitative comparison of all the methods indi-
cates that the proposed approach indeed provides the best results 
(Supplementary Fig. 9). Representative results for the proposed 
method (Fig. 2) illustrate that our approach can be applied to cells 
of different kinds and species (rat cardiomyoblasts are shown in 
Fig. 2a and human cancer cells in Fig. 2b). It can also be applied 
across cells subjected to different growth conditions, for example, 
under normal cell growth conditions (Fig. 2a, top row) and in cells 
subjected to hypoxia for 1 h before being imaged (Fig. 2a, bottom 

row). Further illustrative examples indicate that there are situations 
where the expert annotation appears deficient in comparison to the 
CV-based segmentation result due to factors such as out-of-focus 
light and noise (Supplementary Figs. 10 and 11). Interestingly, in the 
LiveEpi1RatVesiFarRed dataset, a membrane marker is used that 
labels a huge variety of membrane structures including large struc-
tures and not just vesicles. Therefore, the raw microscope images of 
vesicles show a lot of other details beside vesicles. Nevertheless, the 
deep learning method shows clear proficiency at selecting vesicles, 
similar to trained experts. We also present interesting results in  
Fig. 2b that pertain to segmentation of mitochondria in human can-
cer cells from the LiveEpi1HuMitoGreen dataset. The zoomed view 
of region 1 in Fig. 2b shows the ability of the proposed method to 
tackle low-intensity regions. Conventional methods are unable to 
deal with such a situation where there are also other higher-intensity 
regions. In addition, dense mitochondrial regions and mitochon-
drial networks are a bigger challenge for expert annotation than the 
proposed segmentation approach, which yields good segmentation 
results that retain a lot of structural detail, for example, as shown 
in zoomed-in region 2 of Fig. 2b (also Supplementary Fig. 12). The 
quantitative performance of only 74−76% may thus be attributed to 
imperfect manual annotations as well.

Generalizability across microscopes and fluorophores. The gen-
eralizability across microscopes through computation-inexpensive 
re-training is crucial for quick adoption of this approach in vari-
ous bioimaging laboratories across a variety of imaging set-ups. We 
thus assessed whether a simulation-supervised approach is ame-
nable to transfer learning across microscopes (Fig. 3a). Details of 
the experiments and results are provided in Supplementary Note 
10 and the results in Supplementary Table 9. We first considered 
two epifluorescence microscopes with different optical parameters 
(Supplementary Table 2). The results indicate a significant improve-
ment in segmentation after transfer learning for challenging cases 
(Supplementary Fig. 13). We next considered transfer learning from 
an epifluorescence microscope to a different type of microscope, 
the Airyscan microscope. Here, as well, the results indicate a clear 
enhancement in the quality of segmentations and imply improved 
interpretability (Supplementary Fig. 14).

We also assessed the generalizability of our approach across fluo-
rophores (Supplementary Note 8). We note that our approach per-
forms robustly if the fluorophores used in experiments are different 
from the emission wavelength used for the simulation-supervised 
dataset. At the same time, we note that our approach presents high 
structural specificity using the challenging example presented in 
Supplementary Note 11 and Supplementary Fig. 15. Generalizability 
across fluorophores without re-training is a significant advantage 
because, when a deep learning model is trained for one subcellular 
structure and microscope, it can be used in a versatile manner for 
a wide range of biological experiments, irrespective of fluorophore, 
cell type and cellular conditions.

Application to morphological analysis
We demonstrate two applications: deriving morphological data ana-
lytics and event detection by tracking. This is made possible due to 
the better quality of segmentation over a large population of indi-
vidual subcellular structures across optical microscope images of 
several cells under different conditions.

Morphology-based analytics. Morphological classification of 
mitochondria as dots, rods and network is highly informative16. The 
relevant statistics include the number and size of different mito-
chondrial phenotypes17. The primary challenge of such an analysis is 
accurate segmentation, which has been resolved. Figure 4a presents 
the steps of our analysis (also discussed in the Methods). Figure 4b 
presents the statistics of different morphologies and Fig. 4c depicts 
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Fig. 5 | Temporal behaviour and events of mitochondria can be derived 
in an automated manner from segmentation. Four different behaviours 
manifested as morphological changes over time are shown. a, A 
mitochondrion moves from one place to another. b, A specific pattern of 
movement when a mitochondrion possibly flips and moves. c, Change in 
morphology over time. d, A possible interaction between a vesicle and a 
mitochondrion. Scale bar, 5 μm.
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graph-based connectivity analysis in cells subjected to three differ-
ent cell growth conditions in the dataset LiveEpi1RatMitoRed. A 
similar analysis of small and large vesicular structures is presented 
in Fig. 4d. These results indicate the potential for (1) large-scale 
automated analysis under different cell growth conditions and (2) 
automated analysis of the evolution of cell health under dynamically 
changing cell-culture conditions. We present an additional analy-
sis of the effect of carbonyl cyanide m-chlorophenyl hydrazone, a 
drug known to alter mitochondrial membrane potential, on mito-
chondrial morphologies observed in a living cell over a period of 
60 min after administering the drug (Supplementary Note 12 and 
Supplementary Fig. 16).

Tracking and analysis of morphologically significant events. We 
assigned identities to each segmented mitochondrion and tracked 
them in high-speed microscopy videos of living cells. Because the 
segmentation both encodes morphologies and enables temporal 
tracking, the morphological changes over time can be monitored. 
We note different motion patterns that may be biologically relevant. 
Four examples are presented in Fig. 5 and one in Supplementary 
Fig. 17 (Supplementary Videos 1–5). Figure 5a shows a migrating 
mitochondrion. The mitochondrion in Fig. 5a was segmented by the 
expert as two mitochondria until the expert observed that the mito-
chondrion moves as a single entity. However, simulation-supervision 
segmented it as a single mitochondrion, compensating automati-
cally for the out-of-focus region in the middle of it. In Fig. 5b, a 
mitochondrion performs a flip-and-move manoeuvre over ~40 s. 
Figure 5c shows a typical morphological change of a mitochondrion, 
from curled to elongated. Figure 5d shows an interesting situa-
tion where a vesicle migrates towards a mitochondrion in a seem-
ingly targeted manner and then interacts with the mitochondrion. 
This analysis of such an event using CV demonstrates the utility 
of simulation-supervised deep learning-based segmentation for 
advanced analytics and analysis. The ability to perform automated 
detection of such events could lead to correlated behaviour analysis.

Discussion and conclusion
The proposed method brings physics and machine learn-
ing to a nexus where machine learning can create a significant 
impact with the help of physics-based modelling. Physics-based 
simulation-supervised training is thus proven to be the vital solu-
tion to the challenging GT-deficient problem of segmentation 
using deep learning for subcellular structures. The newly defined 
physics-based GT allows deep learning to tackle the optically hard 
problem of out-of-focus light and PSF-associated blurring. It also 
enables correct identification of the structures that the models have 
been trained to recognize, even in the challenging cases of fluores-
cence bleed-through (Supplementary Fig. 15). This approach is also 

generalizable across different types of cell and fluorophore. Transfer 
learning using smaller microscope-specific simulation-supervised 
datasets is a suitable mechanism for adopting the proposed para-
digm across various fluorescence microscopy systems. Although 
the approach itself is generalizable, the models trained using this 
approach are sufficiently discriminative of the experimental condi-
tions. Such discriminative ability is of significance in avoiding mis-
leading inferences.

Valuable biological knowledge can be derived from automated, 
accurate segmentation of hundreds of subcellular organelles 
across one cell as well as in several cell images and long live-cell 
videos. Thus, several opportunities for performing advanced CV 
tasks are enabled by our proposed segmentation approach. Here, 
two proof-of-concept applications show the ability to perform 
morphology analysis and morphology-derived analytics. More 
application-specific morphological features of interest can be 
derived. Further morphological dynamics-based features may be 
analysed through tracking and following the morphological changes 
of segmented structures, for example, as shown in Fig. 5. The results 
strongly suggest that our approach is applicable to a wide range of 
different automated analysis pipelines. Accordingly, it may advance 
research in a variety of fields of biology and biomedicine in which 
the results and fundamental knowledge are often derived from bio-
image analysis.

We highlight that the proposed method establishes the utility of 
a physics-based simulation-supervised training approach for deep 
learning applications in the microscopy data of living cells. This 
will open other research avenues in the future. More challenging 
and complicated structures of interest in the life sciences, such as 
the endoplasmic reticulum and Golgi bodies, can be simulated to 
extend the applicability of this approach in life-science studies. 
Furthermore, it will be interesting to explore whether 3D segmenta-
tion can be derived from raw microscopy image stacks with only a 
few z-planes, enabling long-term live-cell 3D analysis to be under-
taken and more accurate observations to be derived (an example 
case is shown in Supplementary Fig. 17). Another important exten-
sion of this approach could be for label-free microscopy modalities 
such as bright-field microscopy. However, the realization of accu-
rate physics-based simulation models for small structures will be 
a significant challenge18, because the inherent optical contrast of 
the structures contributes to multiple scattering in the near field, 
which requires mathematically nonlinear physics solvers. Still, 
such models might be realized in the future and optimized for the 
large-scale creation of datasets of complex structures. We expect the 
nexus between machine learning and biology to only grow stron-
ger, in the near future revolutionizing both our insights about bio-
logical systems and the opportunities available to researchers in the  
life sciences.

Table 1 | Comparison of state-of-the-art subcellular segmentation methods with the proposed method

Type Method mIOU/F1 score

Simulation Live cell

SimEpi1Mito SimEpi1Vesi (1) (2) (3)

Unsupervised Otsu8 0.82/0.79 0.70/0.72 0.69/0.71 0.61/0.68 0.67/0.59

Adaptive thresholding14 0.56/0.51 0.51/0.57 0.51/0.53 0.49/0.51 0.51/0.54

Backpropagation15 0.68/0.67 0.55/0.58 0.58/0.61 0.51/0.54 0.54/0.57

Semi supervised ImageJ plugin9 0.76/0.81 0.66/0.67 0.62/0.63 0.61/0.62 0.63/0.62

Simulation supervised U-Net + EfficientNet-B3 0.92/0.94 0.89/0.91 0.76/0.84 0.74/0.79 0.75/0.82

We extensively analysed the segmentation performance of state-of-the-art unsupervised, semi-supervised and the proposed simulation-supervised methods. The experiment was conducted using the 
simulation-supervised datasets SimEpi1Mito and SimEpi1Vesi (as these were the base datasets and contained sufficient simulation data) and the experimental datasets (1) LiveEpi1RatMitoRed,  
(2) LiveEpi1RatVesiFarRed and (3) LiveEpi1HuMitoGreen. The mIOU values and F1 scores are presented side by side, separated by ‘/’.
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Methods
Physics-based simulation and GT mechanisms. The simulation flowchart is 
shown in Fig. 1e (further extended in Supplementary Fig. 5) and the simulation 
approach is presented in detail in Supplementary Note 5. The GT mechanisms 
are presented in Fig. 1f and detailed in Supplementary Note 7. The simulation 
was implemented on a Windows-based computer combined with Python 3.6. The 
simulator is shared for public use (see ‘Code availability’ section).

Preparation of the simulation data for training and testing. We used three 
different microscopes for imaging and therefore use similar configurations  
for the simulations to individually create the training datasets for each 
microscope (Supplementary Table 3). Our simulation framework can generate 
128 × 128 image pairs (image and segmentation GT). We combine four such 
independent images to create a 2 × 2 tile with dimensions of 256 × 256. We use 
two types of training batch. The first batch is a large volume of data (7,000 
tiles) of a specific microscope used for baseline experiments and the deep 
model is trained from scratch. The second batch is generated for two different 
microscopy settings and a comparatively small amount of data (3,000 slides). 
This batch is used to find the effect of transfer learning. We use standard data 
augmentation such as flip, rotation and so on during training. We consider 60% 
training, 20% validation and 20% for testing for each simulation dataset. The 
method is repeated for two different subcellular structures: mitochondria and 
vesicular structures.

U-Net backbones and training details. The backbones used in the U-Net 
encoder for Supplementary Table 4 are ResNet50, ResNet 10019, VGG1620, 
Inception21 and EfficientNet-B322. In our research, we found EfficientNet-B3 
as the best-performing encoder in terms of validation accuracy on the 
simulation-supervised mitochondria dataset. This consists of three mobile inverted 
bottleneck convolution layers integrated in the encoder. For each network, the 
input and output are 256 × 256. We use standard data augmentation such as flip, 
rotation and so on where applicable. Early stopping and learning rate reduction are 
also used based on the mIOU. All experiments are carried out using an Intel(R) 
Xeon(R) Gold 6154 CPU with 128 GB of RAM and an NVIDIA Quadro RTX 6000 
GPU with capacity of 24 GB.

Contemporary methods for subcellular segmentation. Here, we present details 
of the implementation of the contemporary methods (the results are presented 
in Table 1 and Supplementary Fig. 9). Otsu-based thresholding8 and adaptive 
thresholding14 use a histogram of the intensities for segmentation. These are 
non-parametric methods and therefore do not require any user input. We use 
the OpenCV 3.4 library combined with Python 3.7 for the implementation. 
The ImageJ-based morphological plugin9 (MorphoLibJ v1.4.1) is used on the 
Windows platform with default parameter settings. Manual thresholding is 
implemented using the OpenCV 3.4 library combined with Python 3.7, and a 
suitable threshold for best-performing segmentation is extracted by varying 
the global threshold over the intensity histogram of the images. The iterative 
backpropagation-based segmentation15 is implemented in the OpenCV 
3.4 library combined with Python 3.7, and we use 1,000 iterations for the 
segmentation benchmarking.

Evaluation metric. The metric used for quantification of the performance of 
segmentation is mIOU. This is a state-of-the-art metric used in segmentation 
problems10. mIOU values are calculated by taking the ratio of the overlapped 
segmented area and the union of the segmented area between the GT and 
segmented image, that is TP/(TP + FP + FN), where true-positive (TP), 
false-positive (FP) and false-negative (FN) regions are used.

Processing related to the morphological analysis presented in the main text. 
First, we apply our simulation-supervised deep learning model for segmentation. 
Next, a rule-based classification on the segmented area of individual mitochondria 
is used to classify the rod, dot and network morphologies. The mitochondria are 
classified into three categories: dot, rod and network. First, the mitochondria are 
segmented using the proposed method. Next, the binary images are converted 
into a skeleton and a graph is constructed according to ref. 23, where nodes are 
endpoints or mitochondria junctions. The degree of a node (d) is the number of 
branches connected to the node. Finally, each graph is classified as dot, rod and 
network using

Classmitochondria =















Dot, if area≤ 120 pixel andmax(d) = 1

Rod, if area > 120 pixel andmax(d) = 1

Network, otherwise

The statistics of the frequency of occurrences of different types of  
mitochondria (dot, rod and network) and area are presented in Fig. 4b as violin 
plots. There are 30 cells in our live-cell dataset and the mean and standard 
deviation are calculated for each cell. In a similar manner, the vesicles are  
classified into two categories: large and small. The segmented vesicles are fitted 

inside circles. The vesicles are classified using a heuristic threshold of the radius 
(r) as

Classvesicle =
{ Small, if r≤ 150 nm

Large, otherwise

A complex graph-based connectivity analysis is also explored by converting 
the segmented images into skeletons and graphs. After obtaining the graphs, the 
nodes are classified as shown in Fig. 4c. If a graph contains junction nodes, it is a 
network. The analytics show more nuanced information about networks through 
the endpoint–junction lengths and junction–junction lengths.

Indeed, the classification can be performed using simple rules such as used 
here, or fuzzy rules, more elaborate rules and even deep learning approaches  
may be employed for morphological classification depending on the need of  
the applications.

Tracking of mitochondria and vesicles. First, the proposed U-Net-based 
segmentation is used to segment the subcellular structures. Then, the Kalman filter 
and Hungarian algorithm24 are employed to track individual structures over time25.

Microscopes and imaging parameters. Three different microscopes were 
used in this work (Supplementary Table 2). The first, microscope Epi 1, is a GE 
DeltaVision Elite microscope and was used for datasets LiveEpi1RatMitoRed 
and LiveEpi1RatVesiFarRed. The exposure time for imaging the vesicles and 
mitochondria was 10 ms. The acquisition rate was 50 frames per second. The 
acquisition was performed in sequential mode. The LiveEpi1HuMitoGreen dataset 
was also recorded with this microscope. The second, microscope Epi 2, is a Zeiss 
CellDiscoverer 7 with a Plan-Apochromat ×50 water objective and an NA of 1.2. 
The LiveEpi2RatMitoGreen, LiveEpi2RatMitoRed and LiveEpi2RatVesiFarRed 
datasets were recorded with this microscope. The third, microscope Airy 1, is a 
Zeiss LSM 880 ELYRA with a C Plan-Apochromat ×63 oil objective with an NA of 
1.4. The FixedAiry1MitoGreen, FixedAiry1MitoRed and FixedAiry1RatVesiBlue 
datasets were recorded using this microscope.

Cell culture and imaging conditions for the live-cell datasets 
LiveEpi1RatMitoRed and LiveEpi1RatVesiFarRed. The rat cardiomyoblast 
cell-line H9c2 (cells derived from embryonic heart tissue; Sigma-Aldrich) were 
cultured in high-glucose (4.5 g l−1) Dulbecco’s modified Eagle medium (DMEM) 
with 10% fetal bovine serum (FBS). The cells were transiently transfected 
using TransIT-LT1 (Mirus) to express the mitochondrial fluorescence marker 
mCherry-OMP25-TM (emission maximum at 610 nm). After 24 h of transfection, 
the cells were incubated in serum-free DMEM medium for 4 h and then the 
medium was changed back to DMEM with 2% serum just before treatment for 1 h 
(see below). After treatment, the medium was changed back to DMEM 10% FBS. 
The cells were divided into three pools: normal, hypoxia and hypoxia-ADM. For 
the normal conditions (control) pool, the cells were kept under normal cell growth 
conditions at 37 °C with about 21% O2 and 5% CO2. For the hypoxia pool, the cells 
were subjected to hypoxia (deficiency of oxygen; 0.3% O2 level) by incubation in a 
hypoxic cell incubator for 60 min. For the hypoxia and ADM pool, the cells were 
subjected to hypoxia as for the cells above, but were simultaneously treated with 
the peptide hormone adrenomedullin (ADM) at a concentration of 10−6 M. This 
hormone has been found to exhibit protective functions under various pathological 
conditions, such as ischaemia in heart cells during myocardial infarction. The cells 
were labelled using the live-cell-friendly fluorescent marker mCLING-ATTO647N 
immediately before imaging using a concentration of 1:2,000 with a 12-min 
incubation time. After incubation, the medium was replaced with cell-culture 
medium (DMEM 10% FBS) for time-lapse microscopy at 37 °C, atmospheric 
oxygen (that is, the cells in hypoxia and hypoxia-ADM pools were no longer in 
an oxygen-deficient condition) and 5% CO2. The membrane marker was quickly 
internalized by the cells and labelled small membrane-bound vesicles in the cells. 
This membrane marker exhibits a fluorescence emission maximum at a wavelength 
of 662 nm. The mitochondrial marker mCherry-OMP25-TN and membrane 
marker mCLING-ATTO647N were imaged using epifluorescence microscope Epi 
1 sequentially in separate colour channels.

Cell culture and imaging conditions for the live-cell dataset 
LiveEpi1HuMitoGreen. MCC13 cells were maintained in an incubator at 37 °C 
with 20% O2 and 5% CO2, with a growth medium consisting of RPMI 1640 
(Sigma-Aldrich) supplemented with 10% FBS (Sigma-Aldrich) and 1% penicillin/
streptomycin (Sigma-Aldrich). The cultures used for experiments were thawed 
from stocks stored in liquid nitrogen a minimum of one week before labelling  
and imaging.

Labelling with CellLight Mitochondria-RFP BacMam 2.0 (Thermo Fisher 
Scientific) was carried out according to the manufacturer’s protocol with 15 to 45 
particles per cell (PPC) ~20 h before imaging. Transduced cells were grown under 
the same cell growth conditions as described above but in antibiotic-free medium.

Immediately before imaging, the cells were incubated with MitoTracker Deep 
Red (Thermo Fisher Scientific) for 30 min, then washed in phosphate-buffered 
saline or live-cell imaging medium.
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These cells were imaged without the use of a microscope incubation system at 
room temperature (~25 °C), but in pre-heated (37 °C) live-cell imaging solution 
(Thermo Fisher Scientific).

Cell culture and imaging conditions for the live-cell datasets 
LiveEpi2RatMitoGreen, LiveEpi2RatMitoRed and LiveEpi2RatVesiFarRed. 
The rat cardiomyoblast cell-line H9c2 (described above), genetically modified 
using retrovirus to have stable expression of tandem tagged (mCherry-EGFP) 
mitochondrial outer membrane protein 25 (OMP25)-transmembrane domain 
(TM), was utilized. Equal expression of fluorescence intensity in cells was achieved 
through flow cytometry sorting. The cells were cultured in high-glucose DMEM 
with 10% FBS or in medium for glucose deprivation and galactose adaption. The 
glucose deprivation medium consisted of DMEM without glucose (11966-025, 
Gibco) supplemented with 2 mM l-glutamine, 1 mM sodium pyruvate, 10 mM 
galactose, 10% FBS, 1% streptomycin/penicillin and 1 μg ml−1 of puromycin 
(InvivoGen, ant-pr-1). The cells were adapted to galactose for a minimum of seven 
days before experiments. The cells were seeded on MatTek dishes (P35G-1.5-14-C, 
MatTek Corporation) and imaged when they reached ~80% confluency. Labelling 
of lysosomes (acidic endosomal system) was carried out by treating cells for 30 min 
with 50 nM Lysotracker Deep Red (cat. no. L12492, Thermo Fisher) according to 
the manufacturer’s recommendation. After labelling, the medium was replaced 
with fresh medium (described above) for live-cell microscopy. The cells were 
imaged at 37 °C with atmospheric oxygen and 5% CO2. Imaging was performed 
using the Epi 2 microscope. For the live-cell imaging, selected positions were 
imaged for a duration of 10 min each, with one frame being taken every 5 s, giving 
120 frames. Each frame consisted of a seven-slice z-stack with a 0.31-μm interval 
between slices.

Cell culture and imaging conditions for the fixed-cell datasets 
FixedAiry1MitoGreen, FixedAiry1MitoRed and FixedAiry1RatVesiBlue. 
mCherry-EGFP-OMP-25TM H9c2 cells were seeded on glass coverslips (1.5). 
The cell growth conditions and labelling were the same as used for the live-cell 
datasets in the previous paragraph (datasets 4, 5 and 6 in Supplementary Fig. 4. 
After labelling, the coverslips were washed once in phosphate-buffered saline, then 
fixed using 4% paraformaldehyde and 0.2% glutaraldehyde for 20 min at 37 °C. 
The coverslips were then washed in phosphate-buffered saline and mounted using 
Prolong glass antifade mountant (cat. no. P36980, Thermo Fisher). Imaging was 
performed using the Airy 1 microscope. Airyscan images were taken of regions 
of interest. All Airyscan images were processed using the LSM 880 Zen software 
packages ‘Airyscan Processing’ method.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used for the main analyses presented in the paper are available at https://
doi.org/10.18710/IDCUCI26.

Code availability
The code related to this work is available at https://doi.org/10.5281/
zenodo.501706627.
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