
Vol.:(0123456789)

SN Computer Science (2021) 2:111 
https://doi.org/10.1007/s42979-021-00524-9

SN Computer Science

ORIGINAL RESEARCH

seMLP: Self‑evolving Multi‑layer Perceptron in Stock Trading Decision 
Making

Seow Wen Jun1 · Arif Ahmed Sekh2   · Chai Quek1 · Dilip K. Prasad2

Received: 31 August 2020 / Accepted: 15 February 2021 / Published online: 24 February 2021 
© The Author(s) 2021

Abstract
There is a growing interest in automatic crafting of neural network architectures as opposed to expert tuning to find the best 
architecture. On the other hand, the problem of stock trading is considered one of the most dynamic systems that heavily 
depends on complex trends of the individual company. This paper proposes a novel self-evolving neural network system 
called self-evolving Multi-Layer Perceptron (seMLP) which can abstract the data and produce an optimum neural network 
architecture without expert tuning. seMLP incorporates the human cognitive ability of concept abstraction into the architec-
ture of the neural network. Genetic algorithm (GA) is used to determine the best neural network architecture that is capable 
of knowledge abstraction of the data. After determining the architecture of the neural network with the minimum width, 
seMLP prunes the network to remove the redundant neurons in the network, thus decreasing the density of the network and 
achieving conciseness. seMLP is evaluated on three stock market data sets. The optimized models obtained from seMLP 
are compared and benchmarked against state-of-the-art methods. The results show that seMLP can automatically choose 
best performing models.

Keywords  Self evolving neural network · Stock trading neural network · Data adaptation

Introduction

Stock markets are one of the most dynamic systems where 
a large number of parameters influences the changes in the 
market [1–3]. Traditionally, two methods are popular for 
predicting trends of markets, (i) analysis of the financial con-
dition, current trends of economic, several national/interna-
tional issues, and so on (ii) analysis of historical data such 
as the movement of the stock prices. Historical data can be 
analyzed using a variety of indexes such as moving average, 
golden cross, dead cross, etc. Researchers proposed several 

modeling approaches such as rule-based [4, 5], trading pat-
tern [6], classifier-based [7], etc. Recent growing nature of 
Artificial Intelligence (AI) also opened up new opportuni-
ties in computational stock trading. Recently, several soft 
computing and machine learning-based algorithms such as 
ANN-based [8, 9], Optimized Network-based [10], machine 
learning fusion [11], have been proposed. Due to the com-
plex nature of the stock market, it is very difficult to design 
a static intelligent system for stock trading [12].

Artificial neural networks (ANN) have garnered a lot of 
attention these days due to its accurate predictions in various 
diverse fields such as medical [13], natural language pro-
cessing [14] and image recognition [15] among many others. 
However, it often requires expert tuning of the hyperparam-
eters to be able to generate accurate predictions [16]. Archi-
tectures often have to be crafted and subsequently trained 
and tuned by experts and different permutations have to be 
tested manually to determine the best topology of the neural 
network that gives the best results. With a predefined topol-
ogy, the whole process becomes an adaption of weights to 
the data and there is no real learning of the topology to best 
represent knowledge abstraction of the data. In stock trad-
ing, if accurate predictions can be obtained using ANNs, 

 *	 Arif Ahmed Sekh 
	 skarifahmed@gmail.com

	 Seow Wen Jun 
	 seow0095@e.ntu.edu.sg

	 Chai Quek 
	 ashcquek@ntu.edu.sg

	 Dilip K. Prasad 
	 dilipprasad@gmail.com

1	 Nanyang Technological University, Singapore, Singapore
2	 UiT The Arctic University of Norway, Tromsø, Norway

http://orcid.org/0000-0003-0706-2565
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00524-9&domain=pdf


	 SN Computer Science (2021) 2:111111  Page 2 of 11

SN Computer Science

investors will be able to detect trend reversals earlier which 
will allow them to make more informed decisions to take a 
long or short position in the market. These days, statistical 
methods such as the ARIMA method [17] are often used 
for stock prediction. Since ANNs are a universal function 
approximator [18], it can be used to model stock data better 
than such statistical methods which are based on moving 
averages [19, 20].

Neural network compression is a way to reduce num-
ber of parameters without compromising the accuracy (see 
Fig. 1). With the daily increasing demands for on-device 
computation, the demand of optimized neural networks are 
also increasing. Such compression is useful in IoT devices, 
drones, self driving cars, and mobile devices. In [21] authors 
used heuristic search based on threshold for compression. 
Baysian sparsity based weigh estimation is proposed in [22]. 
Yu et al. [23] proposed to use a weight pruning method for 
compression. Recently, Ma et al. [24] proposed network 
comparison using Baysian optimization. Low-rank decom-
position based method replace set of parameters by the low-
rank approximation for network reduction [25]. In this types 
of compression Singular Value Decomposition (SVD) [26] 
and Canonical Polyadic (CP) decomposition [27] are among 
popular choices. In this paper, we have proposed a self-
evolving intelligent framework based on multi-layer per-
ceptron for decision making in stock trading. The proposed 
method can automatically design the optimum neural net-
work from the data itself.

The main contributions of the paper are: (a) A self-evolv-
ing ANN is proposed that use the human cognitive abil-
ity of concept abstraction and GA for automatic creation 
of neural network for a given data set. (b) A link pruning 
module is employed for removing unnecessary links in the 
network. The module allows automatic design of a com-
pressed network without compromising the performance. 
(c) The method is applied on three publicly available stock 
trading data set and achieved state-of-the-art performance.

The rest of the paper is organized as follows. Sect. 2 
describes the proposed seMLP and the components. Sec-
tion 3 demonstrates the results and discussion of the results 
and finally, Sect. 4 concludes the article.

Proposed seMLP

The proposed self-evolving Multi-Layer Perceptron (seMLP) 
network is a novel neural network that builds its architec-
ture based on the data and hence is capable of adapting its 
architecture to the data set for better accuracy. seMLP con-
sists of two primary modules. First, it adopts the genetic 
algorithm (GA) approach to determine the optimal number 
of hidden layers and neurons per layer to allow the network 
to better generalize to the data. By allowing the network to 
discover the best architecture for itself, seMLP can learn 
the best topology for the data presented without any expert 
tuning or input. The main goal is to allow the network to 
be constructed such that the minimum number of hidden 
layers and neurons are used to derive the most compact and 
concise model for any data that is fed into the network. Sec-
ond, a link pruning module is employed to shrink the size of 
the network by removing links which are redundant and to 
achieve conciseness and the least density. The framework is 
depicted in Fig. 2. There are two primary modules (marked 
with a circle) to produce a compressed neural network from 
the historical data.

Let D is a data consists of a set of features (x) and an 
outcome (y). D can be divide into train and test (Dt,Dv) any 
number of times for cross validation. Let S is a search space 
contains nodes and layers that can form a neural network 
by taking any number of nodes and layers. Performance Fig. 1   Optimized neural network by compression

Fig. 2   Functional block diagram 
of the proposed seMLP



SN Computer Science (2021) 2:111	 Page 3 of 11  111

SN Computer Science

of a neural network (p(�)) is defined by the mean squared 
error (MSD) and calculated as 1

2

∑n

i=1
(ŷ − y)2 and is cross 

validated over D . Weight of a neural network (�(�)) of the 
search space S , � ∈ S is defined by the number of nodes, 
layers, and links present in the network. In this paper Eq. 1 
is solved to find the best network for a given data.

GA‑based Network Evaluation

Using a genetic algorithm, seMLP is able to identify an opti-
mal architecture for the network. The parameters to be tuned 
by the genetic algorithm are: (a) number of hidden layers and 
(b) number of nodes per hidden layer. A constraint is also set 
such that a subsequent hidden layer should have a smaller 
number of neurons for the concept of abstraction and this is 
realized in the fitness function to force the genetic algorithm 
to favor networks with such characteristics.

Chromosome Encoding: seMLP employs binary encoding 
for its chromosome. In the chromosome, it contains a layer 
cost (�) and also another variable represents the binary form 
of layers (�) . This chromosome is the backbone of the indi-
vidual candidate solution in the population. All the genetic 
material is contained in this chromosome thus it means the 
candidate solution is encoded inside the chromosome. From 
this chromosome, we can derive the architecture of the neu-
ral network. For example, the number of hidden layers of 
a network is equal to the length of � or � . The number of 
neurons (�) in ith hidden layer is defined as (2). Where the 
value of � is the integer value of the binary form of the layer.

Population Initialisation: The population is initialized ran-
domly to allow for a random distribution of individuals with 
different candidate solutions. This gives the genetic algo-
rithm a large heterogeneous pool of genes to choose from to 
ensure that it is more likely to be able to break out of local 
optima to get closer to the optimal solution. Second, the 
population initialized must also be big enough so that there 
are enough representative candidate solutions contained 
within the initial population and prevent it from getting too 
homogenous after a few evolutions.

Selection: The selection operator is used to select individu-
als to breed for the next generation of network. seMLP has 
adopted a hybrid approach to the selection where a portion 
of the fittest candidate solutions from the current generation 
will be kept and the whole population will also be used for 

(1)min
�∈S

(p(�),�(�)).

(2)�i = ⌊integer(�i) × �i⌋.

breeding. Thus, the top 10% of the network structure of cur-
rent generation is always kept and allowed to stay on in the 
next generation without any modifications. To ensure that 
the population will get fitter over time, seMLP employs rank 
weighting. All the individuals in the population is ranked 
based on the value of their fitness function and fitter with a 
higher probability. Using rank weighting, it ensures that net-
works with higher values of fitness function will have a 
higher probability of being selected for breeding. In contrast, 
solutions with lower values have a lower chance of being 
selected. Hence, by selecting fitter individuals for breeding, 
the next generation will have a higher probability of being 
fitter than the current generation. The probability of choos-
ing any candidate solution (S) in a population N is calculated 
as N−rank∑n

i
i

 . Where rank is the position of S in the population 
according to fitness.

Crossover: The crossover operation is one of the most 
important functions as it decides the future of the popu-
lation. After the selection phase, the crossover operation 
chooses two parents and breeds two new children by recom-
bining the chromosomes of the parents. After two parents are 
chosen, there must be checks to make sure that they are not 
the same parent as it would mean the children will turn out 
to be similar. Since the crossover operation is used to create 
a new children chromosome in GA and the chromosome in 
seMLP consists of the � and � , the crossover operation has 
to be performed on both these values. In seMLP, the single-
point crossover is used because it is fast, easy to calculate 
and it generally gives a good candidate solution as a result.

Integer Crossover for � : The values of � are integers in the 
chromosome. Hence, the integer crossover [28] is used. A 
random weight (�) between [0, 1] is chosen and multiplied 
with the � . The � of the two children are re-combined values 
of the parents. The crossover is defined as:

where p1, p2 are parent and c1, c2 are children.

Single Point Crossover for � : The � in the chromosome is 
binary encoded. Thus, we can use the single point crossover 
for binary encoded values. A random point, k, is chosen 
as the crossover point in the string of binary digits. This 
ensures that the child carries genetic information from both 
parents. The single point crossover are defined as:

(3)�c1 = ��p1 + (1 − �)�p2,

(4)�c2 = ��p2 + (1 − �)�p1,

(5)�c1 = �p1[1..k] + �p2[k..end],



	 SN Computer Science (2021) 2:111111  Page 4 of 11

SN Computer Science

where k is the maximum length of the layers.

Choosing Layers for Crossover: If the number of layers of 
the chosen parents differ, there is a need to choose exactly 
which layers are to be involved in the crossover because 
there is positional significance to the layers. For example, if 
the first parent has five layers and the second parent has only 
two layers, there might potentially be information loss if the 
fourth layer of p1 is crossed with the first layer of p2. This 
is because the first layer of p2 is likely to be a more general-
ized layer as it is the first hidden layer while the fourth layer 
of p1 is likely to be a more concrete layer. Hence, during 
crossover, the position of the layers selected for crossover 
should be kept relatively similar between the two chosen 
parents thus preserving the positional significance of the 
layer. Therefore, for cases where the number of layers differ 
between the two parents, we propose a structure for choosing 
which layers are to be chosen for crossover. First, for the two 
resultant children, the number of layers for them will be the 
same as the parents. For example, if parent 1 has 5 layers 
and parent 2 has 3 layers, child 1 and child 2 will then have 
five and three layers too. The structure for the crossover is 
defined by a partition point (p). p is defined in 7. Provided 
parent p1 always have more than or an equal number of lay-
ers compared to parent p2:

Subsequently, for each layer in p2, the layers in p1 that could 
be selected for crossover with the layer in p2 is restricted 
to the range {�i, �i + p} . Within that range, the layer to be 
crossovered with p2 will be randomly selected with equal 
probability. The child with the same number of layers as p1 
will then inherit the rest of the missing layers from p1. If the 
crossover produces any layer with zero nodes or � = 0 then 
the process is repeated.

Mutation: The purpose of the mutation operator is to 
ensure that the population does not get too homogenous 
which might result in candidate solutions getting stuck in 
local minima which decreases the possibility of getting a 
more optimal solution. In seMLP, the mutation is achieved 
by a parameter called mutation probability (�) . A higher 
probability will result in more mutations which will intro-
duce more new genetic material back into the population at 
a higher rate while a lower probability will introduce new 
genes at a slower rate. seMLP does not mutate individuals 
who are in the top 10% of the population in terms of fitness 
and these are the fittest individuals who are selected to be 

(6)�c2 = �p2[1..k] + �p1[k..end],

(7)p =

⌊ length(�p1)
length(�p2)

.
⌋

kept without any changes. As there are two components to 
the chromosome of seMLP which is the � and � , the muta-
tion rate is also defined for both of them (�� ,��) and these 
are in the range [0,1]. In each mutation �� ,�� is chosen ran-
domly and must be less or equal to the restriction of the 
mutation probability.

Fitness Function: The fitness function is the most important 
parameter for the success of any genetic algorithm. It affects 
not just the convergence of the genetic algorithm but also 
the quality of the final solution; whether it is near the global 
optimum. The fitness function must thus be crafted accord-
ing to what the desired outcome of the genetic algorithm 
is. For seMLP it is to discover the best architecture for the 
input data. Hence, there will be three aspects to the fitness 
function: 

	 (i)	 The network must hold the property of knowledge 
abstraction i.e. proceeding hidden layers must have 
lower or equal number of nodes,

	 (ii)	 The network must be minimized in terms of number 
of layers and nodes, and

	 (iii)	 The network performance must be higher in terms 
of RMSE or R2 . Therefore, these goals have to be 
implicitly encoded into the fitness function for the 
genetic algorithm to discover the best solution.

First, we define abstraction penalty (�) to ensure the knowl-
edge abstraction. � is defined in (8).

Next, a hidden layer penalty (�) is introduced to ensure mini-
mum network depth. � is calculated as n × ch , where n is 
number of hidden layer and ch is hidden layer cost, we have 
taken ch = 0.1 empirically and found suitable in our case. 
The normalized constant (c) is used to normalized penalty. 
It is defined in Eq. (9), where � is the lower limit of the credit 
in a generation.

Credit (�) is the cost of a network, higher cost represents 
a complex network. For a given network � is calculated as ∑n

i=1
�i , where n is the number of layers present in the net-

work. Finally, a credit ratio (�) is calculated as Eq. (10). � is 
normalized between 0 and 1 over a generation.

Outliers’ Penalty: Outlier values for the quality metric 
can be defined as the values which are very far from the 

(8)𝛼i =

{
0, if length(layeri) > length(layeri+1) = 1

1, otherwise
.

(9)c = (� + ch)n − � .

(10)� =
� − � + c

(n − 1)
.



SN Computer Science (2021) 2:111	 Page 5 of 11  111

SN Computer Science

distribution of the other values. Mathematically, if the pop-
ulation is fairly normally distributed, it can be defined as 
values which lie outside more than three standard deviations 
away from the mean. As seMLP employs feature scaling, 
any outliers might skew the distribution in favor of the outli-
ers which means that all the other non-outlier values might 
have a very small range after scaling. This is not ideal as 
the majority of the values are “squashed” and might affect 
the accuracy of the fitness evaluation as the credit ratio 
(�) might outweigh the quality metric. Therefore, seMLP 
employs an outlier labeling-based technique using the box-
and-whisker plot or more commonly known as the boxplot. 
The advantage of using a boxplot is that it is computation-
ally fast, does not require any tuning parameters and also 
uses robust summary statistics that are located at actual data 
points [29]. Furthermore, it does not make any distributional 
assumptions and does not depend on any standard deviation 
or mean. Hence, we can apply the boxplot to detect and 
remove outliers. Tukey et al. [30] defined the inter-quartile 
range (IQR) as the interval between the lower quartile (q1) 
and upper quartile (q3) . The lower quartile (q1) is the 25th 
percentile while the upper quartile (q3) is the 75th percentile. 
The IQR can then be used to identify outliers according to 
the illustration below:

In seMLP, there is only a need to detect outliers at one of the 
extreme points. For example, if RMSE is the quality metric 
used, seMLP will only utilize the boxplot method to catch 
outliers above the upper extreme as the lower the RMSE, 
the better the quality of the candidate solution. After the 
outliers are found, they will be removed from the normaliza-
tion of the quality metric as they will skew the normaliza-
tion as described above. Although these outliers represent 
a very bad candidate solution, they are not eliminated from 
the population immediately by forceful removal. Instead, 
they are allowed to remain in the population in the last few 
positions in terms of ranking to maintain the variety in the 
gene pool. Thus, their fitness function will be calculated in 
a slightly different manner from the rest of the population. 
The difference will be in the calculation of the quality metric 
as the outliers only affect the calculation of that. Hence, the 
calculation of the quality metric of the outliers must give 

(11)iqr = q3 − q1

(12)Lower Fence = q1 − (1.5 × iqr),

(13)Upper Fence = q3 − (1.5 × iqr),

(14)Lower Extreme = q1 − (3 × iqr),

(15)Upper Extreme = q3 − (3 × iqr).

a worse result compared to the non-outliers, such that the 
outliers will remain the last few in the population.

First, the minimum fitness of the entire population based 
on the non-outliers has to be calculated as such based on for 
RMSE and R2 respectively. Next, the fitness of the outlier 
is calculated and an outlier penalty (�) is introduced as in 
Eq. (16).

� is used to normalize the fitness score. High value of � 
puts lower weight of outliers when we normalize the fitness 
score. Finally, the fitness score (�) is calculated using

Link Pruning

After the best architecture of the neural network has been 
found by the genetic algorithm, seMLP will proceed to 
prune the links/weights in the network to remove the largest 
number of links possible without affecting the accuracy of 
the MLP. In seMLP, pruning of links is done based on the 
threshold principle. If links that have weights above a certain 
threshold, they are kept as they are deemed to be important 
while links at or below the threshold are removed by set-
ting them to zero. To find the threshold, a binary search is 
employed. The threshold will be found using a binary search 
based on the RMSE error returned after the threshold is 
applied. The thresholding is based on percentile ranking so 
the threshold is set in the range from (0, 100) non-inclusive. 
For example, if the threshold set is 60%, any links below the 
60th percentile of all weights for that layer will be removed. 
Linear interpolation is also used when the desired percentile 
lies between two data points (i, j) and i < j . Binary search 
works for the pruning of links because there is a direct cor-
relation between the RMSE of the neural network against 
the links. If the threshold is set too high, the RMSE of the 
neural network increases as too many useful links have been 
pruned. On the other hand, if the threshold is set too low, 
the RMSE of the neural network does not change because 
no useful links have been pruned and thus the accuracy of 
the network has not been affected. Therefore, this fits the 
requirements of using a binary search algorithm where the 
threshold responds proportionally to its performance. This 
can be illustrated according to the Fig. 3.

After the thresholds for each layer has been found by 
binary search, the whole network can be pruned. The links 
between each layer can be removed according to the respec-
tive thresholds found. The last layer to the output layer is 
fully connected and not pruned because it would affect 

(16)� = min(fitnessnon outliers) − fitnessoutliers,

(17)� =

{
�

RMSEnormalized

, if RMSE

� × R2
normalized

, if R2
.



	 SN Computer Science (2021) 2:111111  Page 6 of 11

SN Computer Science

the error too drastically. This is similar to the CNN archi-
tecture [31], where the output layer will always be fully 
connected to ensure that all the information flow and the 
knowledge learned in the network will reach the output thus 
giving a more accurate result. Any links removed from the 
preceding layer will not affect the subsequent layer because 
those links are below the threshold to make any meaning-
ful contribution to the node that it is connected to. Hence, 
removing it will not affect the performance of the network 
and the whole network can be pruned.

Results and Discussion

This section, the performance of seMLP for optimizing the 
network and also performance in stock trading is analyzed. 
The experiments are carried out on three different unique 
stock indexes: (a) S&P 500 Index, (b) NASDAQ Composite, 
and (c) Korea Composite Stock Price Index (KOSPI). The 
first two are chosen as they are two of the most heavily fol-
lowed stock indices in the US stock market and most inves-
tors around the world will be concerned about its movement 
and trends. The KOSPI is the representative stock market 
index of South Korea and it is chosen because it one of the 
more popular stock market index in Asia and to give some 
contrast to the S&P500 and NASDAQ Composite which are 
stock market indices based in the western world. The details 
of the data sets are given in Table 1.

Experimental Set‑up and Hyperparameter

For the experimental setup of the genetic algorithm por-
tion of seMLP, it requires a definition of the parameters 
for both the genetic algorithm portion and also for the neu-
ral network training in the genetic algorithm. The genetic 
algorithm portion of seMLP requires certain parameters 

to be set such as the limits for the number of hidden lay-
ers and the number of nodes per hidden layer. These are 
defined in Table 2.

As the genetic algorithm portion of seMLP takes in 
neural networks as candidate solutions, there is a need to 
keep the hyperparameters of the neural networks constant 
across the whole population and generations. The hyper-
parameters of the neural network are defined in Table 3.

We have taken input feature length 39 empirically. First, 
to construct the input vector, the difference between the 
prices of consecutive days have been calculated using (18), 
where y(t) is stock price at t.

A sliding window of size 39 is then used over �y with a 
stride of 1 to determine the range of input vectors for the 
neural network. Thus, each input vector will now contain 
the delta changes in prices between consecutive days. Sec-
ond, after preparing the input vectors, each input vectors 
have to be normalized. This is one of the most important 
preprocessing steps such that the neural network will be able 
to learn the trend and changes in prices. Each input vector 
and corresponding output will be normalized within their 
own window.

(18)�y(t) = y(t) − y(t − 1).

0% 100%

Ideal Threshold

RMSE gets progressively worseRMSE remain same

All weights culledNo weights culled

Fig. 3   Illustration of the ideal threshold for pruning of links in neural 
network

Table 1   Data set used for the experiments

Dataset Duration #of data points

S&P 500 11 March 1999 to 14 Nov 2018 4954
NASDAQ 7 Oct 1998 to 22 Jan 2019 5104
KOSPI 15 Mar 1998 to 15 Mar 2019 4932

Table 2   Hyperparameters of GA

Hyperparameter Value

Number of evolutions 25
Number of models per generation (including during popula-

tion initialization)
100

Lower limit of number of hidden layers 2
Upper limit of number of hidden layers 6
Quality metric in fitness function R

2

Lower limit of number of nodes per hidden layer 1
Upper limit of number of nodes per hidden layer 255
Mutation rate of nodes 0.1%
Mutation rate of delta 0.3%
Crossover rate 1

Table 3   Hyperparameters of neural network

Hyperparameter Value

Number of input features 39
Number of output features 1
Epochs 300
Activation function ReLU
Batch size 128
Learning rate 0.001
Regularizer 10−4



SN Computer Science (2021) 2:111	 Page 7 of 11  111

SN Computer Science

All the experiments are carried out in Intel(R) Xeon(R) 
Gold 6154 CPU with 128 GB of RAM and NVIDIA Quadro 
RTX 600 GPU of capacity 64 GB. The data set is divided 
into two parts. First 80% data is used for training and rest for 
test and performance evaluation.

Results and Analysis of GA‑Based Evolving

This section we present the evaluation of the networks and 
their performance against generation. We have analyzed the 
best R2 and average error in each generation. The average 
error is defined as the mean of the error between the pre-
dicted and correct prices over all individuals in the popula-
tion of that generation. Figs. 4, 5, and 6 presents such results 
on three public data sets. It is observed that the average R2 
is gained as 0.00223% , 0.108% , and 0.0720% respectively in 
S&P, NASDAQ, and KOSPI data set.

It can be seen that for all the three data sets, the best 
R2 value improves from generation 0 before converging to 
its final value. Before it converges, it is often able to break 
out of local optima and to continue increasing. This dem-
onstrates the ability of the genetic algorithm to find better 
candidate solutions through mutation and crossovers. The 
average error for each generation is also decreasing which 
confirms that the R2 value is reporting the correct trend of 

improvement where the predicted prices are getting more 
accurate.

Optimum Model Selection: The main motivation of the uses 
of GA is to find the best network structure for the prediction 
of the various stock market indices. The best architectures 
for the three different stock market is chosen based on the 
performance of the network in terms of R2 score. The best 
results of prediction in first and final generation is reported 
in Table  4. The models producing best R2 are selected. It 
is observed that a network with only two hidden layers is 
sufficient for all the cases but the number of nodes in each 
layer is different. The best network found by GA as {41, 34} 
nodes (S&P 500), {8, 3} (NASDAQ), and {20, 12} number 
of nodes (KOSPI). Thus, drawing conclusions from these 
genetic algorithm experiments, it can be concluded that in 
general for stock market indices data sets, only two hidden 
layers are needed for the depth of the network while the 
nodes per hidden layer can be kept below 50. This should 
be sufficient to model most stock market indices and give a 
reasonably good prediction.

Pruning of Links

After the genetic algorithm in seMLP finds the most com-
pact architecture with the minimum width for the data set 
involved, seMLP can prune the links in the network so 
that the network will be the most concise. As all the neural 
networks built in the genetic algorithm are fully-connected 

Fig. 4   Best R2 and average error against the generation in S&P 500 
data set

Fig. 5   Best R2 and average error against generation in NASDAQ data 
set

Fig. 6   Best R2 and average error against the generation in KOSPI data 
set

Table 4   Improvement in R2 values from first to last generation (Opti-
mum Model)

Data set Best R2 at first generation Best R2 at 
last genera-
tion

S&P500 0.984884 0.984906
NASDAQ 0.98076 0.98182
KOSPI 0.94404 0.94472



	 SN Computer Science (2021) 2:111111  Page 8 of 11

SN Computer Science

multi-layer perceptrons, they are the densest possible and 
this section aims to cull the redundant links in the net-
work. Only the links from the input layer to the last hidden 
layer is retrieved. The links from the last hidden layer to 
the output layer is not retrieved and not pruned because 
experimentally, we have found that culling the links from 
the last layer substantially decreases the accuracy and thus 
that last layer should stay fully connected. We have used 
three neural networks of the same architecture for each 
data set as three neural networks to predict prices at t + 1 , 
t + 2 and t + 3 . We have observed that the links of the net-
works are not similar during pruning. The results of such 
pruning are depicted in Fig. 7.

From the pruning results, typically about 17–94% of 
links can be pruned between consecutive layers in a neural 
network. For a complete neural network with all the lay-
ers, 14.29–84.90% of total weights can be pruned from the 
network. This shows that there are actually a lot of redun-
dant links in a neural network as these links are too low 
in weight to affect the final output of the network. Hence, 
they can be deleted from the network without affecting the 
accuracy thus saving space and computation complexity. 
It is also observed that the S&P500 data set has the high-
est number of redundant links at 80.35%, followed by the 
KOSPI at 43.40% and lastly the NASDAQ Composite at 
28.77%. This could be because the neural network for the 
S&P500 data set is the most complex and thus have the 
largest number of links, therefore, increasing the chances 
of redundancy. On the other hand, the neural network for 
the NASDAQ Composite is much less complex with only 
eight nodes in hidden layer 1 and three nodes in hidden 
layer 2. Thus, the links in the network will be significantly 
more important as there are much lesser links in the net-
work. Hence, each link is more likely to play a signifi-
cant role in the output so the threshold for pruning will 
be lower.

Benchmark Experiment

To evaluate the results of the genetic algorithm with other 
neural networks, benchmark experiments were performed 
using the S&P 500 data set. For this benchmark experi-
ment, the genetic algorithm was used to determine the 
best topology for the S&P 500 data set. The seMLP neural 
network generated by the genetic algorithm uses the same 
hyperparameters as described earlier. Two other multi-layer 
perceptrons (MLP) with different hidden layer sizes are 
also designed to use as benchmark comparisons with the 
seMLP network. The accuracy metrics Non-Dimensional 
Error Index (NDEI) is used and defined as NDEI = RMSE

�
 , 

� is the standard deviation of the correct output values. 
The benchmark experiments have been carried out on S&P 
500 data set using evolving Mamdani fuzzy inference sys-
tem (eMFIS)  [32], Self-reorganizing Fuzzy Associative 
Machine (SeroFAM)  [33], Evolving Fuzzy Neural Net-
work (EFuNN) [34], SeroFAM using An extended Takagi-
Sugeno-Kang inference system (SeroFAM-TSK) [35] and 
dynamic evolving neural-fuzzy inference system (DEN-
FIS) [36] are fuzzy neural network (FNN) models which 
are split into Mamdani and TSK models. All these FNN 
models and the two ANN models are used as benchmarks 
against the seMLP model. An increase in NDEI represents 
an increase in error hence it means the accuracy is worse. 
The results are summarized in Table 5.

For the two ANN models, the NDEI is the average over 
ten different trainings selection to ensure an accurate rep-
resentation of the error. The results indicate that seMLP 
compares favorably with fuzzy neural network models. It 
outperformed Mamdani type models which are focused on 
interpretability but it could not match the TSK models which 
are the most accurate type of fuzzy neural networks. These 
results show that the genetic algorithm portion of seMLP 
is strong and is able to determine a good topology for an 
MLP network that can hold its own against another more 
advanced type of neural network architectures such as FNNs. 
Therefore, since the genetic algorithm is modular, it can 
potentially be used on other architectures such as on fuzzy 

0

10

20

30

40

50

60

70

80

90

Network 1 Network 2 Network 3

P
er

ce
nt

ag
e 

of
 L

in
ks

 P
ru

ne
d

S&P500 NASDAQ KOSPI

Fig. 7   Results of link pruning of three networks in a different data set

Table 5   Results of benchmark experiments on S&P500

Method Type NDEI

ANN [9] {41, 41} Layers MLP 0.0272
ANN [9] {34, 41} Layers MLP 0.0280
eMFIS [32] Mamdani 0.0241
SeroFAM [33] Mamdani 0.0272
EFuNN [34] Mamdani 0.1544
SeroFAM-TSK [35] TSK 0.0199
DENFIS [36] TSK 0.0200
seMLP {41, 34} Layers MLP 0.0168



SN Computer Science (2021) 2:111	 Page 9 of 11  111

SN Computer Science

neural networks to find the best topology for the data set. 
This would give a better result for those networks. From the 
results, it can also be seen that the architecture derived from 
seMLP outperformed the other artificial neural networks 
(ANNs) that do not have abstraction built into its topology. 
The seMLP network has hidden layers of size 13 and 2 for 
the first and second layers respectively which shows that 
the hidden layers decrease in size for knowledge abstrac-
tion to happen in the network. Benchmarking this with two 
other ANNs that has the same hidden layer size and another 
with an increasing hidden layer size, the results show that 
a multi-layer perceptron (MLP) network with abstraction 
outperforms other MLP networks that are not constrained 
for abstraction as evident in the lower NDEI value for the 
seMLP network. Therefore, it can be concluded that for 
an MLP network to achieve the best accuracy, knowledge 
abstraction should happen in the neural network thus design-
ing an architecture with decreasing hidden layer size will 
aid this abstraction of knowledge and give predictions with 
higher accuracy.

Adaptability of seMLP

Instead of using fully connected multi-layer perceptrons, 
seMLP can also be adapted to use other forms of neural 
networks such as LSTMs. For seMLP, it is a very modular 
algorithm as it is derived from the genetic algorithm. Hence, 
any form of the neural network can be fed into the genetic 
algorithm portion of seMLP and it will be able to find the 
best architecture of that particular network. If an LSTM is 
used instead of an MLP, the genetic algorithm will be able 
to find the best architecture for the number of LSTM cells 
and best number of layers within each LSTM cell to give 
the highest accuracy of prediction from the LSTM network. 
The link pruning module is not applicable here. We have 
also experimented with an LSTM based model selection 
applicable to S&P 00 data set. The parameters of the GA is 
presented in Table 6. The parameters of LSTM based train-
ing is reported in Table 7.

The optimizer ends with a LSTM containing three lay-
ers with [200, 184, 125] nodes in the corresponding layers 
(excluding the input and output layers). The model achieved 
best R2 of 0.9882254, and NDEI of 0.0144.

Ablation study

Here, we present the ablation study of the proposed seMLP. 
We have used S&P500 data set and evaluation metric dis-
cussed in Sect. 3.4. The results are summarized in Table 8. 
We have considered four experimental conditions. First, we 
use an ANN with two layers and ten nodes in each layer. 
Next, we use maximum possible layers (6) with maximum 
possible nodes (255) according to our previous experimental 

setup. We note that both networks perform poorly. In the 
third case, we use seMLP produced network without pruning 
the links. We note that the optimized network is compressed 
with high accuracy (lower NDEI). Finally, we show that the 
network can be further compressed without compromising 
accuracy.

Conclusion

Due to the increasing growth and popularity of artificial 
neural networks for applications in many industries today, 
there is a need for neural networks that can adapt its archi-
tecture to fit the data thus giving more accurate predictions. 
Many ANNs today require expert tuning and are unable to 
represent an abstraction in the data. To address these issues, 
a novel self-evolving Multi-Layer Perceptron (seMLP) sys-
tem is proposed that consists of a genetic algorithm that is 
capable of learning the best architecture for the data to best 
represent an abstraction of the data. The genetic algorithm 
in seMLP prioritizes the selection of models with better 
knowledge abstraction thus it is able to build architectures 
that have an inherent ability to abstract knowledge from the 
data. This genetic algorithm proposed is also able to work 

Table 6   Hyperparameters of GA used in LSTM-based model selec-
tion

Hyperparameter Value

Number of evolutions 25
Number of models per generation (including during popula-

tion initialization)
100

Lower limit of number of layers 2
Upper limit of number layers 10
Quality metric in fitness function R

2

Lower limit of number of nodes per layer 10
Upper limit of number of nodes per layer 256
Mutation rate of nodes 0.1%
Mutation rate of delta 0.3%
Crossover rate 1

Table 7   Hyperparameters of the LSTM

Hyperparameter Value

Number of input features 39
Number of output features 1
Epochs 300
Optimizer Adm
Batch size 128
Learning rate 0.001
Regularizer 10−4



	 SN Computer Science (2021) 2:111111  Page 10 of 11

SN Computer Science

with deep neural networks with multiple hidden layers and 
no pre-determined architecture is required at the start. After 
finding the best architecture, seMLP then proceeds to prune 
the network using a thresholding function that prunes the 
redundant links to produce a final architecture that is the 
most compact and concise. The results have been encourag-
ing where the network discovered by seMLP outperformed 
other neural networks without abstraction. Furthermore, this 
network has been pruned to significantly to leave only the 
important links. Lastly, the seMLP network is applied to 
stock trading. The results have shown that using the pro-
posed seMLP a data specific artificial neural network can be 
generated using GA and also beneficial for a highly dynamic 
system such as stock trading.

Funding  Open access funding provided by UiT The Arctic University 
of Norway (incl University Hospital of North Norway). This study is 
not Funded from anywhere.

Compliance with Ethical Standards 

Conflict of Interest  The authors declare that there is no conflict of in-
terest regarding the publication of this paper.

Ethical Approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.

Informed Consent  Informed consent was obtained from all individual 
participants included in the study.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Pang X, Zhou Y, Wang P, Lin W, Chang V. An innovative neural 
network approach for stock market prediction. J Supercomput. 
2020;76(3):2098–118.

	 2.	 Hiransha M, Ab Gopalakrishnan E, Krishna Menon V, Soman KP. 
Nse stock market prediction using deep-learning models. Procedia 
Comput Sci. 2018;132:1351–62.

	 3.	 Ashish S, Dinesh B, Upendra S. Survey of stock market prediction 
using machine learning approach. In: 2017 International confer-
ence of Electronics, Communication and Aerospace Technology 
(ICECA), IEEE, 2017;2:506–509.

	 4.	 Keng Ang K, Quek C. Stock trading using rspop: a novel rough 
set-based neuro-fuzzy approach. IEEE Trans Neural Networks. 
2006;17(5):1301–15.

	 5.	 Arévalo R, García J, Guijarro F, Peris A. A dynamic trading rule 
based on filtered flag pattern recognition for stock market price 
forecasting. Expert Syst Appl. 2017;81:177–92.

	 6.	 Liheng Z, Charu A, Guo-Jun Q. Stock price prediction via dis-
covering multi-frequency trading patterns. In: Proceedings of 
the 23rd ACM SIGKDD international conference on knowledge 
discovery and data mining. ACM, 2017;2141–2149.

	 7.	 Ballings M, Van den Poel D, Hespeels N, Gryp R. Evaluating 
multiple classifiers for stock price direction prediction. Expert 
Syst Appl. 2015;42(20):7046–56.

	 8.	 Hedayati Moghaddam A, Hedayati Moghaddam M, Esfandyari 
M. Stock market index prediction using artificial neural net-
work. J Econ Finance Adm Sci. 2016;21(41):89–93.

	 9.	 Selvamuthu D, Kumar V, Mishra A. Indian stock market pre-
diction using artificial neural networks on tick data. Financial 
Innov. 2019;5(1):16.

	10.	 Qiu M, Song Yu. Predicting the direction of stock market index 
movement using an optimized artificial neural network model. 
PLoS One. 2016;11(5):e0155133.

	11.	 Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock market 
index using fusion of machine learning techniques. Expert Syst 
Appl. 2015;42(4):2162–72.

	12.	 Soni S. Applications of anns in stock market prediction: a sur-
vey. Int J Comput Sci Eng Technol. 2011;2(3):71–83.

	13.	 Ting DSW, Liu Y, Burlina P, Xu X, Bressler NM, Wong TY. Ai 
for medical imaging goes deep. Nat Med. 2018;24(5):539.

	14.	 Goldberg Y. A primer on neural network models for natural 
language processing. J Artif Intell Res. 2016;57:345–420.

	15.	 Barret Z, Vijay V, Jonathon S, Quoc VL. Learning transferable 
architectures for scalable image recognition. In: Proceedings of 
the IEEE conference on Computer Vision and Pattern Recogni-
tion, 2018;8697–8710.

	16.	 Hector M, Aaron K, Matthias F, Jost Tobias S, Matthias U, 
Michael B, Maximilian D, Marius L, Frank H. Towards auto-
matically-tuned deep neural networks. In: Automated Machine 
Learning. Springer, 2019;135–149.

	17.	 Ariyo AA, Adewumi AO, Ayo CK. Stock price prediction using 
the arima model. In: 2014 UKSim-AMSS 16th International 
Conference on Computer Modelling and Simulation. IEEE, 
2014;106–112.

	18.	 Barron AR. Universal approximation bounds for super-
positions of a sigmoidal function. IEEE Trans Inf Theory. 
1993;39(3):930–45.

	19.	 Weng B, Ahmed MA, Megahed FM. Stock market one-day ahead 
movement prediction using disparate data sources. Expert Syst 
Appl. 2017;79:153–63.

Table 8   Results of ablation 
study on S&P500

Method NDEI Remarks

1. ANN 2 layers with 10 nodes 0.1231 ANN with smaller width and depth
2. ANN 6 layers with 255 nodes 0.2102 ANN with maximum width and depth
3. seMLP {41, 34} (optimized) 0.0168 Optimized layers and nodes
4. seMLP {41, 34} + Link pruning 0.0168 Contains ∼ 70% less link than 3

http://creativecommons.org/licenses/by/4.0/


SN Computer Science (2021) 2:111	 Page 11 of 11  111

SN Computer Science

	20.	 Dash R, Kishore Dash P. A hybrid stock trading framework inte-
grating technical analysis with machine learning techniques. J 
Finance Data Sci. 2016;2(1):42–57.

	21.	 Han S, Pool J, Tran J, Dally W. Learning both weights and connec-
tions for efficient neural network. In: Advances in neural informa-
tion processing systems, 2015;1135–1143.

	22.	 Louizos C, Ullrich K, Welling M. Bayesian compression for deep 
learning. In Advances in neural information processing systems, 
2017;3288–3298.

	23.	 Yu R, Li A, Chen C-F, Lai J-H, Morariu VI, Han X, Gao M, Lin, 
C-Y, Davis LS. Nisp: Pruning networks using neuron importance 
score propagation. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2018;9194–9203.

	24.	 Ma X, Triki AR, Berman M, Sagonas C, Cali J, Blaschko MB. 
A bayesian optimization framework for neural network compres-
sion. In: Proceedings of the IEEE International Conference on 
Computer Vision, 2019;10274–10283.

	25.	 Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional 
neural networks with low rank expansions. In: Proceedings of the 
British Machine Vision Conference. BMVA Press, 2014.

	26.	 Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R. Exploiting 
linear structure within convolutional networks for efficient evalu-
ation. In: Advances in neural information processing systems, 
2014;1269–1277.

	27.	 Tai C, Xiao T, Zhang Y, Wang X, Weinan E. Convolutional neural 
networks with low-rank regularization. In: 4th International Con-
ference on Learning Representations, ICLR 2016, 2016.

	28.	 Cheong F, Lai R. Constraining the optimization of a fuzzy logic 
controller using an enhanced genetic algorithm. IEEE Trans Syst 
Man Cybernet Part B (Cybernetics). 2000;30:31–46.

	29.	 Wickham H, Stryjewski L. 40 years of boxplots. Am Statistician. 
2011.

	30.	 Friedman JH, Tukey JW. A projection pursuit algorithm for explor-
atory data analysis. IEEE Trans Comput. 1974;100(9):881–90.

	31.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification 
with deep convolutional neural networks. In: Advances in neural 
information processing systems, 2012;1097–1105.

	32.	 Chai Y, Jia L, Zhang Z. Mamdani model based adaptive neural 
fuzzy inference system and its application. Int J Comput Intell. 
2009;5(1):22–9.

	33.	 Tan J, Zhou WJ, Quek C. Trading model: self reorganizing 
fuzzy associative machine-forecasted macd-histogram (serofam-
fmacdh). In: 2015 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 2015;1–8.

	34.	 Rezaei-Ravari M, Sattari-Naeini V. Reliable congestion-aware 
path prediction mechanism in 2d nocs based on efunn. J Super-
comput. 2018;74(11):6102–25.

	35.	 Jacob BJ, Cheu EY, Tan J, Quek C. Self-reorganizing tsk fuzzy 
inference system with bcm theory of meta-plasticity. In: The 2012 
International Joint Conference on Neural Networks (IJCNN). 
IEEE, 2012;1–8.

	36.	 Jiang H, Kwong CK, Okudan Kremer GE, Park W-Y. Dynamic 
modelling of customer preferences for product design using denfis 
and opinion mining. Adv Eng Inform. 2019;42:100969.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	seMLP: Self-evolving Multi-layer Perceptron in Stock Trading Decision Making
	Abstract
	Introduction
	Proposed seMLP
	GA-based Network Evaluation
	Link Pruning

	Results and Discussion
	Experimental Set-up and Hyperparameter
	Results and Analysis of GA-Based Evolving
	Pruning of Links
	Benchmark Experiment
	Adaptability of seMLP
	Ablation study

	Conclusion
	References




