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Abstract
We perform a comprehensive numerical study of the effect of approximation-theoretical
results for neural networks on practical learning problems in the context of numerical anal-
ysis. As the underlying model, we study the machine-learning-based solution of parametric
partial differential equations.Here, approximation theory for fully-connected neural networks
predicts that the performance of the model should depend only very mildly on the dimen-
sion of the parameter space and is determined by the intrinsic dimension of the solution
manifold of the parametric partial differential equation. We use various methods to establish
comparability between test-cases by minimizing the effect of the choice of test-cases on the
optimization and sampling aspects of the learning problem. We find strong support for the
hypothesis that approximation-theoretical effects heavily influence the practical behavior of
learning problems in numerical analysis. Turning to practically more successful and mod-
ern architectures, at the end of this study we derive improved error bounds by focusing on
convolutional neural networks.

Keywords Neural networks · Parametric diffusion equation · Numerical approximation ·
Neural network capacity

Mathematics Subject Classification 35J99 · 41A25 · 41A30 · 68T05 · 65N30

1 Introduction

This work studies the problem of numerically solving a specific parametric partial differential
equation (PPDE) by training and applying neural networks (NNs). The central goal of the
following exposition is to identify those key aspects of a parametric problem that render the
problem harder or simpler to solve for methods based on NNs.

The underlying mathematical problem, the solution of PPDEs, is a standard problem in
applied sciences and engineering. In this model, certain parts of a PDE such as the boundary
conditions, the source terms, or the shape of the domain are controlled through a set of
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parameters, e.g., [30,56]. In some applications where PDEs need to be evaluated very often or
in real-time, individually solving the underlying PDEs for each choice of parameters becomes
computationally infeasible. In this case, it is advisable to invoke methods that leverage on
the joint structure of all the individual problems. A typical approach is that of constructing
a reduced basis associated with the problem. With respect to this basis, the computational
complexity of solving the PPDE is then significantly reduced, e.g., [30,49,56,62].

Recently, as an alternative or to augment the reduced basis method, approaches were
introduced that attempt to learn the parameter-to-solution map through methods of machine
learning. We will provide a comprehensive overview of related approaches in Sect. 1.5.
One approach is to train a NN to fit the discretized parameter-to-solution map, i.e., a map
taking a parameter to a finite-element discretization of the solution of the associated PDEs.
This approach has already been analyzed theoretically in [37] where it was shown from an
approximation-theoretical point of view that the hardness of representing the parameter-to-
solution map by NNs is determined by a highly problem-specific notion of complexity that
depends (in some cases) only very mildly on the dimension of the parameter space.

In thiswork,we study the problemof learning the discretized parameter-to-solutionmap in
practice. We hypothesize that the approximation-theoretical capacity of a NN architecture is
one of the central factors in determining the practical difficulty level of the learning problem.

The motivation for this analysis is twofold: first, we regard this as a general analysis of
the feasibility of approximation-theoretical arguments in the study of deep learning. Second,
specifically for the problem of numerical solution of PPDEs, we consider it important to
identify which characteristics of a parametric problem determine its practical hardness. This
is especially relevant to identify inwhich areas the application of thismodel is appropriate.We
outline these two points of motivation in Sect. 1.1. The design of the numerical experiment
based on fully-connected neural networks is presented in Sect. 1.2, whereas we focus on
convolutional neural networks in Sect. 1.3. Afterwards, we give a high-level report of our
findings in Sect. 1.4.

1.1 Motivation

Below, we describe the two main reasons that motivate this numerical study.

1.1.1 Understanding of Deep Learning in General

A typical learning problem consists of an unknown data model, a hypothesis class, and an
optimization procedure to identify the best fit in the hypothesis class to the observed (sampled)
data, e.g., [17,18]. In a deep learning problem, the hypothesis class is the set of NNs with a
specific architecture.

The approximation-theoretical point of view analyzes the trade-off between the capacity
of the hypothesis class and the complexity of the data model. In this sense, this point of view
describes only one aspect of the learning problem.

In the framework of approximation theory, there are precise ways to assess the hardness
of an underlying problem. Concretely, this is done by identifying the rate by which the
misfit between the hypothesis class and the data model decreases for sequences of growing
hypothesis classes. For example, one common theme in the literature is the observation that
for certain function classes NNs do not admit a curse of dimension, i.e., their approximation
rates do not deteriorate exponentially fast with increasing input dimension, e.g., [7,54,67].
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Another theme is that classes of smooth functions can be approximated more efficiently than
classes of rougher functions, e.g., [45,46,50,52,75].

While these results offer some interpretation of why a certain problem should be harder or
simpler, it is not clear how relevant these results are in practice. Indeed, there are at least three
issues that call the approximation-theoretical explanation for a practical learning problem
into question:

• Tightness of the upper boundsApproximation-theoretical bounds usually describe worst-
case error estimates for whole classes of functions. For individual functions or subsets
of these function classes, there is no guarantee that one could not achieve a significantly
better approximation rate.

• Optimization and sampling prevent approximation theoretical effect from materializing
As explained at the beginning of this section, the learning problem consists of multiple
aspects, one of which is the ability of the hypothesis class to describe the data. Two
further aspects are how well the sampling of the data model describes the true model
and how well the optimization procedure performs in finding the best fit to the sampled
data. Since the underlying optimization problem of deep learning is in general non-
convex, it is conceivable that, while there theoretically exists a very good approximation
of a function by a NN, finding it in practice is highly unlikely. Moreover, it is certainly
possible that the sampling process does not contain sufficient information to guarantee
that the optimization routine will identify the theoretically best approximation.

• Asymptotic estimates All approximation-theoretical results mentioned until here and
almost all in the literature describe the capacity of NNs to represent functions approxi-
mately with accuracy ε for sufficiently large architectures only in a regime where ε tends
to zero and the size of the architecture grows accordingly. The associated approximation
rates may contain arbitrarily large implicit constants, and therefore it is entirely unclear
if changes to the trade-off between the complexity of the data model and the size of
the architecture have the theoretically predicted impact for moderately-sized practical
learning problems.

We believe that, to understand the effect of approximation-theoretical capacities of NNs in
practical learning scenarios, the learning problem associated with the parameter-to-solution
map in a PPDE occupies a special role: It is in essence, a high-dimensional approximation
problem of a function that has a very strong low-dimensional, but highly non-trivial structure.
What is more is that one can, to a certain extent, control the complexity of the problem, as
we have seen in [37]. In this context, we can ask ourselves the following questions: Do we
observe a curse of dimensionality in the practical solution of the problem? If not, how does
the difficulty in practice scale with the parameter dimension? On which characteristics of the
problem does the hardness of the practical solution thereof depend?

If we study these questions numerically, then the answers can be compared with the
predictions from approximation-theoretical considerations. If the predictions coincide with
the observed behavior and other causes, such as artefacts from the optimization and sampling
procedure, can be ruled out, then we can view these experiments as a strong support for the
practical relevance of approximation-theoretical arguments.

Because of this, we study the aforementioned questions in an extensive numerical exper-
iment that will be described in Sect. 1.2 below.
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1.1.2 Feasibility of the Machine-Learning-Based Solution of Parametric PDEs

The method (as described in [37]) of learning the parameter-to-solution map has at least
two major advantages over classical approaches to solve PPDEs: First of all, the setup is
completely independent of the underlying PPDE. This versatility of NNs could be quite
desirable in an environment where many substantially different PPDEs are treated. Second,
because this approach is fully data-driven, we do not require any knowledge of the underlying
PDE. Indeed, as long as sufficiently many data points are supplied, for example, from a
physical experiment, the approach could be feasible under high uncertainty of the model.

The main drawback of the method is the lack of theoretical understanding thereof. More-
over, for the theoretical results that do exist, we lack any evaluation of how pertinent the
theoretical observations are for practical behavior. Most importantly, we do not have an a
priori assessment for the practical feasibility of certain problems.

In [37], we observed that the complexity of the solution manifold, i.e., the set of all
solutions of the PDE, is a central quantity involved in upper bounding the hardness of approx-
imating the parameter-to-solution map with a NN. In practice, it is unclear to what extent
this notion is appropriate and if the complexity of the solution manifold influences the per-
formance of the method at all.

In the numerical experiment described in the next section, we explore the performance of
the learning approach for various test-cases with different intrinsic complexities and observe
the sensitivity of the method to the different setups.

1.2 The Experiment

To analyze the approximation-theoretical effect of the architecture on the overall performance
of the learning problem in practice, we train a fully connected NN as considered in [37] on
a variety of datasets stemming from different parameter choices of the parametric diffusion
equation. The design of the data sets is such that we vary the relationship between the
capacity of the architecture and the complexity of the data and report the effect on the overall
performance.

In designing such an experiment, we face three fundamental challenges hindering the
comparability between test-cases:

• Effect of the optimization procedure Since the algorithms used to train neural networks
are not guaranteed to converge to the optimal solution, there may be a significant effect
of the chosen optimization procedure on the performance of the model. The success of
the optimization routine may depend on the complexity of the data model this interplay
may be a much stronger factor in the performance of the method than the capacity of the
architecture to fit the data model. In addition, the optimization routine may be affected
by random aspects of the set-up, such as the initialisation, which may obfuscate the effect
of the complexity of the solution manifold.

• Effect of the sampling procedureWe train our network based on a finite number of samples
of the true solution. The number and choice of samples could have a non-negligible effect
on the overall performance and potentially affect some test-cases more than others.

• Quantification of the intrinsic complexityWhile we have theoretically established that the
complexity of the solution manifold is the main factor in upper-bounding the hardness of
the problem in the approximation-theoretical framework, we cannot, in practice, quantify
this complexity.

123



Journal of Scientific Computing (2021) 88 :22 Page 5 of 37 22

In view of the aforementioned obstacles, the design of a meaningful experiment is a
significant challenge. To overcome the issues described above, we introduce the following
measures:

• Keeping the architecture fixed An approximation-theoretical result on NNs is based on
three ingredients. A function class C, a worst-case accuracy ε > 0, and the size of the
architecture.
Whenever one of these hyper-parameters—the function class, the accuracy, or the
architecture—is fixed, one can theoretically describe how changing a second parameter
influences the last one. For example, for fixed C, an approximation-theoretical statement
yields an estimate of the necessary size of the architecture to achieve an accuracy of ε.
Because of the potentially strong impact of the architecture on the optimization procedure,
we expect that the most sensible point of view to test numerically is that where the
architecture remains fixed while we vary the function class C and observe ε. This way,
we can guarantee that the influence of the architecture on the optimization procedure is
the same between test-cases.

• Averaging over test-cases We perform each experiment multiple times and compare the
results. This way, we can see how sensitive the experiment is to random initialization of
the model and if certain results are due to the optimization routine getting stuck in local
minima.

• Analyzing the convergence behavior a posteriori We are not aware of any method to
guarantee a priori that the choice of the data model would not influence the convergence
behavior. We do, however, analyze the convergence after the experiment to see if there
are fundamental differences between our test-cases. This analysis reveals no significant
differences between all the setups and therefore indicates that the effect of the data model
on the optimization procedure is very similar between test-cases.

• Establishing independence of sample generation We run the experiment multiple times
for various numbers of training samples N chosen in the same way—uniformly at
random—in every test-case. Between the choices of N , we observe a linear dependence
of the achieved accuracy on N . This indicates that the influence of the number of N on
the performance of the method is the same for all test-cases.

• Design of semi-ordered test-casesWhilewe are not able to assess the intrinsic complexity
exactly, it is straight-forward to construct series of test-cases with increasing complexity.
In this sense, we can introduce a semi-ordering of test-cases according to their complexity
and observe to what extent the performance of the method follows this ordering.
In addition, we can measure the intrinsic complexity of the parametric problem via a
heuristic. Here we quantify, via the singular value decomposition, how well a random
point cloud of solutions of the problem can be represented by a linear model.

We present the construction of the test-cases in Sect. 4 and discuss the measures taken
to remove effects caused by the optimization and sampling procedures in greater detail in
“Appendix A”. All of our test-cases consider the following parametric diffusion equation

−∇ · (ay(x) · ∇uy(x)) = f (x), on � = (0, 1)2, uy |∂� = 0,

where f ∈ L2(�) and ay ∈ L∞(�), is a diffusion coefficient depending on a parameter
y ∈ Y . In our test-cases below, we learn a discretization of the map R

p ⊃ Y � y �→ uy ,
where p ∈ N, for various choices of parametrizations

R
p ⊃ Y � y �→ ay . (1.1)

123



22 Page 6 of 37 Journal of Scientific Computing (2021) 88 :22

Concretely, we vary the following characteristics of the parametrizations and observe the
effect on the overall performance of the learning problem:

• Type of parametrizationWe choose test-cases which differ with respect to the following
characteristics: First, we study parametrizations (1.1) of various degrees of smoothness.
Second, we study test-cases where the parametrization (1.1) is affine-linear or non-linear.
Third, we consider cases, where ay = ∑p

i=1 ãyi for ãyi ∈ L∞(�) andwhere the supports
of (̃ayi )

p
i=1 overlap or have various degrees of separation.

• Dimension of parameter space The discretization of our solution space is done on the
maximal computationally feasible grid (with respect to our workstation).We have chosen
the dimensions p of the parameter spaces in such a way that the resolutions of the
parametrized solutions are still meaningful with respect to the underlying discretization.

• Complexity hyper-parameters To generate comparable test-cases with increasing com-
plexities, we include two types of hyper-parameters into the data-generation process.
One that directly influences the ellipticity of the problem and another that introduces a
weighting of the parameter values.

We expect that these tests yield answers to the following questions: How versatile is the
approach? Does it perform well only for special types of parametrizations or is it generally
applicable? Do we observe a curse of dimensionality and how much does the performance
of the learning method depend on the dimension of the parameter space? How strongly does
the performance of the learning method depend on the intrinsic complexity of the data?

1.3 Modern Architectures

The previously described experiment aims at understanding whether the theoretically pre-
dicted effect of Kutyniok et al. [37] persists in practice. In many practical applications, it
is, however, common to use much more refined architectures than the fully-connected archi-
tecture studied in [37]. To understand if and to what extent our findings also affect more
modern architectures, we perform a second set of experiments using deep convolutional
neural networks [39].

Convolutional neural networks are build by alternating convolutional blocks with pooling
blocks. A convolutional block can be interpreted as a regular fully-connected block, however,
with theweightmatrices required to be block-circularmatrices.A pooling block acts as a form
of subsampling. Depending on the pooling operation, we can consider convolutional neural
networks as special fully-connected neural networks [53,77]. The restriction is, however, so
strong that the estimates of Kutyniok et al. [37] do not extend to general convolutional neural
networks.

The impact of this second experiment is expected to be twofold: First, if the results mirror
the outcome of the first experiment, thenwe have grounds to believe that also the performance
of modern architectures solving parametric problems is critically determined by the intrinsic
dimension of the solution manifold. Second, if the effect of the intrinsic dimension is similar
to the first experiment, then we have observed the same effect over multiple modalities. This
serves as an additional validation that the effect observed is not based on the optimization
procedure since this should affect substantially different architectures very differently.
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1.4 Our Findings

In the numerical experiments, which we report in Sects. 4.3 and 5 and evaluate in Sects. 4.4
and 5.2, respectively, we find that the proposed method is very sensitive to the underly-
ing type of test-case. Indeed, we observe qualitatively different scaling behaviors of the
achieved error with the dimension p of the parameter space between different test-cases.
Concretely, we observe the following asymptotic behavior of the errors in different test-
cases: O(1),O(log(p)) and O(pk) for p → ∞ and k > 0, where k depends on one of the
complexity hyper-parameters. Notably, we do not observe a scaling according to the curse
of dimensionality, i.e., an error scaling exponentially with p, in any of the test-cases. We
also observe that the achieved errors obey the semi-ordering of complexities of the test-cases
and are compatible with a heuristic complexity measure. This shows that the method is very
versatile and can be applied for various settings. Moreover, the complexity of the solution
manifold appears to be a sensible predictor for the efficiency of the method.

In addition, we observe that the numerical results agree with the predictions that can
be made via approximation-theoretical considerations. Due to the careful design of this
experiment, we can exclude effects associated with the optimization and sampling pro-
cedures. In addition, we even observed the described effect in a very practical regime,
where the theoretical analysis is not yet available. This indicates the practical relevance of
approximation-theoretical results for this particular problem and for deep learning problems
in general.

1.5 RelatedWorks

Thepractical application ofNNs in the context of PDEsdates back to the 1990s [38].However,
in recent years the topic again gained traction in the scientific community driven by the ever-
increasing availability of computational power. Much of this research can be condensed
into three main directions: Learning the solution of a single PDE, system identification,
and goal-oriented approaches. The first of these directions uses NNs to directly model the
solution of a (in some cases user-specified) single PDE [42,58,63,73,74], an SDE [8,72], or
even the joint solution for multiple boundary conditions [68]. These methods mostly rely
on the differential operator of the PDE to evaluate the loss, but other approaches do exist
[27]. In system identification, one tries to discover an underlying physical law from data by
reverse-engineering the PDE. This can be done by attempting to uncover a hidden parameter
of a known equation [59], or modeling physical relations [11,57]. Conversely, goal-oriented
approaches, try to infer a quantity of interest stemming from the solution of an underlying
PDE. For example, NNs can be used as a surrogate model to directly learn the quantity
of interest and thereby circumvent the necessity of explicitly solving the equation [35]. A
practical example for this is given by the ground state energy of a molecule which is derived
from the solution of the electronic Schrödinger equation. This task has been efficiently solved
by graph NNs [22,43,66] or hybrid approaches [28]. Furthermore, building a surrogate model
can be especially useful in uncertainty quantification [69]. NNs can also aid classical methods
in solving goal-oriented tasks [15,44]. In addition to the aforementioned research directions,
further work has been done on fusing NNs with classical numerical methods to assist, for
example, in model-order reduction [40,61].

Our work focuses on PPDEs and more specifically we are interested in learning the
mapping from the parameter to the coefficients of the high-fidelity solution. Related but
different approaches were analyzed in [19,31,69], where the solution of the PPDE is learned
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in an already precomputed reduced basis or at point evaluations in fixed spatial coordinates.
The recent work [2] performs a comprehensive numerical study in the context of PPDEs that
sheds light on the influence of the size of the training set. The work [64] employs NNs for
model-order reduction in the context of transient flows.

On the theoretical side, the majority of works analyzing the power of NNs for the solution
of (parametric) PDEs is concerned with an approximation-theoretical approach. Notable
examples of such works include [8,9,12,21,24–26,33,34,72], in which it is shown that NNs
can overcome the curse of dimensionality in the approximative solution of some specific
single PDE. In the same framework, it was shown in [12] how estimates on the approximation
error imply bounds on the generalization error. Concerning the theoretical analysis of PPDEs,
we mention [13,29,37,47,51,65]. We will describe the results of the first two works in more
detail in Sect. 3.2. The work [29] is concerned with an efficient approximation of a map that
takes a noisy solution of a PDE as an input and returns a quantity of interest.

Additionally, wewish tomention that there exists amultitude of approaches (which are not
necessarily directly RBM-or NN-related) that study the approximation of the parameter-to-
solutionmap of PPDEs. These includemethods based on sparse polynomials (see for instance
[16,32] and the references therein), tensors (see for instance [6,20] and the references therein)
and compressed sensing (see for instance [60,71] and the references therein).

Parametric PDEs also appear in the context of stochastic PDEs or PDEs with random
coefficients (see for instance [55]) and have been theoretically examined under the perspective
of uncertainty quantification. For the sake of brevity, we onlymention [16] and the references
therein.

Finally, we mention that a comprehensive numerical study analyzing to what extent the
approximation theoretical findings ofNNs (not in the context of PPDEs) are visible in practice
has been carried out in [3]. Similarly, in [23], a numerical algorithm that reproduces certain
approximation-theoretically established exponential convergence rates of NNs was studied.
The approximation rates of [14] were also numerically reproduced in that paper.

1.6 Outline

We start by describing the parametric diffusion equation and how we discretize it in Sect. 2.
Then, we provide a formal introduction to NNs and a review of the approximation-theoretical
results ofNNs for parameter-to-solutionmaps in Sect. 3. In Sect. 4, we describe our numerical
experiment based on fully-connected NNs. We start by stating three hypotheses underlying
the examples in Sect. 4.1, before describing the set-up of our experiments in Sect. 4.2. After
that, we present the results of the experiments in Sect. 4.3 and evaluate the observations in
Sect. 4.4. Finally, in Sect. 5 we augment our results by repeating the experiments with a
more modern CNN architecture and compare its performance to the fully-connected NN in
Sect. 5.2. In “Appendix A”, we present additional measures taken to ensure comparability
between test-cases and to remove all artefacts stemming from the optimization procedure.

2 The Parametric Diffusion Equation

In this section, we will introduce the abstract setup and necessary notation that we will
consider throughout this paper. First of all, we will introduce the parameter-dependent dif-
fusion equation in Sect. 2.1. Afterwards, in Sect. 2.2, we recapitulate some basic facts about
high-fidelity discretizations and introduce the discretized parameter-to-solution map.
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2.1 The Parametric Diffusion Equation

Throughout this paper, we will consider the parameter-dependent diffusion equation with
homogeneous Dirichlet boundary conditions

−∇ · (a(x) · ∇ua(x)) = f (x), on � = (0, 1)2, u|∂� = 0, (2.1)

where f ∈ L2(�) is the parameter-independent right-hand side, a ∈ A ⊂ L∞(�), and
A constitutes some compact set of parametrized diffusion coefficients. In the following, we
will examine different varieties of parametrized diffusion coefficient sets A. Following [16]
(by restricting ourselves to the case of finite-dimensional parameter spaces), we will always
describe the elements of A by elements in R

p for some p ∈ N. To be more precise, we will
assume that

A = {
ay : y ∈ Y}

, (2.2)

where Y ⊂ R
p is the compact parameter space.

A common assumption on the setA, present in the first test-cases which we will describe
below and especially convenient for the theoretical analysis of the problem, is given by affine
parametrizations of the form

A =
{

ay = a0 +
p∑

i=1

yiai : y = (yi )
p
i=1 ∈ Y

}

, (2.3)

where the functions (ai )
p
i=0 ⊂ L∞(�) are fixed.

After reparametrization, we consider the following problem, given in its variational for-
mulation:

by
(
uy, v

) =
∫

�

f (x)v(x) dx, for all y ∈ Y, v ∈ H, (2.4)

where

by :H × H → R, (u, v) �→
∫

�

ay(x)∇u(x)∇v(x) dx,

and uy ∈ H:=H1
0 (�) is the solution.1

We will consider experiments in which the involved bilinear forms are uniformly contin-
uous and uniformly coercive in the sense that there exist Ccont,Ccoer > 0 with

∣
∣by(u, v)

∣
∣ ≤ Ccont‖u‖H‖v‖H, inf

u∈H\{0}
by(u, u)

‖u‖2H
≥ Ccoer, for all u, v ∈ H, y ∈ Y.

By the Lax–Milgram lemma (see [56, Lemma 2.1]), the problem of (2.4) is well-posed, i.e.,
for every y ∈ Y there exists exactly one uy ∈ H such that (2.4) is satisfied and uy depends
continuously on f .

1 Throughout this paper, we denote by H the space H1
0 (�):={u ∈ H1(�): u|∂� = 0}, where

H1(�):=W 1,2(�) is the first-order Sobolev space and where ∂� denotes the boundary of �. On this

space, we consider the norm ‖u‖H = ‖u‖H1
0 (�)

:=‖u‖H1(�) =
(∑

|a|≤1 ‖Dau‖2
L2(�)

)1/2
.
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2.2 High-Fidelity Discretizations

In practice, one cannot hope to solve (2.4) exactly for every y ∈ Y . Instead, if we assume for
the moment that y is fixed, a common approach towards the calculation of an approximate
solution of (2.4) is given by the Galerkin method, which we will describe briefly below
following [30, Appendix A] and [56, Chapter 2.4]. In this framework, instead of solving
(2.4), one solves a discrete scheme of the form

by
(
uhy, v

)
=

∫

�

f (x)v(x) dx for all v ∈ U h, (2.5)

where U h ⊂ H is a subspace of H with dim
(
U h

)
< ∞ and uhy ∈ U h is the solution of

(2.5). Let us now assume that U h is given. Moreover, let D:=dim
(
U h

)
, and let (ϕi )

D
i=1 be

a basis for U h. Then the stiffness matrix Bh
y :=(by(ϕ j , ϕi ))

D
i, j=1 is non-singular and positive

definite. The solution uhy of (2.5) satisfies

uhy =
D∑

i=1

(uhy)iϕi ,

where uhy :=(Bh
y)

−1fhy ∈ R
D and fhy :=

(∫
�

f (x)ϕi (x) dx
)D
i=1 ∈ R

D . By Cea’s Lemma (see
[56, Lemma 2.2.]), uhy is, up to a universal constant, a best approximation of uy in U h.

In this framework, we can now define the central object of interest which is the map taking
an element from the parameter space Y to the discretized solution uhy .

Definition 2.1 Let � = (0, 1)2, U h ⊂ H be a finite dimensional space, A ⊂ L∞(�) with
Y ⊂ R

p for p ∈ N be as in (2.2). Then we define the discretized parameter-to-solution map
(DPtSM) by

P : Y → R
D, y �→ P(y):=uhy .

Remark 2.2 The DPtSM P is a potentially nonlinear map from a p-dimensional set to a
D-dimensional space. Therefore, without using the information that P has a very specific
structure described through A and the PDE (2.1), a direct approximation of P as a high-
dimensional smooth function will suffer from the curse of dimensionality [10,48].

Before we continue, let us introduce some crucial notation. Later, we need to compute
the Sobolev norms of functions v ∈ H. This will be done via a vector representation v of v

with respect to the high-fidelity basis (ϕi )
D
i=1. We denote byG:= (〈ϕi , ϕ j 〉H

)D
i, j=1 ∈ R

D×D

the symmetric, positive definite Gram matrix of the basis functions (ϕi )
D
i=1. Then, for any

v ∈ U h with coefficient vector vwith respect to the basis (ϕi )
D
i=1 we have

2 (see [56, Equation

2.41]) |v|G := ∣
∣G1/2v

∣
∣ = ‖v‖H . In particular,

∥
∥
∥uhy

∥
∥
∥H

= |uhy |G, for all y ∈ Y .

3 Approximation of the Discretized Parameter-to-SolutionMap by
Realizations of Neural Networks

In this section, we describe the approximation-theoretical motivation for the numerical study
performed in this paper. We present a formal definition of NNs below. In Question 3.5,

2 In this paper, |x| denotes the Euclidean norm of x ∈ R
n .
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we present the underlying approximation-theoretical question of the considered learning
problem. Thereafter, we recall the results of Kutyniok et al. [37] showing that one can upper
bound the approximation rates that NNs obtain when approximating the DPtSM through an
implicit notion of complexity of the DPtSM.

3.1 Neural Networks

NNs describe functions of compositional form that result from repeatedly applying affine
linear maps and a so-called activation function. From an approximation-theoretical point of
view, it is sensible to count the number of active parameters of aNN.To associate ameaningful
andmathematically precise notion of the number of parameters to a NN, we differentiate here
between neural networks which are sets of matrices and vectors, essentially describing the
parameters of the NN, and realizations of neural networkswhich are the associated functions.
Concretely, we make the following definition:

Definition 3.1 Let n, L ∈ N. A neural network � with input dimension n and L layers is a
sequence of matrix-vector tuples

� = (
(A1,b1), (A2,b2), . . . , (AL ,bL)

)
,

where N0 = n and N1, . . . , NL ∈ N, and where each A� is an N� × N�−1 matrix, and
b� ∈ R

N� .
If � is a NN as above, K ⊂ R

n , and if � : R → R is arbitrary, then we define the
associated realization of � with activation function � over K (in short, the �-realization of
� over K ) as the map RK

� (�) : K → R
NL such that RK

� (�)(x) = xL , where xL results
from the following scheme:

x0:=x,

x�:=�(A� x�−1 + b�), for � = 1, . . . , L − 1,

xL :=AL xL−1 + bL ,

andwhere� acts componentwise, that is,�(v):=(�(v1), . . . , �(vm)) for allv = (v1, . . . , vs) ∈
R
s .
We call N (�):=n + ∑L

j=1 N j the number of neurons of the NN � and L the number

of layers. We call M(�):=∑L
�=1 ‖A�‖0 + ‖b�‖0 the number of non-zero weights of �.

Moreover, we refer to NL as the output dimension of �. Finally, we refer to (N0, . . . , NL)

as the architecture of �.

We consider the following family of activation functions:

Definition 3.2 For α ∈ [0, 1), we define by �α(x):=max{x, αx} the α-leaky rectified linear
unit (α-LReLU). The activation function �0 = max{x, 0} is called the rectified linear unit
(ReLU).

Remark 3.3 For every α ∈ (0, 1) it holds that for all x ∈ R

�0(x) = 1

1 − α2 (�α(x) + α�α(−x)) and �α(x) = �0(x) − α�0(−x).

Hence, for everyα ∈ (0, 1), we can represent the ReLU as the sumof two rescaledα-LReLUs
and vice versa. If we define for n ∈ N

Pn(x):=(x1,−x1, x2,−x2, . . . , xn,−xn), for x = (x1, . . . , xn) ∈ R
n,
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Qn,α(x):=(x1 − αx2, x3 − αx4, . . . , x2n−1 − αx2n), for x = (x1, . . . , x2n) ∈ R
2n,

Tn,α(x):= 1

1 − α2 (x1 + αx2, x3 + αx4, . . . , x2n−1 + αx2n), for x = (x1, . . . , x2n) ∈ R
2n,

then, for NNs

�1=(
(A1,b1), (A2,b2), . . . , (AL ,bL)

)
,

�2=(
(PN1A1,PN1b1), (PN2A2QN1,α,PN2b2), . . . ,

(PNL−1AL−1QNL−2,α,PNL−1bL−1), (ALQNL−1,α,bL)
)
,

�3=(
(PN1A1,PN1b1), (PN2A2TN1,α,PN2b2), . . . ,

(PNL−1AL−1TNL−2,α,PNL−1bL−1), (ALTNL−1,α,bL)
)
,

we have that for K ⊂ R
n it holds that RK

�0
(�1) = RK

�α
(�3) and RK

�α
(�1) = RK

�0
(�2). More-

over, it is not hard to see that M(�1) ≤ M(�2), M(�3) and M(�2), M(�3) ≤ 4M(�1).
Therefore, we have that for every α1, α2 ∈ [0, 1) and every function f : Rn → R

NL of a
function space X such that

∥
∥
∥ f − RK

�α1
(�)

∥
∥
∥
X

≤ ε

for aNN� implies that there exists another NN �̃with L(�̃) = L(�) andM(�̃) ≤ 16M(�)

such that
∥
∥
∥ f − RK

�α2
(�)

∥
∥
∥
X

≤ ε.

In other words, up to a multiplicative constant the parameter α of the α-LReLU does not
influence the approximation properties of realizations of NNs.

Remark 3.4 While Remark 3.3 shows that all α-LReLUs yield, in principle, the same approx-
imation behavior, these activation functions still display quite different behavior during the
training phase of NNs, where a non-vanishing parameter α can help avoid the occurrence of
dead neurons.

3.2 Approximation of the Discretized Parameter-to-Solution Map by Realizations of
Neural Networks

We can quantify the capability of NNs to represent the DPtSM by answering the following
question:

Question 3.5 Let p, D ∈ N, α ∈ [0, 1), � = (0, 1)2, U h ⊂ H be a D-dimensional space,
A = {ay : y ∈ Y} ⊂ L∞(�) be compact with Y ⊂ R

p as in (2.2). We consider the following
equivalent questions:

• For ε > 0, how large do Mε, Lε ∈ N need to be to guarantee, that there exists a NN �

that satisfies

(1) supy∈Y |P(y) − RY
�α

(�)(y)|G ≤ ε,

(2) M(�), N (�) ≤ Mε and L(�) ≤ Lε?

• For M, L ∈ N, how small can εL,M > 0 be chosen so that there exists a NN � that
satisfies

(1) supy∈Y |P(y) − RY
�α

(�)(y)|G ≤ εL,M ,
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(2) M(�), N (�) ≤ M and L(�) ≤ L?

Remark 3.6 (i) Conditions (1) in both instances of Question 3.5 are trivially equivalent to

sup
y∈Y

∥
∥
∥
∥
∥

D∑

i=1

(P(y)) j · ϕ j −
(
RY

�α
(�)(y)

)

j
· ϕ j

∥
∥
∥
∥
∥
H

≤ ε or εL,M .

(ii) The results to follow measure the necessary sizes of the NNs in terms of the numbers of
non-zero weights M(�). However, from a practical point of view, we are also interested
in the number of necessary neurons N (�). Invoking a variation of [52, Lemma G.1.]
shows that similar rates to the ones below are valid for the number of neurons N (�).

If the regularity of P is known, then a straight-forward bound on Mε and Lε can be found
in [75]. Indeed, if P ∈ Cs(Y;RD) with ‖P‖Cs ≤ 1, then one can choose

Mε ∈ O(Dε−p/s) and Lε ∈ O(log2(1/ε)), for ε → 0. (3.1)

In other situations, e.g., if Lε is permitted to grow faster than log2(1/ε), one can even replace
s by 2s in (3.1), see [41,76].

This rate of (3.1) uses the smoothness of P only and does not take into account the
underlying structure stemming from the PDE (2.1) and the choice of A. As a result, we find
this rate to be significantly suboptimal.

In [37], it was showed that P can be approximated in the sense of Question 3.5 with

Mε ∈ O (
d(ε)D + (

d(ε)3 log2(d(ε)) + pd(ε)2
)
polylog2(1/ε)

)

Lε ∈ O (
polylog2(1/ε)

)
, for ε → 0, (3.2)

where d(ε) is a certain intrinsic dimension3 of the problem, essentially reflecting the size of
a reduced basis required to sufficiently approximate S(Y). In many cases, especially those
discussed in this manuscript, one can theoretically establish the scaling behavior of d(ε) for
ε → 0. For instance, if A is as in (2.3), then (see [5, Equation (3.17)])

d(ε) ∈ O(log2(1/ε)
p), for ε → 0.

Applied to (3.2) this yields that

Mε ∈ O (
D log2(1/ε)

p + p · log2(1/ε)cp
)
, for ε → 0,

for some c ≥ 1. We also mention a similar approximation result, not of the discretized
parametric map P but of the parametrized solution (y, x) �→ uay (x), where uay is as in (2.1)
for a = ay . In this situation, and for specific parametrizations ofA, [65, Theorem 4.8] shows
that this map can be approximated by the realization of a NN using the ReLU activation
function up to an error of ε with a number of weights that essentially scales like ε−r where
r depends on the summability of the (in this case potentially infinite) sequence (ai )∞i=1 such
that ay = a0 + ∑∞

i=1 yi ai for a coefficient vector y = (yi )∞i=1. Here r can be very small if
‖ai‖L∞(�) decays quickly for i → ∞. This leads to very efficient approximations.

While the aforementioned results all examine the approximation-theoretical properties of
realizations of NNs with respect to the uniform approximation error, they trivially imply the
same rates if we examine the average errors

(∫

Y

∣
∣
∣P(y) − RY

�α
(�ε)(y)

∣
∣
∣
p

G
dμ(y)

)1/p

,

3 derived from bounds on the Kolmogorov N -width of S(Y)
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which are often used in practice. Here, 1 ≤ p < ∞ andμ is an arbitrary probability measure
on Y. In this paper, we examine the discrete counterpart of the mean relative error

∫

Y

∣
∣
∣P(y) − RY

�α
(�ε)(y)

∣
∣
∣
G

|P(y)|G dμ(y),

where μ denotes the uniform probability measure on Y .
In view of the aforementioned theoretical results, it is clear that a parameter that is not the

dimension of the parameter space Y but a problem-specific notion of complexity determines
the hardness of the approximation problem of Question 3.5. To what extent this theoretical
observation influences the hardness of the practical learning problem will be analyzed in the
numerical experiment presented in the next section.

4 Numerical Survey of Approximability of Discretized
Parameter-to-SolutionMaps

As outlined in Sect. 3, the theoretical hardness of the approximation problem of Question
3.5 is determined by an intrinsic notion of complexity that potentially differs substantially
from the dimension of the parameter space.

To test how this intrinsic complexity affects the practical machine-learning based solution
of (2.1), we perform a comprehensive studywherewe trainNNs to approximate theDPtSMP
for various choices ofA. Here, we are especially interested in the performance of the learned
approximation of P for varying complexities of A. In this context, we test the hypotheses
listed in the following Sect. 4.1. The remainder of this section is structured as follows: in
Sect. 4.2, we introduce the concrete setup of parametrized diffusion coefficient sets, NN
architecture, and optimization procedure and explain how the choice of test-cases are related
to our hypotheses.Afterwards, in Sect. 4.3,we report the results of our numerical experiments.
Section 4.4 is devoted to an evaluation and interpretation of these results in view of the
hypotheses of Sect. 4.1.

4.1 Hypotheses

[H1] The performance of learning the DPtSM does not suffer from the curse of dimension-
ality
The theoretical results of Kutyniok et al. [37] show that the dimension of the param-
eter space p is not the main factor in determining the hardness of the underlying
approximation-theoretical problem. As already outlined in the introduction, it is by
no means clear that this effect is visible in a practical learning problem.
We expect that after accounting for effects stemming from optimization and sampling
to promote comparability between test-cases in a way described in “Appendix A”,
the performance of the learning method will scale only mildly with the dimension of
the parameter space.

[H2] The performance of learning the DPtSM is very sensitive to parametrization
We expect that, within the framework of Question 3.5, there are still extreme dif-
ferences of intrinsic complexities for different choices of parametrizations for the
diffusion coefficient sets A ⊂ L∞(�) as defined in (2.2). However, it is not clear to
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what extent NNs are capable of resolving the low-dimensional sub-structures gener-
ated by various choices of A ⊂ L∞(�).
Since realizations of NNs are a very versatile function class, we expect the degree
to which the performance of a trained NN depends on the number of parameters to
vary strongly over the choice of (ai )

p
i=1.

[H3] Learning the DPtSM is efficient also for non-affinely parametrized problems
The analysis of PPDEs often relies on affine parametrizations as in (2.3) or smooth
variations thereof.
We expect the overall theme that NNs perform according to an intrinsic complexity
of the problem depending only weakly on the parameter dimension to hold in more
general cases.

4.2 Setup of Experiments

To test the hypotheses [H1], [H2], and [H3] of Sect. 4.1, we consider the following setup.

4.2.1 Parameterized Diffusion Coefficient Sets

Weperform training of NNs for different instances of the approximation problem of Question
3.5. Here, we always assume the right-hand side to be fixed as f (x) = 20+ 10x1 − 5x2, for
x = (x1, x2) ∈ �, and we vary the parametrized diffusion coefficient set A.

We consider four different parametrized diffusion coefficient sets as described in the test-
cases [T1]–[T4] (for a visualization of [T3] and [T4] see Fig. 1). [T1], [T2] and [T3-F] are
affinely parametrized whereas the remaining parametrizations are non-affine.

[T1] Trigonometric Polynomials In this case, the set A consists of trigonometric poly-
nomials that are weighted according to a scaling coefficient σ . To be more precise, we
consider

Atp(p, σ ):=
{

μ +
p∑

i=1

yi · iσ · (1 + ai ): y ∈ Y = [0, 1]p
}

,

for some fixed shift μ > 0 and a scaling coefficient σ ∈ R. Here ai (x) =
sin

(⌊ i+2
2

⌋
πx1

)
sin

(⌈ i+2
2

⌉
πx2

)
, for i = 1, . . . , p.

We analyze the cases p = 2, 5, 10, 15, 20 and, for each p, the scaling coefficients
σ = −1, 0, 1. As a shift we always choose μ = 1.
[T2] Chessboard Partition Here, we assume that p = s2 for some s ∈ N and we
consider4

Acb(p, μ):=
{

μ +
p∑

i=1

yiX�i : y ∈ Y = [0, 1]p
}

,

where (�i )
p
i=1 forms a s × s chessboard partition of (0, 1)2 and μ > 0 is a fixed shift.

We examine this test-case for the shifts μ = 10−1, 10−2, 10−3, and, for each μ we
consider s = 2, 3, 4, 5 which yields p = 4, 9, 16, 25, respectively.
[T3] Cookies In this test-case we differentiate between two sub-cases:

4 XA denotes the indicator function of A.
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Fig. 1 Partition of � as in test-case [T2] (left) for p = 9, (the red and blue areas indicate the �i ), test-case
[T3-F] (middle) for p = 4 (the red areas indicate the �i ) and test-case [T3-V] (right) for p = 8 (the red areas
indicate the �i,yi+s2

) (Color figure online)

[T3-F] Cookies with Fixed Radii In this setting, we assume that p = s2 for some
s ∈ N and we consider

Acfr(p, μ):=
{

μ +
p∑

i=1

yiX�i : y ∈ Y = [0, 1]p
}

,

for some fixed shift μ > 0 where the �i are disks with centers ((2k+1)/(2s), (2�−
1)/(2s)), where i = ks + � for uniquely determined k ∈ {0, . . . s − 1} and � ∈
{1, . . . , s}. The radius is set to r/(2s) for some fixed r ∈ (0, 1].
We examine this test-case for fixed μ = 10−4, r = 0.8 and s = 2, 3, 4, 5, 6 which
yields parameter dimensions p = 4, 9, 16, 25, 36, respectively.
[T3-V] Cookies with Variable Radii Here, we additionally assume that the radii of
the involved disks are not fixed anymore. To be more precise, for s ∈ N and every
i = 1, . . . , s, we are given disks �i,yi+s2

with center as before and radius yi+s2/(2s)

for yi+s2 ∈ [0.5, 0.9], so that Y = [0, 1]s2 × [0.5, 0.9]s2 ⊂ R
p with p = 2s2. We

define

Acvr(p, μ):=
{

μ +
p∑

i=1

yiX�i,y
i+s2

: y ∈ Y = [0, 1]p × [0.5, 0.9]p
}

.

Note that, Acvr(p, μ) is not an affine parametrization.
We consider the shifts μ = 10−4 and μ = 10−1, and, for each μ, we consider
the cases s = 2, 3, 4, 5 which yields the parameter dimensions p = 8, 18, 32, 50,
respectively.

[T4] Clipped Polynomials Let

Acp(p, μ):=
{

max

{

μ,

p∑

i=1

yimi

}

: (yi )pi=1 ∈ Y = [−1, 1]p
}

,

where μ > 0 is the fixed clipping value and (mi )
p
i=1 is the monomial basis of the space

of all two-variate polynomials of degree ≤ k. Therefore p = (2+k
2

)
.

We examine this test-case for fixed shift μ = 10−1 and for k = 2, 3, 5, 8, 12 which
yields parameter dimensions p = 6, 10, 21, 45, 91, respectively.
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4.2.2 Complexities of the Test-Cases

To understand the different complexity levels of the test-cases and to compare them with
each other, we apply two methods:

• There is an intrinsic semi-ordering of complexities within the test-cases. In [T1]we have
thatAtp(p, σ ) ⊂ Atp(p, σ ′) if σ < σ ′ which shows that the problem gets more complex
with increasing σ . The influence of the shift μ is of a somewhat different type. Higher
values of μ make the underlying problem more elliptic. This can be seen in Fig. 3: For
a small value of μ, the impacts of the individual values on the chessboard-pieces on the
solution appear to be almost completely decoupled. On the other hand, in themore elliptic
case, the solution appears more smoothed out, and therefore each parameter value also
influences the solution more globally. This implies a stronger coupling of the parameters
and at least intuitively indicates a reduced intrinsic dimensionality for higher values of
μ. The effect of μ describes the ordering of complexities exists within [T2] and [T3].

• In addition to these non-quantitative comparisons of complexities, we offer the following
heuristic measure of complexity: We solve the diffusion equation for 5000 i.i.d samples
each on a 101×101gridwith thefinite elementmethod as described in detail in Sect. 4.2.3.
Afterwards, we compute the singular values of the set of these solutions with respect to
the H1

0 (�)-norm on the finite element space. The resulting decay plots, shown in Fig. 2,
serve as a heuristic to judge whether a problem can be efficiently solved by a linear
reduced-order model (see [56, Sec. 6.7]).
The different decay behavior between the test-cases suggests a significant variation in
complexity between the corresponding parameter-to-solution maps. We observe that,
independent of σ , [T1] exhibits the fastest decay among all cases, which indicates that
this might be the easiest scenario. Even more interestingly, [T2] strongly differs from
all other test-cases: First and foremost, the parameter dimension p has by far the largest
impact for [T2]. Secondly, contrary to [T3-V], the impact of the ellipticty μ varies
between different parameter dimensions. Lastly, we note that [T4] has the smoothest
decay among all test-cases and its decay rate appears to be independent of p.

4.2.3 Setup of Neural Networks and Training Procedure

Our experiments are implemented using Tensorflow [1] for the learning procedure and FEn-
iCS [4] as FEM solver. The code used for dataset generation of all considered test-cases is
made publicly available at www.github.com/MoGeist/diffusion_PPDE. To be able to com-
pare different test-cases and remove all effects stemming from the optimization procedure,
we train almost the same model for all parameter spaces. The only—to a certain extent
inevitable—change that we allow between test-cases is that the input dimension of the NN
changes to that of the parameter space. Concretely, we consider the following setup:

(1) The finite element space U h resulting from a triangulation of � = [0, 1]2 with 101 ×
101 = 10201 equidistant grid points and first-order Lagrange finite elements. This space
shall serve as a discretized version of the space H1(�). We denote by D = 10201 its
dimension and by (ϕi )

D
i=1 the corresponding finite element basis.

(2) The (fully-connected) neural network architecture S = (p, 300, . . . , 300, 10201) with
L = 11 layers, where p is test-case-dependent and the weights and biases are initialized
according to a normal distribution with mean 0 and standard deviation 0.1.

(3) The activation function is the 0.2-LReLU of Definition 3.2.

123

www.github.com/MoGeist/diffusion_PPDE


22 Page 18 of 37 Journal of Scientific Computing (2021) 88 :22

Fig. 2 Log-plot of the 200 largest normalized singular values for [T1] (top left), [T2] (top right), [T3]-V
(bottom left) and [T4] (bottom right)

(4) The loss function is the relative error on the finite-element discretization of H

L:RD × (RD \ {0}) → R, (x1, x2) �→ |x1 − x2|G
|x2|G

.

(5) The training set (yi,tr)Ntrain
i=1 ⊂ Y consists of Ntrain:=20000 i.i.d. parameter samples,

drawn with respect to the uniform probability measure on Y.

(6) The test set (yi,ts)Ntest
i=1 ⊂ Y consists of Ntest:=5000 i.i.d. parameter samples, drawn with

respect to the uniform probability measure on Y.

In our experiments, we aim at finding a NN � with architecture S such that the mean
relative training error

1

Ntrain

Ntrain∑

i=1

L
(
RY

� (�) (yi,tr),uhyi,tr
)

= 1

Ntrain

Ntrain∑

i=1

∥
∥
∥
∥
∑D

j=1

(
RY

� (�) (yi,tr)
)

j
· ϕ j − uh

yi,tr

∥
∥
∥
∥H∥

∥
∥uhyi,tr

∥
∥
∥H

is minimized. We then test the accuracy of our NN by computing themean relative test error

1

Ntest

Ntest∑

i=1

L
(
RY

� (�) (yi,ts),uhyi,ts
)

= 1

Ntest

Ntest∑

i=1

∥
∥
∥
∥
∑D

j=1

(
RY

� (�) (yi,ts)
)

j
· ϕ j − uh

yi,ts

∥
∥
∥
∥H∥

∥
∥uhyi,ts

∥
∥
∥H

.

Here, we use the mean relative error instead of the mean absolute error in order to establish
comparability of our results between different sets A, allowing us to put our results into
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context. In order to further limit the impact of the optimization procedure, each experiment is
performed three times with varying initializations and test-train splits. We report the average
error over these three runs. In “Impact of Initialization and Sample Selection” of appendix
we analyze the variance of the three training runs in more detail to ensure that they do not
influence our final results.

The optimization is done through batch gradient descent. To ensure further comparability
between the different setups, the hyper-parameters in the optimization procedure are kept
fixed: Training is conducted with batches of size 256 using the ADAM optimizer [36] with
hyper-parameters α = 2.0 × 10−4, β1 = 0.9, β2 = 0.999 and ε = 1.0 × 10−8 (with
the exception of the learning rate α these are the default of the ADAM implementation in
Tensorflow.). Training is stopped after reaching 40,000 epochs. Having trained the NN, for
some new input y ∈ Y, the computation of the approximate discretized solution RY

� (�)(y)
is done by a simple forward pass.

4.2.4 Relation to Hypotheses

The test-cases [T1]–[T4] are designed to test the hypotheses [H1]–[H3] in the following
way:

Enabling comparability between test-cases We implement three measures to produce a
uniform influence of the optimization and sampling procedure in all test-cases. These are
that we only change the architecture in the minimally required way between test-cases to
not alter the optimization behavior, we average our results over multiple initialisations,
we analyze a posteriori the optimization behavior to see if there are qualitative differences
between test-cases, and we choose the number of training samples in such a way that
neither moderate further increasing or decreasing of the number of training samples
affects the outcomeof the experiments.Wedescribe thesemeasures in detail in “Appendix
A”.
Relation to Hypothesis [H1] To test if the learning method suffers from the curse of
dimensionality or if the prediction ofKutyniok et al. [37] that its complexity is determined
only by some intrinsic complexity of the function class holds, we run all test-cases [T1]–
[T4] for various values of the dimension of the parameter space, and study the resulting
scaling behavior.
Relation to Hypothesis [H2] To understand the extent to which the NN model is suf-
ficiently versatile to adapt to various types of solution sets, we study four commonly
considered parametrized diffusion coefficient sets which also include multiple subprob-
lems described via the hyper-parameters σ and μ. The parametrized sets exhibit the
following different characteristics:

[T1] The parameter-dependence in this case is affine (i.e. the forward-map y �→
by(u, v) depends affinely on y for all u, v ∈ H) whereas the spatial regular-
ity of the functions (ai )

p
i=1 is analytic. To vary the difficulty of the problem at

hand, we consider different instances of the scaling coefficient σ which put dif-
ferent emphasis on the high-frequency components of the functions (ai )

p
i=1. In

particular, if σ > 0, a higher weight is put on the high-frequency components
than on the low-frequency ones whereas the opposite is true for σ < 0.

[T2] The parameter-dependence in this case is affine again, whereas the spatial regular-
ity of the (X�i )

p
i=1 is very low. To vary the difficulty of the problem, we consider

different instances of shiftsμ. The higher the shift is, themore elliptic the problem
becomes.
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[T3] [T3-F] again exhibits affine parameter-dependence and the same regularity prop-
erties as test-case [T2]. However, this problem is considered to be easier than
test-case [T2] since the �i do not intersect each other.
For test-case [T3-V], the geometric properties of the domain partition are addi-
tionally encoded via a parameter thereby rendering the problem to be non-affine.

[T4] In this case, the parameter-dependence is non-affine and has low regularity due
to the clipping procedure. Additionally, the spatial regularity of the functions ay
is comparatively low in general.

A visualization highlighting the versatility of our test-cases can be seen when comparing
the FE solutions in Fig. 3 (test-case [T2]) with the FE solutions in Fig. 4 (test-case [T4]).
Relation toHypothesis [H3]: The test-cases [T3-V] and [T4] are non-affinelyparametrized.

4.3 Numerical Results

In this subsection, we report the results of the test-cases announced in the previous subsection.

[T1] Trigonometric Polynomials

We observe the following mean relative test errors for the sets Atp(p, σ ).

[T2] Chessboard Partition

We observe the following mean relative test errors for the sets Acb(p, μ).
In Fig. 3, we show samples from the test set for different values of μ. Here we always

depict one average performing test-case and one with poor performance. These figures offer
a potential explanation of why the scaling with p is qualitatively different for different values
of μ. This seems to be because for lower μ the effect of the individual parameters on the
solution seems to be much more local than for higher μ. This appears to lead to a higher
intrinsic dimensionality of the problem.

[T3] Cookies with Fixed and Variable Radii

We start with one experiment where the radii of the cookies are fixed to 0.8/(2s).
Moreover, we find for the sets of cookies with variable radii Acvr(p, μ) the following

mean relative test errors.

[T4] Clipped Polynomials

For the set Acp(p, 10−1), we obtain the following mean relative test errors when varying p.

4.4 Evaluation and Interpretation of Experiments

We make the following observations about the numerical results of Sect. 4.3.

[O1] Our test-cases show that the error rate achieved by NN approximations for vary-
ing parameter sizes differs strongly and qualitatively between different test-cases. In
Figs. 5, 6, 7, and 8 we depict the different scaling behaviors of the test-cases [T1],
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Fig. 3 Comparison of the ground truth solution and the one predicted by the NN for an average (left) and
a poor performing (right) for p = 16 and μ = 10−1 (top) and μ = 10−3 (bottom) for test-case [T2]. The
percentage in brackets represents the relative test error for this particular sample

Fig. 4 Comparison of the ground truth solution and the one generated by the NN for an average (left) and a
poor performing case (right) for μ = 10−1 and p = 6 (top) and p = 91 (bottom) for test-case [T4]. The
percentage in brackets represents the relative test error for this particular sample
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Fig. 5 Plot of the mean relative test error for the sets of test-case [T1] for different values σ . The horizontal
axis follows the dimension of the parameter space p the mean relative test error is shown on the vertical axis.
Both axes use a logarithmic scale

Fig. 6 Plot of the mean relative test error for the sets of test-case [T2] for different values of μ with p on the
horizontal axis and the mean relative test error on the vertical axis. Both axes use a logarithmic scale

[T2], [T3], and [T4]. For [T1] and σ = −1, the error appears to be almost indepen-
dent from p for p → ∞. In contrast to that, we observe for σ = 1 a linear scaling in
the loglog plot implying a polynomial dependence of the error on p.
For test-case [T2], we observe that the error scales linearly in the loglog scale of
Fig. 6. We conclude that for Acb(p, μ), the error scales polynomially with p.
The errors of the test-cases associated with [T3] seem to scale linearly with p in the
loglog scale depicted in Fig. 7. This implies that for [T3] the error scales polynomially
in p with the same exponent.
The semilog plot of Fig. 8 shows that for test-case [T4] with the sets Acp(p, 10−4),

the growth of the error is logarithmic in p.
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Fig. 7 Plot of the mean relative test error for the sets of test-case [T3] with p on the horizontal axis and the
error on the vertical axis. Both axes use a logarithmic scale

Fig. 8 Plot of the mean relative test error for the sets of test-case [T4] with p on the horizontal axis and the
error on the vertical axis. Only the horizontal axis is scaled logarithmically

In total, we observed scaling behaviors ofO(1),O(log(p)) andO(pk) for k > 0 and
for p → ∞. Notably, none of the test-cases exhibited an exponential dependence of
the error on p.

[O2] The choice of the hyper-parameters σ and μ in the test-cases [T1], [T2], [T3] influ-
ences the scaling behavior according to its effect on the complexity of the parametrized
diffusion coefficient set.
The observed scaling behavior closely reflects the complexity of the solution mani-
folds as characterized by the singular value decay depict in Fig. 2. For [T1], the plot
suggests this to be the easiest case. Moreover, the impact of the scaling parameter
σ was supposed to simplify the parametric problem for smaller values of σ . This is
precisely, what we observe in Table 1 and Fig. 5.
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Table 1 Mean relative test error averaged over three training runs for test-case [T1] and different parameter
dimensions p, different scaling parameters σ and shift μ = 1

Parameter dimension p 2 5 10 15 20

Mean relative test error (σ = −1) 0.31% 0.37% 0.41% 0.42% 0.43%

Mean relative test error (σ = 0) 0.41% 0.40% 0.44% 0.52% 0.59%

Mean relative test error (σ = 1) 0.39% 0.59% 1.56% 2.57% 4.81%

Table 2 Mean relative test error averaged over three training runs for test-case [T2] and parameter dimensions
p = s2

s 2 3 4 5

Parameter dimension p 4 9 16 25

Mean relative test error(μ = 10−1) 0.51% 1.10% 2.22% 3.30%

Mean relative test error (μ = 10−2) 0.71% 1.83% 4.20% 6.76%

Mean relative test error (μ = 10−3) 1.41% 4.73% 16.08% 25.77%

Table 3 Mean relative test error averaged over three training runs for test-case [T3-F] and different parameter
dimensions p = s2 with shift μ = 10−4 and radius 0.8/(2s)

s 2 3 4 5 6

Parameter dimension p 4 9 16 25 36

Mean relative test error 0.39% 0.45% 0.60% 0.80% 1.08%

Table 4 Mean relative test error averaged over three training runs for test-case [T3-V] and different parameter
dimensions p = 2s2

s 2 3 4 5

Parameter dimension p 8 18 32 50

Mean relative test error (μ = 10−1) 3.29% 5.47% 7.81% 9.27%

Mean relative test error (μ = 10−4) 5.98% 9.84% 12.55% 14.37%

Accordingly, we see for [T2] in Table 2 and Fig. 6 and for [T3-V] in Table 4 and
Fig. 7 that the parameterμ influences the scaling behavior of the method with p. Both
cases get harder by lowering μ and overall exhibit error scaling on the order O(pk).
However, for [T2] μ directly impacts the scaling exponent k while for [T3-V] it stays
the same. This again resembles the singular value decay depicted in Fig. 2 (Table 3).
Concluding, we can see that the approximation of the DPtSM by NNs appears to be
very sensitive to these parameters, especially to the ellipticity μ, and that the scaling
behavior is accurately predicted by the complexity of the solution manifold in regard
to its singular value decay (Table 5).

[O3] We observe no fundamentally worse scaling behavior for non-affinely parametrized
test-cases compared to test-cases with an affine parametrization. In test-case [T3], we
do observe that the non-linearly parametrized problem appears to bemore challenging
overall,while the scaling behavior is the same as for the affinely parametrized problem.
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Table 5 Mean relative test error averaged over three training runs for test-case [T4] with clipping value
μ = 10−1 and different parameter dimensions p

Polynomial degree k 2 3 5 8 12

Parameter dimension p 6 10 21 45 91

Mean relative test error 1.94% 2.88% 3.81% 5.98% 8.16%

In test-case [T4], which is the test-case with the highest number of parameters p, we
observe only a very mild (in fact logarithmic) dependence of the error on p.

From these observations we draw the following conclusions for our hypotheses:
Hypothesis [H1] In observation [O1], we saw that over a wide variety of test-cases multiple
types of scaling of the error with the dimension of the parameter space could be observed.
None of them admit an exponential scaling. In fact, the behavior of the errors seems to be
determined by an intrinsic complexity of the problems.
Hypothesis [H2] Comparing performance both between test-cases (observation [O1]) and
within test-cases (observation [O2]), leads us to conclude that there exist strong differences
in the performance of learning the DPtSM. For various test-cases, using NNs with precisely
the same architecture, we observed (see [O2]) considerably different scaling behaviors of
the test-cases [T1]–[T4] which have the error scale polynomially, logarithmically and being
constant with changing parameter dimension p (described in [O1]). According to [O2], the
overall level of the errors and the type of scaling for increasing p follows the semi-ordering
of complexities of test-cases in the sense that more complex parametrized sets yield higher
errors whereas simpler sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors (test-cases [T1] and [T2]).

Therefore, we conclude that the approximation theoretical intrinsic dimension of the
parametric problem is a main factor in determining the hardness of learning the DPtSM.
Hypothesis [H3] In support of [H3], we found no fundamental difference of the performance
of the NN model for non-affinely parametrized problems (see [O3]).

In conclusion, we found support for all the hypotheses [H1]–[H3]. We consider this result
a validation of the importance of approximation-theoretical results for practical learning
problems, especially in the application of deep learning to problems of numerical analysis.

5 An Empirical Study Beyond the Theoretical Analysis

The design of our numerical study as presented in the previous section was chosen to closely
resemble the approximation-theoretical framework of Kutyniok et al. [37]. Therefore, the
underlying network model was chosen as a standard fully-connected neural network. In
modern applications, typically more refined and performance driven architectures are used.
To take a further step towards the practical relevance of approximation theory, we accompany
the previous study by an experiment in a more practical and realistic setting.

Because our problem is set up on a rectangular domain, it is a natural choice to encode
the network inputs, i.e. the parametrized diffusion coefficients, as an image resulting from
discretization on a fixed grid. This allows us to incorporate convolutional layers into our
network architecture. For a meaningful comparison, we chose a CNN of similar depth to
the previously used fully-connected NN: We use six convolutional followed by four fully
connected layers, already including the output. The first two convolutional layers contain
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Fig. 9 CNN architecture used for experiments. Below each convolutional layer the number of filters is listed.
The shrinking height and width of the blocks symbolize the lowered resolution after the red pooling layers.
The visualization is created using the tools of www.github.com/HarisIqbal88/PlotNeuralNet

128 filters of size 2 × 2 while the other four only contain 64. They all utilize zero padding
to preserve the input dimension. Moreover, after layer two and four 2 × 2 max pooling
is performed to down-sample the input. The fully connected layers contain 500 neurons
each. All layers except the output are equipped with the 0.2-LReLU activation function. The
architecture is visualized in Fig. 9.

We again use the ADAMoptimizer [36] with hyper-parameters α = 1.0×10−4, β1 = 0.9,
β2 = 0.999 and ε = 1.0 × 10−8 for training. However, the batch size is reduced to 32 and
we employ early stopping based on a separate validation set of size Nval:=1000 to prevent
overfitting. The maximum number of epochs is limited to 3000.

We noted earlier and described in detail in “Appendix A” that the impact of the number of
samples seems to be independent of the scaling behavior. To emphasize this point, we cut the
number of training samples in half to Ntrain:=10,000. In contrast to our earlier experiments,
encoding the parameters as images now allows us to keep the architecture completely fixed
throughout all test-cases, even the input layer. However, the resolution of the input becomes
a new hyper-parameter. In general, increasing input resolution enhances the performance but
comes at significant additional computational cost and the elevated risk of overfitting. To
balance this trade-off, we settled at a resolution of 20 × 20 for all test-cases, except [T3-V]
which required a resolution of 50 × 50 for an accurate representation. Note, that even for
inputs of size 20 × 20 the diffusion coefficients are heavily over-parametrized which leads
to a considerable increase in the required storage.

5.1 Numerical Results for CNNs

We tested the above network configuration for all cases besides [T1] and [T3-F], which could
already easily be learned by the fully-connected NN. This yielded the following results.

[T2] Chessboard Partition

We observe the following mean relative test errors for the sets Acb(p, μ) (Table 6).
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Table 6 Mean relative test error of CNN for test-case [T2] and parameter dimensions p = s2

s 2 3 4 5

Parameter dimension p 4 9 16 25

Mean relative test error (μ = 10−1) 0.72% 1.08% 1.90% 2.46%

Mean relative test error (μ = 10−2) 0.72 % 1.27% 2.16% 3.06%

Mean relative test error (μ = 10−3) 0.98% 1.54% 2.46% 3.75 %

Fig. 10 Plot of the mean relative test errors achieved with our CNN architecture for the sets of test-case [T2]
(left), [T3-V] (middle) and [T4] (right). All axes except the vertical axis for [T4] are scaled logarithmically

[T3-V] Cookies with Variable Radii

For the variable cookies Acvr(p, μ) we achieve the following mean relative test errors
(Table 7).

[T4] Clipped Polynomials

For the set Acp(p, 10−1), we obtain the following mean relative test errors (Table 8).

Table 7 Mean relative test error of CNN for test-case [T3-V] and different parameter dimensions p = 2s2

s 2 3 4 5

Parameter dimension p 8 18 32 50

Mean relative test error (μ = 10−1) 3.01% 5.27% 6.58% 7.77%

Mean relative test error (μ = 10−4) 5.80% 10.20% 12.39% 14.72%

Table 8 Mean relative test error of CNN for test-case [T4] with clipping value μ = 10−1 and different
parameter dimensions p

Polynomial degree k 2 3 5 8 12

Parameter dimension p 6 10 21 45 91

Mean relative test error 1.70% 2.07% 2.56 % 2.94% 3.48%
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5.2 Evaluation and comparison to first experiment

Similar to the results obtained in the previous section, we examine the scaling behavior with
regard to the parameter dimension p in Fig. 10.Wenotice that, although theCNNsignificantly
outperforms the simple fully-connected NN, the scaling behavior remains nearly identical.
The most notable difference between the two networks can be witnessed for [T2]. For this
case, the error was reduced by an order of magnitude. This is especially noteworthy because,
as mentioned earlier, only half the number of samples was used during training. Nonetheless,
the similar scaling behavior (cf. Figs. 6, 7, 8 with Fig. 10) implies that the rates obtained
previous section still accurately reflect the underlying hardness of the problem. This indicates
that the relatively high relative error is a result of insufficient model capacity rather than an
artifact of the optimization procedure.

Given that the experiments based on convolutional neural networks yielded lower overall
errors with less training data, we identify two promising directions of future work. First,
the fact that convolutional neural networks outperform their fully connected counterparts,
requires a theoretical analysis and justification. Second, it appears worthwhile to search for
additional architectural refinements which potentially allow cutting the overall error down
even further.
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A Elimination of Obfuscating Phenomena

Below we describe the measures taken to enable comparability between test-cases.

A.1 Fixing the Architecture

In all our experiments the network architecture was kept almost completely fixed, only
varying the dimension of the input layer. Our choice of architecture was made on the basis of
preliminary experimentswith the goal of developing a network structure that performswell on
all datasets and in particular displays good optimization behavior independent of the test-case
as showcased in “APosterioriAnalysis ofConvergenceBehavior” of appendix. Thiswas done
to ensure comparability across all test-cases and parameter choices, allowing us to isolate the
influence of the parametrization and the dimension of the parameter space. We emphasize
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Table 9 Mean relative test error as well as the corresponding R2 coefficient from a simple linear regression
for varying sizes of the training set and all previously considered setups

Test-case Size of training set
20,000 (%) 17,500 (%) 15,000 (%) 12,500 (%) 10,000 (%) R2

[T1] (μ = 1, σ = 0, p = 20) 0.59 0.61 0.64 0.70 0.76 0.95

[T2] (μ = 10−1, p = 9) 1.06 1.29 1.49 1.81 2.18 0.98

[T2] (μ = 10−2, p = 9) 1.81 1.94 2.58 2.98 4.26 0.91

[T2] (μ = 10−3, p = 9) 4.47 5.31 6.23 7.78 9.24 0.98

[T3-F] (μ = 10−4, p = 25) 0.83 0.85 0.88 0.91 0.96 0.97

[T3-V] (μ = 10−1, p = 18) 5.44 5.60 5.83 6.16 6.56 0.97

[T3-V] (μ = 10−4, p = 18) 9.81 9.98 10.18 10.61 11.06 0.95

[T4] (μ = 10−1, p = 21) 3.86 4.17 5.06 5.50 6.46 0.98

that more sophisticated architectures and the usage of tools like weight regularization or
learning rate decay in general enable better performance on individual datasets. However, in
our case, they would only obfuscate the approximation-theoretical effect that we are seeking
to identify.

A.2 Influence of the Size of the Training Set

Throughout this paper all training was conducted with a fixed number of 20,000 samples.
Since it is clear that a larger training set will generally yield better results, this trend may
affect different test-cases to various degrees. To guarantee that the effect of the choice of
the number of training samples is uniform across cases, we chose the number of samples
in the following way: We trained the same NN architecture as described in Sect. 4.2.3 for
different parameter constellations with training sets ranging from 10,000 to 20,000 samples.
The results are depicted in Table 9. The table also includes the coefficient of determination R2

(see [70, p. 601]) for each individual dataset resulting from fitting a simple linear regression
to the set of sample size and test error pairs.

This analysis shows that with R2 values ranging from 0.91 to 0.98 the relation between
the number of samples and the achieved accuracy is almost perfectly linear. Assuming this
relation extrapolates to the other parameter dimension p, this implies that our results in
Sect. 4 can be considered independent of the number of samples chosen. It should, however,
be noted, that this linear dependence can only be observed in a reasonable range of training
set sizes. In particular, the experiments revealed a lower bound on the number of samples
needed to stably train our NN architecture. While in our case this bound can be observed
in the range of 1000–5000 samples depending on the considered test-case, other NN setups
may be able to effectively train with even lower sample counts.

A.3 Impact of Initialization and Sample Selection

The achieved accuracy of a NN is inevitably subject to stochastic variation. It is influenced
by the initialization of the weights, the selection of training samples and the ordering of
the dataset. Nonetheless, a stable optimization procedure should reproduce similar results
independent of the aforementioned factors.
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Fig. 11 Plot of the range of the mean relative test error over three runs for the sets of test-case [T1]. Both axes
use a logarithmic scale

Fig. 12 Plot of the range of the mean relative test error over three runs for the sets of test-case [T2]. Both axes
use a logarithmic scale

To show that our results were not impacted by the randomness of optimization, we per-
formed all experiments three times for different initializations of theweights andpermutations
of the dataset. In Fig. 11 we show how the results varied between these three runs. The plots
suggest that there is very little variance over different training runs. In particular, the observed
scaling behavior stays the same over all runs and therefore is not an artefact of the stochastic
nature of the optimization (Figs. 12, 13, 14).
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Fig. 13 Plot of the range of the mean relative test error over three runs for the sets of test-case [T3]. Both axes
use a logarithmic scale

Fig. 14 Plot of the range of the mean relative test error over three runs for the sets of test-case [T4]. Only the
horizontal axis is scaled logarithmically

A.4 A Posteriori Analysis of Convergence Behavior

Similarly to the architecture, the hyper-parameters of the optimization method were also kept
fixed across all datasets and training runs. This measure, however, only eliminates the effect
of the architecture on the optimization method and does not address any obfuscating effect
that the choice of test-cases may have. To analyze if such an effect is present, we check
the convergence on our two hardest test-cases [T2] and [T3-V] for the largest parameter
dimension p considered. The results are depicted in Figs. 15 and 16, respectively. We see
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Fig. 15 Plot of the mean relative training error for [T2] with p = 25 and different shifts μ

Fig. 16 Plot of the mean relative training error for [T3-V] with p = 50 and different shifts μ

that even for small shifts μ, i.e., the most difficult problem settings, the error on the training
set converges smoothly. This behavior can also be witnessed on all other test-cases.

Another possible pitfall of our optimization procedure would be the occurrence of over-
fitting. In particular, this would render our attained accuracy levels invalid as we trained for
a fixed number of epochs. However, this did not occur in any of our tests. We exemplarily
showcase the convergence plot of the training and test error for the hardest parameter choices
of [T3-V] and [T4] in Figs. 17 and 18 respectively. Similar behavior can also be observed
on all other datasets.
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Fig. 17 Plot of the mean relative training and test error for [T3-V] with p = 50 and μ = 10−4

Fig. 18 Plot of the mean relative training and test error for [T4] with p = 91 and μ = 10−1
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