On the design of a generic object adaptor

Qyvind Hanssen, Frank Eliassen
University of Tromso, Dept. of Computer Science
9037 Tromso, Norway
{ovindh | frank}@cs.uit.no

Abstract:

An object adaptor provides object view mapping mechanisms
between existing information systems and a global object-based
federative environment. This paper addresses issues concerning
construction of mapping mechanisms supporting the integration of
different data-repositories in a global object-based environment.
We focus on the mapping of ohject identities and object activation
management performed by the object adaptor component. A simple
model and a generic framework that supports design implementa-
tion of object adaptors is proposed. We also present an approach to
a notation for specifying application specific parts of ohject adap-
tors. This notation is useful as the basis for the automated genera-
tion of application specific ohject adaptor code.

1. Introduction

Data model transparency is the foundation for distributed object management
systems (DOMS) integrating data objects of existing data repositories into a per-
sistent uniform global object space. Transparency is achieved by constructing
mappings between data and requests in each of the local data models and a sin-
gle global model (the canonical data model). It is widely accepted that object-ori-
ented models are particularly suitable as canonical models [Nicol93].

While a large body of work has been undertaken to provide clients of DOMS
transparent language bindings to the generic services provided by the DOMS (for
example CORBA [OMG.91.12.1]), relatively little work has gone into the area of
providing tools for integrating pre-existing data repositories into DOMS as object
implementations.

In this paper we present a framework for modelling, design and implementation
of mapping mechanisms between different existing applications and data reposi-
tories (e.g. legacy information systems) and a global object-based federative envi-
ronment. The mapping mechanisms perform two main tasks, represented by two
software components: the object adaptor and the langauge binding.

The object adaptor is responsible for managing mappings between global object
identity and local identities or corresponding data structures. The language bin-
ding provides access transparency and representation of object references and
data values in the programming languages that the client application program-
mers use. This idea is illustrated by the figure below.

The remainder of this paper is organized as follows: In section 2, we discuss the
management of object-identity and object activations. In section 3, we present
the main ideas of a conceptual model of the object adaptor. In section 4, we pre-
sent our design of a generic object-oriented framework for object adaptors, based
on the conceptual model, and in section 5, we present an appraoch to a notation
for specification of management policies and permanent objects.

FIGURE 1. Model of the mapping functions

Client program (federation)

L]

Ohject
a ei:?tor] llci;lirrll%lilrallge
(for intérface)

“management”
operations

|

! :

| interface
v operations

Local data repository

2. Object identity and management

The design of object adaptor framework is based on a distinction between perma-
nent and temporary object identity [E1Ka91, HaeDitt93]. Objects with permanent
identity can be used as “roots of persistency” !, or they can participate in global
associations.

The reliability of permanent identity has a (virtuallly) unlimited scope of time, but
may be limited in scope of space. The reliability of temporary identity is limited
both in scope of space and time (e.g. timely limited to a session). When there is a
discrepency between the required reliability of object identity at the global level,
and the reliability that can be supported by an existing local data repository, this
gap must be filled by the object adaptor. For instance, it may be necessary to
“simulate” permanent identities for local objects which have temporary identities
only.

Enhancing the reliability of local identity in this way, is done by management-
mechanisms of the object adaptor. Management involves activation, passivation
and update of mappings between global and local identities.

2. 1. Object activation and passivation

An object in a local data repository can be in either a passive or active state. An

active object has a representation in primary storage, and is ready to respond to
operation invocations. A passive object needs to be activated before it can carry

out any operations.

In some local data repositories, activation and passivation is done transparently,
and objects are identified with reliable oids (e.g. surrogates). In others, such
management is done more explicitly by the application programmer. In the latter
case, the object adaptor must perform these tasks, because we want them to be
transparent at the federation level.

The identities of activated objects are usually temporary. Therefore, the manage-
ment of object identity mappings (e.g. between surrogate based global oids and
activated objects) is clearly needed for objects that need to have permanent iden-
tity at the federation level.

1. In the federative object model, persistency is defined by reachability from
another persistent object [Banc87, KhVa90]

2. 2. Management strategies

Management is primarily needed when objects are passivated (typically by some

policy in the local data repository which the federation have not control over), or

when identities are changed for some other reason (e.g. because of address reloc-
ation or change of primary key value).

Key issues are how the object adaptor discover that something has happened,
and how it reactivates or finds information about a more recent identity. There
are many possibilities, depending on the local system and the application of inte-
rest. Generally, we can distinguish between three types of management strate-
gies:

* Management by exception: The object adaptor takes some action when the cli-
ent attempts to access an object and an exception occurs because the identity-
map is invalid (c.f. [Blair92]). The action taken is to find a more recent repre-
sentation of the object or activate one, if neccessary.

* Notification: The local system notifies the object adaptor if the local identity is
changed or if objects of interest are passivated. This can for example be done
by use of trigger mechanisms or active database system services.

* Monitoring. The object adaptor periodically checks if maps need to be
updated, for example by testing the validity of maps or by reading the system
log.

The choice of management strategy, and especially the method for activating
objects, will strongly depend on the characteristics of the local system and on the
degree of local autonomy required. The design of management policy should be
done with care, because it can seriously affect performance, scalability and local
autonomy. Optimizations are possible, if we have knowledge about certain
dependencies between objects, e.g. systems where objects are grouped in clus-
ters, and where clusters are units of activation/passivation (c.f. [RM-ODP.1]).

3. Conceptual model

To assist the design of object adaptors, we sketch a simple conceptual model that
capture the essence of how object adaptor software works. The concepts descri-
bed here could be mapped to fairly different designs.

3. 1. Proxy objects

In our model of the object adaptor, proxy objects are representatives of local
objects in a federative environment. They are responsible for identification and
management of local objects and their identities. The object adaptor provides (to
client programs), access to objects through object references, that in essence
reference proxy objects.

The purpose of introducing this concept is to encapsulate information about a
given object, in a single logical unit. This information encompasses identification
of the current activation, identification of passive object (in permanent storage)
and methods for activation, passivation and comparision.

A proxy object is, from a logical point of view, a tuple (oid, e), where oid is the (glo-
bal) object-identity and e is an identifying expression that denote the correspon-
ding local object (c.f. [EIKa91]).

Since proxy objects reflect object identity, it is relevant to distinguish between
permanent and temporary proxy objects. Permanent proxies are able to (re-) acti-
vate object representations, and have the information neccessary to do this. A
temporary proxy object exists as long as a client use it, and the local object is
active. If an object is passivated, the corresponding temporary proxy is no longer
valid and should be discarded or garbage collected.

3. 2. Stub-objects

We do not want to view the user language binding as a integral part of the proxy
objects. Proxies should be defined and exist independently of the language bin-
ding in use. The language binding will need to use the proxy object to be able to
perform its operations. We can then recognize two cooperating types of objects:
the stub objects, which maps user operation invocations to corresponding
actions against the local data repository, and the proxy objects which represents
the object identity map and management mechanisms.

FIGURE 2. The role of the stub- and proxy-objects

“Coupling” to
Proxy-object a
management ,

operation |,

»

Op. invocation

from application-
program

.
User interface- ',

Operation Reference

to object impl.

3. 3. Interaction model

The interface offered by the object adaptor to its clients, encompasses three basic
operations. These are conceptual in the sense that they are not neccessarily
explicitly represented in an implementation. This simple model is able to capture
the semantics of programmer interfaces for a wide range of languages. The opera-
tions are as follows:

¢ Bind. Defines a binding between a client and the object. Argument to the oper-
ation is an identification of the object, (e.g. a name) and it returns an object
reference to an object which is active in the sense that it is able to accept oper-
ation invocations (through the basic operation invoke). Binding is usually
done implicitly when invoking operations which return object references.

¢ Unbind. The opposite: cancels a binding between a client and the given object.

¢ Invoke. For invoking operations.

Object references are values which are available to the client programmer
through the language binding, as unique object identifiers. Semantically, object
references are quite like pointers. They can be used as arguments and results in
procedures, they can be copied, deleted and assigned to variable names, the
same way as pointers are.

The figure below illustrates how these ideas can be mapped to C++. Object-refe-
rences for a particular object-type (Account) are represented as a C++ class with
methods that implements stubs for user operations (credit, debit and balance).
The class also defines a copy constructor, a destructor and an assignment opera-
tor, which include the bind/unbind semantics.

FIGURE 3. Example of object-reference class in a C++ language binding

cl ass Account Ref public Object Ref

{

public:
Account Ref (Account Ref &) ; // bind
~Account Ref () ; /[unbind
Account Ref & operator = (Account Ref &); // unbind + bind
int Credit(Real); I/l invoke “Credit”
int Debit (Real); /I invoke “Debit”

Real bal ance();

4, The framework

An object-oriented framework [Wirf90a, WirfO0b] represents an abstract design of
an application or a subsystem in a specific domain. Such a generic application is
refined to a specific one, by defining subclasses of the abstract classes, where the
abstract methods of these classes are implemented. These methods are mainly
called from the framework itself. The benefits of this approach are not only reuse
of code, but also reuse of design. Much of the global flow-control can be imple-
mented in prefabricated code.

[HaeDitt93] shows how the framework idea can be applied to the problem of inte-
grating different component-databases in a common global data-model. Integra-
tion is supported by a “homogenization layer” over the different component-
databases, which is implemented as a “integration framework” that consist of
hierarchies of cooperating (C++) classes.

We have adopted this idea, and are developing a prototype of a reusable fram-
ework, which represents design and a partial implementation of an object-adap-
tor. Specific object adaptors are produced by refining the generic code, i.e. by
implementing subclasses of the abstract classes of the framework. The task of
this extra code will mainly be management of objects that is made visible at the
global level with permanent identity.

The figure below illustrates how a generic object adaptor framework can be
extended with building blocks for different local data repositories. These exten-
sions can be made for specific applications, or for specific architectures or
DBMSs? that can support different applications. Then we can develop DBMS-
specific frameworks, based on the generic framework.

FIGURE 4. Building blocks for object-adaptors

Appllicationl—speciﬁlc partsI |

DBMS-specific part Other local data repositories

Generic framework

2. The use of the word “DBMS” here is a simplification. In fact, frameworks can be made for a
wide range of programming environments or underlying architectures (middleware), that supports
the application. The design described here, originally focused on distributed object management
systems like ANSware.

The most important parts of our design is as follows (the details of the design are
described in [Hanssen94]):

* A representation of the proxy object concept. Our design include an abstract
proxy class and an abstract meta proxy class. Included in this is a abstract
way to represent local object activations.

* A representation of management policies and permanent identification of
objects.

In addition, we need facilities for keeping track of active proxy objects (e.g. to be
able to find already active proxies for a given object), for generating global object-
identifiers (if neccessary), for garbage collection, etc.

4. 1. The proxy object

The figure below, which uses the OMT-notation (c.f. [Rumbaugh91]), illustrates
how a class hierarchy of proxy objects can be designed. An abstract class Proxy
implements the behaviour of proxy objects. We also need a corresponding Meta-
Proxy hierarchy, to be able to instantiate proxy objects without knowledge of its
concrete representations.

As in [HaeDitt93], we include a class LocalUnit, which represents the activated
state of the object. By encapsulating such states in concrete classes which are
subclasses of the abstract class LocalUnit, we are able to refer to local activations,
independently of how these are represented. LocalUnit objects are part of proxy
class objects, and they can be accessed (or referred to) through methods of the
Proxy class.

FIGURE 5. Example of a proxy-class hierarchy

Proxy

is_SameAs
get_Activaton @———— | OIDManager
impl_Activate
impl_Passivate
impl_Is_Active

get_LU
compaelLoc

/k PermObj

XXX_Proxy
XXX_LU get_LU
compareLoc

4. 2. Management of permanent objects

LocalUnit

In our design, permanent proxy-objects are associated to PermObj objects, which
represents management policy and permanent identification. PermObj is an
abstract class. The PermObj hierarchy is illustrated in the figure below. It is sepa-
rated from the proxy-hierarchy, because we require the choice of management-
policy to be orthogonal to the object’s type, and the permanence and manage-
ment-policy to be a dynamic property of proxy objects.

The Server_Perm class can be used as a base class when the management is done
by invoking operations of another object (server object) that is managed by the
object adaptor. This class defines an association to a proxy object representing
the server.

The management policies can be implemented by defining subclasses of the Per-
mObj class (or the Server_Perm class).

FIGURE 6. The class hierarchy for management

PermObj
impl_Activate
impl_Passivate
Proxy typeOf
is_SameAs
ANSA_Proxy
Server_Perm XXX_Perm
imp:_Activ_ate impl_Activate
« ” impl_Passivate impl_Passivate
server _
objekt typeof typeo
) is_SameAs is_SameAs
get_Server_Acti
set_Server

4. 3. Language bindings

Another feature of the protoype object adaptor framework is its support for two
kinds of language binding policies. The first one is a direct language binding,
where client program and object adapter run in the same process. The second
one is a “canonical binding” where client and object adaptor are spacially separa-
ted and interacts through a language independent protocol. In this case, specific
language bindings must be done in the clients address space (c.f. CORBA). The
figure below illustrates these two alternatives.

FIGURE 7. Language binding alternatives

(2) Via a Client prog.
protocol:

(1) Direct: Client-
(same process) program

Protocol

I lang. | | Obj.

Application

5. Specification of permanent objects and their management

When implementing the mapping mechanisms for a specific application, this is
mainly based on two categories of information:

Export schemas (or component schemas) define the application programmers
view of the local data repository. This information is used to generate application-
specific language binding software (mainly stubs). Schemas can, if specified pro-
perly, be used to generate stub code automatically (typically by use of stub com-
pilers tailored to the specific DBMS and programming language in use).

Management information defines which objects are permanent, how these are
identified and how they are managed. Such information is usually not found in
component schemas, and not specified in a formal notation.

We are developing a simple notation (or language) for specifying permanent
objects and their management policies [Hanssen94]. A goal of our future work is
to develop tools that automatically generate management code from such specifi-
cations. Benefits of using such a notation and associated tools are:

e Management policies and methods can be specified quite detailed, indepen-
dently of implementation language and how the object adaptor framework is
implemented.

* By use of automatic code generation, the implementation work is simplified
and less error prone, because the implementor can ignore some implementa-
tion details.

5. 1. Management classes

The management policy and methods can be specified in an object oriented style,
as “management classes”. In the design described in this paper, management
classes are mapped to specializations of the PermObj class. Management classifi-
cation is orthogonal to object types. One management class can be applied to one
or more objects, which can be of one or more types. We also allow objects of the
same type to have different management classes (e.g. if they are managed diffe-
rently in different contexts). The main parts of a management class specification
are as follows:

Declaration of instance variables: Each variable has a name and a type (e.g. cho-
sen from the set {STRING, INTEGER, BOOLEAN}). These variables hold values
that serves as identification of permanent objects.

Specification of management policies and methods: First, we need an activator
method, which tells how the object adaptor activate an object (or find the current
activation). The choice of method can be done by using DBMS-specific predefined
procedure names that denote standard activation methods, or by embedding
hand written source-code (e.g. C++ or SQL). There can also be necessary to spe-
cify if a kind of notification or monitoring strategy is used. The instance variables
can be referred to in management specifications.

We can optionally specify a passivator method, possibly with a passivation policy
which tells under which conditions the object adaptor should initiate passivation
(e.g. after a certain amount of idle time).

The figure below illustrates how a management class can be specified. In this
example we assume ANSAware [AR.000.00, AW-APM] as the underlying architec-
ture supporting the applications of interest. ANSAware has certain standard
architecture services for notification and for activating and passivating objects
(e.g. Factory, Capsule or Object). The keyword SERVER is used to indicate that
management is done by operations of another managed object (c.f. the
Server_Perm class mentioned in section 4.2)

FIGURE 8. Example of management classes

MGMT-CLASS PlanetServer =

BEGIN
VAR nodename : STRING;
VAR path : STRING;
VAR program : STRING;
VAR arg : STRING;
ACTIVATOR = Factory (nodename, path, program, arg);
PASSIVATOR = Capsule;
NOTIFICATION;
END;

MGMT-CLASS Planet =

BEGIN
SERVER : PlanetServer;
VAR name : STRING;
VAR pos . INTEGER;

ACTIVATOR = Capsule (“Planet”, “%name, %pos”);
PASSIVATOR = Object;

PASSIVATION AFTER 120;
END;

5. 2. Permanent object instances

We also need to specify each object instance that is used as “root of persistency”
in client applications. The specification of a permanent object can consist of the
following parts:

* A name, so that the application program can refer to the object.
¢ The name of the management class.

¢ (Class specific parameters that assign values to the variables declared in the
management class.

* An indication if the object is exported to the federation (e.g. by the keyword
“EXPORT”). Objects that are not exported are only used by the object adaptor
itself in managent of other objects.

The figure below illustrates how permanent objects can be defined using the
management classes from the figure above.

FIGURE 9. Example of permanent obhjects

PERMANENT pserv = PlanetServer (“odslab2”, “/usr/local/bin”, “pserver”, “);
PERMANENT world1 = Planet (pserv, “Jupiter”, 5) EXPORT;
PERMANENT world2 = Planet (pserv, “Saturn”, 6) EXPORT;

6. Conclusions and future work

In the work described here, we have made a first step towards a set of general
tools for designing and implementing object adaptors. This includes a general
design and implementation framework that can be extended with system and
application specific parts.

In our future work, we will develop further the notation for specifying object
management policies, and ultimately realize a prototype tool that can automati-
cally generate application and management code from such specifications. The
resulting framework will be evaluated in experiments developing refinements for
accessing relational and object oriented databases as well as special purpose
data repositories.

References:
[AW-APM]

[AR.000.00]

[Banc87]

[Blair92]

[ElIKa91a]

[EIKa91c]

[HaeDitt93]

[Hanssen94]

[KhVa9o0]

[Nicol93]

[OMG.92.12.1]

[RM-ODP.1]

[Rumbaugh91]

[Wirfo0a]

[Wirfoob]

ANSAware 4.1 Application Programmers Manual

R. J. van der Linden, An Overview of ANSA, ANSA architecture
report 000.00, APM 1993

F. Bancilhon, T. Briggs, S. Khoshafian, P. Valduriez, FAD, a Powerful
and Simple Database Language, Proc. 13th VLDB conference,
Brighton 1987.

G. Blair, P. Dark, N. Davies, J. Mariani, C. Snape, Integrated Support
for Complex Objects in a Distributed Multimedia Design Environiment,
Lancaster University, 1992.

F. Eliassen, R. Karlsen, Interoperability and Object Identity,
CS RR 91.12, October 1991

F. Eliassen, R. Karlsen, Interoperability using Functional and Object
Oriented Programming Concepts: Problems and Solutions,
CS RR 91-13, October 1991

M. Hartig, K. R. Dittrich, An Object-Oriented Integration
Framework for Building Heterogenous Database Systems,
Interoperable Database Systems (DS-5) (A-25) 1993 IFIP

¢.Hanssen, Objekt adapter og programmeringsgrensesnitt for ANSA
ware applikasjoner, Cand Scient thesis, University of Tromsg,
november 1994 (in norwegian)

S. Khoshafian, P. Valduriez, Sharing, persistence and ohject-
orientation: A database perspective, In: Advances in Database
Programming Languages, F. Bancilhon & P. Buneman (eds),
ACM Press

J. R. Nicol, C. T. Wilkes, F. A. Manola, Object Orientation in
Heterogenous Distributed Computing Systems, Computer, june 1993,
pp. 57-67

The Common Object Request Broker: Architecture and Specification,
OMG Document number 91.12.1, Revision 1.1, Draft, 10. Dec. 1991

ISO/IEC JTC/SC21/WG7, ITU-T X.901 ISO/IEC 10746.1,
ODP Reference Modeo Part 1, N. 885 Working document,
November 1993

J. Rumbaugh, M. Blaha,W. Premerlani, F. Eddy, W. Lorensen,
Object-Oriented Modeling and Design, Prentice Hall 1991

R. J. Wirfs-Brock, R. E. Johnson, Surveying Current Research in
Object-Oriented Design, CACM, Vol. 33, No. 9, September 1990

R. J. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-
Oriented Software, Prentice Hall, 1990

