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ABSTRACT

Mineral prospectivity mapping (MPM) based on the principle of geometric mean was applied 
to stream sediment geochemical, fault density, and aeromagnetic data from Tagmout basin, 
Morocco to determine new areas for optimizing copper explor-ation. The application of a fuzzy 
operator using stream sediment data, factor analysis, and fault density map, allowed weights to 
be assigned to these parameters so that the MPM function can pro-cess them to indicate the 
most favorable zones of copper min-eralization. The model’s accuracy as evaluated using a 
normalized density index (Nd with value 1.22) shows the reliability of the method. The 
potential copper concentration areas represent 8.22% of the entire basin of which 30% are 
concentrated in the western portion of the basin and other significant areas are in the 
southwest and northeast portions. The results indicate that MPM is a powerful technique for 
planning exploration programs that aim for sustainable mining activities.

Introduction

Prospecting for mineral deposits is a challenging process given that the majority of the
large-scale deposits have already been located. The remaining deposits may have smaller
geochemical and/or geophysical signatures, be located beneath cover rocks, and/or there
is a lack of geological information that makes ore deposits difficult to detect. One tech-
nique to overcome these difficulties is to use mineral prospectivity mapping (MPM) to
determine regions for more detailed exploration. Mineral prospectivity is a computer-
based method that integrates a wide range of geo-information that includes geophysical,
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geochemical, geological, and remote sensing (e.g., multispectral satellite data) to determine
spatial associations between these data sets with potential ore deposits (Bonham-Carter
et al. 1989; Zuo 2020). Several mineral prospectivity methods can be divided into either
knowledge-driven or data-driven techniques or combinations between these two end-
members (Zuo 2020).

Most mineral prospectivity methods are multi-criteria decision-making (MCDM) rou-
tines that are procedures of deciding the best outcome choice from many possible alterna-
tives (Zhang and Liu 2010). In many cases, decision criteria reported by a decision-maker
is often inaccurate for several reasons such as the weights are expressed in precise num-
bers, gaps in data, limited knowledge and insufficient capacity of the decision-maker, or
because the decision-maker has an imprecise or inadequate level of information process-
ing in the domain of the problem (Xu and Cai 2010; Wu and Zhang 2011). Accordingly,
a fuzzy operator has been used in routines to solve MCDM problems and generate
weights for decision criteria (Zadeh 1965; Xu and Cai 2010) and thus, a final decision
model. The decision model can then be used to describe the imprecise decision and pro-
vide a better way to manage uncertainty in decision making (Wu and Zhang 2011).

In recent years, various methods have been used in MPM, including the data-driven
index overlay technique (Yousefi and Carranza 2016), Boolean logic MPM technique
(Carranza et al. 2008; Yousefi and Carranza 2016), fuzzy operators (Yousefi and Nyk€anen
2016), and the expected value MPM method (Yousefi and Carranza 2015a). Yousefi and
Carranza (2015b) proposed the geometric average prospectivity model to generate con-
tinuously weighted evidential maps. This method provides a number of advantages
including a) reduce the uncertainty associated with bias in feature weights and distance
intervals to imprecisely estimated features, b) providing fuzzy weights of continuous val-
ues into the evidence maps which are assigned without the use of the known mineral
occurrences locations, and c) they can also solve the problem of using different values of
evidence layers in the same unit (Yousefi and Carranza 2015b).

The evaluation of prospectivity models is a critical problem in defining exploration tar-
gets. In this regard, fractal methods (Mandelbrot 1983) can be used with geometric sup-
port to estimate the spatial characteristics related to the mineral deposits, such as
geochemical anomalies (e.g., Cheng et al. 1994; Cheng 2007; Carranza et al. 2008;
Carranza 2010; Afzal et al. 2010, 2016; Zuo 2011a, 2011b; Kouhestani et al. 2020;
Pourgholam et al. 2021; Shahbazi et al. 2021; Shamseddin Meigooni et al. 2021), geo-
logical structures (e.g., faults) (Carranza and Sadeghi 2010) and geological units (Zuo
et al. 2009). Fractal models have been used to classify exploration evidence layers and tar-
get areas for prospectivity modeling of minerals (Almasi et al. 2015; Yousefi and Carranza
2015a, 2015b). Many studies have proposed the fractal models using concentration-area
(C-A) and prediction-area (P-A) to determine the evidential map capacity with the known
mineral occurrences, and determine predictive ability that can be used as an evidential
map weight and for selecting thresholds to yield binary predictor maps (e.g., Yousefi et al.
2014; Yousefi and Carranza 2015b, 2016).

This work aims to evaluate the potential of locating additional copper deposits within
Tagmout basin in eastern Morocco where several large copper deposits currently exist.
Prospectivity models include fractal and geometric averaging methods that will be used to
determine higher concentrations of copper occurrences. The models (Figure 1) incorpor-
ate geological, geochemical data from stream sediment samples and geophysical (mag-
netic) data to determine and identify anomalies associated with copper deposits. These
anomalies will then be categorized according to their potential as targets for prospecting
geology and geophysics in more detail for copper mineralization.



Geological layer

The first data layer to be set in the study model is the geological layer (i.e., geological set-
ting). The Tagmout basin, which is located in the Anti-Atlas Mountains, covers an area
of 822 km2 and is located in the northwestern Draa Basin of Eastern Morocco (Figure 2a).
The Anti-Atlas consists of a series of inliers where igneous and metamorphic rocks of
Paleoproterozoic and Neoproterozoic age are exposed (Kouyat�e et al. 2013). Most of these
inliers lie between or along the South Atlas Faults and the Anti-Atlas Major Fault (Figure
2a). The Proterozoic rocks were formed during the Paleoproterozoic Eburnian orogeny
and the Neoproterozoic Pan-African orogeny. The Tagmout (or Tagmout Tin Ouayour)
basin is located within the contact zone of the Ighrem inlier which is a basin character-
ized by abundant carbonate and siliciclastic formations (Figure 2b) (Pouclet et al. 2007).
The basin was formed during the late stages of the Pan-African orogeny where extension
occurred after accretion of volcanic arcs that once covered the entire Anti-Atlas range.
The resulting basins have been interpreted to be pull-apart basins where siliciclastic sedi-
ments filled the basins (Pouclet et al. 2007). After the formation of the basins, a marine

Figure 1. A schematic flowchart shows different layers and data of the prospectivity model used in the current study.
The models incorporate geological, geochemical data from stream sediment samples and geophysical data to deter-
mine and identify anomalies associated with copper deposits. The geological layer is not shown in the flowchart for
simplification.



transgression caused the deposition of carbonates during the Cambrian. Later Cambrian
extension resulted in the deposition of transgressive sediments above the Cambrian sedi-
ments and Neoproterozoic lithologies (Pouclet et al. 2007).

Figure 2. a. Geological map of the Anti-Atlas Mountains and surrounding regions. An outline shows the study area.
Inset displays the location of the geological map in northwest Africa. SAF-South Atlas Fault. b. The geology map of
the study shows the locations of the stream sediment sample and copper deposits. c. Lithostratigraphic column of
Cambrian and Proterozoic formations and mineralization within each formation (adapted from Asladay et al. 1998).



Proterozoic basement formations

The oldest lithostratigraphic unit within the study area is the Paleoproterozoic Zenaga
Complex that forms a basement comprising granites, mica schists, sandstones, shales, and
gneisses, where the siliciclastic and metamorphic rocks lie adjacent to the granites (Oudra
et al. 2005). The Neoproterozoic rocks lie directly on top of the Paleoproterozoic units
where the contact is considered to be tectonic since there is a brittle-ductile transition
shear zone (Oudra et al. 2005). The Neoproterozoic rocks include Ourty Group overlain
by Ighrem Group. The Ourty Group includes quartzites and carbonate units (Oudra 1988;
Oudra et al. 2005), while the Ighrem Group is composed of conglomerates and volcano-
detrital formations that were deposited in a basin formed during the later portions of the
Pan-African orogeny (Oudra et al. 2005). The Upper Neoproterozoic is composed of con-
glomerates, sandstones, and volcanic units overlain by pelites and volcanic breccia
(Choubert and Faure Muret 1973). The Upper Neoproterozoic rocks are directly located
on quartzites of the Ourty Group (Oudra 1988).

Paleozoic units

The Paleozoic units lie unconformably over the Neoproterozoic rocks and include
Adoudou and Lie-de-vin formations. The Adoudou Formation has been divided into sev-
eral subunits including volcanoclastics and siliciclastic rocks of the Basal Series, and the
overlying Lower Limestones which include the Tamjout Dolomite (Choubert 1963;
Algouti et al. 2001; Benssaou and Hamoumi 2001) (Figure 2c). The Lie-de-vin Formation
includes purplish-red pelites interspersed with carbonate beds and overlying subunits of
the Upper Limestones and the schistose Limestone Series (Choubert 1963; Algouti et al.
2001; Benssaou and Hamoumi 2001). All of the above units have been dated to the Lower
Cambrian (Choubert 1952; Boudda and Choubert 1972; Benziane et al. 1983; Benssaou
and Hamoumi 2001) and were deposited in an intracontinental basin that formed during
the rifting of the West African Craton (WAC) at the end of the Neoproterozoic
(Soulaimani et al. 2003). Northeast-trending dolerite sills and dikes intrude all of the
above units and are related to the opening of the Atlantic Ocean in the Triassic/Lias
period (Sahabi et al. 2004).

Ore geology

The Anti-Atlas of Morocco has several world-class metallic ore deposits and over 200
known copper deposits that were formed by a variety of ore deposition mechanisms that
include sedimentary exhalative deposits, vein deposits, volcanogenic massive sulfides, and
epithermal processes (Bouabdellah and Slack 2016). The majority of these deposits are
located within Neoproterozoic and Cambrian units overlying Paleoproterozoic rocks or
along with the transition between these Neoproterozoic and the Cambrian units (Bourque
et al. 2015). The copper mineralization is mostly epigenetic and is related to several tec-
tonic events including rifting at the end of Proterozoic and compression during the
Hercynian orogeny where a thermal event created conduits for the fluids or rifting during
the Atlantic Ocean opening (Bouabdellah and Slack 2016).

There are 10 known copper deposits near and within the study area (Figure 2b). The
most important copper deposits include the Alous, Assif Imider, Am�enayo, Tizert,
Amadouz, Talat N’Ouamane, and Akiout deposits. These deposits are located within Late
Neoproterozoic and Early Paleozoic lithologies. A number of these deposits occur within



or near volcanic structures (sills, intrusions, or dikes) which suggest a relationship
between hydrothermal activity and later Neoproterozoic volcanic episodes or a margin
basin (Pouit 1966; Chabane and Boyer 1979). The Tizert and Amadouz copper deposits
are emplaced within Cambrian lithologies and have a more controversial origin, but are
more likely related to the Atlantic Ocean opening or Varisican compressional tectonics
(e.g., Pouit 1966; Soulaimani 1998; Oummouch et al. 2017). The Tizert and Amadouz
copper deposits were formed by synsedimentary processes (Bourque et al. 2015) within
Late Ediacaran Basal Series sediments that are found within the Igherm inlier (Figure 2a)
(Oummouch et al. 2017; Poot et al. 2020). The ore zones within the sedimentary rocks
are 200 and 400m below the surface and are located mostly along the Cambrian basin’s
margin adjacent to the Proterozoic basement highs (Oummouch et al. 2017).
Additionally, the known mineralization occurrences are found near strike-slip faults that
may have acted as a path for the ore-rich fluids (Oummouch et al. 2017) which deposited
ore disseminated chalcopyrite, chalcocite, and bornite. Furthermore, the deposits have
undergone supergene enrichment that formed significant deposits of azurite, malachite,
and covellite (Poot et al. 2020).

The study area has several regions that contain polymetallic mineralization (Cu, Pb,
and Zn) stratiform synsedimentary (Talat N’Ouamane). The mineralization is located
within the Late Ediacaran Adoudou Formation either in the Base Series near the contact
with the Precambrian substratum or higher in the carbonates bed of the Tamjout mem-
ber. Rare occurrences are found in the Lower Limestone series, but they are always within
the terrigenous facies with carbonates cement and/or in purely carbonates facies (Pouit
1966). The mineralization is present only in the base formation when its thickness reaches
between 10 and 60 meters within low regions in the paleotopography of the underly-
ing basement.

Spatial data

Stream sediment samples

Stream sediment samples were collected at 172 sites (Figure 2b) and were analyzed for
their As, Cu, Pb, Ni, and Cr concentrations (Table 1). These elements are considered to
be good indicators for potential copper deposits (Yang et al. 2009; Parsa et al. 2016). The
sampling strategy and error-control procedures follow Johnson et al. (2001). Generally,
only second and third-order tributaries were sampled (Figure 2b). Each sample consists of
five samples collected along the stream’s living bed. 2 to 5 cm of the surface layer is
removed to avoid wind contamination. Dry sediments are sifted through a 2mm mesh
Nylon. The samples were analyzed by an X-ray fluorescence spectrometer (XRF) type
Spectro X-LAB 2000. Quality control is done by inserting standard samples during each
analysis session and randomly inserting control samples. The XRF ED is calibrated using
several samples of international standards.

Geophysical data

Magnetic data were acquired in 1999 by G�eoterrx-Dighem for the Moroccan Ministry of
Energy and Mines. Flight lines were spaced 500 meters apart and were oriented N15� to
N315�. The draped survey had an average ground clearance of 30 meters with the data
collected using a cesium magnetometer that has a sensitivity of 0.01nT. The raw data
were processed by removing noise and diurnal variations and detecting closing errors.



Table 1. Representative geochemical analyses of the studied stream sediments in ppm.

Sample x Y As Pb Cu Ni Cr

AL11 231646.06283 347109.69684 43.00 0.00 24.00 27.00 48.00
AL15 230374.69677 338855.72313 28.00 0.00 23.00 27.00 43.00
AL21 233070.07435 352072.51020 0.00 0.00 21.00 52.00 143.00
AL28 227045.73950 353813.60256 27.00 0.00 19.00 26.00 52.00
AL3 230835.02067 339103.98360 47.00 0.00 33.00 26.00 46.00
AL30 232508.78450 336537.57442 34.00 0.00 18.00 26.00 45.00
AL33 245538.64616 344211.21757 37.00 0.00 17.00 29.00 40.00
CON16 221282.27516 344613.86045 33.00 0.00 24.00 33.00 67.00
CON2 208347.10026 345584.37012 7.00 0.00 57.00 50.00 138.00
CON23 220555.69196 348782.26024 14.00 0.00 21.00 50.00 110.00
CON25 221037.96695 350568.17100 17.00 0.00 21.00 42.00 94.00
CON30 215666.90647 351261.51878 26.00 0.00 19.00 47.00 108.00
CON4 208339.22920 344472.72821 25.00 0.00 50.00 33.00 76.00
CON40 220787.51904 343106.50280 30.00 0.00 18.00 25.00 43.00
CON42 224285.01035 343732.22306 36.00 0.00 18.00 29.00 62.00
CON49 214347.18266 347818.95701 21.00 0.00 17.00 55.00 123.00
DO237 223956.09876 337297.92247 52.00 9.00 19.00 26.00 29.00
DO243 239606.73534 359102.97567 46.00 10.00 59.00 35.00 66.00
DO245 235532.82067 343833.30960 36.00 10.00 23.00 28.00 42.00
DO270 228286.09250 343597.42135 52.00 12.00 19.00 26.00 44.00
DO272 242321.57675 356883.82676 42.00 13.00 34.00 38.00 75.00
DO273 241811.87767 355833.71226 43.00 13.00 29.00 35.00 60.00
DO29 242429.49366 352387.59869 59.00 0.00 27.00 31.00 44.00
DO3 233114.05081 354671.96480 0.00 0.00 23.00 46.00 160.00
DO300 233146.45899 357913.53519 33.00 17.00 50.00 33.00 60.00
DO309 215032.33627 342757.71427 44.00 18.00 127.00 28.00 37.00
DO310 220594.41168 338630.86016 41.00 18.00 48.00 28.00 43.00
DO311 245671.40172 352856.26683 45.00 18.00 28.00 30.00 46.00
DO314 241170.49699 350403.80884 67.00 19.00 43.00 31.00 43.00
DO319 221103.45062 337460.87603 40.00 20.00 58.00 28.00 40.00
DO323 248706.82782 349222.63174 45.00 20.00 22.00 31.00 48.00
DO325 216723.37325 345132.26050 37.00 21.00 43.00 31.00 49.00
DO327 222445.45268 338158.99604 43.00 21.00 23.00 28.00 41.00
DO330 238869.60452 343620.54102 45.00 22.00 23.00 34.00 52.00
DO331 237991.51336 359324.87600 43.00 23.00 35.00 32.00 57.00
DO332 211677.59086 341312.00019 47.00 23.00 25.00 27.00 33.00
DO353 246803.24190 351156.72551 71.00 28.00 33.00 23.00 14.00
DO354 212721.03690 341307.24153 39.00 28.00 29.00 30.00 44.00
DO355 216879.05051 342529.98698 53.00 29.00 33.00 27.00 34.00
DO363 213418.46011 345175.71490 46.00 41.00 125.00 26.00 34.00
DO364 206580.04350 340534.86850 47.00 44.00 33.00 36.00 61.00
DO366 217340.79932 340278.01384 38.00 50.00 29.00 32.00 48.00
DO370 213581.17066 343778.13917 42.00 161.00 102.00 24.00 22.00
DO40 233497.12917 349705.66309 15.00 0.00 22.00 41.00 79.00
DO45 241198.83197 340994.66239 35.00 0.00 21.00 31.00 41.00
DO5 234319.28079 354358.27206 0.00 0.00 21.00 51.00 191.00
DO53 248363.92161 345344.19821 23.00 0.00 18.00 65.00 79.00
DO54 233794.41557 339469.69173 24.00 0.00 17.00 26.00 48.00
DO6 232317.80125 350556.41980 0.00 0.00 12.00 52.00 172.00
DO65 242527.10977 353484.93802 58.00 1.00 27.00 31.00 51.00
GR42 229060.66717 354947.18108 28.00 0.00 11.00 18.00 30.00
GR45 222603.80214 348125.85413 23.00 1.00 20.00 28.00 51.00
GR46 242507.94354 348777.75931 51.00 2.00 26.00 27.00 37.00
GR5 230178.39115 351820.70337 26.00 0.00 29.00 25.00 51.00
GR53 247882.12587 348506.36215 54.00 19.00 21.00 30.00 39.00
GR54 230561.55850 353720.25069 7.00 53.00 31.00 29.00 84.00
GR55 208546.24418 341989.77903 25.00 97.00 137.00 25.00 44.00
GR56 216577.34699 347351.87368 16.00 0.00 108.00 37.00 85.00
GR60 210257.46004 346342.66407 23.00 0.00 13.00 45.00 141.00
GR63 209363.92926 343278.70003 2.00 0.00 34.00 18.00 34.00
GR67 221497.73963 340848.49951 31.00 0.00 18.00 27.00 42.00

(continued)



Additional data processing included removing the 1999 International Geomagnetic
Reference Field (IGRF) to generate residual magnetic field data (RMF). The RMA map
was digitized and gridded at a spacing of 125m to produce RMF data (Figure 3a). To
remove the dipolar effect of the Earth’s magnetic field, the RMA data were reduced to
pole (RTP) (Figure 3b) (Pham et al. 2020a, 2020b).

Fault data

The majority of the copper deposits within the Igherm inlier and surrounding areas are
associated with faults that have acted as conduits for the passage of metal-rich fluids to
upper crustal levels so they can be deposited in geochemical favorable regions (Levresse
et al. 2016; Oummouch et al. 2017; Ouchchen et al. 2021). Thus, faults are an important

Table 1. Continued.

Sample x Y As Pb Cu Ni Cr

GR69 231904.33132 355516.86665 36.00 3.00 60.00 30.00 59.00
GR70 226320.27206 342388.49213 50.00 23.00 20.00 28.00 44.00
Pel1 213510.61225 346547.90071 36.00 0.00 173.00 22.00 46.00
Pel12 211884.88542 346533.26927 27.00 0.00 17.00 28.00 47.00
Pel14 218235.42928 345106.13485 25.00 0.00 16.00 41.00 102.00
Pel15 235150.53551 358406.63636 13.00 0.00 16.00 55.00 148.00
SA24 249724.61149 351270.28305 43.00 26.00 22.00 28.00 35.00
SA3 250822.63452 355876.68810 22.00 0.00 18.00 28.00 53.00
SA7 255148.58067 355082.93651 22.00 0.00 16.00 28.00 53.00
SC1 212524.18046 345716.41561 10.00 0.00 115.00 30.00 64.00
SC12 210966.22887 347725.43403 31.00 0.00 13.00 45.00 118.00
SC2 209089.88098 348443.80297 19.00 0.00 78.00 49.00 114.00
SC3 206879.21672 345089.66986 32.00 0.00 76.00 47.00 125.00
SC5 232127.07979 353324.45382 3.00 0.00 36.00 53.00 196.00
SC6 233018.28488 353007.09441 8.00 0.00 27.00 50.00 148.00

Figure 3. a. Residual magnetic anomaly (RMA) map. b. Reduction to the pole (RTP) of magnetic anomaly map. c. The
tilt angle of the RTP data. d. Three-dimensional Euler deconvolution depths using a structural index of 0 superim-
posed the TDR angle derived lineaments. e. Rose diagram showing the orientation of the lineaments obtained the tilt
angle method. Copper deposits are shown as triangles in Figures 3a, 3b, and 3c.



parameter in locating potential economic copper deposits. The known faults were digi-
tized for their latitude and longitude from geological maps (Gasquet et al. 2008;
Oummouch et al. 2017) (Figure 2a, 2b).

Data-driven methods

Factor analysis

Factor analysis (FA) is a multivariate analysis process (Afzal et al. 2016; Daviran et al.
2020; Ghezelbash et al. 2020) that can be used to generate significant multi-element
anomalous signatures and to reduce the number of negative variables (Yousefi et al. 2012,
2014). Principal component analysis (PCA) can be used as a FA method with varimax
rotation (Kaiser 1958) to reduce the number of variables in a dataset while preserving as
much information about the dataset as possible (Filzmoser et al. 2009). During the PCA
process, eigenvalues are calculated with the larger eigenvalues containing more variance
(i.e., more information). While there are no specific techniques to determine how many
eigenvalues to use in a study, Helvoort et al. (2005) and Yousefi et al. (2014) have shown
that eigenvalues are greater than 1 contain sufficient information to be able to discrimin-
ate geochemical anomalies. Additionally, threshold values greater than 0.5 for loadings are
considered sufficient to extract significant anomalous multi-element geochemical signa-
tures (Yousefi et al. 2014). Factor analysis requires a normal or symmetrical data distribu-
tion; however, the stream sediment geochemical data are compositional and are not
independent of each other (Filzmoser et al. 2009; Zuo et al. 2013). Thus, a log-transform-
ation which is a normalization process was performed to generate symmetric data distri-
butions (Cheng et al. 1994; Zuo 2011b; Wang et al. 2019).

Geochemical mineralization probably index of the geochemical anomalies

The stream sediment geochemistry was analyzed using the Geochemical Mineralization
Probability Index (GMPI) was introduced by Yousefi et al. (2014) and is a probability
method that develops classes using a stepwise FA. First, the distribution of geochemical
anomalies is analyzed by determining their factorial scores (FS) and then, converted into
an interval [0, 1] by applying a logistic function. This transformation of the stream sedi-
ment geochemical data into a logistic space generates a higher degree of differentiation
between the geochemical anomalies and improves the forecast rate of potential mineral
deposits (Parsa et al. 2016). The GMPI equation is:

GMPI ¼ eFS

1þ eFS
(1)

where FS is the factor score of every sample used in the FA (Yousefi et al. 2012, 2014)
and e is the exponential function. The GMPI of each multi-element association was
then calculated.

Fuzzy weighting of fault density

Faults are an important component in determining the location of many ore deposits
(Afzal et al. 2019). Faults and fractures can provide conduits for the movement of metal-
rich fluids, circulation of hydrothermal fluids and will aid in determining the location of
the ore deposits (Micklethwaite et al. 2010; Afzal et al. 2019). Thus, adding fault traces



determined from geological mapping or inferred from geophysical data to a data-driven
database will increase the probability of locating ore deposits. Fault trace density (FD)
was thus used to aid in predicting the location of ore deposits (Yousefi and Nyk€anen
2016). Several investigations have used a high FD as an indicator of copper mineralization
(Pirajno 2010; Chen et al. 2011; Yousefi and Carranza 2015c).

To further analyze the FD data, a logistic function was used to convert continuous FD
data to the range [0, 1] (Nyk€anen et al. 2008). By using the logistic conversion, the dis-
tinction between different classes of evidence data can be improved (Yousefi and
Carranza 2015c). The following logistical transformation function was used to calculate
FD values in a fuzzy space:

FFD ¼ 1
1þ e�sðFD�iÞ (2)

WhereFFD and FD are the transformed values and values to be converted in the inter-
val [0, 1] range, respectively (Yousefi and Carranza 2015c), i is the inflection point, and s
is the slope. The i and s are defined by Yousefi and Nyk€anen (2016):

i ¼ 2ln99

max FDð Þ �minðFD
� (3)

s ¼
max FDð Þ þminðFD

�
2

(4)

Using Equation (2), a fuzzy score map of the FD data was created (Figure 5).

Integration of weighted layers

In MPM, the integration of weighted evidence maps requires the use of functions that use
a weight indicating the importance of each evidence map to provide the model that indi-
cates the mineral potential target (Bonham-Carter 1994; Porwal et al. 2006; Ghezelbash
et al. 2019a, 2019b). To accomplish this integration, we used the geometric average model
to combine the map of fuzzy scores of two layers related to the significant mineralization,
namely GMPI (Figure 5b) with the FD data (Figure 6), and to delineate the most pro-
spective target zones for further exploration of the copper mineralization (Wang et al.
2007). The geometric average is the statistically average value when calculating a single
average from several geodatabase evidential layers with geometrical support (Yousefi and
Carranza 2015b). To calculate the geometric average function for copper miner-
alization,GACu, the following equation was used (Yousefi and Carranza 2015a):

GACu FGMPI, FFDð Þ ¼
Y2
i¼1

Fi

 !1=2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FGMPIFFD2

p
(5)

where FGMPI and FFD are the fuzzy scores of indicator values from the corresponding evi-
dential maps, that were calculated using fuzzy operators (Parsa et al. 2016; Farahbakhsh
et al. 2019; Roshanravan et al. 2020). The corresponding geometric average prospectivity
map is shown in Figure 7a.



Creating evidence layers

Geochemical signature
A two-step FA was applied for extracting component stream sediment geochemical signa-
tures. In the first step, factors F1 and F2 representing Ni–Cr and Cu–Pb multi-elements
association, respectively, with positive loading are shown in Table 2. In the second step,
As is considered to be a noisy element and was omitted from the dataset and further ana-
lysis. Therefore, the positive loads in F1 and F2 only take into account Ni–Cr and Cu–Pb
multi-element association, respectively (Table 2). The total variance for the Ni-Cr associ-
ation increased from 44.52% in the first-step F1 to 49.77% in the second-step F1, while
variances for Cu-Pb increased from 27.63% in the first-step F2 to 31.07% in the second-
step F2. Consequently, the FA successively reduced the number of factors and increased
the intensity of the anomaly (as reported by Yousefi et al. 2012).

The FS obtained from the FA was used as a multi-element anomaly indicator. The FS
has been used to create maps to identify geochemical anomalies that indicate mineraliza-
tion or sources of geochemical contamination (Helvoort et al. 2005). FS values that have
95% of cumulative percentile as the background samples and threshold separating anom-
aly (Yousefi et al. 2014) were used in our analysis. The FS Ni-Cr (Figure 4a) and FS Cu-
Pb (Figure 4b) distribution maps show the range of FS values within the Tagmout basin.
The yellow to orange regions represent regions with anomalies that may contain higher
levels of copper.

The distributions of the GMPI for the Cu–Pb and Ni-Cr associations are shown in
Figure 5. To increase the intensity of the anomalies for copper mineralization, some
multi-element associations can be omitted, even though they may be considered as evi-
dence of copper mineralization. For this reason, the GMPI Ni-Cr results were excluded
from our analysis, as they relate to certain lithological formations such as dolerite, gabbro,
and quartzite, and the known copper deposits within the Anti-Atlas do not occur within
these lithologies.

Faults density basing on magnetic data
The RTP signature of the Tagmout basin contains short and long wavelength anomalies
with the highest amplitude anomalies occurring over possibly buried mafic Proterozoic
rocks similar to those outcropping in the Igherm inlier (Ouchchen et al. 2021) in the
southern portions of the study area (Figure 5b). Within the NW part of the study area,
the northeast-trending magnetic maximum corresponds to a Jurassic-age dolerite dike,
outcropping in the Ighrem inlier (Figure 2b). The other magnetic maxima located in the
central and eastern parts of the study area also may be related to buried Proterozoic rocks
but the linear nature of the central anomalies suggests that these may be related to linear
structural features (i.e., fault systems). Magnetic data can help in determining lineaments

Table 2. Matrix of rotating components of the first and second steps.

First step Second step

Elements F1 F2 F3 Elements F1 F2

As –0.816 0.119 –0.078 Pb –0.535 0.625
Pb –0.570 0.566 –0.526 Cu –0.086 0.853
Cu –0.147 0.833 0.531 Ni 0.881 0.333
Ni 0.799 0.430 –0.283 Cr 0.960 0.119
Cr 0.939 0.211 –0.063 Eigenvalues 1.991 1.243
Eigenvalues 2.532 1.259 0.649 Variance (%) 49.768 31.072
Variance (%) 50.646 25.175 12.975 Cumulative variance (%) 49.768 80.841
Cumulative variance (%) 50.646 75.821 88.795



with significant magnetization contrast (Salem et al. 2008) and therefore allow for a better
understanding of the structural framework (Austin and Blenkinsop 2008, 2009; Salem
et al. 2008; Henson et al. 2010; Pham et al. 2021b, 2021d). The cause of these lineaments
could be the contact between rock units, faults, or fracture zones (Pham 2020, 2021d). To
aid in determining lineaments within the magnetic data, derivative methods are com-
monly used including horizontal and vertical derivatives (Pham et al. 2021c, 2021d).
Horizontal and vertical derivatives can produce large and small amplitude anomalies mak-
ing interpretation of deeper sources difficult. Thus, the tilt angle derivative (TDR) was
developed (Salem et al. 2008) which uses a ratio between the amplitudes of the vertical
derivative and the total horizontal derivative that overcomes this problem. Figure 5c
shows the TDR map of the RTP data.

Figure 4. Factor score (FS) distribution of the stream sediment geochemistry data for Ni-Cr (a) and Cu-Pb (b).



Magnetic data can also be analyzed by performing a three-dimensional Euler’s decon-
volution analysis which is a derivative method but also allows determining the magnetic
source depth (Reid et al. 1990). Euler deconvolution has several parameters that must be
defined to get reliable results including window size, structural index (a model for the
source geometry based on the dominant geology of the study area), and grid interval
(Reid et al. 1990). We varied the window sizes between 5 and 20 km and consistently
obtained similar depths for each window. A structural index of zero was used which cor-
responds to a thin sheet model. The TDR and Euler deconvolution analysis indicate linea-
ments trend NNE-SSW, NW-SE, and E-W with depths ranging from 90 to 2471m
(Figure 5c, 5d). A number of lineaments were observed near known copper deposits. The
lineaments were deduced from the magnetic derivative analysis and were added to the
fault database and integrated within the FD model.

Figure 5. GMPI distribution of the stream sediment geochemistry data for Ni-Cr (a) and Cu-Pb (b).



Evaluation of the geometric average prospectivity model

After the generation of the geometric average prospectivity models, the location of known
mineral occurrences (Figure 2a) is used to evaluate the results. To do this procedure, the
prospectivity model values must be classified using fractal operators (Meigoony et al.
2014; Yousefi and Carranza 2015a, 2015b; Afzal et al. 2016; Sanusi and Amigun 2020).
For the Tagmout basin, the fractal concentration-area (C-A) model can be used to dis-
criminate thresholds for classifying the prospectivity values (Cheng et al. 1994). In a log-
log plot, a constant slope indicates a fractal dimension, so that the threshold values can
be obtained as breakpoints in the plot (Nyk€anen et al. 2008). Based on Figure 7b, six
classes or populations are obtained from the prospectivity model. The first four popula-
tions indicate low and medium concentration anomalies and the remaining populations
indicate higher concentration anomalies. Based on these results, a classified map was gen-
erated (Figure 7c) with the highest intensity anomalies (>0.62) which are located in the
northeast and west parts of the Tagmout basin.

For evaluating the importance of different classes, prediction-area (P-A; Parsa et al.
2016) plots were used. In a P-A plot, the intersection points of the curve of the cumula-
tive percentage of known Cu occurrences and the curve of the cumulative percentage of
prospectivity areas can be used as the prediction rate to evaluate the prospectivity model
(Yousefi and Carranza 2015a, 2016). The prospectivity model can then be used to dis-
criminate the further area for exploration (Yousefi and Carranza 2015a, 2015c). Based on
Figure 7c and the location of the known mineral occurrences, P-A plots are then prepared
(Figure 7d). The intersection point in Figure 7d shows that 55% of the known mineral
occurrences are predicted within 45% of the Tagmout basin.

Yousefi and Carranza (2015a) proposed that the intersection point in a P-A plot can
be used to determine two indexes: normalized density (Nd) and the weight of the target-
ing criterion (We) (Figure 7d). Nd is the prediction rate of a prospectivity map divided
by its corresponding occupied area extracted from the intersection point of the P-A plot,
while We, is the logarithm of Nd. These values can be interpreted as targeting criteria
where Nd> 1 and We > 0 indicate that there is a positive association with the type of

Figure 6. The fuzzy score of fault density (FD) is based on the mapped faults (Figure 2a) and magnetically derived
lineaments (Figure 5d).



deposit that is under investigation, while values Nd< 1 and We < 0 indicate that there is
a negative association (Ghezelbash et al. 2019a). If Nd¼ 1 and We ¼ 0, then the mineral-
ization is independent of the targeting criteria (Ghezelbash et al. 2019a). Ghezelbash et al.
(2019a) show that if the intersection point in a P-A plot has a higher value than other tar-
geting criteria, then this targeting criterion is more effective than other targeting criteria
in locating the desired mineralization. Thus, the two values can be used to prove the
effectiveness of the selected model for the mineralization type (e.g., Mihalasky and
Bonham-Carter 2001). The presented results indicate that Nd¼ 1.22 and We ¼ 0.20 and
suggest that the used prospectivity model is effective in locating copper mineralization.
Figure 8 shows the regions which predict the locations of copper deposits within the
Tagmout basin based on the presented models.

MPM: a technique for sustainable mineral exploration and mining activities
- discussion

In MPM analyzes, the generation of target zones is an important step in a mineral explor-
ation program, as the characteristics of a specific type of mineral deposit can be related to
the geological features associated with the mineralization. It is generally accepted that
fault zones are important conduits that promote the circulation of metal-bearing and
hydrothermal fluids (Pirajno 2010) and have been found to be especially important in the
Anti-Atlas Region of Morocco in locating and forming copper deposits (Ouchchen et al.
2021). One of the critical aspects in mineral prospecting is to determine the association
between geochemical and geophysical anomalies, and geological features (Wang et al.

Figure 7. (a) Map of geometric averaged prospectivity scores generated by combining the fuzzy scores of FD (Figure
6) and GMPI CU-Pb results (Figure 5b). (b) Concentration–area fractal model (C–A) of the geometric averaged prospec-
tivity results (Figure 7a). (c) Classification of copper-based on the C-A fractal model. (d) Prediction-area (P–A) plot of
the classified geometric average prospectivity model.



2013). Yousefi et al. (2014), Yousefi and Nyk€anen (2016) and Yousefi and Carranza (
2015a, 2016) have demonstrated that a combination of a set of effective layers of evidence
of a certain type of ore deposit sought from different types of mineral exploration data
(e.g., geochemical, geophysical, and geological) can be more reliable in targeting areas for
more detailed exploration.

The spatial distribution of geochemical anomalies for a specific type of mineral deposit
may differ from one area to another. Several geologically-based parameters that are related
to the characteristics of a specific study area can be determined and may affect the spatial
dispersion of certain geochemical elements (Spadoni 2006; Cheng 2007). For this reason,
it is necessary to recognize that multi-elemental geochemical signatures may allow the
delineation of anomalous zones. In this work, the multi-elemental Cu-Pb association has
been found to have a good spatial relationship for the detection and predictor of the type
of copper deposits found in the Tagmout basin. To generate an improved geochemical
evidence map for MPM, the GMPI method was applied for the discrimination of anomal-
ous copper zones, as it is a more powerful tool than an ordinary factor analysis for
weighting and fuzzification of stream sediment geochemical data. As Yousefi et al. (2012,
2014) demonstrated, the transformation of geochemical signatures using a logistic func-
tion of FS increases the prediction rate of MPM and allows for better discrimination of
geochemical populations compared to a factor score alone. The GMPI results based on an
indicator component can then be considered as values of significant geochemical anomal-
ous for the enhancement of exploration success. As can be seen in Figure 5, the area with
known copper occurrences within the Tagmout basin has a high intensity of GMPI, but
in the northeast portions of the basin without any known copper deposits also have a
high intensity of GMPI. This portion of the basin should be considered a potential area
for further mineral exploration, as it indicates promising new regions, which have not
been previously determined by individual indicator components. Based on the geological
map (Figure 2b), the GMPI and the Cu-Pb anomalies occurring in the western portions
of the Tagmout basin are lithology related, as they correlate with the Basic series and the
contact zones between the limestone and basement. The majority of the copper deposits
in the Tagmout basin and surrounding area are located in these geological units

Figure 8. Delimited potential areas for further exploration of minerals.



(Bouabdellah and Slack 2016) and whose origin was controlled by the NE-SW trending
faults (Ouchchen et al. 2021). GMPI and Cu-Pb anomalies were also determined within
the northeastern portion of the Tagmout basin and can be correlated with the E-W and
NE-SW trending lineaments determined by magnetic tilt angle analysis (Figure 3c).

Fuzzy operators were applied to weight effective geochemical evidence layers and FD
data (Figures 5b and 6). The spatial evidence values that come from different datasets are
converted to the same data space from 0 to 1 which facilitates their integration for further
analysis. Each of the maps generated in this work can be used in the mineral prospectivity
modeling of copper deposits through the application of the geometric average model,
which permits the delimitation of reliable target areas for mineral exploration. To estimate
the ability of the generated mineral prospecting model to discriminate copper mineraliza-
tion zones, the normalized density index (Nd) and the P-A were used to detect threshold
values (Figure 7d). Our analysis indicated that the value of 0.31 was determined as the
threshold for the validation of the prospectivity map (Figure 8). Thus, the determined Nd
value shows that the applied prospectivity model is also efficient because Nd is >1 and
the corresponding We values are positive. These results show that areas with high pro-
spectivity values can be used as targets for further exploration within the Tagmout basin.
Figure 8 shows that the target areas produced by using the geometric average function
represent an area of 8.22% of the Tagmout basin that may contain significant copper
occurrences with 30% of these being concentrated in the western part of the basin. These
values indicate that the integrated layers have a strong spatial correlation with the known
copper occurrences locations. These potential copper mineralization areas trend E-W and
NE-SW near similarly trending known faults and magnetically determined lineaments.
These potential copper mineralization areas are mostly located in the western, northeast,
and southwest portions of the Tagmout basin.

The results of the current study can be used to define future exploration programs in
the western, southwestern, and northeastern portions of the Tagmout basin which give a
sustainable perspective of copper exploration and mining activities in Morocco. The data
needed to rum similar sustainability evaluations are stream sediment geochemical data,
whole-rock geochemical data, detailed geological mapping including lithological mapping,
fault analysis, and hydrothermal alteration mapping, and detailed geophysical exploration.
The geophysical methods may include magnetic, airborne electromagnetic surveys, elec-
trical resistivity, and ground electromagnetics.

Conclusions

Stream sediment geochemical, aeromagnetic, and geological data were analyzed in the
Tagmout basin within the Anti-Atlas region of western Morocco to determine favorable
locations for more detailed exploration for copper exploration. The datasets were analyzed
using mineral prospectivity mapping based on the principle of the geometric mean. The
input data to MPM was processed using fuzzy operators within a factor analysis on the
stream sediment geochemical data and fault density data. The fault density data were
determined from geological mapping and magnetic lineaments derived from a tilt angle
analysis of the reduction to the pole aeromagnetic data. The MPM function using the
fuzzy analysis results determined the most favorable regions of potential copper mineral-
ization for future exploration activities. These potential copper mineralization regions
were further analyzed to determine the accuracy of the MPM model. The accuracy as
indicated by the normalized density index was 1.22. This value suggests that the suggested
copper mineralization areas are statistically reliable.



The MPM model suggests that 8.22% of the Tagmout basin contains significant con-
centrations of copper mineralization. Out of this percentage, 30% occurs in the western
Tagmout basin. The northeastern and southwestern portions of the basin also contain sig-
nificant amounts of copper mineralization. These mineralization zones lie along east- and
northeast-trending regions and are parallel to known faults and magnetic lineaments in
the region. Faults are important for copper mineralization in the western Anti-Atlas since
they facilitate the circulation of copper-bearing fluid from deeper crustal levels upward to
the favorable lithology for precipitation. The MPM modeling succeeded to predict the
locations of well-known copper deposits in the western part of the Tagmout basin and
suggests other potential regions in the northeastern and southwestern of the basin for fur-
ther exploration activities which indicate that the MPM is a potential technique for sus-
tainable mineral exploration and mining activities.
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