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Clinically relevant features for predicting the
severity of surgical site infections
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Abstract—Surgical site infections are hospital-acquired in-
fections resulting in severe risk for patients and significantly
increased costs for healthcare providers. In this work, we show
how to leverage irregularly sampled preoperative blood tests to
predict, on the day of surgery, a future surgical site infection
and its severity. Our dataset is extracted from the electronic
health records of patients who underwent gastrointestinal surgery
and developed either deep, shallow or no infection. We represent
the patients using the concentrations of fourteen common blood
components collected over the four weeks preceding the surgery
partitioned into six time windows. A gradient boosting based
classifier trained on our new set of features reports an AUROC
of 0.991 for predicting a postoperative infection and and AUROC
of 0.937 for classifying the severity of the infection. Further
analyses support the clinical relevance of our approach as the
most important features describe the nutritional status and the
liver function over the two weeks prior to surgery.

Index Terms—surgical site infection, machine learning,

I. INTRODUCTION

SURGICAL Site Infections (SSI) are some of the most
common hospital-acquired infections [1], representing up

to 30% of the total amount of such infections [2], [3], [4].
At the same time, SSIs are considered some of the most
preventable kinds of infections [5]. SSIs can be divided into
different types depending on the anatomical location of the
infection [6] and associated care: Superficial infections can be
treated with surgical debridement and sometimes antibiotics,
whereas deep infections are more complex and may require
another surgery (e.g. laparatomies), another medical procedure
(e.g. percutaneous drainage), or intravenous antibiotics. Dis-
tinguishing the severity of the infection is thus pertinent from
a clinical, practical and economical point of view [7], [8], [9].
Established risk factors are age, overweight, smoking, type
of surgery and cancer [10], [11]. Along with an increased
mortality rate (3%), an SSI can also prolong the postoperative
hospital stay by as much as two weeks [12] or require a read-
mission [13] which is estimated to cost up to 27,000 USD [7].
It is clear that reducing the risk of postoperative complications
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stemming from SSIs, especially from the deep infections, will
be of great benefit for the patients, the healthcare systems and
the society in general.

Blood tests present several advantages as they are already
part of clinical routines and can be performed with low burden
for the patient. A wide variety of statistical methods have
been studied to leverage this type of data [14], [8], [15], [16],
[9], [17]. Several recent studies have focused on the analysis
and prediction of SSI from blood test values collected before
and/or after the surgery [18], [19], [20], [21]. However, to our
knowledge, no previous work has focus only on preoperative
data and stratified the analysis based on infection depth,
despite the difference being clinically relevant [8], [9]. This is
certainly due to a lack of relevant public baseline data. We are
basing our study on a data set from the University Hospital
of North Norway released for the Knowledge Discovery and
Data Mining competition organized by the American Medical
Informatics Association in 2016. It was also used by Soguero-
Ruiz et al. [8] and Kocbek et al. [21].

To solve our specific task, we propose a new feature extrac-
tion pipeline: 1) To have practical clinical impact, prediction
models and support tools need to serve clinicians on the day
of surgery. Therefore, we do not include post-surgery exams;
2) To allow for flexible pre-surgery monitoring, we rely on
weekly averages over the three weeks preceding the one of
the surgery. Averages make features less sensitive to missing
data and temporal variations (samples taken at the beginning or
at the end of the week); 3) To capture possible sudden changes
related to the operation (an infection may itself be the cause
of the operation), the day of the operation is isolated and the
last week before the operation is subdivided into two time
windows. We achieve state-of-the-art accuracy in predicting
the development of an infection after surgery from the blood
concentrations of fourteen molecules over the four weeks
preceding the surgery. Beyond the reliability of the predictions,
an analysis reveals that the importance of the features matches
the clinicians’ intuition, reinforcing the significance of our
contribution.

The structure of the rest of the paper is as follows: we
begin with a section describing the data set and the proposed
features. Section III presents results and analysis followed by
a conclusion in Section IV.

A. Related work

Earlier prediction models for surgical site infection rely on
statistical analyses of patient and surgery characteristics to
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isolate significant factors. The landmark work of Malone et
al. [22] demonstrated that the main risk factors of an SSI are
diabetes and malnutrition. They define the latter as a weight-
loss > 10% over the six months preceding the surgery. Our
data-driven approach is consistent with this result. However,
we consider solely preoperative blood tests over the four
preceding weeks. Interestingly, Saunders et al. [23] recently
showed that the hospital ward is also a determining factor.

Baldominos et al. [24] perform an extensive review of 101
works published between 2003 and 2020 aiming at predicting
infection using computational intelligence. Sepsis comes out
as the most studied infection, followed by SSI with twelve
studies. Most of the latter leverage a combination of demo-
graphic data and clinical variables to monitor the patients after
surgery, i.e., using postoperative data [9], [25]. Strauman et
al. [26] develop a recurrent network-based approach to process
the same blood test data set as we do but consider only the
postoperative part. At last, Kocbek et al. [21], with which we
also share the data set, remains the only listed work leveraging
preoperative data. However, unlike our approach, the model
does not discriminate between the infection’s depths.

Kocbek et al. [21] gathered 252 features from the 60 last
days before the day of surgery. They use a combination of time
windows, medium, short and long, and calculate mean blood
sample values within these. They also check for abnormal
values and count the number of tests taken for each blood
value. Finally, they test the influence of the price for each
blood test on their classifier. Up to our knowledge, this work
is the only other work so far that focuses solely on preoperative
infection prediction. We encourage the reader to consult Table
1 in their paper, which contains a brief description of papers
related to SSI prediction until 2019.

Finally, purely data-driven approaches on unstructured data
are becoming ubiquitous thanks to the development of ad-
vanced machine learning techniques [27], [28], [29]. Extract-
ing information from text using natural language processing
algorithms is especially difficult as the models need to capture
different semantics within the words [30]. Karhade et al. [31]
analyzed free-text notes of patients to report a postsurgical
infection automatically. They achieve notable performance on
a highly imbalanced data set (about 1.1% positive cases in
the training and testing sets). Other works explore the use
of deep learning models for monitoring wounds based on
images. [32], [33]. This work is also part of this line of
research, as we choose a fully data-driven perspective on the
problem of prediction SSI from preoperative data. Indeed,
our features are computed from raw blood test results. Also,
to ensure explainability and dissemination of our results, we
process them using classifiers already well known within the
medical literature.

II. METHODS

A. Data description

The data set is a subset of the database of the University
Hospital of North Norway (UNN). The latter contains the elec-
tronic health records of 7,741 patients that underwent a gas-
trointestinal surgical procedure in the years 2004–2012. The

ethics approval for the present study was obtained from the
Data Inspectorate and the Ethics Committee at the UNN [34].

Similarly to earlier studies [8], [9], we define an SSI and its
depth according to the International Classification of Diseases
(ICD10) and NOMESCO Classification of Surgical Procedures
(NCSP) codes related to severe postoperative complications.
We consider only cases where an infection occurred within 30
days after surgery [4]. Among the 1, 137 remaining patients,
132 developed a shallow postoperative infection, 101 a deep
infection and 904 did not develop an SSI. The patients are
represented using the blood concentrations of the fourteen
(14) most frequently monitored molecules or cells recorded
in their electronic health records: alanine aminotransferase
(ALAT), albumin, alkaline phosphatase (ALP), amylase, as-
partate aminotransferase (ASAT), bilirubin total, creatinine,
C-reactive protein (CRP), glucose, hemoglobin, leukocytes,
potassium, sodium and thrombocytes. Table VI in the appendix
reports for each blood test the unit and the nominal levels with
respect to gender and age [35].

B. Features and preprocessing

In this section, we present our new set of features. Three
preprocessing steps are carried out in order to deal with
common issues in medical data: logarithmic standardization
reduces the skeweness of the data [36], class imbalance is
handled via over and undersampling [37], [38] and finally, a
k-nearest neighbors imputation compensates for the missing
data [39].

1) Log-standardization: For each blood component, a nom-
inal range bounds its concentration for a person to be con-
sidered healthy (see Table VI, Appendix). Blood test values,
which are per se non-negative, yield distributions with positive
skews. This implies that abnormal values above the nominal
range spread over an unbounded interval, while those below
are lower-bounded by zero. In terms of variance, this means
that the variance of the values lower than the nominal mean
is upper-bounded whereas not that of the values larger than
mean is not. As we shall see, this asymmetry hinders the
classification model (see Table III for an ablation study).

As a remedy, we consider the log of the concentrations and
apply a standardization to have a uniform variance [36]. That
is, the feature associated to the value of a blood test x is
log(x)−µ

σ/2 , where µ and σ are the center and the size of the
nominal range after log-transformation, respectively.

After this log-standardization, x follows a standard Gaussian
distribution and both sides of the mean spread symmetrically.
Figure 1 illustrate the effect of this log-standardization on the
distributions of sodium (left column) and ASAT (right column).
The true distribution of the blood concentration of sodium (top
left) presents a strong positive skew and is concentrated around
its mode, which is lower than the nominal range (gray area).
After transformation, the distribution still has a positive skew
but it is more spread. In the case of ASAT (top right), the
mode is larger than the nominal range and the distribution
has a long tail toward higher values. After the transformation
(bottom right), the distribution is slightly more concentrated
and it has a shorter right-tail.
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Fig. 1: Histogram of blood sample values for Sodium and
ASAT. The nominal range, grey shade, are the corresponding
reference values for the blood test, found in Table VI. The
log-transformation spreads the distributions on the left of the
nominal ranges and contracts them on its right.

We do not standardize the data using the sample mean/mode
and standard deviation since we wish to keep as reference
a ”healthy” individual which is defined by the nominal val-
ues. That way, after transformation, positive (negative) values
indicate an excess (lack) of a blood component, and larger
absolute values mean more severe sickness. Besides, using
sample statistics would introduce a bias toward the training
set, which would make our approach less general.

2) Time windows: To address the irregularity of data collec-
tion, we use averages over six time windows dividing the four
weeks preceding the surgery as well as the day of surgery: the
day of surgery (day 0), the three days before, the four previous
days to complete a week, plus three week long windows from
day 8 to 14, 15 to 21 and 22 to 28, respectively. We refer
to these as weekly features, despite the fact that the last eight
recorded days are split into three intervals.

3) Features: The full feature set based on this temporal
split consists of 157 features:

• 84 features: the log-transformed average value of fourteen
blood tests within each temporal window (14× 6 = 84),

• 70 features: the difference between two successive win-
dow log-transformed averages, starting from the earliest
one (14× 5 = 70),

• 2 features: the sex and the age of the patient,
• 1 feature: the logarithm of the number of days since the

first recorded blood test for the patient.

Note that the last feature is also logarithmic to account for the
positive skew.

In previous studies, [21], the number of blood tests carried
out for each patient has shown high correlation with the risk
of infection. This is a well known systematic bias: if a medical
doctor suspects the patient is ill, more blood tests are or-
dered [40]. Moreover, this depends on the particular clinicians’
discretion and intuition about the patient’s condition, therefore

we do not include it in our features.
4) Imputation: The lack of a strict data collection protocol

results in a sparse data set. For example, on the day of surgery,
more than 64% of the data is missing. Two weeks earlier, the
percentage exceeds 86%. To account for this, we use a k-
nearest neighbours imputation scheme [41], [42], [43]. The
missing values are replaced with the average value of the
5-nearest neighbours stratified with respect to the depth of
infection and the gender. If a feature is still missing, it is filled
with the average of the gender. We include an analysis of the
influence of the number of neighbors used in the appendix
(Figure 3).

5) Over and undersampling: The data is highly imbalanced
: 12.6% and 9.3% of the patients suffered from superficial or
deep postoperative infection, respectively. This phenomenon
affects both the training of the classification model and its eval-
uation [44]. As a remedy, the minority classes are oversampled
during training using the SMOTE [45] algorithm. However,
we undersample the majority class to compute performance
metrics on balanced test sets. The majority class is randomly
divided into batches of approximately the same size as the
minority classes and we report the average metrics over these
batches.

C. Classification problems

We consider two classification strategies in this work. The
first is a standard one-vs-rest multi-class classification. The
other stratifies the task into two binary problems: 1) detect the
development of an SSI and, 2) in the positive case, the depth
thereof (shallow or deep). A full multi-class classification
problem can then be constructed by combining the conditional
probabilities. E.g. for the deep class this yields:

p(depth)=p(depth|infection)p(infection). (1)

Contrary to the one-vs-rest scheme, the stratified approach
allows for stage-by-stage analysis of the features. That way
we compare the rankings of the features for detecting SSIs
and for discriminating depths. It is indeed not given that these
rankings match.

D. Experimental Setting

1) Predictive models: Two classification algorithms are
considered:

• GBOOST: gradient boosted decision trees with logistic
loss and Friedman’s mean square error as quality measure
of a split [46].

• SGD: logistic regression with `2 regularization and
stochastic gradient descent optimization, see e.g. [47] for
further details.

The GBOOST model is a widely used classification algorithm
that was chosen to enable us to compare results the experi-
mental setting of Kocbek et al. [21]. In addition, the GBOOST
implementation we used contains a feature importance score,
based on the average reduction in impurity score for each
feature [48]. Furthermore, we chose the `2 regularized logistic
regression because it is a simple linear model where the feature
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TABLE I: Prediction scores for the binary problems of forecasting an SSI (SSI Binary column) or its subtype (Depth Binary
column) and the multi-class problem as described in (1) (Multi-class column). For each column, the best results (not statistically
different (p > 0.5) from the highest score) are marked in bold.

SSI Binary Depth Binary Multi-class
Features AUPRC AUROC AUPRC AUROC AUPRC AUROC

Kocbek
GBOOST 0.926 ± 0.003 0.960 ± 0.002 0.650 ± 0.023 0.699 ± 0.018 0.776 ± 0.005 0.854 ± 0.003

SGD 0.922 ± 0.003 0.958 ± 0.002 0.658 ± 0.024 0.688 ± 0.021 0.772 ± 0.024 0.858 ± 0.016

Ours
GBOOST 0.987 ±0.008 0.991 ±0.007 0.885 ±0.040 0.894 ±0.037 0.897 ±0.018 0.937 ±0.011

SGD 0.984 ± 0.008 0.989 ± 0.007 0.866 ± 0.038 0.881 ± 0.035 0.811 ± 0.028 0.883 ± 0.021

TABLE II: One-versus-rest prediction score for the multi-class problem. For each column, the best results (not statistically
different (p > 0.5) from the highest score) are marked in bold.

No SSI-vs-rest Shallow SSI-vs-rest Deep SSI-vs-rest
AUPRC AUROC AUPRC AUROC AUPRC AUROC

Kocbek
GBOOST 0.947 ±0.003 0.960 ±0.002 0.705 ±0.016 0.823 ±0.007 0.622 ±0.018 0.820 ±0.008

SGD 0.945 ±0.005 0.958 ±0.002 0.653 ±0.025 0.792 ±0.020 0.632 ±0.026 0.810 ±0.021

Ours
GBOOST 0.985 ±0.012 0.991 ±0.007 0.869 ±0.037 0.919 ±0.021 0.881 ±0.038 0.940 ±0.019

SGD 0.956 ±0.019 0.967 ±0.015 0.793 ±0.047 0.861 ±0.030 0.821 ±0.041 0.903 ±0.026

importance can be directly interpreted through the coefficients
of the predictor. We use a 90/10 training-test split and the
labels indicate the depth of the SSIs. Each experiment is
repeated 100 times and we report the resulting means and
standard deviations. For the SGD model, we further split the
training-set into several train/validation sets using a 80/20
holdout scheme to select the regularization weight α. The
possible values ranges in the log10-space from 0 to −4 with
steps of 0.5.

We use the the python implementations of scikit-learn1.
Code to reproduce results can be found in our GitHub repos-
itory2.

2) Performance metrics: To evaluate the predictions, we
use the area under the precision recall curve (AUPRC) and
the area under receiver operating characteristics (AUROC).
For the multi-class problem, these scores are computed in an
one-vs-rest manner. Due to sensitivity of the metrics to the
imbalance of the data set, the majority class of the test set is
undersampled and we report the average values of the metrics.

We also report specificity, sensitivity, positive predictive
value (PPV) and negative predictive value (NPV) for both
binary problems in Table V in the appendix.

III. RESULTS AND DISCUSSION

The task at hand is to predict postoperative infection given
preoperative blood tests, and to subsequently predict the
infection subtype given a positive infection prediction. We
compare our weekly average features to the features devised
by Kocbek et al. [21] as they are the current state-of-the-art
on the data set . In both cases, the features are standardized
before classification.

A. Predicting surgical site infection after surgery: binary and
multi-class case

We used the original implementation of Kocbek et al. to
compute their features, but with a different implementation

1https://scikit-learn.org/stable/index.html
2https://github.com/uitml/ssi prediction

of GBOOST and hyper-parameters as our implementation is
in Python instead of R. Also, we do not use a fixed test
set in our setup3 and we account for class imbalance using
oversampling. Table I summarizes classification performances
for both features and prediction models.

The results of GBOOST in our implementation on Kocbek’s
features are slightly different compared to their implemen-
tation, but at their advantage. The original paper reports an
AUROC of 0.954 for the SSI prediction classification, while
our implementation returns 0.960.

Overall, the proposed features yield the highest classifica-
tion scores, particularly when processed with GBOOST. Our
features improve the performance when compared against
Kocbek’s even with SGD, especially on the binary problem
of predicting SSI depths. Regarding Kocbek’s features, SGD
returns results on par with GBOOST: The difference stays
below 0.01 points between SGD and GBOOST in all cases
except for the AUROC on the depth binary problem.

B. Predicting either class-versus-rest

Table II details the performances for each class in a one-vs-
rest setting. Again, our features processed with GBOOST yield
the highest classification scores. The improvements on the
classifications of both models is especially noticeable on the
deep SSI-vs-rest problem: SGD outperforms GBOOST when
using Kocbek’s features (AUPRC of 0.632), but it is far from
being competitive against SGD and GBOOST when using our
features (AUPRC of 0.821 and 0.881 respectively).

C. Preprocessing ablation study

The usage of our weekly features involves two preprocess-
ing steps: the log-standardization and the oversampling. To
assess the importance of both steps, we report the prediction
performance of GBOOST , using our features without one or
either steps. The results are shown in Table III. Note that a

3Kocbek et al. [21] used a fixed test set for all experiments, based on the
AMIA competition split [8].

https://scikit-learn.org/stable/index.html
https://github.com/uitml/ssi_prediction
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TABLE III: Prediction scores for GBOOST on our weekly features with (X) or without (−) log-transformation or oversampling.

SSI Binary Depth Binary Multi-class
Log-transfo. Oversampling AUPRC AUROC AUPRC AUROC AUPRC AUROC

- - 0.953 ±0.017 0.965 ±0.015 0.706 ±0.049 0.716 ±0.058 0.980 ±0.009 0.850 ±0.019

X - 0.960 ±0.016 0.970 ±0.015 0.705 ±0.051 0.713 ±0.057 0.983 ±0.008 0.853 ±0.018

- X 0.985 ±0.010 0.989 ±0.008 0.852 ±0.042 0.869 ±0.041 0.994 ±0.005 0.919 ±0.012

X X 0.987 ±0.008 0.991 ±0.007 0.885 ±0.040 0.894 ±0.037 0.995 ±0.004 0.937 ±0.011

standardization using the training set is still performed before
any computation.

The use of oversampling alone yields results on the binary
prediction of an SSI that are not statistically different from
the full model. This is therefore an important step, which is
natural since there is quite a high fraction of missing data.
The relevance of the logarithmic transformation becomes ap-
parent when the depth of infection is involved. The improved
performance suggest that, by acting on the positive skew of
the distributions, the logarithmic transformation allows a better
separation of patients associated with a deep and superficial
infections.

D. Feature ablation study

To evaluate the effect of reduced number of features, we
re-trained the GBOOST with our features on both binary
problems, ordered the features by importance and removed
them one by one starting from the lowest weighted features. In
a nutshell, the first setup of this study consists of the GBOOST
trained with all features but the least important one, whereas
in the last setup only one feature – the most important one
– is used. The experiment is repeated 10 times and Figure 2
depicts the evolution of the mean AUPRC and AUROC on
both binary problems.

Fig. 2: Prediction scores as a function of the number of
features included, from the far left where all the features are
included to the far right where only the most important feature
is used.

The curves reveal the robustness of both the model and
the features. With 20 features left, the AUROC is above 0.9
and 0.7 for the SSI and depth problem, respectively. These
results are comparable to the ones obtained by using all the
254 Kocbek’s features (see Table II).

The relative stability until 40 and 80 features for the SSI and
depth prediction task, respectively, might indicate that most of
the features are superfluous or correlated. These plateaus could
suggest that less blood samples measurements are needed and
more simple protocols could be devised.

E. Feature importance

In Table IV, we report the ten most important weekly
features for both binary problems. The ranks are computed as
the average rank over the 100 runs previously used in Table I.

Both rankings are topped by features related to the nutri-
tional status (glucose, albumin), liver function (ASAT, ALAT,
ALP) and the presence of an infection (trombocytes, CRP).
This is not surprising, as the data set comes from a gastroin-
testinal department.

The results are especially remarkable as they echo several
previously published clinical studies. For example, it has
been shown that increased levels of sodium before surgery is
associated with an increased hospital mortality [49]. A similar
conclusion can be drawn here based on the features for the SSI
binary problem (Table IV top). The concentration of sodium
on day 0 is the fourth most important feature. Moreover, this
feature also strongly correlates with the level of potassium
between days 4 and 7 prior to surgery (Pearson-ρ = 0.717
and p-values < 0.01), which also tops the ranking.

Malnutrition and diabetes are known important risk fac-
tors [22], [50], [51], [52], [53] and several related molecules
are among the top-10 features for predicting the severity of the
SSI, e.g. diabetes and glucose levels (see Table IV bottom).
Albumin appears third among these: Bozzetti et al. [54]
showed that low concentrations of albumin, reflecting a state
of malnutrition, correlates with a higher risk of complicated
SSI.

It is important to note that, unlike a clinical study, our
analysis only allows us to hypothesize that nutritional status is
a key factor of SSI. It does not in any way prove a causality.
On the other hand, the credibility of the hypothesis benefits
from the fact that it is inferred by a fully data-driven model.
Since the correlation between SSI and nutrition has already
been proven, we can build on the predictions of our model.
We believe that thanks to the nature of our features, one could
quantify malnutrition and define a cutoff beyond which the risk
of surgical site infection is too high.

IV. CONCLUSIONS

In this paper we presented a framework for detecting surgi-
cal site infections after surgery, based on preoperative features
exclusively. We showed that weekly averages of blood test
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results can be used as features to predict postoperative infec-
tions and their depth with state-of-the-art accuracy. Moreover,
the analysis of the features’ importance revealed the clinical
soundness of our predictions which we believe is essential for
integration into clinical decision support systems.

The work presented in this paper suggests several potential
directions of further research, which require an extended and
more regular data collection protocol. Our weekly features can
also be interpreted as moving averages of a time series. We
consider therefore to investigate several alternative approaches
specific to time series. However, to be fully effective and rele-
vant, these methods would require a finer time resolution, i.e.,
less missing data. Furthermore, electronic health records could
provide extra information to stratify based on the condition
of the patient or the type of surgery. We would expect this
to highlight features specific to each case, leading to a more
personalized follow-up of the patients. Finally, robustness and
confidence are very important elements in clinical – and
general safety oriented – applications. An algorithm should
yield similar results for similar patient types or conditions,
and also indicate its confidence of the result. Also, if a
completely new observation is presented, e.g. a previously
unseen condition, the algorithm should mark its prediction as
uncertain, preferably indicating why it is so. This is currently
not possible with standard classification algorithms.
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APPENDIX

Table V extends Table I and Table II with four additional
metrics, commonly found in the literature: specificity, sensi-
tivity, positive predictive value (PPV) and negative predictive
value (NPV).

Table VI shows the nominal values for the blood tests used
in this study.

Using the experimental setting of Section III-D, we study
here the influence of the number of neighbors used for
imputation (Section II-B4). Figure 3 depicts the evolution of
the mean AUPRC and AUROC for both binary problems. A
mean imputation (k = 0) performs poorly. In case of kNN, the
performance sightly increases until k = 9 after which it drops.
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Our choice of k = 5 lies in the middle. It also represents a
trade-off between too few and too much neighbor information,
both cases inducing their own bias [42], [55].

Fig. 3: Prediction scores as a function of the number of
neighbors k used for imputation. The case k = 0 corresponds
to a mean imputation.
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TABLE V: Extra prediction scores for the binary problems of forecasting an SSI, its subtype and the three one-versus-rest
binary problems.

SSI Binary
AUPRC AUROC Sensitivity Specificity PPV NPV

Kocbek GBOOST 0.926 ± 0.003 0.960 ± 0.002 0.737 ± 0.009 0.967 ± 0.002 0.924 ± 0.004 0.879 ± 0.003
SGD 0.922 ± 0.003 0.958 ± 0.002 0.924 ± 0.007 0.848 ± 0.007 0.764 ± 0.008 0.957 ± 0.004

Ours GBOOST 0.987 ± 0.008 0.991 ± 0.007 0.874 ± 0.026 0.987 ± 0.013 0.979 ± 0.016 0.934 ± 0.013
SGD 0.984 ± 0.008 0.989 ± 0.007 0.748 ± 0.061 0.984 ± 0.027 0.982 ± 0.015 0.879 ± 0.023

Depth Binary
AUPRC AUROC Sensitivity Specificity PPV NPV

Kocbek GBOOST 0.650 ± 0.023 0.699 ± 0.018 0.497 ± 0.027 0.797 ± 0.020 0.662 ± 0.032 0.679 ± 0.013
SGD 0.658 ± 0.024 0.688 ± 0.021 0.588 ± 0.062 0.633 ± 0.074 0.579 ± 0.037 0.685 ± 0.030

Ours GBOOST 0.885 ± 0.040 0.894 ± 0.037 0.744 ± 0.069 0.858 ± 0.052 0.836 ± 0.056 0.835 ± 0.038
SGD 0.866 ± 0.038 0.881 ± 0.035 0.744 ± 0.062 0.838 ± 0.059 0.814 ± 0.051 0.830 ± 0.035

No SSI-vs-rest
AUPRC AUROC Sensitivity Specificity PPV NPV

Kocbek GBOOST 0.947 ± 0.003 0.960 ± 0.002 0.967 ± 0.002 0.737 ± 0.009 0.711 ± 0.007 0.973 ± 0.002
SGD 0.945 ± 0.005 0.958 ± 0.002 0.848 ± 0.007 0.924 ± 0.007 0.884 ± 0.010 0.907 ± 0.004

Ours GBOOST 0.985 ± 0.012 0.991 ± 0.007 0.987 ± 0.013 0.874 ± 0.026 0.836 ± 0.029 0.992 ± 0.007
SGD 0.956 ± 0.019 0.967 ± 0.015 0.984 ± 0.027 0.748 ± 0.061 0.727 ± 0.041 0.993 ± 0.008

Shallow SSI-vs-rest
AUPRC AUROC Sensitivity Specificity PPV NPV

Kocbek GBOOST 0.705 ± 0.016 0.823 ± 0.007 0.521 ± 0.019 0.876 ± 0.011 0.698 ± 0.024 0.780 ± 0.008
SGD 0.653 ± 0.025 0.792 ± 0.020 0.454 ± 0.063 0.863 ± 0.025 0.669 ± 0.041 0.759 ± 0.018

Ours GBOOST 0.869 ± 0.037 0.919 ± 0.021 0.644 ± 0.065 0.923 ± 0.027 0.842 ± 0.050 0.832 ± 0.026
SGD 0.793 ± 0.047 0.861 ± 0.030 0.556 ± 0.069 0.922 ± 0.025 0.820 ± 0.061 0.798 ± 0.025

Deep SSI-vs-rest
AUPRC AUROC Sensitivity Specificity PPV NPV

Kocbek GBOOST 0.622 ± 0.018 0.820 ± 0.008 0.437 ± 0.026 0.921 ± 0.008 0.675 ± 0.034 0.823 ± 0.007
SGD 0.632 ± 0.026 0.810 ± 0.021 0.517 ± 0.043 0.859 ± 0.022 0.587 ± 0.033 0.837 ± 0.010

Ours GBOOST 0.881 ± 0.038 0.940 ± 0.019 0.674 ± 0.065 0.953 ± 0.020 0.870 ± 0.051 0.892 ± 0.019
SGD 0.821 ± 0.041 0.903 ± 0.026 0.604 ± 0.082 0.949 ± 0.022 0.843 ± 0.051 0.871 ± 0.023

TABLE VI: Nominal levels for different blood tests found on
brukerhandboken.no

Blood test Unit Age Reference level
Female Male

ALAT U/L - 10-45 10-70

Albumin g/L
18-39 36-48 36-48
40-69 36-45 36-45
> 69 34-45 34-45

ALP U/L - 35-400 35-400
Amylase U/L - 25–120 25-120

ASAT U/L - 15-35 15-45
Bilirubine total µmol/L > 18 5-25 5-25

Creatinine µmol/L - 45-90 60-105
CRP mg/L - <4 <4

Glucose (Serum) mmol/L - 4–6 4–6
Hemoglobin B g/dL - 11.7-15.3 13.4-17.0

Leukocytes 109/L - 4-11 4-11
Potassium mmol/L - 3.5-4.4 3.5-4.4

Sodium mmol/L - 137-145 137-145
Trombocytes 109/L - 145-390 145-390

brukerhandboken.no
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