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Abstract

We study commutators of weighted fractional Hardy-type operators
within the frameworks of local generalized Morrey spaces over quasi-metric
measure spaces for a certain class of “radial” weights. Quasi-metric measure
spaces may include, in particular, sets of fractional dimentsions. We prove
theorems on the boundedness of commutators with CMO coefficients of
these operators.

Given a domain Morrey space Lp,ϕ(X) for the fractional Hardy opera-
tors or their commutators, we pay a special attention to the study of the
range of the exponent q of the target space Lq,ψ(X). In particular, in the
case of classical Morrey spaces, we provide the upper bound of this range
which is greater than the known Adams exponent.
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1. Introduction

We study commutators of weighted fractional Hardy-type operators
wHα 1

w and wHα 1
w within the frameworks of local Morrey spaces Lp,ϕ(X,w)

over quasi-metric measure spaces (X, d, μ) for a certain class of “radial”
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weights w. The precise definition of the Hardy operators Hα and Hα is
given in Section 3.

In the Euclidian case they have the form

Hαf(x) = |x|α−n
∫

|y|<|x|

f(y)dy and Hαf(x) =

∫
|y|>|x|

|y|α−nf(y)dy, x ∈ R
n,

(1.1)
α ∈ R, and their one-dimensional versions are usually considered in the
form

Hαf(x) = xα−1

∫
y<x

f(y)dy and Hαf(x) =

∫
y>x

yα−1f(y)dy, x ∈ R+,

(1.2)
Such operators are called fractional Hardy operators.

The operators (1.1) and (1.2) do not satisfy the semigroup properties
but possess a certain substitution of such property. In the case of the
one-dimensional operator Hα this substitution has the form

HαHβf(x) =
1

β

[
Hα+βf(x)−Hα+β

β f(x)
]
, β �= 0,

where Hα+β
β f(x) = xα+β−1

x∫
0

(
t
x

)β
f(t)dt.

The first operator with α = 0 in (1.2) is known in the literature as the
Cesàro operator.

Our interest to the study of operators in Morrey spaces is caused both
by their wide use in applications in PDEs and by the fact that Morrey
spaces provide more possibilities and flexibility for obtaining conditions for
the boundedness of operators. Note that recently in [30] there was shown
that Morrey spaces and the so called complementary Morrey spaces pro-
vide an effective language for describing of ingrability properties of integral
transforms such as Laplace, Hankel and others.

Note that in contrast to Lebesgue spaces, we can admit negative values
of α when considering operators Hα and Hα in Morrey spaces.

There exists vast literature on operators Hα in Lp spaces, we refer only
to the book [18] and references therein. The operators Hα in Lp spaces
are not so much studied in the literature by a natural reason: they may be
treated by duality arguments. This does not work in case of Morrey spaces.

The multi-dimensional Hardy operators Hα and Hα in Morrey spaces
in weighted setting were studied in [21], [24], [26], [27], [18, Ch.7]. Com-
mutators with CMO coefficients, of the weighted fractional Hardy operator
Hα in weighted Morrey spaces in the Euclidian case were studied in [28].



WEIGHTED FRACTIONAL HARDY OPERATORS AND ... 1645

Note also that Hausdorff-type generalization of the one-dimensional Cesàro
operator and its commutators were studied in [10]. We refer, for instance
to [19] for the notion of Hausdorff operators.

In general, commutators of many operators of harmonic analysis are
known to be widely investigated in various function spaces due to their
applications, in particular, in theory of PDE, see for instance, the books
[11, 17, 32] and for papers [3, 4, 5, 12, 23, 34].

We prove the weighted Lp,ϕ(X) → Lq,ψ(X)-boundedness of commuta-
tors with CMO coefficients of the ”adjoint” operator Hα in the frameworks
of generalized Morrey spaces (recall that duality arguments do not work in
the case of Morrey spaces). Moreover, we prove this in the general setting
of quasi-metric measure spaces and admit both the situations q ≥ p and
q < p. We also prove estimates for commutators of the operator Hα in
Morrey spaces over (X, d, μ), improving and generalizing a result from [28].

We admit “radial” weights w(d(x, x0)), x0 ∈ X, depending on the dis-
tance to the point x0, the singular point of the Hardy operators. Note that
a characterization of weights for various operators in generalized Morrey
spaces is mostly an open problem and even admission of power weights
is often a subject of essential research, see, for instance, [7] and [8] and
references therein. Admission of such radial-type weights allows to use
Matuszewska-Orlicz indices for obtaining effective conditions on admissible
weights.

Given a domain space Lp,ϕ(X), 1 < p < ∞, for the fractional Hardy
operators or their commutators, we pay a special attention to the study
of the range of the exponent q of the target space Lq,ψ(X) in dependence
on p, α and ϕ. In particular, in the case of classical Morrey spaces, i.e.
ϕ(r) = rλ we show that the upper bound qsup of that range is greater than

the Adams exponent q� defined by
1

q�
=

1

p
− α

ν − λ
:

qsup =
ν

ν − λ
q�,

where ν comes from the growth condition and 0 < λ < ν. In the case of gen-
eralized Morrey spaces, a similar formula for qsup holds with λ replaced by
min{m0(ϕ),m∞(ϕ)}, wherem0(ϕ),m∞(ϕ) are Matuszewska-Orlicz indices
of ϕ at the origin and infinity.

The paper is organized as follows. In Section 2 we provide necessary
preliminaries on quasi-metric measure spaces, generalized Morrey spaces,
CMOp-spaces, quasi-monotone functions and their Matuszewska-Orlicz in-
dices and prove some technical lemmas. Section 3 contains our main results.
In Section 3.1 for the Lp,λ(X) → Lq,γ(X)-boundedness of the Hardy oper-
ators Hα and Hα themselves, we investigate the range of admissible values
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of the exponents q of the target space. In Section 3.1 the space (X, d, μ) is
not assumed to be homogeneous but is supposed to satisfy the growth con-
dition. In Section 3.2 we study a similar boundedness of commutators of
the operator wHα 1

w . In Section 3.3 we give a similar result for commutators

of the operator wHα 1
w . In Sections 3.2 and 3.3 we assume that (X, d, μ) is

homogeneous and satisfies the growth condition.

2. Preliminaries

2.1. On quasi-metric measure spaces. For the basics of quasi-metric
measure spaces we refer e.g. to [6], [9] and [14]. Below we provide necessary
definitions which we use in the paper.

Let (X, d, μ) be a quasi-metric measure space with Borel regular mea-
sure μ and quasi-distance d :

d(x, y) ≤ k[d(x, z) + d(y, z)], k ≥ 1 (2.1)

d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x) and � = diam X, 0 < � ≤ ∞,
B(x, r) = {y ∈ X : d(x, y) < r}. Everywhere in the sequel we suppose that
the following properties of (X, d, μ) hold:

1) all balls are open sets;
2) the spheres S(x, r) := {y ∈ X : d(y, x) = r} have zero measure for

all x and r;
3) μB(x, r) is continuous in r ∈ [0, �) for every x ∈ X.

The set (X, d, μ) is said to satisfy the growth condition if there exist a
constant A > 0 and exponent ν > 0, which is fractional in general, such
that

μB(x, r) ≤ Arν , (2.2)

where x ∈ X and r ∈ (0, �).

The space (X, d, μ) is called homogeneous, if the measure is doubling:
μB(x, 2r) ≤ cμB(x, r), x ∈ X, 0 < r < 


2 .

Estimates of the type provided by the lemma below are known, see for
instance [9].

Lemma 2.1. Let (X, d, μ) satisfy the growth condition (2.2) and β > 0.
Then ∫

B(x,r)

dμ(y)

d(x, y)ν−β
≤ C rβ. (2.3)

2.2. Morrey spaces on (X, d, μ). Let E be an arbitrary measurable set
in (X, d, μ). We define the generalized Morrey space Lp,ϕE (X), related to the
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set E as the set of measurable functions defind on X, such that

‖f‖Lp,ϕE (X) := sup
x∈E

sup
r>0

⎛
⎜⎝ 1

ϕ(r)

∫
B(x,r)

|f(y)|p dμ(y)

⎞
⎟⎠

1
p

<∞, (2.4)

where ϕ(r) is a non-negative measurable function on [0, �], satisfying certain
assumptions.

The space Lp,ϕE (X) is called local or global in the cases E = {x0}, where
x0 is a fixed point in X, or E = X, respectively, Lp,ϕE (X) ↪→ Lp,ϕ{x0}(X) for

any set E � x0. Omission of E in writing Lp,ϕ(X) will just mean that the
corresponding statement and arguments there do not depend on choice of
the set E.

We refer for Morrey spaces on quasi-metric measure spaces, for instance,
to [21], [29], [33], [35] and also the survey [25]. More on Morrey spaces and
their applications can be found in the two-volume book [32] of Y. Sawano
et al.

When (X, d, μ) satisfies the growth condition, then the condition

sup
0<r<


rν

ϕ(r)
<∞. (2.5)

is sufficient for bounded functions with compact support to belong to the
space Lp,ϕE (X).

When ϕ(r) = rλ, we also use the notation

Lp,λE (X) = Lp,ϕE (X)
∣∣
ϕ(r)=rλ

and this space is the classical Morrey space on E.
In the case ϕ(r) = rλ, X = R

n and x0 = 0, local Morrey spaces are
also known ([2]) as central classical Morrey spaces.

With regard to the weighted operators, note that, given an operator
A and a weight w, the boundedness of its weighted version, i.e. wA 1

w in
the Morrey space Lp,ϕE , is equivalent to the boundedness of the operator A
itself in the weighted Morrey space Lp,ϕ(X,w), defined by the norm

‖f‖Lp,ϕ(X,w) := sup
x∈E

sup
r>0

⎛
⎜⎝ 1

ϕ(r)

∫
B(x,r)

|w(y)f(y)|p dy

⎞
⎟⎠

1
p

, (2.6)

i.e in the form where the weight w and the function ϕ are independent
of each other. We went into these details to avoid a misunderstanding in
terminology: sometimes weighted Morrey spaces are introduced in a specific
way, with the function ϕ depending on the weight w.
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Lemma 2.2. Let the space (X, d, μ) satisfy the growth condition (2.2)
and let ϕ and ψ be positive functions on (0, �). The embedding

Lq,ψE (X) ↪→ Lp,ϕE (X), 1 ≤ p ≤ q <∞, (2.7)

holds if

sup
r∈(0,
)

r
ν
(

1
p
− 1
q

)
ψ(r)

1
q

ϕ(r)
1
p

<∞.

In particular,

Lq,γE (X) ↪→ Lp,λE (X), 1 ≤ p ≤ q <∞, 0 < γ ≤ λ ≤ ν, (2.8)

if ν−γq ≤ ν−λ
p , when X is bounded and ν−γ

q = ν−λ
p , when X is unbounded.

P r o o f. The proof of the inequality ‖f‖p,ϕ;E ≤ ‖f‖q,ψ;E is straight-
forward via the Hölder inequality and growth condition. �

Everywhere in the sequel we assume that the function ϕ defining Morrey
space, is continuous in a neighborhood of the origin, almost increasing and
satisfies the conditions

ϕ(0) = 0 and inf
δ<r<


ϕ(r) > 0 for every δ > 0. (2.9)

Recall that a non-negative function ϕ on (0, �) is called almost in-
creasing (almost decreasing), if there exists a constant C(≥ 1) such that
ϕ(t) ≤ Cϕ(τ) for all t ≤ τ (t ≥ τ, respectively). We use the abbreviation
a.i for “almost increasing” and a.d. for “almost decreasing”.

2.3. On CMOp(X,x0)-spaces. The BMO(X)-space, as is well known, is
defined by the quasi-norm

‖a‖∗ = sup
x∈X

sup
r>0

1

μB(x, r)

∫
B(x,r)

|a(z)− aB(x,r)| dμ(z), (2.10)

where aB(x,r) :=
1

μB(x,r)

∫
B(x,r) a(z)dμ(z). The BMO(X) is an appropriate

class of coefficients for commutators of many classical operators.
For the Hardy-type operators (3.1) and (3.2) with singular points only

at x0 and infinity (the latter in the case X is unbounded), a wider class of
coefficients, with BMO-type-behavior only at x0 ∈ X, is more appropriate.
Such a local version of BMO(X), the space CMO(X,x0) (central mean
oscillation) is defined by the norm

‖a‖∗ := sup
r>0

1

μB(x0, r)

∫
B(x0,r)

|a(z)− aB(x0,r)| dμ(z), (2.11)
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We also need its generalization, the space CMOp(X,x0) depending on p,
defined by the norm

‖a‖∗p := sup
r>0

⎛
⎜⎝ 1

μB(x0, r)

∫
B(x0,r)

|a(z) − aB(x0,r)|p dμ(z)

⎞
⎟⎠

1
p

, (2.12)

so that CMO(X,x0)= CMOp(X,x0)
∣∣
p=1

. However, contrast to the “global”

BMO(X)-space, such local CMOp(X,x0)-spaces no more are independent
of p. By Jensen inequality we have

‖a‖∗ ≤ ‖a‖∗p ≤ ‖a‖∗q
and BMO(X) ⊂ CMOq(X,x0) ⊂ CMOp(X,x0) ⊂ CMO(X,x0), 1 < p <
q <∞.

We refer to [2], [13] and [20] for the study of the classes CMOp(X,x0)
in the case X = R

n.

Lemma 2.3. Let (X, d, μ) be a homogeneous space, a ∈ CMO (X,x0).
Then

∣∣aB(x0,r) − aB(x0,t)

∣∣ ≤ C‖a‖∗
(
1 +

∣∣∣∣ln tr
∣∣∣∣
)

for r, t ∈ R+. (2.13)

The statement of Lemma 2.3 is known for BMO-functions in the case
X = R

n and goes back to [15]. In [28, Lemma 2.1] it was shown that the
statement of this lemma is true also in the local setting of CMO(X,x0)-
functions on R

n. The proof in [28] remains the same for homogeneous quasi-
metric measure spaces: the only difference from the Euclidian case is that

one has to use the property that μB(x,λr)
μB(x,r) ≤ cλσ, λ ≥ 1, for some σ > 0,

which is valid for homogeneous spaces.

2.4. Quasi-monotone functions and their indices. Let 0 < � ≤ ∞.

Definition 2.1. By W =W (0, �) we denote the class of non-negative
functions on (0, �) satisfying the conditions

1) w(t) is continuous in neighborhoods of the origin and infinity (the
latter in the case � = ∞), and 0 < inf

δ<t<

w(t) ≤ sup

δ<t<

w(t) < ∞ if � < ∞

and 0 < inf
δ<t<N

w(t) ≤ sup
δ<t<N

w(t) <∞ if � = ∞, for some 0 < δ < N.

2) there exists β ∈ R such that tβw(t) is a.i. on (0, �).
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Similarly byW =W (0, �) we denote the class of non-negative functions
on (0, �) satisfying the above condition 1) and the condition that there exists
β ∈ R such tβw(t) is a.d. on (0, �).

We will also use the notation

W =W (0, �) :=W ∪W, 0 < � ≤ ∞.

Matuszewska-Orlicz indices ([22]) of functions ϕ ∈ W (0, �) related to
the origin and infinity, are defined by

m0(ϕ) = sup
0<r<1

ln

(
lim sup
h→0

ϕ(rh)
ϕ(h)

)

ln r
and M0(ϕ) = inf

r>1

ln

(
lim sup
h→0

ϕ(rh)
ϕ(h)

)

ln r
(2.14)

and (in the case � = ∞)

m∞(ϕ) = sup
r>1

ln

[
lim inf
h→∞

ϕ(rh)
ϕ(h)

]

ln r
, M∞(ϕ) = inf

r>1

ln

[
lim sup
h→∞

ϕ(rh)
ϕ(h)

]

ln r
.

(2.15)
We refer to the properties of these indices to [27, Section 6], where they are
presented in a form convenient for our goals. Note, in particular, that

m0(t
aϕ(t)b) = a+ bm0(ϕ) and M0(t

aϕ(t)b) = a+ bM0(ϕ), a ∈ R, b ∈ R+,
(2.16)

and similarly for the indices related to infinity. Also∫ r

0

w(t)

t
dt ≤ cw(r), 0 < r < �, ⇔

{
m0(w) > 0, if � <∞,
min{m0(w),m∞(w)} > 0, if � = ∞,

(2.17)
and ∫ ∞

r

w(t)

t
dt ≤ Cw(r), r ∈ R+ ⇔ max{M0(w),M∞(w)} < 0. (2.18)

We refer also to the paper [16] where such indices were used to describe
mapping properties of fractional integrals in weighted generalized Hölder
spaces.

2.5. Some technical lemmas. The inequalities of the following “sum-to-
integral” lemma are known been dispersed in the literature. Their proof is
straightforward by using monotonicity properties of functions in the class
W, see for instance [28, Lemma 2.4].
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Lemma 2.4. Let g1 ∈W ∩Δ2 and g2 ∈W. Then

∞∑
k=0

g1(2
−kr) g2(2−kr) ≤ C

r∫
0

g1(t) g2(t)
dt

t
, 0 < r < � (2.19)

and

∑
0≤k<ln2

�
r

g1(2
kr) g2(2

kr) ≤ C


∫
r

g1(t) g2(t)
dt

t
, 0 < r <

�

2
. (2.20)

The following lemma of similar type is slightly more general and is given
with the proof.

Lemma 2.5. Let g1 ∈W ∩Δ2 and g2 ∈W. Then

∞∑
k=0

g1(2
−kr) g2(2−kr)

(
1 + ln

t

2−kr

)
≤ C

r∫
0

g1(s) g2(s)

(
1 + ln

t

s

)
ds

s

(2.21)
for 0 < r ≤ t < �, and

∑
0≤k<ln2

�
r

g1(2
kr) g2(2

kr)

(
1 +

∣∣∣∣ln t

2kr

∣∣∣∣
)

≤ C


∫
r

g1(s) g2(s)

(
1 +

∣∣∣∣ln ts
∣∣∣∣
)
ds

s

(2.22)
for 0 < r ≤ t < 


2 .

P r o o f. The inequality (2.21) follows from (2.19), but (2.22) requires
the proof because the function 1+

∣∣ln t
s

∣∣ changes monotonicity at the point
s = t ∈ (r, �). Let � = ∞ for simplicity. We have

∞∑
k=0

g1(2
kr) g2(2

kr)

(
1 +

∣∣∣∣ln t

2kr

∣∣∣∣
)

=
1

ln 2

∞∑
k=0

g1(2
kr) g2(2

kr)

(
1 +

∣∣∣∣ln t

2kr

∣∣∣∣
) 2k+1r∫

2kr

ds

s
.

Denote ξ = 2kr
t and σ = s

t . So that

2kr

t
< s <

2k+1r

t
⇔ σ

2
< ξ < σ.
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It is easy to show that 1 + | ln ξ| ≤ c(1 + | ln σ|) with c = 1 + ln 2, when
1
2 ≤ ξ

σ ≤ 1. Consequently,

∞∑
k=0

g1(2
kr) g2(2

kr)

(
1 +

∣∣∣∣ln t

2kr

∣∣∣∣
)

≤ c

∞∑
k=0

g1(2
kr) g2(2

kr)

2k+1r∫
2kr

(
1 +

∣∣∣∣ln ts
∣∣∣∣
)
ds

s
,

after which it remains to use the monotonicity properties of the functions
g1 and g2. �

Estimate (2.23) in the lemma below was proved in [28, Lemma 3.5.].
The proof of (2.24) follows the same lines.

Lemma 2.6. If g ∈W (R+) and min{m0(g),m∞(g)} > 0, then∫ t

0
g(s)

(
1 + ln

r

s

)q ds
s

≤ C
(
1 + ln

r

t

)q
g(t), q ≥ 0, 0 < t ≤ r < �. (2.23)

If g ∈W (R+) and max{M0(g),M∞(g)} < 0, then∫ 


t
g(s)

(
1 +

∣∣∣ln r
s

∣∣∣)q ds
s

≤ C
(
1 + ln

r

t

)q
g(t), q ≥ 0, 0 < t ≤ r < �.

(2.24)

Quasi metric-measure spaces with growth condition admit a kind of
analog of the passage to polar coordinates in case of functions depending
on distance, see for instance, such analogs in [31, Lemmas 2.5 and 2.8]. We
will need such an analog in the following form.

Lemma 2.7. Let (X, d, μ) satisfy the growth condition (2.2). Let
g1 ∈W ∩Δ2, g2 ∈W. Then for 0 < r < �, x0 ∈ X there holds:

∫
B(x0,r)

g1(d(x0, z)) g2(d(x0, z))dμ(z) ≤ C

r∫
0

tνg1(t) g2(t)
dt

t
. (2.25)

P r o o f. Let � = ∞ for simplicity. By definition of W and W, the

functions g1(t)

tβ1
and g2(t)

tβ2
are a.i. and a.d., respectively, for some β1 and β2.

We have ∫
B(x0,r)

g1(d(x0, z)) g2(d(x0, z))dμ(z)



WEIGHTED FRACTIONAL HARDY OPERATORS AND ... 1653

≤ C

∞∑
k=0

g1(2
−kr) g2(2−kr)
(2−kr)β1+β2

∫
2−k−1r<d(x0,z)<2−kr

d(x0, z)
β1+β2dμ(z)

≤ c

∞∑
k=0

g1(2
−kr) g2(2−kr)(2−kr)ν .

It remains to apply Lemma 2.4. �

3. Main results

In this section we study the action of the weighted fractional Hardy
operators

Hα
wf(x) = d(x, x0)

α−nw(d(x, x0))
∫

d(y,x0)<d(x,x0)

f(y)dy

w(d(y, x0))
(3.1)

and

Hα
wf(x) = w(d(x, x0))

∫
d(y,x0)>d(x,x0)

f(y)dy

d(y, x0)n−αw(d(y, x0))
, x ∈ X, (3.2)

where w is a weight, and their commutators in the frameworks of Morrey
spaces on quasi-metric measure spaces (X, d, μ).

3.1. On admission of exponents, better than Adams exponent,
for Hardy operators in Morrey spaces. Let first (X, d, μ) be Rn with
Euclidean distance and Lebesgue measure. In this case as is known, the
Riesz fractional operator

Iαf(x) :=

∫
Rn

f(y)dy

|x− y|n−α , 0 < α < n

acts from Lp,λ(Rn) to Lq�,λ(Rn) when 1 < p < n−λ
α , 0 ≤ λ < n, with

1
q�

= 1
p − α

n−λ , see [1]. We refer to q� as Adams exponent.

The same is true for Hardy operators since they are dominated by the
Riesz fractional operator:

|x|α−n
∫

|y|<|x|
f(y)dy ≤ 2n−αIαf(x) and

∫
|y|>|x|

f(y)dy

|y|n−α ≤ 2n−αIαf(x), f ≥ 0.

Hardy operators Hα and Hα were studied in Morrey spaces Lp,λ also in
weighted setting, see [26], where the Adams exponent was also used.

The main message of this subsection is the following. We show that
for the Hardy operators, the boundedness from Lp,λ to Lq,γ may hold for
exponents q > q�. First we note that both Hardy operators and Riesz
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fractional operator have kernels homogeneous of degree α − n. For any
integral operator with a homogeneous kernel of such degree it is easily
checked, by means of the known trick via delation, see [36] (where the
Riesz fractional operator and Lebesgue spaces were under consideration),
that if such an operator is bounded from Lp,λ(Rn) to Lq,γ(Rn) then there
necessarily holds the following relation between the parameters

n− γ

q
=
n− λ

p
− α. (3.3)

Thus, given a domain space Lp,λ(Rn), we can consider the exponents q, γ
for the target space Lq,γ(Rn) only satisfying the necessary relation (3.3).
According to the result of Adams, the choice q = q� and γ = λ is sufficient
for the boundedness. Below we show that for the Hardy operators the
boundedness is valid not only when 1 < q ≤ q�, but also for q� ≤ q < qsup,
keeping (3.3) for finding γ, where qsup is defined by

qsup :=
n

n− λ
q� . (3.4)

This will be shown in a general setting of quasi-metric measure spaces
with growth condition, see Theorem 3.1. The same possibility for the choice
of q will be provided for commutators of the Hardy operators on homoge-
neous quasi-metric measure spaces, see Corollary 3.2 and Remark 3.6. in
Sections 3.2 and 3.3. On the other hand in Sections 3.2 and 3.3 we con-
sider a more general situation in the sense that we admit weighted Morrey
spaces. Moreover, this will be obtained as a corollary from a more general
statement for generalized Morrey spaces, both for the Hardy operators and
their commutators.

Given a space Lp,ϕ(X) we use the notation

Φp,ϕ(r) =

(
ϕ(r)

rν

) 1
p

, r ∈ (0, �), � = diam X,

which plays an important role in the study of Morrey spaces as can be seen
from Lemmas 3.1, 3.2 and 3.3 below.

Lemma 3.1. Let (X, d, μ) satisfy the growth condition (2.2), x0 ∈
X, 1 ≤ p ≤ q <∞, ϕ, ψ ∈W ∩W and α ∈ R.

I. If 0 < min{m0(ϕ),m∞(ϕ)} ≤ max{M0(ϕ),M∞(ϕ)} < ν, then

Φp,ϕ ∈ Lp,ϕE (X), E � x0.
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II. If

rαΦp,ϕ(r) ≤ cΦq,ψ(r), r ∈ (0, �) and

ν − αp− νp

q
< min{m0(ϕ),m∞(ϕ)} ≤ max{M0(ϕ),M∞(ϕ)} < ν − αp,

(3.5)

then

rαΦp,ϕ(r)
∣∣
r=d(x,x0)

∈ Lq,ψE (X), E � x0.

The statements of Lemma 3.1 are derived from [21, Lemma 3.1, part
iii)].

The following lemma is nothing else but a reformulation of Lemma 2.2.

Lemma 3.2. Let the space (X, d, μ) satisfy the growth condition (2.2)
and ψ1 and ψ2 be positive functions on (0, �) and 1 ≤ q1 ≤ q2 <∞. If

Φq2,ψ2(r) ≤ CΦq1,ψ1(r),

then Lq2,ψ2(X) ↪→ Lq1,ψ1(X).

In this section and Sections 3.2 and 3.3 we will essentially use point-wise
estimates of the Hardy operators provided in the following lemma.

Note that in Lemma 3.3 we use min{m0(ϕ),m∞(ϕ)} and
max{M0(ϕ),M∞(ϕ)}, which preassumes that � = ∞. If � < ∞, the infor-
mation about m∞(ϕ) and M∞(ϕ) should be everywhere omitted.

Lemma 3.3. Let (X, d, μ) satisfy the growth condition, ϕ satisfy the
assumptions in (2.5) and (2.9), and f ∈ Lp,ϕE (X).

min{m0(ϕ),m∞(ϕ)} ≥ 0 for p > 1 and min{m0(ϕ),m∞(ϕ)} > 0 for p = 1.
(3.6)

Then

|Hαf(x)| ≤ Cd(x, x0)
αΦp,ϕ(d(x, x0))‖f‖Lp,ϕE (X), E � x0. (3.7)

Let max{M0(ϕ),M∞(w)} < ν − αp. Then

|Hαf(x)| ≤ Cd(x, x0)
αΦp,ϕ(d(x, x0))‖f‖Lp,ϕE (X), E � x0. (3.8)

P r o o f. Estimates (3.7) and (3.8) are derived from more general es-
timates in Theorems 5.1 and 5.2 in [21]. (Note that in the estimates in
Theorems 5.1 and 5.2 in [21] were given for simplicity fror the case � = ∞,
but they hold under the same proof for � <∞.We also use this opportunity
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to note a misprint in [21]: in the formula (1.2) there should stand u(x)
d(x,x0)N

instead of u(x) ).
After the choice u(x) ≡ d(x, x0)

α and w(y) ≡ 1 in Theorem 5.1 in [21]
and u(x) ≡ 1 and w(y) ≡ d(y, x0)

−α in Theorem 5.2 in [21], from those
theorems we have

|Hαf(x)| ≤ C

rn−α

⎡
⎣V (r) +

r∫
0

V (t)
dt

t

⎤
⎦ ‖f‖Lp,ϕ{x0}(X), r = d(x, x0), (3.9)

and

|Hαf(x)| ≤ C


∫
r

V(t)dt
t
‖f‖Lp,ϕ{x0}(X), r = d(x, x0), (3.10)

where V (t) = t
ν
p′ϕ(t)

1
p = tνΦp,ϕ(t), V(t) = t

− ν
p
−α
ϕ(t)

1
p = t−αΦp,ϕ(t).

Recall that ‖f‖Lp,ϕ{x0}(X) ≤ ‖f‖Lp,ϕE (X).

By (2.16) we have min{m0(V ),m∞(V )} = ν
p′+

1
p min{m0(ϕ),m∞(ϕ)} >

0. Hence,
∫ r
0 V (t)dtt ≤ cV (r) by (2.17) and (3.6) then (3.9) turns into (3.7).

By similar arguments via the properties (2.16) and (2.18) it easy to
check that (3.10) turns into (3.8). �

We define the exponent qsup by

1

qsup
:=

1

p
− λ+ αp

νp
=
ν − λ

ν
· 1

q�
,

where 1
q�

= 1
p − α

ν−λ ; q
� may be referred to as the Adams exponent like in

the Euclidian case.

In Theorem 3.1 below we assume that � ≤ ∞ for the operator Hα and
� = ∞ for the operator Hα. The upper bound q < qsup for admissible
values of the exponent q of the target space, given in Theorem 3.1, in
general cannot be replaced by q ≤ qsup, see Remark 3.3.

Theorem 3.1. Let (X, d, μ) satisfy the growth condition (2.2), x0 ∈
E ⊆ X and 1 ≤ p <∞. Let the space Lp,ϕE (X) satisfy the assumptions

ϕ ∈W ∩W, ϕ(0) = 0, min{m0(ϕ),m∞(ϕ)} ≥ 0, sup
0<r<


rν

ϕ(r)
<∞

and

max{M0(ϕ),M∞(ϕ)} < ν − αp. (3.11)

Then the Hardy operators Hα and Hα, α ≥ 0, map the space Lp,ϕE (X),
with min{m0(ϕ),m∞(ϕ)} > 0 in the case p = 1 for the Hardy operator
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Hα, into any space Lq,ψE (X), satisfying the conditions

p ≤ q <
νp

ν − αp−min{m0(ϕ),m∞(ϕ)} , ψ ∈W ∩W, ψ(0) = 0

and

ψ(r) ≥ cr
αq+ν(1− q

p
)
ϕ(r), r ∈ (0, �). (3.12)

P r o o f. We consider the operator Hα, the arguments for Hα being
similar in view of estimates (3.7) and (3.8).

First we note that the condition (3.12) is nothing else but the inequality

rαΦp,ϕ(r) ≤ cΦq,ψ(r), r ∈ (0, �). (3.13)

By (3.7) we obtain

‖Hαf‖Lq,ψ(X) ≤ C‖d(·, x0)αΦp,ϕ(d(·, x0))‖Lq,ψ(X)‖f‖Lp,ϕ(X),

provided Φp,ϕ(d(x, x0)) ∈ Lq,ψ(X). The latter inclusion holds by part II of
Lemma 3.1, Since all the assumptions of Lemma 3.1 are satisfied by (3.11)
and the condition p ≤ q < νp

ν−αp−min{m0(ϕ),m∞(ϕ)} . �

Remark 3.1. The statements of Theorem 3.1 remain valid if the con-
dition (3.11) on the domain space is omitted but replaced by the condition
0 < min{m0(ψ),m∞(ψ)} ≤ max{M0(ψ),M∞(ψ)} < ν on the target space.
To show this in the proof, it suffices to observe that

‖d(·, x0)αΦp,ϕ(d(·, x0))‖Lq,ψ(X) ≤ c‖Φq,ψ(d(·, x0))‖Lq,ψ(X)

and apply the part I of Lemma 3.1.

Remark 3.2. The target space Lq,ψ(X) diminishes when q increases,
say q1 < q2, and the choice of ψ is subject to the condition Φq2,ψ2(r) ≤
CΦq1,ψ1(r), see Lemma 3.2.

Corollary 3.1. Let the space (X, d, μ) satisfy the growth condition
(2.2) and x0 ∈ E ⊆ X. Let 1 ≤ p ≤ q < qsup, 0 < λ < ν and 0 ≤ α < ν−λ

p

and
ν − γ

q
=
ν − λ

p
− α. (3.14)

Then the operators Hα and Hα are bounded from Lp,λ(X) to Lq,γ(X)

Remark 3.3. Suppose that the space (X, d, μ) satisfies the regularity
condition of the form

c1r
ν ≤ μ(B(x0, 2r) \ (B(x0, r)) ≤ c2r

ν , 0 < r < δ (3.15)
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for some δ > 0. Then, under preservation of the relation (3.14), the opera-
tors Hα and Hα are not bounded from Lp,λ(X) to Lq,γ(X) when q = qsup.
Recall that the relation (3.14) is necessary in the Euclidian case.

P r o o f. It is easy to check that the relation (3.14) with q = qsup turns

into γ(ν−λp − α) = 0, i.e. γ = 0, and then Lqsup,γ(X) = Lqsup(X). Choose

f0(x) = 1

d(x,x0)
ν−λ
p

for d(x, x0) < δ and equal to zero otherwise. Then

f0 ∈ Lp,λ(X) by Lemma 3.1. However, it is easy to show, via the diadic
decomposition with the regularity property (3.15) taken into account, that

Hαf(x) ≥ c

d(x, x0)
ν−λ
p

−α =
c

d(x, x0)
ν

qsup

for 0 < r < δ. Similar estimate for Hαf0 is also obtained in the same
way. It remains to observe that 1

d(x,x0)
ν

qsup
/∈ Lqsup(X) under the regularity

condition (3.15). �

3.2. Estimation of the commutator of the weighted operator Hα.
For the commutator of an operator A we use the notation

[a,Af ] := aAf −A(af).

We define the class W = W(o, �) as

W :=W ∪ (W ∩Δr
2),

where Δr
2 stands for the class of non-negative functions w on (0, �), satisfy-

ing the reverse doubling condition w(t) ≤ cw(2t), 0 < t < 

2 . SinceW ⊂ Δr

2,

we have W = (W ∪W ) ∩Δr
2.

Remark 3.4. From the definition of the class W, for w ∈ W there

exists a number β ∈ R, β = β(w), such that w(r)
rβ

is either a.i or a.d. One
can take any β less than min{m0(w),m∞(w)} in the first case and any β
greater than max{M0(w),M∞(w)} in the second case. It is easily checked
that

w ∈ W ⇒ w(t) ≤ cw(r) for 0 < r < t < 2r < �, (3.16)

where c = c(β) depends only on β = β(w).

In the following theorem we use the notation

As
pq(r) := r

ν
qs′

⎛
⎝

r∫
0

�νw(�)qs

⎛
⎝


∫
�

tα

w(t)
Φp,ϕ(t)

dt

t

⎞
⎠
qs

d�

�

⎞
⎠

1
qs

, (3.17)
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where 1 < s <∞, 1
s +

1
s′ = 1,

Bpq(r) :=
⎛
⎝

r∫
0

�νw(�)q

⎛
⎝


∫
�

tα

w(t)
Φp,ϕ(t)

(
1 +

∣∣∣ln r
t

∣∣∣) dt
t

⎞
⎠
q

d�

�

⎞
⎠

1
q

, (3.18)

where β = β(w) for w ∈ W, is any number defined in Remark 3.4.

Theorem 3.2. Let (X, d, μ) be homogeneous and satisfy the growth
condition (2.2) and α ∈ R. Let p, q, ϕ and the weight w satisfy the following
à priori assumptions:

i) 1 < p <∞, 1 < q <∞, w ∈ W(R+),
ii) ϕ and ψ fulfil the conditions (2.9), ϕ(2r) ≤ Cϕ(r), r ∈ R+.

Assuming that As
pq(r) <∞ and Bpq(r) <∞ for r ∈ R+, suppose that

k1,s := sup
r>0

As
pq(r)

ψ
1
q (r)

<∞, s > 1, and k2 := sup
r>0

Bpq(r)
ψ

1
q (r)

<∞ (3.19)

for some s > 1 and a ∈ CMOPs(X,x0), Ps := max {p′, qs′} . Then∥∥∥∥
[
a,wHα 1

w

]
f

∥∥∥∥
Lq,ψ{x0}(X)

≤ K‖a‖∗Ps‖f‖Lp,ϕ{x0}(X), x0 ∈ E ⊆ X,

where K = C0max{k1,s, k2} and C0, not depending on f and y, depends
only on constants involved in the assumptions in i) and ii).

P r o o f. We take � = ∞ for simplicity. We split the proof into two
steps.

Pointwise estimate via Morrey norm. We first prove the estimate∣∣∣∣
[
a,wHα 1

w

]
f(y)

∣∣∣∣ ≤ C
(‖a‖∗p′g1(d(y, x0)) + g2(y)

) ‖f‖Lp,ϕ{x0}(X), y ∈ X,

(3.20)
where

g1(d(y, x0)) := w(d(y, x0))

∞∫
d(y,x0)

tα

w(t)
Φp,ϕ(t)

dt

t
,

and

g2(y) := w(d(y, x0))
∞∑
k=0

(dk,y)
α

w(dk,y)
Φp,ϕ(dk,y)

∣∣∣a(y)− aB(x0,dk,y)

∣∣∣ .
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To this end we use diadic decomposition and proceed as follows:∣∣∣∣
[
a,wHα 1

w

]
f(y)

∣∣∣∣

≤ w(d(y, x0))
∞∑
k=1

∫
dk,y<d(z,x0)<dk+1,y

|a(z) − a(y)| |f(z)|
d(z, x0)ν−αw(d(z, x0))

dμ(z).

Hence, by (3.16) we obtain ∣∣∣∣
[
a,wHα 1

w

]
f(y)

∣∣∣∣

≤ C
w(d(y, x0))

d(y, x0)ν−α

∞∑
k=1

2k(α−ν)

w(dk,y)

∫
B(x0,dk+1,y)

∣∣∣a(z)− aB(x0,dk+1,y)

∣∣∣ |f(z)|dμ(z)

+C
w(d(y, x0))

d(y, x0)ν−α

∞∑
k=1

2k(α−ν)

w(dk,y)

∫
B(x0,dk+1,y)

∣∣∣a(y)− aB(x0,dk+1,y)

∣∣∣ |f(z)|dμ(z)

=: Cd(y, x0)
α−νw(d(y, x0))(s1(d(y, x0)) + s2(y)).

For s1 by Hölder’s inequality we have

s1 ≤ C

∞∑
k=1

1

2k(ν−α)w(dk,y)

⎛
⎜⎝

∫
B(x0,dk+1,y)

∣∣a(z)− aB(x0,dk+1,y)

∣∣p′dμ(z)
⎞
⎟⎠

1
p′

×

⎛
⎜⎝

∫
B(x0,dk+1,y)

|f(z)|pdμ(z)

⎞
⎟⎠

1
p

≤ C‖a‖∗p′
∞∑
k=1

ϕ(dk,y)
1
pd(y, x0)

ν
p′

2
k
(
ν
p
−α

)
w(dk,y)

‖f‖Lp,ϕ{x0}(X).

Applying the inequality (2.20) of Lemma 2.4, we obtain that

s1(d(y, x0)) ≤ Cd(y, x0)
ν−α‖a‖∗p′

∞∫
d(y,x0)

tα

w(t)
Φp,ϕ(t)

dt

t
‖f‖Lp,ϕ{x0}(X).

For s2 we have

s2 ≤ C

∞∑
k=1

∣∣∣a(y)− aB(x0,dk+1,y)

∣∣∣
2k(ν−α)w(dk,y)

∫
d(z,x0)<dk+1,y

|f(z)|dμ(z)
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By Hölder’s inequality we have

s2 ≤ C
∞∑
k=1

∣∣∣a(y)− aB(x0,dk+1,y)

∣∣∣ (dk+1,y)
ν
p′

2k(ν−α)w(dk,y)

⎛
⎜⎝

∫
d(z,x0)<dk+1,y

|f(z)|pdμ(z)

⎞
⎟⎠

1
p

≤ C

∞∑
k=1

ϕ(dk+1,y)
1
p (dk+1,y)

ν
p′

2k(ν−α)w(dk,y)

∣∣∣a(y)− aB(x0,dk+1,y)

∣∣∣ ‖f‖Lp,ϕ{x0}(X),

so that

s2 ≤ Cd(y, x0)
ν−α

∞∑
k=1

(dk,y)
α

w(dk,y)
Φp,ϕ(dk,y)

∣∣∣a(y)− aB(x0,dk+1,y)

∣∣∣ ‖f‖Lp,ϕ{x0}(X).

It remains to gather the estimates for s1 and s2.

Estimation of Lq(B(x0, r))-norms of g1(d(y, x0)) and g2(y). By Lemma
2.7 we have

‖g1‖Lq(B(x0,r)) ≤ C

⎛
⎝

r∫
0

�ν−1

⎛
⎝w(�)

∞∫
�

tα

w(t)
Φp,ϕ(t)

dt

t

⎞
⎠
q

d�

⎞
⎠

1
q

=: Apq.

(3.21)
For g2 we obtain

g2 ≤ C(E(y) + F(y)),

where

E(y) := ∣∣a(y)− aB(x0,r)

∣∣w(d(y, x0))
∞∑
k=1

(dk,y)
α

w(dk,y)
Φp,ϕ(dk,y)

and

F(y) := w(d(y, x0))
∞∑
k=1

∣∣∣aB(x0,dk+1,y) − aB(x0,r)

∣∣∣
(
2kd(y, x0)

)α
w(dk,y)

Φp,ϕ(dk,y).

By Lemma 2.4

E(y) ≤ ∣∣a(y)− aB(x0,r)

∣∣G(r), G(r) = w(r)

∞∫
r

tα

w(t)
Φp,ϕ(t)

dt

t
.

Hence by Hölder’s inequality with s > 1 we have

‖E‖Lq(B(x0,r)

≤

⎛
⎜⎝

∫
B(x0,r)

∣∣a(y)− aB(x0,r)

∣∣qs′dμ(y)
⎞
⎟⎠

1
qs′

⎛
⎜⎝

∫
B(x0,r)

G(d(y, x0))
qsdμ(y)

⎞
⎟⎠

1
qs

.
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Applying Lemma 2.7 to the second factor, we obtain

‖E‖Lq(B(x0,r) ≤ c‖a‖∗qs′As
pq. (3.22)

For the function F(y), applying Lemma 2.3 and then Lemma 2.4, we obtain

F(y) ≤ C‖a‖∗w(d(y, x0))
∞∫

d(y,x0)

tα

w(t)
Φp,ϕ(t)

(
1 +

∣∣∣ln r
t

∣∣∣) dt
t
.

Hence
‖F‖Lq(B(x0,r)) ≤ C‖a‖∗Bpq(r). (3.23)

Collecting the results in (3.21), (3.22) and (3.23) and observing that Apq ≤
Bpq, we obtain:∥∥∥∥

[
a,wHα 1

w

]
f

∥∥∥∥
Lq(B(x0,r))

≤ C‖a‖∗Ps max{As
pq,Bpq}‖f‖Lp,ϕ{x0}(X),

where we took into account that the norm ‖a‖∗s is increasing in s. The proof
is complete. �

Theorem 3.2 provides rather general conditions for the Lp,ϕ{x0} → Lq,ψ{x0}-
boundedness of the commutator [a,wHα 1

w ] for arbitrary values 1 < p <
∞, 1 < q < ∞, with the relation (3.19) between the functions ϕ and ψ.
Note that though the domain space is a generalized Morrey space with
a non-necessarily power function ϕ, the target space is again generalized
Morrey space, i.e. it does not use the language of Orlicz-Morrey space.

In the next theorem imposing some slight additional assumptions on
the function 1

wΦp,ϕ, involved in (3.17) and (3.18), and on the function
ϕ, we obtain an essentially more constructive result on the relation be-
tween the functions ϕ and ψ defining the domain and target spaces. In
particular, it will allow to obtain the norm estimation of the commuta-

tor for classical Morrey spaces Lp,λ{x0}(X) for the exponent q greater than

the Adams exponent. These assumptions will be formulated in terms of
the upper Matuszewska-Orlicz index of the function 1

wΦp,ϕ, and the lower
Matuszewska-Orlicz index of the function ϕ. We use the notation

m(f) := min {m0(f),m∞(f)} and M(f) := max {M0(f),M∞(f)} .

Theorem 3.3. Let (X, d, μ) be homogeneous and satisfy the growth
condition (2.2) and α ∈ R. Let a ∈ CMOPs(X,x0), Ps := max {p′, qs′} for
some s > 1, and p, q, ϕ and the weight w satisfy the à priori assumptions
i) and ii) of Theorem 3.2. Assume that

M

(
1

w
Φp,ϕ

)
< −α and m(ϕ) > νp

(
1

p
− 1

q

)
− αp. (3.24)
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Then ∥∥∥∥
[
a,wHα 1

w

]
f

∥∥∥∥
Lq,ψ{x0}(X)

≤ C‖a‖∗Ps‖f‖Lp,ϕ{x0}(X), (3.25)

where

ψ(r) ≥
(
r
α+ν

(
1
q
− 1
p

)
ϕ(r)

1
p

)q
(3.26)

Remark 3.5. The assumption M
(
1
wΦp,ϕ

)
< −α, equivalent to

M
( ϕ
wp

)
< ν − αp, imposes a condition on the weight w, depending on the

function ϕ. As regards the assumption on m(ϕ), we always have m(ϕ) ≥ 0
since ϕ is almost increasing. Consequently, the assumption on m(ϕ) in

(3.24) may be omitted when α > ν
(
1
p − 1

q

)
, and reduces just to m(ϕ) > 0

when α = ν
(
1
p − 1

q

)
.

P r o o f. We will show that, when (3.24) holds, then the conditions
(3.19) are satisfied with ψ defined in (3.26), under some choice of s > 1.

First we use the condition M
(
1
wΦp,ϕ

)
< −α and get


∫
�

tα

w(t)Φp,ϕ(t)
dt
t ≤

c �α

w(�)Φp,ϕ(�) by (2.18). Then

As
pq ≤ r

ν
qs′

⎛
⎝

r∫
0

�
ν+

(
α− ν

p

)
qs
ϕ(�)

qs
p
d�

�

⎞
⎠

1
qs

.

Let us choose the parameter s > 1 so that the lower Matuszewska-Orlicz

index of the function h(�) := �
ν+

(
α− ν

p

)
qs
ϕ(�)

qs
p ) is possible. Since m(h) =

ν +
(
α− ν

p

)
qs + qs

p m(ϕ), such a choice means that
[
ν−m(ϕ)

p − α
]
s < ν

q .

Hence, s may be chosen arbitrary in (1,∞) if ν−m(ϕ)
p ≤ α, and 1 < s <

ν/q
ν−m(ϕ)

p
−α otherwise. The latter interval is non-empty by the assumption

on m(ϕ) in (3.24).

Under this choice of s we have
r∫
0

h(t)dtt ≤ ch(r) by (2.17). Then we

obtain that

As
pq(r)

ψ(r)
1
q

≤ C, 0 < r < �,

under the choice (3.26) of the function ψ.
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For Bpq(r) we observe that the condition M
(

�α

w(�)Φp,ϕ(�)
)
< 0 allows

to use estimate (2.24) of Lemma 2.6, so that we get

Bpq(r) ≤ C

⎛
⎝

r∫
0

�
ν−1+

(
α− ν

p

)
q
ϕ(�)

q
p

(
1 + ln

r

�

)q
d�

⎞
⎠

1
q

.

The condition on m(ϕ) in (3.24) allows to use the estimate (2.23) of Lemma
2.6, so that we get

Bpq(r) ≤ Cr
ν
(

1
q
− 1
p

)
+α
ϕ(r)

1
p .

Hence, with ψ(r) defined in (3.26) we have

Bpq(r)
ψ(r)

1
q

≤ C, 0 < r < �,

which completes the proof (note that the restriction on the choice of the
parameter s used in the proof of the theorem, is not of importance, since
‖a‖∗s is increasing in s ). �

Corollary 3.2. Let (X, d, μ) be homogeneous and satisfy the growth
condition (2.2) and α ∈ R. Let 1 < p < ∞, 1 < q < ∞, 0 < λ < ν, w ∈
W, m(w) > λ−ν

p and a ∈ CMOPs(X,x0), where Ps = max {p′, qs′} , s > 1.

If
ν − λ

p
− ν

q
< α <

ν − λ

p
, (3.27)

then ∥∥∥∥
[
a,wHα 1

w

]
f

∥∥∥∥
Lq,γ{x0}(X)

≤ C‖a‖∗Ps‖f‖Lp,λ{x0}(X)
, (3.28)

where

γ = q

(
α+

λ

p
− ν

(
1

p
− 1

q

))
. (3.29)

In particular, γ = λ in the case we chose the Adams exponent, i.e. 1
q =

1
q�

= 1
p − α

ν−λ .

P r o o f. The proof is a matter of direct verification of conditions of
Theorem 3.3. Note that (3.27) after the substitution 1

q from (3.29) to (3.27)

is nothing else but 0 < γ < ν. �
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Remark 3.6. The upper bound qsup for the choice of q according to
(3.27) is given by

1

qsup
=
ν − λ

νp
− α

ν
, i.e. qsup =

ν

ν − λ
q� (3.30)

as in Section 3.1 for the Hardy operators themselves.
Similar bound qsup for the generalized Morrey spaces is also valid:

1
qsup

= ν−m(ϕ)
νp − α

ν , which follows from the condition m(ϕ) > νp
(
1
p − 1

q

)
−

αp of Theorem 3.3.

3.3. Estimation of the commutator of the weighted operator Hα.
Below we provide estimates for the commutators of the Hardy operator Hα.
Such estimates in the Euclidian case were obtained in [28]. The statements
given below not only generalize results of [28] from Euclidian case to the
case of quasi-metric measure spaces, but essentially improve them. We
omit proofs in this section because they are obtained following the same
arguments as in Section 3.2 for commutators of the operator Hα.

In the following theorem we use the notation

A
s
pq(r) := r

α+ ν
qs′

⎛
⎝

r∫
0

�νw(�)qs

⎛
⎝

�∫
0

tν

w(t)
Φp,ϕ(t)

dt

t

⎞
⎠
qs

d�

�

⎞
⎠

1
qs

, (3.31)

where 1 < s <∞, 1
s +

1
s′ = 1,

Bpq(r) := rα

⎛
⎝

r∫
0

�νw(�)q

⎛
⎝

�∫
0

tν

w(t)
Φp,ϕ(t)

(
1 + ln

r

t

) dt
t

⎞
⎠
q

d�

�

⎞
⎠

1
q

.

(3.32)

Theorem 3.4. Let (X, d, μ), p, q, α, ϕ and w satisfy the assumptions
of Theorem 3.2

Assuming that Aspq(r) <∞ and Bpq(r) <∞ for r ∈ R+, suppose that

κ1,s := sup
r>0

A
s
pq(r)

ψ
1
q (r)

<∞, s > 1, and κ2 := sup
r>0

Bpq(r)

ψ
1
q (r)

<∞

for some s > 1 and a ∈ CMOPs(X,x0), Ps := max {p′, qs′} . Then∥∥∥∥
[
a,wHα 1

w

]
f

∥∥∥∥
Lq,ψ{x0}(X)

≤ K‖a‖∗Ps‖f‖Lp,ϕ{x0}(X),

where K = C0max{κ1,s,κ2} and C0, not depending on f and y, depends
only on constants involved in the assumptions in i) and ii) of Theorem 3.2.
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The following theorem is derived from Theorem 3.4 similarly to obtain-
ing Theorem 3.3 from Theorem 3.2.

Theorem 3.5. Let (X, d, μ), p, q, α, ϕ and w satisfy the assumptions
of Theorem 3.3 and a ∈ CMOPs(X,x0), Ps := max {p′, qs′} for some s > 1.

If

m
( ϕ

wp

)
> −ν(p− 1),

then ∥∥∥∥
[
a,wHα 1

w

]
f

∥∥∥∥
Lq,ψ{x0}(X)

≤ C‖a‖∗Ps‖f‖Lp,ϕ{x0}(X), (3.33)

for any

ψ(r) ≥ c

(
r
α+ν

(
1
q
− 1
p

)
ϕ(r)

1
p

)q
. (3.34)

Corollary 3.3. Let (X, d, μ) be homogeneous and satisfy the growth
condition (2.2) and α ∈ R. Let 1 < p <∞, 1 < q <∞, 0 < λ < ν, w ∈ W
and a ∈ CMOPs(X,x0), where Ps = max {p′, qs′} for some s > 1. Then∥∥∥∥

[
a,wHα 1

w

]
f

∥∥∥∥
Lq,γ{x0}(X)

≤ C‖a‖∗Ps‖f‖Lp,λ{x0}(X)

under the conditions

ν − λ

p
− ν

q
< α <

ν − λ

p
, (3.35)

ν − γ

q
+ α =

ν − λ

p
and M(w) <

λ

p
+
ν

p′
. (3.36)

Recall that the condition (3.35) is nothing else but the inequality 0 <
γ < ν under the choice of γ provided by (3.36), see Corollary 3.2.
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