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Abstract

This thesis presents methods for statistical analysis of the probability distributions used
to model multilook polarimetric radar images. The methods are based on a matrix-
variate version of Mellin’s integral transform.

The proposed theoretical framework is referred to as Mellin kind statistics. It is an
extension of a theory recently developed for single polarisation amplitude and inten-
sity data to the complex matrix-variate case describing multilook polarimetric images.
This generalisation is made possible by the rediscovery of a generalised Mellin trans-
form, which is defined for functions of positive definite Hermitian matrices. The do-
main makes it suited for application to the distributions used to model the polarimetric
covariance and coherency matrix.

The analysis tools include the matrix-variate Mellin kind characteristic function,
which is defined with the Mellin transform in place of the conventional Fourier trans-
form. Matrix log-moments and matrix log-cumulants are retrieved from this function.
The matrix log-cumulants are used in a moment based approach to parameter estima-
tion of the distribution parameters. The estimators make efficient use of all the statistical
information in the polarimetric covariance matrix, and are superior to all known alter-
natives. The matrix log-cumulants are also used to construct the first known goodness-
of-fit test for matrix distributions based on the multilook polarimetric product model.
The algorithms are interpreted by means of a highly informative graphical visualisation
tool displaying a space spanned by certain matrix log-cumulants.

It is demonstrated that the matrix-variate Mellin transform is the natural tool for
analysing multilook polarimetric radar images. This conclusion is based on the simple
and elegant mathematical expressions obtained, the superb statistical properties of de-
veloped estimators, as well as the intuitive interpretations offered by the Mellin kind
statistics.
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Chapter 1

Introduction

The first part of this chapter motivates the application of the Mellin Transform to the
analysis of polarimetric radar images. The second and third part provides an extended
summary of the chapters of the thesis, including three journal publications. A list of
other publications produced is included at the end.

1.1 Motivation

The univariate Mellin transform is an integral transform named after the Finnish mathe-
matician Robert Hjalmar Mellin (1854-1933), which has found many applications in math-
ematics, statistics, physics and engineering. It was first applied to statistical models of
radar images by Jean-Marie Nicolas, a French professor of signal and image processing.
In a milestone paper [Nicolas, 2002], he presented a new framework for statistical anal-
ysis of distributiond| of single polarisation amplitude and intensity images. The paper
was followed by a comprehensive technical report [Nicolas, 2006], which laid the foun-
dation for a new approach to deduction of sophisticated distribution models, including
their functional characterisation, the expressions for their statistical moments, and esti-
mators of the model parameters.

In the years following the seminal publications, a large number of papers have ap-
peared that use the analysis framework of Nicolas to solve many different radar im-
age analysis problems. The list covers applications such as statistical modelling [Moser
et al., 2006a,Moser et al., 2006b, Bombrun and Beaulieu, 2008], speckle filtering [Nicolas,
2003|/Achim et al., 2006,/Chen and Liu, 2008], image classification [Tison et al., 2004], im-
age segmentation [Benboudjema et al., 2007, Galland et al., 2009], change detection [Bu-
jor et al., 2004, Moser and Serpico, 2006, Moser and Serpico, 2009], estimation of inter-
ferometric coherence [Abdelfattah and Nicolas, 2006] and image compression [Valade
and Nicolas, 2004]. Still it seems like the awareness about the strength of the method is
increasing rapidly.

'The term distribution is used in this thesis as equivalent to probability density function.
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Figure 1.1: Three innovators who have provided the theoretical underpinning for this
thesis: Hjalmar Mellin, Jean-Marie Nicolas and Arak Mathai (left to right).

During the course of my research on radar image classification, practical require-
ments urged me to look into certain estimation problems for parameters of multilook
polarimetric radar data distributions. The solutions I obtained bore strong similarities
with those achieved by Mellin transform methods, but looked like matrix-variate exten-
sions. This was the starting point of my quest for a matrix-variate generalisation of the
Mellin transform, which proved successful. It was found in shape of the so-called M-
transform, a lesser known integral transform for functions defined on positive definite
Hermitian matrices. It was proposed by the Indian/Canadian statistician Arakaparambil
Mathai Mathai in and extended to complex matrices in [Mathai, 1997].
Just like the univariate Mellin transform is tailor-made for distributions of real positive
random variables, the matrix-variate M-transform went hand in glove with the covari-
ance matrix distributions used to describe multilook polarimetric radar data.

The rediscovery of the M-transform opened the door for an extension of the Mellin
kind statistics, which is the name used for the theoretical framework of Nicolas, to multi-
look polarimetric radar data. The prospect of achieving results with an impact compara-
ble to those of Nicolas was sufficient to make me redefine my Ph.D. project completely.
For one reason, the matrix-variate distributions describing polarimetric covariance ma-
trices contain special functions and complicated forms that severely limit their mathe-
matical tractability by conventional methods. Their applicability would certainly ben-
efit from a method which provided a new perspective on functional characterisation,
computation of statistical moments, model visualisation and parameter estimation. If
the complexity of these distribution cannot be handled, the only rescue is to resort to the
mathematically simpler but less accurate Wishart distribution model, which in many
situations restricts the quality of the model based inference. Secondly, it was envisioned
that the methods based on the Mellin transform would make possible the full use of the
statistical information contained in the multilook polarimetric data, including the cor-
relations between the polarimetric channels, and not only the single polarisation inten-
sities. Furthermore, an extension of the Mellin kind statistics would provide a general
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theory treating single polarisation images as a special case. The results presented in the
current thesis proves in my opinion that the change of direction was a right decision.

It was advocated above that Mellin kind statistics have a positive effect on the ap-
plicability of certain distributions that are mathematically complex, but provide better
fit with real data than the simpler alternative. The distributions referred to are those
arising from the doubly stochastic product model for multilook polarimetric radar images.
It is therefore relevant to comment on the necessity of such models. For low resolu-
tion radar images, each resolution cell contains a high number of microwave scatterers.
The scattered electromagnetic field is the coherent sum of contributions from all these
scatterers, and the central limit theorem asserts that it can be accurately modelled by
Gaussian statistics. With the steadily improving spatial resolution of operational syn-
thetic aperture radars, the Gaussian assumption is frequently challenged and often fails,
in particular for scenes of urban environment, but also for natural surfaces such as forest
and sea. Concerning the polarimetric aspect, it should be expected that the technolog-
ical evolution will gradually replace single polarisation radars with instruments that
have increasing capabilities for polarimetry. Hence, the need for adequate polarimetric
distribution models will be more and more emergent.

After having argued in terms of technicalities, a more fundamental question nat-
urally arises: Why is statistical modelling of radar data an important research task?
When we zoom out and look at the benefit for society and mankind, the importance is
connected to the value of the imaging radar as a remote sensing instrument. In the con-
text of Earth observation, the radar is distinguished by its all-weather and all-season
capabilities. It performs its measurements irrespective of cloud cover and sun condi-
tions. Together with the wide spatial coverage and relatively good temporal resolution
of the image acquisitions, these properties make spaceborne radar crucial for tasks such
as monitoring of rain forest degradation and deforestation, change detection in Arctic
glaciers, and mapping of sea ice conditions. A common aspect of these applications
is that they require observations of inaccessible areas that are impossible to cover by
on-site measurements. Radar remote sensing is both a practical and a cost effective al-
ternative. The limiting factor of radar images is their content of strong speckle or clutter,
an inherent feature of the coherent imaging process which complicates the interpreta-
tion and potential for information extraction. The most efficient remedy is to analyse
the images within the context of a suitable statistical model, which closes the argument.

1.2 Chapter Review

Chapter 2| provides an introduction to radar imaging, which starts at the very funda-
mental by discussing key properties of active microwave sensors, describing different
frequency bands and different types of imaging radars. The function of synthetic aper-
ture radars and polarimetric radars is explained. We next look at the data formats de-
livered by polarimetric radars, starting with single-look complex data and moving on
to multilook complex data, while explaining the concept of multilooking. The chapter
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ends with the presentation of a physical model of radar speckle, and an explanation
of its link to the traditional statistical models for the radar measurements. We define
speckle and texture, the two factors of the doubly stochastic product model, which
forms the basis of our statistical analysis.

Chapter[3|is opened by a historical review of the Mellin transform, with particular focus
on its use in statistical distribution theory. The underlying ideas of Nicolas” univariate
Mellin kind statistics are outlined, before we present Mathai’s generalised Mellin trans-
form. The original contribution of the author starts with the derivations of fundamental
properties of the matrix-variate Mellin transform. It is followed by the new definitions
of matrix-variate Mellin kind statistics. Finally, the Mellin kind statistics of a general
multilook polarimetric product model are revealed, while leaving the detailed deriva-
tions to Paper 2.

Chapter [ starts with the definitions of the special functions needed in the sequel. It
further introduces candidate univariate distributions that can be used to model tex-
ture, together with their Mellin kind statistics, that were derived in [Nicolas, 2006]. The
scaled complex Wishart distribution is also presented as a model for fully developed
speckle, unmodulated by texture. The Mellin kind statistics given for this distribution
are contributed in Paper 2. With the listed texture and speckle distributions as building
block, we arrive at five compound distributions for the polarimetric covariance matrix.
The Mellin kind statistics derived for all distributions are new.

Chapters contain Papers 1-3. They are described separately in the next section.

Chapter|[8|gives the conclusions. It lists the main results and points out future directions
of research based on the work documented in the thesis.

Appendix |A| is a conference paper (referenced as Paper 4 in the list of Section
which contains ideas about statistical modelling of speckle filtered multilook polari-
metric radar data. In is included for completeness and availability, since the results are
mentioned and referenced in the thesis.

Appendix B|is a translation of [Nicolas, 2002], which is a key reference for this thesis.
The paper was originally published in French, but translated by the current author for
the benefit of the research reported in this thesis. It is included here, with permission
from the author, for the convenience of readers who are not proficient in French.

1.3 Publication Review

The following three publications are included in this thesis as Chapters 5} [fand [/} A
summary is given for each, highlighting the original contributions of the authors. The
papers appear in chronological order and document the progress of my work in terms
of maturity and depth of both exposition and content. Paper 1 is least mature in the
sense that the theory of Mellin kind statistics for the polarimetric case had not been
formulated yet. The connection of the results to the Mellin transform was discovered
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later, as documented in Paper 2. Paper 3 is a first step in the direction of applications of
the theory.

Paper 1

S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, “Estimation of the Equivalent Number of
Looks in Polarimetric Synthetic Aperture Radar Imagery”, IEEE Transactions on Geo-
science and Remote Sensing, vol. 47, no. 11, pp. 3795-3809, December 2009.

The paper studies estimators for the equivalent number of looks (ENL), a parameter
which is found in all distributions used to model multilook radar images. Still, the
literature on the topic is very sparse. The relation L = E{I}?/ Var{I}, where I denotes
intensity, is often mistaken for being the definition of the ENL in the single polarisation
case, assuming fully developed speckle and no texture. In reality, it is just one particular
way of resolving the ENL from moments relations.

In the paper, we propose two new estimators for the ENL that are adapted to mul-
tilook polarimetric radar data. The expressions are derived by examining different
kinds of moments of the polarimetric covariance matrix. The first estimator is a gen-
eralisation of the expression given above. The second is found from moments of the
log-determinant of the covariance matrix, and is also found to be the maximum likeli-
hood (ML) estimator based on the Wishart distribution model for multilook polarimet-
ric radar data. The proposed estimators are the first ones to take the full covariance ma-
trix as input, thereby utilising all the available statistical information. This is reflected
in the experimental results in terms of superior statistical properties. The ML estimator
has the lowest bias and variance, and also most robust with respect to the assumption
of no texture.

An approach to unsupervised estimation of the ENL is also presented, where the ML
estimator is used to compute small sample estimates over the whole image, regardless
of the homogeneity in the estimation window. It is shown that a robust estimate of the
ENL can be extracted from a probability density function estimate of the collection of
small sample estimates. This is only possible when using the novel low variance ML
estimator.

There are minor differences between the published version of the paper and the ver-
sion included in the thesis. Equation (23) has been corrected in the thesis version. The
journal version gives an expression which is valid for real matrices, while complex ma-
trices are considered. The paper has been reformatted to a different font size. Otherwise,
the differences are mainly orthographical, due to different preferences of English style.
Some symbols have also been changed to harmonise the notation of this paper with the
others.



Paper 2

S.N. Anfinsen and T. Eltoft, "Application of the Matrix-Variate Mellin Transform to
Analysis of Polarimetric Radar Images", submitted to IEEE Transactions on Geoscience
and Remote Sensing.

This paper introduces the Mellin kind statistics framework for analysis of multilook
polarimetric radar images. It builds on the equivalent framework derived by Nicolas
for the single polarisation case, and the extension to multilook polarimetry rests upon
Mathai’s matrix-variate Mellin transform. The combination of these ideas, leading to a
whole new set of definitions for the polarimetric case, is an original contribution.

The paper gives a thorough review of the univariate Mellin kind statistics. It ex-
plains Nicolas” idea of introducing a new kind of characteristic function for real posi-
tive random variables by replacing the Fourier transform with the Mellin transform in
the definition of the conventional characteristic function. The moments and cumulants
retrieved from this characteristic function are calculated on logarithmic scale, and are
therefore called log-moments and log-cumulants. We also emphasise analogies between
Mellin kind statistics and conventional (Fourier kind) statistics, showing that the Mellin
kind statistics are the natural tools for analysis of a multiplicative signal model, just like
the conventional statistics are for the familiar additive model. This care is taken to make
the presentation pedagogical, but also to make Nicolas’ theory available to a wider au-
dience, since his most comprehensive derivations are only published in French [Nicolas,
2002,|Nicolas, 2006].

The novel contributions include definitions of the Mellin kind characteristic func-
tion, cumulant generating function, moments and cumulants for the matrix-variate case
describing multilook polarimetric radar images. We have further defined a matrix-
variate Mellin convolution and correlation, and proved corresponding convolution and
correlation theorems. The convolution theorem shows that the Mellin transform of the
Mellin convolution of two functions decomposes as the product of Mellin transform of
the individual functions. This result is needed to formulate the Mellin kind statistics
under the multilook polarimetric product model, which is probably the contribution
with the largest practical significance.

As an example of applications of the new theory, we have derived parameter es-
timators for some product model distributions for the polarimetric covariance matrix.
The experimental results show that the estimators based on Mellin kind statistics are
superior to all alternative estimators from the literature. The proposed estimation pro-
cedure is interpreted visually in terms of a diagram where we plot empirical matrix
log-cumulants computed from data samples together with the population matrix log-
cumulants of the distributions. The matrix log-cumulant diagram is a matrix-variate
extension of the diagram Nicolas has used in the univariate case.
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Paper 3

S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, "Goodness-of-Fit Tests for Multilook Po-
larimetric Radar Data Based on the Mellin Transform", submitted to IEEE Transactions
on Geoscience and Remote Sensing.

In this paper, the Mellin kind statistics framework is used to derive goodness-of-fit tests
for distributions of the polarimetric covariance matrix derived under the multilook po-
larimetric product model. These are, to the best of our knowledge, the first formal
statistical tests that have been devised for these complicated distributions. The test
statistic is constructed from the matrix log-cumulants defined in Paper 2. In order to
deduce sampling distributions for the test statistics, asymptotic statistics of the matrix
log-cumulants have been derived. They proposed test statistic can be applied to both
simple and composite hypothesis tests.

For the simple hypothesis, the sampling distribution of the test statistic is asymp-
totically x? distributed. We demonstrate that this is a good approximation even for
moderate sample sizes. For the composite test, we must resort to Monte Carlo simula-
tions to find the sampling distribution. This approach has a higher computational cost,
but produces the true sampling distribution regardless of sample size.

The simple and composite tests have been tested on simulated and real data. As-
sessments of the test powers show that we have found a useful method which meets the
need for formal procedures of testing model fit for compound covariance matrix distri-
butions. The matrix log-cumulant diagram introduced in Paper 2 is further promoted
as an intuitive visualisation tool for interpretation of the test procedure. As a graphical
aid for informal model selection and validation, it separates very well between different
distributions whose differences are mainly manifested in the heavy tails.

The paper emphasises the coupling between the problems of goodness-of-fit testing
and parameter estimation. A new estimation technique for parameters of the texture
distributions is motivated by the proposed tests. The estimator maximises the asymp-
totic likelihood of the compounded matrix distribution, and is effectively a method of
moment type procedure using multiple matrix log-cumulants. The estimator is tested
in the experiments of Paper 2, and exhibits superior performance in terms of both bias
and variance. It is also an intrinsic part of the composite test, which requires estimation
of unknown distribution parameters.

1.4 Other Publications and Presentations

As first author:

1. S.N. Anfinsen, R. Jenssen and T. Eltoft, “Clustering of polarimetric SAR data with
an information theoretic kernel method,” presented at the IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS '06), Denver, U.S., 31 Jul.-4 Aug. 2006, not published.
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N

S. N. Anfinsen, R. Jenssen and T. Eltoft, “Spectral clustering of polarimetric SAR
data with Wishart-derived distance measures”, Proc. 3rd Int. Workshop on Science
and Applications of SAR Polarimetry and Polarimetric Interferometry (POLinSAR '07),
Frascati, Italy, 22-26 Jan. 2007, ser. ESA SP-644, Mar. 2007, 8 pp.

. S.N. Anfinsen, A. P. Doulgeris and T. Eltoft, “Estimation of the Equivalent Num-

ber of Looks in Polarimetric SAR Imagery”, Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS '08), vol. 4, Boston, U.S., 6-11 Jul. 2008, pp. 487—490.

S. N. Anfinsen, T. Eltoft and A. P. Doulgeris, “A relaxed Wishart model for po-
larimetric SAR data (POLinSAR '09)”, Proc. 4th Int. Workshop on Science and Appli-
cations of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 26-30 Jan.
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Chapter 2

Radar Polarimetry

This chapter gives an overview of the fundamental properties of radar imaging, with
emphasis on the potential of spaceborne polarimetric synthetic aperture radar. The
foundation is laid for the subsequent theoretical developments by the definition of
the multilook polarimetric product model. The connections to an underlying physical
model of microwave scattering are explained.

2.1 Imaging Radar

An imaging radarfl|illuminates the target scene with directional pulses of electromagnetic
(EM) energy, measures the backscattered energy and the round-trip time, and uses this
information to form an image. The radar operates in the microwave region of the EM
spectrum, and the backscatter depends on dielectric and geometrical properties (rough-
ness and shape) of the target. If both amplitude and phase of the backscattered wave
is measured, the image will constitute a two-dimensional map of the EM scattering co-
efficient, which is defined in Section The scattering coefficient can be measured
with different combinations of polarisations at the transmitter and receiver. The use of
multiple polarisations gives rise to multidimensional image data known as polarimetric
radar images. The principles of radar imaging are shown in Figure

2.1.1 Frequency Bands

Radars are classified by the frequency band their emitted pulse belongs to. The fre-
quency bands most commonly used by spaceborne earth observation radars are L-band
(Seasat, JERS-1 and ALOS PALSAR), C-band (ERS-1, ERS-2, Envisat ASAR, Radarsat-
1 and Radarsat-2) and X-band (TerraSAR-X and COSMO-SkyMed). P-ban radar has

'Radar was originally an acronym for the method of radio detection and ranging, but has been assimi-
lated as a standard word in most languages, and now refers to the instrument itself.

2The P-band is not defined in the IEEE standard reported in Table 3| but refers to a band which lies
partially in the UHF-band and partially in the VHF-band, according to this designation.
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Figure 2.1: An imaging radar is an active microwave instrument which transmits elec-
tromagnetic pulses (A), focused by the antenna into a beam (B), and receives a portion
of the reflected energy (C) backscattered from various objects.

only been mounted on airborne research missions, but a satellite mission named BIOMASS
is planned. The letter designation applied to different frequency ranges is shown in Ta-
ble 3| whose source is the IEEE Standard 521-2000(R2009) [IEEE, 2009].

The penetration depth of the microwave into a target medium, such as vegetation,
glacier, sea ice and soil, increases with wavelength. It also depends on the moisture
level of the medium. Thus, the usefulness of the different frequency bands vary with
application. For instance, C-band is generally preferred for mapping of sea ice, because
it provides the best contrast between sea and ice (although the contrast also depends
largely on polarisation and incidence angle). L-band is preferred for studies of many
types of vegetation, for which the wave penetrates the vegetation canopy and reaches
the ground or surface level. P-band is required to penetrate rain forest, and thus to ob-
tain meaningful estimates of biomass for this biotope, since the measurements saturate
at shorter wavelengths, resulting in underestimation. The frequency band also deter-
mines the scale of roughness which interacts with the radar wave and influences the
measurements. The backscattered energy is sensitive to surface curvature and rough-
ness at length scales near the radar wavelength.

2.1.2 Properties of Imaging Radar

The major advantage of active microwave instruments is that they work independently
of sunlight conditions and cloud cover. Unlike optical sensors, they operate equally well
nighttime as daytime, and the attenuation of the signal by clouds and water vapour is
negligible in most bands. L-band radars may experience disturbance by ionospheric
Faraday rotation under certain conditions [Freeman and Saatchi, 2004], while X-band
and Ku-band backscatter is sensitive to precipitation, which has been successfully re-
trieved from spaceborne SAR observations [Marzano and Weinman, 2008].

Radar systems give access to different parameters compared to optical systems. Their

SFrequencies from 216-450 MHz are sometimes called P-band.
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Table 2.1: Microwave bands with letter designation, frequency range and wavelength
range.

Band | Frequency range | wavelength range [cm]

HF 3-30 MHz 10-100 m
VHEF? 30-300 MHz 1-10 m
UHPF | 300-1000 MHz 30-100 cm

L 1-2 GHz 15-30 cm
S 2-4 GHz 7.5-15 cm
C 4-8 GHz 3.75-7.5 cm
X 8-12 GHz 2.5-3.75 cm
Ku 12-18 GHz 16.7-25 mm
K 18-27 GHz 11.1-16.7 mm
Ka 27-40 GHz 7.5-11.1 mm
\Y 40-75 GHz 4.0-7.5 mm
W 75-110 GHz 2.7-4.0 mm
mm 110-170 GHz 1.8-2.7 mm

measurements can be related to surface roughness, humidity and geometrical proper-
ties, as previously discussed. They cannot be used to retrieve biophysical parameters
that require access to radiances, reflectances and brightness temperatures. Neverthe-
less, many mapping and classification products can be obtained with similar quality as
for optical instruments, and the independence of solar illumination and cloud cover as-
sures temporal consistence of the service. This property is especially attractive for mon-
itoring of high latitude areas, where Arctic/Antarctic winter and frequent cloud cover
limits the usefulness of optical sensors. Persistent cloud cover also severely restrict the
capacity of optical monitoring of tropical rain forest, whereas radar instruments deliver
consistent results, which is a vital requirement for operational services.

2.1.3 Instruments

Different types of radar can be classified as imaging radars. A ground-penetrating
radar (GPR) is an active microwave instrument used to image the subsurface, which
is often implemented as a continuous wave (CW) radatﬂ It is applied to a variety of
media, including rock, soil, ice, snow, fresh water and man-made structures. The data
are processed into a radargram which shows the depth profile and indicates bound-
aries between layers with different dielectric constant. A weather radar is normally a
ground-based Doppler radar capable of locating precipitation, calculating its intensity

*A continuous wave radar transmits continuous waves instead of pulses. Range measurements are
enabled by use of e.g. a frequency modulated (FM-CW) or step-frequency (SF-CW) transmitted wave.

11



A " @CCRSICCT

Figure 2.2: The SAR principle: A target (A) is illuminated by several pulses of the radar
beam. The backscattered echoes of each pulse is recorded. The length of the synthesized
antenna (B) is the the distance between the points where the target enters and leaves the
radar beam.

and velocity, and identifying its type. It scans a volume of air around the radar station,
and images are produced as different cross-sections of the scanned volume. In addition,
we have real aperture radar (RAR) and synthetic aperture radar (SAR), whose function is
explained in the next section. These can both be ground-based or airborne. SAR data
are also widely available from spaceborne instruments that provide regular global cov-
erage. These instruments are therefore important and reliable sources of information
for various monitoration programs.

The methods presented in this thesis are aimed at multilook polarimetric data, a data
format which is defined in Section[2.2.4] The most obvious subject for the proposed anal-
ysis tools is polarimetric SAR data. However, polarimetric GPRs and weather radars ex-
ist [Langley et al., 2009, Galetti et al., 2008], and their data can also be processed into the
same format, even though other representations are more common. The developments
of this thesis are presented as a generic theory for polarimetric radar data, since the
theoretical framework can in principle be applied to any kind of multilook polarimetric
radar data.

2.1.4 Synthetic Aperture Radar

The synthetic aperture processing technique [Oliver and Quegan, 2004, Cumming and
Wong, 2005, Massonnet and Souyris, 2008] must be credited for the availability of high
resolution radar images captured by spaceborne platforms. The difference between a
RAR and a SAR sensor lies in the image resolution in the azimuth, or along-track direc-
tion. The azimuth resolution of a RAR is determined by the beamwidth of the antenna,
which is limited by practical constraints. A SAR obtains multiple measurements of
the scene at different azimuth angles, and uses advanced signal processing to combine
these into an image with improved azimuth resolution. The effect is the same as using
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Figure 2.3: Electromagnetic wave with linear polarisation.

an aperture whose size is larger than the actual, hence the term synthetic aperture. The
finest azimuth resolution achieved by the most recent spaceborne SAR instruments is
1 meter for TerraSAR-X and COSMO-SkyMED and 3 metres for Radarsat-2 and ALOS
PALSAR. The SAR principle is explained by Figure

2.1.5 Polarimetric Radar

An EM wave consists of electric and magnetic field components that oscillate in phase
perpendicular to each other and perpendicular to the direction of energy propagation
(see Figure 2.3). The polarisation of an EM wave describes the orientation of its oscil-
lations. A fully polarimetric radar simultaneously transmits microwave pulses with
two different orthogonal polarisations, it measures the electric field components at two
orthogonal polarisations, and resolves the scattering coefficients for all four combina-
tions of transmit and receive polarisation. Any polarisation can be synthesised as a su-
perposition of two orthogonal polarisation. The fully polarimetric measurements thus
constitute a complete description of the scattering characteristics of the resolution cell,
which can be analysed for an arbitrary polarisation by a simple transformation of the
orthogonal basis.

SAR instruments commonly use linear polarisations, where the electrical field is ori-
ented in a single direction, normally horizontally and vertically. Another option is to
use circular or elliptical polarisations, where the electric field rotates rightwards or left-
wards in the direction of propagation. The polarisations at the transmitter and receiver
need not be the same, and can be chosen to optimise system performance or in accor-
dance with given restrictions or requirements.

In radar polarimetry, we use the complex scattering coefficients measured at differ-
ent polarisations to characterise the target. A polarimetric radar extends the capabil-
ities of normal single polarisation radar, not only because it provides multichannel
data. Most importantly, it provides a strong link to the physics of the scattering pro-
cess and allows us to identify distinct scattering mechanisms. Coherent scattering from
point sources can be resolved as scattering from elementary geometrical objects, such
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as spheres, cylinders, dipoles, diplanes, dihedrals and trihedrals. Incoherent scattering
can be resolved as surface (single bounce) scattering, double bounce scattering and vol-
ume scattering. The methods used are known as polarimetric decompositions, and a rich
literature has emerged on the topic [Mott, 2007, Lee and Pottier, 2009, Cloude, 2010].

2.2 Data Formats

This section describes the data formats encountered for polarimetric radar data. We
start from a mathematical description of the most elementary measurable in polarimet-
ric radar imaging, the matrix holding the scattering coefficients of all polarimetric chan-
nels. We then describe the multilooking process and transformation of the data into the
intensity domain.

2.21 Single Look Complex Data

As described in the previous section, the fully polarimetric SAR instrument separately
transmits orthogonally polarised microwaves pulses, and measures orthogonal compo-
nents of the received signal. For each pixel, the measurements result in a matrix of scat-
tering coefficients. These are complex-valued, dimensionless numbers that describe the
transformation of the transmitted (incoming) EM field to the received (backscattered)
EM field for all combinations of transmit and receive polarisation.

The transformation can be expressed as

r gkp t
=7 s sl e
y P yr  Pyy y
where j = /1 is the imaginary unit, k& denotes wavenumber and p is the distance be-
tween radar and target. The subscript of the EM field component E;, where i € {z,y},
refers to the polarisation it is associated with. The superscript of E/, where j € {r,t},
indicates if it is the transmitted or received field component. The orthogonal polarisa-
tions are denoted x and y for generality, although it has been assumed that the same
polarisations are used at the transmitter and the receiver. The scattering coefficients
Sij, 1,7 € {z,y}, are subscripted with the associated receive and transmit polarisation,
in that order.

The scattering coefficients are complex-valued, and they comprise what is known
in radar imaging terminology as a look. The SAR processor may split the full synthetic
aperture into several subapertures. This is done by splitting the Doppler bandwidth into
sub-bands and extracting the band-limited signal. The portion of the SAR signal asso-
ciated with one subaperture or subband represents an individual look of the scene. The
scattering coefficients represent one such look after the image has been focused. Data
structures that contain the scattering coefficients are therefore referred to as single-look

complex (SLC) data. The single-look term is used also for sensors without the synthetic
aperture capacity, even though the look extraction aspect is missing.
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2.2.2 Scattering Matrix

The choice of polarisations is from now on restricted to the linear pair, that is, the hor-
izontal or vertical polarisation. This is the most commonly used set of orthogonal po-
larisations for SAR systems, and the restriction can be done without loss of generality
for the methods subsequently derived. The exception is for interpretations of scattering
mechanisms, that rely explicitly on the choice of polarisation basis.

We extract from the scattering matrix

_ Shh S/w 2x2
S = { N } e 2, (2.2)

where the subscripts h and v denote horizontal and vertical polarisation, respectively.
This matrix is also known as the Sinclair matrix, and holds all scattering coefficients
measured by the fully polarimetric radar.

2.2.3 Scattering Vector
Lexicographic Basis

The scattering vector is simply the vectorised version of the scattering matrix, defined
as

Shh
Shv
Svh
S’UU

s = vec(ST) = e, (2.3)

where vec(+) is the column stacking vectorisation operator. The vector elements can also
be seen as coefficients of the lexicographic decomposition of the scattering matrix:

1 0 01 00 0 0
S:Shh|:00:|+5hv|:00:|+svh|:10:|+Sm}|:01:|. (2.4)

This vector is therefore known as the lexicographic basis scattering vector.

Pauli Basis

Another representation of the scattering vector is obtained by a linear transformation of
the lexicographic basis vector. The Pauli basis scattering vector is obtained as

Shh + va
. . 1 Shh - SU’U 4x1
k=Us=—| g" ¢ |ec, (2.5)
j(Shv - vh)

15



where U is the unitary transformation matrix

10 0 1
1 10 0 -1

U= E 01 1 0 (2.6)
0 9 — O

The vector elements are the coefficients in the Pauli decomposition of the scattering
matrix, given by

S — Shh + va 10 Shh - va 1 0
-2 o1 /2 L0 -1 2
+ Shv + S’Uh |: 01 :| ](Shv - S'uh) |: 0 —J :| .
V2 10 V2 g7 0 |

The basis of this decomposition contains the three 2 x 2 Pauli matrices, that were orig-
inally introduced in quantum mechanics to describe the spin of a spin /2 particle in
three spatial directions. The fourth basis matrix is the 2 x 2 identity matrix, which is
associated with the first element of k.

The advantage of the Pauli basis scattering vector is that it provides physical inter-
pretations of its elements in terms of elementary scattering mechanisms. The respective
elements of k, denoted {k1, - -- , k4}, can be related to: single or odd-bounce scattering
from a plane surface (k;), diplane scattering (double-bounce or even-bounce) from cor-
ners with a relative orientation of 0° (k) and 45° (k3), and the residue of antisymmetric
components (k) [Lee and Pottier, 2009, Cloude, 2010].

Reduced Dimension Scattering Vectors

Let d be the dimension of s, which is equivalent to the number of polarimetric channels.
It will be referred to as the polarimetric dimension. The polarimetric dimension can be
reduced compared to the quadrature polarimetric case of d = 4. If only one polarisation
is used at the transmitter (or receiver), then only a subset of the scattering coefficients
can be measured, and we obtain dual polarisation data with d = 2. Single polarisation
data are obviously also a special case, with d = 1.

The case of d = 3 is encountered when we assume reciprocity of the target, defined as
follows: For natural terrain it can safely be assumed that the cross-polarised channels
are approximately equal: S, ~ S,,. These measurements can then be averaged to
reduce uncertainty, and we obtain the reduced scattering vector

Shh
S = (Shv + S’Uh)/\/5 e . (28)
S’U'U

The term /2 ensures that the total measured power:

Ptot = |Shh|2 + ’Shv‘Q + |Svh’2 + |va|2

16



B CCRS / CCT

Figure 2.4: In multilook processing, the radar beam (A) is divided into several sub-
beams, each providing an independent (in an ideal case) look at the illuminated scene.

is maintained regardless of a change of basis. The reciprocity assumption breaks down
in urban environments, or generally when the target geometry is such that the amount
of cross-polarised power depends on the radar look angle, which is typical for man-
made targets and structures with non-random orientation.

The equivalent version of the Pauli basis scattering vector is

1 Shh + va
k=— | Swn— S c 3L, (29)
\/§ Shv + Svh

2.24 Multilook Complex Data

The look term was defined in Section as a portion of the SAR signal recorded by a
part of the synthetic aperture, known as a subaperture. The subaperture signal can be
extracted from the total signal by filtering in the frequency domain. Multiple looks can
be summed incoherently to produce a multilook image, an averaging operation known
as multilooking [Cumming and Wong, 2005,Massonnet and Souyris, 2008]. Multilooking
can also be done in the spatial domain, after the image has been focused. This is done
by computing the mean value of a group of adjacent pixels, and must also be done
incoherently, since the single-look data are complex-valued. The multilook principle is
illustrated by Figure

Multilooking of single polarisation radar data produces amplitude or intensity data
that are real-valued. All phase information is discarded. In the polarimetric case, the
multilooking process creates complex data which preserves information on the mean
phase difference between the polarimetric channels. The format is known as multilook
complex (MLC) data.

We remark that the averaged looks are correlated. For multilooking in the frequency
domain, the correlation occurs because the filters used to split the Doppler bandwidth
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into subbands have a slight overlap. In spatial domain multilooking, we average neigh-
bour pixels that are correlated because they share a certain amount of information from
the focusing process, due to the radar point spread function [Rignot and Chellappa,
1993]. This has an impact on the statistical modelling of MLC data. The exact form of
the PDF for correlated data does not have a simple closed form expression [Goodman,
1975, Rignot and Chellappa, 1993, Gierull and Sikaneta, 2002]. The practical approach
has been to derive the distribution as if the multilook samples were statistically inde-
pendent, and replace the nominal number of looks, equivalent to the actual number of
samples, with an equivalent number of looks (ENL). The ENL is must be estimated from
the data, which is done by equating certain empirical sample moments with the cor-
responding theoretical population moments under the assumed statistical distribution
model. This is the topic of Paper 1 in Chapter

2.2.5 Covariance Matrix

Assume that L looks are available, in the form of the scattering vector sample {s,}}_ ;.
We refer to L as the nominal number of looks. The lexicographic basis scattering vec-
tor is multilooked by computing its sample covariance matrix, under the assumption
that the {s;} are zero mean, a condition discussed in Section The multilooking
operation is formulated as

Cmp s = <stZh> <st§§> s, s> <th*> - @0
- (SuuShr) (SuwSh) {SwSiy) (SuSo)

where (-)* and (-) are the complex conjugation and Hermitian transposition operators,
respectively, and (-) denotes a sample mean over all single-look measurements. This
produces the polarimetric covariance matrix C, which is positive definite and Hermitian
symmetric. It has the real-valued intensities of the polarimetric channels on the main
diagonal, and their complex covariances off the diagonal. The matrix C is the measur-
able when working with multilook polarimetric radar data, and it is the subject of the
subsequent analysis.

2.2.6 Coherency Matrix

The covariance matrix C can be replaced by the polarimetric coherency matrix 2, which is
the term used for the sample covariance matrix of the Pauli basis scattering vector. It is
computed from the sample {k/}/ b

L
1
= > kkj' =UCU. (2.11)
(=1
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The coherency matrix is often the preferred representation, because of its the physical
interpretation. In the quadrature polarimetric case, the first three elements on the diag-
onal are the intensities:

[Q11 = (|Shn + Sul?), (2.12)
[9]22 = <’Shh - va’2> y (213)
[Qs3 = (|Sh + Sunl?) (2.14)

that can be interpreted in terms of the same elementary scattering mechanisms as the
elements of k. Incoherent polarimetric decompositions, such as the Freeman decompo-
sition [Freeman and Durden, 1998] and Yamaguchi decomposition [Yamaguchi et al.,
2005]], go even further in extracting entities that can be directly related to surface scat-
tering, double-bounce scattering and volume scattering and their relative proportion.

For the methods developed in this thesis, it is of no concern whether we use the
covariance matrix or the coherency matrix. The results are equally valid and useful for
both data formats.

2.3 Polarimetric Radar Statistics

In this section we review statistical models for the polarimetric radar measurements. We
specifically look at probability density functions (PDFs) for the different data formats
based on a physical description of the scattering process. The EM field measured at the
radar is a superposition in the far field of coherent microwave components, each pro-
duced by a reflection from a unique surface element called a scatterer. If the resolution
cell contains only a limited number of scatterers, whose position could be accurately
determined, then a deterministic description is in theory possible. In practice, we must
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Figure 2.5: The roughness of the surface (left) determines the type of scattering pro-
duced (right). A smooth surface (A) causes specular reflection, while a rough surface
scatters diffusely (B). The scattering can also be characterised as coherent (A) and inco-
herent (B).
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resort to a stochastic model to describe the EM field.

A rough surface is a surface with height variation on a scale larger than the wave-
length used to illuminate it [Delignon et al., 2001, Lee, 2005]ﬂ In a radar remote sens-
ing context, many natural surfaces can be considered as rough. The scatterers vary in
number and geometry according to the surface type and the spatial resolution of the
observation, but the number is generally assumed to be high. The nature of the scat-
tering depends on the relative strength of the reflections from the scatterers and the
distribution of the phase shift they induce. The next sections establish a mathematical
description of the scattering process and definitions that characterise the scattering as
strong or weak. Surface roughness and different types of scattering is shown in Figure

At this point, it is pertinent to define some other terms. In physics, coherence is a
property of two or more waves that are in phase both temporally and spatially. More
generally, it describes the correlation between all physical quantities of the wave [Born
and Wolf, 1999, Glickman, 2000]. This is the property which enables stationary interfer-
ence. Incoherent scattering is defined as the scattering produced when an incident wave
encounters scatterers that cause the scattered EM field to exhibit random variations in
phase and amplitude due to lack of coherence. Coherent scattering, on the other hand,
produces a deterministic scattered EM field. This happens when the incident wave is
scattered by a fixed point target or a distributed target with scatterers whose relative
position is fixed [Glickman, 2000].

2.3.1 Random Walk Model of Scattering

The scattering process is often described by a random walk model [Goodman, 2007,
Lopes et al., 2008]. Let the EM field measured at the sensor be a sum of the field com-
ponents reflected by IV scatterers in the resolution cell. The scattering coefficient S of
a general polarimetric channel thus represents the total scattering experienced by the
microwave after interaction with N scatterers. This can be written as the sum

N N
§= 50 =% AW (2.15)

k=1 k=1
Here S is the scattering coefficient associated with the kth scatterer, whose polar
decomposition yields the amplitude component A% = |S®)| and phase component
0" = £S®). These represent the attenuation and phase shift imposed on the incident
wave by the kth scatterer. We initially make three fundamental assumptions:

1. The amplitudes {A®}Y | are independent and identically distributed (IID) ran-
dom variables. So are the phases {#)}Y_ .

>Surface roughness can be measured by the product of the wavenumber k and the root mean square
height hyms of the roughness. Moderate roughness starts at khyms > 1 and high roughness at khyms > 5.
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Figure 2.6: Random walk model of strong scattering. The scattering coefficient S with
amplitude A and phase ¢ is shown as a phasor in the complex plane (black arrow). It is
decomposed as the coherent sum of the scattering coefficients S*) corresponding to N
individual scatterers with amplitude A*) and phase #*). The accumulated phasor sum
is indicated by the coloured arrows.

2. The {A®™} and the {#*)} are independent.
3. The {#®} are uniformly distributed over all angles.

Figure 2.6 illustrates equation under the three assumptions listed above. It
pictures the coherent summation as a two-dimensional random walk in the complex
plane, with the in-phase component along the first axis and the quadrature phase along
the second. We shall use the figure as a starting point for a discussion of different scat-
tering regimes.

Strong Scattering

Figure 2.6/ shows an example of a random walk with N = 20 steps, each representing
the reflection by an individual scatterer. The coloured arrows show the accumulated co-
herent sum, which ends up as the total scattering coefficient S, shown as the thick black
arrow annotated with amplitude A and phase . The function of the colour coding is just
to show the progress of the vector summation of the scattering coefficient components
S®) with amplitude A®) and phase 6*).

We have assumed that the phase components are uniformly distributed over all an-
gles, denoted as: %) ~ U[0, 27]. This implies that the angle of the coherent sum is also
uniform over the same interval: § ~ U[0, 27|. This condition defines the strong scattering
regime [Barakat, 1986, Jakeman and Tough, 1987]. It means that the random walk has
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Figure 2.7: Random walk model of weak scattering. The scattering coefficient S with
amplitude A and phase ¢ is shown as a phasor in the complex plane (black arrow). It
is decomposed as the sum of a dominating coherent term S, , with amplitude A©) and
phase 0(¢), and an incoherent term equal to the sum of random phasors described in
Figure 2.6, contributed by N distributed scatterers.

an equal chance of ending up in any angular sector of the complex plane, and moreover
that the coherent sum is a random variable with zero mean, even though the amplitude
is positive. The zero mean of S is sometimes expressed as vanishing of the coherent,
or specular, component [Rufting and Fleischer, 1985]. This is an equivalent condition
for strong scattering. A scattering process with the zero mean property produces fully
developed speckle, a term which is explained in more detail in Section [2.3.4,

Weak Scattering

A non-uniform distribution of the phase components, written as 0*) ~ U[0, 2], results
in a non-uniform distribution of § and a non-zero mean of S, which thus has a non-
vanishing incoherent or specular component. These are the characteristics of a weak
scattering process, which produces a partially developed speckle pattern [Ruffing and Fleis-
cher, 1985, Barakat, 1986]. The weak scattering regime is illustrated by Figure Com-
pared to Figure 2.6/ and Equation (2.15), a dominant scatterer has been added, meaning
a scatterer whose reflection is much stronger than the others. The random walk model
has simply been translated in the complex plane by the first vector component, which
represents the dominant scatterer.
The described weak scattering process can be expressed as

N
S =80 4+ 80 = A 1§ AW = g (2.16)
k=1
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where S is a sum of a coherent term, S(©, and an incoherent term, S*). The coherent term
has deterministic amplitude A® and phase 0(9, that can be modelled with degenerate
distributionﬂ The incoherent term represents the stochastic model of strong scattering
from (2.15), and contains the same random amplitude and phase components. We thus
have a set of amplitude components, A = {A®) AD ... AN} and a set of phase com-
ponents, © = {9 9 ... 91 The distribution of © becomes non-uniform, since §(°)
is a deterministic component. In the described case, the IID assumptions are also vio-
lated. However, weak scattering can occur without the presence of dominant scatterers,
if only the phase component distribution is non-uniform. See for instance [Jakeman and
Tough, 1987], where the {#(*)} are assumed to follow a von Mises distribution.

2.3.2 Gaussian Model
Single-look Complex Data

The simplest statistical model for the radar return is based on the random walk model
in under all three assumptions listed in Section Further assume that the
number of scatterers, N, is large and constant. It follows from the central limit theorem
that the scattering coefficient S converges in distribution to a complex Gaussian random
variable with zero mean and variance 02 as N — oo, where ¢? is the mean radar cross
section of the scattering medium. The PDF of S is given by

fs(S;0%) = LeXp (—%) : (2.17)

mo?

In the polarimetric case, the zero mean scattering vector s follows a multivariate
circular complex Gaussian distribution with covariance matrix ¥ = E{ss”}. The co-
variance matrix contains the complex cross-correlation between scattering coefficients
at different polarimetric channels. Let S; and Sj be the scattering coefficients of two
polarimetric channels. They are decomposed into their real and complex parts by:
Si = Re(S;) + 3Im(S;). The circularity property of complex Gaussian distribution is
defined by the correlations [van den Bos, 1994,|Goodman, 2007

E {Re(S) Re(Si)} = B {Im(S) Im(Se)} 2.18)
E{Re(S;) Im(Sk)} = — E{Re(Sy) Im(S;)} , (2.19)

that follow from the assumptions on the {A;} and the {6} in the random walk model.
The cross-correlations also imply that

E{S;Sk} =0. (2.20)
The PDF of s is [van den Bos, 1994]

(58 = —

Hy—1
7Td|2|e><;p(—s ¥7's). (2.21)

® A deterministic value z( can be modelled as a random variable with the Dirac delta function, §(z—z),
as its PDF. This is referred to as a degenerate distribution.
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The derivations for the lexicographic basis and Pauli basis cases are analogous. The
following presentation is therefore restricted to results for the former, without loss of
generality.

We see that the random walk model of strong scattering leads to complex Gaus-
sian distributions for SLC data. We will now present distributions for MLC data, but
note that the term Gaussian model is often used somewhat imprecisely about other data
formats, whose distributions are derived directly from the complex Gaussian distribu-
tions of the SLC data by appropriate transformations of the random variates. Thus, a
Rayleigh distributed amplitude: A = |S?|, an exponentially distributed single-look in-
tensity: [ = A?, and a gamma distributed multilook intensity: I, = (I) = (A?) are
considered to belong to the Gaussian model. The derivation of all these distributions
are shown in [Oliver and Quegan, 2004]. In line with this usage of terminology, the
scaled complex Wishart distribution, presented in the next section, can be considered as
the multilook polarimetric extension of the Gaussian model [Doulgeris et al., 2008} Vasile
et al., 2009].

Multilook Complex Data

Assume that we have a multilook sample of L independent scattering vectors that are
multivariate circular complex Gaussian with dimension d, and that L > d. The sample
covariance matrix C computed from this sample will then be non-singular, and belongs
to the cone of positive definite complex Hermitian matrices, denoted as 2. It follows
what we refer to as the scaled complex Wishart distribution. The PDF of C under the
Gaussian model is given by

LLd |C|L7d

JelG L2 = rmy =

exp(tr(—LEC)), (2.22)

which is defined on €2, where | - | is the determinant operator, tr(-) is the trace operator
and T'4(L) is the multivariate gamma function of the complex kind, defined in (4.3).
The true complex Wishart distribution [Goodman, 1963] describes the matrix variable
W = LC, hence follows by a linear transformation.

The distribution parameters are the shape parameter L and the scale matrix ¥ =
E{C}. In radar statistics, L is recognised as the number of looks, with reference to
the multilooking process. In other contexts, it is often referred to as the degrees of
freedom. The equivalent number of looks, discussed in should be inserted for L
to account for correlation between the looks. The substituted parameter is still subject
to the condition of non-singularity.

2.3.3 Non-Gaussian Model

It has been shown experimentally that the Gaussian model, with its bundle of equiva-
lent distributions for different data formats, presents a good fit to real radar image data
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Figure 2.8: Example of the appearance of the speckle pattern in a radar image.

when the scene is homogeneous, with low to moderate roughness and a high number
of scatterers. Nevertheless, there is abundant empirical evidence that real data deviate
from the model too, especially for images of urban environment, but also for natural ter-
rain, such as rough sea and forest in general (See e.g. [Jakeman and Pusey, 1976, Oliver,
2000, Tison et al., 2004])). This is generally explained by the notion of texture, thought of
as variations in the mean radar reflectivity between pixels with the same thematic con-
tent, which is not accounted for in the Gaussian model. The texture term is defined and
discussed in more detail in Section 2.3.5 The Gaussian model only encompasses sta-
tistical variation attributed to speckle, the interference pattern produced by the coherent
sum in the random walk model, which is the topic of the next section.

Several distributions have been proposed for single polarisation amplitude and in-
tensity, that imply non-Gaussian statistics for the scattering coefficient. The Weibull dis-
tribution and the log-normal distribution are two of the most popular examples
and Quegan, 2004]. Even though neither of them bear links to physical modelling of
the scattering process, they have been shown to provide reasonably good fit to real data
covering rough surfaces. However, they have not yet been extended to matrix-variate
statistics and cannot be used to model the polarimetric covariance matrix. This has
only been achieved for distributions derived from the doubly stochastic product model,
which models the contribution of speckle and texture as independent random variates.
The multilook polarimetric version of this model is presented in Section[2.3.6]

2.3.4 Speckle

Speckle is often referred to as noise, but this strictly is a misnomer. Although the appear-
ance of the speckle patterns is granular, noise-like, and strongly limits the interpretabil-
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ity of the radar image, the interference causing it is an inherent property of the measure-
ment process that is common to all kind of coherent imaging. The same effect is found
in laser images, and much of the fundamental research utilised in statistical analysis of
radar images is taken from the field of laser optics (see e.g. [Goodman, 1975, Jakeman
and Pusey, 1976])). Speckle is also an artifact of B-mode ultrasound sonography, where a
linear array of acoustic transducers simultaneously scans a plane through an object that
can be viewed as a two-dimensional image (see e.g. [Wagner et al., 1987, Eltoft, 2006]).
In all these cases, the speckle pattern occurs because the measured field results from an
incoherent scattering process. An example of a radar speckle is shown in Figure

Radar measurements are commonly described by a multiplicative signal model]
The first factor in the product is the mean radar reflectivity, defined as the mean fraction
of electromagnetic energy reflected by the scattering medium. The other factor is a
random variable which models the variation due to speckle. The main characteristic of
the product model is that the statistical variation is proportional to the reflectivity. This
has a severely distorting effect on the image analysis, considering that the information
we normally want to infer is related to the mean reflectivity. In the doubly stochastic
product model, we also treat the mean reflectivity as a random variable, to obtain a more
realistic description of the radar measurements.

The distinction between fully developed and partially developed speckle was made
in Section Fully developed speckle is described by the Gaussian model. Partially
developed speckle is modelled by the Rician distribution for the single polarisation am-
plitude [Goodman, 2000]. The doubly stochastic product model for polarimetric SLC
data has been extended to allow for a coherent component in [Eltoft et al., 2006], but
has yet to be amended for MLC data, at least when it comes to deriving a closed form
expression for the PDFE.

2.3.5 Texture

In the field of image processing, the texture term is commonly used when referring to
the deterministic or stochastic structure of an image region, characterised in terms of the
spatial arrangement and directional alignment of the pixel intensities (in gray-scale or
colour). As noted in [Tuceryan and Jain, 1994], «<we recognize texture when we see it but
it is very difficult to define». They list a number of proposed universal definitions, but it
may prove more productive to search for a description of texture which is appropriate
for the application at hand. In radar imaging, for instance, the texture term has indeed
received it own meaning.

When we talk about texture in the context of radar images and the distributions of
their data, it normally refers to variations in the mean radar reflectivity, as discussed
in Section We can model the mean reflectivity as a random variable, which is
then referred to as a texture variable. The texture variable may also absorb other types

7 According to commonly used terminology, which was argued against in the above, the radar images
are subject to multiplicative noise.
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of variation, such as the effect of inhomogeneity or mixed targets within a resolution
cell. For instance, urban areas exhibit large variations that are badly described by the
Gaussian model. This variation can be attributed to the mixture of different scattering
media, just as much as the spatial variation of reflectivity within a single medium.

In the doubly stochastic product model, we assign a distribution model to the tex-
ture variable and estimate the parameters of the distribution. Textural features, defined
in a multitude of ways, contain valuable information for delineation and recognition
of image segments and classes in many pattern recognition problems. Classical tex-
ture features have also been used in analysis of radar images [Clausi and Yue, 2004, De
Grandi et al., 2009]. A less travelled path is to exploit the parameters of the texture dis-
tributions, that contain radar specific textural information, as features in radar image
analysis tasks, such as segmentation and classification [Oliver, 2000].

The distinction between texture modulated speckle and pure speckle is finally intro-
duced, where the latter refers to the variation pattern created by the interference phe-
nomenon alone. By these terms, we establish terminology to express clearly whether
texture is affecting the speckle pattern and has been included in the signal model.

2.3.6 Multilook Polarimetric Product Model

Let W be a scaled complex Wishart distributed random matrix, written as W ~ sWS(L, X).
The doubly stochastic product model for multilook polarimetric data is given by

C=T W. (2.23)

The variation of the polarimetric covariance matrix C is decomposed into the contribu-
tion of texture and fully developed speckle, where the scalar random variable 7' € R™*
represents texture and the random matrix W e, represents speckle. The texture vari-
able must be strictly positive, and is normally assumed to have unit mean, hence all
scale information is put into W (or ]WD This is the convention used in this thesis. The
alternative solution is to normalise \7\7, as it is done in [Doulgeris and Eltoft, 2010]. This
yields a matrix variable which contains only information about polarimetry, in form of
covariance structure between the channels, while all scale information is put into the
texture variable.

By using a scalar random texture variable, it is implicitly assumed that the textural
variation is the same in all polarimetric channels. This is not necessarily supported by
real data, and is a limitation of the model. It has been suggested that one should at
least use distinct texture variables for co-polarised and cross-polarised channels. An ex-
tended doubly stochastic product model with multichannel texture has been proposed
in [Yu, 1998,/Zou et al., 2000] on the form

C=T W, (2.24)
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with the random diagonal multi-texture matrix defined as

T1 0 e 0

T = diag(T\, Ty --- ,Ty) = 0 Iz (2.25)
: 0
o --- 0 Ty

Another objection to the doubly stochastic product model is that it is not adequate for
co-polarised channels. Analysis of real data has shown that there is an additive term
superimposed on the product of texture and fully developed speckle [Séry and Lopes,
1997, Lopez-Martinez and Fabregas, 2005]. The extensions to multi-texture and a mixed
multiplicative additive signal model are not considered in this thesis, but left as topics
of future research.

The distribution of C depends on the chosen distribution for 7. For a general texture
distribution f(7'; 8), whose parameters are stored in the texture parameter vector 6, the
PDF is given by

fo(C; 1,5, 0) = / " forr(CIT: L, ) /(T 0) dT . (2.26)
0

It will be seen that this integral is a matrix-variate Mellin convolution, as defined in
Chapter |3l The distribution of C|T" is recognised as the scaled complex Wishart dis-
tribution from (2.22). Closed form expressions of fc(C; L, X, 8) has been obtained for
a limited number of texture distributions. For gamma distributed texture, the matrix-
variate KC distribution was derived in [Lee et al., 1994]. This distribution has shown
the same merits as the K distributions for single polarisation amplitude and intensity
(See [Oliver and Quegan, 2004]). It is versatile and provides good fit for natural sur-
faces with a certain degree of heterogeneity, such as rough sea and forest. For inverse
gamma distributed texture, the matrix-variate G° distribution was derived in [Freitas
et al., 2005]. It has its strength for extremely heterogeneous surfaces, such as urban
areas. Both the mentioned distributions are special cases of the matrix-variate ¢/ dis-
tribution, derived in [Bombrun and Beaulieu, 2008 from Fisher-Snedecor distributed
texture. Because it has two texture parameters, one more than the K and GO distribu-
tions, it covers many types of surfaces between the heterogeneous and the extremely
heterogeneous case. The added flexibility in terms of modelling capability comes at the
cost of more complicated and less accurate parameter estimation, as demonstrated in
the paper of Chapter|6

The mathematical details of the described distributions for the polarimetric covari-
ance matrix is given in Chapter |4 For each distribution the PDF is presented, together
with the matrix-variate Mellin kind statistics, that are defined in the next chapter.
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Chapter 3
The Mellin Transform

This chapter gives an historical overview which motivates the application of the Mellin
transform to statistical analysis of radar data distributions. The univariate and matrix-
variate Mellin transform are defined, and the fundamental properties of the latter de-
rived. Some of the main contributions of the thesis are revealed as the framework of
matrix-variate Mellin kind statistics is presented.

3.1 An Historical Note

The Mellin transform first appeared in a memoir by the German mathematician Bernard
Riemann (1826-1866) about the zeta function, but it is named after the Finnish math-
ematician Robert Hjalmar Mellin (1854-1933), who gave a systematic treatment of the
transform and its inverse [Butzer and Jansche, 1997]. In contrast to the Fourier trans-
form and the Laplace transforms, it arose in a mathematical context. Since then, it has
also found numerous applications in many areas of physics, statistics and engineering,
as reviewed in [Bertrand et al., 2000].

The Mellin transform has been applied to a wealth of problems in analytic combi-
natorics and analysis of algorithms [Flajolet et al., 1995, Szpankowski, 2001]. It is a key
component in systematic methods for evaluation of integrals [Marichev, 1982, Fikioris,
2006, [Fikioris, 2007]. In signal processing, it has been applied to time-frequency analy-
sis on logarithmic scale, and its scale invariance property has been utilised to construct
affine transformations [Bertrand et al., 1990, Ovarlez et al., 1992, Cohen, 1993, Ruth and
Gilbert, 1994, |Nelson, 1995, Kaiser, 1996].

The application of the Mellin transform to analysis of matrix-variate radar data
builds on results in probability and the theory of statistical distributions. Benjamin
Epstein was first to note that the Mellin transform is the «natural analytical tool to use
in studying the distribution of products and quotients of independent random vari-
ables» [Epstein, 1948], after its utility in analysis of multivariate problems was indicated
in [Nair, 1939]. This spurred a series of papers deriving distributions of product and
quotients in one or more variables [Dolan, 1964, Springer and Thompson, 1966, Lom-
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nicki, 1967, Springer and Thompson, 1970]. Products of dependent random variables
were covered in [Subrahmaniam, 1970]. A good overview of the early literature is given
in [Cook, 1981].

It will be seen in the following that the Mellin transform is related to the Fourier
transform and the bilateral Laplace transform applied to logarithmically transformed
data. It is an efficient tool to derive logarithmic moments and cumulants for products
and quotients of random variables, and their matrix-variate generalisations, from which
we obtain estimators for the distribution parameters with excellent statistical proper-
ties. Such logarithmic statistics and parameter estimators have been derived earlier in
the univariate case, without explicit reference to the Mellin transform [Stacy, 1962, Stacy
and Mihram, 1965, Hoekman, 1991, Kreithen and Hogan, 1991, Blacknell, 1994]. It was
Jean-Marie Nicolas who developed these ideas into a systematic theory on logarithmic
statistics, characterisation of data radar distributions, and estimation of their parame-
ters, with the Mellin transform as the cornerstone [Nicolas, 2002, Nicolas, 2006]. The
framework offered by Nicolas has triggered much research activity and many new ap-
plications to analysis of radar data. An extensive reference list is given in Paper 2 of

Chapter [f]

3.2 Mellin Kind Statistics

Nicolas developed a framework for analysis of random variables defined on R*, which
he called second kind statistics. The results presented in this thesis extend the framework
to random matrices defined on €2, and renames it as Mellin kind statistics, which is
the term consistently used from this point. Another appropriate name used by some
authors is log-statistics.

The starting point for Nicolas is the definition of the Mellin kind characteristic func-
tion. His ingenious trick is to replace the Fourier transform in the definition of the con-
ventional characteristic function with the Mellin transform. The Mellin kind moments
retrieved from the new characteristic function are seen to be moments computed on
logarithmic scale. The Mellin type cumulant generating function is then defined as the
logarithm of the Mellin type characteristic function. From this function we can retrieve
Mellin type cumulants, that have some very appealing properties. When the target of
analysis can be modelled as a product of random variates, the Mellin type cumulant
will separate the contribution of the factors [Nicolas, 2002}/Nicolas, 2006].

Analysis of radar data on logarithmic scale is not a new and revolutionary concept.
Radar images have long been visualised on a logarithmic decibel scale to make more
efficient use of the dynamic range of pixel intensities and improve the contrast. The
homomorphic speckle filter uses a logarithmic transformation to transform the product
model into an additive model, which is easier to handle with traditional signal process-
ing methods [Franceschetti et al., 1995,Solbe and Eltoft, 2004]. The separability induced
by the Mellin transform therefore comes as no great surprise. The ease of the mathe-
matical derivations, and the simple expressions obtained for the Mellin kind statistics

30



of common radar distributions (that is, their characteristic function, moments, cumu-
lant generating function and cumulants) is a more striking result. They underline the
appropriateness of the approach and resonate with the words of Epstein: The Mellin
transform is truly a natural tool for analysing products of random variables, and thus
for multilook radar image data under the product model.

The mathematical details of Nicolas” univariate theory are omitted here. A thor-
ough review is given in the paper of Chapter [f| which stresses the analogy between the
derivations for the univariate case describing multilook single polarisation data and the
matrix-variate case representing multilook polarimetric data. The paper also repeats
the traditional Fourier kind statistics and highlights their intrinsic link with the additive
signal model. Here is only given a repetition of the univariate Mellin transform, before
we proceed with the definition of the matrix-variate Mellin kind statistics.

3.3 Univariate Mellin Transform

Let g(x) be a real-valued function of the variable x. The univariate Mellin transform of
g(z) is given by
Mg} s) = [ o gla)de = 5(6), S8
0

where s € C is the complex transform variable. Further let the Fourier transform be
defined as

400
Fole)}©) = [ e Pgla) da (52)
and the bilateral or two-sided Laplace transform as
+oo
Lalgle)} o) = [ e glo)dr. (33)
The relations between the transforms are shown to be [Bertrand et al., 2000]]
M{g(x)} (o + 2m§) = F{e™ " g(e™") }(&), (3.4)
M{g(x)}(s) = La{g (e7)}(s) (3.5)
by virtue of the substitution of s = o + j27{. The inverse relations are
Flg(@)}(€) = M{z™7g(e™"¥)}(s), (3.6)
Lp{g(z)}(s) = M{g(—Inz)}(s). 3.7)

From Lebegue’s dominated convergence theorem [Bartle, 1995], we know that the
ordinary unilateral Laplace transform converges absolutely in the semi-plane Re(s) > b
for some constant b, and possibly at points on the line Re(s) = b. The intersection of the
regions of convergence for the left-sided and the right-sided Laplace transform form
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the region of converge for the bilateral Laplace transform. This becomes the region of
holomorphy, also known as the analytic strip, and takes the form b < Re(s) < ¢, for
some real constants b and ¢, possibly including the boundary lines. When transforming
a PDF defined on R™, the unilateral (right-sided) and bilateral Laplace transforms are
identical, and the analytic strip becomes the semi-plane Re(s) > b.

It can be seen directly from that the analytic strip of the Mellin transform is the
same as for the bilateral Laplace transform. The boundaries depends on the transformed
function, and the strip may even extend to the whole complex plane. The inverse Mellin
transform is defined by [Bertrand et al., 2000]

c+joo
M =5 [ g ds. (3.8)

279 Je—po0

The notation for the integral limits implies that this is a line integral taken over a vertical
line Re(s) = c in the complex plane, which must lie within the analytic strip.

Comprehensive accounts on the univariate Mellin transform, including lists of fun-
damental properties, examples of important transforms and tables of basic integrals,
are found in [Poularikas, 1999, Bertrand et al., 2000, Szpankowski, 2001, Debnath and
Bhatta, 2007]. An extension of the transform to complex variables is given in [Kotlarski,
1965|] and to multivariate variables in [Mathur and Krishna, 1977]]. The extension to the
matrix-variate case is the next topic.

3.4 Matrix-Variate Mellin Transform

A generalised transform for functions of real matrices, named the M-transform, was
defined in [Mathai, 1978|]. Mathai also referred to it as the generalised Mellin transform
in [Mathai, 1981]. The extension to functions of complex matrices was presented in
[Mathai, 1997]]. In the following, let g(X) be a real-valued scalar function defined on €2,
and let g be symmetric in the sense: g(XY) = g(YX) = g(X/2YX!/?) = g(Y'/2XY'/?),
where X, Y € Q. The matrix square roots defined by X = X'/2X1/2 and Y = Y!/2Y /2
are therefore guaranteed to exist. Whenever the integral exists, the complex matrix-
variate Mellin transform of g(X) is defined by

Mwm»@:/'mr%mMX=G@. (3.9)

Q4

We note that M{g(X)}(s) is a function of a complex scalar transform variable s, whereas
g(X) is defined on a matrix space, thus the transform is not unique and has no inverse.
The symmetry requirement restricts the functions can be applied to, but does not
pose any problem for the distributions of the polarimetric covariance matrix, derived
from the doubly stochastic product model. We may therefore use the transform to define
Mellin kind statistics for the complex matrix-variate case.
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The univariate Mellin transform has a convolution theorem and a correlation theo-
rem. To derive the analogue relations for the matrix-variate Mellin transform, we need
some definitions. Let ¢(X) and h(X) be two real-valued scalar functions defined on
(14, symmetric by the definition given above. The matrix-variate Mellin convolution is
introduced by the definition

(9% W)(X) = / Y| (Y XY HR(Y) dY

(3.10)
:/ IY[?h(Y 2 XY 2)g(Y)dY,
Qy

which is an associative and commutative operation. The matrix-variate Mellin correlation
is also introduced, defined by

(g & h)(X) :/Q Y| (YSXYHR(Y) dY . (3.11)

This operation is neither associative nor commutative. It reduces to the univariate
Mellin correlation defined in [Nicolas, 2002,/Nicolas, 2006].

3.5 Fundamental Properties

It is now time to deduce some fundamental properties of the matrix-variate Mellin
transform, in analogy with the fundamental properties that have been derived for the
univariate transform.

Property 1 (Scaling by nonsingular matrix of constants):
M{g(AX)}(s) = |A]7°G(s) - (3.12)

Proof 1: The transformation Y = AX has Jacobian determinant |J(X —Y)| = |A[“
[Mathai, 1997]. Thus,

M{g(AX)}(s) = / X[ g(AX) dX

Q4

= [ (YIADa(IAay = A [ Yy ax

Q4
which is equivalent to (3.12). |

Property 2 (Scaling by scalar constant):
M{g(aX)}(s) = a~*G(s). (3.13)

33



Proof 2: This is a special case of (3.12) with A = al,;, where I, is the d x d identity matrix.
Equation (3.13) follows from |A| = a?. |

Property 3 (Multiplication by |X|?):

M{X|*g(X)}(s) = G(s+a). (3.14)
Proof 3: The proof is trivial. Take the transform of |X|*g(X):

M{|X\“9(X)}(S)—/ XX |Pg(X) dX = [ X[ (X)) dX

o Q.

and identify this as (3.14). |}

Property 4 (Raising the independent variable to an integer power):
“ 1 s
M{a(X}(s) = 576 (7) - (315)

a

"
Proof 4: We use the transformation Y = X% = X --- X with differential relation dY =
a?|X |4 JY to show that

M{g(X)}(s) = / X[ g(X) dX

Q4

:/ A%
Q4

_ ! |Yi—ddY:iG(f>. i

at Jq, a? a

s—d

“o(Y) (a Y| ay)

Property 5 (Inverting the independent variable):

M{g(X7)}(s) = (1) G(~s). (3.16)

Proof 5: This is a special case of (3.15) witha = —1. |}

Property 6 (Inverting and multiplying by the independent variable):

M{X[Tg(XT)}(s) = (-1)'G(1 ~ 5). (3.17)
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Proof 6: Use the transformation Y = X! with differential relation Y = (—1)%X|%,

which yields

MUX| (X} s) = [ XXX ) ax

Q4

- / Y|4 DY) (—1) Y| )

— (1) / YY) Y = (~1)'G(1—s).

Property 7 (Multiplication by In |X]|):

M{In X[g(X)}(s) = (s).

Proof 7: By using the result

d d
_|X|s—d _ _€1n|X\(s—d) _ |X|s—d1n|X|

ds ds

and Leibniz’s integral rule, we show that

7600 = [ (i) o) ax

_ / X[ In [X|g(X) dX = M{In|X|g(X)}.

Property 8 (Multiplication by a power of In |X]|):

M{(In |X|)"g(X)} ) = +Gl5).

Proof 8: We use the result
X = Xl X])
ds¥

and follow the approach of Proof[7} [

Property 9 (Mellin convolution):

M{(g *+ h)(X)}(s) = M{g(X)}(s) - M{A(X)}(s) -
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Proof 9: Substitute Z = XY and note that Z € ), follows. We further have X =
Y 1/2ZY Y% and dX = dZ/|Y|? [Mathai, 1997], which leads to

M{g(X)}(s) - M{A(Y) }(s)

_ / (1Z1/1Y ) g(Y 3 ZY3)Y|dZ / Y Uh(Y) dY
Q4 o

= /Q+ |Z|>¢ Um Y| %g(Y 2ZY 2)h(Y) dY] dZ

= M{(g * h)(Z)}(s),
since the term in the square brackets can be identified as the Mellin convolution from
(6.10).
Property 10 (Mellin correlation):

M{(g ® n)(X)}(s) = M{g(X)}(s) - M{A(X)}(2d = 5). (3.21)

Proof 10: Use the substitution X = YZ with differential relation dX = |Y|?dZ to find
M{g(X)}(s) - M{A(Y)}(2d = s)

- / (IYZ|)*g(YZ)[ Y| dZ / Y[ h(Y) dY

Q, Q4

_ /m iz} Um Y| g (YZ)h(Y) dY] dZ
= M{(g ® h)(X)}(s),

after the term in the square brackets is identified as the matrix-variate Mellin correlation

defined in (3.11). |}

3.6 Matrix-variate Mellin Kind Statistics

The matrix-variate Mellin transform is defined on (2, and can therefore be applied
to PDFs that have the same domain. It is this property that makes it relevant to the
statistical analysis of distributions for the polarimetric covariance matrix. From now
on, we assume that X is a random matrix described by fx(X), which is defined on 2.

3.6.1 Mellin Kind Characteristic Function

The Mellin kind characteristic function of a complex random matrix X is defined as
Ox(s) = B{XI™} = M{/x(X)}(s). (322)

when X and its PDF, px(X), satisfy all requirements of (3.9). Note that the moments
of the determinant |X| can be retrieved from the Mellin kind characteristic function as
E{|X|"} = ¢x(v + d).
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Figure 3.1: Relations between the components of matrix-variate Mellin kind statistics.
The function B, (-) is the complete Bell polynomial, defined in Paper 2 (Chapter|6).
3.6.2 Mellin Kind Matrix Moments

The vth-order Mellin kind moment of X is

dl/
ds¥

pAX} = ——ox(s) (3.23)

s=d

If all Mellin kind matrix moments exist, the Mellin kind characteristic function can be
written as the power series expansion

¢X(5) — /Q 6(s—d) 1n\X|fX(X) dX

o (3.24)
(s —d)”
= V! /JLV{X}
v=0
in terms of the 1, {X}. The derivation of (3.24) reveals that
X} = E{(In X1} = [ (n[X] fx(X) aX 3.25)
+

which justifies the denotation of 1, {X} as a matrix log-moment.
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3.6.3 Mellin Kind Cumulant Generating Function

The Mellin kind cumulant generating function of X is defined as

ex(s) = Ingx(s). (3.26)

3.6.4 Mellin Kind Matrix Cumulants

The vth-order Mellin kind cumulant of X is
dl/

rAX} = ng(s) (3.27)

s=d
When all Mellin kind matrix moments exist, the Mellin kind cumulant generating func-

tion can be expanded as

o0

px(s) = Inox (s Z

v=0

KV{X} (3.28)

in terms of the x,{X}, that are also called matrix log-cumulants.
The relations between the the functions and moments defined under the matrix-
variate Mellin kind statistics framework are shown in Figure

3.7 Multilook Polarimetric Product Model

This section shows how the matrix-variate Mellin kind statistics are applied to the dou-
bly stochastic product model for multivariate polarimetric data. We recollect the model
as

C=T W, (3.29)

where C is the polarimetric covariance matrix, decomposed in terms of the random

matrices W ~ sWS(L,X) and T, respectively modelling fully developed speckle and
texture. The PDF of T, fr(T;#), is left unspecified for the moment. We here assume
that T has equal diagonal entries, T = diag(T, --- ,7') = T - 1,, thereby restricting the
texture model to a single random variable representing all polarimetric channels. The
advantage of writing the scalar texture variable as a matrix will become apparent.

3.7.1 Application of the Matrix-Variate Mellin Convolution

The distribution of C can now be written as

fe(C; L, %,0) = fC|T(C‘T;L,E)fT(T; 0)dC, (3.30)
Q4
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parametrised by the equivalent number of looks L, scale matrix ¥, and the texture pa-
rameter vector §. The integral is identified as the matrix-variate Mellin convolution,
defined in (3.10). From Property 9| of the matrix-variate Mellin transform, it follows that

M{fc(C: L, 2, 0)} = M{f5(W: L, 2)} - M{fr(T;0)}. (3.31)

The implication in terms of the matrix-variate Mellin statistics defined in the previous
section is

oc(s; L, 3, 0) = ¢5(s; L, X) - ¢r(s; 0), (3.32)
vc(s; L, %,0) = og(s; L, X) + or(s; 0), (3.33)
k,{C; L, 3,0} =k, {W:L, =} + £,{T; 6} . (3.34)

These respective equations present the Mellin kind characteristic function, the Mellin
kind cumulant generating function and the Mellin kind cumulants for the multivari-
ate polarimetric product model. The Mellin kind moments can be retrieved from the
cumulants by the relation

IORNOED M G Lo o) 339)

which is valid both in the univariate and matrix-variate case, and for moments and
cumulants on linear or logarithmic scale.

3.7.2 Mellin Kind Statistics for the Multilook Polarimetric Product
Model

The texture variable was written as a matrix so that the matrix-variate convolution prop-
erty could be used directly. The Mellin kind statistics of T must still be resolved, and
they have been in the paper of Chapter|f It is found that

or(s;0) = or(d(s —d) + 1;0), (3.36)

where ¢r(s) is the univariate Mellin kind characteristic function of the scalar variable
T, derived in [Nicolas, 2002, Nicolas, 2006]] as

br(s) = /0 h T fr(T;0)dT = E{T**; 6} . (3.37)

The cumulant generating function for T follows readily as
pr(s;0) = pr(d(s —d) + 1;0), (3.38)
with ¢r(s; 0) = In ¢r(s; ). The Mellin kind cumulants are retrieved as

rAT} =d"k,{T}, (3.39)
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where the ,{T’; 6} are the vth-order univariate Mellin kind cumulants defined in [Nico-
las, 2002, Nicolas, 2006]. We thus arrive at the following Mellin kind statistics for the
multivariate polarimetric product model:

(s L, %,0) = o5 (s; L, X) - or(d(s — d) + 1;0) (3.40)
oc(s;L,%,0) = o (s L, X) + or(d(s — d) + 1, 0) (3.41)
k,{C;L,%,0} = 1, {W; L, S} + d"k,{T; 6} . (3.42)

This is a general formulation, which requires input for specific choices of the texture
variable distribution, fr(7'; 0). A set of candidate distributions for the univariate texture
is reviewed in the next chapter. Explicit expressions for the Mellin kind statistics of the
speckle distribution, f5(W; L, %) are also given, such that Equations (3:40)~(3-42) can
be evaluated.
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Chapter 4

Probability Distributions

This chapter presents specific distributions for multilook polarimetric radar data, and
evaluate their Mellin kind statistics. The mathematical expressions contain many spe-
cial functions, that are defined initially. We then review a number of univariate dis-
tributions that are useful models for the texture random variable. Expressions are
given for their PDF, Mellin kind characteristic function, and Mellin kind cumulants (log-
cumulants). These have been derived previously in [Nicolas, 2006]. The scaled complex
Wishart distribution used to model speckle is then presented, together with its Mellin
kind statistics, that have been derived in Paper 2 of Chapter|f| Finally, we present the
compound distributions modelling the texture modulated speckle of the polarimetric
covariance matrix. The Mellin kind statistics of the texture distributions and the speckle
distribution are combined into novel expressions for the multilook polarimetric case.

4.1 Special Functions

The expression of the PDFs, Mellin kind characteristic functions, moments and cumu-
lants presented in this chapter require a number of special functions. These are defined
below.

Gamma Function: The gamma function, often credited explicitly to Euler by name, is
a generalisation of the factorial function to non-integer numbers. It is defined for z € C
with Re{z} > 0 by [Weisstein, 2010c]|

['(z) = /000 w e du 4.1)

and satisfies the relation
['(z4+1) ==2I'(2). 4.2)



Multivariate Gamma Function of the Complex Kind: The multivariate gamma func-
tion of the complex kind is a generalisation of the gamma function. It is defined for
s € C by [Goodman, 1963

d—1
Ty(s) = /Q exp (— t1(2)) |Z*~dZ = 74D [ (s — i) 43)

1=0

where (1 is the cone of positive definite complex Hermitian matrices, tr(-) is the trace
operator, and the matrix Z € €, has dimensions d x d. We also note that [';(z) is the
matrix-variate Mellin transform of exp(tr(Z)).

Polygamma Function: The polygamma function of order v is the v + 1th derivative of
the logarithm of the gamma function. It is defined by [Weisstein, 2010e]

oo V,—ZzZUu

O R O T

1 —e @
0 (4.4)
_ o L
- dzu¢ - dzv+1 Il (z)

where (0 (2) = I"(2)/T'(z) is the digamma function. A recurrence relation is given by

P2+ 1) =W (2) + (=1)"p! 2~ D (4.5)

Multivariate Polygamma Function of the Complex Kind: = The multivariate poly-
gamma function of the complex kind is introduced in this thesis as an intuitive and
simplifying generalisation of the ordinary polygamma function (see the previous para-
graph). It is defined as

d-1 dl/+1
0 (5) =3 00— i) = o Tu(e). (4.6)
=0

O (2) = 2222 (4.7)

Beta Function: The beta function, also called the Euler integral of the first kind, is
defined for {z,y} € C with Re{z} > 0 and Re{y} > 0 by [Weisstein, 2010a]]

(4.8)
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Modified Bessel function of the Second Kind: The modified Bessel function of the
second kind, also known as the Bessel K function, is defined for order » € R and argu-
ment z € C by [Weisstein, 2010d]

K, (z) = L 1//%2)(%)” /0 = j‘?;;;l 5 du. (4.9)

Confluent Hypergeometric Function of the Second Kind: The confluent hypergeo-
metric function of the second kind, also known as the Kummer U function, is defined
for arguments {a, b, z} € C with Re{a}, Re{z} > 0 by [Weisstein, 2010b]

1

Ula,b, z) = (o)

/ e u (1 + )™ du. (4.10)
0

4.2 Texture Distributions

According to the discussion of texture in Section a texture distribution describes a
real random variable 7', which is strictly positive and unit mean (7" € R*, E{T} = 1).
We here present some candidate distributions and expressions derived from them with
tull parametrisation. That is, they contain a location parameter 1, which allows for a
mean value p # 1. This makes it easier to recognise the distribution from the literature,
while the normalised expressions used in the context of the product model are easily
obtained by the substitution of ; = 1.

The texture distributions presented in the following were all treated in [Nicolas,
2006], where the PDF, Mellin kind characteristic function, vth-order moment and vth-
order log-cumulant were given for each of them. The parametrisation used here is
slightly different from the one Nicolas uses, in insisting that /s should be identical to the
mean for all distributions. Departures from Nicolas” parametrisation are remarked for
the distributions concerned. The advantage of this approach is that all expressions for
the normalised distribution are obtained simply by setting + = 1. The shape parameters
a and A remain unchanged. On the other hand, the parametrisation of Nicolas is more
elegant when showing how the composite distributions (i.e., the Fisher-Snedecor, beta,
and inverse beta distribution) are composed by Mellin correlation, convolution, and in-
verse convolution of gamma distributions and inverse gamma distributions (see [Nico-
las, 2006] for details).

42,1 Gamma Distribution

A gamma distributed random variable is denoted X ~ y(u, «) with location parameter
i > 0 and shape parameter @ > 0. A gamma distributed texture variable is denoted
T ~ ¥y(a) =v(1,«a), due to the normalisation of = 1.
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Figure 4.1: Probability density function f(7; «) of the unit mean gamma distributed
texture variable 7" shown for shape parameters o = {4, 8,16, 32,64}. The peakedness
increases with a.

Probability density function:

Pl 1, a) = ﬁ (%) (@) eF 220, (@11)

Mellin kind characteristic function:

oxtsime) = (£) 7 A (@12)
Moments:
m X ) = (g)” F(?(—;‘)V) . (4.13)
Log-cumulants:
s = (L =

4.2.2 Inverse Gamma Distribution

An inverse gamma distributed random variable is denoted X ~ y~*(u, \) with location
parameter p > 0 and shape parameter A > 0. An inverse gamma distributed texture
variable is denoted T' ~ y~1(\) =y~ 1(1, \).
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Figure 4.2: Probability density function fr(7; ) of the unit mean inverse gamma dis-
tributed texture variable 7' shown for shape parameters A = {4,8,16,32,64}. The
peakedness increases with \.

Probability density function:

. ! 1 A =D\ oo
fX(x"u’A)_F(/\)()\—l)u< - ) e = ; x>0. (4.15)

Mellin kind characteristic function:

sc1I'(A+1—5)

ox (50, A) = (A = Dp) Ty (4.16)
Moments: (X
mAXi A} = (0= D) (@17)
Log-cumulants:
. O +In((A=1)p) forv=1
rAXi A} = {<_1)v¢<v—l>(A) forv>1" (4.18)

/

The parametrisation of [Nicolas, 2006] is obtained by substituting 1 = (25) 1t'-

4.2.3 Fisher-Snedecor Distribution

A Fisher-Snedecor distributed random variable is denoted X ~ F(u, a, ) with location
parameter p > 0 and shape parameters a > 0 and A > 0. A Fisher-Snedecor distributed
texture variable is denoted 7" ~ F(a, \) = F(1,a, A).
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Figure 4.3: Probability density function fr(7’;a, \) of the unit mean Fisher-Snedecor
distributed texture variable 7" shown for different pairs of shape parameters (a,\).

Probability density function:

Ix(;p,a,A) = ! “ <()\ﬁ)“>a1 ;1 >0.
s [y &4y B(OZ,)\)()\—].)M o +1 a+A el
(A=D)p

Mellin kind characteristic function:

(A — 1)u)81 Tla+s—1)T(A+1—5)

oxtoa) = ( M) T

«

Moments:

Log-cumulants:

AXs A =
K { m, } {¢(”‘1)(a) + (_1)V¢(V—1)<)\) forv >1

PO(a) = ©(X) +In (—“;”“) forv =1

(4.19)

(4.20)

(4.21)

(4.22)

The parametrisation of [Nicolas, 2006] is obtained by substituting 1 = (;2;) &'. The
Fisher-Snedecor distribution is also called Fisher distribution. It can be seen as a gener-

alised F distribution with an additional location parameter.

46



A —a=8,A=16
2.5 i’ ---a=8,\=24 ||
: 1
i S Itk a=16,\=24
ol [ v q=16,0=32)]
= i
o
5 1.5
“_l—
1,
0.5
0 .
0 2 25 3

Figure 4.4: Probability density function fr(T;«, ) of the unit mean beta distributed

texture variable 7" shown for different pairs of shape parameters (a,\).

4.2.4 Beta Distribution

A beta distributed random variable is denoted X ~ §(u, a, A) with location parameter
i > 0 and shape parameters o > 0 and A > 0. A beta distributed texture variable is

denoted T' ~ ((a, \) = B(1, a, \).

Probability density function:

1 a [az\* az\ ! A
FTIRID) [ ——— — o<z < 2
fX('Tmuaav ) B(O{,)\—OZ) >\[L ()\/J) < )\[L) ) 0<z< a

Mellin kind characteristic function:

. (T Te+s—1)  T(\)
Prlsitnand) = (F> fa) TO+s—1)

Moments:

. (' Tle+v) TW)
m”{X’“’O"A}_<a) T@) Thtv)

Log-cumulants:

PO (a) — @ (N\) +1In (%) forv=1

ro{ X5 0, A} = {w(u—l)(a) _ ¢(V—1)()\) forv>1

(4.23)

(4.24)

(4.25)

(4.26)

The beta distribution is often defined with two shape parameters only. The definition
given here is a generalisation of the two parameter version, with an additional location

parameter.
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Figure 4.5: Probability density function fr(7';a, A) of the unit mean inverse beta dis-
tributed texture variable 7" shown for different pairs of shape parameters (o, \).

4.2.5 Inverse Beta Distribution

An inverse beta distributed random variable is denoted X ~ 37!(u, o, \) with location
parameter p > 0 and shape parameters a > 0 and A > 0. An inverse beta distributed
texture variable is denoted T ~ 37! (a, ) = 871(1, o, \).

Probability density function:

A—a—1
(A-1)z
1 (A—1) ((a_m - 1) (a—=1)p
: = : > I >
fX(ZE,LL,(X,/\) B(oz,)\—oz)(oz—l)u ((Al)x)A < N—1 a/\_a
(a=1)p
(4.27)
Mellin kind characteristic function:
(a—Dp\ 'T(a+1—5) TN
. _ s ) 4.
¢X(Sauaa7)‘) ( )\_1 F(Oé) F()\+1—S) ( 28)
Moments: ( ) I ) F()\)
a—1Dp\ T'a—v
X: = ) .

Log-cumulants:

O (a) + pO()) + In (%‘;—_135) forv =1

(4.30)
(—1) 4D (a) + (=1 1A forv > 1

RV{X;Maaa )\} = {
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The parametrisation of [Nicolas, 2006] is obtained by substituting 1 = (21) (:25) 1/'.
The inverse beta distribution is also known as the beta distribution of the second kind,
or the beta prime distribution. It is often defined with two shape parameters only. The
definition given here is a generalisation of the two parameter version, with an additional

location parameter.

4.3 Speckle Distribution

The term speckle distribution is here used to denote a distribution which models the ran-
domness of the radar signal due to the interference phenomenon only. That is, it de-
scribes pure speckle. When it is compounded with a texture distribution, we obtain
under the doubly stochastic product model a distribution which describes texture mod-
ulated speckle. The Weibull and log-normal distributions for single polarisation ampli-
tude and intensity data [Oliver and Quegan, 2004] are examples of distributions that
describe texture modulated speckle without explicitly modelling the texture through
a texture variable. Matrix-variate counterparts of these distributions have not been
derived, as far as the author is aware of. There are no known distributions that de-
scribe partially developed speckle in the multilook polarimetric case either. We are left
with the scaled complex Wishart distribution, which models pure and fully developed
speckle, but will also present the matrix-variate Mellin kind statistics of the true com-
plex Wishart distribution.

4.3.1 Complex Wishart Distribution

The complex extension of the Wishart distribution, defined on €2, was first reported

in [Goodman, 1963|]. The distribution describes W = LW and the complex Wishart
distributed matrix is denoted W ~ W% (L, X), where the equivalent number of looks, L,
is a shape parameter and ¥ = E{W}/L is a scale matrix. The nonsingular distribution
is obtained for L > d.

Probability density function:
| C | L—d

. _ R
fwW; L, Y) = T LS etr(—=37"C). (4.31)
Mellin kind characteristic function:
) . Fd<L+S—d) s—d
ow(s; L, X) = (L) =[5 (4.32)
Mellin kind cumulant generating function:
ow(s; LX) =InTy(L+s—d)—InTy(L)+ (s —d)In|X]. (4.33)
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Matrix log-cumulants:

O+ |8 forv=1
AW, L,Ey=¢ "4 0 ’ 4.34
fid ' { g’ 1)(L) forv >1. (439

The derivation of the Mellin kind statistics is shown in Paper 2 of Chapter 6|

4.3.2 Scaled Complex Wishart Distribution

The observable covariance matrix in pure and fully developed speckle is W, which
follows the scaled complex Wishart distribution. This is denoted W ~ sW$(L, X). The
PDF is derived from (4.31) as f(W) = fw(LW)|Jyy_ /| by using the transformation
W = W /L with Jacobian determinant | Jy;, | = L%,

Probability density function:

LLd yc|L—d L
;LX) = tr(—LX'C). 4.
fC(Ca ) ) Fd(L) |2’L € r( C) ( 35)
Mellin kind characteristic function:
_ CTa(L4+s—d) (|1
Mellin kind cumulant generating function:
ow(s; LX) =InTy(L+s—d)—InTy(L)+ (s —d)(In|X| —dIn L). (4.37)

Matrix log-cumulants:

wflo)(L) +In|¥|—dInL forv=1,

4.38
(L) forv>1. (4.38)

kAW, L, X} = {

The derivation of the Mellin kind statistics is shown in Paper 2 of Chapter [|

4.4 Compound Matrix Distributions

Compound matrix distributions that model texture modulated speckle are obtained
from the Mellin convolution in (2.26). Five distributions are reported, that combine the
scaled complex Wishart distribution with each of the texture distribution presented in
Section 4.2 through the multilook polarimetric product model. For all of them, the PDF
is listed together with the matrix-variate Mellin kind characteristic function, cumulant
generating function and cumulants. The Mellin kind statistics are derived by evaluating

Equations (3.40)-(3.42) with the expressions given in Sections 4.2|and
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Figure 4.6: PDF f;(I;a) of the K distributed multilook intensity / shown for shape
parameters o = {4, 6,8, oo} at linear (left) and logarithmic (right) scale. The asymptotic
case & = oo is equivalent to gamma distributed intensity, corresponding to a Wishart
distibuted polarimetric covariance matrix C. The other parameters are L=4and (/) =1.

4.4.1 Matrix-Variate K Distribution

The matrix-variate K distribution was derived in [Lee et al., 1994]. The name originates
from the Bessel K function, which appears in the PDF expression. It results from a Mellin
convolution of the scaled complex Wishart distribution with the normalised (unit mean)
gamma distribution. A K distributed covariance matrix is denoted C ~ K(L, X, ),
where the parameters are inherited from the speckle and texture distribution.

Probability density function:

a+Ld

, _ €] 2(La) = S1y) S / “1
fe(C LY a) = S Fd(L)I’(oz)(tr(E C)) Ko-r4(2y/Latx(Z7'C)) . (4.39)

Mellin kind characteristic function:

Fd(L+s—d)F(a+d(s—d))< b3 )S—d
( d

dols: L, B,0) = Tu(L) () al)

(4.40)

Mellin kind cumulant generating function:

Fy(L+s—d) Ia+d(s—d))
Ot

wc(s; L, X, o) =1In +(s—d)(In|X|—dIn(al)). (4.41)
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Figure 4.7: PDF f;(I; ) of the G° distributed multilook intensity I shown for shape
parameters A\ = {4,6, 8, co} at linear (left) and logarithmic (right) scale. The asymptotic
case A = oo is equivalent to gamma distributed intensity, corresponding to a Wishart
distibuted polarimetric covariance matrix C. The other parameters are L=4 and (/) =1.

Matrix log-cumulants:

(go)(L) +1In|X| + d(w(o)(a) — 1n(aL)) forv=1,
D) 4 dvp =D (@) forv>1.

rAC; LY o} = (4.42)

Matrix-variate distributions are difficult to visualise, and the solution is to plot in-
stead the the marginal density of the single polarisation intensities found as diagonal
elements in the polarimetric covariance matrix. Figure4.6|shows examples of univariate
K distributions of intensity for different values of the texture parameter a.

4.4.2 Matrix-Variate G° Distribution

The matrix-variate G° distribution was derived in [Freitas et al., 2005]. It results from
a Mellin convolution of the scaled complex Wishart distribution with the normalised in-
verse gamma distribution. A G° distributed covariance matrix is denoted C ~ G°(L, X, )),
where the parameters are inherited from the speckle and texture distribution.

Probability density function:

LE | CIEAT(Ld + A) (A — 1))

-1 —A\—Ld
T L) 2 ey (Ltr(Z7'C) + A - 1) . (443)

fe(Ci LX) =
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Mellin kind characteristic function:

s—d
Ty(L+s—d) DA —d(s—d)) A—1\"
) L E = I . .
Mellin kind cumulant generating function:
po(s;L, %)) = In Fd(l’;(z)_ ) 41 IO _FCE(AS) —d)
‘ (4.45)
+ (s —d) (ln 1% +d(ln(A—1) — 1nL)> :
Matrix log-cumulants:
O(L) +1In|2 d(1 (u)_ ©)(\ f -1
sy d S ed(n (2 ) —eOw)) forv=t
Yy (L) + (—d) @D () forv>1.

Figure 4.7 shows examples of univariate G° distributions of intensity for different
values of the texture parameter \.

4.4.3 Matrix-Variate U/ Distribution

The matrix-variate U/ distribution was derived in [Bombrun and Beaulieu, 2008]. The
name originates from the Kummer U function, which appears in the PDF expression. It
results from a Mellin convolution of the scaled complex Wishart distribution with the
normalised Fisher-Snedecor distribution. A U/ distributed covariance matrix is denoted
C ~ U(L, %, o, \), where the parameters are inherited from the speckle and texture
distribution.

Probability density function:

LY |C|F T (a + \NI(Ld + A) ( a )
T,(L) [Z|F T(@)T(N) A—1

fe(C; L, X, a,\) =
(4.47)

x U(Ld+>\, Ld—a+1, Ltr(ElC)()\a 1)) .

Mellin kind characteristic function:

Fy(L+s—d)T(a+d(s—d)T(A—d(s—d))
Ta(L) [(c) I'(A)

» (121 (%)d) - o
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Figure 4.8: PDF f;(I;\) of the U distributed multilook intensity /I shown for differ-
ent pairs of shape parameters, (o,)), at linear (left) and logarithmic (right) scale. The
asymptotic case (o = 0o0,A = 00) is equivalent to gamma distributed I, corresponding to
a scaled Wishart distributed C. The asymptotic cases « — oo and A — oo correspond to
K and G° distributed I and C, respectively. The other parameters are L = 4 and (/) = 1.

Mellin kind cumulant generating function:

Fy(L+s—d) INa+d(s—d)) ['(A—d(s—d))
07 S ¥ ) R YOV

+ (s—d)(ln\El +d(In(A—1) —lna—lnL)) :

vc(s; L, X, a,\) = In

(4.49)

Matrix log-cumulants:

w1 {C: L, S, A} = 0 (L) +In 8]+ d <w<°><a> OO +In (A_ 1)) ,
ol (4.50)

koot (G5 L, 8o, A} = 00V (L) 4+ (w<”—1><a> ; <—1>”¢<”—1><A>) |

Figure shows examples of univariate ¢/ distributions of intensity for different
pairs of the texture parameters o and .

4.4.4 Matrix-Variate )V Distribution

The PDF of the matrix-variate WV distribution has not yet been derived, but it is found
that it will contain a special function known as the Whittaker ¥ function, hence the pro-
posed name. The distribution results from a Mellin convolution of the scaled complex
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Wishart distribution with the normalised beta distribution, and the Mellin statistics are
easily deduced from the existing results. A W distributed covariance matrix is denoted
C ~ W(L,X,a, \), where the parameters are inherited from the speckle and texture
distribution.

Mellin kind characteristic function:
Fy(L+s—d)T(a+d(s—d)) ()
L4(L) I'(«) (A +d(s—d))

N s—d (4.51)
<|z| (%) ) |

Mellin kind cumulant generating function:

Fd<L —f- S — d)
Tu(L) () T\ +d(s — d))

+ (s—d)(1n|2| —l—d(ln)\—lna—lnL)) .

(bC(S; L7 27 Oé,/\) =

vc(s; L, X, a,\) =1n

Matrix log-cumulants:
6 {C LS, A} = 0O(L) + In| S| + d (w@(a) —yO0) +1In (—))
(4.53)

ka1 {C; L, 2, 0, A} = o (L) + d (w—w - w-”w) .

4.4.5 Matrix-Variate M Distribution

The PDF of the matrix-variate M distribution has not yet been derived, but it is found
that it will contain a special function known as the Whittaker M function, hence the
proposed name. The distribution results from a Mellin convolution of the scaled com-
plex Wishart distribution with the normalised inverse beta distribution, and the Mellin
statistics are easily deduced from the existing results. A M distributed covariance ma-
trix is denoted C ~ M(L, X, a, ), where the parameters are inherited from the speckle
and texture distribution.

Mellin kind characteristic function:

TyL+s—d)T(a—ds—d) T\
Ta(L) I'(a) (A —d(s — d))

A s (4.54)
((En))
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Figure 4.9: The matrix log-cumulant diagram

Mellin kind cumulant generating function:

Ly(L+s—d) N I(a—d(s—d)) N ()
) M) TR ds—d)

+ (s — d)(ln X +d(ln(w — 1) = In(A = 1) — lnL)) :

vo(s; LY, a,\) =1n
(4.55)

Matrix log-cumulants:
m{Cs L, 3,0, A} = (L) + In| S| +d (Wm — 4O (a) +1n (—(a o ))
A (4.56)

kot (G5 L2, A} = v V(L) + (—d)” (wwa) - wwm) |

4.5 The Matrix Log-Cumulant Diagram

We now introduce the matrix log-cumulant diagram, which is shown in Figure This
is a visualisation tool which allows us to both characterise the different matrix distri-
butions and compare data to the distribution models. The diagram promotes intuition
about the applications of the Mellin kind statistics framework, and is used in Papers 2
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and 3 (Chapters|and [/) to provide geometrical interpretations of the proposed estima-
tion procedures and goodness-of-fit tests.

In the diagram we plot: (i) manifolds spanned by the theoretical matrix log-cumulants
that can be attained under given models, and (ii) points that represent the empirical
sample matrix log-cumulants computed from data samples. The dimension of a given
manifold equals the number of parameters in the texture distribution associated with
that particular model. The Wishart distribution has no texture parameters, and is repre-
sented by a black point (zero-dimensional manifold). The matrix-variate K and G° dis-
tributions have one texture parameter, and are represented by the red and blue curves
(one-dimensional manifolds), respectively. The ¢/, W and M distributions have two tex-
ture parameters, and are visualised in the diagram as the respective yellow, cyan and
magenta surfaces.

The diagram is spanned by the second and third-order matrix log-cumulants, and is
a direct extension of the log-cumulants proposed in [Nicolas, 2002,Nicolas, 2006] for the
univariate case. It was shown in that under the multilook polarimetric product
model, matrix log-cumulants of order v > 2 are independent of the speckle distribution
scale matrix ¥. They depend only on L, which is considered a constant, and the texture
parameters. By plotting the third-order matrix log-cumulant against the second-order
matrix log-cumulant (a convention introduced by Nicolas), we obtain a diagram which
shows the solitary impact of the texture parameters upon the models. Thus, it promotes
insight about how we can select between the different compound matrix distributions
(including the Wishart distribution). We can also assess the fit between data and models
by looking the distances between them in matrix log-cumulant space. Finally, the dia-
gram visualises how texture parameters are estimated from data by projecting sample
matrix log-cumulants onto the manifolds of population matrix log-cumulants.

The clusters of sample matrix log-cumulants plotted in Figure (4.9 represent targets
that have been selected from different images acquired by the airborne AIRSAR L-band
sensor previously operated by NASA /JPL. The samples represent forest (green cluster),
sea (blue cluster), urban area (purple cluster) and cropland (brown cluster), and indicate
which model is suitable in each case. The multiple points in each cluster were obtained
by bootstrap sampling the covariance matrix samples. This is a way of showing the
variance of the sample matrix log-cumulants. Note also that the matrix distributions
presented in this chapter cover the whole matrix log-cumulant plane, remembering that
the lower semi-plane represents texture distributions with negative variances.

57



58



Chapter 5

Paper 1:

Estimation of the Equivalent Number of
Looks in Polarimetric Synthetic Aperture
Radar Imagery
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Chapter 6

Paper 2:

Application of the Matrix-Variate Mellin
Transform to Analysis of Polarimetric
Radar Images
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Chapter 7

Paper 3:

Goodness-of-Fit Tests for Multilook
Polarimetric Radar Data Based on the
Mellin Transform
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Chapter 8

Conclusions

This chapter gives concluding remarks and outlines some directions of future research.

8.1 Concluding Remarks

In this thesis, it has been shown that the Mellin kind statistics framework is a natural
tool for analysis of the matrix distributions derived under the multilook polarimetric
product model. The simple and elegant mathematical expression we obtain, the perfor-
mance of the parameter estimators, and the interpretability of the results are taken as
proof of this statement.

Some excellent parameter estimators have been derived by the method of matrix
log-cumulants, and a pioneering goodness-of-fit test has been constructed. However,
by looking at the long list of applications that have grown out of Nicolas” univariate
Mellin kind statistics (See the second paragraph of Section [I.)), it can be expected that
more algorithms for analysis of multilook polarimetric images will follow. We have
already identified some target areas and applications.

8.2 Future Research

The first paper where the contours of the matrix-variate Mellin kind statistics frame-
work could be seen was [Anfinsen et al., 2009]. This paper has been included in Ap-
pendix |Al It discusses statistical modelling of speckle filtered multilook polarimetric
images and demonstrates that the filtering alters the data such that new models are re-
quired. This is a topic which is worth pursuing. By looking at the characteristics of the
speckle filtered data in matrix log-cumulant space, the matrix-variate VW and M dis-
tributions are launched as potential models for filtered speckle in heterogeneous and
extremely heterogeneous areas. Another task would be to find statistical models for
partially developed speckle, and the Mellin kind statistics could possible be helpful in
the characterisation of such a model.
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An interesting observation is that the log-determinant transformation of the polari-
metric covariance matrix compresses the matrix data to a scalar band. By storing this
band only, we can still compute matrix log-moments and matrix log-cumulants and
make inferences based on them. This compression could be utilised to make fast algo-
rithms for different image analysis tasks that still maintain high performance, since the
matrix log-cumulants have a high content of statistical information.

It was mentioned in Section that the texture parameters of the radar image
distributions can be used as textural features in various image analysis problems. The
matrix log-cumulants would contain the same information, but are cheaper to com-
pute and not confined to a specific distribution model. This is an area that we want to
explore further. Compound matrix distributions have already been applied to classifi-
cation [Doulgeris et al., 2008] and segmentation [Bombrun and Beaulieu, 2008, [Harant
et al., 2009, Vasile et al., 2009]. In polarimetric change detection on the other hand, the
test statistics proposed in [Conradsen et al., 2003, Kersten et al., 2005] are developed
under the assumption of Wishart statistics. Extensions could possibly be achieved by
means of Mellin kind statistics.

As a final remark, we note again that the log-determinant compression induced by
the matrix-variate Mellin transform reduces the data dimension to one. The statisti-
cal information contained in the polarimetric covariance matrix could possibly be bet-
ter preserved by using the multivariate Mellin transform from [Mathur and Krishna,
1977], even though the off-diagonal complex correlations will be discarded in such an
approach. Thus, there is a chance we could use the Mellin transform to squeeze even
more information out of polarimetric radar images.
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A RELAXED WISHART MODEL FOR POLARIMETRIC SAR DATA
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ABSTRACT

In this paper we demonstrate that simple yet flexible mod-
elling of multilook polarimetric synthetic aperture radar
(PolSAR) data can be obtained through a relaxation of the
Wishart model. The degrees of freedom of the complex
Wishart distribution is treated as a spatially nonstation-
ary parameter, which is allowed to vary between thematic
classes and segments of the PoISAR scene.

Key words: synthetic aperture radar; polarimetry; statis-
tical modelling; Wishart distribution.

1. INTRODUCTION

The Wishart distribution is the de facto statistical model
for multilook PolSAR data. It is based on the assumption
that the complex scattering coefficients are jointly circu-
lar Gaussian. However, this is only satisfied for homo-
geneous areas with fully developed speckle and no tex-
ture, which renders the model inadequate in many cases.
Improved modelling is achieved by using more complex
models that account for texture, such as the polarimetric
G distribution family [1], with the polarimetric K distri-
bution [2] as a special case. These models allow for bet-
ter adaption to data whose distribution is heavy-tailed and
non-Gaussian, but this comes at the cost of higher math-
ematical complexity.

The comparatively higher mathematical tractability of
the Wishart distribution motivates us to pursue a relaxed
Wishart model as an alternative. In the context of multi-
look PoISAR data, the degrees of freedom of the Wishart
distribution is interpreted as the equivalent number of
looks, a constant, global value that quantifies the effec-
tive number of data samples averaged in the multilooking
process. In contrast, we treat it as a free parameter, which
varies between, and possibly also within, classes and seg-
ments of the PoISAR scene. This reflects the highly vari-
able degree of smoothing imposed on the data by non-
linear speckle filters. The choice can also be justified by
looking at the degrees of freedom as a shape parameter
of the distribution, which is determined not only by the
degree of averaging, but also by texture. Thus, the in-
fluence of multilooking, speckle filtering, and texture is
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assimilated into one parameter, which can be estimated
efficiently with a recently proposed estimator [3, 4]

Sec. 2 reviews some existing density models for multi-
look PolSAR data and proposes the relaxed Wishart dis-
tribution as an alternative. In Sec. 3 we derive certain
matrix moments that are used to illustrate the adaptivity
of the different density models, and as a new domain for
visual goodness-of-fit assessment. Sec. 4 presents exper-
iments with airborne NASA/JPL AIRSAR data, and in
Sec. 5 we give our conclusions.

2. STATISTICAL MODELLING

The full-polarimetric SAR instrument separately trans-
mits orthogonally polarised microwaves pulses, and mea-
sures orthogonal components of the received signal. For
each pixel, the measurements result in a matrix of scat-
tering coefficients. These are complex-valued, dimen-
sionless numbers that describe the transformation of the
transmitted (incoming) electromagnetic (EM) field to the
received (backscattered) EM field for all combinations of
transmit and receive polarisation.

The transformation can be expressed as

_ Suh Sho ] [ ] )

E; ejkr
[ E; ] - T |: S’Uh va

where k denotes wavenumber and r is the distance be-
tween radar and target. The subscript of the EM field
components E? denotes horizontal (h) or vertical (v) po-
larisation, which is the most common set of orthogonal
polarisations, while the superscript indicates transmitted
(t) or received (r) wave. The scattering coefficients S
are subscripted with the associated receive and transmit
polarisation, in that order. Together, they form the scat-
tering matrix, denoted S = [.S;;].

2
Et

The scattering matrix can be reduced to one of the vectors

Shh 1 Shn+Sve
s =|(Sho+Sun)/NV2 | otk = — | Sip—=Su | . (2)
v \/i Shv+5vh

The lexicographic scattering vector, denoted s, is the vec-
torised version of S after the cross-polarisation terms S},



and S,;, have been averaged, assuming reciprocity of the
target. The scaling with a factor /2 is done to preserve
total power of the signal. The Pauli basis scattering vec-
tor, denoted k, is a linear transformation of s, which pro-
vides physical interpretations of its elements in terms of
basic scattering mechanisms [5].

2.1. Gaussian Model

It is commonly assumed that the scattering vector ele-
ments are jointly circular complex Gaussian, even though
this model only encompasses variability due to speckle,
and not texture, which is discussed in the Sec. 2.2. The
matrix S and the vectors s and k are single-look complex
format representations of PolSAR data. The following
derivations shall use s as the scattering vector, but would
be equivalent for k.

Multilook PolSAR data is commonly represented by

1 L
_ H
C = Li;szsi , 3)

known as the sample covariance matrix. It is formed
as the mean Hermitian outer product of the single-look
scattering vectors {s;}~ ;. where L is the nominal num-
ber of looks. The superscript H means complex conju-
gate transpose. Assume that s is zero mean and circular
complex multivariate Gaussian, denoted s ~ N (0, X),
where O is a column vector of zeros, d is the dimension
of s, and ¥ = E{ss} is the covariance matrix of s. The
probability density function (pdf) of s is thus

ps(s;2) = exp(—s"2's), 4)

.
T3]

where | - | is the determinant operator. It follows that if
L > d and the s; in (3) are independent, then C follows
the nonsingular complex Wishart distribution [6]:

pw(C; L, %)
LLd|c|L7d
- [ZETu(L)

exp (—Ltr(zC)),

where tr(-) is the trace operator. The normalisation con-
stant I"4(L) is the multivariate Gamma function, defined
as

d—1
Ly(L) = 74 D2 T - 1), (6)
=0

where I'(L) is the standard Euler gamma function. In
reality, the s; are correlated, and this is compensated for
by replacing L with an equivalent number of looks, L. >
L, in order to obtain consistency between moments of the
theoretical model and sample moments of the data. This
approximation provides a good model for the distribution
of C, denoted C ~ WY (L., X).
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2.2. Product Model

In addition to speckle, the randomness of a SAR mea-
surement can also be attributed to texture. The notion
of texture represents the natural spatial variation of the
radar cross section, which is generally not perfectly ho-
mogeneous for pixels that are thematically mapped as one
class. Several statistical models exist that incorporate
texture, either by assuming statistics that imply a non-
Gaussian scattering vector, or explicitly modelling tex-
ture as a separate random variable (rv). The latter case
leads to a doubly stochastic model with a compounded
distribution.

The well known product model, reviewed in [7, 8, 9], is
shown to be both mathematically tractable and success-
ful for modelling purposes. In the multilook polarimet-
ric version [1], the polarimetric covariance matrix C is
decomposed as a product of two independent stochastic
processes with individual distributions:
C=:zW. @)
One process, W ~ W9 (L., ), models speckle. The
other process generates texture, represented by the scalar
rv z € R™T, under the assumption that texture is inde-
pendent of polarisation. The pdf of C depends on the
distribution of z, which is normalised to unit mean.

Gamma Distributed Texture

The first covariance matrix distribution derived from the
product model used the gamma distribution to model z
[2]. A gamma distributed rv z > 0 has density

a\® 22! «Q
i = () e () @

with shape parameter > 0 and mean value u = E{z} >
0. This is denoted z ~ G(c, 11). The unitary mean texture
rv is thus z ~ G(«, 1). This leads to the matrix-variate XC
distribution for C [1, 2]:

PC(C; Lea E, a)

_2|ClEed(L,a)
B ETa(Le)T (@)

x Ko—r1,4(24/ Leatr(Z7'0)) .

K, (+) is the modified Bessel function of the second kind
with order n. See [1, 10] for a detailed derivation.

a+Led
2

a—Led

(tr(="'C)) ?

9

Inverse Gamma Distributed Texture

The family of generalised inverse Gaussian distributions
was proposed in [1] as a model for z. The gamma distri-
bution is one special case. The inverse gamma distribu-
tion is another, which has been promoted in particular as
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Figure 1. Examples of single intensity marginal densities for a polarimetric covariance matrix modelled by the relaxed
Wishart distribution (left), matrix-variate K distribution (middle), and matrix-variate G° distribution (right).
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Figure 2. Same as Fig. 1 with logarithmic second axis to emphasize differences at the tails.
a good model for strongly heterogeneous clutter [1, 11]. eter, £ < L.. Depending on the application, .Z is al-
Its pdf is given by lowed to vary between classes (classification), segments
N \ (segmentation), or pixels (e.g., change %etection). The
) _ A% v new distribution is denoted by C ~ RW, (%, X).
p(ia) = ) e (<2) a0 ;
This is denoted z ~ G~1(\,v), with shape parameter The motivatipn for this approach is explained by .Fig.. 1.
A > Oand v > 0. The normalised texture rv becomes It is not possible to visualise the effect of the distribution
z ~G7L(\, (A =1)/\), which leads to the matrix-variate parameters directly on the pdfs in Egs. (5), (9), and (11).
GO distribution for C [1]: We therefore plot their marginial densities for a single po-
larisation intensity. The respective marginals are gamma
pc(C; L., X, \) distributed, KC; distributed, and GY distributed. For the
Lod| (| Leo—d 2 latter two, the superscripted I denotes the multilook in-
_ LeC] D(Led + V(A —1) a1 tensity version of the given distribution family.
|E|Le Fd(Le)F(A)
— _Le
X (Le tr(zflc) +A- 1) Ahed . In all the plots, the continuous curve represents the lim-
iting case defined by the standard Wishart model, with
For interpretation purposes, we note that z — 1 and the a gamma distributed marginal pdf. In the left panel, the
distributions in Egs. (9) and (11) converge in distribution dashed curves show the evolution of the pdf under the
to the complex Wishart distribution in Eq. (5) as o — RW model as . is lowered from the limit of £ = L.
oo and A\ — oo, respectively. Thus, high values of « The same evolution is illustrated for the /C distribution
and )\ imply little texture, whereas low values refer to (middle panel) and the G° distribution (right panel) for
significant texture and non-Gaussianity. decreasing values of the respective texture parameters, «
and A. We observe that the effect of varying £ resem-
bles that induced by « and A, even though a greater varia-
2.3. Relaxed Wishart Model tion in shape is possible for the distributions based on the
product model. Fig. 2 uses a logarithmic scale to high-
The standard Wishart model in Eq. (5) is parametrised light the heavy tails of the K and G° distribution., which
by a constant L., which is estimated for the data set as is less prominent for the marginal pdf of the RV distri-
a whole [3, 4]. We introduce a relaxed Wishart (RW) bution. We still conclude that . can be interpreted as a
model, whose functional form is identical. The differ- texture parameter alongside « and A. Thus, the RW dis-
ence is that L. is replaced with a variable shape param- tribution implicitly models texture up to a moderate level.
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3. GOODNESS-OF-FIT EVALUATION

This section discusses evaluation of the goodness-of-fit
(GoF) for the matrix-variate density models of multilook
PolSAR data. GoF testing in the literature has been lim-
ited to visual inspection of how well marginal densities
of intensity fit histograms of the data. Classical statistical
distribution tests, such as the Kolmogorov-Smirnov test
or the Anderson-Darling test, are impractical in this case.
As noted in [1], this is because they require binning of
the domain of C, which is the cone of positive definite
matrices.

We here propose an alternative space where GoF eval-
uation can be performed. The idea is that GoF can be
assessed by comparing theoretical moments of the mod-
els with sample moments computed from the data. We
first define a new kind of matrix moments, that we call
log-determinant cumulants. Closed form expressions for
the candidate models are then derived. These are seen to
have favourable properties that can be utilised to visualise
the texture modelling capabilities of the models.

3.1. Log-determinant Cumulants

The following derivation is based on the application of
second kind statistics, following the terminology intro-
duced in [12]. Whereas the commonly known charac-
teristic function is defined as the Fourier transform of a
pdf, the second kind characteristic function is the Mellin
transform of the pdf. This function can be used to gen-
erate moments and cumulants of the second kind, also
termed log-moments and log-cumulants.

Let & be a real, positive rv with pdf pe (§). Start by defin-
ing the rth-order log-moment of & as

d" pe(s)
ds”

m,(§) = E{(In¢)"} = ;12

s=1

where ¢¢(s) is the Mellin transform of p¢(€) and s € C
[12]. Then define the rth-order log-cumulant of £ as

d e (s)

kr(§) = Js

; (13)

s=1

where 1¢(s) = In¢¢(s). Relations between some low-
order log-moments and log-cumulants are given by

K1 mi, (14)
Ky = mg—mji, (15)
K3 = ms3—3myimy +2m3. (16)

It follows from a fundamental property of the Mellin
transform [12] that for a product of independent random
variables, £ = p - (, with p, ( > O:

HT(&) = Hr(p) +K"I‘(C)’ VrelN.

a7
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This equips us to derive the log-cumulant of |C|, which
will be referred to as the log-determinant cumulant
(LDC) of C.

Note that |C| = [2W| = 2¢|W]|. Thus,

kr(|Cl) = d"kr(2) + ki (JW]) - (18)
The log-cumulants of z have been derived in [12]. For
z ~ G(a, 1) it was shown that

k1(z) = In (a) +0O(a), (19)

ke(z) = UO(), r>1, (20)

where ¥ (") () is Euler’s polygamma function of order 7.
The log-cumulants of z ~ G~ 1(\, v) were found as

InAv— O\,
(=)D,

2L
(22)

k1(z)

Kr(2)

The LDCs of the Wishart distributed W can be deduced
from results found in [3, 4] as

d—1
In|%]+ > UO(L, — i) — dln L(23)
=0

Z\W (L, —1),

r1(|W]) =

kr([W]) = r>1. (24

This completes the expression in Eq. (18) for our candi-
date models.

3.2. Log-determinant Cumulant Diagram

Note that the LDCs are matrix-variate generalisation of
the log-cumulants derived in [12] for the single polarisa-
tion product model. As in the one-dimensional case, we
can utilise the fact the LDCs do not depend on the scale
parameter X for r > 1. More specifically, the £,~1(|C|)
depend only on the texture parameters:

m21(C) = o_if@”’(Le—i) (25)
khoy (C) = d"¥ ) + Z UV (L.—i) (26)
k92, (C) = (—d) N + Z v, —i27)
rEY(C) = Z D (2 —i), (28)

where the superscript of « indicates which model the ex-
pression describes.

By plotting two LDCs of different orders against each
other, we obtain a curve in LDC space which depicts the



paired LDC values that can be attained under a given
model. We refer to this as an LDC diagram. Sample
LDCs calculated from data can be overlaid the model
curves, and the diagram used to assess how well the data
are described by different models, and which model pro-
vides the best fit. Diagrams of second and third order
log-cumulants were plotted in [12, 13], and we will use
the same orders for our LDC diagrams. Remark that the
bias and variance of the sample LDCs are expected to in-
crease rapidly with order.

4. EXPERIMENTS

4.1. Marginal Densities of Intensity

We have extracted three test samples from an L-band
quadrature polarisation image aquired by the airborne
NASA/JPL AIRSAR sensor over Flevoland, the Nether-
lands, in August 1989. The samples are taken from some
of the more textured areas in the image. One is from a for-
est area and the other two from different crops. Marginal
densities of the intensity in the HH, HV, and VV channels
for the forest sample are shown in Fig. 3. These densities
describe unfiltered data. Fig. 4 describes the same data
after they have been filtered with a refined Lee filter [14]
of window size 7x 7.

The first observation is that the data are well described by
all the models in Fig. 3. By zooming in on the densities, it
may be concluded by visual inspection that the K model
provides the best fit, followed by the RW model. The
ENL estimated for the data set, and used to parametrise
the standard Wishart, K, and G° model, is L. = 3.3. This
constant is replaced with £ = 2.53 for the R}V model.
The texture parameters v and \ are estimated with the
method described for the K distribution in [10].

Fig. 4 shows that the models have very different GoF for
speckle filtered data. The Wishart model is the worst fit,
and none of the distributions based on the product model
produce an adequate result either. Only the )V model
seems to do a good job. The ENL was estimated to L, =
48, and is reduced to .Z = 27 for the RV model. The
marginal densities of the other two test samples yield very
similar results, both before and after speckle filtering, and
are therefore not shown.

4.2. Log-determinant Cumulant Diagrams

Fig. 5 shows a LDC diagram where x3(|C|) is plotted
against ko(|C|), with analogy to the log-cumulant dia-
grams in [12, 13]. The Wishart model has no texture pa-
rameter, and its LDCs are therefore constant, equal to the
contribution k,.(|W]), =1, 2 of the Wishart distributed
speckle matrix. These constants are indicated in the fig-
ure by the dotted lines, intersecting at the point which de-
scribes the Wishart model. The possible LDC pairs of the
IC, G% and RW models lie on a curve parametrised by
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a, A, and %, respectively. The asymptotic behaviour of
these curves, as the texture parameters decrease towards
their lower limits, is indicated on the figure. At the upper
limit, the curves all converge to the Wishart case. Sam-
ple LDCs of the three test samples are plotted as points in
green (forest), cyan, and magenta (two different crops).
We plot a collection of sample LDC estimates, obtained
by bootstrap sampling of the full test samples, in order
to illustrate the dispersion of the sample estimates. ENL
estimates for each test sample are shown in the figure.

Diagrams of data before and after speckle filtering are
presented in the left and right panel, respectively. For
the unfiltered data, the LDC diagram clearly indicates
that the RV distribution is the best model for the for-
est sample. The other test samples are less textured, and
all models are adequate. For the speckle filtered data, the
LDC diagram suggests that the RV model fits best for
the forest sample and the first crop sample (cyan), while
the IC model performs best for the second crop sample
(magenta). For the crop samples, both the R}V model
and the /C model fit reasonably well. The Wishart and the
G° model are inadequate in all cases. The LDC diagram
indicates good fit of the K model to the crop samples,
which is not compatible with observations of the marginal
densities (not shown). This prompts us to reconsider the
estimator for o (and \) in future work.

The success of the RV distribution in modelling of
speckle filtered data, and the relative failure of the others,
can be explained by a discussion of the nature of adap-
tive speckle filters. Adaptive speckle filters apply vari-
able smoothing by consideration of local homogeneity.
Hence, the ENL is mapped from a constant value to a
dispersed range of values. This is not modelled appro-
priately, neither by the Wishart distribution nor the other
distributions based on the product model. The R dis-
tribution, on the other hand, apparently represents a better
approach.

5. CONCLUSIONS

We have proposed a relaxed Wishart distribution where
the equivalent number of looks of the standard Wishart
model has been replaced by a varable shape parameter.
We have further derived the log-determinant cumulants
of the polarimetric covariance (or coherency) matrix un-
der the product model, and demonstrated how they can be
utilised in visual inspection of goodness-of-fit for matrix-
variate distributions. Experimental results show that for a
moderate level of texture, the newly proposed density can
compete with densities derived from the product model
with regards to modelling of unfiltered PoISAR data. For
data that are processed with an adaptive speckle filter, the
relaxed Wishart model is shown to perform better. Based
on the very promising results, we suggest that the relaxed
Wishart distribution should be tested more extensively on
other data sets and with different speckle filters. It should
also be applied to model-based classification, change de-
tection, and other image analysis tasks.
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Figure 3. Comparison of marginal densities of the Wishart, RW, K, and G° distribution with data histograms for a
textured forest area in the AIRSAR L-band image of Flevoland. No speckle filter applied.
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Introduction to Second Kind Statistics:
Application of Log-Moments and Log-Cumulants
to Analysis of Radar Images

Jean-Marie Nicolas and Stian Normann Anfinsen (translator)

Abstract—Statistical methods classically used to analyse a probability
density function (pdf) are founded on the Fourier transform, on which
useful tools such the first and second characteristic function are based,
yielding the definitions of moments and cumulants. Yet this transfor-
mation is badly adapted to the analysis of probability density functions
defined on R, for which the analytic expressions of the characteristic
functions may become hard, or even impossible to formulate. In this
article we propose to substitute the Fourier transform with the Mellin
transform. It is then possible, inspired by the precedent definitions, to
introduce second kind statistics: second kind characteristic functions,
second kind moments (or log-moments), and second kind cumulants
(or log-cumulants). Applied to traditional distributions like the gamma
distribution or the Nakagami distribution, this approach gives results
that are easier to apply than the classical approach. Moreover, for
more complicated distributions, like the /C distributions or the positive a-
stable distributions, the second kind statistics give expressions that are
truly simple and easy to exploit. The new approach leads to innovative
methods for estimating the parameters of distributions defined on R+ . It
is possible to compare the estimators obtained with estimators based on
maximum likelihood theory and the method of moments. One can thus
show that the new methods have variances that are considerably lower
than those mentioned, and slightly higher than the Cramér-Rao bound.

Index Terms—Probability density functions defined on R*, gamma
distribution, Nakagami distribution, characteristic functions, parameter
estimation, Mellin transform

1 INTRODUCTION

STIMATION of the parameters of a probability den-
E sity functions (pdf) is a topic of major significance
in pattern recognition. Starting from these estimates,
segmentation and classification algorithms can be imple-
mented, both in the field of signal processing and image
processing. In signal processing, the intrinsic knowledge
of the nature of the data (provided by an acoustic sensor,
electromagnetic sensor, etc.) allows us to make realistic

The author is with the Ecole Nationale Supérieure des Télécommunications,
Département TSI, 46 rue Barrault, 75634 Paris cedex 13 (e-mail: jean-
marie.nicolas@telecom-paristech.fr).

The original paper was published as: ].-M. Nicolas, “Introduction aux
statistiques de deuxiéme espece: applications des logs-moments et des logs-
cumulants a l'analyse des lois d'images radar”, Traitement du Signal, vol.
19, no. 3, pp. 139-167, 2002.

Translated from French by Stian Normann Anfinsen, University of Tromse,
Department of Physics and Technology, NO-9037 Tromse, Norway (e-mail:
stian.normann.anfinsen@uit.no).

assumptions about the suitable distribution models. In
particular, many techniques are based on the additive
noise model with a noise term that is assumed to be
Gaussian. Traditionally, if one describes a random phe-
nomenon by a pdf, one will also introduce the concept
of the characteristic function, defined as the Fourier
transform F of the pdf. For example, if p,(u) is the
pdf modelling a random variable X, the characteristic
function ®,(v) is obtained by the relation [1]:

+oo
©.(0) =Fp]@) = [ pwdi.

The second characteristic function is defined as the log-
arithm of the characteristic function:

0 (v) = log(Vz(v)). )

By taking account of properties of the Fourier transform,
it is easy to show that moments of order n are obtained
by derivation of the characteristic function:

“+o00o
My = [ u"py(u)du
" x0) ©
v=0

dvm™
and cumulants of order n by derivation of the second
characteristic function:

nd W (v)
dvm |,y

Moreover, if a phenomenon is analysed, described by

a pdf ¢y, which is perturbated by an additive noise,

described by its pdf r., one knows that the output signal

is described by the pdf p, given as

Rg(r)y = (_j)

Pz = Qy *Tz, (4)

with the operator * denoting convolution. It is known
that the characteristic functions and the cumulants can
be written:

Dy (s) = Py(s)P=(s) ®)
W (5) = Wy (s) + W (s) (6)
Kx(r) = Iﬁy(,,.) + Hz(r) Yr (7)
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However, in image processing the problems are different.
It should be noted first of all that the pixel values are
positive or zero (we will not discuss here the analysis of
images defined by complex values), and that the noise
is often multiplicative. Also, the preceding model must
undergo some adaptations to be applicable as it is. One
approach often proposed is to perform a logarithmic
transformation, which is possible since the pdf is defined
on R*. Several remarks can then be made:

o The analytical calculation of the characteristic func-
tions defined on RT is sometimes hard, even im-
possible for certain distributions, as we will see in
section 3.2.

e No complete methodology is proposed for loga-
rithmically transformed data. Calculation of mo-
ments on logarithmic scale (that one may call log-
moments) is carried out analytically starting from
Eq. (3). It requires a change of variable (thus a
rewriting of the pdf for this new variable) and is
carried out in a specific way for each pdf. This
approach requires a good knowledge of integral
transforms and of the properties of special functions.

o In traditional statistics, the Gaussian distribution is
the reference, which corresponds to the log-normal
distribution on a logarithmic scale. However, in
many examples, this law does not describe the
studied phenomenon well. In particular, the speckle
(clutter) observed in images obtained by coherent
illumination (e.g., laser, radar, ultrasound) follows,
for intensity images, the gamma distribution, which
we will study in more detail in this article and
which tends asymptotically towards a degenerated
Gaussian distribution.

As we will show, a new methodology based on an-
other integral transformation, the Mellin transform [2],
makes it possible to perform a more effective analysis of
practically important distributions defined on R*. This
methodology, that we propose to call second kind statis-
tics, uses the same framework as traditional statistics
for the definition of the characteristic functions (sim-
ply by replacing the Fourier transform with the Mellin
transform in Eq. (1)) and the same construction of the
moments and cumulants (by derivation of the character-
istic functions). This leads naturally to the definitions
of second kind moments and second kind cumulants. We
shall see why we propose to call these new entities log-
moments and log-cumulants. Thanks to this approach, it is
possible to analyse in a simpler way distributions with
two or three parameters that have traditionally been
used for imagery: the gamma distribution, Nakagami
distribution, and K distribution. Then, we will see how
to tackle more complex problems like the distributions of
the Pearson system, additive mixtures and distributions
with heavy tails (i.e., distributions for which the mo-

ments cannot be defined starting from a certain order!).
Finally, we will analyse why the parameter estimators of
these distributions based on the log-moments and log-
cumulants have a lower variance than those obtained
from the traditional moments and cumulants.

The remark can be made that a formalism with such
similarity to the existing definitions cannot lead to in-
trinsically new results. It should be stressed that the
essential contribution of this framework is to offer a
signal and image processing methodology which proves,
for certain applications, considerably easier to use than
the traditional approaches. The major goal of this article
is to illustrate its simplicity of implementation as well as
its flexibility in use.

2 DEFINITION OF THE SECOND KIND CHAR-
ACTERISTIC FUNCTIONS

The objective of this section is to propose a formalism of
second kind statistics based on the Mellin transform and
redefine some elements of traditional statistics, namely
the characteristic function yielding moments and cumu-
lants, as outlined in the introduction.

2.1 First Characteristic Function of the Second Kind

Let X be a positive-valued random variable whose pdf,
px(u), is defined for u € R*. The first characteristic func-
tion of the second kind is defined as the Mellin transform
M of py(u):

+oo
60(5) = Mlpa (w)](s) = /O W lpe(u)du ()

provided that this integral converges, which is verified
in general only for values of s located inside a strip
delimited by two lines parallel to the secondary axis,
ie.

beR

s=a+jb, a€lal;a2

with ay commonly approaching +oo, just as a; ap-
proaches —co. As the Mellin transform has an inverse
[2], knowing ¢, (s), one can deduce p,(u) thanks to the
relation:

1 c+i00o
P (u) = o /C_ioo u . (s)ds
given that c is confined within the strip where the first
characteristic function is defined (i.e, ¢ €la;;az]). Note
that if p,(u) is a pdf, the second kind characteristic
function satisfies the fundamental property:

(bm(s)‘s:l =1.

1. Translator’s remark: Note that author uses a strict definition of
heavy-tailed distributions. An alternative and more common definition
is that heavy-tailed distributions are not exponentially bounded. That
is, they have heavier tails than the exponential distribution. Since the
context of the discussion is modelling of multilook intensity radar data,
it would be natural to replace the exponential distribution with the
(generalised) gamma distribution in this criterion.
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By analogy, the second kind moments, m, (v € N) are
defined by the relation:

- dV¢u(s)

L, =
ds¥

©)

s=1
By virtue of a fundamental property of the Mellin trans-
form [Col59]:

M ()l ) (5) = 220 0)

which is evaluated at s = 1, the second kind moments
can be written in two different ways:

L d"g.(s)
my = dsV o (10)
“+oo
:/0 (log )" ps(u) du . (11)

Eq. (11) suggests that we refer to the second kind mo-
ments as log-moments, which is adopted for the remain-
der of the article.

We now introduce the second kind mean or log-mean
m. This auxiliary variable is defined by the following
relation

logm=m, < m=em.

Note that this entity, which is in fact the geometric mean,
takes its values in R (a suitable scale for the variable u),
whereas the log-moments take their values in R (on log-
arithmic scale). It is thus possible to compare the mean
m and the log-mean m, and the practical importance will
be demonstrated for the gamma distribution.

Just as one traditionally defines the central moments,
we introduce the definition of the central log-moments
of order n, M,:

~ +m
M, = / (logu — m1)" pr(u) du
0

- /0+00 (log %)n P (u) du .

In particular, one readily finds the expression

(12)

Y ~ ~ 2
Mg:mg—ml.

Thanks to this formalism, it is possible to obtain an
analytical expression for the log-moments by simple
derivation of the second kind characteristic function. We
will look at the classical interpretation of the Mellin
transform.

2.2 A First Interpretation of the Mellin Transform
By comparison of the moment definition in Eq. (3) and
the definition of the first characteristic of the second kind
in Eq. (8), one can write the generalised moments, m,:
+o0o
my = (o) = [ wpw)du. (13
0

For v € N, these are the traditional moments. For v € R,
we have the fractional moments, that have been used

by some authors (like the use of FLOM: Fractional Low
Order Moments, in [3]). Provided that the Mellin trans-
form is defined for values of v € R, it is justified to use
lower order moments [4]. Lastly, in addition to moments
defined for a value v = a (i.e., traditional moments,
fractional moments, or lower order moments), one can
define moments of complex order with v = a + jb for all
b, this because the pdf p,(u) is positive by definition, a
property which is trivial to verify.

2.3 Second Kind Cumulants or Log-Cumulants

Still by analogy with classical statistic for scalar real
random variables defined on R, the second characteristic
function of the second kind is defined as the natural log-
arithm of the first characteristic function of the second
kind:

Y (s) = log(¢(s)) -
The derivative of the second characteristic function of

the second kind, evaluated at s = 1, defines second kind
cumulants of order n:

(14)

dn'(/)x (S)
ds’n

s=1

Since formally, second kind cumulants are constructed
according to the same rules as traditional cumulants, the
relations between log-moments and log-cumulants are
identical to the relations existing between moments and
cumulants. For instance, the three first log-cumulants can

be written as:
Rl = my
P ~9
Ro = M2 — My
fz = M3 — 3y + 25

As in the case of log-moments, we adopt the name log-
cumulants for the second kind cumulants.

2.4 Some Properties of Log-Moments and Log-
Cumulants

The utilisation of the Mellin transform requires knowl-
edge about some of its specific properties. In particular,
let us point out the definition of the Mellin convolution
(which is an associative and commutative operation):

_ iy _ [T u) dy
h=fxg & h /Of(y)g<y)y »

@hzfomgw)f(z)d;,

Its fundamental property is similar to the convolution
property of the Fourier transform:

M[f *g](s) = M[f](s) M[g](s) -
Note that if f and g are pdfs, then & is also a pdf (i.e.,
h(u) > 0 Yu € RT and M[h]|,=1 = 1).
The use of this operator finds an immediate applica-
tion in the study of multiplicative noise. Let Y and Z
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be two independent random variables whose respective
pdfs, g, and r., are defined on R*. Consider a random
variable X constructed by a multiplication of of these
two variables. It is thus a model of multiplicative noise.
It is then shown that the pdf of X, p,, is obtained as the
Mellin convolution of ¢, and r, [5], [6]:

Pz =gy *Tz.

The properties deduced in the following are formally
identical to those obtained in the case of a traditional
convolution (Egs. (5)-(7)). If ¢, is the second kind charac-
teristic function of X, ¢, is the second kind characteristic
function of Y and ¢, is the second kind characteristic
function of Z, the following relations are obtained:

Gu(s) = Py(s) ¢=(s)
¢T(8) = %(S) + wZ(S)

Ra(n) = Ky(n) + Kz(n)

17)
Vn e N

It is noted in particular that in the case of multiplicative
noise, the log-cumulants are additive. This property is
not surprising since the common method used to han-
dle multiplicative noise, transformation into logarithmic
scale, allows us to treat noise of multiplicative nature
like additive noise.

Finally note the following property:

u(fxg)=(uf)*(ug).

One can also, in a step similar to that of traditional
convolution, define the inverse convolution (a non-
commutative and non-associative operator). If the ratio

MIf](s)

Mlgl(s)
is defined in the vicinity of s = 1 such that the inverse
Mellin transform can be evaluated, the following relation
is posed:

Mf](s)
& MA|(s) = ————=.
) = 3elg165)
With the above notation we have, given that the pdfs p,,
¢y and 7, exist:

h=f+"g

1

meQy*7 Tz,

from which we deduce:

ba(s) = ¢”Ej)

¢+ (s)
¢x(5) = 1/)?;(5) - 1/12(5)

Ra(n) = Fy(n) = Fz(n)

(18)
Vn € N

Finally, it can be useful to utilise the Mellin correlation
(also a non-associative and non-commutative operation),

which is defined by the relation:
h=f®g < Mhl(s) =M[f](s) M[g)(2—s).  (19)

A pdf must satisfy M[h]|s=1 = 1, to which h complies.
Starting from this relation and using the same notation,
we can, provided that p, satisfies

prQy®Tz7

4
deduce the following:
by(s)
z\S8) = 75—~
ba(s) = Py(s) —=(2 = 5)
’%x(n) = Ry(n) + (71)’”/%2(”) Vn e N
The following expression can then be shown:
h=16g @ b= [ f)smvdy. @)
0
We also note the property:
u(fég) =i (2) (22)

In fact, the interpretation of the Mellin correlation is
founded on the analysis of the inverse distribution, i.e.,
the distribution p;(u) of the random variable Y = 1/X,
where the random variable X follows the distribution
p(u). The relation between these distributions are known

tO be.
1 (U,) ]

By taking account of a fundamental property of the
Mellin transform:

|27 (1) 0 =dtrwin -9,

u u

it is easily deduced that
Mlprl(s) = Mp(2 — 5).-

It is then seen that the Mellin correlation of a pdf ¢,
of the random variable Y and a pdf r. of the random
variable Z,

(23)

qy®T27

is simply a way to establish the pdf of the random
variable Y/Z.

Lastly, as for the traditional characteristic function, it
is interesting to note that the second kind characteristic
function can be expanded in terms of log-cumulants:

- 1.
Ve(s) = Rapy(s — 1) + me(g)(s —1)?

1
+ §I€r(3)(8 — 1)3 +...

2.5 Theorem of Existence of Log-Moments and Log-
Cumulants

We have just seen that the theoretical introduction of
the log-moments and log-cumulants does not pose any
formal problem. However, the existence of these entities
has not been proven, and an interrogation into the
requirements for their existence is needed. In this section
we will present a theorem of strong conditions, that
generally verify the existence of the log-moments and
log-cumulants for the distribution usually applied in
signal and image processing.
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TABLE 1
Properties of the Mellin convolution, the inverse Mellin
convolution, and the Mellin correlation of two
distributions defined on R*: p4 and pp, with second kind
characteristic functions ¢4 and ¢, and log-cumulants
Ranand kg p.

Characteristic function Cumulant

pA ;pB dA (S) oB (S) ’%A,n + ’%B,n
PA ";_1 pPB igg:% '%Am, - kB,n
pa®pp ba(s)pp(2—s) Ran+ (=1)"kBn

Let p(u) be a probability distribution defined on R,
whose second kind characteristic function is ¢(s). This
pdf satisfies the relations:

e p(u) >0 Vu>0

o Jo % plu)du = (s)|,_,

Theorem 1: If a pdf has a second kind characteristic
function defined on the set 2 =]s4, sp[, where s =1 € ,
then all of its log-moments and log-cumulants exist.

Proof: The existence of the log-moments and log-
cumulants depends by the convergence of the integral

+oo
/0 (logu)"p(u) du .

In order to study this improper integral, we will study
its behaviour at 0 and at the limit to infinity.
o close to infinity: Let a €  such that a > 1. Thus,
Ja > 1 such that:

+oo
o(a) = /0 u®p(u) du < oo

which amounts to saying that the moments of p(u)
(integer order or fractional) can be calculated for all
orders between 1 and «. Assume an integer n > 1.
Two cases then arise:

- For V 2 > 1 we have (logz)" < 2! In this
case, knowing that p(u) is a pdf and satisfies
p(u) > 0, one can write

b
blim (log uw)"p(u) du

—o /1

b
< lim / u® p(u) du < ¢(a)
b—oo Jq
which demonstrates the convergence of the in-
tegral as z — oo.

— There exists a constant ¢ > 1 such that (logc)” =
c*~1. Then, for V = > ¢ we have (logz)" < x1,
By an identical argument as for the previous
case, we deduce that

b
i [ ogu)"pla) du < o(a)

which demonstrates the convergence of the in-
tegral as © — oo.

o close to 0:

— First of all, consider the particular case where
the pdf is bounded. Assume that

JA Vu € [0,1], p(u) <A,

and calculate the limit

1
lin%)/ (log u)"p(u) du .

Since the pdf is bounded, we have for Va €]0, 1]
that
<

1(log w)"p(u) du 1(log w)"Adu
J J

1
<A / (logu)" du| .

The following property

1

lim / (logu)" du| =T(n+1)

a—0 [,
proves the convergence at 0.

— In the general case, the study of the convergence
starts from the variables change = — 1, there-
after utilising the convergence property that we
have just shown for the case z — oc.

We deduce that if a probability distribution with
bounded values possesses moments (fractional or inte-
ger ordered) of order strictly larger than 0 and strictly
smaller than 0, then all its log-moments and log-
cumulants exist. U

Note that a far more elegant and concise proof,
founded on the properties of analytical functions, can
be worked out without major problems based on the
assumption that ¢(s) is holomorphic [7], and thus dif-
ferentiable up to all orders at s = 1.

2.6 Comparison with Logarithmic Transformation

At this stage, one can wonder what the advantages of
this new approach are, and whether a simple transforma-
tion into logarithmic scale would lead to the same result.
We will show that in order to calculate a characteristic
function after logarithmic transformation, one effectively
has to calculate the Mellin transform of the original pdf.

We shall consider a random variable = with density
defined over real positive numbers. Its pdf, p,(u), is
thus defined for u € R, and the characteristic function is
written:

+o0o
D, (v) :/0 e, (u) du .

Then perform a logarithmic transformation. The new
random variable y is described the pdf ¢,(w), defined
for w € R, with w = log u. This pdf results from p, with
the relation given by

qy(w) = e“pa(e”) .
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Now calculate the characteristic function of the random
variable y:

—+o00
o, (v) = / e’ qy(w) dw

J —o0

+oo
= / eI’ e%p, (") dw

—0o0

+oo
= / evlosuy, (u) du with u = e
0

+oo
= / wpy(u) du .
0

The relation in (24) is recognised as the Mellin transform
of p,(u) at s =1+ ju:

(I)y(v) = ¢x(5)|s:1+jv .

This relation shows that if one knows the Mellin trans-
form of a pdf (ie., its second kind characteristic func-
tion), then one knows the ordinary characteristic func-
tion in logarithmic scale.

On logarithmic scale, moments and cumulants are
deduced by differentiation (simple or logarithmic) of
expression (25), which is equivalent to what was defined
in Eq. (10). This is another way to justify the terms
log-moments and log-cumulants. We note, however, that
the second kind statistics represent a generic method
to find log-moments and log-cumulants directly without
requiring a variable change (logarithmic transformation)
and also without having to calculate the new distribution
for the transformed variable.

Moreover, we will see that in the cases generally
encountered in signal and image processing, and where
the entities are defined on R, it is easier to calculate
the Mellin transform than the Fourier transform. Thus,
our approach simplifies the working of the problem.
In addition, when the Mellin transform is known, one
automatically obtains:

o the moments, by inserting positive integers for the

Mellin transform variable s, and
o the log-moments, by differentiating the Mellin trans-
form with respect to s and evaluating at s = 1.
This should be appreciated by any practitioner, since, by
applying a single transformation to the distribution, both
moments and log-moments are obtained.

(24)

(25)

2.7 Comparison between Integral Transforms

The use in this context of an ignored transform: the
Mellin transform, may surprise, since there exist more
common invertible transforms, such as the Laplace trans-
form, that could potentially play an important role in
the study of distributions defined on R*. At this stage,
it is important to observe what the relations between the
Fourier transform (¥), the Laplace transform (L), and the
Mellin transform (M) are. When it exists, the Laplace
transform of a pdf p(u) is written:

Llp(w))(o) = / " () du

while the first characteristic function of this pdf is writ-

ten
—+o0

eI (u) du .

Fp(w)w) = |

—00

The following relation is immediately deduced:

Flp(w)]@)],=— » = Llp(w)(@)|,—j

Because the Laplace transform variable is a complex en-
tity, one may consider that the Laplace transform could
allow for an analytical continuation of the characteristic
function [8]. However, the intrinsic properties of the
Laplace transform are the same as those of the Fourier
transform. A logarithmic transformation (in which case,
one will have to use the bilateral Laplace transform)
will in reality turn the Laplace transform into a Mellin
transform:

Llp(w)]lo=atjp = Mp(w)]ls=—a—jb = ¢u(8)]s=—a—jb

where p is the pdf on logarithmic scale.

There are such strong relations between these trans-
forms that, most likely, nothing fundamentally new will
be found by the use of the Mellin transform. Therefore,
it seems that the choice should be dictated by practical
considerations. We have seen that the Mellin transform
makes it possible to obtain traditional moments and log-
moments at the same time, without having to derive the
pdf on logarithmic scale. Moreover, the Mellin transform
of the experimental distributions commonly used in
signal and image processing can be found in tables. This
justifies a further look into the use of this rather ignored
transform. This is the pragmatic view which motivates
the derivations of this article.

3 FUNDAMENTAL EXAMPLES

We will illustrate the new approach by applying it to
distributions used to model synthetic aperture radar
(SAR) images. These are the gamma and the generalised
gamma distribution (intensity images with fully devel-
oped speckle), the Rayleigh and the Nakagami distribu-
tion (amplitude images with fully developed speckle),
and finally the K distribution (an intensity distribution
modelling fully developed speckle modulated multi-
plicatively by gamma distributed texture). Even if some
of the results obtained are trivial, it seems important to
be able to carry out comparisons with these simple and
well-known cases, in particular in order to handle the
problem of estimating the distribution parameters, an
aspect which will be looked at in Section 5.

3.1 Gamma and Generalised Gamma Distribution

The two parameter gamma distribution, denoted G[u, L],
is a type III solution of the Pearson system [9]. It is
defined on R" as

L—-1
G, L) (u) = %L)% (L;) e~ with L>0 (26)
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n
3]

1 2 3 4 5

Fig. 1. Top: Gamma distribution G|, L] with = 1 and
L =1,2,3,5 and 10. Bottom: Inverse gamma distribution
IG[u, L) withp=1and L =1,2,3,5 and 10.

We see that p is a scale parameter and that L is a shape
parameter (Figure 1).

The particular case of L = 1 corresponds to the true
gamma distribution?, which is well-known from the
radar literature as a model of fully developed speckle
in single-look images. The case of L = % gives the x?
distribution.

The Fourier transform tables show that the character-
istic function is written as:

=

L _jLarctan(%
D(v) = (L> Q
(o)
whose complicated expression makes it difficult to use
in practice.

On the other hand, by use of known Mellin transforms
that can be found in tables [2], [10], the second kind
characteristic function can be expressed in terms of the
gamma function as:

bu(s) =

o}

(27)

NSl

.sle(L + 5 — 1)

28
L 1T(L) @8)

2. Translator’s remark: Note that the author uses the terms ’gen-
eralised gamma distribution” and ’(true) gamma distribution” for the
distributions more commonly referred to as the ‘gamma distribution’
and the "exponential distribution’, respectively.

The classical moments m,,,Vn € N are much easier to
derive from this function than from (27):

I'(L+n)
= _— 2
Mn = fn LT (29)
from which we have the well-known moments:
_ -~ L+1 ,
mi = [ ma T,u .

This equation system is analytically invertible, and from
the first two moments we derive the following relations
for the parameters ;1 and L:

(30)

p=m1
I — m% _ 1

2 Mo
mo — my m—g—l

@)

Note that this distribution is asymmetric, and its mode
value is given by:

L-1
mmode:TNSM'

We also remark that the second kind characteristic func-
tion can be separated into a first term, 171, and a second
term that only depends on L, the shape parameter. As
L goes to infinity, I;(Lji;(_;)) goes towards 1, and G[u, L]
converges in distribution to the homothetic distribution

Hlpl:
¢a(s) — /~LS71
& Gl L)) — M) = 0 —1)

We note that the homothetic distribution can be seen
as a degenerate Gaussian distribution (i.e. with zero
variance). It seems to confirm what many experts of
radar imaging has pointed out, that the gamma distri-
bution tends towards a Gaussian distribution as L goes
to infinity, but by the alternative denotation we avoid
abuse of language that can lead to confusion.

Another major point specific to the distributions de-
fined on R* rests on the fact that the Mellin transform
of G[u, L] is defined for s > 1 — L. It is seen that, for
L > 1, it is possible to have negative values of s — 1 and
thus lower order moments. Qualitatively, the lower order
moments — i.e. positive powers of < — mainly reflect the
weight of the distribution between 0 and p, while the
traditional moments - i.e. positive powers of u - rather
analyse the distribution between ; and co. Thanks to the
lower order moments, it is possible to analyse selectively
the left or the right tail of a probability distribution.
The importance of this observation for asymmetrical
distributions such as the gamma distribution is evident.

The first two log-cumulants of G|, L] are expressed by
the following relations, where ®(-) is the digamma func-
tion and ¥(r,-) is the r-th order polygamma function,
i.e. the r-th order derivative of the digamma function:

Fe(1) = log(p) + W(L) —log(L) (32)
Fu = W(2,0) <0 (34
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and it is trivial to show that

Rz(,.) = \I’(T — ].,L) Vr>1,

which expresses the property that the log-cumulants
depend only on L from second order and upwards.
We note that the property

Jim (W(L) —log(L)) =0

associated with the fact that the polygamma functions
go towards 0 at infinity, can be used to show that the
gamma distribution converges towards the homothetic
distribution as L goes to infinity.

Remark that the third order log-cumulant is negative.
This illustrates that, for the gamma distribution, the left
tail is heavier than the right tail of the distribution, which
decreases very quickly as the argument approaches in-
finity.

The log-mean is written:

ke 35
m=p—r (35)
It is interesting to note the two following points:

¥ (L)

< 1:The log-mean is less than the mean value.

L —
Note that this property is valid for all L.
. Lfim > L21: The log-mean is larger than the mode

value.

A more complete analysis would show that the log-mean
is also lower than the median value, defined by

/ " G(u)du=10.5.
0

It can also be justified to use the log-mean instead of the
traditional mean. This gives interesting results in certain
applications of image processing [11].

Finally, by a logarithmic transformation, the gamma
distribution G[u, L](u) becomes the Fisher-Tippett distri-
bution Gr7[f1, L](w) with it = log u and w = log u:

L
Gl Ll(w) = gye et

Its characteristic function is obtained by taking the
Fourier transform. Unfortunately, the required relation
is not found in tables. This is commonly circumvented
by showing that the evaluation amounts to calculating
a Mellin transform. In effect, one applies (25) unknow-
ingly.

To conclude, it is seen that in the case of the gen-
eralised gamma distribution, the second kind statistics
approach allows us:

« to obtain a simpler expression for the second kind
characteristic function than for the classical charac-
teristic function.

o to estimate the distribution parameters more effi-
ciently by inversion of Egs. (32) and (33).

— The shape parameter L is easily derived from
the second order log-cumulant, even if no an-
alytical formulation can be found, since the

polygamma functions are monotonous and easy
to invert numerically (Tabulation can also be
used to save computation time). The variance
of this estimator is evaluated in Section 5, and
we will see that it is notably lower than the
variance obtained with the method of moments
estimator, as defined in (31).

— After L is known, u can be derived from the
expression of the first order log-cumulant.

o to propose a “typical value” for use in image pro-
cessing, lying between the mode and the mean,
which realistically represents a sample if it can be
regarded as homogeneous.

3.2 Rayleigh and Nakagami Distribution

We will now handle a problem specific to SAR imagery,
namely the transformation of intensity data to ampli-
tude data. Even if models have simple expressions for
intensity data (the gamma distribution is known to all
scientific communities), the images are quite often avail-
able as amplitude data, which will reveal new problems
regarding parameter estimation. In this article, we will
thus address the transformation from intensity data that
follow the gamma distribution, to amplitude data with
their resulting distribution.

The Nakagami distribution® is the name which in
the radar literature has been associated with amplitude
data that follow a gamma distribution when transformed
into the intensity domain. It is thus a two parameter
distribution: RN [, L], given by:

2 VL (ﬁ)

RN, L](u) = ~()”

e

uT(L) \ u 56)

For L =1, one retrieves the Rayleigh distribution:

RN [, L=1](u) = > (“) (1)
o\ p
The fundamental relation between the Nakagami distri-
bution (for amplitude) and the generalised gamma distri-
bution (for intensity, i.e. squared amplitude) is obtained
by a simple variable change, which can be written as:

RN, L)(u) = 2uGpg, L}(u?). (37)

By means of the following two Mellin transform prop-
erties [2]:

Ml F(w)](s) = M ()](s +a)
MIF(s) = ~ M) ()

S
a

3. It is important to return to Nakagami the paternity of this dis-
tribution described by two parameters: mean and shape parameter,
which has often been wrongly associated with the generalised gamma
distribution. The formalism was proposed in 1942 by Nakagami in
an exhaustive study of the “m-distribution”. It was not published
in English until 1960 [12]. Of course, this distribution is for instance
found in [13] as the result of transformations starting from the gamma
distributions. However, it seems that Nakagami performed the first
complete study.
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o 0.5 1 1.5 2 2.5
x

Fig. 2. Rayleigh-Nakagami distribution RN [, L] with p =
land L =0.5,1,2,3,5.

and knowing ¢g ,(s), the second kind characteristic
function of the gamma distribution, the second kind
characteristic function of the Nakagami distribution can
be derived directly as:

¢RN,$(S) = ng,m <8 —g 1>

which, by inserting ug = p?, allows us to write:

F s—1 —|—L
brnals) = prt oz 5

L= T(L)

This reasoning applies also elsewhere, regardless of the
power to which u is raised in the change of variable. It
is easily shown that for v = u*, we have

pu(u) = aua71p1) (ua)

and the second kind characteristic function of the ran-
dom variable u is derived directly from the properties of
the Mellin transform as:

6u(s) = b, (”“‘1) .

[0}

(38)

Note that this result would be useful for the analysis of

the Weibull distribution [14], another well-known radar
distribution, which we will not address in this article.

The classical moments of the Nakagami distribution

follow directly from ¢rar z(s):
I'(L+3)

1= ——=

VIro) "

Take note of a peculiarity of this distribution: There is
a very simple relation between the parameter ;1 and the
second order moment, not the first order moment. On
the other hand, the implicit expression of L obtained
through the first order moment is very hard to handle.
We cannot obtain a simple inversion formula (as in the
gamma distribution case, where (31) gave L directly in
terms of m; and my) to solve for L.

2
mo = .

The mode of this pdf is

2L -1
2L

Mmode —

The log-cumulants are derived directly from those of the
gamma distribution as:

d"yra(s)

ds” s=1

d"log pr ()

ds” o1

d"log ¢g (1)

ds”

s=1

(1Y @ logg(s)
S \2 ds'"

1\" .
=(=1] K
2 ga$(’r)

From this we deduce:

/%’R./\/,w(r)

s'=1

- 1 1
Ra(1) = log(u) + 5‘1’(L) -3 log(L)

- 1
Hw(g) = Z\Il(l,L)

and for all r > 1:

_ 1"
Km(r) = (2> \I’(T — 1,L)

More generally, it is shown for v = u® that

- 1\"_
Kpy,a(r) = o Kp,,x(r)

In this case, L can be calculated directly if the second
order log-cumulant is known. The problem we meet is
of the same kind as for the gamma distribution, namely
inversion of polygamma functions.
The log-mean is written
L7165}

f=pus 39)

m=n—F (
To conclude, the motivation of our approach is seen
from the fact that the analytical expressions of the log-
moments and the log-cumulants have a complexity com-
parable with the case of the gamma distribution, which
is not the case in traditional statistics, where a simple
relation between the first two moments and the shape
parameter L cannot be obtained.

3.3 Inverse Gamma Distribution

The inverse gamma distribution is another two param-
eter distribution which is also a solution of the Pearson
system (the type V solution). Is is expressed as

TGy, L)(u) = %L)i <LUV>L“ v
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LI e m B S S
4 5

Fig. 3. K distribution: Fully developed speckle (L = 3)
modulated multiplicatively by a Rayleigh distribution with
w=1and1,3,5and 10.

where L > 0 and v > 0. Its second kind characteristic
function is written:

I L+1-s
o) =
It is seen that the n-th order moments of the inverse
gamma distribution are not defined for n > L. The
inverse gamma distribution is thus an example of heavy
tailed distributions. Its log-cumulants, that exist for all
orders, are written:

Fgy = log(v) — ®(L) + log(L)
Ry = Y(1, L)
Féx(T) = (—1)7‘\1/(7“ - I,L) Vr>1

For even r, these are the same as those of the gamma
distribution. For odd r, they are opposite (See the more
general relation in (20)). As for the gamma distribu-
tion, from second order and upwards, the log-cumulants
depend only on the shape parameter L. Note that the
third order log-cumulant is positive, which is a sufficient
condition for being heavy-tailed.

This distribution could also have been introduced
as the inverse of the gamma distribution (cf. Section
2.4), which would make it possible to deduce the log-
cumulants directly. However, it was important to recall
that the inverse gamma distribution is a particular solu-
tion of the Pearson system and associated with its own
share of work in the literature.

3.4 K Distribution

With the K distribution, we will show that second order
statistics provide an estimation method for the parame-
ters of a complex distribution by simple application of
the results already achieved for the gamma distribution.
The K distribution K[y, L, M] has three parameters and

10

is defined as

M+L _q

1 2LM (LM u> 2
LL)T(M)  p I
) (LMu> Y 2]
1

where K, (-) is the modified Bessel function of the second
kind with order n. On this form, calculations of moments
and log-moments require good knowledge of Bessel
function properties as well as tables of transforms of
Bessel functions.

In fact, the K distribution is the distribution which is
followed by a random variable defined as the product
of two independent variables that are both gamma dis-
tributed. Note that this definition made it possible for
Lomnicki [15] to retrieve Eq. (40) using, already at this
time, the Mellin transform.

More precisely, it is possible to define the K[y, L, M|

distribution as a Mellin convolution of two gamma
distributions [6]:

Klp, L, M] = G[1, L] xG[u, M|

Klu, L, M](u)

(40)

X Ky—p,

This definition greatly simplifies the calculations of the
second kind characteristic function and thus the mo-
ments and log-cumulants. In effect, from the properties
of the Mellin convolution (Section 2.4) and knowing the
characteristics of the gamma distribution, one can write
the second kind characteristic function of the K distri-
bution like a product of the second kind characteristic
functions of the gamma distributions G[1, L] and G|, M]:

o T(L+s—1)T(M+s—1)
LsT(L) M 'T(L)

which allows us to immediately deduce the classical

moments m; and my without using the definition of the

K distribution, and thus without needing to know the
properties of the Bessel function:

LL+1M+1

In the same manner, we obtain directly the first two log-
cumulants as the sum of the log-cumulants of the gamma
distributions G[1, L] and G[u, M]:
Ry =logu+ (V(L) —log(L)) + (¥(M) —log M) (42)
Ra2) = Y(1,L) +¥(1, M) (43)
Rz(3) = U(2,L)+ (2, M) (44)

Ga(s) = p (41)

my=p

and we can show that for all r > 1:
Foory = U(r —1,L) + W(r — 1, M).
Finally, the normalised second order moment is written:
My = U(1,L) + ¥(1, M) (45)

and the log-mean:
e¥(L) p¥(M)
L M

(46)
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Also here, it is easy to derive the shape parameters L and
M by virtue of the second and third order log-cumulants
(Egs. (43) and (44)). A simple numerical method is pro-
posed and tested in [14]. The scale parameter is derived
from the first order log-cumulant (Eq. (42)).

This method is much easier than the traditional
method of moments, which results in a third degree
equation. Note also that maximum likelihood estimation
cannot be applied for this distribution [16].

4 APPLICATIONS

Second kind statistics prove easy to put into practice in
the framework of fundamental probability distribution
defined on R*. Except for the introduction of the gamma
function and its logarithmic derivatives (the polygamma
functions), the obtained expressions contain no difficult
terms. On the contrary, they are simple and easy to
comprehend.

We will now look at several innovative applications of
this model:

o A new approach to analysis of the three parameter
distributions used to model SAR imagery

The case of additive mixtures of gamma distribu-
tions, for which the traditional approaches lead to
expressions that are very hard to handle

The case of positive a-stable distributions, used for
instance by Pierce to characterise sea clutter [17],
for which it is difficult to estimate the parameters.
(The analytical expression of the pdf for such heavy-
tailed distributions is generally not known.)
Finally, another example of the a-stable distribution
proposed by Kuruoglu and Zerubia [18], which can
be seen as a generalisation of the Rayleigh distribu-
tion.

We will start by pointing out a method classically used
to characterise these distributions: the use of the param-
eters of asymmetry (; (skewness) and peakedness [,
(kurtosis).

Pearson type 1

Fig. 4.
diagram.

The Pearson system displayed in a (51, 02)

11

4.1 ((,02) Diagram

Traditionally, the skewness and kurtosis are used to char-
acterise distributions belonging to the Pearson system.
These two coefficients are written in terms of the second,
third and fourth order moment:

M3
My

The curves obtained for the Pearson system are shown in
Figure 4 in their classical representation. The characteris-
tic point of (3; =0, 32 = 3) corresponds to the Gaussian
case (It is invariant with respect to variance).

Because of the choice of squaring the third order
central moment in (3, this coefficient is not able to
distinguish between distributions that have skewness of
the same magnitude but with opposite sign. Thus, it is
not possible to separate between “standard” distribu-
tions and heavy-tailed distributions. Hence, this diagram
seems to be badly adapted to the distributions defined
on R,

4.2 Characterisation of Texture Distributions in the
(k3k2) Diagram

The (01, 2) diagram is founded on the calculation of
traditional centred moments and aims at comparing dis-
tributions against the reference Gaussian distribution, for
which the skewness is zero and the kurtosis is directly
related to the variance (o). It is then natural to propose
a similar approach, founded on the functions of second
kind statistics. We propose in this section a new method:
the (k3, ko) diagram, that is, the representation of third
order log-cumulants versus second order log-cumulants
(that are always positive or zero for pdfs defined on RY).

In this diagram, the origin corresponds to the homo-
thetic distribution. Because of the asymptotic behaviour
of the gamma distribution and the inverse gamma dis-
tribution at L — oo, these distributions are represented
by curves joining at the origin. As noted, the gamma

Cumulant 2
~ el
TR Pearsc:l:l_ type 6
.
\\ 154
: ™
Lo1 Gamma .
N,
\\
Pearson type 1 Bf— Pearson type 1

&5 3 Bl

Cumulant 3

Fig. 5. The Pearson system and the K distribution dis-
played in a (ks, ko) diagram.
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0s

4 5

Fig. 6. The Pearson type | distribution (top) and the
inverse Pearson type | distribution (bottom).

distribution has negative values for the third-order log-
cumulants, while the heavy-tailed inverse gamma dis-
tribution has positive values. Note that it is easy to
show that the log-normal distribution, for which all log-
cumulants of order n > 2 is zero, occupies the second
axis.

Figure 5 places the gamma distribution and the inverse
gamma distribution in the diagram, together with the £
distribution (which occupies a surface above the gamma
distribution, limited upwards by a curve defined by the
distribution K[L, L]) as well as the Pearson distributions
of type I (standard and inverse) and type VI. We will
see in the following section that the inverse Pearson
distributions of type I find their natural place in this
diagram, but offer some theoretical surprises.

4.3 An Original Approach to Characterisation of
Three-Parameter Distributions Used for SAR Imagery

Knowing the two elementary two parameter distribu-
tions (the gamma distribution and the inverse gamma
distribution), it falls natural to make use of these as basic

12

generating functions to obtain a kind of grammar by
using elementary operations like the Mellin convolution
and the inverse Mellin convolution (One could also
have used the Mellin correlation instead of the Mellin
convolution while inverting one of the distributions).
Assume that we have two distributions p4 and pg with
respective second kind characteristic functions ¢4 and
¢p and log-cumulants #4 and ip. Applying a Mellin
convolution or an inverse Mellin convolution will cor-
respond to forming the product or ratio of their second
kind characteristic functions, and the sum or difference
of the log-cumulants, respectively (See Table 1).

The characteristic functions of the distributions ob-
tained by direct or inverse convolution of the two nor-
malised distributions: the gamma distribution (G[1, L]) or
the inverse gamma distribution (G[1, M]), are included
in Table 2. From these expressions, and by consult-
ing tables of the Mellin transform (and also using the
properties of the transform), it is possible to retrieve
the analytical expressions of these distributions without
further calculations [14]. Furthermore, while considering
only the second and third order second kind cumulants,
Table 3 summarises the result obtained by direct or
inverse convolution of the two normalised distributions:
the gamma distribution (G[1, L]) or the inverse gamma
distribution (G[1, M]). Recall that the second and third
order second kind cumulants only depend on the shape
parameter.

The distributions traditionally used in processing of
SAR data are found in this table. These are

o The K distribution

o The solutions of the Pearson system [6] correspond-
ing to the distributions defined on RT, that is, in
addition to the gamma and inverse gamma distri-
bution, also the type I solutions (also known as the
beta distribution) and the type VI solutions (known
as the Fisher distribution).

Moreover, uncommon distributions are generated by this
algebraic method. It provides:

o A new distribution which is effectively the inverse
Pearson distribution of type I, denoted ZPI[¢, L, M]:

TPIE, L, M| =
M F(M) Lf L+1 . Lf M—L—-1
rermror ) ()

(47)

withuz%andMZL—ﬁ—l.

This expression is derived simply by means of the
Mellin transform tables [2], since the distribution can be
expressed by the relation:

TPIfE, L, M] = TG[¢, L]+ IG[1, M]

whose characteristic function is

I(L+1—s) M'“*I(M)
L'=sT(L) T(M+1-5)

ES—I
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TABLE 2
Second kind characteristic functions of the different distributions obtained by Mellin convolution (direct and inverse) of

the gamma distribution (¢(s) = m*lz(fji;(j; and inverse gamma distribution ( ¢(s) = m*lFL(lei%(’LS)) . The

distributions whose names are typeset with boldface correspond to new analytical expressions. The second and third

order log-cumulants are included in Table 3.

i/ | gl M IG(1, M]
K distribution Pearson VI
Glu, L]
s—1 T (L+s—1) I'(M+s—1) s—1T(L+s—1) T(M+1—s)
K™ T TseIr@) MEIn(M) K™ Ts=In(@) MI—ST(M)
Pearson VI ZK distribution
IG[p, L]
s—1 D (L+1—s) I'(M+s—1) 5—1 I'(L+1—s) D'(M+1—s)
K TI=sT(@) Me—1D(M) F LI=sT(L) MI—5T(M)
1 | Gl M] IG[1, M]
Pearson 1 Bessel
Glu, L)
s—1D(L+s—1) M*~'r(m) s—1D(L4s—1) M'—°r(M)
K TsEIr(n) T(M+s—1) K TsIn@) T(M+i—s)
Bessel Inverse Pearson I
IG(p, L]
s—1T(L+1—s) M*~ 11 (M) s—1T(L4+1—s) M ~5T(M)
L1—sT(L) T(M+s—1) L1-sT(L) T(M+1—s)

TABLE 3
Second and third order log-cumulants of the different distributions obtained by Mellin convolution (direct and inverse)
of the gamma distribution and the inverse gamma distribution (cf. Table 2). To simplify the presentation, only the
second and third order log-cumulants are included in the table. The distributions whose names are typeset in
boldface correspond to new analytical expressions.

* g1, M] IG[1, M| =t | gL, M) ZG[1, M)

K distribution Pearson VI Pearson I Bessel

glL, L] Gl1, 1)
U(1, L)+ ¥(1, M) U(1, L) + ¥(1, M) W(1,L) — ¥(1, M) W(1,L) — U(1, M)
W(2,L) 4+ ¥(2,M) W(2,L) — ¥(2,M) W(2,L) — ¥(2,M) W(2,L)+ ¥(2,M)
Pearson VI ZK distribution Bessel Inverse Pearson I

ZG[p, L] ZG[p, L]
(1, L)+ ¥(1, M) (1, L) 4+ W(1, M) U(1,L) — ¥(1, M) T(1,L) — U(1, M)
—VU(2, L)+ ¥(2, M) —W(2,L)—v(2,M) —W(2,L)—¥(2,M) —W(2,L)+¥(2,M)
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Fig. 7. The I distribution (top) and the inverse K distribu-
tion (bottom).

where the last expression is found in the Mellin trans-
form tables. Figure 6 allows a comparison between the
I'P distribution and the ZPI distribution for the same set
of parameters. Recall that the Pearson type I distribution
is expressed as:

IPE, L, M] =
L (M) Lu\"" .
MET(L)T(M — L) \ M¢
with u < #% and M > L + 1.
Curiously, this distribution is never mentioned in the
classical works [9], [19], whereas they characterise the
gamma distribution and the inverse gamma distribution
separately. Moreover, the inverse Pearson type I distri-

bution has the peculiar property of being localised, in
the (61, 52) diagram, between the gamma distribution

_ Lu\MTE
Me

14

and the inverse gamma distribution, that is, exactly
where the Pearson type VI solution is found. Indeed,
the case M — oo corresponds to to the inverse gamma
distribution and the zone corresponding to the inverse
Pearson type I distribution cannot have ambiguities,
whereas the (k3, ko) diagram separate well between the
solutions of the Pearson system.

e The inverse K distribution, which is also uncom-

mon, is expressed as:

M+L +1

1 2 (LMp\ 2
I/C[ML’M](“):LF(L)MF(M)M( u )

- KA/I?L [2 (LM#2>]
u

(48)

Figure 7 allows a comparison between the K dis-
tribution and the inverse K distribution for the same
set of parameters. As for the K distribution, the mod-
elling through the Mellin convolution makes it easy to
show that the inverse K distribution tends to an inverse
gamma distribution as one of the shape parameters (L
or M) goes to to infinity. One thus has a three parameter
distribution which is heavy-tailed.

« The combinations G% 'ZG and ZG% 'G have
known analytical solutions that include Bessel func-
tions. However, they are not probability distribu-
tions, as the condition p,(u) > 0 is not satisfied.

We see that insightful interpretations can be made
based on the second and third order log-cumulants, &
and #i3. By the simple analysis of these entities, we
can effectively get an idea about the flexibility of a
certain distribution compared to the generalised gamma
distribution, its inverse, and the other distributions that
cover the log-cumulant space: the K distribution and its
inverse, and the solutions of the Pearson system. The
analysis of the second and third order log-cumulants
can also account for more complex models. We shall
see that the same diagram can be used to analyse an
additive mixture of gamma distributions, and propose
an original and simple practical method to determine
the model parameters.

4.4 Additive Mixture of Gamma Distributions

Additive mixtures of gamma distributions are important
practical modelling tools (in particular for SAR imagery).
Contrarily to the Gaussian case, a unimodal pdf is gener-
ally obtained, except when the (two) initial distributions
are very different (see Figure 8). However, we will show
that there exists a simple solution to determine the
parameters of the mixture by analysing this problem
aided by second and third order log-cumulants.

Consider the following mixture of gamma distribu-
tions:

AG[u, L)+ NGy, L]

with A > 0, \ > 0 and A + \ = 1. In this model, L
has the same value for the two gamma distributions.
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Fig. 8. Examples of additive mixtures of gamma distributions. The left column shows distributions with . = 1, and the
right column with L = 3. In the firstrow, p = 2 (1 = 1 and i/ = 2). In the second row, p = 5 (1 = 1 and p/ = 5). \ takes
the values 0,0.2,0.4,0.6,0.8 and 1.

-3 -25 -2 -15 -1 05 o 28 -6 -4 .22 2

Fig. 9. (k2,k3) diagram for a mixture of gamma distributions described by the parameters A (mixing proportion) and
p (ratio of component means). To the left, for A varied between 0 and 1, three diagrams are traced out corresponding
to several values of p for three values of L (L = 1,3 and 5). In the same plot, the gamma distribution is represented
by a line which spans L € [1,cc]. To the right, for a fixed value of L = 1, one separately varies p between 0 and 5
(five curves, with X taking the values 0.1,0.3,0.5,0.7 and 0.9) and A between 0 and 1 (four closed curves, with p taking
values 2, 3,4 and 5), placing both diagrams in the same figure.
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The model can be rewritten by defining the variable p
such that p/ = pu, which makes it possible to write the
mixture in the following form:

AGlp, L] + (1 = N)G[pp, L] (49)

The mixture is then defined by a gamma distribution
G, L] (corresponding to only one of the mixture com-
ponents) and two parameters describing the mixture: A
and p. The second kind characteristic function is written:

I'(L+s—1)

6(s) = (A (1= X' = o

Based on this expression, calculation of the log-
cumulants can be carried out directly, giving the follow-
ing expressions:

Ry = Y(L) —log L +log pn + (1 — ) log p
Fats) = W(2, L) + log(p)*A(1 — A)(2A — 1)

We remark that starting from the second order, the log-
cumulants do not depend on p, and they have the
same values as the standard gamma distribution for the
limiting values A =0 and A = 1.

We assume that the entity L is known (L can be
perceived as a function of the instrument, thus it will
be known by the processor). This leads to:

'%x(Q) = '%x(2) - \Il(le)

Parameters A and p are then given by the solutions of
quadratic equation, which gives:

1 R
A= 1 )
2 —3 -— 2
\V4Re@) + Ra3)
4%(2)3*-%(3)2
p=ce Fa(2)

The evolution of the different parameters in the (i3, <2)
diagram is shown in Figure 9. It is interesting to notice
that the shape of these curves does not depend on L.

If the obtained results are compared with those found
in the literature, it is noticed that this approach relies
on one assumption only: knowledge of the parameter L,
while analyses of mixtures by classical methods require
the additional knowledge of s [20].

4.5 Positive a-Stable Distributions

We will now apply the methodology proposed in this ar-
ticle to the case of a ‘heavy-tailed distribution, for which
neither the analytical form of the pdf nor moments from
a certain order and upwards are known. This prohibits
the method of moments.

A positive a-stable distribution has a pdf characterised
by two parameters: o and . It cannot in general be

16

defined, other than by its characteristic function ®(v),
which is written (according to Pierce [17]) as:

(b(l/) = 6_7|V|ﬂ(1+j sgn(v) tan(%‘))

with
1, v>0
sgn(v) = 0, v=0, O<a<l, ~>0.
-1, v<0

Except for certain particular values of «, the analytical
expression of the distribution is not known.

One can nevertheless express the moments of this
distribution (including fractional ones) as:

v sin(m)T (v + 1) (1+ (tan (32))*) ™
my, =
asin (Z4) T (14 %)
These moments are only defined for v < a < 1, which
means that even the first moment is not defined. This is
evidently a heavy-tailed distribution.
It is nevertheless possible, by an analytical continua-

tion, to derive the second order characteristic function,
which is written:

(50)

1

o) v sin(m(s — 1))[(s) (1 + (tan (%))2)%‘
v asin () 1 (1+ 1)

It is seen that this function is well defined in a com-
plex neighbourhood around the value s = 1. The exis-
tence theorem in Section 2.5 thus confirms that the log-
moments and log-cumulants of all orders exist, whereas
the moments of orders v > « are not defined.

Even though the analytical form is rather complicated,
it is still possible to obtain simple expressions of the
log-cumulants. Note that these expressions are only an-
alytical continuations because the gamma functions in
the derivatives of ¢(s) have discontinuities at s = 1, a
value at which they must be evaluated when calculating
the log-cumulants. It is then necessary to study the limit
at s = 1 in order to obtain the analytical expressions.
The following results were established with assistance of
mathematical computation software Maple, as a result of
lengthy analytical developments:

(1-a)¥() N —log (cos (%)) 4 logv

« « «
A2
Ry = w\p(l’ 1) (51)
3 _
Ry = L)

o3
These expressions, that eventually appear as rather sim-
ple, illustrate well the strength of our new approach.
The two parameters of the distribution are easily derived
since:
o The parameter a can be estimated from the second
order log-cumulant as:

W(1,1)

‘- \Ij(Ll) +/%2
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o When « is known, 7 can be obtained from the first
log-cumulant as:

N = eakl—(1—a)xp(1)+1og(cos(%))

o By combining the previous expressions, one can also
write 7 in terms of #; and &q:

B U(1,1) w(1,1)
W_eXp< U1 —Re (1, 1) — fo

NENEETRY
NNV — A

We note that the Mellin transform sheds, on the theo-
retical side, a new and recent light on the heavy-tailed
distributions [21].

1— U(1)

+ log

4.6 A Generalisation of the Rayleigh Distribution

Another example drawn from the «a-stable distributions
inspired Kuruoglu and Zerubia to propose a general-
isation of the Rayleigh distribution [18]. The pdf has
two parameters (o and <) and its analytical expression
is given by the following integral equation:
p(u) = u/ ve™ 7" Jo (uwv)dv (52)
0
where Jj is the Bessel function of the second kind. This
distribution falls into the heavy-tailed category, since
its moments are not defined from a certain order and
upwards, with this order given as: min(a, 2).
To calculate its second kind characteristic function,
two approaches are possible:

o The first search for the Mellin transform of this
expression [14] led to the following result:

2T ()4 (1)

2 o

L(5%)a

¢(s)

(53)

o A second approach consists of rewriting (52) on the
form of a Mellin correlation:

p(u) =u (Jo(u) ® (e_wﬂ))

By using the property in (22), (53) is immediately
retrieved.

It can be noted that at s = 1, the second kind
characteristic function of this distribution goes in the
limit to the value 1, since

I (L=2)

lim =

a
TG T2

It is thus a valid pdf.

In the vicinity of s = 1, this function is defined for
s < 1+ min(a,2) and for s > —1. It is thus well defined
in a vicinity of s = 1, hence it is legitimate to calculate
its log-moments and log-cumulants. Note that the case
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Fig. 10. Generalised Rayleigh distribution [18]: @ = 1,
a=15and a =2.
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a = 2 gives the Rayleigh distribution and the case o = 1
gives the distribution

-

(W +72)F

Figure 10 shows this distribution for « =1, a = 1.5 and
a = 2 (the Rayleigh distribution).

Although the analytical form is rather complicated, it
is possible to formulate the first and second order log-
cumulants of the probability distribution. Again, the ex-
pressions obtained are analytical continuations because

of discontinuities in the gamma functions. Also in this
case, Maple was used to establish following expressions:

p(u) =

Ri= —@(1)1?% +log (2%)

(1,1
o LY

2
The equation system obtained is easy to handle. The

distribution parameters are easily retrieved from the first
two log-cumulants:

w(1,1)
K2
afiy—¥(1)(1-a)

T=e€

It is verified that for o = 2, the log-cumulants of the
Rayleigh distribution are retrieved (with p = 2,/7):

Fi = 3 0(1) + log(2y7)

- 1
Ko = Z\II(]., 1) .

5 PARAMETER ESTIMATION

The proposal of a new methodology to evaluate the
parameters of a probability distribution requires us to
compare the results with those obtained by traditional
methods in a realistic setting where [NV samples are avail-
able. In order to decide which method is the preferred
one, it is important to establish the variance of the
estimators. The goal of this section is to carry out an
exhaustive comparison for a schoolbook example: the
gamma distribution, for which the method of moments,
the method of log-moments, and the method of maxi-
mum likelihood are applicable.

5.1 Traditional Methods: Method of Moments Esti-
mation and Maximum Likelihood Estimation

5.1.1 Experimental Framework

Assume that a probability distribution is described by p
parameters: «;, j € [1,p]. Estimation of the parameters
describing this distribution is commonly performed by
the two following approaches:
o The method of moments (MoM) consists of calculating
the sample moments of order 1 to p in order to
obtain a system of p equations in p unknown pdf

18

parameters. If N samples are available, z;, i € [1, N],
the rth order sample moment is expressed simply as

N
— '
me = ;,1 x5 .

In order to determine p parameters, it is necessary
that all moments up to order p exist, which can pose
a problem for instance for distributions with heavy
tails. It is also possible to use fractional moments
(like FLOM [3]), or lower (and even negative) order
moments, whose possible existence is justified in
section 2.2 [4], to obtain an equation system which
can be solved. Note, however, that the expressions
sometimes prove impossible to invert analytically,
and the system may also be difficult to invert nu-
merically.

o The maximum likelihood approach consists of regard-
ing the N samples x; as N independent realisations
of the distribution which one seeks to estimate, so
that they maximise the expression

_Hpr(:m

or, equivalently,

Z log(pz(z:)) -

With these expressions representing a maximum,
calculation of partial derivatives for each parameter
then makes it possible to obtain another system of
p equations in p unknowns:

N
9 (Z IOg(pw(fEi))>

8aj

=0. (54)

The solution relies on the existence of the partial
derivatives, which can pose a problem, as for the K
distribution [16].

5.1.2 Estimator Variance

With several applicable methods available, we must
compare them to select the one which is likely to give
the user the most reliable results. A natural approach is
to seek the method which provides minimum variance
for the estimator of a given parameter, knowing that one
has a finite number of N samples.

It is known that for the distributions of the expo-
nential family, maximum likelihood estimators attain
the Cramer-Rao boundary. Provided that the p partial
derivatives in Eq. (54) can be calculated analytically, and
that the system of equations can be solved, one obtains p
estimators whose variances are minimal. However, many
existing distributions (such as the K distribution) do not
have analytical expressions for all partial derivatives,
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which then renders the method of maximum likelihood
inadequate.

In this case, the use of the method of moments is
justified, even if the estimator variance thus obtained
is higher. The variance of estimators obtained by the
method of moments can be derived through an ap-
proach suggested by Kendall [19]. Let m; and my be
the estimates of the first two moments, and g(m1,m2) a
function depending only on these two entities. We seek
to calculate the variance of the function g(mi,ms) by
linearising it and writing it as a first-order expansion
around the values of the theoretical moments, mg ; and
mo,2:

0

g(mhmz) = g(mo,hmo,z) + (ml - mO,l)#(mO,lamO,Z)
1

0
+ (mg — mO’Q)éTvi(mO’l’ mo,2) -

After having verified that the dg/Om; are not both
zero in the point (mg,1,moz2), the variance of g is
established as the quadratic error between g(mj,ms)

and g(mg,1, mo2) due to the following formula [19, Eq.
(10.12)]:

Var{g(m,m2)}

= E {[g(m1,ma) — g(mo,1,mo,2)]*}

0
=E { [(ml - mo,l)aingh(mo,l, m0,2)

P 2
+(m2 - mO’Q)TTTi(mO’l’ mo,z)} }
0

= 7g(m071, m0,2)2 Var{ml}
mi

(55)

7]
+ i(mo’l, m0,2)2 Var{mg}
m2

dg dg
9 99
+ By (mo,1,mo,2) By (mo,1,mo,2)

x Cov{my, ma}.

The method can obviously be generalised to functions
utilising moments m; of order i. The definition of the
covariance matrix allows us to write:

1
Var{m,} = N(mzi —m?)

1
Cov{m;,m;} = N(miﬂ- — m;m;)

5.2 Method of Log-Moments

We propose in this article a new method for analysis
of pdfs defined on R* based on log-moments and log-
cumulants. We will see in this section how to implement
it and how to calculate the variance of the estimators
obtained.

5.2.1 Description

The method of log-moments (MoLM) consists of calcu-
lating estimates of log-moments and log-cumulants in
order to obtain a system of p equations in p unknowns

19

(the parameters of the pdf). Assume that we have N
samples x;,i € [1,N] from the distribution to be es-
timated. The estimate of the pth order log-moment is
expressed simply as

L&
my = NZIogsﬁf.
i—1

To determine p parameters, it is necessary to check in
advance that the log-moments up till order p exist. This
is in general true, as stated by the theorem of existence,
which has been verified for the distributions generally
used in signal and image processing.

5.2.2 Estimator Variance

Since we use a logarithmic scale, the criterion of the
quadratic error (applied in Eq. (55)), is replaced by an-
other criterion which we will call “normalised quadratic
error”, E,,,, which is in fact the quadratic error calculated
on a logarithmic scale:

e (x(5)) )

In the same spirit, we introduce the second kind variance
and covariance, Var and Cov, on the form

Var{} = E { [(log2)’ — 1] } = % (i2; — 72)
Cov{rm;,m;} = E{[(logz)’ — ;] [(logz)? — 1]}
1 o
= N(mm‘ — mm;)

where m; is the ith order log-moment.

With this new approach, and taking the preceding step
as starting point, let the function g be expressed in terms
of the first two estimated log-moments as g(m;,m2).
Then g can be expanded around the first two theoretical
log-moments, 1,1 and 2, as

Jg
omq

g(my,mz) = g(o,1,Mo,2) + (1M1 — 1Mo,1) (Mo,1,M0,2)

+ (T~TL2 — ﬁLU,Q)an(mO,la ﬁLO,Q) .
2

After verifying that the dg/0m; are not both zero in
(Mo,1,mM0,2), the variance of g is established by the same
formula applied in the previous section.

Var{g(r,m2)} = E {[g(1h1,M2) — g(1h0,1,770,2)]* }

- - g , . -
=E { [(m1 - mo’l)Tﬁi(mo’l’ mo,2)

N A
+(mg — WL072)6ﬁ'32(m0,1;m0,2):| }

= 99 (g 1 g 2)2Var (i} + 2L (1.1, 10 2)? Var iz}
mq ma
dg . . dg
o (mO,lv m0,2)%(
As in the previous, this method can obviously be gen-
eralised to functions of the moments m; of unspecified
order 3.

+2

ﬁl071, ﬁl072) X CZ)V{Thl, ﬁlQ} .
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5.3 The Gamma Distribution Case

We will use the gamma distribution as an example
to compare the available methods. This distribution is
not heavy tailed, thus the method of moments can be
used, as well as the method of log-moments. The partial
derivatives with respect to the parameters are known,
which makes it possible to apply maximum likelihood
estimation.

5.3.1 Variance of the Gamma Distribution Parameter

Estimators with the Method of Moments

The method of moments (MoM) utilises the first two

moments to deduce estimates of L and x (Egs. (30) and

(31)). The method of Kendall, presented in Section 5.1.2,

gives the following variance for the estimators of y and

L:

12

NL

2L(L +1)
N

VarMOM{[L} = (56)

VarMOM{[:} = (57)

5.3.2 Variance of the Gamma Distribution Parameter
Estimators with the Method of Log-Moments

The parameter L is derived from (33) as
U(1,L) = Fa(2)
which can be rewritten as a function of (m;,ms):
U(1, L) =1y —m7.

One then carries out the limited expansion proposed in
the previous, which requires the use of implicit differen-
tiation. Although the expression brings into play the first
to fourth order log-moments, the result can be simplified
and we obtain:

1 W(3,L) +2¥(1, L)
N U(2,1)2

Varyorm{L} = (58)
Figure 11 (left panel) presents the ratio of the standard
deviation for the variance of MoLM estimate of L to the
standard deviation for the variance of the MoM estimate
of L. The whole motivation for using the new method
is evident for low values of L, where the improvement
approaches 30%. When the variance of the different
estimators is fixed, this results in the same amount of
shrinking of the analysis window, and therefore a better
spatial localisation of the estimate.

For the parameter 4, the calculation is much more
elaborate, and we finally arrive at the following expres-
sion, whose interpretation is not simple, but which can
easily be implemented numerically:

. 1 2
Varyrorm{L} = _Nm
x [2W(1,L)LWY(3,L) — ¥(1,L)*L*¥(3,L)

+49(1,L)*L — 2W(1, L)*L* — 2L¥(2, L)?

+W(1,L)L*V(2,L)% — 2W¥(1,L)* — ¥(3,L)]
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Fig. 12. Gamma distribution: Comparison of the variance

of the estimator for . by the method of log-moments with

the method of moments. The curve represents the ratio of

the standard deviations for values of L between 1 and 10.

Also Figure 12 presents the ratio of the standard de-
viation of i calculated by the MoLM to the standard
deviation of /i calculated by the MoM.

It can be noted that the MoM provides better results
for low values of L. Recall moreover that this is also
the maximum likelihood estimator and thus attains min-
imum variance (i.e. the Cramer-Rao bound).

5.3.3 Variance of the Gamma Distribution Parameter
Estimators with the Method of Lower Order Moments

The existence of the second kind characteristic function
for values of s lower than 1 justifies the use of the
method of lower order moments (MoLOM), i.e. negative
ones. In the case of the gamma distribution, it is known
that the lower order moments exist for v > —L. For a
given value of v it is verified that v > —L and using the
three moments i, f1,41 and g,y it is easy to show that
fi and L can be derived from the relation:

T = Y AL <
my my41

- 1

L= — v

A Myyo )
my (TH]) 1
For v = 0, this reduces to the MoM (Egs. (30) and (31)).
The variances of the estimators for p and L can be
established by the method of Kendall, used in Section
5.3.1 (for the MoM). For L, the following expression is
obtained:
. 1T(L)TQ2v+L)
Val“MoLOM{L} = ﬁw
x (2L(L+1) +v4L(v +2) + (v + 4) (v + 1)?])

The problem with this relation is that it has a minimum
for v, which cannot be expressed explicitly as a function
of L. The optimal values of v must be calculated nu-
merically. Table 4 gives some values of v as a function

(59)
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Fig. 11. To the left, a comparison of the variance of the estimator for L by the method of log-moments and the method
of moments. To the right, a comparison of the variance of the estimators of L by the method of log-moments and the
method of lower order moments (only for the value of v = —0.35). The curves represent the standard deviation for

values of L between 1 and 10.

TABLE 4
Gamma distribution estimated with the method of lower
order moments. Optimal values of the parameter v that
minimises the variance of L as a function of L

L Vopt

1| -0.35
2 | -0.44
3 | -0.56
4 | -0.59

of L. When information about L is absent, the choice of
v = —0.35 seems to be a good compromise.

Figure 11 (right panel) presents the ratio of the stan-
dard deviation of L calculated by the MoLM to the
standard deviation of L calculated by the MoLOM with
v = —0.35. It is interesting to note that the MoLOM
is slightly better than the MoLM. Nevertheless, if one
wants to fully utilise this method, then one must know
L to be able to choose the optimal value of v. As the
difference is altogether rather small, we promote the
MoLM because it does not require us to determine a
parameter in order to make optimal use of the method.

However, it is easily shown that minimum variance
is obtained for » = 0, which is less than astonishing
since this value corresponds to the maximum likelihood
estimator.

5.3.4 Summary

We propose to summarise these results by posting in
Table 5 the optimal window dimension for these three
methods when we seek to reach an error of 10% for
the estimate of the shape parameter L (i.e. the standard
deviation is 10% of the value to be estimated). For

TABLE 5
Number of samples (and examples of the analysis
window) needed to estimate the parameters L and p of a
gamma distribution with 10% error. The methods used
are, for the shape parameter L, the method of moments
(MoM), the method of lower order moments (MoLOM)
with v = —0.35, and the method of log-moments (MoLM).
The Cramer-Rao bound (CRB) is calculated by the
means of the Fisher information matrix. For x, only the

MoM is used.
Gamma distribution

L L [

MoM MoLOM | MoLM CRB MoM
1 400 179 206 155 100

20 x 20 13 x 13 14x14 | 12x12 | 10 x 10
2 300 189 203 172 50

17 x 17 14 x 14 14x14 | 13 x 13 TXT
3 267 194 202 180 33

16 x 16 14 x 14 14 x14 | 13 x 13 6 X 6
5 240 197 201 187 20

15 x 15 14 x 14 14x14 | 14x 14 4x4
10 220 199 200 194 10

14 x 14 14 x 14 14x14 | 14x 14 3x3

the parameter p, only the method of moments (which
coincides with the maximum likelihood estimator) is
used.

We first remark that for an identical relative error
(10%), the estimate of L requires much more samples
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TABLE 6
Number of samples (and examples of the analysis
windows) needed to estimate the parameters ¢ and p of
a Gaussian distribution with 10% error.

Gaussian distribution
o I f
1 200 100
14 x14 | 10 x 10
0.707 200 50
14 x 14 77
0.577 200 33
14 x 14 6 X6
0.447 200 20
14 x 14 4 x4
0.316 200 10
14 x 14 3x3

than the estimate of p. Secondly, the estimate of
requires much less samples when L is large, ie. the
distribution is localised. Lastly, it is interesting to note a
characteristic feature of the MoLM: It requires about the
same number of samples for all values of L, whereas the
MoM requires a much higher number of samples when
L is small. From this, two remarks can be made:

« It can be shown that the variance of L for the MoLM
(Eq. (58)) is almost quadratic in L:

U(3,L)+2¥(1,L)2

~ 272
U(2,L)?

Thus, if a constant relative error is sought, the
number of samples is independent of L.

o It is interesting to analyse the same problem for the
Gaussian distribution A[u,0?]. It is easy to show
that the variances of the estimators of u and o do
not depend on ¢ for the MoM. They are written:

2

g
Vary (p) = N
2

(o2

By choosing Gaussian distributions with 1 = 1, the
values of o become comparable and an identical
criterion, and the required window sizes can be
calculated. These are included in Table 6.

It is seen that the MoM needs a constant number of
samples to estimate the shape parameter o, an analogy
to the property of the MoLM for the gamma distribution.

To achieve this analysis, we calculate Fisher’s infor-

22

mation matrix for the gamma distribution®:

L 0
2
0 Ww(,L)— 1L |’

which allows the calculation of the Cramer-Rao bound,
given in Table 5.

5.4 The Mixture of Gamma Distribution Case

The analytical calculation of the variance of the es-
timators in the mixture of gamma distributions case
described in Section 4.4 does not pose any problem,
except for the apparent complexity of the expressions
obtained, whose length prohibits us from including them
in a publication. Another possibility would be to assess
them by numerical evaluation.

Table 7 presents the standard deviations of A and p
if the analysis is carried out in neighbourhood of 100
samples (a 10 x 10 window), for various values of p and
A

Table 8 presents the optimal dimension of a square
window which guarantees a maximum of 10% estima-
tion error (where the error is defined as the ratio of the
standard deviation to the estimated value). Note that
for L = 1, a large window size is required, which is
not surprising when recalling Figure 8 showing that a
mixture of gamma distributions is generally unimodal.

6 CONCLUSIONS

Second kind statistics seem to be an innovative and
powerful tool for the study of distributions defined on
R*. The analytical formulation of the log-moments and
the log-cumulants is indeed particularly simple and easy
to exploit. At least, this is true for the examples presented
in this article, whereof some, such as the mixture distri-
butions, are not commonplace. Moreover, the variance of
the estimators thus defined approaches the minimal val-
ues reached by the maximum likelihood method, while
avoiding some of the analytical pitfalls. This approach
shows great potential in certain applications in SAR
image processing (such as the characterisation of an
optimal homomorphic filter [11]). One can reasonably
question why this approach, in all its simplicity, has
not been proposed before. Several reasons can be called
upon:

o The first is based on the observation that a Mellin
transform of a pdf is only a Fourier transform of the
same pdf taken on a logarithmic scale. Even if this
step is perfectly justified on the theoretical level, all
the possible advantages of moving into the Mellin
domain remain hidden, such as the use of existing
tables of known Mellin transforms, or the direct use
of the log-moments and log-cumulants that produce
better estimates of the distribution parameters.

4. The diagonal form of this matrix justifies a posteriori the analytical
expression of the gamma distribution that we chose, which differs
slightly from the one found in reference book like [9], [19].
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TABLE 7

23

Standard deviation (SD) for the estimates of A and p in the case of a mixture of gamma distributions. The size of the
analysis window is 10 x 10. Since the SD is inversely proportional to the square root of the number of samples in the

analysis window, the table can serve to determine the optimal window after a maximum error has been set.

p=2 p=>5 p=10
SD, SD, A SD,, SD,, A SD SD,
553 3.874 1 071 2.638 1 043 3.867
617 1.967 2 .083 1.606 2 .052 2.481
676 1.235 3 .092 1.183 3 .059 1.918
730 784 4 099 925 4 063 1.591
780 455 5 105 749 5 .065 1.380

TABLE 8
Optimal window size for a relative error of 10% in A and p.

p=2 p=>5 p=10
SD SD,, A SD,, SD,, A SDy SD,
553 X 553 194 x 194 1 71 x 71 53 x 53 1 43 x 43 39 x 39
309 x 309 98 x 98 2 41 x 41 32 x 32 2 26 x 26 25 X 25
225 x 225 62 x 62 3 31 x 31 24 x 24 3 20 x 20 19 x 19
182 x 182 39 x 39 4 25 x 25 19 x 19 4 16 x 16 16 x 16
156 x 156 23 x 23 5 21 x 21 15 x 15 5 13 x 13 14 x 14

The analysis of the product model, which is reserved
for particular processes like coherent imaging, has
not received the same strong attention as the addi-
tive signal model. The philosophy adopted for the
study of the product model has too often consisted
of transformation into logarithmic scale, in order
to use the known tools for the additive model.
This reductional step quickly pose problems, as it
requires large control of the analytical expressions
thus obtained. It is probably the reason why non-
experts have written off other distributions than
the gamma distribution and the inverse gamma
distribution, such as the I distribution, for instance.
Finally, the Mellin transform has been completely
ignored. Its applications has been confined to certain
specialised applications, which has unfortunately
prevented diffusion of the method beyond the field
of study (e.g., radar and sonar signals, number
theory, ultrasound propagation in heterogeneous
media, the Fourier-Mellin transform in image pro-
cessing). Even if certain pieces of work, old [15]
as well as recent [22], [21] ones, have shown its
applicability in the field of probability, its use has
been very restricted. Therefore, few people know the
fundamental properties, or even the exact definition.

The unfortunate consequence of the confidentiality
is that few research groups have worked on the
subject. Therefore, powerful and sufficiently gen-
eral numerical implementations of the analytical
transform are still missing. These would make it
possible to consider numerical deconvolutions of
the probability distributions described by a Mellin
convolution, and thus to recover significant param-
eters of a SAR scene [23].
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