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Abstract

This thesis presents methods for statistical analysis of the probability distributions used
to model multilook polarimetric radar images. The methods are based on a matrix-
variate version of Mellin’s integral transform.

The proposed theoretical framework is referred to as Mellin kind statistics. It is an
extension of a theory recently developed for single polarisation amplitude and inten-
sity data to the complex matrix-variate case describing multilook polarimetric images.
This generalisation is made possible by the rediscovery of a generalised Mellin trans-
form, which is defined for functions of positive definite Hermitian matrices. The do-
main makes it suited for application to the distributions used to model the polarimetric
covariance and coherency matrix.

The analysis tools include the matrix-variate Mellin kind characteristic function,
which is defined with the Mellin transform in place of the conventional Fourier trans-
form. Matrix log-moments and matrix log-cumulants are retrieved from this function.
The matrix log-cumulants are used in a moment based approach to parameter estima-
tion of the distribution parameters. The estimators make efficient use of all the statistical
information in the polarimetric covariance matrix, and are superior to all known alter-
natives. The matrix log-cumulants are also used to construct the first known goodness-
of-fit test for matrix distributions based on the multilook polarimetric product model.
The algorithms are interpreted by means of a highly informative graphical visualisation
tool displaying a space spanned by certain matrix log-cumulants.

It is demonstrated that the matrix-variate Mellin transform is the natural tool for
analysing multilook polarimetric radar images. This conclusion is based on the simple
and elegant mathematical expressions obtained, the superb statistical properties of de-
veloped estimators, as well as the intuitive interpretations offered by the Mellin kind
statistics.
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Chapter 1

Introduction

The first part of this chapter motivates the application of the Mellin Transform to the
analysis of polarimetric radar images. The second and third part provides an extended
summary of the chapters of the thesis, including three journal publications. A list of
other publications produced is included at the end.

1.1 Motivation

The univariate Mellin transform is an integral transform named after the Finnish mathe-
matician Robert Hjalmar Mellin (1854-1933), which has found many applications in math-
ematics, statistics, physics and engineering. It was first applied to statistical models of
radar images by Jean-Marie Nicolas, a French professor of signal and image processing.
In a milestone paper [Nicolas, 2002], he presented a new framework for statistical anal-
ysis of distributions1 of single polarisation amplitude and intensity images. The paper
was followed by a comprehensive technical report [Nicolas, 2006], which laid the foun-
dation for a new approach to deduction of sophisticated distribution models, including
their functional characterisation, the expressions for their statistical moments, and esti-
mators of the model parameters.

In the years following the seminal publications, a large number of papers have ap-
peared that use the analysis framework of Nicolas to solve many different radar im-
age analysis problems. The list covers applications such as statistical modelling [Moser
et al., 2006a,Moser et al., 2006b,Bombrun and Beaulieu, 2008], speckle filtering [Nicolas,
2003,Achim et al., 2006,Chen and Liu, 2008], image classification [Tison et al., 2004], im-
age segmentation [Benboudjema et al., 2007,Galland et al., 2009], change detection [Bu-
jor et al., 2004, Moser and Serpico, 2006, Moser and Serpico, 2009], estimation of inter-
ferometric coherence [Abdelfattah and Nicolas, 2006] and image compression [Valade
and Nicolas, 2004]. Still it seems like the awareness about the strength of the method is
increasing rapidly.

1The term distribution is used in this thesis as equivalent to probability density function.
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Figure 1.1: Three innovators who have provided the theoretical underpinning for this
thesis: Hjalmar Mellin, Jean-Marie Nicolas and Arak Mathai (left to right).

During the course of my research on radar image classification, practical require-
ments urged me to look into certain estimation problems for parameters of multilook
polarimetric radar data distributions. The solutions I obtained bore strong similarities
with those achieved by Mellin transform methods, but looked like matrix-variate exten-
sions. This was the starting point of my quest for a matrix-variate generalisation of the
Mellin transform, which proved successful. It was found in shape of the so-called M-
transform, a lesser known integral transform for functions defined on positive definite
Hermitian matrices. It was proposed by the Indian/Canadian statistician Arakaparambil
Mathai Mathai in [Mathai, 1978] and extended to complex matrices in [Mathai, 1997].
Just like the univariate Mellin transform is tailor-made for distributions of real positive
random variables, the matrix-variate M-transform went hand in glove with the covari-
ance matrix distributions used to describe multilook polarimetric radar data.

The rediscovery of the M-transform opened the door for an extension of the Mellin
kind statistics, which is the name used for the theoretical framework of Nicolas, to multi-
look polarimetric radar data. The prospect of achieving results with an impact compara-
ble to those of Nicolas was sufficient to make me redefine my Ph.D. project completely.
For one reason, the matrix-variate distributions describing polarimetric covariance ma-
trices contain special functions and complicated forms that severely limit their mathe-
matical tractability by conventional methods. Their applicability would certainly ben-
efit from a method which provided a new perspective on functional characterisation,
computation of statistical moments, model visualisation and parameter estimation. If
the complexity of these distribution cannot be handled, the only rescue is to resort to the
mathematically simpler but less accurate Wishart distribution model, which in many
situations restricts the quality of the model based inference. Secondly, it was envisioned
that the methods based on the Mellin transform would make possible the full use of the
statistical information contained in the multilook polarimetric data, including the cor-
relations between the polarimetric channels, and not only the single polarisation inten-
sities. Furthermore, an extension of the Mellin kind statistics would provide a general
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theory treating single polarisation images as a special case. The results presented in the
current thesis proves in my opinion that the change of direction was a right decision.

It was advocated above that Mellin kind statistics have a positive effect on the ap-
plicability of certain distributions that are mathematically complex, but provide better
fit with real data than the simpler alternative. The distributions referred to are those
arising from the doubly stochastic product model for multilook polarimetric radar images.
It is therefore relevant to comment on the necessity of such models. For low resolu-
tion radar images, each resolution cell contains a high number of microwave scatterers.
The scattered electromagnetic field is the coherent sum of contributions from all these
scatterers, and the central limit theorem asserts that it can be accurately modelled by
Gaussian statistics. With the steadily improving spatial resolution of operational syn-
thetic aperture radars, the Gaussian assumption is frequently challenged and often fails,
in particular for scenes of urban environment, but also for natural surfaces such as forest
and sea. Concerning the polarimetric aspect, it should be expected that the technolog-
ical evolution will gradually replace single polarisation radars with instruments that
have increasing capabilities for polarimetry. Hence, the need for adequate polarimetric
distribution models will be more and more emergent.

After having argued in terms of technicalities, a more fundamental question nat-
urally arises: Why is statistical modelling of radar data an important research task?
When we zoom out and look at the benefit for society and mankind, the importance is
connected to the value of the imaging radar as a remote sensing instrument. In the con-
text of Earth observation, the radar is distinguished by its all-weather and all-season
capabilities. It performs its measurements irrespective of cloud cover and sun condi-
tions. Together with the wide spatial coverage and relatively good temporal resolution
of the image acquisitions, these properties make spaceborne radar crucial for tasks such
as monitoring of rain forest degradation and deforestation, change detection in Arctic
glaciers, and mapping of sea ice conditions. A common aspect of these applications
is that they require observations of inaccessible areas that are impossible to cover by
on-site measurements. Radar remote sensing is both a practical and a cost effective al-
ternative. The limiting factor of radar images is their content of strong speckle or clutter,
an inherent feature of the coherent imaging process which complicates the interpreta-
tion and potential for information extraction. The most efficient remedy is to analyse
the images within the context of a suitable statistical model, which closes the argument.

1.2 Chapter Review

Chapter 2 provides an introduction to radar imaging, which starts at the very funda-
mental by discussing key properties of active microwave sensors, describing different
frequency bands and different types of imaging radars. The function of synthetic aper-
ture radars and polarimetric radars is explained. We next look at the data formats de-
livered by polarimetric radars, starting with single-look complex data and moving on
to multilook complex data, while explaining the concept of multilooking. The chapter

3



ends with the presentation of a physical model of radar speckle, and an explanation
of its link to the traditional statistical models for the radar measurements. We define
speckle and texture, the two factors of the doubly stochastic product model, which
forms the basis of our statistical analysis.

Chapter 3 is opened by a historical review of the Mellin transform, with particular focus
on its use in statistical distribution theory. The underlying ideas of Nicolas’ univariate
Mellin kind statistics are outlined, before we present Mathai’s generalised Mellin trans-
form. The original contribution of the author starts with the derivations of fundamental
properties of the matrix-variate Mellin transform. It is followed by the new definitions
of matrix-variate Mellin kind statistics. Finally, the Mellin kind statistics of a general
multilook polarimetric product model are revealed, while leaving the detailed deriva-
tions to Paper 2.

Chapter 4 starts with the definitions of the special functions needed in the sequel. It
further introduces candidate univariate distributions that can be used to model tex-
ture, together with their Mellin kind statistics, that were derived in [Nicolas, 2006]. The
scaled complex Wishart distribution is also presented as a model for fully developed
speckle, unmodulated by texture. The Mellin kind statistics given for this distribution
are contributed in Paper 2. With the listed texture and speckle distributions as building
block, we arrive at five compound distributions for the polarimetric covariance matrix.
The Mellin kind statistics derived for all distributions are new.

Chapters 5–7 contain Papers 1–3. They are described separately in the next section.

Chapter 8 gives the conclusions. It lists the main results and points out future directions
of research based on the work documented in the thesis.

Appendix A is a conference paper (referenced as Paper 4 in the list of Section 1.4)
which contains ideas about statistical modelling of speckle filtered multilook polari-
metric radar data. In is included for completeness and availability, since the results are
mentioned and referenced in the thesis.
Appendix B is a translation of [Nicolas, 2002], which is a key reference for this thesis.
The paper was originally published in French, but translated by the current author for
the benefit of the research reported in this thesis. It is included here, with permission
from the author, for the convenience of readers who are not proficient in French.

1.3 Publication Review

The following three publications are included in this thesis as Chapters 5, 6 and 7. A
summary is given for each, highlighting the original contributions of the authors. The
papers appear in chronological order and document the progress of my work in terms
of maturity and depth of both exposition and content. Paper 1 is least mature in the
sense that the theory of Mellin kind statistics for the polarimetric case had not been
formulated yet. The connection of the results to the Mellin transform was discovered
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later, as documented in Paper 2. Paper 3 is a first step in the direction of applications of
the theory.

Paper 1

S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, “Estimation of the Equivalent Number of
Looks in Polarimetric Synthetic Aperture Radar Imagery”, IEEE Transactions on Geo-
science and Remote Sensing, vol. 47, no. 11, pp. 3795–3809, December 2009.

The paper studies estimators for the equivalent number of looks (ENL), a parameter
which is found in all distributions used to model multilook radar images. Still, the
literature on the topic is very sparse. The relation L = E{I}2/Var{I}, where I denotes
intensity, is often mistaken for being the definition of the ENL in the single polarisation
case, assuming fully developed speckle and no texture. In reality, it is just one particular
way of resolving the ENL from moments relations.

In the paper, we propose two new estimators for the ENL that are adapted to mul-
tilook polarimetric radar data. The expressions are derived by examining different
kinds of moments of the polarimetric covariance matrix. The first estimator is a gen-
eralisation of the expression given above. The second is found from moments of the
log-determinant of the covariance matrix, and is also found to be the maximum likeli-
hood (ML) estimator based on the Wishart distribution model for multilook polarimet-
ric radar data. The proposed estimators are the first ones to take the full covariance ma-
trix as input, thereby utilising all the available statistical information. This is reflected
in the experimental results in terms of superior statistical properties. The ML estimator
has the lowest bias and variance, and also most robust with respect to the assumption
of no texture.

An approach to unsupervised estimation of the ENL is also presented, where the ML
estimator is used to compute small sample estimates over the whole image, regardless
of the homogeneity in the estimation window. It is shown that a robust estimate of the
ENL can be extracted from a probability density function estimate of the collection of
small sample estimates. This is only possible when using the novel low variance ML
estimator.

There are minor differences between the published version of the paper and the ver-
sion included in the thesis. Equation (23) has been corrected in the thesis version. The
journal version gives an expression which is valid for real matrices, while complex ma-
trices are considered. The paper has been reformatted to a different font size. Otherwise,
the differences are mainly orthographical, due to different preferences of English style.
Some symbols have also been changed to harmonise the notation of this paper with the
others.
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Paper 2

S.N. Anfinsen and T. Eltoft, "Application of the Matrix-Variate Mellin Transform to
Analysis of Polarimetric Radar Images", submitted to IEEE Transactions on Geoscience
and Remote Sensing.

This paper introduces the Mellin kind statistics framework for analysis of multilook
polarimetric radar images. It builds on the equivalent framework derived by Nicolas
for the single polarisation case, and the extension to multilook polarimetry rests upon
Mathai’s matrix-variate Mellin transform. The combination of these ideas, leading to a
whole new set of definitions for the polarimetric case, is an original contribution.

The paper gives a thorough review of the univariate Mellin kind statistics. It ex-
plains Nicolas’ idea of introducing a new kind of characteristic function for real posi-
tive random variables by replacing the Fourier transform with the Mellin transform in
the definition of the conventional characteristic function. The moments and cumulants
retrieved from this characteristic function are calculated on logarithmic scale, and are
therefore called log-moments and log-cumulants. We also emphasise analogies between
Mellin kind statistics and conventional (Fourier kind) statistics, showing that the Mellin
kind statistics are the natural tools for analysis of a multiplicative signal model, just like
the conventional statistics are for the familiar additive model. This care is taken to make
the presentation pedagogical, but also to make Nicolas’ theory available to a wider au-
dience, since his most comprehensive derivations are only published in French [Nicolas,
2002, Nicolas, 2006].

The novel contributions include definitions of the Mellin kind characteristic func-
tion, cumulant generating function, moments and cumulants for the matrix-variate case
describing multilook polarimetric radar images. We have further defined a matrix-
variate Mellin convolution and correlation, and proved corresponding convolution and
correlation theorems. The convolution theorem shows that the Mellin transform of the
Mellin convolution of two functions decomposes as the product of Mellin transform of
the individual functions. This result is needed to formulate the Mellin kind statistics
under the multilook polarimetric product model, which is probably the contribution
with the largest practical significance.

As an example of applications of the new theory, we have derived parameter es-
timators for some product model distributions for the polarimetric covariance matrix.
The experimental results show that the estimators based on Mellin kind statistics are
superior to all alternative estimators from the literature. The proposed estimation pro-
cedure is interpreted visually in terms of a diagram where we plot empirical matrix
log-cumulants computed from data samples together with the population matrix log-
cumulants of the distributions. The matrix log-cumulant diagram is a matrix-variate
extension of the diagram Nicolas has used in the univariate case.

6



Paper 3

S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, "Goodness-of-Fit Tests for Multilook Po-
larimetric Radar Data Based on the Mellin Transform", submitted to IEEE Transactions
on Geoscience and Remote Sensing.

In this paper, the Mellin kind statistics framework is used to derive goodness-of-fit tests
for distributions of the polarimetric covariance matrix derived under the multilook po-
larimetric product model. These are, to the best of our knowledge, the first formal
statistical tests that have been devised for these complicated distributions. The test
statistic is constructed from the matrix log-cumulants defined in Paper 2. In order to
deduce sampling distributions for the test statistics, asymptotic statistics of the matrix
log-cumulants have been derived. They proposed test statistic can be applied to both
simple and composite hypothesis tests.

For the simple hypothesis, the sampling distribution of the test statistic is asymp-
totically χ2 distributed. We demonstrate that this is a good approximation even for
moderate sample sizes. For the composite test, we must resort to Monte Carlo simula-
tions to find the sampling distribution. This approach has a higher computational cost,
but produces the true sampling distribution regardless of sample size.

The simple and composite tests have been tested on simulated and real data. As-
sessments of the test powers show that we have found a useful method which meets the
need for formal procedures of testing model fit for compound covariance matrix distri-
butions. The matrix log-cumulant diagram introduced in Paper 2 is further promoted
as an intuitive visualisation tool for interpretation of the test procedure. As a graphical
aid for informal model selection and validation, it separates very well between different
distributions whose differences are mainly manifested in the heavy tails.

The paper emphasises the coupling between the problems of goodness-of-fit testing
and parameter estimation. A new estimation technique for parameters of the texture
distributions is motivated by the proposed tests. The estimator maximises the asymp-
totic likelihood of the compounded matrix distribution, and is effectively a method of
moment type procedure using multiple matrix log-cumulants. The estimator is tested
in the experiments of Paper 2, and exhibits superior performance in terms of both bias
and variance. It is also an intrinsic part of the composite test, which requires estimation
of unknown distribution parameters.

1.4 Other Publications and Presentations

As first author:

1. S. N. Anfinsen, R. Jenssen and T. Eltoft, “Clustering of polarimetric SAR data with
an information theoretic kernel method,” presented at the IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS ’06), Denver, U.S., 31 Jul.-4 Aug. 2006, not published.
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data with Wishart-derived distance measures”, Proc. 3rd Int. Workshop on Science
and Applications of SAR Polarimetry and Polarimetric Interferometry (POLinSAR ’07),
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channel SAR images”, Proc. 8th Eur. Conf. Synthetic Aperture Radar (EUSAR 2010),
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Chapter 2

Radar Polarimetry

This chapter gives an overview of the fundamental properties of radar imaging, with
emphasis on the potential of spaceborne polarimetric synthetic aperture radar. The
foundation is laid for the subsequent theoretical developments by the definition of
the multilook polarimetric product model. The connections to an underlying physical
model of microwave scattering are explained.

2.1 Imaging Radar

An imaging radar1 illuminates the target scene with directional pulses of electromagnetic
(EM) energy, measures the backscattered energy and the round-trip time, and uses this
information to form an image. The radar operates in the microwave region of the EM
spectrum, and the backscatter depends on dielectric and geometrical properties (rough-
ness and shape) of the target. If both amplitude and phase of the backscattered wave
is measured, the image will constitute a two-dimensional map of the EM scattering co-
efficient, which is defined in Section 2.2.2. The scattering coefficient can be measured
with different combinations of polarisations at the transmitter and receiver. The use of
multiple polarisations gives rise to multidimensional image data known as polarimetric
radar images. The principles of radar imaging are shown in Figure 2.1.

2.1.1 Frequency Bands

Radars are classified by the frequency band their emitted pulse belongs to. The fre-
quency bands most commonly used by spaceborne earth observation radars are L-band
(Seasat, JERS-1 and ALOS PALSAR), C-band (ERS-1, ERS-2, Envisat ASAR, Radarsat-
1 and Radarsat-2) and X-band (TerraSAR-X and COSMO-SkyMed). P-band2 radar has

1Radar was originally an acronym for the method of radio detection and ranging, but has been assimi-
lated as a standard word in most languages, and now refers to the instrument itself.

2The P-band is not defined in the IEEE standard reported in Table 3, but refers to a band which lies
partially in the UHF-band and partially in the VHF-band, according to this designation.
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Figure 2.1: An imaging radar is an active microwave instrument which transmits elec-
tromagnetic pulses (A), focused by the antenna into a beam (B), and receives a portion
of the reflected energy (C) backscattered from various objects.

only been mounted on airborne research missions, but a satellite mission named BIOMASS
is planned. The letter designation applied to different frequency ranges is shown in Ta-
ble 3, whose source is the IEEE Standard 521-2000(R2009) [IEEE, 2009].

The penetration depth of the microwave into a target medium, such as vegetation,
glacier, sea ice and soil, increases with wavelength. It also depends on the moisture
level of the medium. Thus, the usefulness of the different frequency bands vary with
application. For instance, C-band is generally preferred for mapping of sea ice, because
it provides the best contrast between sea and ice (although the contrast also depends
largely on polarisation and incidence angle). L-band is preferred for studies of many
types of vegetation, for which the wave penetrates the vegetation canopy and reaches
the ground or surface level. P-band is required to penetrate rain forest, and thus to ob-
tain meaningful estimates of biomass for this biotope, since the measurements saturate
at shorter wavelengths, resulting in underestimation. The frequency band also deter-
mines the scale of roughness which interacts with the radar wave and influences the
measurements. The backscattered energy is sensitive to surface curvature and rough-
ness at length scales near the radar wavelength.

2.1.2 Properties of Imaging Radar

The major advantage of active microwave instruments is that they work independently
of sunlight conditions and cloud cover. Unlike optical sensors, they operate equally well
nighttime as daytime, and the attenuation of the signal by clouds and water vapour is
negligible in most bands. L-band radars may experience disturbance by ionospheric
Faraday rotation under certain conditions [Freeman and Saatchi, 2004], while X-band
and Ku-band backscatter is sensitive to precipitation, which has been successfully re-
trieved from spaceborne SAR observations [Marzano and Weinman, 2008].

Radar systems give access to different parameters compared to optical systems. Their

3Frequencies from 216-450 MHz are sometimes called P-band.
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Table 2.1: Microwave bands with letter designation, frequency range and wavelength
range.

Band Frequency range wavelength range [cm]
HF 3-30 MHz 10-100 m

VHF3 30-300 MHz 1-10 m
UHF3 300-1000 MHz 30-100 cm

L 1-2 GHz 15-30 cm
S 2-4 GHz 7.5-15 cm
C 4-8 GHz 3.75-7.5 cm
X 8-12 GHz 2.5-3.75 cm

Ku 12-18 GHz 16.7-25 mm
K 18-27 GHz 11.1-16.7 mm

Ka 27-40 GHz 7.5-11.1 mm
V 40-75 GHz 4.0-7.5 mm
W 75-110 GHz 2.7-4.0 mm

mm 110-170 GHz 1.8-2.7 mm

measurements can be related to surface roughness, humidity and geometrical proper-
ties, as previously discussed. They cannot be used to retrieve biophysical parameters
that require access to radiances, reflectances and brightness temperatures. Neverthe-
less, many mapping and classification products can be obtained with similar quality as
for optical instruments, and the independence of solar illumination and cloud cover as-
sures temporal consistence of the service. This property is especially attractive for mon-
itoring of high latitude areas, where Arctic/Antarctic winter and frequent cloud cover
limits the usefulness of optical sensors. Persistent cloud cover also severely restrict the
capacity of optical monitoring of tropical rain forest, whereas radar instruments deliver
consistent results, which is a vital requirement for operational services.

2.1.3 Instruments

Different types of radar can be classified as imaging radars. A ground-penetrating
radar (GPR) is an active microwave instrument used to image the subsurface, which
is often implemented as a continuous wave (CW) radar4. It is applied to a variety of
media, including rock, soil, ice, snow, fresh water and man-made structures. The data
are processed into a radargram which shows the depth profile and indicates bound-
aries between layers with different dielectric constant. A weather radar is normally a
ground-based Doppler radar capable of locating precipitation, calculating its intensity

4A continuous wave radar transmits continuous waves instead of pulses. Range measurements are
enabled by use of e.g. a frequency modulated (FM-CW) or step-frequency (SF-CW) transmitted wave.

11



Figure 2.2: The SAR principle: A target (A) is illuminated by several pulses of the radar
beam. The backscattered echoes of each pulse is recorded. The length of the synthesized
antenna (B) is the the distance between the points where the target enters and leaves the
radar beam.

and velocity, and identifying its type. It scans a volume of air around the radar station,
and images are produced as different cross-sections of the scanned volume. In addition,
we have real aperture radar (RAR) and synthetic aperture radar (SAR), whose function is
explained in the next section. These can both be ground-based or airborne. SAR data
are also widely available from spaceborne instruments that provide regular global cov-
erage. These instruments are therefore important and reliable sources of information
for various monitoration programs.

The methods presented in this thesis are aimed at multilook polarimetric data, a data
format which is defined in Section 2.2.4. The most obvious subject for the proposed anal-
ysis tools is polarimetric SAR data. However, polarimetric GPRs and weather radars ex-
ist [Langley et al., 2009,Galetti et al., 2008], and their data can also be processed into the
same format, even though other representations are more common. The developments
of this thesis are presented as a generic theory for polarimetric radar data, since the
theoretical framework can in principle be applied to any kind of multilook polarimetric
radar data.

2.1.4 Synthetic Aperture Radar

The synthetic aperture processing technique [Oliver and Quegan, 2004, Cumming and
Wong, 2005, Massonnet and Souyris, 2008] must be credited for the availability of high
resolution radar images captured by spaceborne platforms. The difference between a
RAR and a SAR sensor lies in the image resolution in the azimuth, or along-track direc-
tion. The azimuth resolution of a RAR is determined by the beamwidth of the antenna,
which is limited by practical constraints. A SAR obtains multiple measurements of
the scene at different azimuth angles, and uses advanced signal processing to combine
these into an image with improved azimuth resolution. The effect is the same as using
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Figure 2.3: Electromagnetic wave with linear polarisation.

an aperture whose size is larger than the actual, hence the term synthetic aperture. The
finest azimuth resolution achieved by the most recent spaceborne SAR instruments is
1 meter for TerraSAR-X and COSMO-SkyMED and 3 metres for Radarsat-2 and ALOS
PALSAR. The SAR principle is explained by Figure 2.2.

2.1.5 Polarimetric Radar

An EM wave consists of electric and magnetic field components that oscillate in phase
perpendicular to each other and perpendicular to the direction of energy propagation
(see Figure 2.3). The polarisation of an EM wave describes the orientation of its oscil-
lations. A fully polarimetric radar simultaneously transmits microwave pulses with
two different orthogonal polarisations, it measures the electric field components at two
orthogonal polarisations, and resolves the scattering coefficients for all four combina-
tions of transmit and receive polarisation. Any polarisation can be synthesised as a su-
perposition of two orthogonal polarisation. The fully polarimetric measurements thus
constitute a complete description of the scattering characteristics of the resolution cell,
which can be analysed for an arbitrary polarisation by a simple transformation of the
orthogonal basis.

SAR instruments commonly use linear polarisations, where the electrical field is ori-
ented in a single direction, normally horizontally and vertically. Another option is to
use circular or elliptical polarisations, where the electric field rotates rightwards or left-
wards in the direction of propagation. The polarisations at the transmitter and receiver
need not be the same, and can be chosen to optimise system performance or in accor-
dance with given restrictions or requirements.

In radar polarimetry, we use the complex scattering coefficients measured at differ-
ent polarisations to characterise the target. A polarimetric radar extends the capabil-
ities of normal single polarisation radar, not only because it provides multichannel
data. Most importantly, it provides a strong link to the physics of the scattering pro-
cess and allows us to identify distinct scattering mechanisms. Coherent scattering from
point sources can be resolved as scattering from elementary geometrical objects, such
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as spheres, cylinders, dipoles, diplanes, dihedrals and trihedrals. Incoherent scattering
can be resolved as surface (single bounce) scattering, double bounce scattering and vol-
ume scattering. The methods used are known as polarimetric decompositions, and a rich
literature has emerged on the topic [Mott, 2007, Lee and Pottier, 2009, Cloude, 2010].

2.2 Data Formats

This section describes the data formats encountered for polarimetric radar data. We
start from a mathematical description of the most elementary measurable in polarimet-
ric radar imaging, the matrix holding the scattering coefficients of all polarimetric chan-
nels. We then describe the multilooking process and transformation of the data into the
intensity domain.

2.2.1 Single Look Complex Data

As described in the previous section, the fully polarimetric SAR instrument separately
transmits orthogonally polarised microwaves pulses, and measures orthogonal compo-
nents of the received signal. For each pixel, the measurements result in a matrix of scat-
tering coefficients. These are complex-valued, dimensionless numbers that describe the
transformation of the transmitted (incoming) EM field to the received (backscattered)
EM field for all combinations of transmit and receive polarisation.

The transformation can be expressed as[
Er
x

Er
y

]
=
ekρ

ρ

[
Sxx Sxy
Syx Syy

] [
Et
x

Et
y

]
(2.1)

where  =
√

1 is the imaginary unit, k denotes wavenumber and ρ is the distance be-
tween radar and target. The subscript of the EM field component Ej

i , where i ∈ {x, y},
refers to the polarisation it is associated with. The superscript of Ej

i , where j ∈ {r, t},
indicates if it is the transmitted or received field component. The orthogonal polarisa-
tions are denoted x and y for generality, although it has been assumed that the same
polarisations are used at the transmitter and the receiver. The scattering coefficients
Sij, i, j ∈ {x, y}, are subscripted with the associated receive and transmit polarisation,
in that order.

The scattering coefficients are complex-valued, and they comprise what is known
in radar imaging terminology as a look. The SAR processor may split the full synthetic
aperture into several subapertures. This is done by splitting the Doppler bandwidth into
sub-bands and extracting the band-limited signal. The portion of the SAR signal asso-
ciated with one subaperture or subband represents an individual look of the scene. The
scattering coefficients represent one such look after the image has been focused. Data
structures that contain the scattering coefficients are therefore referred to as single-look
complex (SLC) data. The single-look term is used also for sensors without the synthetic
aperture capacity, even though the look extraction aspect is missing.
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2.2.2 Scattering Matrix

The choice of polarisations is from now on restricted to the linear pair, that is, the hor-
izontal or vertical polarisation. This is the most commonly used set of orthogonal po-
larisations for SAR systems, and the restriction can be done without loss of generality
for the methods subsequently derived. The exception is for interpretations of scattering
mechanisms, that rely explicitly on the choice of polarisation basis.

We extract from (2.1) the scattering matrix

S =

[
Shh Shv
Svh Svv

]
∈ �2×2 , (2.2)

where the subscripts h and v denote horizontal and vertical polarisation, respectively.
This matrix is also known as the Sinclair matrix, and holds all scattering coefficients
measured by the fully polarimetric radar.

2.2.3 Scattering Vector

Lexicographic Basis

The scattering vector is simply the vectorised version of the scattering matrix, defined
as

s = vec(ST ) =


Shh
Shv
Svh
Svv

 ∈ �4×1 , (2.3)

where vec(·) is the column stacking vectorisation operator. The vector elements can also
be seen as coefficients of the lexicographic decomposition of the scattering matrix:

S = Shh

[
1 0
0 0

]
+ Shv

[
0 1
0 0

]
+ Svh

[
0 0
1 0

]
+ Svv

[
0 0
0 1

]
. (2.4)

This vector is therefore known as the lexicographic basis scattering vector.

Pauli Basis

Another representation of the scattering vector is obtained by a linear transformation of
the lexicographic basis vector. The Pauli basis scattering vector is obtained as

k = U s =
1√
2


Shh + Svv
Shh − Svv
Shv + Svh
(Shv − Svh)

 ∈ �4×1 , (2.5)
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where U is the unitary transformation matrix

U =
1√
2


1 0 0 1
1 0 0 −1
0 1 1 0
0  − 0

 . (2.6)

The vector elements are the coefficients in the Pauli decomposition of the scattering
matrix, given by

S =
Shh + Svv√

2

[
1 0
0 1

]
+
Shh − Svv√

2

[
1 0
0 −1

]
+
Shv + Svh√

2

[
0 1
1 0

]
+
(Shv − Svh)√

2

[
0 −
 0

]
.

(2.7)

The basis of this decomposition contains the three 2 × 2 Pauli matrices, that were orig-
inally introduced in quantum mechanics to describe the spin of a spin 1/2 particle in
three spatial directions. The fourth basis matrix is the 2 × 2 identity matrix, which is
associated with the first element of k.

The advantage of the Pauli basis scattering vector is that it provides physical inter-
pretations of its elements in terms of elementary scattering mechanisms. The respective
elements of k, denoted {k1, · · · , k4}, can be related to: single or odd-bounce scattering
from a plane surface (k1), diplane scattering (double-bounce or even-bounce) from cor-
ners with a relative orientation of 0◦ (k2) and 45◦ (k3), and the residue of antisymmetric
components (k4) [Lee and Pottier, 2009, Cloude, 2010].

Reduced Dimension Scattering Vectors

Let d be the dimension of s, which is equivalent to the number of polarimetric channels.
It will be referred to as the polarimetric dimension. The polarimetric dimension can be
reduced compared to the quadrature polarimetric case of d = 4. If only one polarisation
is used at the transmitter (or receiver), then only a subset of the scattering coefficients
can be measured, and we obtain dual polarisation data with d = 2. Single polarisation
data are obviously also a special case, with d = 1.

The case of d = 3 is encountered when we assume reciprocity of the target, defined as
follows: For natural terrain it can safely be assumed that the cross-polarised channels
are approximately equal: Shv ' Svh. These measurements can then be averaged to
reduce uncertainty, and we obtain the reduced scattering vector

s =

 Shh
(Shv + Svh)/

√
2

Svv

 ∈ �3×1 . (2.8)

The term
√

2 ensures that the total measured power:

Ptot = |Shh|2 + |Shv|2 + |Svh|2 + |Svv|2
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Figure 2.4: In multilook processing, the radar beam (A) is divided into several sub-
beams, each providing an independent (in an ideal case) look at the illuminated scene.

is maintained regardless of a change of basis. The reciprocity assumption breaks down
in urban environments, or generally when the target geometry is such that the amount
of cross-polarised power depends on the radar look angle, which is typical for man-
made targets and structures with non-random orientation.

The equivalent version of the Pauli basis scattering vector is

k =
1√
2

 Shh + Svv
Shh − Svv
Shv + Svh

 ∈ �3×1 . (2.9)

2.2.4 Multilook Complex Data

The look term was defined in Section 2.2.1 as a portion of the SAR signal recorded by a
part of the synthetic aperture, known as a subaperture. The subaperture signal can be
extracted from the total signal by filtering in the frequency domain. Multiple looks can
be summed incoherently to produce a multilook image, an averaging operation known
as multilooking [Cumming and Wong, 2005,Massonnet and Souyris, 2008]. Multilooking
can also be done in the spatial domain, after the image has been focused. This is done
by computing the mean value of a group of adjacent pixels, and must also be done
incoherently, since the single-look data are complex-valued. The multilook principle is
illustrated by Figure 2.4.

Multilooking of single polarisation radar data produces amplitude or intensity data
that are real-valued. All phase information is discarded. In the polarimetric case, the
multilooking process creates complex data which preserves information on the mean
phase difference between the polarimetric channels. The format is known as multilook
complex (MLC) data.

We remark that the averaged looks are correlated. For multilooking in the frequency
domain, the correlation occurs because the filters used to split the Doppler bandwidth
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into subbands have a slight overlap. In spatial domain multilooking, we average neigh-
bour pixels that are correlated because they share a certain amount of information from
the focusing process, due to the radar point spread function [Rignot and Chellappa,
1993]. This has an impact on the statistical modelling of MLC data. The exact form of
the PDF for correlated data does not have a simple closed form expression [Goodman,
1975, Rignot and Chellappa, 1993, Gierull and Sikaneta, 2002]. The practical approach
has been to derive the distribution as if the multilook samples were statistically inde-
pendent, and replace the nominal number of looks, equivalent to the actual number of
samples, with an equivalent number of looks (ENL). The ENL is must be estimated from
the data, which is done by equating certain empirical sample moments with the cor-
responding theoretical population moments under the assumed statistical distribution
model. This is the topic of Paper 1 in Chapter 5.

2.2.5 Covariance Matrix

Assume that L looks are available, in the form of the scattering vector sample {s`}L`=1.
We refer to L as the nominal number of looks. The lexicographic basis scattering vec-
tor is multilooked by computing its sample covariance matrix, under the assumption
that the {s`} are zero mean, a condition discussed in Section 2.3.1. The multilooking
operation is formulated as

C =
1

L

L∑
`=1

s`s
H
` =


〈ShhS∗hh〉 〈ShhS∗hv〉 〈ShhS∗vh〉 〈ShhS∗vv〉
〈ShvS∗hh〉 〈ShvS∗hv〉 〈ShvS∗vh〉 〈ShvS∗vv〉
〈SvhS∗hh〉 〈SvhS∗hv〉 〈SvhS∗vh〉 〈SvhS∗vv〉
〈SvvS∗hh〉 〈SvvS∗hv〉 〈SvvS∗vh〉 〈SvvS∗vv〉

 , (2.10)

where (·)∗ and (·)H are the complex conjugation and Hermitian transposition operators,
respectively, and 〈·〉 denotes a sample mean over all single-look measurements. This
produces the polarimetric covariance matrix C, which is positive definite and Hermitian
symmetric. It has the real-valued intensities of the polarimetric channels on the main
diagonal, and their complex covariances off the diagonal. The matrix C is the measur-
able when working with multilook polarimetric radar data, and it is the subject of the
subsequent analysis.

2.2.6 Coherency Matrix

The covariance matrix C can be replaced by the polarimetric coherency matrix Ω, which is
the term used for the sample covariance matrix of the Pauli basis scattering vector. It is
computed from the sample {k`}L` by

Ω =
1

L

L∑
`=1

k`k
H
` = UCU . (2.11)
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The coherency matrix is often the preferred representation, because of its the physical
interpretation. In the quadrature polarimetric case, the first three elements on the diag-
onal are the intensities:

[Ω]11 = 〈|Shh + Svv|2〉 , (2.12)
[Ω]22 = 〈|Shh − Svv|2〉 , (2.13)
[Ω]33 = 〈|Shv + Svh|2〉 , (2.14)

that can be interpreted in terms of the same elementary scattering mechanisms as the
elements of k. Incoherent polarimetric decompositions, such as the Freeman decompo-
sition [Freeman and Durden, 1998] and Yamaguchi decomposition [Yamaguchi et al.,
2005], go even further in extracting entities that can be directly related to surface scat-
tering, double-bounce scattering and volume scattering and their relative proportion.

For the methods developed in this thesis, it is of no concern whether we use the
covariance matrix or the coherency matrix. The results are equally valid and useful for
both data formats.

2.3 Polarimetric Radar Statistics

In this section we review statistical models for the polarimetric radar measurements. We
specifically look at probability density functions (PDFs) for the different data formats
based on a physical description of the scattering process. The EM field measured at the
radar is a superposition in the far field of coherent microwave components, each pro-
duced by a reflection from a unique surface element called a scatterer. If the resolution
cell contains only a limited number of scatterers, whose position could be accurately
determined, then a deterministic description is in theory possible. In practice, we must

Figure 2.5: The roughness of the surface (left) determines the type of scattering pro-
duced (right). A smooth surface (A) causes specular reflection, while a rough surface
scatters diffusely (B). The scattering can also be characterised as coherent (A) and inco-
herent (B).
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resort to a stochastic model to describe the EM field.
A rough surface is a surface with height variation on a scale larger than the wave-

length used to illuminate it [Delignon et al., 2001, Lee, 2005]5. In a radar remote sens-
ing context, many natural surfaces can be considered as rough. The scatterers vary in
number and geometry according to the surface type and the spatial resolution of the
observation, but the number is generally assumed to be high. The nature of the scat-
tering depends on the relative strength of the reflections from the scatterers and the
distribution of the phase shift they induce. The next sections establish a mathematical
description of the scattering process and definitions that characterise the scattering as
strong or weak. Surface roughness and different types of scattering is shown in Figure
2.5.

At this point, it is pertinent to define some other terms. In physics, coherence is a
property of two or more waves that are in phase both temporally and spatially. More
generally, it describes the correlation between all physical quantities of the wave [Born
and Wolf, 1999, Glickman, 2000]. This is the property which enables stationary interfer-
ence. Incoherent scattering is defined as the scattering produced when an incident wave
encounters scatterers that cause the scattered EM field to exhibit random variations in
phase and amplitude due to lack of coherence. Coherent scattering, on the other hand,
produces a deterministic scattered EM field. This happens when the incident wave is
scattered by a fixed point target or a distributed target with scatterers whose relative
position is fixed [Glickman, 2000].

2.3.1 Random Walk Model of Scattering

The scattering process is often described by a random walk model [Goodman, 2007,
Lopès et al., 2008]. Let the EM field measured at the sensor be a sum of the field com-
ponents reflected by N scatterers in the resolution cell. The scattering coefficient S of
a general polarimetric channel thus represents the total scattering experienced by the
microwave after interaction with N scatterers. This can be written as the sum

S =
N∑
k=1

S(k) =
N∑
k=1

A(k)eθ
(k)

. (2.15)

Here S(k) is the scattering coefficient associated with the kth scatterer, whose polar
decomposition yields the amplitude component A(k) = |S(k)| and phase component
θ(k) = ∠S(k). These represent the attenuation and phase shift imposed on the incident
wave by the kth scatterer. We initially make three fundamental assumptions:

1. The amplitudes {A(k)}Nk=1 are independent and identically distributed (IID) ran-
dom variables. So are the phases {θ(k)}Nk=1.

5Surface roughness can be measured by the product of the wavenumber k and the root mean square
height hrms of the roughness. Moderate roughness starts at khrms > 1 and high roughness at khrms > 5.
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Figure 2.6: Random walk model of strong scattering. The scattering coefficient S with
amplitude A and phase θ is shown as a phasor in the complex plane (black arrow). It is
decomposed as the coherent sum of the scattering coefficients S(k) corresponding to N
individual scatterers with amplitude A(k) and phase θ(k). The accumulated phasor sum
is indicated by the coloured arrows.

2. The {A(k)} and the {θ(k)} are independent.

3. The {θ(k)} are uniformly distributed over all angles.

Figure 2.6 illustrates equation (2.15) under the three assumptions listed above. It
pictures the coherent summation as a two-dimensional random walk in the complex
plane, with the in-phase component along the first axis and the quadrature phase along
the second. We shall use the figure as a starting point for a discussion of different scat-
tering regimes.

Strong Scattering

Figure 2.6 shows an example of a random walk with N = 20 steps, each representing
the reflection by an individual scatterer. The coloured arrows show the accumulated co-
herent sum, which ends up as the total scattering coefficient S, shown as the thick black
arrow annotated with amplitudeA and phase θ. The function of the colour coding is just
to show the progress of the vector summation of the scattering coefficient components
S(k) with amplitude A(k) and phase θ(k).

We have assumed that the phase components are uniformly distributed over all an-
gles, denoted as: θ(k) ∼ U [0, 2π]. This implies that the angle of the coherent sum is also
uniform over the same interval: θ ∼ U [0, 2π]. This condition defines the strong scattering
regime [Barakat, 1986, Jakeman and Tough, 1987]. It means that the random walk has
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Figure 2.7: Random walk model of weak scattering. The scattering coefficient S with
amplitude A and phase θ is shown as a phasor in the complex plane (black arrow). It
is decomposed as the sum of a dominating coherent term Sc , with amplitude A(c) and
phase θ(c), and an incoherent term equal to the sum of random phasors described in
Figure 2.6, contributed by N distributed scatterers.

an equal chance of ending up in any angular sector of the complex plane, and moreover
that the coherent sum is a random variable with zero mean, even though the amplitude
is positive. The zero mean of S is sometimes expressed as vanishing of the coherent,
or specular, component [Ruffing and Fleischer, 1985]. This is an equivalent condition
for strong scattering. A scattering process with the zero mean property produces fully
developed speckle, a term which is explained in more detail in Section 2.3.4.

Weak Scattering

A non-uniform distribution of the phase components, written as θ(k) � U [0, 2π], results
in a non-uniform distribution of θ and a non-zero mean of S, which thus has a non-
vanishing incoherent or specular component. These are the characteristics of a weak
scattering process, which produces a partially developed speckle pattern [Ruffing and Fleis-
cher, 1985, Barakat, 1986]. The weak scattering regime is illustrated by Figure 2.7. Com-
pared to Figure 2.6 and Equation (2.15), a dominant scatterer has been added, meaning
a scatterer whose reflection is much stronger than the others. The random walk model
has simply been translated in the complex plane by the first vector component, which
represents the dominant scatterer.

The described weak scattering process can be expressed as

S = S(c) + S(i) = A(c)eθ
(c)

+
N∑
k=1

A(k)eθ
(k)

= Aeθ , (2.16)
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where S is a sum of a coherent term, S(c), and an incoherent term, S(i). The coherent term
has deterministic amplitude A(c) and phase θ(c), that can be modelled with degenerate
distributions6. The incoherent term represents the stochastic model of strong scattering
from (2.15), and contains the same random amplitude and phase components. We thus
have a set of amplitude components,A = {A(k), A(1), · · · , A(N)}, and a set of phase com-
ponents, Θ = {θ(c), θ(1), · · · , θ(N)}. The distribution of Θ becomes non-uniform, since θ(c)

is a deterministic component. In the described case, the IID assumptions are also vio-
lated. However, weak scattering can occur without the presence of dominant scatterers,
if only the phase component distribution is non-uniform. See for instance [Jakeman and
Tough, 1987], where the {θ(k)} are assumed to follow a von Mises distribution.

2.3.2 Gaussian Model

Single-look Complex Data

The simplest statistical model for the radar return is based on the random walk model
in (2.15) under all three assumptions listed in Section 2.3.1. Further assume that the
number of scatterers, N , is large and constant. It follows from the central limit theorem
that the scattering coefficient S converges in distribution to a complex Gaussian random
variable with zero mean and variance σ2 as N → ∞, where σ2 is the mean radar cross
section of the scattering medium. The PDF of S is given by

fS(S;σ2) =
1

πσ2
exp

(
−S

2

σ2

)
. (2.17)

In the polarimetric case, the zero mean scattering vector s follows a multivariate
circular complex Gaussian distribution with covariance matrix Σ = E{ssH}. The co-
variance matrix contains the complex cross-correlation between scattering coefficients
at different polarimetric channels. Let Si and Sk be the scattering coefficients of two
polarimetric channels. They are decomposed into their real and complex parts by:
Si = Re(Si) +  Im(Si). The circularity property of complex Gaussian distribution is
defined by the correlations [van den Bos, 1994, Goodman, 2007]

E {Re(Si) Re(Sk)} = E {Im(Si) Im(Sk)} , (2.18)
E {Re(Si) Im(Sk)} = −E {Re(Sk) Im(Si)} , (2.19)

that follow from the assumptions on the {Ak} and the {θk} in the random walk model.
The cross-correlations also imply that

E{SiSk} = 0 . (2.20)

The PDF of s is [van den Bos, 1994]

fs(s; Σ) =
1

πd|Σ| exp(−sHΣ−1s) . (2.21)

6A deterministic value x0 can be modelled as a random variable with the Dirac delta function, δ(x−x0),
as its PDF. This is referred to as a degenerate distribution.
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The derivations for the lexicographic basis and Pauli basis cases are analogous. The
following presentation is therefore restricted to results for the former, without loss of
generality.

We see that the random walk model of strong scattering leads to complex Gaus-
sian distributions for SLC data. We will now present distributions for MLC data, but
note that the term Gaussian model is often used somewhat imprecisely about other data
formats, whose distributions are derived directly from the complex Gaussian distribu-
tions of the SLC data by appropriate transformations of the random variates. Thus, a
Rayleigh distributed amplitude: A = |S2|, an exponentially distributed single-look in-
tensity: I = A2, and a gamma distributed multilook intensity: IL = 〈I〉 = 〈A2〉 are
considered to belong to the Gaussian model. The derivation of all these distributions
are shown in [Oliver and Quegan, 2004]. In line with this usage of terminology, the
scaled complex Wishart distribution, presented in the next section, can be considered as
the multilook polarimetric extension of the Gaussian model [Doulgeris et al., 2008,Vasile
et al., 2009].

Multilook Complex Data

Assume that we have a multilook sample of L independent scattering vectors that are
multivariate circular complex Gaussian with dimension d, and that L ≥ d. The sample
covariance matrix C computed from this sample will then be non-singular, and belongs
to the cone of positive definite complex Hermitian matrices, denoted as Ω+. It follows
what we refer to as the scaled complex Wishart distribution. The PDF of C under the
Gaussian model is given by

fC(C;L,Σ) =
LLd

Γd(L)

|C|L−d
|Σ|L exp(tr(−LΣ−1C)) , (2.22)

which is defined on Ω+, where | · | is the determinant operator, tr(·) is the trace operator
and Γd(L) is the multivariate gamma function of the complex kind, defined in (4.3).
The true complex Wishart distribution [Goodman, 1963] describes the matrix variable
W = LC, hence (2.22) follows by a linear transformation.

The distribution parameters are the shape parameter L and the scale matrix Σ =
E{C}. In radar statistics, L is recognised as the number of looks, with reference to
the multilooking process. In other contexts, it is often referred to as the degrees of
freedom. The equivalent number of looks, discussed in 2.2.4, should be inserted for L
to account for correlation between the looks. The substituted parameter is still subject
to the condition of non-singularity.

2.3.3 Non-Gaussian Model

It has been shown experimentally that the Gaussian model, with its bundle of equiva-
lent distributions for different data formats, presents a good fit to real radar image data
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Figure 2.8: Example of the appearance of the speckle pattern in a radar image.

when the scene is homogeneous, with low to moderate roughness and a high number
of scatterers. Nevertheless, there is abundant empirical evidence that real data deviate
from the model too, especially for images of urban environment, but also for natural ter-
rain, such as rough sea and forest in general (See e.g. [Jakeman and Pusey, 1976, Oliver,
2000, Tison et al., 2004]). This is generally explained by the notion of texture, thought of
as variations in the mean radar reflectivity between pixels with the same thematic con-
tent, which is not accounted for in the Gaussian model. The texture term is defined and
discussed in more detail in Section 2.3.5. The Gaussian model only encompasses sta-
tistical variation attributed to speckle, the interference pattern produced by the coherent
sum in the random walk model, which is the topic of the next section.

Several distributions have been proposed for single polarisation amplitude and in-
tensity, that imply non-Gaussian statistics for the scattering coefficient. The Weibull dis-
tribution and the log-normal distribution are two of the most popular examples [Oliver
and Quegan, 2004]. Even though neither of them bear links to physical modelling of
the scattering process, they have been shown to provide reasonably good fit to real data
covering rough surfaces. However, they have not yet been extended to matrix-variate
statistics and cannot be used to model the polarimetric covariance matrix. This has
only been achieved for distributions derived from the doubly stochastic product model,
which models the contribution of speckle and texture as independent random variates.
The multilook polarimetric version of this model is presented in Section 2.3.6.

2.3.4 Speckle

Speckle is often referred to as noise, but this strictly is a misnomer. Although the appear-
ance of the speckle patterns is granular, noise-like, and strongly limits the interpretabil-
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ity of the radar image, the interference causing it is an inherent property of the measure-
ment process that is common to all kind of coherent imaging. The same effect is found
in laser images, and much of the fundamental research utilised in statistical analysis of
radar images is taken from the field of laser optics (see e.g. [Goodman, 1975, Jakeman
and Pusey, 1976]). Speckle is also an artifact of B-mode ultrasound sonography, where a
linear array of acoustic transducers simultaneously scans a plane through an object that
can be viewed as a two-dimensional image (see e.g. [Wagner et al., 1987, Eltoft, 2006]).
In all these cases, the speckle pattern occurs because the measured field results from an
incoherent scattering process. An example of a radar speckle is shown in Figure 2.8.

Radar measurements are commonly described by a multiplicative signal model7.
The first factor in the product is the mean radar reflectivity, defined as the mean fraction
of electromagnetic energy reflected by the scattering medium. The other factor is a
random variable which models the variation due to speckle. The main characteristic of
the product model is that the statistical variation is proportional to the reflectivity. This
has a severely distorting effect on the image analysis, considering that the information
we normally want to infer is related to the mean reflectivity. In the doubly stochastic
product model, we also treat the mean reflectivity as a random variable, to obtain a more
realistic description of the radar measurements.

The distinction between fully developed and partially developed speckle was made
in Section 2.3.1. Fully developed speckle is described by the Gaussian model. Partially
developed speckle is modelled by the Rician distribution for the single polarisation am-
plitude [Goodman, 2000]. The doubly stochastic product model for polarimetric SLC
data has been extended to allow for a coherent component in [Eltoft et al., 2006], but
has yet to be amended for MLC data, at least when it comes to deriving a closed form
expression for the PDF.

2.3.5 Texture

In the field of image processing, the texture term is commonly used when referring to
the deterministic or stochastic structure of an image region, characterised in terms of the
spatial arrangement and directional alignment of the pixel intensities (in gray-scale or
colour). As noted in [Tuceryan and Jain, 1994], «we recognize texture when we see it but
it is very difficult to define». They list a number of proposed universal definitions, but it
may prove more productive to search for a description of texture which is appropriate
for the application at hand. In radar imaging, for instance, the texture term has indeed
received it own meaning.

When we talk about texture in the context of radar images and the distributions of
their data, it normally refers to variations in the mean radar reflectivity, as discussed
in Section 2.3.4. We can model the mean reflectivity as a random variable, which is
then referred to as a texture variable. The texture variable may also absorb other types

7According to commonly used terminology, which was argued against in the above, the radar images
are subject to multiplicative noise.
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of variation, such as the effect of inhomogeneity or mixed targets within a resolution
cell. For instance, urban areas exhibit large variations that are badly described by the
Gaussian model. This variation can be attributed to the mixture of different scattering
media, just as much as the spatial variation of reflectivity within a single medium.

In the doubly stochastic product model, we assign a distribution model to the tex-
ture variable and estimate the parameters of the distribution. Textural features, defined
in a multitude of ways, contain valuable information for delineation and recognition
of image segments and classes in many pattern recognition problems. Classical tex-
ture features have also been used in analysis of radar images [Clausi and Yue, 2004, De
Grandi et al., 2009]. A less travelled path is to exploit the parameters of the texture dis-
tributions, that contain radar specific textural information, as features in radar image
analysis tasks, such as segmentation and classification [Oliver, 2000].

The distinction between texture modulated speckle and pure speckle is finally intro-
duced, where the latter refers to the variation pattern created by the interference phe-
nomenon alone. By these terms, we establish terminology to express clearly whether
texture is affecting the speckle pattern and has been included in the signal model.

2.3.6 Multilook Polarimetric Product Model

Let W̃ be a scaled complex Wishart distributed random matrix, written as W̃ ∼ sW�d (L,Σ).
The doubly stochastic product model for multilook polarimetric data is given by

C = T · W̃ . (2.23)

The variation of the polarimetric covariance matrix C is decomposed into the contribu-
tion of texture and fully developed speckle, where the scalar random variable T ∈ �+

represents texture and the random matrix W̃ ∈ Ω+ represents speckle. The texture vari-
able must be strictly positive, and is normally assumed to have unit mean, hence all
scale information is put into W̃ (or |W̃|). This is the convention used in this thesis. The
alternative solution is to normalise W̃, as it is done in [Doulgeris and Eltoft, 2010]. This
yields a matrix variable which contains only information about polarimetry, in form of
covariance structure between the channels, while all scale information is put into the
texture variable.

By using a scalar random texture variable, it is implicitly assumed that the textural
variation is the same in all polarimetric channels. This is not necessarily supported by
real data, and is a limitation of the model. It has been suggested that one should at
least use distinct texture variables for co-polarised and cross-polarised channels. An ex-
tended doubly stochastic product model with multichannel texture has been proposed
in [Yu, 1998, Zou et al., 2000] on the form

C = T · W̃ , (2.24)
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with the random diagonal multi-texture matrix defined as

T = diag(T1, T2 · · · , Td) =


T1 0 · · · 0

0 T2
...

... . . . 0
0 · · · 0 Td

 . (2.25)

Another objection to the doubly stochastic product model is that it is not adequate for
co-polarised channels. Analysis of real data has shown that there is an additive term
superimposed on the product of texture and fully developed speckle [Séry and Lopès,
1997,López-Martínez and Fàbregas, 2005]. The extensions to multi-texture and a mixed
multiplicative additive signal model are not considered in this thesis, but left as topics
of future research.

The distribution of C depends on the chosen distribution for T . For a general texture
distribution fT (T ; θ), whose parameters are stored in the texture parameter vector θ, the
PDF is given by

fC(C;L,Σ,θ) =

∫ ∞
0

fC|T (C|T ;L,Σ)fT (T ; θ) dT . (2.26)

It will be seen that this integral is a matrix-variate Mellin convolution, as defined in
Chapter 3. The distribution of C|T is recognised as the scaled complex Wishart dis-
tribution from (2.22). Closed form expressions of fC(C;L,Σ,θ) has been obtained for
a limited number of texture distributions. For gamma distributed texture, the matrix-
variate K distribution was derived in [Lee et al., 1994]. This distribution has shown
the same merits as the K distributions for single polarisation amplitude and intensity
(See [Oliver and Quegan, 2004]). It is versatile and provides good fit for natural sur-
faces with a certain degree of heterogeneity, such as rough sea and forest. For inverse
gamma distributed texture, the matrix-variate G0 distribution was derived in [Freitas
et al., 2005]. It has its strength for extremely heterogeneous surfaces, such as urban
areas. Both the mentioned distributions are special cases of the matrix-variate U dis-
tribution, derived in [Bombrun and Beaulieu, 2008] from Fisher-Snedecor distributed
texture. Because it has two texture parameters, one more than the K and G0 distribu-
tions, it covers many types of surfaces between the heterogeneous and the extremely
heterogeneous case. The added flexibility in terms of modelling capability comes at the
cost of more complicated and less accurate parameter estimation, as demonstrated in
the paper of Chapter 6.

The mathematical details of the described distributions for the polarimetric covari-
ance matrix is given in Chapter 4. For each distribution the PDF is presented, together
with the matrix-variate Mellin kind statistics, that are defined in the next chapter.
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Chapter 3

The Mellin Transform

This chapter gives an historical overview which motivates the application of the Mellin
transform to statistical analysis of radar data distributions. The univariate and matrix-
variate Mellin transform are defined, and the fundamental properties of the latter de-
rived. Some of the main contributions of the thesis are revealed as the framework of
matrix-variate Mellin kind statistics is presented.

3.1 An Historical Note

The Mellin transform first appeared in a memoir by the German mathematician Bernard
Riemann (1826-1866) about the zeta function, but it is named after the Finnish math-
ematician Robert Hjalmar Mellin (1854-1933), who gave a systematic treatment of the
transform and its inverse [Butzer and Jansche, 1997]. In contrast to the Fourier trans-
form and the Laplace transforms, it arose in a mathematical context. Since then, it has
also found numerous applications in many areas of physics, statistics and engineering,
as reviewed in [Bertrand et al., 2000].

The Mellin transform has been applied to a wealth of problems in analytic combi-
natorics and analysis of algorithms [Flajolet et al., 1995, Szpankowski, 2001]. It is a key
component in systematic methods for evaluation of integrals [Marichev, 1982, Fikioris,
2006, Fikioris, 2007]. In signal processing, it has been applied to time-frequency analy-
sis on logarithmic scale, and its scale invariance property has been utilised to construct
affine transformations [Bertrand et al., 1990, Ovarlez et al., 1992, Cohen, 1993, Ruth and
Gilbert, 1994, Nelson, 1995, Kaiser, 1996].

The application of the Mellin transform to analysis of matrix-variate radar data
builds on results in probability and the theory of statistical distributions. Benjamin
Epstein was first to note that the Mellin transform is the «natural analytical tool to use
in studying the distribution of products and quotients of independent random vari-
ables» [Epstein, 1948], after its utility in analysis of multivariate problems was indicated
in [Nair, 1939]. This spurred a series of papers deriving distributions of product and
quotients in one or more variables [Dolan, 1964, Springer and Thompson, 1966, Lom-

29



nicki, 1967, Springer and Thompson, 1970]. Products of dependent random variables
were covered in [Subrahmaniam, 1970]. A good overview of the early literature is given
in [Cook, 1981].

It will be seen in the following that the Mellin transform is related to the Fourier
transform and the bilateral Laplace transform applied to logarithmically transformed
data. It is an efficient tool to derive logarithmic moments and cumulants for products
and quotients of random variables, and their matrix-variate generalisations, from which
we obtain estimators for the distribution parameters with excellent statistical proper-
ties. Such logarithmic statistics and parameter estimators have been derived earlier in
the univariate case, without explicit reference to the Mellin transform [Stacy, 1962,Stacy
and Mihram, 1965, Hoekman, 1991, Kreithen and Hogan, 1991, Blacknell, 1994]. It was
Jean-Marie Nicolas who developed these ideas into a systematic theory on logarithmic
statistics, characterisation of data radar distributions, and estimation of their parame-
ters, with the Mellin transform as the cornerstone [Nicolas, 2002, Nicolas, 2006]. The
framework offered by Nicolas has triggered much research activity and many new ap-
plications to analysis of radar data. An extensive reference list is given in Paper 2 of
Chapter 6.

3.2 Mellin Kind Statistics

Nicolas developed a framework for analysis of random variables defined on �+, which
he called second kind statistics. The results presented in this thesis extend the framework
to random matrices defined on Ω+, and renames it as Mellin kind statistics, which is
the term consistently used from this point. Another appropriate name used by some
authors is log-statistics.

The starting point for Nicolas is the definition of the Mellin kind characteristic func-
tion. His ingenious trick is to replace the Fourier transform in the definition of the con-
ventional characteristic function with the Mellin transform. The Mellin kind moments
retrieved from the new characteristic function are seen to be moments computed on
logarithmic scale. The Mellin type cumulant generating function is then defined as the
logarithm of the Mellin type characteristic function. From this function we can retrieve
Mellin type cumulants, that have some very appealing properties. When the target of
analysis can be modelled as a product of random variates, the Mellin type cumulant
will separate the contribution of the factors [Nicolas, 2002, Nicolas, 2006].

Analysis of radar data on logarithmic scale is not a new and revolutionary concept.
Radar images have long been visualised on a logarithmic decibel scale to make more
efficient use of the dynamic range of pixel intensities and improve the contrast. The
homomorphic speckle filter uses a logarithmic transformation to transform the product
model into an additive model, which is easier to handle with traditional signal process-
ing methods [Franceschetti et al., 1995,Solbø and Eltoft, 2004]. The separability induced
by the Mellin transform therefore comes as no great surprise. The ease of the mathe-
matical derivations, and the simple expressions obtained for the Mellin kind statistics
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of common radar distributions (that is, their characteristic function, moments, cumu-
lant generating function and cumulants) is a more striking result. They underline the
appropriateness of the approach and resonate with the words of Epstein: The Mellin
transform is truly a natural tool for analysing products of random variables, and thus
for multilook radar image data under the product model.

The mathematical details of Nicolas’ univariate theory are omitted here. A thor-
ough review is given in the paper of Chapter 6, which stresses the analogy between the
derivations for the univariate case describing multilook single polarisation data and the
matrix-variate case representing multilook polarimetric data. The paper also repeats
the traditional Fourier kind statistics and highlights their intrinsic link with the additive
signal model. Here is only given a repetition of the univariate Mellin transform, before
we proceed with the definition of the matrix-variate Mellin kind statistics.

3.3 Univariate Mellin Transform

Let g(x) be a real-valued function of the variable x. The univariate Mellin transform of
g(x) is given by

M{g(x)}(s) =

∫ ∞
0

xs−1g(x) dx = G(s) , (3.1)

where s ∈ � is the complex transform variable. Further let the Fourier transform be
defined as

F{g(x)}(ξ) =

∫ +∞

−∞
e−2πxξg(x) dx (3.2)

and the bilateral or two-sided Laplace transform as

LB{g(x)}(s) =

∫ +∞

−∞
e−sxg(x) dx . (3.3)

The relations between the transforms are shown to be [Bertrand et al., 2000]

M{g(x)}(σ + 2πξ) = F{e−σxg(e−x)}(ξ) , (3.4)

M{g(x)}(s) = LB{g
(
e−x
)}(s) (3.5)

by virtue of the substitution of s = σ + 2πξ. The inverse relations are

F{g(x)}(ξ) = M{x−σg(e− ln y)}(s) , (3.6)
LB{g(x)}(s) = M{g(− lnx)}(s) . (3.7)

From Lebegue’s dominated convergence theorem [Bartle, 1995], we know that the
ordinary unilateral Laplace transform converges absolutely in the semi-plane Re(s) > b
for some constant b, and possibly at points on the line Re(s) = b. The intersection of the
regions of convergence for the left-sided and the right-sided Laplace transform form
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the region of converge for the bilateral Laplace transform. This becomes the region of
holomorphy, also known as the analytic strip, and takes the form b < Re(s) < c, for
some real constants b and c, possibly including the boundary lines. When transforming
a PDF defined on �+, the unilateral (right-sided) and bilateral Laplace transforms are
identical, and the analytic strip becomes the semi-plane Re(s) > b.

It can be seen directly from (3.5) that the analytic strip of the Mellin transform is the
same as for the bilateral Laplace transform. The boundaries depends on the transformed
function, and the strip may even extend to the whole complex plane. The inverse Mellin
transform is defined by [Bertrand et al., 2000]

M−1{G(s)} =
1

2π

∫ c+∞

c−∞
x−sG(s) ds . (3.8)

The notation for the integral limits implies that this is a line integral taken over a vertical
line Re(s) = c in the complex plane, which must lie within the analytic strip.

Comprehensive accounts on the univariate Mellin transform, including lists of fun-
damental properties, examples of important transforms and tables of basic integrals,
are found in [Poularikas, 1999, Bertrand et al., 2000, Szpankowski, 2001, Debnath and
Bhatta, 2007]. An extension of the transform to complex variables is given in [Kotlarski,
1965] and to multivariate variables in [Mathur and Krishna, 1977]. The extension to the
matrix-variate case is the next topic.

3.4 Matrix-Variate Mellin Transform

A generalised transform for functions of real matrices, named the M-transform, was
defined in [Mathai, 1978]. Mathai also referred to it as the generalised Mellin transform
in [Mathai, 1981]. The extension to functions of complex matrices was presented in
[Mathai, 1997]. In the following, let g(X) be a real-valued scalar function defined on Ω+,
and let g be symmetric in the sense: g(XY) = g(YX) = g(X1/2YX1/2) = g(Y1/2XY1/2),
where X,Y ∈ Ω+. The matrix square roots defined by X = X1/2X1/2 and Y = Y1/2Y1/2

are therefore guaranteed to exist. Whenever the integral exists, the complex matrix-
variate Mellin transform of g(X) is defined by

M{g(X)}(s) =

∫
Ω+

|X|s−dg(X) dX = G(s) . (3.9)

We note that M{g(X)}(s) is a function of a complex scalar transform variable s, whereas
g(X) is defined on a matrix space, thus the transform is not unique and has no inverse.
The symmetry requirement restricts the functions (3.9) can be applied to, but does not
pose any problem for the distributions of the polarimetric covariance matrix, derived
from the doubly stochastic product model. We may therefore use the transform to define
Mellin kind statistics for the complex matrix-variate case.
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The univariate Mellin transform has a convolution theorem and a correlation theo-
rem. To derive the analogue relations for the matrix-variate Mellin transform, we need
some definitions. Let g(X) and h(X) be two real-valued scalar functions defined on
Ω+, symmetric by the definition given above. The matrix-variate Mellin convolution is
introduced by the definition

(g ?̂ h)(X) =

∫
Ω+

|Y|−dg(Y−
1
2 XY−

1
2 )h(Y) dY

=

∫
Ω+

|Y|−dh(Y−
1
2 XY−

1
2 )g(Y) dY ,

(3.10)

which is an associative and commutative operation. The matrix-variate Mellin correlation
is also introduced, defined by

(g ⊗̂ h)(X) =

∫
Ω+

|Y|dg(Y
1
2 XY

1
2 )h(Y) dY . (3.11)

This operation is neither associative nor commutative. It reduces to the univariate
Mellin correlation defined in [Nicolas, 2002, Nicolas, 2006].

3.5 Fundamental Properties

It is now time to deduce some fundamental properties of the matrix-variate Mellin
transform, in analogy with the fundamental properties that have been derived for the
univariate transform.

Property 1 (Scaling by nonsingular matrix of constants):

M{g(AX)}(s) = |A|−sG(s) . (3.12)

Proof 1: The transformation Y = AX has Jacobian determinant |J(X→Y)| = |A|d
[Mathai, 1997]. Thus,

M{g(AX)}(s) =

∫
Ω+

|X|s−dg(AX) dX

=

∫
Ω+

(|Y|/|A|)s−dg(Y)|A|−d dY = |A|−s
∫

Ω+

|Y|s−dg(Y) dY ,

which is equivalent to (3.12).

Property 2 (Scaling by scalar constant):

M{g(aX)}(s) = a−dsG(s) . (3.13)
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Proof 2: This is a special case of (3.12) with A = aId, where Id is the d×d identity matrix.
Equation (3.13) follows from |A| = ad.

Property 3 (Multiplication by |X|a):

M{|X|ag(X)}(s) = G(s+ a) . (3.14)

Proof 3: The proof is trivial. Take the transform of |X|ag(X):

M{|X|ag(X)}(s) =

∫
Ω+

|X|s−d|X|ag(X) dX =

∫
Ω+

|X|(s+a)−dg(X) dX

and identify this as (3.14).

Property 4 (Raising the independent variable to an integer power):

M{g(Xa)}(s) =
1

ad
G
(s
a

)
. (3.15)

Proof 4: We use the transformation Y = Xa =

a︷ ︸︸ ︷
X · · ·X with differential relation dY =

ad|X|(a−1)d dY to show that

M{g(Xa)}(s) =

∫
Ω+

|X|s−dg(Xa) dX

=

∫
Ω+

|Y| s−da g(Y)
(
a−d|Y|− (a−1)d

a dY
)

=
1

ad

∫
Ω+

|Y| sa−d dY =
1

ad
G
(s
a

)
.

Property 5 (Inverting the independent variable):

M{g(X−1)}(s) = (−1)dG(−s) . (3.16)

Proof 5: This is a special case of (3.15) with a = −1.

Property 6 (Inverting and multiplying by the independent variable):

M{|X|−1g(X−1)}(s) = (−1)dG(1− s) . (3.17)
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Proof 6: Use the transformation Y = X−1 with differential relation dY = (−1)d|X|−2d,
which yields

M{|X|−1g(X−1)}(s) =

∫
Ω+

|X|s−d|X|−1g(X−1) dX

=

∫
Ω+

|Y|−(s−d−1)g(Y)
(
(−1)−d|Y|−2d dY

)
= (−1)d

∫
Ω+

|Y|1−s−dg(Y) dY = (−1)dG(1− s) .

Property 7 (Multiplication by ln |X|):

M{ln |X|g(X)}(s) =
d

ds
G(s) . (3.18)

Proof 7: By using the result

d

ds
|X|s−d =

d

ds
eln |X|(s−d) = |X|s−d ln |X|

and Leibniz’s integral rule, we show that

d

ds
G(s) =

∫
Ω+

(
d

ds
|X|s−d

)
g(X) dX

=

∫
Ω+

|X|s−d ln |X|g(X) dX = M{ln |X|g(X)} .

Property 8 (Multiplication by a power of ln |X|):

M{(ln |X|)νg(X)}(s) =
dν

dsν
G(s) . (3.19)

Proof 8: We use the result

dν

dsν
|X|s−d = |X|s−d(ln |X|)ν

and follow the approach of Proof 7.

Property 9 (Mellin convolution):

M{(g ?̂ h)(X)}(s) = M{g(X)}(s) ·M{h(X)}(s) . (3.20)
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Proof 9: Substitute Z = XY and note that Z ∈ Ω+ follows. We further have X =
Y−1/2ZY−1/2 and dX = dZ/|Y|d [Mathai, 1997], which leads to

M{g(X)}(s) ·M{h(Y)}(s)
=

∫
Ω+

(|Z|/|Y|)s−dg(Y−
1
2 ZY−

1
2 )|Y|−d dZ

∫
Ω+

|Y|s−dh(Y) dY

=

∫
Ω+

|Z|s−d
[∫

Ω+

|Y|−dg(Y−
1
2 ZY−

1
2 )h(Y) dY

]
dZ

= M{(g ?̂ h)(Z)}(s) ,
since the term in the square brackets can be identified as the Mellin convolution from
(3.10).

Property 10 (Mellin correlation):

M{(g ⊗̂ h)(X)}(s) = M{g(X)}(s) ·M{h(X)}(2d− s) . (3.21)

Proof 10: Use the substitution X = YZ with differential relation dX = |Y|ddZ to find

M{g(X)}(s) ·M{h(Y)}(2d− s)
=

∫
Ω+

(|YZ|)s−dg(YZ)|Y|d dZ
∫

Ω+

|Y|d−sh(Y) dY

=

∫
Ω+

|Z|s−d
[∫

Ω+

|Y|−dg(YZ)h(Y) dY

]
dZ

= M{(g ⊗̂ h)(X)}(s) ,
after the term in the square brackets is identified as the matrix-variate Mellin correlation
defined in (3.11).

3.6 Matrix-variate Mellin Kind Statistics

The matrix-variate Mellin transform is defined on Ω+, and can therefore be applied
to PDFs that have the same domain. It is this property that makes it relevant to the
statistical analysis of distributions for the polarimetric covariance matrix. From now
on, we assume that X is a random matrix described by fX(X), which is defined on Ω+.

3.6.1 Mellin Kind Characteristic Function

The Mellin kind characteristic function of a complex random matrix X is defined as

φX(s) = E{|X|s−d} = M{fX(X)}(s) . (3.22)

when X and its PDF, pX(X), satisfy all requirements of (3.9). Note that the moments
of the determinant |X| can be retrieved from the Mellin kind characteristic function as
E{|X|ν} = φX(ν + d).
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E{(ln |X|)ν}

P∞
ν=0

(s−d)ν

ν!
µν{X}

φX(s)
dν

dsν φX(s)
˛̨̨
s=d

Bν(κ1{X}, . . . , κν{X})

P∞
ν=0

(s−d)ν

ν!
κν{X}

ϕX(s)
dν

dsν ϕX(s)
˛̨̨
s=d

κν{X}

µν −
Pν−1
i=1

`ν−1
i−1

´
κi{X}µν−i{X}

exp(ϕX(s)) ln(φX(s))

µν{X}

fX(X)

M{fX(X)}(s)

Figure 3.1: Relations between the components of matrix-variate Mellin kind statistics.
The function Bν(·) is the complete Bell polynomial, defined in Paper 2 (Chapter 6).

3.6.2 Mellin Kind Matrix Moments

The νth-order Mellin kind moment of X is

µν{X} =
dν

dsν
φX(s)

∣∣∣∣
s=d

. (3.23)

If all Mellin kind matrix moments exist, the Mellin kind characteristic function can be
written as the power series expansion

φX(s) =

∫
Ω+

e(s−d) ln |X|fX(X) dX

=
∞∑
ν=0

(s− d)ν

ν!
µν{X}

(3.24)

in terms of the µν{X}. The derivation of (3.24) reveals that

µν{X} = E{(ln |X|)ν} =

∫
Ω+

(ln |X|)νfX(X) dX (3.25)

which justifies the denotation of µν{X} as a matrix log-moment.
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3.6.3 Mellin Kind Cumulant Generating Function

The Mellin kind cumulant generating function of X is defined as

ϕX(s) = lnφX(s) . (3.26)

3.6.4 Mellin Kind Matrix Cumulants

The νth-order Mellin kind cumulant of X is

κν{X} =
dν

dsν
ϕX(s)

∣∣∣∣
s=d

. (3.27)

When all Mellin kind matrix moments exist, the Mellin kind cumulant generating func-
tion can be expanded as

ϕX(s) = lnφX(s) =
∞∑
ν=0

(s− d)ν

ν!
κν{X} (3.28)

in terms of the κν{X}, that are also called matrix log-cumulants.
The relations between the the functions and moments defined under the matrix-

variate Mellin kind statistics framework are shown in Figure 3.1.

3.7 Multilook Polarimetric Product Model

This section shows how the matrix-variate Mellin kind statistics are applied to the dou-
bly stochastic product model for multivariate polarimetric data. We recollect the model
as

C = T · W̃ , (3.29)

where C is the polarimetric covariance matrix, decomposed in terms of the random
matrices W̃ ∼ sW�d (L,Σ) and T, respectively modelling fully developed speckle and
texture. The PDF of T, fT(T; θ), is left unspecified for the moment. We here assume
that T has equal diagonal entries, T = diag(T, · · · , T ) = T · Id, thereby restricting the
texture model to a single random variable representing all polarimetric channels. The
advantage of writing the scalar texture variable as a matrix will become apparent.

3.7.1 Application of the Matrix-Variate Mellin Convolution

The distribution of C can now be written as

fC(C;L,Σ,θ) =

∫
Ω+

fC|T(C|T;L,Σ)fT(T; θ) dC , (3.30)
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parametrised by the equivalent number of looks L, scale matrix Σ, and the texture pa-
rameter vector θ. The integral is identified as the matrix-variate Mellin convolution,
defined in (3.10). From Property 9 of the matrix-variate Mellin transform, it follows that

M{fC(C;L,Σ,θ)} = M{ffW (W̃;L,Σ)} ·M{fT(T; θ)} . (3.31)

The implication in terms of the matrix-variate Mellin statistics defined in the previous
section is

φC(s;L,Σ,θ) = φfW(s;L,Σ) · φT(s; θ) , (3.32)
ϕC(s;L,Σ,θ) = ϕfW(s;L,Σ) + ϕT(s; θ) , (3.33)

κν{C;L,Σ,θ} = κν{W̃;L,Σ}+ κν{T; θ} . (3.34)

These respective equations present the Mellin kind characteristic function, the Mellin
kind cumulant generating function and the Mellin kind cumulants for the multivari-
ate polarimetric product model. The Mellin kind moments can be retrieved from the
cumulants by the relation

κν{·} = µν{·} −
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{·}µν−i{·} , (3.35)

which is valid both in the univariate and matrix-variate case, and for moments and
cumulants on linear or logarithmic scale.

3.7.2 Mellin Kind Statistics for the Multilook Polarimetric Product
Model

The texture variable was written as a matrix so that the matrix-variate convolution prop-
erty could be used directly. The Mellin kind statistics of T must still be resolved, and
they have been in the paper of Chapter 6. It is found that

φT(s; θ) = φT (d(s− d) + 1; θ) , (3.36)

where φT (s) is the univariate Mellin kind characteristic function of the scalar variable
T , derived in [Nicolas, 2002, Nicolas, 2006] as

φT (s) =

∫ ∞
0

T s−1fT (T ; θ) dT = E{T s−1; θ} . (3.37)

The cumulant generating function for T follows readily as

ϕT(s; θ) = ϕT (d(s− d) + 1; θ) , (3.38)

with ϕT (s; θ) = lnφT (s; θ). The Mellin kind cumulants are retrieved as

κν{T} = dνκν{T} , (3.39)

39



where the κν{T ; θ} are the νth-order univariate Mellin kind cumulants defined in [Nico-
las, 2002, Nicolas, 2006]. We thus arrive at the following Mellin kind statistics for the
multivariate polarimetric product model:

φC(s;L,Σ,θ) = φfW(s;L,Σ) · φT (d(s− d) + 1; θ) , (3.40)
ϕC(s;L,Σ,θ) = ϕfW(s;L,Σ) + ϕT (d(s− d) + 1; θ) , (3.41)

κν{C;L,Σ,θ} = κν{W̃;L,Σ}+ dνκν{T ; θ} . (3.42)

This is a general formulation, which requires input for specific choices of the texture
variable distribution, fT (T ; θ). A set of candidate distributions for the univariate texture
is reviewed in the next chapter. Explicit expressions for the Mellin kind statistics of the
speckle distribution, ffW (W̃ ;L,Σ) are also given, such that Equations (3.40)–(3.42) can
be evaluated.
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Chapter 4

Probability Distributions

This chapter presents specific distributions for multilook polarimetric radar data, and
evaluate their Mellin kind statistics. The mathematical expressions contain many spe-
cial functions, that are defined initially. We then review a number of univariate dis-
tributions that are useful models for the texture random variable. Expressions are
given for their PDF, Mellin kind characteristic function, and Mellin kind cumulants (log-
cumulants). These have been derived previously in [Nicolas, 2006]. The scaled complex
Wishart distribution used to model speckle is then presented, together with its Mellin
kind statistics, that have been derived in Paper 2 of Chapter 6. Finally, we present the
compound distributions modelling the texture modulated speckle of the polarimetric
covariance matrix. The Mellin kind statistics of the texture distributions and the speckle
distribution are combined into novel expressions for the multilook polarimetric case.

4.1 Special Functions

The expression of the PDFs, Mellin kind characteristic functions, moments and cumu-
lants presented in this chapter require a number of special functions. These are defined
below.

Gamma Function: The gamma function, often credited explicitly to Euler by name, is
a generalisation of the factorial function to non-integer numbers. It is defined for z ∈ �
with Re{z} > 0 by [Weisstein, 2010c]

Γ(z) =

∫ ∞
0

uz−1e−u du (4.1)

and satisfies the relation
Γ(z + 1) = zΓ(z) . (4.2)
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Multivariate Gamma Function of the Complex Kind: The multivariate gamma func-
tion of the complex kind is a generalisation of the gamma function. It is defined for
s ∈ � by [Goodman, 1963]

Γd(s) =

∫
Ω+

exp (− tr(Z)) |Z|s−d dZ = πd(d−1)/2

d−1∏
i=0

Γ(s− i) (4.3)

where Ω+ is the cone of positive definite complex Hermitian matrices, tr(·) is the trace
operator, and the matrix Z ∈ Ω+ has dimensions d × d. We also note that Γd(z) is the
matrix-variate Mellin transform of exp(tr(Z)).

Polygamma Function: The polygamma function of order ν is the ν + 1th derivative of
the logarithm of the gamma function. It is defined by [Weisstein, 2010e]

ψ(ν)(z) = (−1)(ν+1)

∫ ∞
0

uνe−zu

1− e−u du

=
dν

dzν
ψ(0) =

dν+1

dzν+1
ln Γ(z)

(4.4)

where ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function. A recurrence relation is given by

ψ(ν)(z + 1) = ψ(ν)(z) + (−1)νν! z−(ν+1) . (4.5)

Multivariate Polygamma Function of the Complex Kind: The multivariate poly-
gamma function of the complex kind is introduced in this thesis as an intuitive and
simplifying generalisation of the ordinary polygamma function (see the previous para-
graph). It is defined as

ψ
(ν)
d (z) =

d−1∑
i=0

ψ(ν)(z − i) =
dν+1

dzν+1
ln Γd(z) . (4.6)

The multivariate digamma function satisfies (see derivations in Paper 2, Chapter 6)

ψ
(0)
d (z) =

Γ′d(z)

Γd(z)
. (4.7)

Beta Function: The beta function, also called the Euler integral of the first kind, is
defined for {x, y} ∈ �with Re{x} > 0 and Re{y} > 0 by [Weisstein, 2010a]

B(x, y) =

∫ 1

0

ux−1(1− x)y−1 du =
Γ(x)Γ(y)

Γ(x+ y)
. (4.8)
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Modified Bessel function of the Second Kind: The modified Bessel function of the
second kind, also known as the Bessel K function, is defined for order ν ∈ � and argu-
ment z ∈ � by [Weisstein, 2010d]

Kν(z) =
Γ(ν + 1/2)(2z)ν√

π

∫ ∞
0

cosu

(u2 + z2)ν+1/2
du . (4.9)

Confluent Hypergeometric Function of the Second Kind: The confluent hypergeo-
metric function of the second kind, also known as the Kummer U function, is defined
for arguments {a, b, z} ∈ �with Re{a},Re{z} > 0 by [Weisstein, 2010b]

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−zuua−1(1 + u)b−a−1 du . (4.10)

4.2 Texture Distributions

According to the discussion of texture in Section 2.3.5, a texture distribution describes a
real random variable T , which is strictly positive and unit mean (T ∈ �+, E{T} = 1).
We here present some candidate distributions and expressions derived from them with
full parametrisation. That is, they contain a location parameter µ, which allows for a
mean value µ 6= 1. This makes it easier to recognise the distribution from the literature,
while the normalised expressions used in the context of the product model are easily
obtained by the substitution of µ = 1.

The texture distributions presented in the following were all treated in [Nicolas,
2006], where the PDF, Mellin kind characteristic function, νth-order moment and νth-
order log-cumulant were given for each of them. The parametrisation used here is
slightly different from the one Nicolas uses, in insisting that µ should be identical to the
mean for all distributions. Departures from Nicolas’ parametrisation are remarked for
the distributions concerned. The advantage of this approach is that all expressions for
the normalised distribution are obtained simply by setting µ = 1. The shape parameters
α and λ remain unchanged. On the other hand, the parametrisation of Nicolas is more
elegant when showing how the composite distributions (i.e., the Fisher-Snedecor, beta,
and inverse beta distribution) are composed by Mellin correlation, convolution, and in-
verse convolution of gamma distributions and inverse gamma distributions (see [Nico-
las, 2006] for details).

4.2.1 Gamma Distribution

A gamma distributed random variable is denoted X ∼ γ(µ, α) with location parameter
µ > 0 and shape parameter α > 0. A gamma distributed texture variable is denoted
T ∼ γ̄(α) = γ(1, α), due to the normalisation of µ = 1.
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Figure 4.1: Probability density function fT (T ;α) of the unit mean gamma distributed
texture variable T shown for shape parameters α = {4, 8, 16, 32, 64}. The peakedness
increases with α.

Probability density function:

fX(x;µ, α) =
1

Γ(α)

(
α

µ

)(
αx

µ

)α−1

e−
αx
µ ; x ≥ 0 . (4.11)

Mellin kind characteristic function:

φX(s;µ, α) =
(µ
α

)s−1 Γ(α + s− 1)

Γ(α)
. (4.12)

Moments:

mν{X;µ, α} =
(µ
α

)ν Γ(α + ν)

Γ(α)
. (4.13)

Log-cumulants:

κν{X;µ, α} =

{
ψ(0)(α) + ln

(
µ
α

)
for ν = 1

ψ(ν−1)(α) for ν > 1
. (4.14)

4.2.2 Inverse Gamma Distribution

An inverse gamma distributed random variable is denoted X ∼ γ−1(µ, λ) with location
parameter µ > 0 and shape parameter λ > 0. An inverse gamma distributed texture
variable is denoted T ∼ γ̄−1(λ) = γ−1(1, λ).
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Figure 4.2: Probability density function fT (T ;λ) of the unit mean inverse gamma dis-
tributed texture variable T shown for shape parameters λ = {4, 8, 16, 32, 64}. The
peakedness increases with λ.

Probability density function:

fX(x;µ, λ) =
1

Γ(λ)

1

(λ− 1)µ

(
(λ− 1)µ

x

)λ+1

e−
(λ−1)µ

x ; x > 0 . (4.15)

Mellin kind characteristic function:

φX(s;µ, λ) =
(
(λ− 1)µ

)s−1 Γ(λ+ 1− s)
Γ(λ)

. (4.16)

Moments:
mν{X;µ, λ} =

(
(λ− 1)µ

)ν Γ(λ− ν)

Γ(λ)
. (4.17)

Log-cumulants:

κν{X;µ, λ} =

{
−ψ(0)(λ) + ln((λ− 1)µ) for ν = 1

(−1)νψ(ν−1)(λ) for ν > 1
. (4.18)

The parametrisation of [Nicolas, 2006] is obtained by substituting µ =
(

λ
λ−1

)
µ′.

4.2.3 Fisher-Snedecor Distribution

A Fisher-Snedecor distributed random variable is denoted X ∼ F(µ, α, λ) with location
parameter µ > 0 and shape parameters α > 0 and λ > 0. A Fisher-Snedecor distributed
texture variable is denoted T ∼ F̄(α, λ) = F(1, α, λ).
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Figure 4.3: Probability density function fT (T ;α, λ) of the unit mean Fisher-Snedecor
distributed texture variable T shown for different pairs of shape parameters (α,λ).

Probability density function:

fX(x;µ, α, λ) =
1

B(α, λ)

α

(λ− 1)µ

(
αx

(λ−1)µ

)α−1

(
αx

(λ−1)µ
+ 1
)α+λ

; x ≥ 0 . (4.19)

Mellin kind characteristic function:

φX(s;µ, α, λ) =

(
(λ− 1)µ

α

)s−1
Γ(α + s− 1)

Γ(α)

Γ(λ+ 1− s)
Γ(λ)

. (4.20)

Moments:

mν{X;µ, α, λ} =

(
(λ− 1)µ

α

)ν
Γ(α + ν)

Γ(α)

Γ(λ− ν)

Γ(λ)
. (4.21)

Log-cumulants:

κν{X;µ, α, λ} =

{
ψ(0)(α)− ψ(0)(λ) + ln

(
(λ−1)µ
α

)
for ν = 1

ψ(ν−1)(α) + (−1)νψ(ν−1)(λ) for ν > 1
. (4.22)

The parametrisation of [Nicolas, 2006] is obtained by substituting µ =
(

λ
λ−1

)
µ′. The

Fisher-Snedecor distribution is also called Fisher distribution. It can be seen as a gener-
alised F distribution with an additional location parameter.
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Figure 4.4: Probability density function fT (T ;α, λ) of the unit mean beta distributed
texture variable T shown for different pairs of shape parameters (α,λ).

4.2.4 Beta Distribution

A beta distributed random variable is denoted X ∼ β(µ, α, λ) with location parameter
µ > 0 and shape parameters α > 0 and λ > 0. A beta distributed texture variable is
denoted T ∼ β̄(α, λ) = β(1, α, λ).

Probability density function:

fX(x;µ, α, λ) =
1

B(α, λ− α)

α

λµ

(
αx

λµ

)α−1(
1− αx

λµ

)λ−α−1

; 0 ≤ x ≤ λµ

α
. (4.23)

Mellin kind characteristic function:

φX(s;µ, α, λ) =

(
λµ

α

)s−1
Γ(α + s− 1)

Γ(α)

Γ(λ)

Γ(λ+ s− 1)
. (4.24)

Moments:

mν{X;µ, α, λ} =

(
λµ

α

)ν
Γ(α + ν)

Γ(α)

Γ(λ)

Γ(λ+ ν)
. (4.25)

Log-cumulants:

κν{X;µ, α, λ} =

{
ψ(0)(α)− ψ(0)(λ) + ln

(
λµ
α

)
for ν = 1

ψ(ν−1)(α)− ψ(ν−1)(λ) for ν > 1
. (4.26)

The beta distribution is often defined with two shape parameters only. The definition
given here is a generalisation of the two parameter version, with an additional location
parameter.
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Figure 4.5: Probability density function fT (T ;α, λ) of the unit mean inverse beta dis-
tributed texture variable T shown for different pairs of shape parameters (α,λ).

4.2.5 Inverse Beta Distribution

An inverse beta distributed random variable is denoted X ∼ β−1(µ, α, λ) with location
parameter µ > 0 and shape parameters α > 0 and λ > 0. An inverse beta distributed
texture variable is denoted T ∼ β̄−1(α, λ) = β−1(1, α, λ).

Probability density function:

fX(x;µ, α, λ) =
1

B(α, λ− α)

(λ− 1)

(α− 1)µ

(
(λ−1)x
(α−1)µ

− 1
)λ−α−1

(
(λ−1)x
(α−1)µ

)λ ; x ≥ (α− 1)µ

λ− 1
, λ ≥ α .

(4.27)

Mellin kind characteristic function:

φX(s;µ, α, λ) =

(
(α− 1)µ

λ− 1

)s−1
Γ(α + 1− s)

Γ(α)

Γ(λ)

Γ(λ+ 1− s) . (4.28)

Moments:

mν{X;µ, α, λ} =

(
(α− 1)µ

λ− 1

)ν
Γ(α− ν)

Γ(α)

Γ(λ)

Γ(λ− ν)
. (4.29)

Log-cumulants:

κν{X;µ, α, λ} =

{
−ψ(0)(α) + ψ(0)(λ) + ln

(
(α−1)µ
(λ−1)

)
for ν = 1

(−1)νψ(ν−1)(α) + (−1)ν−1ψ(ν−1)(λ) for ν > 1
. (4.30)

48



The parametrisation of [Nicolas, 2006] is obtained by substituting µ =
(
α−1
α

) (
λ
λ−1

)
µ′.

The inverse beta distribution is also known as the beta distribution of the second kind,
or the beta prime distribution. It is often defined with two shape parameters only. The
definition given here is a generalisation of the two parameter version, with an additional
location parameter.

4.3 Speckle Distribution

The term speckle distribution is here used to denote a distribution which models the ran-
domness of the radar signal due to the interference phenomenon only. That is, it de-
scribes pure speckle. When it is compounded with a texture distribution, we obtain
under the doubly stochastic product model a distribution which describes texture mod-
ulated speckle. The Weibull and log-normal distributions for single polarisation ampli-
tude and intensity data [Oliver and Quegan, 2004] are examples of distributions that
describe texture modulated speckle without explicitly modelling the texture through
a texture variable. Matrix-variate counterparts of these distributions have not been
derived, as far as the author is aware of. There are no known distributions that de-
scribe partially developed speckle in the multilook polarimetric case either. We are left
with the scaled complex Wishart distribution, which models pure and fully developed
speckle, but will also present the matrix-variate Mellin kind statistics of the true com-
plex Wishart distribution.

4.3.1 Complex Wishart Distribution

The complex extension of the Wishart distribution, defined on Ω+, was first reported
in [Goodman, 1963]. The distribution describes W = LW̃ and the complex Wishart
distributed matrix is denoted W ∼ W�d (L,Σ), where the equivalent number of looks, L,
is a shape parameter and Σ = E{W}/L is a scale matrix. The nonsingular distribution
is obtained for L ≥ d.

Probability density function:

fW(W;L,Σ) =
|C|L−d

Γd(L)|Σ|L etr(−Σ−1C) . (4.31)

Mellin kind characteristic function:

φW(s;L,Σ) =
Γd(L+ s− d)

Γd(L)
|Σ|s−d . (4.32)

Mellin kind cumulant generating function:

ϕW(s;L,Σ) = ln Γd(L+ s− d)− ln Γd(L) + (s− d) ln |Σ| . (4.33)
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Matrix log-cumulants:

κν{W ;L,Σ} =

{
ψ

(0)
d (L) + ln |Σ| for ν = 1 ,

ψ
(ν−1)
d (L) for ν > 1 .

(4.34)

The derivation of the Mellin kind statistics is shown in Paper 2 of Chapter 6.

4.3.2 Scaled Complex Wishart Distribution

The observable covariance matrix in pure and fully developed speckle is W̃, which
follows the scaled complex Wishart distribution. This is denoted W̃ ∼ sW�d (L,Σ). The
PDF is derived from (4.31) as ffW(W̃) = fW(LW̃)|JW→fW| by using the transformation
W̃ = W/L with Jacobian determinant |JW→fW | = Ld

2 .

Probability density function:

fC(C;L,Σ) =
LLd

Γd(L)

|C|L−d
|Σ|L etr(−LΣ−1C) . (4.35)

Mellin kind characteristic function:

φW(s;L,Σ) =
Γd(L+ s− d)

Γd(L)

( |Σ|
Ld

)s−d
. (4.36)

Mellin kind cumulant generating function:

ϕW(s;L,Σ) = ln Γd(L+ s− d)− ln Γd(L) + (s− d)(ln |Σ| − d lnL) . (4.37)

Matrix log-cumulants:

κν{W ;L,Σ} =

{
ψ

(0)
d (L) + ln |Σ| − d lnL for ν = 1 ,

ψ
(ν−1)
d (L) for ν > 1 .

(4.38)

The derivation of the Mellin kind statistics is shown in Paper 2 of Chapter 6.

4.4 Compound Matrix Distributions

Compound matrix distributions that model texture modulated speckle are obtained
from the Mellin convolution in (2.26). Five distributions are reported, that combine the
scaled complex Wishart distribution with each of the texture distribution presented in
Section 4.2 through the multilook polarimetric product model. For all of them, the PDF
is listed together with the matrix-variate Mellin kind characteristic function, cumulant
generating function and cumulants. The Mellin kind statistics are derived by evaluating
Equations (3.40)–(3.42) with the expressions given in Sections 4.2 and 4.3.2.
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Figure 4.6: PDF fI(I;α) of the K distributed multilook intensity I shown for shape
parameters α = {4, 6, 8,∞} at linear (left) and logarithmic (right) scale. The asymptotic
case α = ∞ is equivalent to gamma distributed intensity, corresponding to a Wishart
distibuted polarimetric covariance matrix C. The other parameters are L=4 and 〈I〉=1.

4.4.1 Matrix-Variate K Distribution

The matrix-variate K distribution was derived in [Lee et al., 1994]. The name originates
from the Bessel K function, which appears in the PDF expression. It results from a Mellin
convolution of the scaled complex Wishart distribution with the normalised (unit mean)
gamma distribution. A K distributed covariance matrix is denoted C ∼ K(L,Σ, α),
where the parameters are inherited from the speckle and texture distribution.

Probability density function:

fC(C;L,Σ, α) =
|C|L−d
|Σ|L

2(Lα)
α+Ld

2

Γd(L)Γ(α)

(
tr(Σ−1C)

)α−Ld
2 Kα−Ld

(
2

√
Lα tr(Σ−1C)

)
. (4.39)

Mellin kind characteristic function:

φC(s;L,Σ, α) =
Γd(L+ s− d)

Γd(L)

Γ(α + d(s− d))

Γ(α)

( |Σ|
(αL)d

)s−d
. (4.40)

Mellin kind cumulant generating function:

ϕC(s;L,Σ, α) = ln
Γd(L+ s− d)

Γd(L)
+ln

Γ(α + d(s− d))

Γ(α)
+(s−d)(ln |Σ|−d ln(αL)) . (4.41)
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Figure 4.7: PDF fI(I;λ) of the G0 distributed multilook intensity I shown for shape
parameters λ = {4, 6, 8,∞} at linear (left) and logarithmic (right) scale. The asymptotic
case λ = ∞ is equivalent to gamma distributed intensity, corresponding to a Wishart
distibuted polarimetric covariance matrix C. The other parameters are L=4 and 〈I〉=1.

Matrix log-cumulants:

κν{C;L,Σ, α} =

ψ
(0)
d (L) + ln |Σ|+ d

(
ψ(0)(α)− ln(αL)

)
for ν = 1 ,

ψ
(ν−1)
d (L) + dνψ(ν−1)(α) for ν > 1 .

(4.42)

Matrix-variate distributions are difficult to visualise, and the solution is to plot in-
stead the the marginal density of the single polarisation intensities found as diagonal
elements in the polarimetric covariance matrix. Figure 4.6 shows examples of univariate
K distributions of intensity for different values of the texture parameter α.

4.4.2 Matrix-Variate G0 Distribution

The matrix-variate G0 distribution was derived in [Freitas et al., 2005]. It results from
a Mellin convolution of the scaled complex Wishart distribution with the normalised in-
verse gamma distribution. A G0 distributed covariance matrix is denoted C ∼ G0(L,Σ, λ),
where the parameters are inherited from the speckle and texture distribution.

Probability density function:

fC(C;L,Σ) =
LLd

Γd(L)

|C|L−d
|Σ|L

Γ(Ld+ λ)(λ− 1)λ

Γ(λ)

(
L tr(Σ−1C) + λ− 1

)−λ−Ld
. (4.43)
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Mellin kind characteristic function:

φC(s;L,Σ, λ) =
Γd(L+ s− d)

Γd(L)

Γ(λ− d(s− d))

Γ(λ)

(
|Σ|
(
λ− 1

L

)d)s−d

. (4.44)

Mellin kind cumulant generating function:

ϕC(s;L,Σ, λ) = ln
Γd(L+ s− d)

Γd(L)
+ ln

Γ(λ− d(s− d))

Γ(λ)

+ (s− d)

(
ln |Σ|+ d(ln(λ− 1)− lnL)

)
.

(4.45)

Matrix log-cumulants:

κν{C;L,Σ, λ} =

ψ
(0)
d (L) + ln |Σ|+ d

(
ln

(
λ− 1

L

)
− ψ(0)(λ)

)
for ν = 1 ,

ψ
(ν−1)
d (L) + (−d)νψ(ν−1)(λ) for ν > 1 .

(4.46)

Figure 4.7 shows examples of univariate G0 distributions of intensity for different
values of the texture parameter λ.

4.4.3 Matrix-Variate U Distribution

The matrix-variate U distribution was derived in [Bombrun and Beaulieu, 2008]. The
name originates from the Kummer U function, which appears in the PDF expression. It
results from a Mellin convolution of the scaled complex Wishart distribution with the
normalised Fisher-Snedecor distribution. A U distributed covariance matrix is denoted
C ∼ U(L,Σ, α, λ), where the parameters are inherited from the speckle and texture
distribution.

Probability density function:

fC(C;L,Σ, α, λ) =
LLd

Γd(L)

|C|L−d
|Σ|L

Γ(α + λ)Γ(Ld+ λ)

Γ(α)Γ(λ)

(
α

λ− 1

)
× U

(
Ld+ λ, Ld− α + 1, L tr(Σ−1C)

α

(λ− 1)

)
.

(4.47)

Mellin kind characteristic function:

φC(s;L,Σ, α, λ) =
Γd(L+ s− d)

Γd(L)

Γ(α + d(s− d))

Γ(α)

Γ(λ− d(s− d))

Γ(λ)

×
(
|Σ|
(
λ− 1

αL

)d)s−d

.

(4.48)
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Figure 4.8: PDF fI(I;λ) of the U distributed multilook intensity I shown for differ-
ent pairs of shape parameters, (α,λ), at linear (left) and logarithmic (right) scale. The
asymptotic case (α =∞,λ =∞) is equivalent to gamma distributed I , corresponding to
a scaled Wishart distributed C. The asymptotic cases α→∞ and λ→∞ correspond to
K and G0 distributed I and C, respectively. The other parameters are L = 4 and 〈I〉 = 1.

Mellin kind cumulant generating function:

ϕC(s;L,Σ, α, λ) = ln
Γd(L+ s− d)

Γd(L)
+ ln

Γ(α + d(s− d))

Γ(α)
+ ln

Γ(λ− d(s− d))

Γ(λ)

+ (s− d)

(
ln |Σ|+ d(ln(λ− 1)− lnα− lnL)

)
.

(4.49)

Matrix log-cumulants:

κ1{C;L,Σ, α, λ} = ψ
(0)
d (L) + ln |Σ|+ d

(
ψ(0)(α)− ψ(0)(λ) + ln

(
λ− 1

αL

))
,

κν>1{C;L,Σ, α, λ} = ψ
(ν−1)
d (L) + dν

(
ψ(ν−1)(α) + (−1)νψ(ν−1)(λ)

)
.

(4.50)

Figure 4.8 shows examples of univariate U distributions of intensity for different
pairs of the texture parameters α and λ.

4.4.4 Matrix-VariateW Distribution

The PDF of the matrix-variateW distribution has not yet been derived, but it is found
that it will contain a special function known as the WhittakerW function, hence the pro-
posed name. The distribution results from a Mellin convolution of the scaled complex
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Wishart distribution with the normalised beta distribution, and the Mellin statistics are
easily deduced from the existing results. AW distributed covariance matrix is denoted
C ∼ W(L,Σ, α, λ), where the parameters are inherited from the speckle and texture
distribution.

Mellin kind characteristic function:

φC(s;L,Σ, α, λ) =
Γd(L+ s− d)

Γd(L)

Γ(α + d(s− d))

Γ(α)

Γ(λ)

Γ(λ+ d(s− d))(
|Σ|
(
λ

αL

)d)s−d

.

(4.51)

Mellin kind cumulant generating function:

ϕC(s;L,Σ, α, λ) = ln
Γd(L+ s− d)

Γd(L)
+ ln

Γ(α + d(s− d))

Γ(α)
+ ln

Γ(λ)

Γ(λ+ d(s− d))

+ (s− d)

(
ln |Σ|+ d(lnλ− lnα− lnL)

)
.

(4.52)

Matrix log-cumulants:

κ1{C;L,Σ, α, λ} = ψ
(0)
d (L) + ln |Σ|+ d

(
ψ(0)(α)− ψ(0)(λ) + ln

(
λ

αL

))
κν>1{C;L,Σ, α, λ} = ψ

(ν−1)
d (L) + dν

(
ψ(ν−1)(α)− ψ(ν−1)(λ)

)
.

(4.53)

4.4.5 Matrix-VariateM Distribution

The PDF of the matrix-variateM distribution has not yet been derived, but it is found
that it will contain a special function known as the Whittaker M function, hence the
proposed name. The distribution results from a Mellin convolution of the scaled com-
plex Wishart distribution with the normalised inverse beta distribution, and the Mellin
statistics are easily deduced from the existing results. AM distributed covariance ma-
trix is denoted C ∼M(L,Σ, α, λ), where the parameters are inherited from the speckle
and texture distribution.

Mellin kind characteristic function:

φC(s;L,Σ, α, λ) =
Γd(L+ s− d)

Γd(L)

Γ(α− d(s− d))

Γ(α)

Γ(λ)

Γ(λ− d(s− d))(
|Σ|
(

(α− 1)

(λ− 1)L

)d)s−d

.

(4.54)
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Figure 4.9: The matrix log-cumulant diagram

Mellin kind cumulant generating function:

ϕC(s;L,Σ, α, λ) = ln
Γd(L+ s− d)

Γd(L)
+ ln

Γ(α− d(s− d))

Γ(α)
+ ln

Γ(λ)

Γ(λ− d(s− d))

+ (s− d)

(
ln |Σ|+ d(ln(α− 1)− ln(λ− 1)− lnL)

)
.

(4.55)

Matrix log-cumulants:

κ1{C;L,Σ, α, λ} = ψ
(0)
d (L) + ln |Σ|+ d

(
ψ(0)(λ)− ψ(0)(α) + ln

(
(α− 1)

(λ− 1)L

))
κν>1{C;L,Σ, α, λ} = ψ

(ν−1)
d (L) + (−d)ν

(
ψ(ν−1)(α)− ψ(ν−1)(λ)

)
.

(4.56)

4.5 The Matrix Log-Cumulant Diagram

We now introduce the matrix log-cumulant diagram, which is shown in Figure 4.9. This
is a visualisation tool which allows us to both characterise the different matrix distri-
butions and compare data to the distribution models. The diagram promotes intuition
about the applications of the Mellin kind statistics framework, and is used in Papers 2
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and 3 (Chapters 6 and 7) to provide geometrical interpretations of the proposed estima-
tion procedures and goodness-of-fit tests.

In the diagram we plot: (i) manifolds spanned by the theoretical matrix log-cumulants
that can be attained under given models, and (ii) points that represent the empirical
sample matrix log-cumulants computed from data samples. The dimension of a given
manifold equals the number of parameters in the texture distribution associated with
that particular model. The Wishart distribution has no texture parameters, and is repre-
sented by a black point (zero-dimensional manifold). The matrix-variate K and G0 dis-
tributions have one texture parameter, and are represented by the red and blue curves
(one-dimensional manifolds), respectively. The U ,W andM distributions have two tex-
ture parameters, and are visualised in the diagram as the respective yellow, cyan and
magenta surfaces.

The diagram is spanned by the second and third-order matrix log-cumulants, and is
a direct extension of the log-cumulants proposed in [Nicolas, 2002,Nicolas, 2006] for the
univariate case. It was shown in (4.38) that under the multilook polarimetric product
model, matrix log-cumulants of order ν ≥ 2 are independent of the speckle distribution
scale matrix Σ. They depend only on L, which is considered a constant, and the texture
parameters. By plotting the third-order matrix log-cumulant against the second-order
matrix log-cumulant (a convention introduced by Nicolas), we obtain a diagram which
shows the solitary impact of the texture parameters upon the models. Thus, it promotes
insight about how we can select between the different compound matrix distributions
(including the Wishart distribution). We can also assess the fit between data and models
by looking the distances between them in matrix log-cumulant space. Finally, the dia-
gram visualises how texture parameters are estimated from data by projecting sample
matrix log-cumulants onto the manifolds of population matrix log-cumulants.

The clusters of sample matrix log-cumulants plotted in Figure 4.9 represent targets
that have been selected from different images acquired by the airborne AIRSAR L-band
sensor previously operated by NASA/JPL. The samples represent forest (green cluster),
sea (blue cluster), urban area (purple cluster) and cropland (brown cluster), and indicate
which model is suitable in each case. The multiple points in each cluster were obtained
by bootstrap sampling the covariance matrix samples. This is a way of showing the
variance of the sample matrix log-cumulants. Note also that the matrix distributions
presented in this chapter cover the whole matrix log-cumulant plane, remembering that
the lower semi-plane represents texture distributions with negative variances.
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Chapter 5

Paper 1:
Estimation of the Equivalent Number of
Looks in Polarimetric Synthetic Aperture
Radar Imagery
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Estimation of the Equivalent Number of Looks in
Polarimetric Synthetic Aperture Radar Imagery

Stian Normann Anfinsen, Student Member, IEEE, Anthony P. Doulgeris, Student Member,
IEEE, and Torbjørn Eltoft, Member, IEEE

Abstract—This paper addresses estimation of the equiv-
alent number of looks (ENL), an important parameter in
statistical modelling of multilook synthetic aperture radar
(SAR) images. Two new ENL estimators are discovered by
looking at certain moments of the multilook polarimetric
covariance matrix, which is commonly used to represent
multilook polarimetric SAR data, and assuming that the
covariance matrix is complex Wishart distributed. Firstly,
a second-order trace moment provides a polarimetric
extension of the ENL definition, and also a matrix-variate
version of the conventional ENL estimator. The second
estimator is obtained from the log-determinant matrix
moment, and is also shown to be the maximum likelihood
estimator under the Wishart model. It proves to have
much lower variance than any other known ENL estimator,
whether applied to single polarisation or polarimetric
SAR data. Moreover, this estimator is less affected by
texture, and thus provides more accurate results than other
estimators, should the assumption of Gaussian statistics for
the complex scattering coefficients be violated. These are
the first known estimators to use the full covariance matrix
as input, rather than individual intensity channels, and
therefore to utilise all the statistical information available.
We finally demonstrate how an ENL estimate can be
computed automatically from the empirical density of
small sample estimates calculated over a whole scene. We
show that this method is more robust than procedures
where the estimate is calculated in a manually selected
region of interest.

Index Terms—Radar polarimetry, synthetic aperture
radar, parameter estimation, moment methods, unsuper-
vised learning

I. INTRODUCTION

THE equivalent (or effective) number of looks
(ENL) is a parameter of multilook synthetic

aperture radar (SAR) images, which describes the

This is a slightly modified version of the paper published in IEEE
Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11,
Novermber 2009.

The authors are with the Department of Physics and Technology,
University of Tromsø, NO-9037 Tromsø, Norway (e-mail:
{stian.normann.anfinsen;anthony.p.doulgeris;torbjorn.eltoft}@uit.no).

degree of averaging applied to the SAR measure-
ments during data formation and postprocessing.
Multilooking is performed in order to mitigate the
noiselike effect of interference, known as speckle,
which is characteristic of all coherent imaging sys-
tems. In this process, correlated measurements are
averaged, which complicates statistical modelling of
the resulting multilook data. The pragmatic solution
is to model the output as an average of independent
measurements, and to replace the actual number
of correlated samples by an equivalent number
of independent ones, that is, the ENL. The ENL
estimate is the parameter value that produces a best
match between empirical moments of the correlated
data and theoretical moments of the data model,
which assumes independency. The ENL is generally
a noninteger number.

The processing task normally referred to as mul-
tilooking is performed in the frequency domain. It
is part of the range/azimuth compression leading
up to a focused SAR image [1], [2]. Multiple
measurements are obtained by splitting the syn-
thetic aperture Doppler bandwidth into a number
of subbands, each giving rise to a separate image
referred to as a look. All looks are averaged in the
power domain to produce multilook data. However,
multilooking can also be done as postprocessing,
that is, after a well focused image is generated.
This method requires that the data are available
in single-look complex (SLC) format. Averaging is
then performed in the spatial domain. In addition to
reducing speckle, both approaches to multilooking
reduce image resolution, and hence the amount of
data, an effect which is sometimes desired to ease
the computational burden.

Being a distribution parameter, the ENL has
influence on the accuracy of the information ex-
tracted by methods based upon statistical modelling
of multilook SAR data. For instance, the ENL
is necessary input to important classification and
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change detection algorithms for PolSAR data. The
discriminant function of the popular Wishart clas-
sifier [3], [4] avoids dependency upon the ENL by
the restrictive assumption of equiprobable classes.
For nontrivial choices of prior probability, Bayesian
classifiers based on the Wishart distribution [5] or
more sophisticated data models [6], [7] require an
estimate of the ENL. So does the change detection
algorithm derived from the generalised likelihood
ratio of two unknown Wishart distributed matrices
[8].

The ENL is commonly estimated by identify-
ing homogeneous regions in an image, where the
speckle is fully developed and contribution of tex-
ture is negligible, meaning that the radar cross
section is assumed to be constant. These condi-
tions assure that the distribution of the scattering
coefficients can be assumed complex Gaussian [1].
Under this statistical model, the ENL can be esti-
mated from simple image statistics. A reliable ENL
estimate can be obtained for a given sensor and
fixed data processing scheme by manually selecting
appropriate calibration targets, and such a value is
sometimes provided as part of the image metadata.
However, a processing chain with selectable algo-
rithms and processing parametres will clearly bene-
fit from having a robust and automatic estimation
method, but such methods are difficult to design
due to the required identification of homogeneous
regions. Underestimation of the ENL occurs in the
presence of texture and other sources of inhomo-
geneity.

The ENL and the conventional ENL estimator
have been defined for the case of single polarisation
SAR, as described in [1], [2]. For PolSAR data,
the ENL has traditionally been estimated separately
for each polarimetric channel, and then averaged,
as in [6], [9]. In the following, we will develop
a general theory for fully polarimetric SAR data,
for which ENL estimation from single polarisation
images becomes a special case. The objective of
this work is twofold: We want to extend the theory
of ENL estimation to the polarimetric case, where
estimates are derived explicitly from matrix-variate
statistics. We next want to design a fully automatic
estimation procedure that requires no parameter
selection or manual intervention, such as selection
of homogeneous regions where image statistics are
to be calculated.

The paper is structured as follows: Sec. II intro-

duces SAR polarimetry, with different data formats
and their distribution models. Sec. III presents the
traditional definition of the ENL and reviews the
literature of known estimators. In Sec. IV we present
certain moment expressions for the Wishart distri-
bution, and use them to derive new ENL estimators
for PolSAR data. The contents of Sec. V are related
to performance evaluation. We derive a lower bound
to the variance of the ENL estimator, closely related
to the Cramér-Rao bound, and further present a
statistical model, which will be used to assess
robustness to texture. The discussion of robustness
is particularly relevant to unsupervised estimation,
which is the topic of Sec. VI. We here propose an
estimation procedure that is fully automatic. Sec.
VII presents results of experiments with synthetic
and real data. In Sec. VIII we give our conclusions.

Our convention for notation is that scalar val-
ues are denoted as lower or upper case standard
weight characters, vectors are lower case boldface
characters, and matrices are upper case boldface
characters. For simplicity, we have not distinguished
between random variables and instances of random
variables, as such can be ascertained through con-
text.

II. STATISTICAL MODELLING OF POLSAR DATA

The full-polarimetric SAR instrument separately
transmits orthogonally polarised microwaves pulses,
and measures orthogonal components of the re-
ceived signal. For each pixel, the measurements
result in a matrix of scattering coefficients. These
are complex-valued, dimensionless numbers that
describe the transformation of the transmitted (in-
coming) electromagnetic (EM) field to the received
(backscattered) EM field for all combinations of
transmit and receive polarisation.

The transformation can be expressed as[
Er
h

Er
v

]
=
ejkr

r

[
Shh Shv
Svh Svv

] [
Et
h

Et
v

]
(1)

where k denotes wavenumber and r is the distance
between radar and target. The subscript of the
EM field components Ej

i denotes horizontal (h) or
vertical (v) polarisation, which is the most common
set of orthogonal polarisations, while the superscript
indicates transmitted (t) or received (r) wave. The
scattering coefficients Sij are subscripted with the
associated receive and transmit polarisation, in that
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order. Together, they form the scattering matrix,
denoted S = [Sij].

The scattering matrix can be reduced to one of
the vectors

s =

 Shh
(Shv + Svh)/

√
2

Svv

 (2)

or

k =
1√
2

 Shh + Svv
Shh − Svv
Shv + Svh

 . (3)

The lexicographic scattering vector, denoted s, is the
vectorised version of S after the cross-polarisation
terms Shv and Svh have been averaged, assuming
reciprocity of the target. The scaling with a factor√

2 is done to preserve total power of the signal.
The Pauli basis scattering vector, denoted k, is a
linear transformation of s, which provides physical
interpretations of its elements in terms of basic
scattering mechanisms [4].

A. Gaussian Model

It is commonly assumed that the scattering vector
elements are jointly circular complex Gaussian. This
is strictly justified only for homogeneous regions of
the image, characterised by fully developed speckle
and no texture. The notion of texture describes
spatial variation in the backscatter that is due to
target variability, that is, fluctuations in the radar
cross section. The Gaussian model only encom-
passes variability due to speckle.

The matrix S and the vectors s and k are SLC
format representations of PolSAR data. Multilook
PolSAR data is commonly represented by

Cs =
1

L

L∑
i=1

sis
H
i or Ck =

1

L

L∑
i=1

kik
H
i (4)

known as the sample covariance matrix and co-
herency matrix, respectively. They are formed as
the mean Hermitian outer product of the single-look
scattering vectors {si}Li=1 and {ki}Li=1, respectively,
where L is the nominal number of looks. The
superscript H means complex conjugate transpose.
Assume that s (or k) is zero mean and circular com-
plex multivariate Gaussian, denoted s ∼ N �d (0,Σs),
where 0 is a column vector of zeros, d is the
dimension of s, and Σs = E{ssH} is the covariance

matrix of s. The probability density function (pdf)
of s is thus

ps(s; Σs) =
1

πd|Σs| exp(−sHΣ−1
s s) (5)

where | · | is the determinant operator. It follows
that if L ≥ d and the si (or ki) in (4) are indepen-
dent, then the scaled covariance matrix, defined as
Z = LCs (or Z = LCk), follows the nonsingular
complex Wishart distribution [10]:

pZ(Z;L,Σ) =
|Z|L−d
|Σ|LΓd(L)

exp
(− tr

(
Σ−1Z

))
(6)

where tr(·) is the trace operator and Σ =
E{Z}/L = E{Cs}. We write this as Z ∼
W�d (L,Σ). The normalisation constant Γd(L) is the
multivariate Gamma function, defined as

Γd(L) = πd(d−1)/2

d−1∏
i=0

Γ(L− i) (7)

where Γ(L) is the standard Euler gamma function.

B. Product Model

The randomness of a SAR measurement is mainly
attributed to two unrelated factors, namely speckle
and texture. The latter represents the natural spa-
tial variation of the radar cross section, which is
generally not perfectly homogeneous for pixels that
are thematically mapped as one class. Whereas the
Gaussian model only accounts for speckle, several
statistical models exist that also incorporate texture,
either by assuming statistics that imply a non-
Gaussian scattering vector, or explicitly modelling
texture as a separate random variable (rv). The latter
case leads to a doubly stochastic model with a
compounded distribution.

The well known product model, reviewed e.g. in
[1], [11], has been shown to be both mathematically
tractable and successful for modelling and predic-
tion purposes. In the polarimetric version [12], it
decomposes the scattering vector z (defined on a
lexicographic or Pauli basis) as a product of two
independent stochastic processes with individual
distributions:

z =
√
γw . (8)

The first process, w ∼ N �d (0,Σw), models speckle.
The second process generates texture, represented
by the scalar rv γ, under the assumption that the
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texture is independent of polarisation. The multi-
plicative property of the model is preserved as data
is transformed from single-look format to multilook
format, provided the fluctuations in the radar cross
section occur on a scale that is larger than or equal
to the multilook cell. In the multilook covariance
matrix domain the product model becomes

Z = γLW (9)

where we have defined W =
∑L

i=1 wiw
H
i ∼

W�d (L,Σw) and Z =
∑L

i=1 ziz
H
i . The pdf of Z

depends on the multilook texture rv γL, which is
related, but not identical to γ.

The multilook polarimetric product model leading
up to Eq. (9) is extensively reviewed in [13], where
the family of generalised inverse Gaussian distribu-
tions is proposed as a model for γ, and implicitly
also for γL. Selecting amongst several applicable
members of this family, we shall assume that γ is
gamma distributed, denoted γ ∼ γ(µ, α), with unit
mean (µ = E{γ} = 1) and shape parameter α =
µ2/Var{γ}=1/Var{γ}. The pdf of γ ∼ γ(1, α) is

pγ(γ;α) =
αα

Γ(α)
γα−1e−αγ . (10)

Based upon the product model with γ ∼ γ(1, α),
a family of distributions can be derived for the
complex scattering coefficient, multilook detected
amplitude, multilook intensity, and their polarimet-
ric counterparts, referred to in common as K-
distributions. The K-distribution for the polarimet-
ric scattering vector z was derived in [12]. A K-
distribution for the multilook polarimetric covari-
ance matrix Z was first presented in [9]:

pZ(Z;L,Σ, αL)

=
2|Z|L−d α

αL+Ld

2
L

Γd(L)|Σ|LΓ(αL)

(
tr(Σ−1Z)

)αL−Ld
2

×KαL−Ld

(
2

√
αL tr(Σ−1Z)

)
.

(11)

Here, Kν(·) is the modified Bessel function of
the second kind with order ν. Further, αL is a
distribution parameter of γL ∼ Γ(1, αL), which also
becomes a parameter of pZ(Z). It was shown in [7]
that

αL =
Ld+ 1

d+ 1
α (12)

assures consistency between the models of Eqs. (8)
and (9) with respect to certain moment relations.

For interpretation purposes, we note that γL→ 1
and the multilook polarimetric K-distribution in
Eq. (11) converges in distribution to the complex
Wishart distribution in Eq. (6) as αL → ∞. Thus,
high values of αL imply little texture, whereas
low values refer to significant texture and non-
Gaussianity.

In the following sections, we use the Wishart
distribution pZ(Z; Le,Σ) as the underlying model
when deriving ENL estimators. The multilook po-
larimetric K-distribution pZ(Z; Le,Σ, αL) is used to
investigate how deviation from the Wishart model,
in terms of texture, affects the performance of the
proposed estimators. It is possible to derive an
ENL estimator from the multilook polarimetric K-
distribution, but this introduces αL as an additional
nuisance parameter to be estimated. Therefore, we
will not pursue this approach.

C. Modelling Correlated Data
In the derivation of the distributions in Eqs. (6)

and (11) it was assumed that the single-look scatter-
ing vectors used to form the multilook polarimetric
covariance matrices are independent. This assump-
tion does not hold, as discussed in Sec. I. An exact
analytic expression for the pdf of Z that accounts for
correlation of the z samples has, to the best of our
knowledge, not been obtained, and the derivation is
regarded as intractable (see e.g. [14]). The practical
solution for distribution modelling of correlated data
has been to maintain the functional form of Eqs. (6)
and (11), but to replace the number of correlated
looks, L, with an equivalent number of uncorrelated
looks, Le, that makes certain moment relations (to
be defined in Eqs. (15) and (17)) of the theoretical
model consistent with empirical moments.

III. KNOWN ESTIMATORS

A. Coefficient of Variation Estimator
The traditional approach to ENL estimation for

single polarisation SAR data has been to manu-
ally select a homogeneous image region, where
the assumptions of fully developed speckle and
no texture assure that the scattering coefficient is
circular complex Gaussian. A single polarisation
multilook intensity I , which is found as a diagonal
entry of Z, will then be distributed as γ(σ, L):

pI(I;σ, L) =
1

Γ(L)

(
L

σ

)L
IL−1e−LI/σ (13)
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Fig. 1. Example of gamma distribution γ(σ, L) parametrised with
mean intensity σ = 0.0358 and number of looks L = {8, 10, 12}.

with the mean intensity σ and the number of looks
L as parameters of the gamma distribution. Fig. 1
illustrates how the intensity distribution is affected
by a varying number of looks.

The k-th order moment of I is given by [1]

E{Ik} =
Γ(L+ k)

Γ(L)

(σ
L

)k
(14)

assuming uncorrelated data. We specifically find
that E{I} = σ and Var{I} = σ2/L, thus
E{I}2/Var{I} = L. This does not hold for cor-
related data, but in this case L can then be replaced
by the ENL, defined as

Le =
E{I}2

Var{I} . (15)

The right hand side of Eq. (15) defines the entity
known as the coefficient of variation (CV). The
traditional ENL estimator, which arises as

L̂(CV )
e =

〈I〉2
〈I2〉 − 〈I〉2 (16)

is therefore named the CV estimator. Here, 〈·〉
denotes sample average. This estimator has a simple
form and is easy to apply, which may explain
the very limited interest in ENL estimation found
in the literature, both for single polarisation and
polarimetric SAR data. We have not discovered any
known methods that are tailored for PolSAR data,
in the sense that they process the full covariance
or coherency matrices in (4), thereby utilising all
available statistical information. Methods designed
for mono-polarised SAR are used to handle both
cases, as we describe below.

B. Fractional Moment-Based Estimator

Though Eq. (15) is commonly referred to as the
definition of the ENL [1], [2], there are other ways
to solve for L from statistics of the given model, that
may also be used to determine Le. An alternative
estimator was suggested in [6], based upon the same
distribution model, but using a fractional moment
(FM) of the multilook intensity.

From (14) we have

E{I1/2} =
Γ(L+ 1

2
)

Γ(L)

√
σ

L
. (17)

Replacing E{I1/2} and σ with the estimates 〈I1/2〉
and 〈I〉, we obtain the equation

f
(
L̂(FM)
e

)
=

Γ
(
L̂

(FM)
e + 1

2

)
Γ
(
L̂

(FM)
e

)√
L̂

(FM)
e

√
〈I〉 − 〈

√
I〉 = 0

(18)

which must be solved numerically for the fractional
moment estimate, denoted L̂

(FM)
e . The existance of

a root of f
(
L̂

(FM)
e

)
is proved in Appendix A.

Frery et al. [6] used this method on polarimetric
SAR data, estimating the ENL separately for each
polarisation, and then averaging the results. We note
that Eq. (18) differs from the definition found in [6],
which contains some errors.

C. Other Approaches

The earliest publications we have found that are
dedicated to ENL estimation, are two papers by
Lee et al. that propose to estimate the pair E{I}2

and σ2
I = Var{I} in small windows over the whole

image. One may then infer Le from the scatter plot
of paired (E{I}, σI) estimates, using the Hough
transform [15] or an angular sweep method [16] to
determine the best fitted line, whose inverse slope
squared is the Le estimate. A refined method is
proposed by Foucher et al. [17], which is based
on nonparametric estimation of the distribution of
σI/E{I} values using orthogonal Laguerre func-
tions, and estimation of Le from the mode of the
distribution. The focus of all these papers are on
unsupervised estimation omitting selection of a re-
gion of interest.

Further approches include the papers of Gierull et
al. [14] and Joughin et al. [18], where the authors
derive ENL estimators for mono-polarised SAR data
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from the distribution of interferometric phase. This
is a more specialised application, which requires
multiple baseline data, and is therefore outside our
scope. Moreover, a general estimator can be applied
also to interferometric data. We finally mention the
ENL estimators proposed by El Zaart et al. [19].
They are derived from the gamma distribution using
maximum likelihood theory, in a manner similar
to how we will subsequently derive matrix-variate
methods for polarimetric data from the Wishart
distribution. A shortened version of this paper was
presented in [20].

IV. NEW ESTIMATORS

So far, we have not been able to find any ENL
estimators in the literature that use the full sample
covariance or coherency matrix, or any other matrix-
variate statistic, as input. We have therefore tried
to derive moment based estimators founded on the
Wishart distribution.

A. Trace Moment-Based Estimator
Assume that the random matrix Z is positive

semidefinite and complex Wishart distributed with L
degrees of freedom and scale matrix Σ = E{Z}/L.
The degrees of freedom are equivalent to the number
of looks, and the Wishart law is denoted Z ∼
WC(L,Σ). The following moments of Z are derived
in [21]:

E{tr(ZZ)} = L2 tr(ΣΣ) + L tr(Σ)2 . (19)

E{tr(Z)2} = L2 tr(Σ)2 + L tr(ΣΣ) . (20)

These expressions lead to respective estimators for
Le:

L̂(1)
e =

tr(Σ)2

〈tr(CC)〉 − tr(ΣΣ)
(21)

L̂(2)
e =

tr(ΣΣ)

〈tr(C)2〉 − tr(Σ)2
(22)

now expressed in terms of C = Z/L, which is
the supplied PolSAR data format. Out of these two
estimators, we prefer the former, i.e., the estimator
that originates from the second-order trace moment
in (19). This is because it uses all the elements
of C and thus all polarimetric information through
tr(CC), whereas the latter uses tr(C), which only
contains the intensities on the diagonal. The vari-
ance of L̂(1)

e is also observed experimentally to be

superior to that of L̂(2)
e (22). We further note that

in the single polarisation case, both Eqs. (21) and
(22) reduce to Eq. (16). We have thus found two
matrix-variate extensions of the conventional ENL
estimator, and denote the preferred estimator in Eq.
(21) by L̂(TM)

e , where TM is short for trace moment.

B. Log-Determinant Moment-Based Estimator

We next turn to some other moment relations
involving the determinant of a complex Wishart ma-
trix, and the logarithm thereof. For the normalised
determinant of a complex Wishart matrix, we have
[22]

|Z|
|Σ| ∼

d−1∏
i=0

1

2
χ2

2(L−i) (23)

where d is the dimension of Z (or, equivalently, the
number of polarimetric channels). That is, |Z|/|Σ|
is distributed like a product of chi-square distributed
variables, scaled by the factor 1/2, and with differ-
ent degrees of freedom, as denoted by the subscript
of χ2

i . The moments of |Z|/|Σ| were found in [23]
for real Wishart matrices. In the complex case, we
follow the same procedure to obtain

E

{( |Z|
|Σ|
)r}

=
d−1∏
i=0

Γ(L− i+ r)

Γ(L− i) . (24)

To find the moments of ln(|Z|/|Σ|), we note that
the moment generating function of ln(|Z|/|Σ|) is
defined as

M
ln( |Z||Σ|)

(r) = E

{
exp

(
r ln

( |Z|
|Σ|
))}

(25)

which is identical to the left hand side of the
expression in Eq. (24). It follows that

E

{[
ln

( |Z|
|Σ|
)]k}

=

[
dk

drk

d−1∏
i=0

Γ(L− i+ r)

Γ(L− i)

]∣∣∣∣∣
r=0

.

(26)

The first-order moment becomes

E

{
ln

( |Z|
|Σ|
)}

=
d−1∑
i=0

Ψ(0)(L− i) (27)
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where Ψ(0)(L) = Γ′(L)/Γ(L) is known as
the digamma function, which is one of Euler’s
polygamma functions, defined as

Ψ(m)(z) =
dm+1

dLm+1
ln Γ(L)

= (−1)m
∫ ∞

0

tme−zt

1− e−t dt .
(28)

The derivation of Eq. (27) is shown in Appendix B.
Since data is supplied as covariance matrices in the
format C = Z/L, we use ln |Z| = ln |C|+d lnL to
write

E {ln |C|} = ln |Σ|+
d−1∑
i=0

Ψ(0)(L−i)−d lnL . (29)

This equation defines our new estimator. The esti-
mate, denoted L̂

(ML)
e for reasons explained below,

is the root of

g
(
L̂(ML)
e

)
= 〈ln |C|〉 − ln |〈C〉|

−
d−1∑
i=0

Ψ(0)
(
L̂(ML)
e − i)+ d ln L̂(ML)

e = 0
(30)

where the mathematical expectation E{ln |C|} has
been replaced by the empirical mean 〈ln |C|〉 and
Σ by 〈C〉. Eq. (30) must be solved numerically in
the same fashion as the estimator defined by (18).
The existance of a unique root of g(L) is proved in
Appendix A.

From the complex Wishart distribution in Eq. (6),
it is easy to verify that

∂

∂L
ln pZ(Z;L,Σ)

= ln |Z| − ln |Σ| − ∂

∂L
ln Γd(L)

= ln

( |Z|
|Σ|
)
−

d−1∑
i=0

Ψ(0)(L− i) .

(31)

By comparison of Eq. (31) with Eq. (27), it is re-
vealed that the solution of Eq. (30) is the maximum
likelihood (ML) estimate of Le. It is thus asympot-
ically unbiased, efficient, and Gaussian [24].

We finally remark that efficient implementation
of the sum of polygamma functions is aided by the
recurrence relation:

Ψ(m)(z + 1) = Ψ(m)(z) + (−1)mm! z−(m+1) . (32)

V. PERFORMANCE EVALUATION

The obvious way of evaluating estimator per-
formance is by looking at statistical proper-
ties such as bias and (co)variance. Let θ =
[Le,Σ11,Σ21, . . . ,Σdd]

T = [Le, vec(Σ)T ]T be the
complex-valued parameter vector of the Wishart
model, with the vectorisation (column stacking)
operator denoted as vec(·), and let θ̂ be an estimator
of θ. The length of θ is k = d2 + 1.

When estimating Le, the entries of the covari-
ance matrix, denoted Σij, i, j ∈ {1, . . . , d}, become
nuisance parameters whose uncertainty degrade the
estimate of Le. The estimators defined by Eqs. (18),
(21), and (30) are too complicated to find analytic
expressions for neither the distribution, the bias
vector, nor the covariance matrix of θ̂. The bias
vector and the covariance matrix are defined as

b(θ̂) = E{θ̂} − θ (33)

and

Cov{θ̂} = E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})H} (34)

respectively. However, we can evaluate both bias
and covariance empirically, for instance using boot-
strap methods. We are also able to establish a lower
bound on the variance of Le.

A. A Bound on the Variance of ENL Estimators
Assume that we have a set Z = {Z1, . . . ,ZN}

of N independent and complex Wishart distributed
sample covariance matrices. The log-likelihood
function of Z is

L(Z ; Le,Σ) = ln
N∏
i=1

pZ(Zi; Le,Σ)

=
N∑
i=1

ln pZ(Zi; Le,Σ)

(35)

with pZ(Z;L,Σ) given by Eq. (6). The Cramér-
Rao bound (CRB) establishes a lower bound on
the covariance of the stochastic θ̂. For the complex
parameter vector θ, the CRB is defined as [25]

Cov{θ̂}

� ∂

∂θT
(
θ + b(θ̂)

)
J−1

(
∂

∂θT
(
θ + b(θ̂)

))H
=
∂ E{θ̂}
∂θT

J−1

(
∂ E{θ̂}
∂θT

)H

(36)
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where the matrix expression A � B denotes that
A − B is positive semidefinite. Further, J denotes
the Fisher information matrix (FIM), given by

J = E

{(
∂L(Z )

∂θT

)H
∂L(Z )

∂θT

}

= −E

{
∂

∂θ∗

(
∂

∂θ
L(Z )

)T} (37)

for the complex case, where superscript ∗ denotes
complex conjugation. The parameters of L(Z ) are
suppressed for brevity. The first equality of Eq. (37)
is proven in [25], and the proof of the second is
straight-forward by analogy with the real case [24].

If the estimator θ̂ is unbiased, then Eq. (36)
becomes the familiar Cov{θ̂} � J−1. However,
the estimators that we study are biased, and since
we are not able to evaluate the term ∂ E{θ̂}/∂θT
in Eq. (36), the true CRB cannot be determined
analytically. Still, by noting that

∂ E{θ̂}
∂θT

=
∂
(
θ + b(θ̂)

)
∂θT

= Ik +
∂b(θ̂)

∂θT
(38)

where Ik is the k × k identity matrix, Eq. (36) is
rewritten as

Cov{θ̂}

� J−1 +
∂b(θ̂)

∂θT
J−1 + J−1

(
∂b(θ̂)

∂θT

)H

+
∂b(θ̂)

∂θT
J−1

(
∂b(θ̂)

∂θT

)H

= J−1 + (K + KH) + KJKH .

(39)

We have here defined K = (∂b(θ̂)/∂θT )J−1. It is
easily shown that the term KJKH on the right hand
side is positive semidefinite, and thus contributes to
a tighter bound on Cov{θ̂}. However, this cannot be
proven for (K + KH), and the relationship between
the inverse FIM, J−1, and the true CRB remains
undefined. Still, J−1 is the best indication we can
obtain of a performance bound, and we shall refer
to it as the unbiased CRB (UCRB).

The inverse FIM is given by

J−1 =

1

N


d−1∑
i=0

Ψ(1)(Le−i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ
−1 ⊗Σ−1)


−1

(40)

where ⊗ denotes the Kronecker product. The deriva-
tion is shown in Appendix C. The bound on the
variance of the ENL estimator thus becomes

Var{L̂e} ≥ J−1
11 (41)

where J−1
ij denotes element (i, j) of J−1. Eq. (41)

must be evaluated numerically, but we see that the
variance bound depends on the true Le and Σ, and
that the rate of convergence is 1/N .

B. Robustness to Texture

The concept of texture in SAR images was dis-
cussed in Sec. II-B. The product model was also
introduced as a scheme to develop statistical mod-
els that accommodate texture, and thereby provide
more flexible and accurate descriptions of PolSAR
data than the Wishart distribution, which has been
assumed in the derivation of all estimators so far.
The multilook polarimetric K-distribution in (11)
was presented as a concrete candidate for modelling
of texture modulated covariance matrix data.

Models that include and quantify texture become
relevant when we want to investigate the influence
of texture on the ENL estimation performance. The
textural variability of the target will add to the
randomness inflicted by the measurement process
through speckle. Consider multilook intensity data
for simplicity: It is evident that the presence of
texture will increase Var{I}, when compared to the
variance produced by speckle alone. This leads to
underestimation of Le, as seen from (15).

To assess the effect of texture on different ENL
estimators, we would ideally evaluate the mean and
bias of the candidate estimators under a distribution
that includes texture. Due to the complexity of both
the estimators and the aspiring distributions, this is
not possible. We must therefore resort to generating
textured data, and use them to evaluate statistics of
the estimators experimentally. The multilook polari-
metric K-distribution is used for this purpose.

We note that, assuming the texture in all polari-
metric channels can be modelled by a scalar random
variable, the phase difference, amplitude ratio, and
intensity ratio are all insensitive to texture. This was
pointed out by Lee et al. [9], who used the fact to
estimate the ENL, without explicitly stating how.
The invariance of the amplitude ratio and also the
phase to texture can be used to design robust ENL
estimators. This approach has not been examined,
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due to the complicated distribution of the phase
difference, amplitude ratio, and intensity ratio [26],
[27].

VI. UNSUPERVISED ESTIMATION

Some attempts have already been made to design
a fully automatic estimation algorithm that avoids
manual selection of a region of interest [15]– [17],
as reviewed in Sec. III. Since all these methods are
related to the traditional CV estimator in Eq. (16),
and use only one polarisation at the time, we here
propose a new unsupervised estimator based upon
the polarimetric ML estimator defined by Eq. (30).

For an arbitrary SAR scene, there is no guarantee
that we can find an image subset with fully devel-
oped speckle and no texture. If such a region exists,
it may not contain enough samples to ensure that
empirical moments can be calculated with sufficient
accuracy. This motivates a different approach, where
moments are calculated and the estimator evaluated
in small windows over the whole image. The ENL is
then inferred from the distribution of small sample
estimates. However, this method has a number of
inherent problems that need to be considered. Some
of the windows will contain a mixture of pixels from
different classes, and some will contain texture.
Both of these conditions lead to underestimation
of the ENL. We may also encounter areas where
the contribution of coherent scatterers makes the
zero mean assumption on the scattering coefficients
invalid. The nonzero mean will increase the average
intensity, and thus leads to overestimation of the
ENL. Finally, when small sample sizes are used,
the bias of all the estimators studied is significant.
This is demonstrated in the experiments.

The method used in [15], [16] is to produce a
scatter plot of Ê{I} versus σ̂I values estimated over
a whole scene. The idea is that values computed
under no texture and fully developed speckle will
dominate the population of estimates. Hence, they
will stand out as a linear feature, such that the
ENL can be inferred from the slope. Instead of
performing line extraction in a two-dimensional
space of empirical moments, we follow the approach
of [17] and compute a single statistic, namely the
ENL itself, hence producing a one-dimensional dis-
tribution of small sample ENL estimates. We use
the same reasoning, hoping that a large enough
proportion of the estimation windows satisfy the

statistical assumptions. In this case, the overall
distribution of estimates should be dominated by
estimates computed from truly Wishart distributed
samples, and the mode value can be used as an
estimate of the ENL.

A. Nonparametric Estimation
The distribution of the ENL estimates will depend

strongly upon the properties of the given image,
that is, the homogeneity of the scene, the extent
of the homogeneous regions, the amount of texture
within the classes, and the presence of homogeneous
regions that exhibit coherent scattering. Due to the
unpredictable shape and possible multimodality of
the distribution, we must resort to nonparametric
estimation, and propose to use a kernel density es-
timator (KDE) implemented with the Epanechnikov
kernel function [28], [29].

The KDE yields the following distribution esti-
mate:

p̂(L̂e) =
1

nh

n∑
i=1

Kh(L̂e − ˆ̀
e(i)) (42)

where L̂e is the stochastic small sample ENL esti-
mator, {ˆ̀e(i)}ni=1 is a set of n instances produced
by this estimator in separate windows, Kh(·) is the
kernel function, and h is the kernel bandwidth that
determines the degree of smoothing. The Epanech-
nikov kernel is defined as

Kh(x) =
3

4

(
1−

(x
h

)2
)
1{| xh |<1} (43)

where the indicator function 1{Ω} denotes 1 when
condition Ω holds, and 0 when it does not. The KDE
is chosen because it is simple and has a convergence
rate of n−4/5, as compared to n−1, which is common
for parametric estimators.

The kernel bandwidth has a strong impact on
the magnitude of the estimated distribution, but not
so much on the sample mode. Since the aim is
to extract the mode value and use it as an ENL
estimate, determination of a near optimal bandwidth
is not critical. We have therefore assumed that
simple bandwidth selection rules from the literature
(see e.g. [28], [29]) are sufficient. The Epanechnikov
kernel is optimal with respect to the asympotic
mean integrated squared error (AMISE) of the KDE.
Equally important, it provides a fast implementation
due to its finite support.
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Let the final estimate extracted as the mode of
the kernel density estimate be denoted L̂e.

B. Bias Correction
It will be shown in Sec. VII that one notable side

effect of using small sample estimates of the ENL, is
that they contain significant bias. This bias transfers
directly to the value inferred from the distribution
of estimates. An illustration is given in the result
section. It is possible to estimate the bias by means
of jackknife resampling, and the bias estimate can
be used to obtain a corrected ENL estimate.

Jackknifing [30], [31] is a resampling technique
that can be used to estimate the bias and variance
in an estimator. If the original sample contains m
observations, the jackknife procedure consists of
recomputing the estimator m times, leaving out one
observation from the full sample at a time. This
produces m jackknife replications, {ˆ̀e(i, j)}mj=1, for
a given small sample estimate, ˆ̀

e(i). The bias esti-
mate based on sample window i is computed as

b̂
(
L̂e, i

)
= (m− 1)

(
ˆ̀
e(i, ·)− ˆ̀

e(i)
)

(44)

where ˆ̀
e(i, ·) is the mean of the m jackknife repli-

cations, defined as

ˆ̀
e(i, ·) =

1

m

m∑
j=1

ˆ̀
e(i, j) . (45)

Bias estimation introduces considerable overhead
to the algorithm, if we choose to compute a jack-
knife estimate b̂

(
L̂e, i

)
for each of the n small sam-

ple windows in the image. We propose to process
only a user specified number (or a percentage of
the total number) of samples, selecting those that
correspond to the estimates ˆ̀

e(i) that are closest
to the mode value, as these are most likely to
comply with the statistical assumptions. This yields
a collection of small sample bias estimates. The final
estimate, b̂(L̂e), could have been obtained in the
same manner as L̂e, i.e., by nonparametric density
estimation and extraction of the mode. Instead, we
suggest for simplicity to use the median value,
which has proven experimentally to be consistently
close to the mode value. The bias corrected ENL
estimate thus becomes

L̂′e = L̂e − b̂(L̂e)
= arg max

L̂e

{p̂(L̂e)} −med{b̂(L̂e, i
)} (46)

where med{·} is the median operator.
One problem with the bias correction procedure

is that the bias estimator itself has a bias. If the
number of observations, m, becomes too small, then
the correction is inaccurate. This must be taken into
consideration when selecting the sample size m. The
result section will indicate for which values of m
a bias correction is needed and for which values a
reliable correction can be obtained.

VII. RESULTS

In the experiments we used synthetic and real data
to compare the following algorithms:

1) Coefficient of varation (CV) estimator [(16)]
2) Fractional moment (FM) estimator [(18)]
3) Trace moment (TM) estimator [(21)]
4) Maximum likelihood (ML) estimator [(30)]

The CV is the conventional estimator, while the
FM estimator [6] is a lesser known alternative from
the literature. The TM estimator is our polarimetric
generalisation of the CV estimator. The ML esti-
mator is the proposed estimator based on first log-
determinant moment of the multilook polarimetric
covariance (or coherency) matrix.

A. Synthetic Data
We first tested the estimators on random gener-

ated data from a single class. The synthetic data
set consisted of N = 1,000,000 coherency matrix
samples drawn from a complex, circular, and zero
mean Wishart distribution. The distribution was
parametrised by a scale matrix Σ that had been com-
puted by averaging a homogeneous region in the
NASA/JPL AIRSAR L-band image of Flevoland,
the Netherlands, and thus represented a realistic
model of natural vegetation. The number of looks
was set to L = 10.

1) Statistical Properties: From the population
of N = 1, 000, 000 Wishart samples, we drew
Mb=10, 000 bootstrap samples of variable size Nb,
and then used the bootstrap estimator [30], [31],
[32] to estimate the bias and variance of the ENL
estimators. The upper panel of Fig. 2 displays the
estimated bias versus sample size Nb, and ranks
the ML estimator as the best, followed by the TM
estimator, and then the FM estimator, which is
slightly better than the CV estimator. The order of
performance is the same for variance versus sample
size Nb, as shown in the middle panel.
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Fig. 2. Estimator bias (top) and variance (middle) as a function of
sample size Nb, and the distribution of ENL estimates for Nb = 512
(bottom). Results shown for the CV, FM, TM, and ML estimator. The
variance plot includes the unbiased Cramér-Rao Bound (UCRB). True
L = 10 shown as dotted line.

The lower panel shows the distribution of ENL
estimates for a fixed sample size of Nb = 512. The
distribution was computed with a KDE estimator
with Epanechnikov kernel and kernel bandwidth
h=0.1. We see that all estimators produce distribu-
tions that are centered approximately around the true
number of looks, L= 10, as the random generated
data had no correlation. We note that a considerable
improvement in terms of reduced variance is visible
for the ML estimator. Its variance is well above
the UCRB (see the middle panel), but we have
observed experimentally that much of the gap can
be attributed to the nuisance parameters in Σ.

2) Robustness to Texture: The experiments were
repeated for multilook polarimetric K-distributed
data with different degrees of texture, which in-
creases with decreasing values of the distribution
parameter α, as discussed in Sec. II-B. Data were
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Fig. 3. Distribution estimates for the CV, FM, TM, and ML estima-
tor, calculated from single class multilook polarimetric K-distributed
data random generated with a fixed Σ and α = {2, 4, 8, 16,∞}.

generated with parameter values ranging from α=2,
which corresponds to a strongly heterogeneous en-
vironment such as an urban area, to α= 16, which
may characterise vegetation such as forest or certain
crops. The limiting case, α=∞, which is equivalent
to no texture and Wishart distributed data, was also
included.

Fig. 3 shows the distribution of the ENL estima-
tors for different values of α with L = 10 (dotted
line). The figure illustrates that the mode and mean
of the distributions depend strongly on α, and that
the estimate is severely distorted by texture. The
ML estimator is least affected, followed by the TM
estimator, with the FM estimator, and then the CV
estimator as the inferior.

B. Real Data
1) Unsupervised Estimation: After having estab-

lished the statistical properties of the ENL esti-
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Fig. 4. Distribution estimates for the CV, FM, TM, and ML estimator
calculated from the AIRSAR image of Flevoland. No speckle filter
applied. ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

mators with synthetic data, we turned to real data
for a realistic assessment of their applicability to
unsupervised estimation. We chose to use two data
sets acquired by the airborne NASA/JPL AIRSAR
L-band instrument: one image of an agricultural area
in Flevoland, The Netherlands, from 1989, and one
image of the San Fransisco Bay area in California,
USA, from 1988. Both data sets contain four-looked
coherency matrices, with a pixel resolution of about
10 m× 10 m.

The landscape of the Flevoland image consists
mainly of homogeneous fields, and also some forest
areas, straight roads, and farm houses. The San
Francisco Bay image contains mostly sea and urban
areas, in addition to some parks and hills covered
by vegetation. There are few homogeneous areas
of considerable size, except for the ocean. One
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Fig. 5. Distribution estimates for the CV, FM, TM, and ML estimator
calculated from the AIRSAR image of San Francisco. No speckle fil-
ter applied. ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

would therefore expect that it is relatively simpler
to estimate the ENL from the Flevoland image.

Each image was processed by computing the
estimators in a sliding window of size k× k pixels,
covering the whole image. The window size was
varied from k= 3 to k= 15. No speckle filter was
applied initially. The distribution of each estimator
was estimated from the collection of local estimates.
We used a KDE with Epanechnikov kernel function
and a kernel bandwidth of h = 0.1. The results
are shown in Fig. 4 for the Flevoland image and
Fig. 5 for the San Francisco image. A modified
Lee filter [33] with window size ` = 7 was then
applied to the images to reduce the level of speckle.
The results were similar, and are therefore only
presented for the Flevoland image. The estimate
distributions, shown in Fig. 6, were obtained with
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calculated from the AIRSAR image of Flevoland. Modified Lee filter
with window size 7× 7 applied. ENL estimated for window sizes of
k = {3, 5, 7, 11, 15}.

kernel bandwidth h = 0.5. None of the estimates
were bias corrected at this stage.

2) Effect of window size: From the panels of
Figs. 4 and 5, we can study the evolution of the
distribution of ENL estimates as the window size
increases. Denote by H0 the hypothesis that the
estimation sample is drawn from a homogeneous
area with fully developed speckle and no texture,
i.e., the statistical conditions assumed for ideal
ENL estimation. Let H1 be the complementary
hypothesis, which indicates presence of multiple
classes, texture, or coherent scattering. The overall
distribution can then be modelled as a mixture:

f(L̂e) = α0f0(L̂e) + α1f1(L̂e) . (47)

The first mixture component, f0(L̂e), consists of
estimates calculated under H0, which occurs with

relative frequency α0. It is the desired compo-
nent, and should ideally be sufficiently dominant
to produce an identifiable mode close to the true
ENL. The other component results from estimates
produced under H1. This component modifies the
shape of the overall distribution and, depending on
the magnitude of its relative frequency, α1 = 1−α0,
it may even give rise to additional modes.

Two expected effects can be seen as the number
of samples within the estimation window increases:
Firstly, the variance becomes lower and the modes
narrower. This is most clearly observed for the ML
estimator, which has a well-defined mode for all
window sizes. Secondly, the probability of having
mixed classes within the estimation window in-
creases, and consequently, so does the proportion
of underestimated values. This is seen as a growing
negative skewness, and the tendency towards a bi-
modal distribution for all estimators. It also partially
explains the shift of the mode value towards a lower
ENL with increasing k, even though the bias of
the ENL estimator also contributes to the observed
effect.

Fig. 7 is a map of the locally estimated ENL
values, obtained with the ML estimator and k = 7
for the Flevoland data set. It confirms that the mode
in Fig. 4, centered around 3.2, corresponds to values
that are estimated within homogeneous crop fields,
while the mode emerging with increasing k around
2.7 relates to values estimated at class boundaries.
In the same manner, Fig. 8 demonstrates for the San
Francisco image that the main mode of the ML es-
timator with k=7, located around 3.0, corresponds
to values estimated over land. The second mode at
higher values is discussed in the sequel. The fact
that the mode value is more sensitive to k for the
San Francisco data set, indicates that this image
has less homogeneous regions on the scale of the
estimation window.

From the investigations with synthetic data, it is
obvious that the presence of texture will add to the
underestimation, but this effect is not affected by
the window size k. Following the discussion above,
it seems reasonable to use the smallest window size
possible to suppress the mixed class effect, while at
the same time maintaining low enough variance and
bias to obtain the required accuracy and precision
in determination of the mode value.

3) Effect of Coherent Scatterers: Fig. 5 displays
the influence of the window size, as discussed
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Fig. 7. Local ENL estimates obtained with the ML estimator and
window size k=7 for the AIRSAR image of Flevoland. No speckle
filter applied.

Fig. 8. Local ENL estimates obtained with the ML estimator and
window size k = 7 for the AIRSAR image of San Francisco. No
speckle filter applied.

above, but also reveals another source of disturbance
that only seems to affect the ML estimator. For
increasing k we see the emergence of a second
mode, which is located between 4 and 5, i.e., at
values higher than the true number of looks (L=4).
In Fig. 8, this cluster of estimates is observed to be
spatially located over ocean, and the highest ENL
estimates are obtained in the top right corner of
the image, where the incidence angle reduces to
five degrees. We believe that overestimation occurs
because specular reflection from the water surface
contributes a strong coherent component, which is
consistent within local neighbourhoods. This makes

Fig. 9. Local ENL estimates obtained with the ML estimator and
window size k = 7 for the AIRSAR image of Flevoland. Modified
Lee filter with window size `=7 applied.
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Fig. 10. ENL estimates obtained with the ML estimator as a function
of window size k for the AIRSAR images of Flevoland and San
Francisco, with and without bias correction. No speckle filter applied.

the zero mean assumption on the scattering coeffi-
cients invalid.

The given explanation is mathematically consis-
tent, although we have no firm evidence. The same
phenomenon is observed for the Flevoland data set;
Fig. 7 shows that the highest ENL estimates are
found over water, i.e., in the triangular area in the
top right corner. However, this image contains too
little water surface for the overestimation effect to
be clearly visible in the distribution of estimates
(Fig. 4). Other regions, such as the large urban areas
in the San Francisco image, are also expected to
contain significant coherent scattering, but these are
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too heterogeneous to produce overestimated ENL
values.

4) Effect of Speckle Filtering: The unsupervised
estimation procedure was also tested on speckle
filtered data. The simplest speckle filter, a boxcar
filter, smooths all pixels equally by averaging over
a fixed size window, and thus acts like a spatial
domain multilook operator. Hence, the effect on
the ENL estimate is a simple scaling. More so-
phisticated filters perform adaptive smoothing. They
take local variability in the image into account, in
order to preserve details like edges and points. As a
consequence, the ENL will no longer be a constant
value, but a spatially varying number.

We applied a modified Lee filter [33], because
of its widespread use. It is also simple enough that
it allows us to quantify the amount of averaging
it performs. The modified Lee filter is basically
a linear minimum mean squared error (LMMSE)
filter, whose output is a weighted sum of the centre
pixel data value on the one hand and the average
of a fixed size smoothing region selected from the
filter window on the other. The weight is determined
from the homogeneity of the smoothing region.
Hence, the maximum smoothing factor is equal
to the number of pixel of the smoothing region,
denoted Nw, and the minimum is none. From the
specification of the modified Lee filter, we have
Nw = `(` + 1)/2 when the full window size is
`× `, and the dynamic ENL after adaptive speckle
filtering will lie in the range between Le, the original
ENL value, and Nw · Le. We see that a common
window size of ` = 7 yields Nw = 28, which
illustrates that speckle filtering transforms a single-
valued ENL into a wide range of values.

Fig. 6 shows the estimation results obtained on
the Flevoland image processed with a modified Lee
filter with ` = 7. A mode becomes visible with
increasing window size, but it occurs at very low
ENL values. Fig. 9 is a map of the local estimates
produced with the ML estimator. It illustrates that
the mode emerging at 5 < L̂e < 10 corresponds
to estimates obtained over class boundaries. It can
therefore not be related to the true ENL. The desired
mode that appeared in Fig. 4 has vanished, as the
distribution has been stretched due to the variable
degree of smoothing. The areas that produced ENL
estimates around the mode value of Fig. 4, now
produce estimates in an interval ranging from 40
to 100. The same observations were made for the

San Francisco image.
We acknowledge that other adaptive speckle fil-

ters will lead to different distributions of the ENL.
Nevertheless, our observations strongly suggests
that unsupervised ENL estimation is impossible for
dynamically filtered data. This does not imply that
our method has failed, but rather that the Wishart
model, and in particular the parametrisation with a
single-valued ENL, is inappropriate. The implica-
tions for statistical modelling should be addressed
by future research.

5) Effect of estimator bias: The effect of the
estimator bias is demonstrated in Fig. 10. The plot
shows the mode value extracted by means of the
KDE as a function of window size k. The respective
estimates, L̂e and L̂′e, obtained before and after
bias correction are shown for both the Flevoland
and the San Francisco data set. We observe for the
Flevoland data that the bias corrected estimate is
relatively constant from k = 3 and onwards. This
indicates that the window size has no influence
on the estimate after bias have been removed. The
low value of the bias corrected estimate for k = 2
suggests that the bias is overestimated for low values
of k. This naturally concerns both data sets. The
ENL estimated from the San Francisco data shows
a decreasing trend with k, also after bias correction.
We interpret this as an effect of mixed classes,
which increases with window size.

6) Estimation Results: The estimation results in
Fig. 10 suggest that the data sets have different
ENL values. This is not, however, supported by the
knowledge that both images are produced with the
same data processor, and that they have very similar
ground resolution. The difference could stem from
differences in acquisition parameters, but we believe
it is more likely due to a differing amount of texture
found in the respective images, and particularily in
the areas where the estimates contributing to the
main mode in the pdf estimates originate. The San
Francisco image has very little homogeneous areas,
and much of the estimates around the mode are
collected from urban area and hilly terrain. With
reference to the discussion of texture influence,
illustrated by Fig. 3, this could well explain the
lower ENL values extracted from the San Francisco
data set. It is possible that also the ENL level
estimated from the Flevoland data is lowered with
respect to the true value by the presence of texture,
but by a smaller amount.
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It seems clear that the ability of our method to
obtain an estimate that is close to the true ENL
depends entirely on how susceptible the data set
is to estimation. However, the alternative to our
unsupervised procedure is manual selection of a suf-
ficiently large region with approximately constant
radar cross section, which is not possible for the
San Francisco image. Such regions can be found
in the Flevoland image, but the resulting estimate
still varies, depending on the exact positioning of
the estimation window within seemingly homoge-
neous areas. Another discussion goes to whether one
should really aim at the true ENL value, or rather
a value that provides a better model for the data
by implicitly incorporating some of the texture not
accounted for by the Wishart model. The ENL is
not a physical entity, but a parameter of the less
than perfect statistical model, which could justify a
more pragmatic approach. If we choose to accept
an ENL estimate that assimilates texture, then our
unsupervised procedure that collects small sample
estimates from the whole scene is appropriate, since
the result is representative for the whole image.

Earlier studies of the ENL for four-look AIRSAR
data have concluded that the data have characteris-
tics close to that of three-look [34]. By matching
distributions of phase and amplitude ratio that are
assumed to be insensitive to texture, Lee et al.
estimated the ENL for an AIRSAR C-band image of
Howland Forest, USA to a value of 3.3 [9]. This is
compatible with the results displayed in Fig. 10, but
we still need to decide on a window size in order
to obtain a value to compare with. The discussion
on the window size effect related to mixed classes
prescribes the use of the smallest window size pos-
sible. On the other hand, consideration of estimator
bias forces us to increase the window size slightly.
We believe that k = 5 is a good compromise,
which should be applicable to various data sets. This
window size yields bias corrected ENL estimates of
3.21 and 2.97 for the Flevoland and San Francisco
data sets, respectively.

C. Computational Complexity

We finally present some results on the compu-
tational complexity of the tested algorithms. All
algorithms are implemented in C language and
optimised for speed. The performance measure is
central processing unit (CPU) time, as measured
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Fig. 11. Computational complexity of the CV, FM, TM, and ML
estimator measured in CPU time per estimate calculation as function
of sample size.

by the Matlab profile function, on a 2.0 GHz Intel
Pentium M processor. Fig. 11 displays mean CPU
time required per estimate calculation as a function
of sample size.

The figure shows that the CV estimator has the
lowest computational cost, followed by the TM
estimator. This is expected, since these are the
mathematically simplest functions, with analytical
solutions. The CV estimator is typically in the order
of five to fifteen times faster than the ML estima-
tor, depending on the sample size. The ranking of
the inferior FM and ML estimators also depends
on sample size, which can be explained. Both of
these estimators are solved numerically and must
be seeded with an initial value. For small sample
sizes, the estimate is more likely to lie far off
the seed value, which is typically chosen as the
nominal number of looks. When this happens, the
numerical scheme needs more time to converge.
The FM estimator has higher variance than the ML
estimator, as seen in Fig. 2, and is therefore more
affected. As the sample size size gets higher, the
variance becomes lower. Thus, the convergence time
becomes shorter and less important, and algorithm
speed depends more on the complexity of the math-
ematical functions. The digamma function in the
ML estimator makes it slightly slower than the FM
estimator, which can be implemented with the log-
of-gamma function.
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VIII. CONCLUSION

We have proposed two new estimators for the
equivalent number of looks (ENL) that are adapted
for polarimetric SAR (PolSAR) data. The expres-
sions are derived by examining moment expressions
of the multilook polarimetric covariance matrix (or,
equivalently, the coherency matrix). The first esti-
mator is found by rearranging the second order trace
moment of the covariance matrix, and is thus called
the trace moment (TM) estimator. The expression
also provides a matrix-variate generalisation of the
traditional definition of the ENL, established in
the theory of single polarisation SAR. The second
estimator is found from the log-determinant moment
of the covariance matrix, and is also observed to be
the maximum likelihood (ML) estimator based on
the Wishart model for multilook PolSAR data. It
is therefore coined the ML estimator. The proposed
estimators are, as far as we know, the first ones to
process the full multilook polarimetric covariance
matrix, thus utilising all the available statistical
information of PolSAR data. They readily reduce
to estimators for single polarisation SAR data as a
one-dimensional special case.

The new estimators have been compared with
two estimators from the literature. The first is the
traditional coefficient of variation (CV) estimator.
The second, which we have called the fractional
moment (FM) estimator, is the best method in the
sparse literature on ENL estimation for PolSAR
data. Both are based on moments of single po-
larisation intensities. Assessment of the statistical
properties of all estimators shows that the TM es-
timator represents improvement with respect to the
previously known methods, but the ML estimator is
by far the superior one. We therefore launch it as the
preferred estimator, not only for PolSAR data, but
for SAR data in general. We have compared the bias
and the variance of the estimators in experiments. A
bound on the variance of an ENL estimator has also
been derived, which is closely related to the Cramér-
Rao bound. In addition to achieving the lowest bias
and variance, the ML estimator is also shown to
be less affected by texture, when the assumption of
constant radar cross section does not hold for the
input data sample.

We have finally examined the applicability of
the ML estimator to unsupervised estimation, which
obsoletes the manual selection of a region charac-

terised by the appropriate statistics assumed in the
definition of the ENL. An unsupervised estimation
procedure is described. It is further shown through
experiments that the low variance property of the
ML estimator is the key feature that enables extrac-
tion of a reliable ENL estimate from the distribution
of small sample estimates that have been calculated
over the whole image without regards to the ap-
propriateness of local statistics. Possible sources of
error are discussed in detail, and practical solutions
to issues such as bias reduction and selection of pro-
cessing parameters have been proposed. The fully
automatic unsupervised procedure offers a robust
alternative to manual procedures, and represents a
potensial improvement to an operational processing
chain.

APPENDIX A:
PROOF OF ESTIMATOR CONVERGENCE

We here analyse the convergence properties of the
estimators that must be solved numerically because
they have no analytic solution.

The fractional moment (FM) estimator is defined
as the root of the polynomial f(L), as given in Eq.
(18). It can be shown that f(L) is a monotonically
increasing function of L. To prove that f(L) has a
root, we shall study the limiting values of f(L) as
L→∞ and L→ 0.

From [35], we have

Γ(L+ 1/2)

Γ(L)
√
L

= 1− 1

8L
+

1

128L2
+

5

1024L3
− . . . .

(48)

Thus,

lim
L→∞

f(L) = lim
L→∞

Γ(L+ 1/2)

Γ(L)
√
L

√
〈I〉 − 〈

√
I〉

=
√
〈I〉 − 〈

√
I〉 ≥ 0 .

(49)

The limiting value is the difference between the root
mean square and the arithmetic mean of the detected
amplitude,

√
I , which is always nonnegative by the

known inequality for these entities.
Next step is to determine the limit of Eq. (48) as

L→ 0. A standard power series expansion of Γ(L)
shows that

Γ(L) ∝ 1/L− γEM +O(L) (50)
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where γEM is the Euler-Mascheroni constant and
O(·) is Landau notation to denote order. It follows
that

Γ(L)
√
L ∝ 1√

L
− γEM

√
L+O(L3/2) . (51)

Thus, the numerator Γ(L+1/2) → Γ(1/2) =
√
π

and the denominator Γ(L)
√
L→∞ as L→ 0. The

limit becomes

lim
L→0

Γ(L+1/2)

Γ(L)
√
L

= 0 (52)

which proves that

lim
L→0

f(L) = −〈
√
I〉 . (53)

The limit of f(L) is negative as L→ 0 and f(L)
is a monotonically increasing function. Hence, it can
be proved that there exists exactly one root of f(L)
in the interval 0 < L <∞ if and only if inequality
occurs in Eq. (49), i.e., the limit as L → ∞ must
be strictly positive.

For a sample size of N = 1, f(L) has no root,
since in this case,

√〈I〉=〈√I〉, and f(L)<0 with
probability equal to one for finite L. However, for
N ≥ 2, the limit is positive unless all samples have
the same value. Thus, as long as the samples are
nonidentical, a root exists and the estimator con-
verges, provided it is implemented with a reliable
root-finding algorithm. We have used the bisection
method.

The proof for the maximum likelihood (ML)
estimator follows the same path. The ML estimator
is defined as the root of g(L), as defined in Eq.
(30). It can be shown that g(L) is a monotonically
decreasing function of L in the interval d−1 < L <
∞. Next observe that the digamma function can be
expanded as

Ψ(L) ∝ ln(L)− 1

2L
− 1

12L2

(
1 +O

(
1

L2

))
(54)

which is used to show that

lim
L→∞

g(L) = lim
L→∞
〈ln |C|〉 − ln〈|C|〉

−
d−1∑
i=0

(
ln

(
L− i
L

)
− 1

2(L− i)

− 1

12(L− i)2

[
1 +O

(
1

(L− i)2

)])
= 〈ln |C|〉 − ln〈|C|〉 ≤ 0 .

(55)

The inequality on the bottom line is easily proved
by means of Jensen’s inequality on finite form. It is
also readily shown that

lim
L→d−1

g(L) =∞ . (56)

The limit as L→ d− 1 is positive and g(L) is a
monotonically decreasing function. Thus, the exis-
tance of a root of g(L) requires that the inequality
in Eq. (55) is strictly negative. Equality occurs in
Eq. (55) if and only if there is no variation in the
sample, with N=1 as a special case. Otherwise, for
N ≥ 2, a unique root of g(L) exists in the interval
d − 1 < L < ∞ and the estimator converges. We
note that the lower limit of this interval, introduced
by the discontinuity of g(L) at d − 1, restricts the
allowed range of the ML estimate. However, this is
not a conceptual problem, since estimates L̂e < d
are in conflict with the condition for the Wishart
distribution to be nonsingular.

APPENDIX B:
DERIVATION OF LOG-DETERMINANT MOMENTS

In this appendix we derive low-order moments
of ln(|Z|/|Σ|). By combining Eqs. (24) and (25),
the moment generating function of ln(|Z|/|Σ|) was
found to be

M
ln( |Z||Σ|)

(r) =
d−1∏
i=0

Γ(L− i+ r)

Γ(L− i) . (57)

The first-order moment thus becomes

E

{
ln

( |Z|
|Σ|
)}

=

[
d

dr

d−1∏
i=0

Γ(L− i+ r)

Γ(L− i)

]∣∣∣∣∣
r=0

=

d−1∑
i=0

Γ′(L− i+ r)
d−1∏
j=0

j 6=i

Γ(L− j + r)



∣∣∣∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L− j)

=

[
d−1∑
i=0

Ψ(0)(L− i+ r)
d−1∏
j=0

Γ(L− j + r)

]∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L− j)

=
d−1∑
i=0

Ψ(0)(L− i) .
(58)
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To arrive at this result we have used the product
rule of differentiation repeatedly and utilised the
relation Γ′(L) = Γ(L)Ψ(0)(L), where Γ′(L) denotes
the derivative of Γ(L).

In the same manner, the second-order moment is
derived as

E

{
ln2

( |Z|
|Σ|
)}

=

d−1∑
i=0

Ψ(1)(L− i) +

(
d−1∑
i=0

Ψ(0)(L− i)
)2

.

(59)

By combining the first-order and second-order mo-
ment, it is discovered that

Var {ln |Z|} = Var

{
ln

( |Z|
|Σ|
)}

=
d−1∑
i=0

Ψ(1)(L− i) .
(60)

This expression can also be used to estimate L, but
the performance is inferior to the estimator derived
from (58), as the second-order moment is more
difficult to estimate than the first-order moment.

APPENDIX C:
DERIVATION OF FISHER INFORMATION MATRIX

In this appendix we derive the Fisher informa-
tion matrix (FIM) of the complex parameter vector
θ = [Le, vec(Σ)T ]T . The log-likelihood function
of a size N complex Wishart distributed sample
Z = {Z1, . . . ,ZN} was given in (35). It can be
expanded to

L(Z ; Le,Σ)

=
N∑
i=1

(
(n− p) ln |Zi| − n ln |Σ|

− ln Γd(Le)− tr(Σ−1Zi)
)
.

(61)

The partial derivatives of L(Z ) (with parameters
suppressed) with respect to Le follow readily as

∂L(Z )

∂ Le

=

N

(
〈ln |Z|〉 − ln |Σ| −

d−1∑
i=0

Ψ(0)(Le−i)
) (62)

and
∂2L(Z )

∂ Le
2 = −N

d−1∑
i=0

Ψ(1)(Le−i) . (63)

The first partial derivative with respect to Σ
is found from standard rules of complex matrix
calculus [36]:

∂L(Z )

∂Σ
= −N Le Σ−1 +NΣ−1〈Z〉Σ−1 . (64)

To obtain the second partial derivative, we need

∂Σ−1〈Z〉Σ−1

∂Σ
=
∂Σ−1

∂Σ

(
Id ⊗ 〈Z〉Σ−1

)
+
(
Id ⊗Σ−1

) ∂(〈Z〉Σ−1)

∂Σ
= (−Σ−1 ⊗Σ−1)(Id ⊗ 〈Z〉Σ−1)

+ (Id ⊗Σ−1)(−Σ−1 ⊗Σ−1)(Id ⊗ 〈Z〉)
= −(Σ−1 ⊗Σ−1〈Z〉Σ−1)

− (Σ−1 ⊗Σ−1Σ−1〈Z〉) .

(65)

This result occurs after repeated applications of the
chain rule and the product rule in Theorem 4.3 of
[37]. When differentiating with respect to Σ, it takes
the form

∂(AB)

∂Σ
=
∂A

∂Σ
(Id ⊗B) + (Id ⊗A)

∂B

∂Σ
(66)

for two arbitrary complex matrices A and B
with compatible dimensions. We have also used
∂Σ−1/∂Σ = −Σ−1 ⊗Σ−1 [36]. It follows that

∂2L(Z )

∂Σ2 = N Le Σ−1 ⊗Σ−1

−N(Σ−1⊗Σ−1〈Z〉Σ−1)−N(Σ−1⊗Σ−1Σ−1〈Z〉) .
(67)

From Eqs. (62) and (64) we finally obtain

∂

∂ Le

(
∂L(Z )

∂Σ

)
=

∂

∂Σ

(
∂L(Z )

∂ Le

)
= −NΣ−1

(68)

and are now equipped for the derivation of J, the
FIM of θ.

By elaborating on (37), J can be expressed as

J =

[
J11 J12

J21 J22

]
(69)

with quadrant submatrices defined as

J11 = −E

{
∂2

∂ Le
2 L(Z )

}
= N

d−1∑
i=0

Ψ(1)(Le−i)
(70)
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J12 = −E

{
∂

∂ Le

(
∂L(Z )

∂ vec(Σ)

)T}
= N vec(Σ−1)T

(71)

J21 = −E

{
∂

∂ vec(Σ)∗

(
∂L(Z )

∂ Le

)}
= N vec(Σ−1)∗

(72)

and

J22 = −E

{
∂

∂ vec(Σ)∗

(
∂L(Z )

∂ vec(Σ)

)T}
= N Le(Σ

−1 ⊗Σ−1) .

(73)

In the evaluation of the submatrices of J, we have
used equations (63), (67), and (68), together with
the differential relation ∂/∂ vec(A) = vec(∂/∂A),
which is valid for an arbitrary complex matrix A
[36]. We thus have

J = N


d−1∑
i=0

Ψ(1)(Le−i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ
−1 ⊗Σ−1)

 (74)

and the inverse FIM in (40), defining the bound
discussed in section V-A, follows readily.
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Application of the Matrix-Variate Mellin Transform
to Analysis of Polarimetric Radar Images

Stian Normann Anfinsen, Student Member, IEEE and Torbjørn Eltoft, Member, IEEE

Abstract—In this paper we propose to use a matrix-
variate Mellin transform in the statistical analysis of multi-
look polarimetric radar data. The domain of the transform
integral is the cone of complex positive definite matrices,
which allows for transformation of the covariance matrix
distributions used to model multilook polarimetric radar
data. Based on the matrix-variate Mellin transform, an
alternative characteristic function is defined, from which
we can retrieve a new kind of matrix log-moments and
log-cumulants. It is demonstrated that the matrix log-
cumulants are of great value to analysis of polarimetric
radar data, and that they can be used to derive estimators
for the distribution parameters with low bias and variance.

Index Terms—Radar polarimetry, synthetic aperture
radar, Mellin transform, matrix-variate statistics, parame-
ter estimation, method-of-log-cumulants, doubly stochastic
product model

I. INTRODUCTION

POLARIMETRIC radar has become an im-
portant remote sensing instrument due to its

ability to discriminate between different scattering
mechanisms. It can therefore characterise physical
properties of the target that cannot be determined
from single polarisation (mono-pol) radar measure-
ments. To fully utilise the polarimetric information
captured, it is necessary to analyse the complex
correlations between all polarimetric channels, in-
corporating all intensity and phase information. This
requires relatively complicated data models, that
together with the speckle phenomenon, inherent to
all types of coherent imaging, make analysis of
multiple polarization radar data a challenging task.

It was noted already by Epstein [1] that the
Mellin transform (MT) is a natural analytical tool to
use when studying the distribution of products and
quotients of independent random variables (RV).
Nicolas [2], [3] utilised this fact in the analysis

The authors are with the Department of Physics and Technol-
ogy, University of Tromsø, NO-9037 Tromsø, Norway (e-mail:
stian.normann.anfinsen@uit.no; torbjorn.eltoft@uit.no).

of compounded distributions used to model syn-
thetic aperture radar (SAR) data. He introduced a
new theoretical framework by replacing the Fouriér
transform (FT) with the MT in the definition of the
characteristic function (CF) and cumulant generat-
ing function (CGF). This framework was originally
coined second kind statistics, but we shall refer to it
as Mellin kind statistics (MKS). From the resulting
Mellin kind CF and CGF one can retrieve the
statistics known as log-moments and log-cumulants.

The most important development under this
framework is the method of log-cumulants (MoLC)
for parameter estimation [2], [3], which Nicolas ap-
plied to a number of doubly stochastic distributions,
as well as the positive alpha-stable distribution [4],
and members of the generalised gamma distribution
(GγD) family (e.g., the Weibull and log-normal
distribution) [5]. The same method has earlier been
applied to GγDs [6], though without relating it
to the MT. The list of recently proposed SAR
image analysis and image processing algorithms that
employ the MoLC covers diverse applications such
as statistical modelling [7], [8], [9], speckle filtering
[10], [11], [12], classification [13], segmentation
[14], [15], change detection [16], [17], [18], in-
terferometric coherence estimation [19], and image
compression [20].

Being aware of the impact that MKS has had on
mono-pol SAR image analysis, we here extend the
theory to the matrix-variate case which describes
multilook polarimetric radar data. This is done by
introducing a matrix-variate version of the MT
[21], which is used to define a Mellin kind CF
and CGF of random matrices. We then show how
matrix log-moments and matrix log-cumulants can
be obtained from the Mellin kind matrix CF and
CGF, respectively. For all the theoretical derivations,
we highlight the analogy with the univariate case
developed by Nicolas, and also the classical theory
where the FT is used instead of the MT.

The paper is organised as follows. In Section II
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we describe the data delivered by mono-pol and
polarimetric radars, together with the probability
density functions (PDFs) commonly used to model
the data. In Section III we review the classical
definition of moments and cumulants and give an
overview of univariate MKS, before presenting the
extension to complex matrix-variate MKS including
new definitions and derivations of key properties.
The application to parameter estimation for mul-
tilook polarimetric radar data distributions using
the method of matrix log-cumulants (MoMLC) is
presented in Section IV, accompanied by numer-
ical simulations that document the improvement
of estimator precision and accuracy. We give our
conclusions in Section V.

Our convention for notation is that scalar values
are denoted as lower or upper case standard weight
characters, vectors are lower case boldface charac-
ters, and matrices are upper case boldface charac-
ters. Except for scalar random variables, we do not
distinguish between random variables and instances
of random variables, as such can be ascertained
through context. A list of acronyms is provided for
convenience:

NOMENCLATURE

CF characteristic function
CGF cumulant generating function
FT Fourier transform
GγD generalised gamma distribution
MLC matrix log-cumulant
MLM matrix log-moment
MoLC method of log-cumulants
MoMLC method of matrix log-cumulants
MT Mellin transform
MKS Mellin kind statistics
PDF probability density function
RV random variable
SAR synthetic aperture radar

II. RADAR DATA MODELS

A full-polarimetric imaging radar separately
transmits orthogonally polarised microwave pulses,
and measures orthogonal polarisations of the re-
ceived signal. For each pixel, the measurements
result in a matrix of scattering coefficients. These
are complex-valued, dimensionless numbers that
describe the transformation of the transmitted elec-
tromagnetic field to the received electromagnetic

field for all combinations of transmit and receive
polarisation, and assuming no atmospheric distur-
bance (i.e. zero Faraday rotation).

The transformation can be expressed as[
E↑x
E↑y

]
=
ekr

r

[
Sxx Sxy
Syx Syy

] [
E↓x
E↓y

]
(1)

where k denotes wavenumber and r is the distance
between radar and target. The subscript of the elec-
tromagnetic field components E

↓
i and E

↑
i , i ∈ {x, y},

refers to one of the orthogonal polarisations x and
y. The superscript indicates transmitted/incident (↓)
or received/backscattered (↑) wave. SAR systems
normally use linear polarisations (horizontal and
vertical), while using circular polarisations (left and
right) is another choice. The scattering coefficients
Sij are subscripted with the associated receive and
transmit polarisation, in that order. Together, they
form the scattering matrix, denoted S=[Sij]∈ �2×2.

The scattering vector may be defined as

s = [Sxx Sxy Syx Syy]
T = vec(ST ) ∈ �d (2)

where (·)T means transposition, vec(·) denotes vec-
torisation by column stacking, and d=dim(s)=4 is
the vector dimension. Other definitions are possible
[22], since the vector can be linearly transformed to
emphasise physical interpretations of the elements
(i.e., Pauli basis), or the dimension can be reduced
to d= 3 by assuming reciprocity of the target (i.e,
Sxy = Syx). A reduced version also results when
only a subset of S is measured, such as for mono-
pol SAR (d=1) and dual polarisation SAR (d=2).

Radar images are affected by an interference
phenomenon which is a characteristic of all co-
herent imaging systems. The noise-like effect of
interference, known as speckle, can be mitigated
by a processing step called multilooking. Multiple
measurements are obtained by splitting the Doppler
bandwidth into a number of subbands, each giving
rise to a separate image referred to as a look. All
looks are averaged in the power domain to produce
multilook data.

The matrix S and the vector s are single-
look complex format representations of polarimetric
radar data. The L looks extracted in the multilook-
ing process may be represented by the set {s`}L`=1,
or {S`}L`=1 in the mono-pol case. The data formats
obtained in the multilook intensity domain are

C =
1

L

L∑
`=1

S`S
∗
` , d=1 (3)
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where (·)∗ denotes complex conjugation, and

C =
1

L

L∑
`=1

s`s
H
` , d>1 (4)

where (·)H denotes the Hermitian (conjugate trans-
position) operator. We refer to C ∈ �+ as the
multilook intensity and C ∈ Ω+ ⊂ �d×d as the
multilook polarimetric covariance matrix. Note that
C is a real positive RV, whereas C is a random
matrix defined on the cone1 Ω+ of positive definite
complex Hermitian matrices:

Ω+ = {X : X � 0, X = XH ∈ �d×d} (5)

where X � 0 means that X is positive definite.

A. Gaussian Model

It is commonly assumed that the scattering vector
elements are jointly circular complex Gaussian. This
is strictly justified only for homogeneous regions of
the image characterised by fully developed speckle
and no texture. The notion of texture is here defined
as spatial variation in the backscatter that is due to
target variability, i.e., fluctuations in the radar cross
section. The Gaussian model only encompasses
variability due to the stochastic interference pattern,
that is, speckle.

Assume for the moment that s is zero mean and
circular complex multivariate Gaussian, denoted s ∼
N �d (0,Σ), where 0 is a column vector of zeros and
Σ = E{ssH} is the covariance matrix of s. E{·}
denotes the expectation value. The PDF of s is

ps(s; Σ) =
1

πd|Σ| exp(−sHΣ−1s) (6)

where | · | is the determinant operator. It follows
that if L ≥ d and the s` are independent, then
the scaled sample covariance matrix, defined as
Z = LC, follows the nonsingular complex Wishart
distribution [23]:

pZ(Z;L,Σ) =
|Z|L−d

Γd(L)|Σ|L etr(−Σ−1Z) (7)

where etr(·) = exp(tr(·)) is the exponential trace
operator and Σ = E{C} = E{Z}/L. We write
this as Z ∼ W�d (L,Σ). The normalisation constant

1A cone is defined as a subset of a vector space that is closed
under multiplication by positive scalars.

Γd(L) is the multivariate gamma function of the
complex case, defined as

Γd(L) =

∫
Ω+

|Z|L−d etr(−Z) dZ

= πd(d−1)/2

d−1∏
i=0

Γ(L− i)
(8)

where Γ(L) is the standard Euler gamma function.
We further have pC(C) = pZ(LC)|JZ→C|, where
|JZ→C| = Ld

2 is the Jacobian determinant of the
transformation Z = LC [21]. The PDF of C
becomes

pC(C;L,Σ) =
LLd

Γd(L)

|C|L−d
|Σ|L etr(−LΣ−1C) . (9)

In the one-dimensional case, the complex Wishart
distribution reduces to the gamma distribution with
PDF:

pC(c;L, σ) =
LL

Γ(L)

cL−1

σL
exp

(
−Lc
σ

)
(10)

where σ = E{C}. This is denoted C ∼ γ(L, σ).
For the Gaussian model, we denote the scaled

covariance matrix Z by W, and C by W̃. We also
refer to the PDF in (7) as pW(W), to emphasise
that it is a complex Wishart distribution.

B. Product Model
As described above, the randomness of a radar

image measurement is commonly attributed to two
unrelated factors, namely speckle and texture. The
latter represents the natural spatial variation of the
radar cross section, which is generally not per-
fectly homogeneous for pixels that are thematically
mapped as one class. While the Gaussian model
only accounts for speckle, several statistical models
exist that also incorporate texture, either by assum-
ing statistics that imply a non-Gaussian scattering
vector, or explicitly, by modelling texture as a sepa-
rate RV. The latter case leads to a doubly stochastic
model with a so-called compounded distribution.

The well known product model, described e.g.
in [26], [27], has been shown to be both math-
ematically tractable and successful for modelling
and prediction purposes in coherent imaging. In the
multilook polarimetric version, which is extensively
reviewed in [25], it decomposes Z as a product of
two independent stochastic variables,

Z = TW , (11)
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TABLE I
TEXTURE AND COVARIANCE MATRIX DISTRIBUTIONS UNDER THE DOUBLY STOCHASTIC PRODUCT MODEL

pT (t) of texture variable T pC(C) of covariance matrix C Ref.

Constant δ(t− 1) W�
d (Σ, L) LLd

Γd(L)
|C|L−d
|Σ|L etr(−LΣ−1C) [23]

γ̄(α) αα

Γ(α)
tα−1 exp (−αt) Kd(Σ, L, α) 2|C|L−d(Lα)

α+Ld
2

|Σ|LΓd(L)Γ(α)

`
tr(Σ−1C)

´α−Ld
2 Kα−Ld

`
2
p
Lα tr(Σ−1C)

´
[24]

γ̄−1(λ) (λ−1)λ

Γ(λ)
1

tλ+1 exp
`−λ−1

t

´
G0
d(Σ, L, λ) LLd|C|L−d

Γd(L)|Σ|L
Γ(Ld+λ)(λ−1)λ

Γ(λ)

`
L tr(Σ−1C) + λ− 1

´−λ−Ld [25]

F̄(ξ, ζ) Γ(ξ+ζ)
Γ(ξ)Γ(ζ)

ξ
ζ−1

“
ξ
ζ−1 t

”ξ−1“
ξ
ζ−1 t+1

”ξ+ζ Ud(Σ, L, ξ, ζ)
LLd|C|L−d
Γd(L)|Σ|L

Γ(ξ+ζ)
Γ(ξ)Γ(ζ)

“
ξ
ζ−1

”
Γ(Ld+ ζ)

× U`Ld+ ζ, Ld− ξ + 1, L tr(Σ−1C)ξ/(ζ − 1)
´ [9]

with individual distributions. The positive, scalar
and unit mean RV T generates texture, assuming
that its contribution is independent of polarisation
and common for all channels. The matrix variable
W ∼ W�d (L,Σ) models speckle. The PDF of Z
depends on the PDF of the multilook texture RV T .

In [25], the family of generalised inverse Gaus-
sian distributions is proposed as a model for T . Ta-
ble I lists the gamma (γ̄), inverse gamma (γ̄−1), and
Fisher-Snedecor (F̄) distribution as possible choices
of pT (t), giving both notation and expression of
their PDF. We remark that the distributions have
been normalised to unit mean, indicated by the over-
bar in the given symbol, which fixes and obsoletes
one parameter of the unconstrained distribution. The
table also presents the resulting distributions for C,
calculated from

pC(C) =

∫ ∞
0

pZ|T (LC|t)pT (t)|JZ→C| dt

= |JZ→C|
∫ ∞

0

pW(tLC)pT (t) dt .

(12)

These covariance matrix distributions are the
matrix-variate K distribution, the matrix-variate G0

distribution, and the U-distribution. The K distribu-
tion and the U distribution are named, respectively,
after the second kind modified Bessel function of
order ν, denoted Kν(·), and the second kind con-
fluent hypergeometric Kummer function, denoted
U(·, ·, ·). The complex Wishart distribution is also
presented and interpreted as a special case of the
product model, with a constant texture parameter,
whose PDF is written in terms of a Dirac delta
function, δ(t).

We remark that the PDF of a product of random
variables is known as a Mellin convolution of the
factor densities. Thus, (12) can be viewed as a
Mellin convolution, as we shall return to later.

III. MELLIN KIND STATISTICS

A. Classical Statistics
A scalar statistical moment captures certain char-

acteristics of a statistical distribution by projecting
its PDF onto a scalar. In the univariate case, the
νth-order raw moment of a real RV X is defined as

mν{X} = E{Xν} =

∫ +∞

−∞
xνpX(x) dx (13)

and the νth-order central moment as
m̄ν{X} = E{(X −m1)ν}

=

∫ +∞

−∞
(x−m1)νpX(x) dx

(14)

where m1 = E{X}. Let F{·}(ω) and F−1{·}(x)
be the forward and inverse FT, respectively. The
classical CF is defined as ΦX(ω) = E{eωX} =
F{pX(x)}(ω),2 with ω a real number and  the
imaginary unit. The CF always exists. When all
moments exist, the CF can be written as

ΦX(ω) =

∫ +∞

−∞
eωxpX(x) dx

=
∞∑
ν=0

(ω)ν

ν!
mν{X}

(15)

2The exponential in the Fouriér transform may be defined with or
without a negative sign in the exponent. We have chosen the latter
version.
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using the Maclaurin series expansion of the expo-
nential function. The νth-order moment can in this
case be retrieved from

mν{X} = (−)ν d
ν

dων
ΦX(ω)

∣∣∣∣
ω=0

. (16)

A statistical distribution is uniquely specified by its
CF if all of its moments are finite and the power
series expansion for its CF converges absolutely
near the origin [28]. Then

pX(x) = F−1{ΦX(ω)}(x)

=
1

2π

∫ +∞

−∞
e−ωxΦX(ω) dω .

(17)

The CGF of X is defined as ΨX(ω) = ln ΦX(ω).
When the moments mν{X} exist, so do the cumu-
lants cν{X}, that are coefficients of the power series
expansion

ΨX(ω) =
∞∑
ν=0

(ω)ν

ν!
cν{X} . (18)

The cumulants can be retrieved from the CGF as

cν{X} = (−)ν d
ν

dων
ΨX(ω)

∣∣∣∣
ω=0

(19)

by analogy with the moments. Moments and cumu-
lants are related by a combinatorial version of Faá
di Bruno’s formula [29]:

cν{X} = mν{X}

−
ν−1∑
i=1

(
ν − 1

i− 1

)
ci{X}mν−i{X}

(20)

and reversely through

mν{X} = Bν

(
c1{X}, . . . , cν{X}

)
(21)

where Bν(·) is the νth complete Bell polynomial
[30]. All relations for classical univariate statistics
are summarised in the diagram of Figure 1.

Moments and cumulants can be generalised to
random vectors: x∼ px(x), x∈�n, random matri-
ces: X∼pX(X), X∈�m×n, and the corresponding
complex cases: z ∼ pz(z), z ∈ �n and Z ∼ pZ(Z),
Z∈�m×n. The CF of a complex random vector z
is defined as [31], [32]

Φz(ω) = E
{
eRe{ωHz}

}
, ω ∈ �n (22)

and the CF of a complex random matrix Z as

ΦZ(Ω) = E
{
eRe{tr(ΩHZ)}

}
, Ω ∈ �m×n (23)

pX(x)

ΦX(ω)

ln(Φ)

F(p)

ΨX(ω)

F−1(Φ)

exp(Ψ)

(−)ν dν

dων
ΨX(ω)

˛̨̨
ω=0

cν{X}

mν{X}

Bν(c1{X}, . . . , cν{X})

P∞
ν=0

(ω)ν

ν!
mν{X}

P∞
ν=0

(ω)ν

ν!
cν{X}

(−)ν dν

dων
ΦX(ω)

˛̨̨
ω=0

mν −
Pν−1
i=1

`ν−1
i−1

´
ci{X}mν−i{X}

E{Xν}

Fig. 1. Relations in univariate classical statistics.

where tr(·) is the trace operator and Re{·} extracts
the real part of a complex expression, while the
vector ω and matrix Ω are transform variables. We
note that the CFs are defined in terms of the standard
complex vector inner product ωHz and complex
matrix inner product tr(ΩHZ) [31].

The νth-order moments of z and Z are retrieved
from

mν{z} = (−)ν ∂
ν

∂ων
Φz(ω)

∣∣∣∣
ω=0

(24)

mν{Z} = (−)ν ∂ν

∂Ων ΦZ(Ω)

∣∣∣∣
Ω=0

(25)

where ∂ν/∂ων and ∂ν/∂Ων is multi-index notation
for sequential νth-order partial differentiation with
respect to all elements in ω and Ω, respectively.
Non-scalar moments and cumulants of real random
vectors and matrices are defined in [33], and the
theory can be extended to the complex case, but
this is outside the scope of our work.

B. Univariate Mellin Kind Statistics
The MT of the real valued function f(x) defined

on �+ is given as [1], [34]

F (s) = M{f(x)}(s) =

∫ ∞
0

xs−1f(x) dx (26)

where the transform variable s ∈ �. Under certain
restrictions on f(x), F (s) is analytic in a strip
parallel to the imaginary axis. The inverse MT is

f(x) = M−1{F (s)}(x)

=
1

2π

∫ a+i·∞

a−i·∞
x−sF (s) ds .

(27)
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TABLE II
MELLIN KIND STATISTICS OF UNIVARIATE DISTRIBUTIONS FOR REAL POSITIVE TEXTURE VARIABLES

pT (t) Characteristic function φT (s) Log-cumulants κν(T )

γ̄(α) Γ(α+s−1)

αs−1Γ(α)

κ1 = ψ(0)(α)− ln(α)

κν>1 = ψ(ν−1)(α)

γ̄−1(λ)
`
λ−1
λ

´s−1 Γ(λ+1−s)
λ1−sΓ(λ)

κ1 = ln(λ− 1)− ψ(0)(λ)

κν>1 = (−1)νψ(ν−1)(λ)

F̄(ξ, ζ)
“
ζ−1
ζ

”s−1
Γ(ξ+s−1)

ξs−1Γ(ξ)

Γ(ζ+1−s)
ζ1−sΓ(ζ)

κ1 = ψ(0)(ξ)− ψ(0)(ζ) + ln
“
ζ−1
ξ

”
κν>1 = ψ(ν−1)(ξ) + (−1)νψ(ν−1)(ζ)

pX(x)

ϕX(s)

φX(s)

ln(φ)

M{p}

exp(ϕ)

M−1{φ}
E{(lnX)ν}

dν

dsν
φX(s)

˛̨̨
s=1

dν

dsν
ϕX(s)

˛̨̨
s=1

κν{X}

µν{X}

Bν(κ1{X}, . . . , κν{X})

µν −
Pν−1
i=1

`ν−1
i−1

´
κi{X}µν−i{X}

P∞
ν=0

(s−1)ν

ν!
µν{X}

P∞
ν=0

(s−1)ν

ν!
κν{X}

Fig. 2. Relations in univariate Mellin kind statistics.

The integration limits denote a line integral along
any line s= a ∈ � parallel to the imaginary axis,
which must lie within the analytic strip of F (s).

Nicolas [2] proposed to replace the FT with the
MT in the definition of the CF for the RV X , thus
defining the Mellin kind CF as

φX(s) = E{Xs−1} = M{pX(x)}(s) . (28)

The domain of the MT restricts this definition to
positive RVs X ∈ �+. By expanding φX(s) as in
the classical case, we obtain

φX(s) =

∫ ∞
0

e(lnx)(s−1)pX(x) dx

=
∞∑
ν=0

(s− 1)ν

ν!
µν{X}

(29)

with the νth-order Mellin kind moment defined as
µν{X} = E{(lnX)ν}

=

∫ ∞
0

(lnx)νpX(x) dx .
(30)

The derivation of (29) reveals that φX(s) is a power
series expansion of the terms µν{X}, appropriately
termed log-moments, when they exist. When pursu-
ing the analogy with the classical case, it is found
that

µν{X} =
dν

dsν
φX(s)

∣∣∣∣
s=1

. (31)

The Mellin kind CGF is further defined as ϕX(s)=
lnφX(s), from which the Mellin kind cumulants,
also known as log-cumulants, can be retrieved as

κν{X} =
dν

dsν
ϕX(s)

∣∣∣∣
s=1

(32)

given that the corresponding log-moment exists.
When all log-cumulants exist, the Mellin kind CGF
can be expanded as

ϕX(s) =
∞∑
ν=0

(s− 1)ν

ν!
κν{X} . (33)

The relation between the Mellin kind CF and CGF
is the same as in the classical case, hence so
is the relation between the log-moments and log-
cumulants. Figure 2 summarises all relations for the
univariate MKS.

Nicolas derived the MKS for the gamma, the
inverse gamma, and the Fisher-Snedecor distribution
[2], [3], among others. These results are listed in
Table II for the unit mean version of these distribu-
tions.

C. Complex Matrix-Variate Mellin Kind Statistics

Mathai proposed a generalised transform (that he
named the M-transform) for matrix-valued functions
in [35], and referred to it in [36] as a generalised
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MT. The complex version relevant to our study was
presented in [21].

Definition 1 (Complex matrix-variate MT): Let
f(Z) be a real-valued scalar function defined on a
cone of d × d Hermitian matrices that are either
positive definite, negative definite, or null, and let f
be symmetric in the sense f(ZV) = f(VZ), where
V and Z belong to the same cone. The complex
matrix-variate MT is then defined as

M{f(Z)}(s) =

∫
Ω+

|Z|s−df(Z) dZ (34)

with transform variable s ∈ �, whenever the integral
exists.

It is duly noted in [35] that since M{f(Z)}(s) is
a function of the complex scalar transform variable
s, whereas f(Z) is defined on a matrix space,
the transform is not unique. This problem is not
associated with the multivariate MT defined in [37]
as

M{f(z)}(s1, . . . , sd)

=

∫ ∞
0

· · ·
∫ ∞

0

d∏
i=1

zsi−1
i f(z) dz1 · · · dzd

(35)

with z = [z1, . . . , zd]
T ∈ �d and f defined on �d,

which can in principle be extended to the matrix-
variate case. Nevertheless, we shall refer to (34) as
the matrix-variate MT.

The symmetry requirement in the definition of
the matrix-variate MT restricts in theory the range
of PDFs it can be applied to. In practice, however,
it does not pose any problems for the compound
Wishart type distributions used for multilook po-
larimetric radar data. In these functions (See Table
I), the matrix variable Z occurs inside determinant
and trace operators that are symmetric themselves,
hence the overall PDFs are also symmetric in the
required sense. We may therefore use the transform
to define MKS for the complex matrix-variate case.

Definition 2 (Mellin kind matrix-variate CF): The
Mellin kind CF of the complex random matrix Z is
defined as

φZ(s) = E{|Z|s−d} = M{pZ(Z)}(s) (36)

when Z and pZ(Z) satisfy all requirements of the
complex matrix-variate MT.

Definition 3 (Mellin kind matrix moments): The
νth-order Mellin kind matrix moment of Z is defined

as
µν{Z} =

dν

dsν
φZ(s)

∣∣∣∣
s=d

. (37)

If all Mellin kind matrix moments exist, the Mellin
kind CF can be written as the power series expan-
sion

φZ(s) =

∫
Ω+

e(s−d) ln |Z|pZ(Z) dZ

=
∞∑
ν=0

(s− d)ν

ν!
µν{Z}

(38)

in terms of the µν{Z}. The derivation of (38) reveals
that

µν{Z} = E{(ln |Z|)ν}
=

∫
Ω+

(ln |Z|)νpZ(Z) dZ
(39)

which justifies the denotation of µν{Z} as a matrix
log-moment (MLM).

Definition 4 (Mellin kind matrix-variate CGF):
The Mellin kind CGF of the complex random matrix
Z is defined as

ϕZ(s) = lnφZ(s) . (40)

Definition 5 (Mellin kind matrix cumulants):
The νth-order Mellin kind matrix cumulant of Z is
defined as

κν{Z} =
dν

dsν
ϕZ(s)

∣∣∣∣
s=d

. (41)

When all Mellin kind matrix moments exist, so do
the Mellin kind matrix cumulants, and the Mellin
kind CGF can be expanded as

ϕZ(s) = lnφZ(s) =
∞∑
ν=0

(s− d)ν

ν!
κν{Z} (42)

in terms of the κν{Z}, that are also called matrix
log-cumulants (MLCs).

As we see, there is a complete analogy with the
MKS derived in Section III-B for the univariate
case, as summarised in Figure 3. The Mellin kind
matrix-variate CF and CGF are related by the same
logarithmic transformation as in the univariate case.
Thus, the conversion between MLMs and MLCs is
also given in terms of Faá di Bruno’s formula and
the complete Bell polynomial, by analogy with (20)
and (21).
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Example (Complex Wishart distribution): The
Mellin kind CF of a complex Wishart matrix W ∼
W�d (L,Σ) is derived in Appendix A as

φW(s) = M{pW(W)}(s)
=

Γd(L+s−d)

Γd(L)
|Σ|s−d . (43)

The MLCs are found to be

κ1{W} = ψ
(0)
d (L) + ln |Σ| (44)

κν{W} = ψ
(ν−1)
d (L) , ν > 1 (45)

where we introduce the νth-order multivariate
polygamma function as

ψ
(ν)
d (L) =

d−1∑
i=0

ψ(ν)(L− i) . (46)

This is a convenient extension of the ordinary
polygamma functions, defined as the logarithmic
derivatives of the gamma function:

ψ(ν)(L) =
dν+1 ln Γ(L)

dLν+1
, ν ≥ 0 . (47)

Let W̃ = W/L be the scaled Wishart matrix
whose PDF is given in (9). The MLCs of W̃ are
derived as

κ1{W̃} = ψ
(0)
d (L) + ln |Σ| − d lnL (48)

κν{W̃} = ψ
(ν−1)
d (L) , ν > 1 . (49)

The MLMs of W and W̃ can be found by inserting
the MLCs into the equivalent formula of (21).

Log-statistics of W and W̃ were first derived
in [38] without utilising the Mellin transform, and
not for a general order ν. They were also used
in [39], but interpreted as log-moments and log-
cumulants of the positive scalar RV |W| rather than
of the matrix W. A detailed derivation is given in
Appendix A.

D. Some Properties of the Matrix-Variate Product
Model

We shall now look at some fundamental proper-
ties of the MT which makes it a natural replacement
of the FT when working with a multiplicative signal
model, and extend this exposition to the complex
matrix-variate case.

ln(φ)

M{p}

exp(ϕ)

pZ(Z)

φZ(s)

κν{Z}

µν{Z}

ϕZ(s)

µν −
Pν−1
i=1

`ν−1
i−1

´
κi{Z}µν−i{Z}

Bν(κ1{Z}, . . . , κν{Z})

dν

dsν
ϕZ(s)

˛̨̨
s=d

P∞
ν=0

(s−d)ν
ν!

κν{Z}

dν

dsν
φZ(s)

˛̨̨
s=d

P∞
ν=0

(s−d)ν
ν!

µν{Z}

E{(ln |Z|)ν}

Fig. 3. Relations in matrix-variate Mellin kind statistics.

1) Univariate Additive Model: Let X , U and V
be real scalar RVs whose moments and cumulants
all exist, and assume that U and V are statisti-
cally independent. For the additive stochastic signal
model,

X = U + V (50)

we find that the CF, the CGF, and the cumulants of
X , as defined in the classical case using the FT, can
be written as

ΦX(ω) = ΦU(ω) · ΦV (ω) (51)
ΨX(ω) = ΨU(ω) + ΨV (ω) (52)
cν{X} = cν{U}+ cν{V } . (53)

These relations also hold when the signal model
is generalised to the multivariate, matrix-variate,
and complex case. The PDF of X is given by the
convolution

pX(x) = (pU ∗ pV )(x)

=

∫ +∞

−∞
pU(u)pV (x− u) du

(54)

where ∗ denotes the convolution operator, which
corresponds to a multiplication in the FT domain,
as seen in (51).

2) Univariate Product Model: Now consider the
stochastic product model:

X = U · V, (55)

with the additional constraints that X , U , and V ∈
�+. Observe that the Mellin kind CF, CGF and
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cumulants defined with the MT take the form

φX(s) = φU(s) · φV (s) (56)
ϕX(s) = ϕU(s) + ϕV (s) (57)
κν{X} = κν{U}+ κν{V } . (58)

The usual interpretation [2] is to view the MT as
a Laplace transform computed on a logarithmic
scale. The logarithmic transformation translates the
product model into an additive one, which explains
why the Mellin kind CF inherits the multiplicative
property of the classical CF, whereas the CGF and
the cumulants take over the additive property from
their classical counterparts.

The PDF of X can be found from

pX(x) =

∫ ∞
0

pX|V (x|v) pV (v) dv

=

∫ ∞
0

pU

(x
v

)
pV (v)

dv

v

(59)

which is known as the Mellin convolution. The
operation is denoted pX(x) = (pU ?̂ pV )(x). The
product in (56) is the MT domain equivalent.

3) Matrix-variate Product Model: Before we
are ready to consider the matrix-variate product
model, we shall establish a matrix-variate Mellin
convolution theorem using the matrix-variate MT
of Definition 1. We also find it natural to include
some closely related correlation theorems. We start
by defining the matrix-variate Mellin convolution.

Definition 6 (Matrix-variate Mellin convolution):
Let f(U) and g(U) be two functions defined on
the cone of positive definite (or negative definite)
complex Hermitian matrices. Further assume that
U and V both belong to the domain of f and g,
and that the functions are symmetric in the sense
that f(UV) = f(VU). We define the matrix-variate
Mellin convolution of f and g as

(f ?̂ g)(U)

=

∫
Ω+

|V|−df(V−
1
2 UV−

1
2 )g(V) dV

=

∫
Ω+

|V|−dg(V−
1
2 UV−

1
2 )f(V) dV

(60)

which is an associative and commutative operation.

Theorem 1 (Matrix-variate Mellin convolution):
Under the assumptions presented in Definition 6,
then

M{(f ?̂ g)(U)}(s)
= M{f(U)}(s) ·M{g(U)}(s) . (61)

Proof: Introduce the substitution X = UV and
note that X must belong to the same matrix space as
U and V. Furthermore, we have U = V−

1
2 XV−

1
2

and dU = dX/|V|d [21]. This yields

M{f(U)}(s) ·M{g(V)}(s)
=

∫
Ω+

(|X|/|V|)s−d f(V−
1
2 XV−

1
2 )|V|−d dX

×
∫

Ω+

|V|s−dg(V) dV

=

∫
Ω+

|X|s−d
[∫

Ω+

|V|−df(V−
1
2 XV−

1
2 )g(V) dV

]
dX

= M{(f ?̂ g)(X)}(s)
(62)

where in the last transition, we identify the term in
the square brackets as the Mellin convolution.

We have shown that the MT provides a convo-
lution theorem for the product model, like the FT
does for the additive model, and that this extends
to matrix-variate theory. By further analogy with
the Fourier transform, the Mellin transform also
has a correlation theorem. The following operation
reduces in the univariate case to the Mellin correla-
tion, as Nicolas defines it in [2], [3].

Definition 7 (Type I matrix-variate Mellin corre-
lation): Under the assumptions presented in Defi-
nition 6, we define the type I matrix-variate Mellin
correlation of f and g as

(f ⊗̂ g)(U)

=

∫
Ω+

|V|df(V
1
2 UV

1
2 )g(V) dV .

(63)

This operation is neither associative nor commuta-
tive.

Theorem 2 (Type I matrix-variate Mellin corre-
lation): Under the assumptions presented in Defini-
tion 6, then

M{(f ⊗̂ g)(U)}(s)
= M{f(U)}(s) ·M{g(U)}(2d− s) . (64)

The proof is given in [40].
We also present an alternative definition. It re-

duces in the univariate case to a relation often
referred to as a Mellin correlation (See e.g. [41]).
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Definition 8 (Type II matrix-variate Mellin cor-
relation): Under the assumptions presented in Defi-
nition 6, we define the type II matrix-variate Mellin
correlation of f and g as

(f ~̂ g)(U)

=

∫
Ω+

|V|−df(V
1
2 UV

1
2 )g(V) dV .

(65)

This is neither an associative nor commutative op-
eration.

Theorem 3 (Type II matrix-variate Mellin cor-
relation): Under the assumptions presented in Def-
inition 6, then

M{(f ~̂ g)(U)}(s)
= M{f(U)}(s) ·M{g(−U)}(s) . (66)

The proof follows in the same manner as for the
Theorem 1, and is therefore omitted. A more general
theorem, which reduced to both Theorems 2 and 3
was presented in [21, Th. 6.2].

We will now explain the relevance to a matrix-
variate product model expressed by the (ordinary)
matrix product

X = U V (67)

where X, U, and V are complex and positive
definite Hermitian matrices. With the same approach
as in (59) we establish that the PDF of X is

pX(X)

=

∫
Ω+

pX|V(X|V)pV(V) dV

=

∫
Ω+

|V|−dpU(V−
1
2 XV−

1
2 )pV(V) dV .

(68)

This is exactly (pU ?̂ pV)(X), as should be ex-
pected from (62), which justifies the definition of
the matrix-variate Mellin convolution. Assume that
all MLMs and MLCs of U, V and X exist, as given
in Definition 3 and 5. It follows from Theorem 1 that

φX(s) = φU(s) · φV(s) (69)
ϕX(s) = ϕU(s) + ϕV(s) (70)
κν{X} = κν{U}+ κν{V} . (71)

in the matrix-variate case.

Example (Multilook polarimetric product
model): We now return to the multilook
polarimetric product model for the radar data
covariance matrix Z = LC. The model can be

written as: Z = TW, with T = T Id, where T
is the texture RV and Id is the d × d identity
matrix. We note that the matrix T contains only
one functionally independent entry, namely T .
Without entering the stringent argument in terms
of differential calculus, we state that an integral∫

Ω+
f(|T|) dT can be replaced with

∫
�+ f(T d) dT .

We thus have

φT(s) =

∫
Ω+

|T|s−dpT(T) dT

=

∫ ∞
0

td(s−d)pT (t) dt

=
∞∑
ν=0

[d(s− d)]ν

ν!
µν{T}

= φT (d(s−d)+1) .

(72)

This implies that

µν{T} =
dν

dsν
φT(s)

∣∣∣∣
s=d

= dνµν{T} . (73)

Faá di Bruno’s formula is used to prove

κν{T} = dνκν{T} (74)

and the matrix-variate version of the formula yields
the MLCs of Z as

κν{Z} = µν{Z}

−
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{Z}µν−i{Z} .

(75)

The first MLCs are expressed as

κ1{Z} = µ1{Z} (76)
κ2{Z} = µ2{Z} − µ2

1{Z} (77)
κ3{Z} = µ3{Z} − 3µ1{Z}µ2{Z}+ 2µ3

1{Z} . (78)

We use Z = TW and (71) to prove that

κν{Z} = κν{W}+ dνκν{T} (79)

but, since the observable of multilook polarimetric
radar is C = Z/L = TW̃, we are more interested in
the κν{C}. With the κν{W} expanded, the MLCs
of C evaluate under the product model to

κ1{C} = ψ
(0)
d (L) + ln |Σ| − d(lnL− κ1{T})

(80)

κν{C} = ψ
(ν−1)
d (L) + dνκν{T} , ν > 1 (81)
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for a general texture variable with unspecified dis-
tribution. To obtain the MLCs of a specific distri-
bution, the texture variable log-cumulants κν{T},
such as those listed in Table II, must be inserted.

We finally note that sample MLMs, denoted
〈µν{C}〉, are calculated with the simple sample
mean estimator

〈µν{C}〉 =
1

N

N∑
i=1

(ln |Ci|)ν (82)

given a sample of N covariance matrices: C =
{Ci}Ni=1. Sample MLCs 〈κν{C}〉 are obtained from
(75) by combining sample MLMs instead of theo-
retical MLMs.

IV. APPLICATIONS

In this section we discuss application of matrix-
variate MKS. Before presenting specific examples
of MoMLC algorithms for parameter estimation
and demonstrating their effectiveness, we introduce
the MLC diagram. The MLC diagram is not an
application in its own right, but serves as a visuali-
sation tool, which efficiently explains some uses of
MKS and provides intuition about the MoMLC. It
is a straight-forward extension of the log-cumulant
diagrams used by Nicolas [2], [3] for univariate
MKS.

A. Matrix Log-Cumulant Diagrams

The MLC diagram generally displays a q-
dimensional space where each dimension repre-
sents one particular MLC with unique order ν. Let
ν1, · · · , νq be the orders of the chosen MLCs. In
this MLC space, we plot: (i) The manifolds spanned
by the theoretical MLCs that can be attained under
given models, and (ii) points that represent the em-
pirical sample MLCs computed from data samples.

Define ϑ as the vector that contains all texture
parameters of a certain distribution model. Thus,
ϑK = [α], ϑG0 = [λ] and ϑU = [ξ, ζ]T are the
respective texture parameter vectors of the K, G0

and U distribution. Assume that the parameters L
and Σ are fixed, such that the theoretical MLCs only
vary through ϑ. The MLC space manifold spanned
by a general model is denoted

M(ϑ) =
{(
κν1(ϑ), κν2(ϑ), · · · , κνq(ϑ)

)}
(83)
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Fig. 4. Matrix log-cumulant diagram showing the manifolds of
theoretical MLCs for the complex Wishart, K, G0 and U distribution,
as well as a collection of sample MLCs representing forest (green),
ocean (blue), urban area (red) and a wheat crop (black).

where we have changed the notation of the theoret-
ical νth-order MLC from κν{C} to κν(ϑ) to em-
phasise that the points that constitute the manifold
are functions of ϑ. The dimension of the manifold
M(ϑ) is the same as the dimension of the vector ϑ,
that is, the number of texture parameters. We next
define the vector of sample MLCs as

〈κ(C )〉 =
[〈κν1(C )〉, · · · , 〈κνq(C )〉] (84)

and note that the sample MLCs have also been given
a new notation, 〈κν(C )〉, to stress that they are
computed from the data sample C .

Like Nicolas [2], [3], we concentrate on diagrams
that plot the third-order log-cumulant against the
second-order log-cumulant. We have shown that
under the polarimetric product model, MLCs of
order two and higher are independent of the scale
matrix Σ. Assuming that the equivalent number of
looks, L, is a global constant for the data set, this
diagram is of particular interest since it displays the
solitary impact of the texture parameters upon the
models. Therefore, it also provides valuable insight
about how the texture parameters can be estimated.

As seen in Figure 4, the manifolds of our selected
distribution models have different dimensions. The
Wishart distribution has no texture parameters and
is therefore represented by a point (black circle),
which can be viewed as a zero-dimensional man-
ifold. The texture of the K and G0 distribution is
parametrised by one parameter, thus they are repre-
sented by a curve (red and blue, respectively), which
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is a one-dimensional manifold. The U distribution
has two texture parameters and is represented by a
surface (yellow area), which is a two-dimensional
manifold. This is valid also when plotting higher-
dimensional tuples of MLCs, that is, for MLC
spaces with dimension higher than two. The dashed
coordinates are centred at the point which represents
the Wishart distribution. The impact of nonzero
texture on the MLCs is measured relative to these
axes.

Given a sample C = {Ci}Ni=1 of covariance ma-
trices, we can compute the sample MLCs of order
ν1, · · · , νq and plot them as a point in MLC space.
This has been done in Figure 4 for one forest sample
(shown as green points) and one wheat crop sample
(black) taken from a polarimetric NASA/JPL AIR-
SAR C-band image of Flevoland, The Netherlands.
We have also plotted sample MLCs computed from
an ocean sample (blue) and an urban area sample
(red) extracted from an image of San Francisco,
United States, captured by the same sensor. Both
images are from 1989. Multiple points have been
obtained for each class by bootstrap sampling [42]
of C .

MoMLC parameter estimation can now be visu-
alised as a projection of the sample MLCs onto the
manifolds representing the models. The manifolds
are functions of the texture parameters, and the
parameter values at the projection point is assigned
as an estimate. An estimator based on a single νth-
order MLC relies on a projection in the direction
normal to the νth-order coordinate. This is illus-
trated in Figure 5, displaying estimators for the K
distribution texture parameter α based on the point
(〈κ3(C )〉, 〈κ2(C )〉) in MLC space, which is shown
as the black symbol ’×’. The estimators denoted
α̂(〈κ2〉) and α̂(〈κ3〉) are based on the second-order
and third-order MLC equation, respectively. The
dashed arrows visualise their projection of the sam-
ple MLC point onto the red curve representing the K
distribution. Note that an estimator requires at least
as many sample MLCs as the number of texture
parameters to be estimated. For instance, the K and
G0 distribution require one, while the U distribution
requires two sample MLCs. The estimators α̂(〈κ2〉)
and α̂(〈κ3〉) use exactly the required number.

As indicated, it is possible to design an estimator
which is based on more sample MLCs than there are
texture parameters, which implies that more infor-
mation about ϑ is extracted and C is utilised more

−8 −6 −4 0 2 4
1

2

3

4

5

6

7

κ
3
{C}

κ 2{C
}

 

 

α(〈κ
3
〉)

α(〈κ
2
〉)

α(〈κ
2
〉,〈κ

3
〉)

∧

∧

∧
(〈κ

3
〉,〈κ

2
〉)

U
K

G0

W

Fig. 5. MLC space interpretation of three estimators of the K
distribution texture parameter α. The first estimator is based on
〈κ2{C}〉, the other is based on 〈κ3{C}〉, and the third is based
on both.

efficiently. One way to combine the information
contained in multiple sample MLCs is to derive
a squared Mahalanobis distance (d2

M ) between the
sample MLC point and the points on the model
manifold. The estimation problem then reduces to a
minimisation of the distance measure with respect to
ϑ. To find an expression for d2

M , we must derive the
(approximate) mean values and covariance matrix of
the sample MLCs.

The minimum of d2
M defines a new projection of

the sample MLC point onto the model manifold, as
illustrated by the solid arrow in Figure 5. The sam-
ple MLC point is projected onto the point on the K
distribution curve that minimises d2

M , and the asso-
ciated value of α defines the estimate α̂(〈κ2〉, 〈κ3〉).
We can see this estimate as a weighted mean of
α̂(〈κ2〉) and α̂(〈κ3〉). The information content of
an individual sample MLC is proportional to its
precision (i.e., inverse variance), and determines its
contribution to the overall estimate. The shape of
the sample MLC clusters in Figure 4 shows that
the sample variance increases with MLC order, as
expected.

A detailed derivation of the Mahalanobis distance
is given in [43], where we also discuss the cou-
pling of the estimation problem and the problem
of measuring goodness-of-fit (GoF) for distribution
models. The geometrical interpretation of distances
in MLC space in terms of model fit is intuitive.
We also find it much easier to observe deviations
between data and model in MLC space than by
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comparing data histograms with model densities,
which is the alternative normally resorted to in
the literature. This point is highlighted in [39]. In
[43] we derive the sample distribution of d2

M , such
that formal GoF testing can be performed, which
conforms with visual inspection of model fit in the
MLC diagram.

B. Parameter Estimation
In this section, we discuss MKS-based estima-

tion algorithms for parameters of the distributions
presented in Table I.

1) Equivalent number of looks: The equivalent
number of looks, L, can be estimated from the
first-order MLC equation of the complex Wishart
distribution. This yields the maximum likelihood
solution proposed in [38], [44]:

ψ
(0)
d (L̂)− d ln L̂ = 〈κ1{C}〉 − ln |Σ| (85)

where we must insert the first-order sample MLC
and an estimate of Σ before solving for L by
numerical methods. We use the maximum likelihood
estimate of Σ, defined as the sample mean of C .

In principle, we can also solve for L from the
MLC equations of the product model in (11) and
avoid the Wishart constraint. However, these MLC
equations contain texture parameters already from
the first order, and all unknown parameters must
therefore be estimated jointly from a system of
equations. Higher-order MLCs can also be used
to improve the estimator in (85). None of these
approaches have been attempted in practice.

In the following, we shall assume that an estimate
of L has been provided and treat it as a known
constant.

2) Matrix-variate K Distribution: Under this dis-
tribution, the texture parameter α is related to the
second-order MLC through

κ2{C} = d2ψ(1)(α) + ψ
(1)
d (L) (86)

and the estimate α̂A1 is obtained by solving

ψ(1)(α̂A1) =
〈κ2{C}〉 − ψ(1)

d (L)

d2
. (87)

Alternative estimators are proposed in Frery et
al. [45] and Doulgeris et al. [46], where the former
is just a mono-pol version of the latter. Doulgeris’
estimator is

α̂D =
d(Ld+ 1)

LV̂ar{τ} − d
(88)

where τ = tr
(
Σ̂
−1

C
)

. The derivation is shown in
Appendix B. Another approach taken by Freitas and
Frery et al. [25], [45] is to derive estimators from
fractional moments of the mono-pol intensity C. By
combining the half- and quarter-order moments they
found that

Γ2
(
α̂F + 1

4

)
Γ(α̂F ) Γ

(
α̂F + 1

2

) Γ2
(
L+ 1

4

)
Γ(L) Γ

(
L+ 1

2

) − 〈C 1
4 〉2

〈C 1
2 〉 = 0

(89)
which can be solved for α̂F . This method provides
one estimate per polarimetric channel. The final
estimate is an average of the mono-pol estimates.

Averaging over mono-pol estimates can also be
carried out for the mono-pol version of α̂A1 (i.e.,
with d = 1), which is the estimator derived by
Nicolas from univariate MKS [2], [3]. We denote
this estimator as α̂N and include it in the com-
parison in order to quantify the gain of using the
full polarimetric information contained in C with
respect to the information contained in intensity
channels only. On a historic note, we remark that
the mono-pol MKS-based estimator of Nicolas was
proposed earlier by Kreithen and Hogan [47] and
Blacknell [48], although without relating it to Mellin
transform theory.

The final estimator we present is the one we
have proposed in [43] based on multiple MLCs, as
discussed in Section IV-A. It is defined as

α̂A2 = arg
{

min
α

{
d2
M

}}
(90)

where the squared Mahalanobis distance

d2
M =

(〈κ〉 − κ)TK−1
(〈κ〉 − κ) (91)

contains the sample MLC vector 〈κ〉=[〈κ2〉, 〈κ3〉]T ,
its mean vector κ = E{〈κ〉} = [κ2, κ3]T , and the
covariance matrix
K = Cov{〈κ〉}

=

[
κ4+2κ2

2 κ5+6κ2κ3

κ5+6κ2κ3 κ6+9κ2κ4+9κ2
3+6κ3

2

]
.

(92)

The sample MLCs are fixed after a data sample
is collected, and the minimisation is performed by
varying κ and K, that both depend on α through
the theoretical MLCs.

Figure 6 and 7 show bias and variance of all
estimators, obtained from Monte Carlo simulations
with L = 10 and α = 10. They clearly show that the
estimators based on the full polarimetric covariance
matrix (α̂A1 , α̂D and α̂A2) outperform those based
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Fig. 6. Bias of estimators for the K distribution texture parameter
α as function of sample size N .
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Fig. 7. Variance of estimators for the K distribution texture
parameter α as function of sample size N .

on intensities only (α̂N and α̂F ), both in terms of
bias and variance. From the latter group, α̂F ranks
slightly better than α̂N . For the truly polarimetric
estimators, we see that α̂A2 has the superior bias
properties, while the bias of α̂A1 and α̂D is very
similar. Estimator α̂A2 is best also when it comes
to variance, but is approached by α̂A1 as the sample
size increases.

3) Matrix-variate G0 Distribution: For this dis-
tribution with texture parameter λ, the second-order
MLC is

κ2{C} = d2ψ(1)(λ) + ψ
(1)
d (L) (93)
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Fig. 8. Bias of estimators for the G0 distribution texture parameter
λ.
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Fig. 9. Variance of estimators for the G0 distribution texture
parameter λ.

which leads to an estimator λ̂A1 by solving

ψ(1)(λ̂A1) =
〈κ2{C}〉 − ψ(1)

d (L)

d2
(94)

that is identical to α̂A1 . The method of Doulgeris,
derived in Appendix B, yields

λ̂D =
2LV̂ar{τ}+ d(Ld− 1)

LV̂ar{τ} − d
(95)

while the fractional moment estimator is an average
of the mono-pol estimates defined as the solution of

Γ2
(
λ̂F− 1

4

)
Γ(λ̂F )Γ

(
λ̂F− 1

2

) Γ2
(
L+ 1

4

)
Γ(L)Γ

(
L+ 1

2

)−〈C 1
4 〉2

〈C 1
2 〉 = 0. (96)
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In addition, an estimator λ̂N is obtained by aver-
aging the mono-pol estimates produced by λ̂A1 for
d = 1, while λ̂A2 is defined in the same way as α̂A2 ,
as given by (90).

We have performed Monte Carlo simulations
for the estimators of λ with G0 distributed data
parametrised by L = 10 and λ = 10. The bias
and variance results in Figure 8 and 9 are very
similar to those reported for the estimators of α.
The main difference is that λ̂D, which does not use
MKS, is superseded in terms of variance by the
MKS estimators based on intensities only, λ̂N and
λ̂F , for N > 200. The preferred estimator is λ̂A2 ,
due to its superior bias and variance. Estimator λ̂A1

has a comparably low variance for N > 100, which
makes it a good alternative, due to a slightly lower
complexity.

4) U Distribution: This distribution has two tex-
ture parameters, ξ and ζ . The estimation procedure
therefore requires two MLC equations:

κ2{C} = d2
(
ψ(1)(ξ) + ψ(1)(ζ)

)
+ ψ

(1)
d (L) (97)

κ3{C} = d3
(
ψ(2)(ξ)− ψ(2)(ζ)

)
+ ψ

(2)
d (L) (98)

from which we can jointly determine the estimates
ξ̂A1 and ζ̂A1 by solving the equation system:

ψ(1)(ξ̂A1) + ψ(1)(ζ̂A1) =
〈κ2{C}〉 − ψ(1)

d (L)

d2
(99)

ψ(2)(ξ̂A1)− ψ(2)(ζ̂A1) =
〈κ3{C}〉 − ψ(2)

d (L)

d3
. (100)

The alternative estimators are ξ̂N and ζ̂N , that is.,
the averaged mono-pol estimates obtained from ξ̂A1

and ζ̂A1 with d = 1. These have been implemented
by the authors of [49].

The results for the U distribution estimators are
similar to those reported for the K and G0 distribu-
tions, and are therefore omitted.

V. CONCLUSIONS

We have used a matrix-variate Mellin transform
previously introduced by Mathai to extend the
framework that we call Mellin kind statistics from
the univariate to the matrix-variate case describing
multilook polarimetric radar data. We have further
defined the Mellin kind characteristic function and
cumulant generating function for the matrix-variate
case, and used them to define matrix log-moments
and matrix log-cumulants. We have then proven the

matrix-variate Mellin convolution theorem, and used
it to develop expressions for Mellin kind statistics of
the multilook polarimetric product model. Specific
expressions for important distributions, such as the
matrix-variate K distribution, G0 distribution and U
distribution, have been given.

Mellin kind moments and cumulants are com-
puted on a logarithmic scale, and the impact of
speckle and texture therefore can be separated in
the matrix-variate log-cumulant domain, which pro-
vides a valuable analysis tool for the doubly stochas-
tic product model. Simulations have demonstrated
the superior bias and variance properties possessed
by estimators derived with the method of matrix log-
cumulants. We have also used matrix log-cumulant
space as a visualisation tool to provide intuition
about estimation algorithms and model assessment
that uses Mellin kind statistics. The mathematical
tractability and the simplicity of the obtained ex-
pressions show, together with the excellent estima-
tor properties documented, that the matrix-variate
Mellin transform is a natural tool for analysis of
multilook polarimetric radar data.

APPENDIX A
MELLIN KIND STATISTICS FOR THE COMPLEX

WISHART DISTRIBUTION

Let W ∼ W�d (L,Σ) have the complex Wishart
distribution given in (7). The matrix-valued Mellin
transform of pW(W;L,Σ), and hence the Mellin
kind CF of the random matrix W, is then

φW(s) = MW{pW(W)}(s)
=

∫
Ω+

|W|s−dpW(W) dW

=
Γd(L+s−d)

Γd(L)

|Σ|L+s−d

|Σ|L

×
∫

Ω+

pW(W;L+ s− d,Σ) dW

=
Γd(L+s−d)

Γd(L)
|Σ|s−d .

(101)

Accordingly, the Mellin kind CGF is

ϕW(s) = lnφW(s)

= ln Γd(L+s−d)

− ln Γd(L) + (s−d) ln |Σ| .
(102)
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We shall use the result

d

dL
Γd(L) =

d

dL

(
πd(d−1)/2

d−1∏
i=0

Γ(L− i)
)

= πd(d−1)/2

d−1∑
i=0

 d

dL
Γ(L− i)

d−1∏
j=0

j 6=i

Γ(L− j)


= πd(d−1)/2

d−1∏
j=0

Γ(L− j)
d−1∑
i=0

ψ(0)(L− i)

= Γd(L)ψ
(0)
d (L)

(103)

which is obtained by straightforward application of
the product rule of differentiation. We have also
utilised the well-known relation

d

dL
Γ(L) = Γ(L)ψ(0)(L) (104)

and the multivariate polygamma function introduced
in (46). Remark that (103) is a multivariate version
of (104). We also need the result

d

dL
ψ

(ν)
d (L) = ψ

(ν+1)
d (L) (105)

whose proof is trivial.
Equations (103) and (105) are used to deduce

the derivatives of ϕW(s), denoted as ϕ
(ν)
W (s) =

dν

dsν
ϕW(s). The MLCs can then be written as

κν{W} = ϕ
(ν)
W (d). By repeated differentiation of

(102) and induction we find that

κ1{W} = ψ
(0)
d (L) + ln |Σ| (106)

κν{W} = ψ
(ν−1)
d (L) , ν > 1 . (107)

Let X be a d×d complex positive definite matrix
and A an equal size real constant matrix. The
scaling property of the matrix-variate MT,

M{f(AX)}(s) = |A|−sM{f(X)}(s) , (108)

is easily verified by evaluating the integral with
a simple substitution of variables. For A = a Id
with a real and positive scalar constant a, we get
M{f(aX)}(s) = a−dsM{f(X)}(s). This is used to
show that

M{pW̃(W̃)}(s)
= Ld

2

M{pW(LW̃)}(s)
= L−d(s−d)M{pW(W)}(s) .

(109)

Recall the definition of W̃ = W/L, which gives

φW̃(s) = L−d(s−d)φW(s)

=
Γd(L+s−d)

Γd(L)

( |Σ|
Ld

)s−d
.

(110)

This is used to show that

ϕW̃(s) = ϕW(s)− (s− d)d lnL (111)

and the MLCs of W̃ follow immediately as given
in (48) and (49).

APPENDIX B
DOULGERIS’ PARAMETER ESTIMATORS

Doulgeris et al. [46] derived their estimator for
the texture parameter of the matrix-variate K distri-
bution from moments of the Hotelling-Lawley trace.
This is an important test statistic in multivariate
statistics, defined as

τ = tr(Σ−1C) . (112)

It is easily shown that E{τ} = d, and the variance
of τ is

Var{τ} = E{T 2}
(
d2 +

d

L

)
− d2 . (113)

Given a choice of the texture RV T , we may solve
for the texture parameter to obtain an estimator. For
instance, with T ∼ γ̄(α) we have E{T 2} = (α +
1)/α, which yields the following estimator for the
K distribution parameter α:

α̂D =
d(Ld+ 1)

LV̂ar{τ} − d
. (114)

This estimator was given in [46]. The variance of
τ is estimated with a standard variance estimator
from a population of Hotelling-Lawley traces, {τi =
tr(Σ−1Ci)}Ni=1.

When T ∼ γ̄−1(λ), we have E{T 2} = (λ −
1)/(λ− 2), which is used to derive

λ̂D =
2LV̂ar{τ}+ d(Ld− 1)

LV̂ar{τ} − d
(115)

for the G0 distribution parameter λ. The method is
not pursued for the U distribution, since it would
require derivation of higher moments of τ to solve
for both texture parameters.
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Goodness-of-Fit Tests for Multilook Polarimetric
Radar Data Based on the Mellin Transform

Stian Normann Anfinsen, Student Member, IEEE, Anthony Paul Doulgeris, Student
Member, IEEE and Torbjørn Eltoft, Member, IEEE

Abstract—The advent of polarimetric synthetic aperture
radar has spurred a growing interest in statistical models
for complex-valued covariance matrices, which is the
common representation of multilook polarimetric radar
images. In this paper, we respond to an emergent need
by proposing statistical tests for the simple and composite
goodness-of-fit problem for a class of compound matrix
distributions. The tests are based on Mellin kind matrix
cumulants. These are derived from a novel characteristic
function for positive definite Hermitian random matrices,
defined in terms of a matrix-variate Mellin transform
instead of the conventional Fouriér transform, and belong
to a new framework for statistical analysis of multilook po-
larimetric radar data recently introduced by the authors.
The cumulant-based tests are easy to compute and the
asymptotic sampling distribution of the test statistic is chi-
square distributed in the simple hypothesis case. Under the
composite hypothesis, the sampling distribution is obtained
by Monte Carlo simulations. We evaluate the power of the
proposed goodness-of-fit tests with simulated data. We also
use them to assess the fit of several matrix distributions to
real data acquired by Radarsat-2 in fine quad polarisation
mode.

Index Terms—Radar polarimetry, synthetic aper-
ture radar, probability density functions, goodness-of-
fit, parameter estimation, log-statistics, Mellin transform,
matrix-variate statistics

I. INTRODUCTION

STATISTICAL modelling of radar data in terms
of probability density functions (PDFs) is an

important exercise which forms the basis of many
radar image analysis techniques. Experience with
single polarisation radar data has shown that they
are well suited for parametric modelling, and a
number of distribution families have been proposed
for the purpose. Some are based on the simplistic
assumption that the scattering coefficient is com-
plex Gaussian random variable (RV), such as the

The authors are with the Department of Physics and Technol-
ogy, University of Tromsø, NO-9037 Tromsø, Norway (e-mail:
{stian.normann.anfinsen;torbjorn.eltoft}@uit.no).

Rayleigh distribution for single-look amplitude data,
the exponential distribution for single-look intensity
data, and the gamma distribution for multilook
intensity data. Other models, such as the Weibull
distribution and the log-normal distribution, provide
added flexibility and the ability to model data with
non-Gaussian characteristics (See [1] for a review
of all the mentioned models). One of the most
successful and accurate distribution models for radar
data is arguably the K distribution family [1], [2],
derived from the doubly stochastic product model,
and also described as a compound distribution. The
more recent G0 distribution family [3] is another
versatile model derived with the same approach.

The complex Wishart distribution [4] was the first
model proposed for multilook polarimetric radar
data, and is still the most common, largely due to
its mathematical tractability. It allows for a simpli-
fied analysis based on the assumption of Gaussian
statistics for the complex scattering coefficients,
which translates to complex Wishart statistics in
the domain of the polarimetric covariance matrix.
Its shortcomings has been amended with alternative
compound densities, such as the polarimetric K dis-
tribution [5], G0 distribution [6], and U distribution
[7]. These distributions account for non-Gaussianity
and thus provide a more realistic model for high
resolution radar images, whose scale increases the
presence of heterogeneous targets and partially de-
veloped speckle.

In most publications where new PDFs have been
proposed for the polarimetric covariance matrix,
they have been justified only by visual compar-
ison of fitted model densities against histograms
of data for a single polarimetric channel at the
time. One exception is [8], where the likelihood
function was used to assess model fit for a set of
different compound models. However, the use of
the likelihood function as a goodness-of-fit measure
is generally discouraged, since it does not carry
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much information as a test statistic [9]. None of the
standard goodness-of-fit tests (such as Pearson’s χ2

test, the Kolmogorov-Smirnov test, the Anderson-
Darling test or the Cramér-von Mises test) have
seemed applicable to the matrix distributions under
study. They require binning and ordering of data
points, or an expression for the cumulative distri-
bution function (CDF), which will in this case be
defined on the cone of positive definite Hermitian
random matrices. Although such a matrix CDF has
been defined in the complex Wishart case [10], it
is difficult to evaluate for a compound distribution.
No adequate alternative has, to the best of our
knowledge, been suggested in the literature, which
is what we try to remedy.

In [11], Li and Papodopoulos provide a gen-
eral framework for the design of moment-based
goodness-of-fit tests. Their simple idea is to com-
pare sample moments with population moments,
and to combine these in a test statistic which
is asymptotically normal or χ2 distributed, which
makes it easy to perform hypothesis testing or
to obtain a p-value for a given data sample. We
have applied their theory to a set of compound
distribution models for the polarimetric covariance
matrix, based on the matrix log-cumulants (MLCs)
introduced in [12], [13].

MLCs are matrix-variate generalisations of the
log-cumulants derived and successfully applied to
the analysis of single polarisation synthetic aperture
radar (SAR) data in a series of publications by
Nicolas et al. (See e.g. [14], [15], [16]). We give a
geometrical interpretation of the approach by using
a diagram of the space spanned by the MLCs
to illustrate the statistical distance between given
models and empirical data. This is a polarimetric
extension of the diagram introduced by Nicolas for
the univariate case [14], [15]. It provides intuition
about the capabilities of the different models, and
how they adapt to the non-Gaussian data found in
textured and heterogeneous areas.

The appropriateness of non-Gaussian models in-
crease as the spatial resolution improves. Thus, our
developments are highly relevant to high resolution
SAR instruments. However, the methods are in
principle applicable to data from any imaging radar,
and are therefore presented as general analysis tools
for radar image data.

Section II gives the necessary theoretical back-
ground. It presents the data format, the distribution

models and the Mellin kind statistics (MKS) used
in our derivations. Section III presents the proposed
goodness-of-fit tests, after an introductory definition
of the problem and review of the literature. In Sec-
tion IV we present the results of simulations with
random generated data, in also test the model fit to
some real data samples. We give our conclusions in
Section V.

Our convention for notation is that scalar values
are denoted as lower or upper case standard weight
characters, vectors are lower case boldface charac-
ters, and matrices are upper case boldface charac-
ters. Except for scalar random variables, we do not
distinguish between random variables and instances
of random variables, as such can be ascertained
through context. A list of acronyms is provided for
convenience:

NOMENCLATURE

CDF cumulative distribution function
CF characteristic function
EDF empirical distribution function
GoF goodness-of-fit
MAL maximum asymptotic likelihood
MLC matrix log-cumulant
MLM matrix log-moment
MoLC method of log-cumulants
MoMLC method of matrix log-cumulants
MT Mellin transform
MKS Mellin kind statistics
PDF probability density function
RV random variable
SAR synthetic aperture radar

II. POLARIMETRIC RADAR DATA

A. Data Format

The measurable of a polarimetric radar is the
Sinclair scattering matrix

S =

[
Sxx Sxy
Syx Syy

]
, (1)

or equivalently, the scattering vector s, which is
simply the vectorised version of S:

s = vec(ST ) =


Sxx
Sxy
Syx
Syy

 , (2)
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where (·)T and vec(·) denote the transposition and
vectorisation operator, respectively. The entries of
S and s are the scattering coefficients of the d
polarimetric channels. These are complex-valued,
dimensionless numbers that describe the transfor-
mation of incident to backscattered electromagnetic
field for all combinations of two orthogonal transmit
and receive polarisations, denoted by x and y.

In the following, we shall only be concerned
with multilook complex data. Multilooking is an
averaging process, applied either during or after
focusing of the radar image, which suppresses the
noise-like effect of speckle at the cost of reduced
spatial resolution. Assume that a set {s`}L`=1 of
scattering vectors are averaged. We refer to s` as a
look and L as the number of looks. Then, multilook
polarimetric radar data is represented in the intensity
domain by:

C =
1

L

L∑
`=1

s`s
H
` , (3)

or a linearly transformed version of C, where (·)H
is the Hermitian (conjugate transposition) operator.
We refer to C ∈ Ω+ ⊂ �d×d as the multilook
polarimetric covariance matrix, and note that C is a
random matrix defined on the cone Ω+ of positive
definite complex Hermitian matrices.

B. Distribution Models

We base our work upon the multilook polarimet-
ric product model [6], which decomposes C as

C = T W̃ . (4)

The strictly positive and unit mean scalar random
variable T models texture, which is here defined
as spatial variation in the mean backscatter due to
target variability. It represents natural variations in
the radar return for pixels that could be labelled as
one class, as opposed to variation attributed to the
inherent interference produced by coherent imaging.
The latter contribution, known as speckle or clutter,
is modelled by W̃ ∼ sW�d (L,Σ), a scaled complex
Wishart matrix1, which follows the distribution

ffW(W̃;L,Σ) =
LLd

Γd(L)

|W̃|L−d
|Σ|L etr(−LΣ−1W̃) (5)

1The matrix W = LfW follows a true complex Wishart distribu-
tion, denoted W ∼ W�

d (L,Σ) [4].

where Σ = E{W̃} is the scale matrix, | · | is
the determinant, etr(·) = exp(tr(·)) where tr(·) is
the trace operator, Γd(L) is the multivariate gamma
function of the complex kind [6], and L ≥ d assures
that C is nonsingular.

The simplest model for the PDF of C assumes
that the scattering coefficients are jointly circular
complex Gaussian. This is strictly justified only for
homogeneous regions of the image characterised by
fully developed speckle and no texture, which may
be expressed as the probability P (T = 1) = 1, or
fT (t) = δ(t − 1), where δ(·) is the Dirac delta
function. This results in C ∼ sW�d (L,Σ).

When the PDF of T is not degenerate, we obtain a
more complicated distribution for C, which depends
on the distribution of T through

fC(C) =

∫ ∞
0

fC|T (C|t)fT (t) dt (6)

where C|T ∼ sW�d (L,Σ). For instance, we obtain
the matrix-variate K distribution [6] for gamma
distributed texture (denoted T ∼ γ̄(α)), the matrix-
variate G0 distribution [6] for inverse gamma dis-
tributed texture (T ∼ γ̄−1(λ)), and the U distribu-
tion [7] for texture that follows a Fisher-Snedecor
distribution (T ∼F̄(α, λ)).

The distributions are shown in Table I. All have
been normalised to unit mean, indicated by the
bar over the distribution symbol. The normalisation
explains why the number of parameters is one less
than for the nominal distribution. The K distribution
and the U distribution have got their name from
special functions that occur within their PDF: re-
spectively Kν(·), the second kind modified Bessel
function of order ν, and U(·, ·, ·), the second kind
confluent hypergeometric Kummer function.

C. Mellin Kind Statistics
Mellin kind statistics for complex random ma-

trices were defined in [12], [13] and evaluated for
the distributions in Table I. We here repeat the
expressions needed in the rest of the paper.

Let C ∈ Ω+ be a d × d complex covariance
matrix whose PDF is fC(C). The complex matrix-
variate Mellin transform (MT) of a general real-
valued function g(C) : Ω+→� is

G(s) = M{g(C)}(s)
=

∫
Ω+

|C|s−dg(C) dC
(7)
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TABLE I
TEXTURE AND COVARIANCE MATRIX DISTRIBUTIONS UNDER THE DOUBLY STOCHASTIC PRODUCT MODEL

fT (t) of texture variable T fC(C) of covariance matrix C Ref.

Constant δ(t− 1) sW�
d (Σ, L) LLd

Γd(L)
|C|L−d
|Σ|L etr(−LΣ−1C) [4]

γ̄(α) αα

Γ(α)
tα−1 exp (−αt) Kd(Σ, L, α) 2|C|L−d(Lα)

α+Ld
2

|Σ|LΓd(L)Γ(α)

`
tr(Σ−1C)

´α−Ld
2 Kα−Ld

`
2
p
Lα tr(Σ−1C)

´
[5]

γ̄−1(λ) (λ−1)λ

Γ(λ)
1

tλ+1 exp
`−λ−1

t

´ G0
d(Σ, L, λ) LLd|C|L−d

Γd(L)|Σ|L
Γ(Ld+λ)(λ−1)λ

Γ(λ)

`
L tr(Σ−1C) + λ− 1

´−λ−Ld [6]

F̄(α, λ) Γ(α+λ)
Γ(α)Γ(λ)

α
λ−1

( α
λ−1 t)

α−1

( α
λ−1 t+1)α+λ Ud(Σ, L, α, λ)

LLd|C|L−d
Γd(L)|Σ|L

Γ(α+λ)
Γ(α)Γ(λ)

“
α
λ−1

”
Γ(Ld+ λ)

× U`Ld+ λ,Ld− α+ 1, L tr(Σ−1C)α/(λ− 1)
´ [7]

with transform variable s ∈ �, whenever the integral
exists. It generally does for the matrix distributions
we study. The MT of fC(C) is defined as the Mellin
kind characteristic function (CF) of the random
matrix C:

φC(s) = E{|C|s−d} = M{fC(C)}(s) . (8)

When it exists, the νth-order matrix log-moment
(MLM) is derived from

µν{C} = E{(ln |C|)ν} =
dν

dsν
φC(s)

∣∣∣∣
s=d

. (9)

The Mellin kind cumulant generating function is
defined as

ϕC(s) = lnφC(s) (10)

and the νth-order matrix log-cumulant (MLC) as

κν{C} =
dν

dsν
ϕC(s)

∣∣∣∣
s=d

. (11)

MLMs and MLCs are related by

κν{C} = µν{C}

−
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{C}µν−i{C} .

(12)

For instance, the first three MLCs are

κ1 = µ1 (13)
κ2 = µ2 − µ2

1 (14)
κ3 = µ3 − 3µ1µ2 + 2µ3

1 (15)

where the argument of the MLMs and MLCs has
been suppressed for brevity. We continue this prac-
tice in the following, whenever there is no confusion

about what stochastic entity the statistic is computed
from. More relations between moments and cumu-
lants are given in Appendix A.2

The νth-order sample MLM of C, denoted
〈µν{C}〉, can be computed from a set of n indepen-
dent and identically distributed covariance matrices,
C = {Ci}ni=1, using the sample mean estimator:

〈µν{C}〉 =
1

n

n∑
i=1

(log |Ci|)ν . (16)

The sample MLCs 〈κν{C}〉 are computed from (12)
with the population MLMs and MLCs replaced by
〈µν{C}〉 and 〈κν{C}〉.

For the multilook polarimetric product model, the
Mellin kind CF is expressed as [13]

φC(s) = φT (d(s−d)+1)φfW (17)

where φT (s) is the univariate Mellin kind CF of
a general texture RV T . The Mellin kind CF of a
scaled complex Wishart matrix is [13]

φfW(s) = Lds
Γd(L+s+d)

Γd(L)
|Σ|(s−d) . (18)

This yields the population MLCs

κν{C} = κν{W̃}+ dνκν{T} . (19)

2Remark that (12) is valid for moments and cumulants of all kinds
(i.e., moments of scalars, vectors or matrices – logarithmic or not),
since the formula relies on the definition of the cumulant generating
function as the natural logarithm of the CF. It is easily derived using
Leibniz’ rule for differentiation of a product [17].
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TABLE II
MELLIN KIND STATISTICS OF UNIVARIATE DISTRIBUTIONS FOR REAL POSITIVE TEXTURE VARIABLES

fT (t) Characteristic function φT (s) Log-cumulants κν(T )

κ1 = ψ(0)(α)− ln(α)
γ̄(α) α1−s Γ(α+s−1)

Γ(α) κν>1 = ψ(ν−1)(α)

κ1 = −ψ(0)(λ) + ln(λ− 1)
γ̄−1(λ) (λ− 1)s−1 Γ(λ+1−s)

Γ(λ) κν>1 = (−1)νψ(ν−1)(λ)

κ1 = ψ(0)(α)− ψ(0)(λ) + ln
`
λ−1
α

´
F̄(α, λ)

`
λ−1
α

´s−1 Γ(α+s−1)
Γ(α)

Γ(λ+1−s)
Γ(λ) κν>1 = ψ(ν−1)(α) + (−1)νψ(ν−1)(λ)

We note that the speckle contribution

κ1{W̃} = ψ
(0)
d (L) + ln |Σ| − d lnL (20a)

κν>1{W̃} = ψ
(ν−1)
d (L) (20b)

is separated from the texture contribution (i.e., the
second term of (19)). The texture part is determined
by the distribution of the univariate RV T . Univari-
ate Mellin kind characteristic functions, φT (s), and
univariate log-cumulants, κν{T}, are listed in Table
II for the texture distributions presented in Table I.

Finally note the following key property of the
MLCs: They depend only on the texture parameters
and L for ν > 1, while the first-order MLC also
depends on Σ.

III. GOODNESS-OF-FIT TESTS

A. Theory and Literature Review

1) Definitions: A formal GoF test3 is a procedure
for testing the null hypothesis H0 that a set of
random variates follow a given PDF. The procedure
measures the conformity or the discrepancy of the
data sample with respect to the distribution model.
It provides a test statistic, which is used to decide
whether H0 should be accepted or rejected [18],
[19]. From the test statistic and its sampling dis-
tribution, we can also compute the p-value, defined
as the probability of obtaining a realisation of the
test statistic at least as extreme as the one observed.

When the model is fully specified, i.e., all param-
eters of the hypothesised PDF are known, we say
that H0 is a simple hypothesis. If some or all of

3We distinguish formal methods from informal methods by their
use of probabilistic decision theory, as opposed to e.g. graphical
methods that prepare for visual inspection and decisions that are more
or less subjective.

the parameters are unknown and must be estimated,
then H0 is a composite hypothesis and defines a
composite GoF problem [20], [21], [22]. In the latter
case, we measure the fit to a distribution family,
rather than a specific distribution. The alternative
hypothesis H1 is in the context of our work a
composite one. It simply states that H0 is wrong
and contains no other information about the data
distribution.4

We will discuss both simple and composite GoF
tests. The composite GoF problem describes most
practical applications, but represents a far more
difficult setting, since the sampling distribution of
the test statistic becomes much harder to derive.
It will generally depend on the functional form of
the distribution family under H0, the true values of
the unknown parameters and the estimator used to
determine them, as well as the available number of
samples [22]. For some distributions, it has been
possible to find modifications of known GoF tests
for the simple hypothesis, that allow us to use the
same formalism in the composite case. This be-
comes increasingly difficult as the complexity of the
distribution and the dimension of the data increase.
In many cases, the sampling distribution must be
simulated by computer intensive methods, such as
Monte Carlo methods and bootstrap sampling.

2) Types of GoF tests: There are many different
approaches to formal GoF testing [18]. Some of the
most important categories are:
• Pearson’s χ2 test and variations thereof
• Tests based on the empirical distribution func-

tion (EDF)

4What we describe here are one sample GoF tests. The two sample
test (or generally the k-sample test) assesses whether or not two (or
k) samples come from the same distribution.
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• Tests based on the empirical characteristic
function (ECF)

• Tests based on entropy
• Tests based on moments
• Tests based on regression and correlation

The χ2 tests [18], [23] require binning of the data
domain, which is not suitable for matrix distribu-
tions defined on Ω+. The EDF and the ECF are
estimates of the CDF and the CF, respectively.
Among the EDF-based tests, we find the pop-
ular Kolmogorov-Smirnov, Anderson-Darling, and
Cramér-von Mises tests [18]. These have been ap-
plied to distributions of radar intensity [24], but as
far as we know, not to matrix distributions. This
is possibly because matrix-variate CDFs are little
known, difficult to derive, and also since the relevant
CDFs contain a hypergeometric function of matrix
argument (or another special function), which is
difficult to implement and costly to compute.

Models can be represented equivalently by the
PDF, the CDF and the CF, as these functions can be
retrieved from each other. It is therefore logical that
tests based on the ECF [25], [26] or sample entropy
[27] (computed by integration over PDF estimates)
yield results comparable to those based on the EDF,
which is indeed the case. Scalar moments, on the
other hand, only capture certain aspects of a distri-
bution, and do not assemble the same amount of sta-
tistical information. Still, moment-based approaches
to GoF testing have been proposed [11], [28], and
these have inspired the tests that we present in the
next section.

Before algorithms are presented, we outline three
different problem settings that affect the design of
the GoF test, and discuss their relation to practical
applications:

Case I (All parameters specified): This is the simple
hypothesis case, where we want to test data against
a fully specified distribution. A potential application
could be within a model-based image analysis algo-
rithm, e.g. segmentation, classification or clustering.
The GoF test could be used to decide whether
separate segments, classes or clusters should be
splitted or merged, for cluster validation, or to
estimate the number of classes. The assumption that
the distribution of the segments/classes/clusters are
fully specified, is of course a simplification, which
may be accepted when the number of samples is
high, or in order to obtain an efficient algorithm.

Practical applications where the parameters are truly
known, are hard to exemplify.

Case II (Texture parameters unknown): The com-
posite hypothesis case with known scale matrix Σ
and unknown texture parameters is also not very
realistic in practice. However, in a setting where
we test a number of competing distribution models
derived from the multilook polarimetric product
model, it is possible to disregard the scale matrix.
Note that the maximum likelihood estimate of the
scale matrix is the same for all models. Further
recall from (19) and (20) that the MLCs of order
ν > 1 are independent of Σ, and depend only on
the texture parameters and L, which is assumed a
known constant. By using an MLC-based GoF test,
we only need to estimate the texture parameters, and
can thereby avoid the nuisance parameter Σ.

Case III (All parameters unknown): Finally assume
that all parameters are unknown and must be esti-
mated. This is the most difficult, and also the most
realistic setting, which is faced in the composite
hypothesis case by all other GoF tests than those
founded on MLCs, where the scale matrix cannot
be decoupled from the texture parameters.

B. Simple Hypothesis Tests

In this section we derive GoF tests for the
simple hypothesis case. The tests are based on
sample MLCs. We start by deriving the asymptotic
distribution of sample MLMs and sample MLCs.
Afterwards, we propose test statistics whose true
sampling distribution is approximated by the asymp-
totic sampling distribution.

1) Asymptotic Distribution of the Sample MLMs:
Let C = {C1, · · · ,Cn} be a size n sample of
independent and identically distributed covariance
matrices drawn from the PDF fC(C). The νth-order
sample matrix log-moment

〈µν〉 =
1

n

n∑
i=1

(log |Ci|)ν (21)

is a random variable with mean E{〈µν〉} = µν
and variance Var{〈µν〉} = σ2

µν/n, where σ2
µν =

Var{(log |C|)ν}. Note that the explicit reference
to the random matrix variable will be suppressed
hereafter in the notation of both MLMs and MLCs,
in writing µν instead of µν{C}. By the central limit
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theorem,
√
n(〈µν〉 − µν) D−→ N (0, σ2

µν ) (22)

denoting convergence in distribution to a univariate
Gaussian RV with zero mean and variance σ2

µν .
If the MLMs of C exist up to order ν, then all

sample MLMs up to this order have expectation.
If C has MLMs up to order 2ν, then all sample
MLMs have finite variance. More specifically, we
have according to [29]:

E{〈µν〉} =
1

n

n∑
i=1

E {(log |Ci|)ν} = µν (23)

and

Cov{〈µυ〉, 〈µν〉}

= E

{(
1

n

N∑
i=1

(log |Ci|)υ − µυ
)

×
(

1

n

N∑
j=1

(log |Cj|)ν − µν
)}

=
1

n

(
µυ+ν − µυµν

)
(24)

with
Var{〈µν〉} =

1

n

(
µ2ν − µ2

ν

)
(25)

as a special case of (24).
A multivariate version of the asymptotic distribu-

tion for the vector of joint sample log-moments can
be formulated. Let

〈µν〉 = [〈µ1〉, 〈µ2〉, · · · , 〈µν〉]T (26)

and
µν = [µ1, µ2, · · · , µν ]T , (27)

such that E{〈µν〉} = µν . The central limit theorem,
in conjunction with the Cramér-Wold theorem [30],
proves that

√
n(〈µν〉 − µν)

D−→ Nν(0,Mν) (28)

where Nν(·, ·) denotes a ν-variate normal distribu-
tion, the mean vector 0 is a length ν column of
zeros, and the ν × ν covariance matrix

Mν = nE{(〈µν〉 − µν)(〈µν〉 − µν)
T} (29)

has entries [Mν ]ij = nCov{〈µi〉, 〈µj〉} = µi+j −
µiµj , which can be verified from (24).

2) Asymptotic Distribution of the Sample MLCs:
From the asymptotic distribution of the sample
MLMs, we now derive the asymptotic distribution
of the sample MLCs. The MLCs can be written
as a combination of the MLMs up to the same
order, following (12), with the first six moment-to-
cumulant relations listed in Appendix A. In general,
we may write

κν = gν(µ1, µ2, · · · , µν) = gν(µν) (30)

with the family of moment-to-cumulant transfor-
mation functions, gν : Rν → R, determined by
(12). The same relations are valid when population
moments are replaced with sample moments.

We assume in the following that all MLMs of
C exist up to order 2ν. Hence, so do the MLCs
up to order ν, as defined by (30). Furthermore, we
know that gν(µν) is a polynomial in the MLMs, and
therefore continuously differentiable. The multivari-
ate delta method proposition [30] states that, given
the result in (28), then

√
n(〈κν〉 − κν) D−→ N (0, σ2

κν ) (31)

where we define

σ2
κν = Var{κν}

= nVar{〈κν〉} = ∇gTν Mν∇gν
(32)

using

∇gν =

[
∂gν(µν)

∂µ1

, · · · , ∂gν(µν)

∂µν

]T
. (33)

This is the asymptotic distribution of the sample
MLCs. In order to put this result into practical use,
we derive the variances

σ2
κ1

= κ2 (34a)
σ2
κ2

= κ4 + 2κ2
2 (34b)

σ2
κ3

= κ6 + 9κ4κ2 + 9κ2
3 + 6κ3

2 (34c)

by evaluating (32). We note that specification of
the asymptotic distribution for the νth-order sample
MLC requires knowledge of the population MLCs
up to order 2ν.

As for the sample MLMs, we can extend (31)
to the multivariate case to obtain the asymptotic
distribution of the vector of joint sample MLCs. We
introduce the notation

〈κν〉 = [〈κ1〉, 〈κ2〉, · · · , 〈κν〉]T (35)
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and
κν = [κ1, κ2, · · · , κν ]T , (36)

such that E{〈κν〉} = κν . Then, (31) together with
the Cramér-Wold theorem again asserts that

√
n(〈κν〉 − κν)

D−→ Nν(0,Kν) , (37)

where the scaled covariance matrix

Kν = nE{(〈κν〉 − κν)(〈κν〉 − κν)
T} (38)

has entries [Kν ]ij = nCov{〈κi〉, 〈κj〉}. Let Jν de-
note the Jacobian matrix of the moment-to-cumulant
transformations up to order ν. Thus Jν has entries
[Jν ]ij = ∂gi(µν)/∂µj and Jν = [∇g1, · · · ,∇gν ]T .
The asymptotic covariance matrix of the sample
MLCs can then be written as

Kν = JνMνJ
T
ν , (39)

where Mν is the asymptotic covariance matrix of
the sample MLMs, as defined in (29). The matrices
Mν , Jν and Kν are given in Appendix A for ν=4.

3) Normal Approximation: We are now ready
to test the simple null hypothesis H0 stating that
the sample C = {Ci}ni=1 is drawn from a PDF
fC(C; Σ0,θ0) with specified parameters, where
Σ0 ∈ Ω+ is the scale matrix, θ0 ∈ Θ is a vector
of q texture parameters, and the parameter space
Θ is generally a subset of Rq. We generalise the
approach by using p sample MLCs of selected
orders {ν1, ν2, · · · , νp} in the test. The test is thus
based on the vector

〈κ〉 = [〈κν1〉, 〈κν2〉, · · · , 〈κνp〉]T , (40)

with mean vector

E{〈κ〉} = κ = [κν1 , κν2 , · · · , κνp ]T (41)

and scaled covariance matrix

K = nE
{(〈κ〉 − κ

)(〈κ〉 − κ
)T}

. (42)

The sampling distribution of 〈κ〉 depends on Σ0

and θ0 through MLCs up to order

2 νmax = 2 ·max{ν1, · · · , νp} , (43)

and we assume that they all exist. Under the multi-
normal assumption on 〈κ〉, these MLCs determine
the mean vector κ and scaled covariance matrix K.

If we use only one MLC in the test (p=1), then
〈κ〉 = 〈κν〉, where ν is the selected order, and we
can define the test statistic

Tν =
〈κν〉 − κν√
σ2
κν/n

D−→ N (0, 1) (44)

whose asymptotic sampling distribution under H0

is standard normal, as indicated. A test with size
(significance level) αc is given by

|Tν |
ω1

≷
ω0

zαc/2 . (45)

Here ω0 and ω1 denote acceptance and rejection of
H0, respectively. The threshold zαc/2 is the upper
αc/2 percentile of a standardised normal distribu-
tion, which must be inverted from

P (|Tν | > zαc/2) = 1− erf

(
zαc/2√

2

)
= αc (46)

with the Gauss error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt . (47)

We remark that the test statistic Tν is indexed by
the order of the MLC it is based on, and refer to ν
as the order of the normal approximation test.

4) Chi-square Approximation: The normal ap-
proximation test utilises only a single MLC at the
time, thus the GoF is measured with respect to a
limited aspect of the model distribution. We now
construct a test that utilises multiple sample MLCs,
and thereby captures more statistical information
about the data.

Consider the test statistic

Qp = n(〈κ〉 − κ)TK−1(〈κ〉 − κ) (48)

which uses information from the p MLCs in κ. The
asymptotic distribution of Qp follows readily from
the assumption of

√
n(〈κ〉 − κ)

D−→ Np(0,K) as

Qp
D−→ χ2(p) (49)

where χ2(p) denotes a central χ2 distribution with
p degrees of freedom. Most importantly, note that
the sampling distribution is independent of Σ0 and
θ0. A test with significance level αc is given by

Qp

ω1

≷
ω0

zαc . (50)
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Algorithm 1 MLC-based GoF test of the simple
hypothesis using a χ2 approximation of the test
statistic sampling distribution

1) Determine the significance level αc.
2) Determine the orders {ν1, · · · , νp} of the

MLCs used in the test.
3) From the dataset C of n covariance matrices,

compute the sample MLMs of the data up to
the maximum MLC order: max{ν1, · · · , νq}
with the sample mean estimator.

4) Use the obtained sample MLMs to compute
the required sample MLCs by means of the
moment-to-cumulant transformations.

5) Compute the population MLCs of the hypoth-
esised model up to twice the maximum MLC
order: 2 · max{ν1, · · · , νq}, by plugging the
known parameters into the parametric expres-
sions.

6) Use the population MLCs to form the mean
vector κ and the scaled covariance matrix K.

7) Compute the test statistic Qp, the threshold
zα, and perform the hypothesis test.

The threshold zαc is the upper αc percentile of the
χ2(p) distribution, found by inversion of

P (Qp>zαc) =

∫ ∞
zαc

(1/2)p/2

Γ(p/2)
t
p
2
−1e−

p
2dt = αc . (51)

A stepwise description of the GoF test based on a
χ2(p) approximation of the test statistic Qp is given
in Algorithm 1.

C. Composite Hypothesis Test
We next consider a test of a the composite null

hypothesis H0, declaring that the sample C is drawn
from a parametric distribution family fC(C; Σ,θ),
where the true parameters Σ0 and θ0 are unknown
and must be replaced by the estimates Σ̂ and θ̂. We
omit the normal approximation, since more power-
ful tests using multiple MLCs will be preferred, and
go straight to tests built upon 〈κ〉 for p>1.

1) Quadratic Test Statistic: We can safely as-
sume that the MLCs in κ are continuous function
of Σ and θ. Further assume that we have estimators
Σ̂(C ) and θ̂(C ) that produce consistent estimates
of Σ0 and θ0. It follows that κ(Σ̂, θ̂) and K(θ̂) will
be consistent estimates of κ(Σ0,θ0) and K(θ0),
where we have written κ and K with the (estimated)

parameters as arguments in order to highlight the
dependencies. We remark that K is a function of
MLCs of order ν ≥ 2, and therefore depends only
on θ, while κ is generally a function of both Σ
(when 〈κ〉 contains 〈κ1〉) and θ.

Define the test statistic

Q′p = n
(〈κ〉 − κ(Σ̂, θ̂)

)T
K(θ̂)−1

× (〈κ〉 − κ(Σ̂, θ̂)
) (52)

where the mean vector and the covariance matrix
from (48) have been replaced by estimates. The
exact sampling distribution of Q′p generally depends
on the sample size n, the true parameters Σ0 and
θ0, the estimators producing Σ̂ and θ̂, and the func-
tional form of fC(C; Σ,θ) [22]. We have not been
able to find any approximation for the sampling
distribution that works over a sufficiently wide range
of n and θ̂ values, and have therefore resorted to
Monte Carlo simulation.

2) Monte Carlo Simulation: The advantage of
Monte Carlo simulation is that we obtain a sampling
distribution which is accurate for low values of
n, and not only as we approach the asymptotic
limit. The downside is obviously the computational
cost. Since we are interested in tail probabilities of
the sampling distribution, we must generate a large
number m of realisations of Q′p: {Q′p(i)}mi=1. This
involves random generation of determinants |Ci|
under H0, which is much easier than generating the
full matrix data. We then compute sample MLCs
from the simulated data, and calculate the estimates
Σ̂ and θ̂ from them. An alternative would be to
random generate the sample MLCs directly from
their asymptotic multinormal sampling distribution.
We discard this option, because it would abandon
the accuracy obtained for finite n.

The biggest practical problem is that the true
parameters Σ0 and θ0 are unknown, and we do
not have a specified distribution to random gener-
ate from. It would be possible to choose a prior
distribution for the true parameters, conditioned on
the estimated parameters, which could take into
account the covariance matrix of the estimated
parameters. Our solution is simpler, and keeps the
computational requirements at an acceptable level:
We use the parameter estimates directly as a best
guess of the true parameters. The departure of the
estimated parameter values from the true ones will
inevitably affect the Monte Carlo simulated sample
of test statistics. We assume, nevertheless, that the
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resulting p-value will on average equal the one
we would have obtained from the true sampling
distribution. The validity of this assumption is tested
by simulations.

3) Estimation of model parameters: The param-
eter estimators are vital elements in the composite
GoF test. The maximum likelihood (i.e., sample
mean) estimator can be used for the scale matrix Σ
for all distributions derived from the product model.
However, our experience is that Σ can be excluded
from the computations with good results. The reason
is: Unless L is very large, the variance of Σ̂ is so
high that there is little information to be gained from
the first-order sample MLC about GoF. Instead, we
use higher-order sample MLCs (i.e., 〈κν>1〉) that are
independent of Σ, and need only be concerned with
estimators of θ.

The estimators that we shall use are based on
minimisation of Qp. Numerical results recently ob-
tained by the authors [13] show that these esti-
mators are superior to all known alternatives, both
in terms of bias and variance. We follow in the
footsteps of Parr and Schucany [31] and Boos [32],
among others, who discuss the coupling of the GoF
problem and the estimation problem. Both refer-
ences propose minimum distance estimators that
produce their estimates by minimising popular GoF
test statistics interpreted as distances between data
and model. In cases when the test statistic has an
asymptotic χ2 distribution, the approach has been
termed minimum chi-square estimation.

The method can also be classified as maximum
asymptotic likelihood (MAL) estimation, since the
asymptotic log-likelihood function under the multi-
normal assumption for 〈κ〉 is

`(Σ,θ|C ) = −1

2
ln |K(θ)|− 1

2n
Qp(Σ,θ)+C (53)

with C is a constant. Minimisation of (50) and
maximisation of (53) yield asymptotically equiva-
lent estimates.

We formally write our texture parameter estima-
tor as

θ̂ = arg
{

min
θ
{Qp}

}
(54)

and refer to it as the MAL estimator.
4) Implementation: The complete MLC-based

test for the composite problem is described in
Algorithm 2. As described in the previous section,
the computation of the test statistic Q′p is performed

Algorithm 2 MLC-based GoF test of the composite
hypothesis with Monte Carlo simulation of the test
statistic sampling distribution

1) Determine the significance level αc.
2) Determine the orders {ν1, · · · , νp} of the

MLCs used in the test.
3) From the dataset C of n covariance matrices

(or the dataset D = {|Ci|}ni=1 of correspond-
ing matrix determinants), compute the sample
MLMs of the data up to the maximum MLC
order: max{ν1, · · · , νq} with the sample mean
estimators.

4) Use the obtained sample MLMs to compute
the required sample MLCs by means of the
moment-to-cumulant transformations.

5) Estimate the texture parameters θ of the hy-
pothesised distribution model from the sample
MLCs with the MAL estimator and, if nec-
essary, the scale matrix Σ from C with the
maximum likelihood estimator.

6) Store the value of Q′p obtained in the joint
estimation of θ and minimisation of Qp.

7) Random generate m matrix determinant sam-
ples of size n under the hypothesised model.
For each sample, repeat step 3-5 and store the
simulated test statistics as {Q∗p(i)}mi=1.

8) Count the number of simulated test statistics
that are larger than the test statistic Q′p ob-
tained in step 6 and compute the fraction with
the respect to the number of Monte Carlo
simulations. This yields the p-value.

9) Perform the hypothesis test by comparing the
p-value to the significance level.

jointly with the estimation of the texture parameters
θ in an iterative search procedure. We have imple-
mented this using Brent’s optimisation algorithm
[33], which combines quadratic interpolation with
the golden section algorithm to achieve a good
compromise of speed and robustness.

After obtaining Q′p and θ̂, we Monte Carlo sim-
ulate the sampling distribution of Q′p. With θ̂ in
place of the unknown θ0, we random generate a
set D = {|Ci|}mi=1 of size n matrix determinant
samples under H0. This can be done efficiently with
a standard random generator of gamma variates.
Using these samples, we repeat the minimisation
procedure to produce a set {Q∗p(i)}mi=1 of m Monte
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Carlo simulated test statistics. These are used to
determine the p-value empirically as

pmc =
1

m

m∑
i=1

I(Q∗p(i)>Q′p) , (55)

where I(·) is the indicator function subject to the
superscripted condition. That is, we compute the
fraction of simulated Q∗p(i) that are larger than Q′p.
The Monte Carlo simulated p-value, pmc, is then
evaluated against the chosen significance level, αc,
in the test:

pmc

ω0

≷
ω1

αc . (56)

D. Geometrical Interpretation

We now give a geometrical interpretation of the
MLC-based GoF tests. Figure 1 introduces the MLC
diagram, where we plot the third-order MLC against
the second-order MLC to show simultaneously: (i)
the manifolds spanned by the theoretical population
MLCs that can be attained under given distribution
models, and (ii) points that represent the empirical
sample MLCs computed from data samples. A more
general definition is given in [13], together with
a discussion of MLC space manifolds and their
dimension, corresponding to the number of texture
parameters associated with the model. The sW�d dis-
tribution, with no texture parameters, is represented
by a point (black circle in the MLC diagram); the Kd
and G0

d distributions, with one texture parameter, are
represented by curves (red and blue, respectively);
and the Ud distribution, with its two texture parame-
ters, is represented by a surface (yellow). This is an
extension of the univariate log-cumulant diagram,
introduced by Nicolas in [14], [15].

Equations (19) and (20) show that MLCs with
order higher than two are independent of the scale
matrix Σ under the polarimetric product model.
Assuming that L is a global constant for the dataset,
a diagram with the selected MLC orders shows the
solitary impact of the texture parameters upon the
models. It provides insight about how the texture
parameters are estimated from MLCs (see [13]
for details), and also how the proposed GoF test
procedure is executed.

A sample MLC vector 〈κ〉 = [〈κ3〉, 〈κ2〉]T com-
puted from data is shown in the figure as the
black ’×’ symbol. In the simple GoF problem,
we measure the distance between the sample MLC
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Fig. 1. MLC space geometrical interpretation of the goodness-
of-fit test proposed for simple and composite hypotheses. The test
statistics Qp and Q′p are interpreted as distance between data (sample
MLC vector) and model (point on the manifold of population MLC
vectors).

vector and a given distribution model in terms of
Qp with p=2, where the test statistic is interpreted
as a distance measure. For instance, we measure
the distance between 〈κ〉 and the Kd distribution
with specified texture parameter α, represented in
MLC space by κ = [κ2(α), κ3(α)]. This distance,
Qp, is pictured as the upper leftmost arrow in
Figure 1. Then consider the composite problem.
For a fixed 〈κ〉, the distance Q′p is a function
of the texture parameters of a given model, and
can be minimised with respect to these. For a Kd
distribution hypothesis, we minimise the distance
with respect to α. The parameter value providing
a minimum of Q′p is the MAL estimate of α, as
defined in (54). The resulting distance, Q′p, is shown
as the lower rightmost arrow in the figure. Note
that Q′p is always the shortest statistical distance
to the manifold of population MLCs, and therefore
consistently underestimates Qp.

Parameter estimation is visualised as a projection
of a sample MLC vector onto the manifold repre-
senting the model. To test the GoF, we measure the
distance between data and model, and then assess
the probability of obtaining the resulting distance
using the sampling distribution of Qp or Q′p. We
note that the number of MLCs required by the
described GoF test procedure is one more than
the number of texture parameters. For instance, the
distance to the surface representing the Ud distribu-
tion must be measured with respect to a point in
three-dimensional MLC space, thus requiring three
sample MLCs.
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IV. RESULTS

In this section we use experiments with simulated
and real data to demonstrate the capabilities of the
proposed procedures for GoF testing.

A. Assessment of the χ2 Assumption
We first test the departure of the test statistic

Qp from the χ2 distribution for finite n. We have
simulated data from the scaled Wishart distribution
with L=4 number of looks, polarimetric dimension
d=3 and scale matrix

Σ0 = 10−4×
 35.8
−8.40−6.31 16.9
−0.45+0.45 −0.17−0.13 4.17

,
where the upper triangle is the complex conjugate
of the given lower triangle. The same scale matrix,
and hence the same polarimetric dimension, is used
in all the simulations of Section IV. The data are
tested against the simple hypothesis

H0 :C ∼ sW�d (L=4,Σ=Σ0).

The test statistic, Q2, is based on the second and
third-order MLC, and is evaluated for the sample
sizes n={8, 64, 512, 4096}.

The results in the top and middle panel of Fig-
ure 2 compares the asymptotic PDF, which is a
χ2 distribution with two degrees of freedom, with
empirical PDFs computed by the kernel density
estimator [34] from m = 10, 000 Monte Carlo
simulations of Q2. The figure shows that there is a
large discrepancy for small sample sizes, but the true
sampling distribution converges quickly towards the
χ2 approximation for moderate sample sizes of
n > 100.

The top and middle panel show the PDFs on
linear and logarithmic scale, respectively. The log-
arithmic scale emphasises the behaviour at the tail
of the distribution, which is critical in GoF testing,
and confirms that the approximation is good here
also. The fluctuations of the empirical PDFs around
the χ2(2) approximation for n= 512 and n= 4096
can be explained by estimator variance.

In the bottom panel, we compare the specified
size of GoF test with the measured size. The size
of a statistical hypothesis test is the same as the
significance level αc, defined as the probability of
incorrectly rejecting H0. Again, we see that the
specified and the measured size differ greatly for

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Test statistic Q
p

P
D

F

 

 

χ2(2)
n=8
n=64
n=512
n=4096

0 2 4 6 8 10

10
−2

10
−1

Test statistic Q
p

P
D

F

 

 

χ2(2)
n=8
n=64
n=512
n=4096

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Specified size

A
ct

ua
l s

iz
e

 

 

n=8
n=64
n=512
n=4096
n=∞

Fig. 2. Assessing validity of χ2(2) distribution model for Q2

with finite sample sizes. The simulated data follow the distribution
specified under H0 : C ∼ sW�

d (L = 4,Σ = Σ0). The plots show
estimated sampling distributions of Q2 on linear scale (upper panel)
and logarithmic scale (middle), and a diagram of specified test size
against measured test size (bottom) for various sample sizes n.
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small sample sizes, but converge quickly as n grows
past some hundred samples.

B. Simple Test Applied to Simulated Data

1) Test datasets for the simple hypotheses: Fig-
ure 3 shows the data used to assess the MLC-based
GoF test of the simple hypothesis. The MLC dia-
grams display the second and third-order population
MLC for the null hypothesis, marked by the symbol
’×’, and for the simulated datasets used as input
to the tests, marked by symbol ’+’. The respective
panels represent tests of the hypotheses:

H0 : C ∼ sW�d (L=4,Σ=Σ0) (top)
H0 : C ∼ Kd(L=4,Σ=Σ0, α=8) (middle)
H0 : C ∼ G0

d(L=4,Σ=Σ0, λ=8) (bottom).

The input data applied to the tests are matrix-variate
K, G0, and U distributed with different choices
of texture parameters, as specified in the figure.
The same datasets are shown in Figures 4 and 5
as marginal PDFs of a single polarimetric chan-
nel on linear and logarithmic scale, respectively.
All datasets have the same scale matrix, and the
marginal PDF is displayed with unit mean intensity
for illustration purposes.

When compared to Figure 3, we clearly see the
strength of the MLC diagram as a visualisation
tool in its ability to discriminate between datasets
with equal mean intensity, but different texture. The
datasets applied to the test of the Wishart hypothesis
have very similar statistical properties, and it diffi-
cult to visually separate the PDFs on linear scale
(Figure 4, upper panel). The statistical distances
between the datasets in the Kd and G0

d hypothesis
tests are larger, but it is still difficult to distinguish
well between many of the datasets, especially on
linear scale. On logarithmic, the distinct behaviour
at the tail becomes more visible. Nevertheless, the
MLC diagram is far superior to the marginal PDFs
in terms of ability to discriminate between datasets.

2) Performance results: The results of the simple
hypothesis GoF tests are shown in Figure 6, which
displays the power of the tests as function of the
sample size. The power of a statistical test is defined
as the probability of correctly rejecting H0. The test
of the sW�d hypothesis (shown in the upper panel)
performs best for the Kd distributed dataset with
texture parameter α=16 (hereafter denoted Kd(16))
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Fig. 3. Data applied to the χ2(2) tests of H0 : C ∼ W�
d (L =

4,Σ = Σ0) (top), H0 : C ∼ K(L = 4,Σ = Σ0, α = 8) (middle),
and H0 : C ∼ G0(L= 4,Σ = Σ0, λ= 8) (bottom), with population
MLCs of the datasets represented by symbols ’+’.

and worst for theKd(64) dataset. The ranking of the
datasets in terms of detectability, i.e. test power, cor-
responds well at first eye-cast with their statistical
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Fig. 4. Data applied to the χ2(2) tests of the simple hypotheses H0 :
C ∼ W�

d (L=4,Σ=Σ0) (top), H0 : C ∼ K(L=4,Σ=Σ0, α=8)
(middle), and H0 : C ∼ G0(L=4,Σ=Σ0, λ=8) (bottom), shown
as marginal PDFs with unit mean intensity on linear scale.

distance from H0, as perceived in the MLC diagram
of Figure 3; The further away from H0 in the MLC
diagram, the more easily a dataset is rejected by the
test. The same observation is made for the test of the
Kd hypothesis (middle panel) and the G0

d hypothesis
(bottom panel).

Upon closer examination of the Kd(8) and G0
d(8)

hypothesis tests, we note that its seems more diffi-
cult to distinguish datasets that are separated along
the κ3 axis than along the κ2 axis. For instance,
the test of H0 : C ∼ Kd(8) has problems with
the G0

d(8) distributed dataset, just like the test of
H0 : C ∼ G0

d(8) has with Kd(8) data. Both tests
struggle most of all with the dataset Ud(14, 14),
whose separation from the null hypotheses is very
small along κ2. This is logical, as the detectability
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Fig. 5. Data applied to the χ2(2) tests of the simple hypotheses H0 :
C ∼ W�

d (L=4,Σ=Σ0) (top), H0 : C ∼ K(L=4,Σ=Σ0, α=8)
(middle), and H0 : C ∼ G0(L=4,Σ=Σ0, λ=8) (bottom), shown
as marginal PDFs with unit mean intensity on logarithmic scale.

of the first two cases will rely completely on 〈κ3〉,
and the latter mainly on 〈κ3〉. Furthermore, the
higher order of 〈κ3〉 with respect to 〈κ2〉 implies that
it has larger variance, and therefore less discrimi-
native power. The difference in estimability of κ2

and κ3 also explains why several curves in Figure 6
cross each other, indicating that the internal ranking
of detectability changes with sample size.

3) Interpretation in terms of equiprobability
curves: The reasoning above is supported by the
numerical results of Figure 7, which shows curves of
equiprobable sample MLCs under different models.
In the upper panel, we see equiprobability curves of
a sW�d model, a Kd(16) model and a G0

d(16) model
for a sample size of n=1024. The multiple ellipses
represent the set of significance levels:
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Fig. 6. Power of the Qp test of the simple hypotheses H0 : C ∼
W�
d (L = 4,Σ = Σ0) (top), H0 : C ∼ K(L = 4,Σ = Σ0, α = 8)

(middle), and H0 : C ∼ G0(L = 4,Σ = Σ0, λ = 8) (bottom) at
the αc = 5% significance level with ν = {2, 3} for various data
distributions, as function of sample size n.
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Fig. 7. Top panel: Equiprobability curves defining the
{10, 20, 30, · · · , 90}th percentiles of the models: C ∼ W�

d (L =
4,Σ = Σ0) (black ellipses), C ∼ W�

d (L = 4,Σ = Σ0, α = 16)
(red) and C ∼ W�

d (L= 4,Σ = Σ0, λ= 16) (blue) for N = 1024
samples based on Q2 ∼ χ2(2) with ν = {2, 3}. Middle panel:
Equiprobability curves defining the 50th percentile of the model
K(L= 4,Σ = Σ0, α= 16) based on Q ∼ χ2(2) with ν = {2, 3}
as a function of sample size N . Bottom panel: 95th percentile
equiprobability curves for sample size N = 1024 of the datasets
used to test the χ2 test of H0 : C ∼ K(L=4,Σ=Σ0, α = 8).
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αc={10, 20, · · · , 90}%. We see that the equiprob-
ability ellipses extend much further along the κ3

axis than along the κ2, as explained in the pre-
vious. The orientation of the ellipses depends on
the covariance between 〈κ2〉 and 〈κ3〉, which is a
function of L and the texture parameters, as seen
from the expression given in Appendix A. However,
the covariance value is dominated by L, and the
orientation of the equiprobability ellipses therefore
appears nearly constant. We also observe a large
overlap between the ellipses of the Kd(16) model
and the G0

d(16) model, which means that there will
be much confusion when testing either model using
input data drawn from the other. This is exactly what
we have experienced.

The middle panel of Figure 7 shows the evolution
of the equiprobability ellipses for the Kd(16) model
at the αc=50% significance level as a function of n.
It explicates the difficulty of GoF testing for small
sample sizes due to the large statistical variation of
the sample MLCs. The bottom panel again displays
the datasets applied to the test of the Kd(8) hypothe-
ses, but this time as equiprobability ellipses in the
MLC diagram for n=1024. The null hypothesis is
shown as a ’×’ symbol, surrounded by an ellipse
(filled with pink), which delimits its acceptance
region at the αc = 0.05 level. The other ellipses
are the 95th percentile equiprobability curves of all
datasets applied to the test of the Kd(8) hypothesis,
with colours and line styles corresponding to those
used and defined in Figure 4 and 6. The intersection
areas between the H0 ellipse and the dataset ellipses
can be approximately related to the probability of
falsely accepting H0 with the respective dataset
as input, which is equal to one minus the test
power. This interpretation corresponds with the test
powers measured in the middle panel of Figure 6
for n=1024.

C. Composite Test Applied to Simulated Data

1) Test datasets for the composite hypotheses:
For the tests of the composite GoF hypothesis, we
assume that the number of looks, L, is known or can
be estimated for the dataset as a whole (See [35] for
a review of estimation procedures). The scale matrix
and the texture parameters are unspecified. We avoid
the problem of estimating Σ by using tests based on
the second and third order MLC only. The texture
parameters are estimated with the MAL estimator
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Fig. 8. Rejection rate of the Q′p test of the composite hypotheses:
H0 : C ∼ K(L,Σ, α) (top) and H0 : C ∼ G0(L,Σ, λ) (bottom)
at the αc = 5% significance level with ν = {2, 3} for various data
distributions, as function of sample size n.

described in Section III-C3 and evaluated in [13].
The test statistic Q′p is applied to two composite
hypotheses:

H0 : C ∼ Kd(L=4,Σ, α)

H0 : C ∼ G0
d(L=4,Σ, λ)

No dedicated test for the sW�d distribution is per-
formed in the composite hypothesis case. Because
the sW�d distribution has no texture parameters that
need to be estimated, the composite test of a sW�d
hypothesis reduces to the simple test when it is
based on MLCs of order ν = 2 and higher.

The datasets applied to the composite tests are
the same that we applied to the simple tests. These
are presented in Figure 3-5. For the test of the Kd
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hypothesis, we limit the testing to one Kd distributed
dataset, in addition to the sW�d distributed dataset,
noting that the sW�d distribution is a special case
of the Kd distribution obtained as a limiting case
when α → ∞. These datasets are used to check
whether we meet the specified test size with the
algorithm based on Monte Carlo simulation of the
sampling distribution for the test statistic Q′p. The
same approach is taken for the test of the G0

d

hypothesis, and we equivalently note that the G0
d

converges in distribution to the sW�d distribution as
λ→∞.

2) Performance results: Figure 8 shows the re-
sults of the composite GoF test of the Kd hypothesis
(upper panel) and the G0

d hypothesis (bottom panel).
Note that the figures present rejection rate, instead
of test power. The explanation is: When the input
dataset belongs to the distribution family under
H0, the rejection rate is the probability of falsely
rejecting H0, which is the same as the test size.
When the input dataset belongs to a different family,
the rejection rate is the probability of correctly
rejecting H0, previously defined as the test power.
The tests are performed at the αc=0.05 significance
level.

Because we have used the same input data and the
same test sizes, the performance of the composite
tests can be directly compared to the simple tests
in Figure 6. For the test datasets that belong to
another distribution family than H0, the test power
increases with n as expected, but at a slower rate
than for the simple tests. The ranking of the datasets
in terms of detectability has changed, and we do not
observe any crossing of the rejection rate curves,
as we did in Figure 6. This may reflect that the
sampling distributions of Q′p and Qp are different,
but also that the Monte Carlo simulation method
yields the true sampling distribution, while the χ2

approximation used for the simple tests is an ap-
proximation, whose validity increases with n. The
approximately flat curves at the 0.05 rejection rate
level depict the measured test size when the input
dataset satisfy H0. If we disregard fluctuations that
can be attributed to expected statistical variations of
the Monte Carlo simulations, the measured test size
seems to meet the specified test size. The exception
is for sW�d distributed input data with small sample
sizes, where the measured size exceeds the specified
size.

D. Composite Test Applied to Real Data

It remains to test the GoF tests against real data.
We have selected three datasets acquired by the
Radarsat-2 C-band SAR instrument in fine quad po-
larisation mode. The scenes are from: 1) Flevoland,
The Netherlands, 2) San Francisco, USA and 3)
Oberpfaffenhofen, Germany. From the full scenes,
we have extracted the subsets shown in the upper
row of Figures 9-11. From each subset, we have
cropped four image samples, selected to be as
homogeneous as possible. The size of each image
sample is n = 16 × 16 = 256 pixels. We make
the simplifying assumption that the pixel represent
independent measurements, even though they are in
reality correlated.

The image samples are outlined by the small
coloured squares in the upper row images, and
enlarged versions are shown in the middle row of
the figures. The bottom row of each figure shows
an MLC diagram, where sample MLCs of each
homogeneous image sample has been plotted on
top of the population MLC manifolds of the sW�d ,
Kd and G0

d distribution. Multiple sample MLCs are
obtained from each image sample by collecting 64
bootstrap samples of size nbs = 128 from the total
n = 256 covariance matrix samples. This way, we
can visualise the statistical spread of the sample
MLC distribution, which differs a lot between the
image samples. The equivalent number of looks was
estimated to L=8.0.

From the Flevoland subset in Figure 9, we have
extracted a water sample (magenta coloured square),
an urban sample (cyan square), and two vegeta-
tion samples, labelled A and B (orange and in-
digo squares). The false colour RGB images are
composites made from intensity channels of the
Pauli decomposition [36]. The well-known colour
interpretation of so-called Pauli images in terms
of scattering mechanisms tells us that the blue
water sample is dominated by surface scattering, the
pinkish urban sample by double bounce scattering,
and the green vegetation A sample by volume scat-
tering. The turquoise appearance of the vegetation
B sample reveals a mixture of volume and surface
scattering.

In the MLC diagram, the collection of sample
MLCs for the water, vegetation A and the vegetation
B sample (shown as magenta, orange and indigo
dots, respectively) are all well clustered. The clus-
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Fig. 9. Top: Subset of Radarsat-2 fine quad polarisation mode image
of Flevoland, The Netherlands, acquired on 2 March 2008. Middle:
Homogeneous samples of a water body, urban area, and two vegetated
areas (labelled A and B). Bottom: MLC diagram with sample MLCs
computed from the image samples.
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Fig. 10. Top: Subset of Radarsat-2 fine quad polarisation mode
image of San Francisco, United States, acquired on 9 March 2008.
Middle: Homogeneous samples of a water body, a vegetated area,
and two urban areas (labelled A and B). Bottom: MLC diagram with
sample MLCs computed from the image samples.
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Fig. 11. Top: Subset of Radarsat-2 fine quad polarisation mode
image of Oberpfaffenhofen, Germany, acquired on 6 March 2008.
Middle: Homogeneous samples of a vegetated area (labelled A), an
urban area, a vegetated area (labelled B), and a water body. Bottom:
MLC diagram with sample MLCs computed from the image samples.

TABLE III
p-VALUES OF GOF TESTS FOR FLEVOLAND DATASET

Water Urban Veget. A Veget. B

sW�
d (L,Σ) 2.7% 0% 0% 0.1%

Kd(L,Σ, α) 7.1% 10.8% 10.0% 5.7%

G0
d(L,Σ, λ) 7.2% 11.4% 12.3% 5.1%

TABLE IV
p-VALUES OF GOF TESTS FOR SAN FRANCISCO DATASET

Water Veget. Urban A Urban B

sW�
d (L,Σ) 0% 0% 0% 0%

Kd(L,Σ, α) 6.5% 3.5% 13.0% 12.1%

G0
d(L,Σ, λ) 5.5% 8.4% 7.6% 7.3%

TABLE V
p-VALUES OF GOF TESTS FOR OBERPFAFFENHOFEN DATASET

Veget. A Urban Veget. B Water

sW�
d (L,Σ) 0% 0% 0% 6.3%

Kd(L,Σ, α) 2.3% 13.9% 5.9% 7.6%

G0
d(L,Σ, λ) 3.8% 7.7% 11.9% 7.7%
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ters may seem to fall close the black square, rep-
resenting the sW�d distribution, and also the red
and blue line, corresponding to the Kd and G0

d

distribution, respectively. The sample MLCs for the
urban sample have a wide spread, and fall into the
region between the Kd and G0

d distribution curves,
occupied by the Ud distribution. The p-values of
the composite GoF tests, computed from the com-
plete image samples and presented in Figure III,
show that neither model is a very good fit to the
image samples. All image samples fail the sW�d
distribution test on the 5% level. They all pass the
Kd distribution test and the G0

d distribution test on
the 5% level, the urban sample and the vegetation
A sample also pass on the 10% level by a small
margin, but the highest p-value recorded is a modest
12.3%.

From the San Francisco subset in Figure 10, we
have extracted a water sample (magenta square),
a vegetation sample (cyan square), and two urban
samples, labelled A and B (orange and indigo
squares). The urban samples are distinguished by
their respective pink and green tinged tone. The
green appearance of the urban B sample occurs
because the city blocks are aligned at an angle
to the radar, inducing a strong cross-polarised re-
turn [37], which may be mistakenly interpreted
as volume scattering. The MLC diagram reveals
that both urban samples have the same statistical
texture properties. Their sample MLCs have a large
variance, and are located in the Ud distribution
region, characteristic of scattering from a mixture of
urban objects. The vegetation sample has moderate,
but pronounced texture, while the water sample is
closer to the sW�d distribution. The p-values in
Table IV gives the judgement of the GoF tests: The
sW�d distribution in a bad fit. The Kd distribution
hypothesis is passed by the water sample on the
5% level, and by the urban samples on the 10%
level. The G0

d distribution hypothesis is passed by
all samples, but only at the 5% level.

The image samples selected from the Oberpfaf-
fenhofen subset in Figure 11 are two vegetation
samples, labelled A and B (magenta and orange
squares), an urban sample (indigo square) and a
water sample (cyan square). In the Pauli images, the
vegetation samples seem to be distinguished mainly
by their intensity. The MLC diagram shows that the
vegetation B sample has more texture than the vege-
tation A sample, and that both are located relatively

close to the Kd distribution curve. The water sample
appears to be close to the sW�d distribution, while
the urban sample MLCs lies in the Ud distribution
region. The p-values in Table V show that only the
water sample passes the sW�d distribution test at the
5% level. The vegetation B sample and the water
sample pass the Kd distribution test at the 5% level,
and the urban sample at the 10% level. The urban
sample and the water sample pass the G0

d distribution
test at the 5% level, and the vegetation B sample
pass at the 10% level.

V. CONCLUSIONS

We have proposed goodness-of-fit tests for com-
posite matrix distributions derived under the multi-
look polarimetric product model. These are based
on a newly developed framework for statistical
analysis of polarimetric radar data, called matrix-
variate Mellin kind statistics. The test procedure can
be applied to both simple and composite hypotheses.
We have tested them on simulated data for the
scaled Wishart distribution, the Kd distribution and
the G0

d distribution. The simulations prove that the
sampling distribution of the test statistic in the
simple hypothesis case is well approximated by
the χ2 distribution for moderate sample sizes and
upwards. In the composite hypothesis case, we must
resort to Monte Carlo simulations to find the sam-
pling distribution for the test statistic. This approach
has a higher computational cost, but produces the
true sampling distribution regardless of the sample
size. Assessment of the test power proves that the
tests are useful contributions that provide a hitherto
missing formal procedure for model selection. Ex-
periments with real data from the Radarsat-2 C-band
instrument demonstrate the utility of the tests.

APPENDIX A
MOMENT AND CUMULANT RELATIONS

This appendix provides explicit expressions for
conversion between moments and cumulants, which
is needed in the computations of the MLC-based
GoF tests. It also presents covariance matrices of
the sample moments and sample cumulants, and
relations between them. The transformation are
valid for all kinds of moments and cumulants, only
requiring that the cumulant generating function is
the logarithm of the moment generating function.
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The first six moment to cumulant transformations
are:

κ1 = µ1 , (57)
κ2 = µ2 − µ2

1 , (58)
κ3 = µ3 − 3µ1µ2 + 2µ3

1 , (59)
κ4 = µ4 − 4µ1µ3 − 3µ2

2 + 12µ2
1µ2 − 6µ4

1 , (60)
κ5 = µ5 − 5µ1µ4 − 10µ2µ3 + 20µ2

1µ3

+ 30µ1µ
2
2 − 60µ3

1µ2 + 24µ5
1 ,

(61)

κ6 = µ6 − 6µ1µ5 − 15µ2µ4 + 30µ2
1µ4

− 10µ2
3 + 120µ1µ2µ3 − 120µ3

1µ3

+ 30µ3
2 − 270µ2

1µ
2
2 + 360µ4

1µ2

− 120µ6
1 .

(62)

The first eight cumulant to moment transformations
are:

µ1 = κ1 , (63)
µ2 = κ2 + κ2

1 , (64)
µ3 = κ3 + 3κ2κ1 + κ3

1 , (65)
µ4 = κ4 + 4κ3κ1 + 3κ2

2 + 6κ2κ
2
1 + κ4

1 , (66)
µ5 = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ

2
1

+ 15κ2
2κ1 + 10κ2κ

3
1 + κ5

1 ,
(67)

µ6 = κ6 + 6κ5κ1 + 15κ4κ2 + 15κ4κ
2
1

+ 10κ2
3 + 60κ3κ2κ1 + 20κ3κ

3
1 + 15κ3

2

+ 45κ2
2κ

2
1 + 15κ2κ

4
1 + κ6

1 ,

(68)

µ7 = κ7 + 7κ6κ1 + 21κ5κ2 + 21κ5κ
2
1

+ 35κ4κ3 + 105κ4κ2κ1 + 35κ4κ
3
1

+ 70κ2
3κ1 + 105κ3κ

2
2 + 210κ3κ2κ

2
1

+ 35κ3κ
4
1 + 105κ3

2κ1 + 105κ2
2κ

3
1

+ 21κ2κ
5
1 + κ7

1 ,

(69)

µ8 = κ8 + 8κ7κ1 + 28κ6κ2 + 28κ6κ
2
1

+ 56κ5κ3 + 168κ5κ2κ1 + 56κ5κ
3
1

+ 35κ2
4 + 280κ4κ3κ1 + 210κ4κ

2
2

+ 420κ4κ2κ
2
1 + 70κ4κ

4
1 + 280κ2

3κ2

+ 280κ2
3κ

2
1 + 840κ3κ

2
2κ1

+ 560κ3κ2κ
3
1 + 56κ3κ

5
1 + 105κ4

2

+ 420κ3
2κ

2
1 + 210κ2

2κ
4
1 + 28κ2κ

6
1 + κ8

1 .

(70)

Recall that M4 and K4 was defined as the
covariance matrices of the sample moment vector
〈µ4〉 = [〈µ1〉, 〈µ2〉, 〈µ3〉, 〈µ4〉]T and the sample
cumulant vector 〈κ4〉 = [〈κ1〉, 〈κ2〉, 〈κ3〉, 〈κ4〉]T ,

respectively. These are related by

K4 = J4M4J
T
4 (71)

with the fourth-order Jacobian matrix of the moment
to cumulant transformations given by

J4 =


1 0 0 0
−2µ1 1 0 0

−3(µ2 − 2µ2
1) −3µ1 1 0

J41 J42 −4µ1 1

 (72)

where

J41 = −4(µ3 − 6µ1µ2 + 6µ3
1) , (73)

J42 = −6(µ2 − 2µ2
1) . (74)

Explicit expressions for the elements of the sam-
ple moment covariance matrix are given as

[M]11 = κ2 (75)
[M]12 = κ3 + 2κ1κ2 (76)
[M]13 = κ4 + 3κ1κ3 + 3κ2

2 + 3κ2
1κ2 (77)

[M]14 = κ5 + 4κ1κ4 + 10κ2κ3 + 6κ2
1κ3

+ 12κ1κ
2
2 + 4κ3

1κ2

(78)

[M]22 = κ4 + 4κ1κ3 + 2κ2
2 + 4κ2

1κ2 (79)
[M]23 = κ5 + 5κ1κ4 + 9κ2κ3 + 9κ2

1κ3

+ 12κ1κ
2
2 + 6κ3

1κ2

(80)

[M]24 = κ6 + 6κ1κ5 + 14κ2κ4 + 14κ2
1κ4

+ 10κ2
3 + 56κ1κ2κ3 + 16κ3

1κ3 + 12κ3
2

+ 36κ2
1κ

2
2 + 8κ4

1κ2

(81)

[M]33 = κ6 + 6κ1κ5 + 15κ2κ4 + 15κ2
1κ4

+ 9κ2
3 + 54κ1κ2κ3 + 18κ3

1κ3 + 15κ3
2

+ 36κ2
1κ

2
2 + 9κ4

1κ2

(82)

[M]34 = κ7 + 7κ1κ6 + 21κ2κ5 + 21κ2
1κ6

+ 34κ3κ4 + 102κ1κ2κ4 + 34κ3
1κ4

+ 66κ1κ
2
3 + 102κ2

2κ3 + 192κ2
1κ2κ3

+ 30κ4
1κ3 + 96κ1κ

3
2 + 84κ3

1κ
2
2 + 12κ5

1κ2

+ κ7
1

(83)

[M]44 = κ8 + 8κ1κ7 + 28κ2κ6 + 28κ2
1κ6

+ 56κ3κ5 + 168κ1κ2κ5 + 56κ3
1κ5 + 34κ2

4

+ 272κ1κ3κ4 + 204κ2
2κ4 + 408κ2

1κ2κ4

+ 68κ4
1κ4 + 280κ2κ

2
3 + 264κ2

1κ
2
3

+ 816κ1κ
2
2κ3 + 512κ3

1κ2κ3 + 48κ5
1κ3

+ 96κ4
2 + 384κ2

1κ
3
2 + 168κ4

1κ
2
2 + 16κ6

1κ2

+ κ8
1

(84)
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The sample cumulant covariance matrix becomes

K4 =


κ2 κ3 κ4 κ5

κ3 κ4 + 2κ2
2 κ5 + 6κ2κ3 K24

κ4 κ5 + 6κ2κ3 K33 K34

κ5 K42 K43 K44

 (85)

where

K24 = K42 = κ6 + 8κ2κ4 + 6κ2
3 , (86)

K33 = κ6 + 9κ2κ4 + 9κ2
3 + 6κ3

2 , (87)
K34 = K43 = κ7 + 12κ2κ5 + 30κ3κ4

+ 36κ2
2κ3 ,

(88)

K44 = κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2
4

+ 72κ2
2κ4 + 144κ2κ

2
3 + 24κ4

2 .
(89)
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Chapter 8

Conclusions

This chapter gives concluding remarks and outlines some directions of future research.

8.1 Concluding Remarks

In this thesis, it has been shown that the Mellin kind statistics framework is a natural
tool for analysis of the matrix distributions derived under the multilook polarimetric
product model. The simple and elegant mathematical expression we obtain, the perfor-
mance of the parameter estimators, and the interpretability of the results are taken as
proof of this statement.

Some excellent parameter estimators have been derived by the method of matrix
log-cumulants, and a pioneering goodness-of-fit test has been constructed. However,
by looking at the long list of applications that have grown out of Nicolas’ univariate
Mellin kind statistics (See the second paragraph of Section 1.1), it can be expected that
more algorithms for analysis of multilook polarimetric images will follow. We have
already identified some target areas and applications.

8.2 Future Research

The first paper where the contours of the matrix-variate Mellin kind statistics frame-
work could be seen was [Anfinsen et al., 2009]. This paper has been included in Ap-
pendix A. It discusses statistical modelling of speckle filtered multilook polarimetric
images and demonstrates that the filtering alters the data such that new models are re-
quired. This is a topic which is worth pursuing. By looking at the characteristics of the
speckle filtered data in matrix log-cumulant space, the matrix-variate W and M dis-
tributions are launched as potential models for filtered speckle in heterogeneous and
extremely heterogeneous areas. Another task would be to find statistical models for
partially developed speckle, and the Mellin kind statistics could possible be helpful in
the characterisation of such a model.
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An interesting observation is that the log-determinant transformation of the polari-
metric covariance matrix compresses the matrix data to a scalar band. By storing this
band only, we can still compute matrix log-moments and matrix log-cumulants and
make inferences based on them. This compression could be utilised to make fast algo-
rithms for different image analysis tasks that still maintain high performance, since the
matrix log-cumulants have a high content of statistical information.

It was mentioned in Section 2.3.5 that the texture parameters of the radar image
distributions can be used as textural features in various image analysis problems. The
matrix log-cumulants would contain the same information, but are cheaper to com-
pute and not confined to a specific distribution model. This is an area that we want to
explore further. Compound matrix distributions have already been applied to classifi-
cation [Doulgeris et al., 2008] and segmentation [Bombrun and Beaulieu, 2008, Harant
et al., 2009, Vasile et al., 2009]. In polarimetric change detection on the other hand, the
test statistics proposed in [Conradsen et al., 2003, Kersten et al., 2005] are developed
under the assumption of Wishart statistics. Extensions could possibly be achieved by
means of Mellin kind statistics.

As a final remark, we note again that the log-determinant compression induced by
the matrix-variate Mellin transform reduces the data dimension to one. The statisti-
cal information contained in the polarimetric covariance matrix could possibly be bet-
ter preserved by using the multivariate Mellin transform from [Mathur and Krishna,
1977], even though the off-diagonal complex correlations will be discarded in such an
approach. Thus, there is a chance we could use the Mellin transform to squeeze even
more information out of polarimetric radar images.
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A Relaxed Wishart Model for
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ABSTRACT

In this paper we demonstrate that simple yet flexible mod-
elling of multilook polarimetric synthetic aperture radar
(PolSAR) data can be obtained through a relaxation of the
Wishart model. The degrees of freedom of the complex
Wishart distribution is treated as a spatially nonstation-
ary parameter, which is allowed to vary between thematic
classes and segments of the PolSAR scene.

Key words: synthetic aperture radar; polarimetry; statis-
tical modelling; Wishart distribution.

1. INTRODUCTION

The Wishart distribution is the de facto statistical model
for multilook PolSAR data. It is based on the assumption
that the complex scattering coefficients are jointly circu-
lar Gaussian. However, this is only satisfied for homo-
geneous areas with fully developed speckle and no tex-
ture, which renders the model inadequate in many cases.
Improved modelling is achieved by using more complex
models that account for texture, such as the polarimetric
G distribution family [1], with the polarimetric K distri-
bution [2] as a special case. These models allow for bet-
ter adaption to data whose distribution is heavy-tailed and
non-Gaussian, but this comes at the cost of higher math-
ematical complexity.

The comparatively higher mathematical tractability of
the Wishart distribution motivates us to pursue a relaxed
Wishart model as an alternative. In the context of multi-
look PolSAR data, the degrees of freedom of the Wishart
distribution is interpreted as the equivalent number of
looks, a constant, global value that quantifies the effec-
tive number of data samples averaged in the multilooking
process. In contrast, we treat it as a free parameter, which
varies between, and possibly also within, classes and seg-
ments of the PolSAR scene. This reflects the highly vari-
able degree of smoothing imposed on the data by non-
linear speckle filters. The choice can also be justified by
looking at the degrees of freedom as a shape parameter
of the distribution, which is determined not only by the
degree of averaging, but also by texture. Thus, the in-
fluence of multilooking, speckle filtering, and texture is

assimilated into one parameter, which can be estimated
efficiently with a recently proposed estimator [3, 4]

Sec. 2 reviews some existing density models for multi-
look PolSAR data and proposes the relaxed Wishart dis-
tribution as an alternative. In Sec. 3 we derive certain
matrix moments that are used to illustrate the adaptivity
of the different density models, and as a new domain for
visual goodness-of-fit assessment. Sec. 4 presents exper-
iments with airborne NASA/JPL AIRSAR data, and in
Sec. 5 we give our conclusions.

2. STATISTICAL MODELLING

The full-polarimetric SAR instrument separately trans-
mits orthogonally polarised microwaves pulses, and mea-
sures orthogonal components of the received signal. For
each pixel, the measurements result in a matrix of scat-
tering coefficients. These are complex-valued, dimen-
sionless numbers that describe the transformation of the
transmitted (incoming) electromagnetic (EM) field to the
received (backscattered) EM field for all combinations of
transmit and receive polarisation.

The transformation can be expressed as�
Erh
Erv

�
� ejkr

r

�
Shh Shv
Svh Svv

� �
Eth
Etv

�
, (1)

where k denotes wavenumber and r is the distance be-
tween radar and target. The subscript of the EM field
components Eji denotes horizontal (h) or vertical (v) po-
larisation, which is the most common set of orthogonal
polarisations, while the superscript indicates transmitted
(t) or received (r) wave. The scattering coefficients Sij
are subscripted with the associated receive and transmit
polarisation, in that order. Together, they form the scat-
tering matrix, denoted S � rSijs.
The scattering matrix can be reduced to one of the vectors

s �
�
� Shh
pShv�Svhq{

?
2

Svv

�
� or k � 1?

2

�
Shh�Svv
Shh�Svv
Shv�Svh

�
. (2)

The lexicographic scattering vector, denoted s, is the vec-
torised version of S after the cross-polarisation terms Shv
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and Svh have been averaged, assuming reciprocity of the
target. The scaling with a factor

?
2 is done to preserve

total power of the signal. The Pauli basis scattering vec-
tor, denoted k, is a linear transformation of s, which pro-
vides physical interpretations of its elements in terms of
basic scattering mechanisms [5].

2.1. Gaussian Model

It is commonly assumed that the scattering vector ele-
ments are jointly circular complex Gaussian, even though
this model only encompasses variability due to speckle,
and not texture, which is discussed in the Sec. 2.2. The
matrix S and the vectors s and k are single-look complex
format representations of PolSAR data. The following
derivations shall use s as the scattering vector, but would
be equivalent for k.

Multilook PolSAR data is commonly represented by

C � 1
L

Ļ

i�1

sisHi , (3)

known as the sample covariance matrix. It is formed
as the mean Hermitian outer product of the single-look
scattering vectors tsiuLi�1, where L is the nominal num-
ber of looks. The superscript H means complex conju-
gate transpose. Assume that s is zero mean and circular
complex multivariate Gaussian, denoted s � NC

d p0,Σq,
where 0 is a column vector of zeros, d is the dimension
of s, and Σ � EtssHu is the covariance matrix of s. The
probability density function (pdf) of s is thus

psps; Σq � 1
πd|Σ| expp�sHΣ�1sq , (4)

where | � | is the determinant operator. It follows that if
L ¥ d and the si in (3) are independent, then C follows
the nonsingular complex Wishart distribution [6]:

pwpC;L,Σq

� LLd|C|L�d
|Σ|LΓdpLq exp

��L tr
�
Σ�1C

��
,

(5)

where trp�q is the trace operator. The normalisation con-
stant ΓdpLq is the multivariate Gamma function, defined
as

ΓdpLq � πdpd�1q{2
d�1¹
i�0

ΓpL� iq , (6)

where ΓpLq is the standard Euler gamma function. In
reality, the si are correlated, and this is compensated for
by replacing L with an equivalent number of looks, Le ¥
L, in order to obtain consistency between moments of the
theoretical model and sample moments of the data. This
approximation provides a good model for the distribution
of C, denoted C �WC

d pLe,Σq.

2.2. Product Model

In addition to speckle, the randomness of a SAR mea-
surement can also be attributed to texture. The notion
of texture represents the natural spatial variation of the
radar cross section, which is generally not perfectly ho-
mogeneous for pixels that are thematically mapped as one
class. Several statistical models exist that incorporate
texture, either by assuming statistics that imply a non-
Gaussian scattering vector, or explicitly modelling tex-
ture as a separate random variable (rv). The latter case
leads to a doubly stochastic model with a compounded
distribution.

The well known product model, reviewed in [7, 8, 9], is
shown to be both mathematically tractable and success-
ful for modelling purposes. In the multilook polarimet-
ric version [1], the polarimetric covariance matrix C is
decomposed as a product of two independent stochastic
processes with individual distributions:

C � zW . (7)

One process, W � WC
d pLe,Σq, models speckle. The

other process generates texture, represented by the scalar
rv z P R�, under the assumption that texture is inde-
pendent of polarisation. The pdf of C depends on the
distribution of z, which is normalised to unit mean.

Gamma Distributed Texture

The first covariance matrix distribution derived from the
product model used the gamma distribution to model z
[2]. A gamma distributed rv z ¡ 0 has density

pzpz;α, µq �
�
α

µ


α
zα�1

Γpαq exp
�
�α
µ
z



, (8)

with shape parameter α ¡ 0 and mean value µ � Etzu ¡
0. This is denoted z � Gpα, µq. The unitary mean texture
rv is thus z � Gpα, 1q. This leads to the matrix-variate K
distribution for C [1, 2]:

pCpC;Le,Σ, αq

� 2|C|Le�dpLeαqα�Led2

|Σ|LeΓdpLeqΓpαq
�

trpΣ�1Cq�α�Led2

�Kα�Led

�
2
b
Leα trpΣ�1Cq� .

(9)

Knp�q is the modified Bessel function of the second kind
with order n. See [1, 10] for a detailed derivation.

Inverse Gamma Distributed Texture

The family of generalised inverse Gaussian distributions
was proposed in [1] as a model for z. The gamma distri-
bution is one special case. The inverse gamma distribu-
tion is another, which has been promoted in particular as
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Figure 1. Examples of single intensity marginal densities for a polarimetric covariance matrix modelled by the relaxed
Wishart distribution (left), matrix-variate K distribution (middle), and matrix-variate G0 distribution (right).
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Figure 2. Same as Fig. 1 with logarithmic second axis to emphasize differences at the tails.

a good model for strongly heterogeneous clutter [1, 11].
Its pdf is given by

pzpz;λ, νq � pλνqλ z
�λ�1

Γpλq exp
�
�λν
z



. (10)

This is denoted z � G�1pλ, ν), with shape parameter
λ ¡ 0 and ν ¡ 0. The normalised texture rv becomes
z � G�1pλ, pλ�1q{λq, which leads to the matrix-variate
G0 distribution for C [1]:

pCpC;Le,Σ, λq

� LLede |C|Le�d
|Σ|Le

ΓpLed� λqpλ� 1qλ
ΓdpLeqΓpλq

� �Le trpΣ�1Cq � λ� 1
��λ�Led

.

(11)

For interpretation purposes, we note that zÑ 1 and the
distributions in Eqs. (9) and (11) converge in distribution
to the complex Wishart distribution in Eq. (5) as α Ñ
8 and λ Ñ 8, respectively. Thus, high values of α
and λ imply little texture, whereas low values refer to
significant texture and non-Gaussianity.

2.3. Relaxed Wishart Model

The standard Wishart model in Eq. (5) is parametrised
by a constant Le, which is estimated for the data set as
a whole [3, 4]. We introduce a relaxed Wishart (RW)
model, whose functional form is identical. The differ-
ence is that Le is replaced with a variable shape param-

eter, L ¤ Le. Depending on the application, L is al-
lowed to vary between classes (classification), segments
(segmentation), or pixels (e.g., change detection). The
new distribution is denoted by C � RWC

d pL ,Σq.

The motivation for this approach is explained by Fig. 1.
It is not possible to visualise the effect of the distribution
parameters directly on the pdfs in Eqs. (5), (9), and (11).
We therefore plot their marginial densities for a single po-
larisation intensity. The respective marginals are gamma
distributed, KI distributed, and G0

I distributed. For the
latter two, the superscripted I denotes the multilook in-
tensity version of the given distribution family.

In all the plots, the continuous curve represents the lim-
iting case defined by the standard Wishart model, with
a gamma distributed marginal pdf. In the left panel, the
dashed curves show the evolution of the pdf under the
RW model as L is lowered from the limit of L � Le.
The same evolution is illustrated for the K distribution
(middle panel) and the G0 distribution (right panel) for
decreasing values of the respective texture parameters, α
and λ. We observe that the effect of varying L resem-
bles that induced by α and λ, even though a greater varia-
tion in shape is possible for the distributions based on the
product model. Fig. 2 uses a logarithmic scale to high-
light the heavy tails of the K and G0 distribution., which
is less prominent for the marginal pdf of the RW distri-
bution. We still conclude that L can be interpreted as a
texture parameter alongside α and λ. Thus, the RW dis-
tribution implicitly models texture up to a moderate level.
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3. GOODNESS-OF-FIT EVALUATION

This section discusses evaluation of the goodness-of-fit
(GoF) for the matrix-variate density models of multilook
PolSAR data. GoF testing in the literature has been lim-
ited to visual inspection of how well marginal densities
of intensity fit histograms of the data. Classical statistical
distribution tests, such as the Kolmogorov-Smirnov test
or the Anderson-Darling test, are impractical in this case.
As noted in [1], this is because they require binning of
the domain of C, which is the cone of positive definite
matrices.

We here propose an alternative space where GoF eval-
uation can be performed. The idea is that GoF can be
assessed by comparing theoretical moments of the mod-
els with sample moments computed from the data. We
first define a new kind of matrix moments, that we call
log-determinant cumulants. Closed form expressions for
the candidate models are then derived. These are seen to
have favourable properties that can be utilised to visualise
the texture modelling capabilities of the models.

3.1. Log-determinant Cumulants

The following derivation is based on the application of
second kind statistics, following the terminology intro-
duced in [12]. Whereas the commonly known charac-
teristic function is defined as the Fourier transform of a
pdf, the second kind characteristic function is the Mellin
transform of the pdf. This function can be used to gen-
erate moments and cumulants of the second kind, also
termed log-moments and log-cumulants.

Let ξ be a real, positive rv with pdf pξpξq. Start by defin-
ing the rth-order log-moment of ξ as

mrpξq � Etpln ξqru � drφξpsq
dsr

����
s�1

, (12)

where φξpsq is the Mellin transform of pξpξq and s P C
[12]. Then define the rth-order log-cumulant of ξ as

κrpξq � drψξpsq
dsr

����
s�1

, (13)

where ψξpsq � lnφξpsq. Relations between some low-
order log-moments and log-cumulants are given by

κ1 � m1 , (14)
κ2 � m2 �m2

1 , (15)

κ3 � m3 � 3m1m2 � 2m3
1 . (16)

It follows from a fundamental property of the Mellin
transform [12] that for a product of independent random
variables, ξ � ρ � ζ, with ρ, ζ ¡ 0:

κrpξq � κrpρq � κrpζq , @r P N . (17)

This equips us to derive the log-cumulant of |C|, which
will be referred to as the log-determinant cumulant
(LDC) of C.

Note that |C| � |zW| � zd|W|. Thus,

κrp|C|q � drκrpzq � κrp|W|q . (18)

The log-cumulants of z have been derived in [12]. For
z � Gpα, µq it was shown that

κ1pzq � ln
�µ
α

	
� Ψp0qpαq , (19)

κrpzq � Ψpr�1qpαq , r ¡ 1 , (20)

where Ψprqpzq is Euler’s polygamma function of order r.
The log-cumulants of z � G�1pλ, νq were found as

κ1pzq � lnλν � Ψp0qpλq , (21)

κrpzq � p�1qr Ψpr�1qpλq . (22)

The LDCs of the Wishart distributed W can be deduced
from results found in [3, 4] as

κ1p|W|q � ln |Σ| �
d�1̧

i�0

Ψp0qpLe � iq � d lnLe(23)

κrp|W|q �
d�1̧

i�0

Ψpr�1qpLe � iq , r ¡ 1 . (24)

This completes the expression in Eq. (18) for our candi-
date models.

3.2. Log-determinant Cumulant Diagram

Note that the LDCs are matrix-variate generalisation of
the log-cumulants derived in [12] for the single polarisa-
tion product model. As in the one-dimensional case, we
can utilise the fact the LDCs do not depend on the scale
parameter Σ for r ¡ 1. More specifically, the κr¡1p|C|q
depend only on the texture parameters:

κWr¡1p|C|q �
d�1̧

i�0

Ψpr�1qpLe�iq (25)

κKr¡1p|C|q � drΨpr�1qpαq �
d�1̧

i�0

Ψpr�1qpLe�iq (26)

κG
0

r¡1p|C|q � p�dqrΨpr�1qpλq �
d�1̧

i�0

Ψpr�1qpLe�iq (27)

κRWr¡1p|C|q �
d�1̧

i�0

Ψpr�1qpL �iq , (28)

where the superscript of κ indicates which model the ex-
pression describes.

By plotting two LDCs of different orders against each
other, we obtain a curve in LDC space which depicts the
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paired LDC values that can be attained under a given
model. We refer to this as an LDC diagram. Sample
LDCs calculated from data can be overlaid the model
curves, and the diagram used to assess how well the data
are described by different models, and which model pro-
vides the best fit. Diagrams of second and third order
log-cumulants were plotted in [12, 13], and we will use
the same orders for our LDC diagrams. Remark that the
bias and variance of the sample LDCs are expected to in-
crease rapidly with order.

4. EXPERIMENTS

4.1. Marginal Densities of Intensity

We have extracted three test samples from an L-band
quadrature polarisation image aquired by the airborne
NASA/JPL AIRSAR sensor over Flevoland, the Nether-
lands, in August 1989. The samples are taken from some
of the more textured areas in the image. One is from a for-
est area and the other two from different crops. Marginal
densities of the intensity in the HH, HV, and VV channels
for the forest sample are shown in Fig. 3. These densities
describe unfiltered data. Fig. 4 describes the same data
after they have been filtered with a refined Lee filter [14]
of window size 7�7.

The first observation is that the data are well described by
all the models in Fig. 3. By zooming in on the densities, it
may be concluded by visual inspection that the K model
provides the best fit, followed by the RW model. The
ENL estimated for the data set, and used to parametrise
the standard Wishart, K, and G0 model, is Le�3.3. This
constant is replaced with L � 2.53 for the RW model.
The texture parameters α and λ are estimated with the
method described for the K distribution in [10].

Fig. 4 shows that the models have very different GoF for
speckle filtered data. The Wishart model is the worst fit,
and none of the distributions based on the product model
produce an adequate result either. Only the KW model
seems to do a good job. The ENL was estimated to Le�
48, and is reduced to L � 27 for the RW model. The
marginal densities of the other two test samples yield very
similar results, both before and after speckle filtering, and
are therefore not shown.

4.2. Log-determinant Cumulant Diagrams

Fig. 5 shows a LDC diagram where κ3p|C|q is plotted
against κ2p|C|q, with analogy to the log-cumulant dia-
grams in [12, 13]. The Wishart model has no texture pa-
rameter, and its LDCs are therefore constant, equal to the
contribution κrp|W|q, r�1, 2 of the Wishart distributed
speckle matrix. These constants are indicated in the fig-
ure by the dotted lines, intersecting at the point which de-
scribes the Wishart model. The possible LDC pairs of the
K, G0, and RW models lie on a curve parametrised by

α, λ, and L , respectively. The asymptotic behaviour of
these curves, as the texture parameters decrease towards
their lower limits, is indicated on the figure. At the upper
limit, the curves all converge to the Wishart case. Sam-
ple LDCs of the three test samples are plotted as points in
green (forest), cyan, and magenta (two different crops).
We plot a collection of sample LDC estimates, obtained
by bootstrap sampling of the full test samples, in order
to illustrate the dispersion of the sample estimates. ENL
estimates for each test sample are shown in the figure.

Diagrams of data before and after speckle filtering are
presented in the left and right panel, respectively. For
the unfiltered data, the LDC diagram clearly indicates
that the RW distribution is the best model for the for-
est sample. The other test samples are less textured, and
all models are adequate. For the speckle filtered data, the
LDC diagram suggests that the RW model fits best for
the forest sample and the first crop sample (cyan), while
the K model performs best for the second crop sample
(magenta). For the crop samples, both the RW model
and theK model fit reasonably well. The Wishart and the
G0 model are inadequate in all cases. The LDC diagram
indicates good fit of the K model to the crop samples,
which is not compatible with observations of the marginal
densities (not shown). This prompts us to reconsider the
estimator for α (and λ) in future work.

The success of the RW distribution in modelling of
speckle filtered data, and the relative failure of the others,
can be explained by a discussion of the nature of adap-
tive speckle filters. Adaptive speckle filters apply vari-
able smoothing by consideration of local homogeneity.
Hence, the ENL is mapped from a constant value to a
dispersed range of values. This is not modelled appro-
priately, neither by the Wishart distribution nor the other
distributions based on the product model. The RW dis-
tribution, on the other hand, apparently represents a better
approach.

5. CONCLUSIONS

We have proposed a relaxed Wishart distribution where
the equivalent number of looks of the standard Wishart
model has been replaced by a varable shape parameter.
We have further derived the log-determinant cumulants
of the polarimetric covariance (or coherency) matrix un-
der the product model, and demonstrated how they can be
utilised in visual inspection of goodness-of-fit for matrix-
variate distributions. Experimental results show that for a
moderate level of texture, the newly proposed density can
compete with densities derived from the product model
with regards to modelling of unfiltered PolSAR data. For
data that are processed with an adaptive speckle filter, the
relaxed Wishart model is shown to perform better. Based
on the very promising results, we suggest that the relaxed
Wishart distribution should be tested more extensively on
other data sets and with different speckle filters. It should
also be applied to model-based classification, change de-
tection, and other image analysis tasks.
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Figure 3. Comparison of marginal densities of the Wishart, RW , K, and G0 distribution with data histograms for a
textured forest area in the AIRSAR L-band image of Flevoland. No speckle filter applied.
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Figure 4. Comparison of marginal densities of the Wishart, RW , K, and G0 distribution with data histograms for a
textured forest area in the AIRSAR L-band image of Flevoland. Modified Lee filter with window size 7 � 7 applied.
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Introduction to Second Kind Statistics:
Application of Log-Moments and Log-Cumulants

to Analysis of Radar Images
Jean-Marie Nicolas and Stian Normann Anfinsen (translator)

✦

Abstract—Statistical methods classically used to analyse a probability
density function (pdf) are founded on the Fourier transform, on which
useful tools such the first and second characteristic function are based,
yielding the definitions of moments and cumulants. Yet this transfor-
mation is badly adapted to the analysis of probability density functions
defined on R+, for which the analytic expressions of the characteristic
functions may become hard, or even impossible to formulate. In this
article we propose to substitute the Fourier transform with the Mellin
transform. It is then possible, inspired by the precedent definitions, to
introduce second kind statistics: second kind characteristic functions,
second kind moments (or log-moments), and second kind cumulants
(or log-cumulants). Applied to traditional distributions like the gamma
distribution or the Nakagami distribution, this approach gives results
that are easier to apply than the classical approach. Moreover, for
more complicated distributions, like the K distributions or the positive α-
stable distributions, the second kind statistics give expressions that are
truly simple and easy to exploit. The new approach leads to innovative
methods for estimating the parameters of distributions defined on R+. It
is possible to compare the estimators obtained with estimators based on
maximum likelihood theory and the method of moments. One can thus
show that the new methods have variances that are considerably lower
than those mentioned, and slightly higher than the Cramér-Rao bound.

Index Terms—Probability density functions defined on R+, gamma
distribution, Nakagami distribution, characteristic functions, parameter
estimation, Mellin transform

1 INTRODUCTION

E STIMATION of the parameters of a probability den-
sity functions (pdf) is a topic of major significance

in pattern recognition. Starting from these estimates,
segmentation and classification algorithms can be imple-
mented, both in the field of signal processing and image
processing. In signal processing, the intrinsic knowledge
of the nature of the data (provided by an acoustic sensor,
electromagnetic sensor, etc.) allows us to make realistic

The author is with the École Nationale Supérieure des Télécommunications,
Département TSI, 46 rue Barrault, 75634 Paris cedex 13 (e-mail: jean-
marie.nicolas@telecom-paristech.fr).
The original paper was published as: J.-M. Nicolas, “Introduction aux
statistiques de deuxième espèce: applications des logs-moments et des logs-
cumulants à l’analyse des lois d’images radar”, Traitement du Signal, vol.
19, no. 3, pp. 139–167, 2002.
Translated from French by Stian Normann Anfinsen, University of Tromsø,
Department of Physics and Technology, NO-9037 Tromsø, Norway (e-mail:
stian.normann.anfinsen@uit.no).

assumptions about the suitable distribution models. In
particular, many techniques are based on the additive
noise model with a noise term that is assumed to be
Gaussian. Traditionally, if one describes a random phe-
nomenon by a pdf, one will also introduce the concept
of the characteristic function, defined as the Fourier
transform F of the pdf. For example, if px(u) is the
pdf modelling a random variable X , the characteristic
function Φx(v) is obtained by the relation [1]:

Φx(v) = F[p(u)](v) =
∫ +∞

−∞
ejvupx(u) du . (1)

The second characteristic function is defined as the log-
arithm of the characteristic function:

Φx(v) = log(Ψx(v)) . (2)

By taking account of properties of the Fourier transform,
it is easy to show that moments of order n are obtained
by derivation of the characteristic function:

mn =
∫ +∞

−∞
unpx(u)du

= (−j)n d
nΨX(v)
dvn

∣∣∣∣
v=0

(3)

and cumulants of order n by derivation of the second
characteristic function:

κx(r) = (−j)n d
rΨx(v)
dvr

∣∣∣∣
v=0

.

Moreover, if a phenomenon is analysed, described by
a pdf qy , which is perturbated by an additive noise,
described by its pdf rz , one knows that the output signal
is described by the pdf px given as

px = qy ∗ rz , (4)

with the operator ∗ denoting convolution. It is known
that the characteristic functions and the cumulants can
be written:

Φx(s) = Φy(s)Φz(s) (5)

Ψx(s) = Ψy(s) + Ψz(s) (6)

κx(r) = κy(r) + κz(r) ∀r (7)
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However, in image processing the problems are different.
It should be noted first of all that the pixel values are
positive or zero (we will not discuss here the analysis of
images defined by complex values), and that the noise
is often multiplicative. Also, the preceding model must
undergo some adaptations to be applicable as it is. One
approach often proposed is to perform a logarithmic
transformation, which is possible since the pdf is defined
on R+. Several remarks can then be made:

• The analytical calculation of the characteristic func-
tions defined on R+ is sometimes hard, even im-
possible for certain distributions, as we will see in
section 3.2.

• No complete methodology is proposed for loga-
rithmically transformed data. Calculation of mo-
ments on logarithmic scale (that one may call log-
moments) is carried out analytically starting from
Eq. (3). It requires a change of variable (thus a
rewriting of the pdf for this new variable) and is
carried out in a specific way for each pdf. This
approach requires a good knowledge of integral
transforms and of the properties of special functions.

• In traditional statistics, the Gaussian distribution is
the reference, which corresponds to the log-normal
distribution on a logarithmic scale. However, in
many examples, this law does not describe the
studied phenomenon well. In particular, the speckle
(clutter) observed in images obtained by coherent
illumination (e.g., laser, radar, ultrasound) follows,
for intensity images, the gamma distribution, which
we will study in more detail in this article and
which tends asymptotically towards a degenerated
Gaussian distribution.

As we will show, a new methodology based on an-
other integral transformation, the Mellin transform [2],
makes it possible to perform a more effective analysis of
practically important distributions defined on R+. This
methodology, that we propose to call second kind statis-
tics, uses the same framework as traditional statistics
for the definition of the characteristic functions (sim-
ply by replacing the Fourier transform with the Mellin
transform in Eq. (1)) and the same construction of the
moments and cumulants (by derivation of the character-
istic functions). This leads naturally to the definitions
of second kind moments and second kind cumulants. We
shall see why we propose to call these new entities log-
moments and log-cumulants. Thanks to this approach, it is
possible to analyse in a simpler way distributions with
two or three parameters that have traditionally been
used for imagery: the gamma distribution, Nakagami
distribution, and K distribution. Then, we will see how
to tackle more complex problems like the distributions of
the Pearson system, additive mixtures and distributions
with heavy tails (i.e., distributions for which the mo-

ments cannot be defined starting from a certain order1).
Finally, we will analyse why the parameter estimators of
these distributions based on the log-moments and log-
cumulants have a lower variance than those obtained
from the traditional moments and cumulants.

The remark can be made that a formalism with such
similarity to the existing definitions cannot lead to in-
trinsically new results. It should be stressed that the
essential contribution of this framework is to offer a
signal and image processing methodology which proves,
for certain applications, considerably easier to use than
the traditional approaches. The major goal of this article
is to illustrate its simplicity of implementation as well as
its flexibility in use.

2 DEFINITION OF THE SECOND KIND CHAR-
ACTERISTIC FUNCTIONS

The objective of this section is to propose a formalism of
second kind statistics based on the Mellin transform and
redefine some elements of traditional statistics, namely
the characteristic function yielding moments and cumu-
lants, as outlined in the introduction.

2.1 First Characteristic Function of the Second Kind

Let X be a positive-valued random variable whose pdf,
px(u), is defined for u ∈ R+. The first characteristic func-
tion of the second kind is defined as the Mellin transform
M of px(u):

φx(s) = M[px(u)](s) =
∫ +∞

0

us−1px(u) du (8)

provided that this integral converges, which is verified
in general only for values of s located inside a strip
delimited by two lines parallel to the secondary axis,
i.e.

s = a+ jb, a ∈]a1; a2[, b ∈ R

with a2 commonly approaching +∞, just as a1 ap-
proaches −∞. As the Mellin transform has an inverse
[2], knowing φx(s), one can deduce px(u) thanks to the
relation:

px(u) =
1

2πi

∫ c+i∞

c−i∞
u−sφx(s) ds

given that c is confined within the strip where the first
characteristic function is defined (i.e, c ∈]a1; a2[). Note
that if px(u) is a pdf, the second kind characteristic
function satisfies the fundamental property:

φx(s)|s=1 = 1 .

1. Translator’s remark: Note that author uses a strict definition of
heavy-tailed distributions. An alternative and more common definition
is that heavy-tailed distributions are not exponentially bounded. That
is, they have heavier tails than the exponential distribution. Since the
context of the discussion is modelling of multilook intensity radar data,
it would be natural to replace the exponential distribution with the
(generalised) gamma distribution in this criterion.
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By analogy, the second kind moments, m̃ν (ν ∈ N) are
defined by the relation:

m̃ν =
dνφx(s)
dsν

∣∣∣∣
s=1

. (9)

By virtue of a fundamental property of the Mellin trans-
form [Col59]:

M[f(u)(log u)ν ](s) =
dνM[f(u)](s)

dsν

which is evaluated at s = 1, the second kind moments
can be written in two different ways:

m̃ν =
dνφx(s)
dsν

∣∣∣∣
s=1

(10)

=
∫ +∞

0

(log u)ν px(u) du . (11)

Eq. (11) suggests that we refer to the second kind mo-
ments as log-moments, which is adopted for the remain-
der of the article.

We now introduce the second kind mean or log-mean
˜̄m. This auxiliary variable is defined by the following
relation

log ˜̄m = m̃1 ⇔ ˜̄m = em̃1 .

Note that this entity, which is in fact the geometric mean,
takes its values in R+ (a suitable scale for the variable u),
whereas the log-moments take their values in R (on log-
arithmic scale). It is thus possible to compare the mean
m̄ and the log-mean ˜̄m, and the practical importance will
be demonstrated for the gamma distribution.

Just as one traditionally defines the central moments,
we introduce the definition of the central log-moments
of order n, M̃n:

M̃n =
∫ +∞

0

(log u− m̃1)n px(u) du

=
∫ +∞

0

(
log

u
˜̄m

)n

px(u) du .
(12)

In particular, one readily finds the expression

M̃2 = m̃2 − m̃2
1 .

Thanks to this formalism, it is possible to obtain an
analytical expression for the log-moments by simple
derivation of the second kind characteristic function. We
will look at the classical interpretation of the Mellin
transform.

2.2 A First Interpretation of the Mellin Transform

By comparison of the moment definition in Eq. (3) and
the definition of the first characteristic of the second kind
in Eq. (8), one can write the generalised moments, mν :

mν = φx(s)|s=ν+1 =
∫ +∞

0

uνpx(u) du . (13)

For ν ∈ N, these are the traditional moments. For ν ∈ R+,
we have the fractional moments, that have been used

by some authors (like the use of FLOM: Fractional Low
Order Moments, in [3]). Provided that the Mellin trans-
form is defined for values of ν ∈ R−, it is justified to use
lower order moments [4]. Lastly, in addition to moments
defined for a value ν = a (i.e., traditional moments,
fractional moments, or lower order moments), one can
define moments of complex order with ν = a+ jb for all
b, this because the pdf px(u) is positive by definition, a
property which is trivial to verify.

2.3 Second Kind Cumulants or Log-Cumulants

Still by analogy with classical statistic for scalar real
random variables defined on R, the second characteristic
function of the second kind is defined as the natural log-
arithm of the first characteristic function of the second
kind:

ψx(s) = log(φx(s)) . (14)

The derivative of the second characteristic function of
the second kind, evaluated at s = 1, defines second kind
cumulants of order n:

κ̃x(n) =
dnψx(s)
dsn

∣∣∣∣
s=1

. (15)

Since formally, second kind cumulants are constructed
according to the same rules as traditional cumulants, the
relations between log-moments and log-cumulants are
identical to the relations existing between moments and
cumulants. For instance, the three first log-cumulants can
be written as:

κ̃1 = m̃1

κ̃2 = m̃2 − m̃2
1

κ̃3 = m̃3 − 3m̃1m̃2 + 2m̃3
1

As in the case of log-moments, we adopt the name log-
cumulants for the second kind cumulants.

2.4 Some Properties of Log-Moments and Log-
Cumulants

The utilisation of the Mellin transform requires knowl-
edge about some of its specific properties. In particular,
let us point out the definition of the Mellin convolution
(which is an associative and commutative operation):

h = f ⋆̂ g ⇔ h =
∫ ∞

0

f(y)g
(
u

y

)
dy

y

⇔ h =
∫ ∞

0

g(y)f
(
u

y

)
dy

y
,

(16)

Its fundamental property is similar to the convolution
property of the Fourier transform:

M[f ⋆̂ g](s) = M[f ](s)M[g](s) .

Note that if f and g are pdfs, then h is also a pdf (i.e.,
h(u) ≥ 0 ∀u ∈ R+ and M[h]|s=1 = 1).

The use of this operator finds an immediate applica-
tion in the study of multiplicative noise. Let Y and Z
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be two independent random variables whose respective
pdfs, qy and rz , are defined on R+. Consider a random
variable X constructed by a multiplication of of these
two variables. It is thus a model of multiplicative noise.
It is then shown that the pdf of X , px, is obtained as the
Mellin convolution of qy and rz [5], [6]:

px = qy ⋆̂ rz .

The properties deduced in the following are formally
identical to those obtained in the case of a traditional
convolution (Eqs. (5)-(7)). If φx is the second kind charac-
teristic function of X , φy is the second kind characteristic
function of Y and φz is the second kind characteristic
function of Z, the following relations are obtained:

φx(s) = φy(s)φz(s)
ψx(s) = ψy(s) + ψz(s)
κ̃x(n) = κ̃y(n) + κ̃z(n) ∀n ∈ N

(17)

It is noted in particular that in the case of multiplicative
noise, the log-cumulants are additive. This property is
not surprising since the common method used to han-
dle multiplicative noise, transformation into logarithmic
scale, allows us to treat noise of multiplicative nature
like additive noise.

Finally note the following property:

u (f ⋆̂ g) = (u f) ⋆̂(u g) .

One can also, in a step similar to that of traditional
convolution, define the inverse convolution (a non-
commutative and non-associative operator). If the ratio

M[f ](s)
M[g](s)

is defined in the vicinity of s = 1 such that the inverse
Mellin transform can be evaluated, the following relation
is posed:

h = f ⋆̂−1 g ⇔ M[h](s) =
M[f ](s)
M[g](s)

.

With the above notation we have, given that the pdfs px,
qy and rz exist:

px = qy ⋆̂
−1 rz ,

from which we deduce:

φx(s) =
φy(s)
φz(s)

ψx(s) = ψy(s)− ψz(s)
κ̃x(n) = κ̃y(n) − κ̃z(n) ∀n ∈ N

(18)

Finally, it can be useful to utilise the Mellin correlation
(also a non-associative and non-commutative operation),
which is defined by the relation:

h = f ⊗̂ g ⇔ M[h](s) = M[f ](s)M[g](2− s) . (19)

A pdf must satisfy M[h]|s=1 = 1, to which h complies.
Starting from this relation and using the same notation,
we can, provided that px satisfies

px = qy ⊗̂ rz ,

deduce the following:

φx(s) =
φy(s)

φz(2− s)
ψx(s) = ψy(s)− ψz(2− s)
κ̃x(n) = κ̃y(n) + (−1)nκ̃z(n) ∀n ∈ N

(20)

The following expression can then be shown:

h = f ⊗̂ g ⇔ h =
∫ ∞

0

f(uy) g(y) y dy . (21)

We also note the property:

u (f ⊗̂ g) = (u f) ⊗̂
( g
u

)
(22)

In fact, the interpretation of the Mellin correlation is
founded on the analysis of the inverse distribution, i.e.,
the distribution pI(u) of the random variable Y = 1/X ,
where the random variable X follows the distribution
p(u). The relation between these distributions are known
to be:

pI(u) =
1
u2
p

(
1
u

)
.

By taking account of a fundamental property of the
Mellin transform:

M

[
1
u
f

(
1
u

)]
(s) = M[f(u)](1− s) ,

it is easily deduced that

M[pI ](s) = M[p](2− s) . (23)

It is then seen that the Mellin correlation of a pdf qy
of the random variable Y and a pdf rz of the random
variable Z,

qy ⊗̂ rz ,
is simply a way to establish the pdf of the random
variable Y/Z.

Lastly, as for the traditional characteristic function, it
is interesting to note that the second kind characteristic
function can be expanded in terms of log-cumulants:

ψx(s) = κ̃x(1)(s− 1) +
1
2!
κ̃x(2)(s− 1)2

+
1
3!
κ̃x(3)(s− 1)3 + . . .

2.5 Theorem of Existence of Log-Moments and Log-
Cumulants

We have just seen that the theoretical introduction of
the log-moments and log-cumulants does not pose any
formal problem. However, the existence of these entities
has not been proven, and an interrogation into the
requirements for their existence is needed. In this section
we will present a theorem of strong conditions, that
generally verify the existence of the log-moments and
log-cumulants for the distribution usually applied in
signal and image processing.
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TABLE 1
Properties of the Mellin convolution, the inverse Mellin

convolution, and the Mellin correlation of two
distributions defined on R+: pA and pB , with second kind
characteristic functions φA and φB , and log-cumulants

κ̃A,n and κ̃B,n.

Characteristic function Cumulant

pA ⋆̂ pB φA(s) φB(s) κ̃A,n + κ̃B,n

pA ⋆̂−1 pB
φA(s)
φB(s)

κ̃A,n − κ̃B,n

pA ⊗̂ pB φA(s) φB(2− s) κ̃A,n + (−1)nκ̃B,n

Let p(u) be a probability distribution defined on R+,
whose second kind characteristic function is φ(s). This
pdf satisfies the relations:

• p(u) ≥ 0 ∀u ≥ 0
•
∫ +∞
0

p(u) du = φ(s)|s=1

Theorem 1: If a pdf has a second kind characteristic
function defined on the set Ω =]sA, sB [, where s = 1 ∈ Ω,
then all of its log-moments and log-cumulants exist.

Proof: The existence of the log-moments and log-
cumulants depends by the convergence of the integral∫ +∞

0

(log u)np(u) du .

In order to study this improper integral, we will study
its behaviour at 0 and at the limit to infinity.

• close to infinity: Let α ∈ Ω such that α > 1. Thus,
∃ α > 1 such that:

φ(α) =
∫ +∞

0

uα−1p(u) du <∞

which amounts to saying that the moments of p(u)
(integer order or fractional) can be calculated for all
orders between 1 and α. Assume an integer n ≥ 1.
Two cases then arise:

– For ∀ x > 1 we have (log x)n < xα−1. In this
case, knowing that p(u) is a pdf and satisfies
p(u) ≥ 0, one can write

lim
b→∞

∫ b

1

(log u)np(u) du

≤ lim
b→∞

∫ b

1

uα−1p(u) du ≤ φ(α)

which demonstrates the convergence of the in-
tegral as x→∞.

– There exists a constant c > 1 such that (log c)n =
cα−1. Then, for ∀ x > c we have (log x)n ≤ xα−1.
By an identical argument as for the previous
case, we deduce that

lim
b→∞

∫ b

c

(log u)np(u) du ≤ φ(α)

which demonstrates the convergence of the in-
tegral as x→∞.

• close to 0:

– First of all, consider the particular case where
the pdf is bounded. Assume that

∃ A : ∀u ∈ [0, 1] , p(u) ≤ A ,

and calculate the limit

lim
a→0

∫ 1

a

(log u)np(u) du .

Since the pdf is bounded, we have for ∀a ∈]0, 1[
that∣∣∣∣∫ 1

a

(log u)np(u) du
∣∣∣∣ ≤ ∣∣∣∣∫ 1

a

(log u)nAdu

∣∣∣∣
≤ A

∣∣∣∣∫ 1

a

(log u)n du

∣∣∣∣ .
The following property∣∣∣∣ lima→0

∫ 1

a

(log u)n du

∣∣∣∣ = Γ(n+ 1)

proves the convergence at 0.
– In the general case, the study of the convergence

starts from the variables change x → 1
x , there-

after utilising the convergence property that we
have just shown for the case x→∞.

We deduce that if a probability distribution with
bounded values possesses moments (fractional or inte-
ger ordered) of order strictly larger than 0 and strictly
smaller than 0, then all its log-moments and log-
cumulants exist.

Note that a far more elegant and concise proof,
founded on the properties of analytical functions, can
be worked out without major problems based on the
assumption that φ(s) is holomorphic [7], and thus dif-
ferentiable up to all orders at s = 1.

2.6 Comparison with Logarithmic Transformation

At this stage, one can wonder what the advantages of
this new approach are, and whether a simple transforma-
tion into logarithmic scale would lead to the same result.
We will show that in order to calculate a characteristic
function after logarithmic transformation, one effectively
has to calculate the Mellin transform of the original pdf.

We shall consider a random variable x with density
defined over real positive numbers. Its pdf, px(u), is
thus defined for u ∈ R, and the characteristic function is
written:

Φx(v) =
∫ +∞

0

ejvupx(u) du .

Then perform a logarithmic transformation. The new
random variable y is described the pdf qy(w), defined
for w ∈ R, with w = log u. This pdf results from px with
the relation given by

qy(w) = ewpx(ew) .
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Now calculate the characteristic function of the random
variable y:

Φy(v) =
∫ +∞

−∞
ejvwqy(w) dw

=
∫ +∞

−∞
ejvwewpx(ew) dw

=
∫ +∞

0

ejv log upx(u) du with u = ew

=
∫ +∞

0

ujvpx(u) du .

(24)

The relation in (24) is recognised as the Mellin transform
of px(u) at s = 1 + jv:

Φy(v) = φx(s)|s=1+jv . (25)

This relation shows that if one knows the Mellin trans-
form of a pdf (i.e., its second kind characteristic func-
tion), then one knows the ordinary characteristic func-
tion in logarithmic scale.

On logarithmic scale, moments and cumulants are
deduced by differentiation (simple or logarithmic) of
expression (25), which is equivalent to what was defined
in Eq. (10). This is another way to justify the terms
log-moments and log-cumulants. We note, however, that
the second kind statistics represent a generic method
to find log-moments and log-cumulants directly without
requiring a variable change (logarithmic transformation)
and also without having to calculate the new distribution
for the transformed variable.

Moreover, we will see that in the cases generally
encountered in signal and image processing, and where
the entities are defined on R+, it is easier to calculate
the Mellin transform than the Fourier transform. Thus,
our approach simplifies the working of the problem.
In addition, when the Mellin transform is known, one
automatically obtains:

• the moments, by inserting positive integers for the
Mellin transform variable s, and

• the log-moments, by differentiating the Mellin trans-
form with respect to s and evaluating at s = 1.

This should be appreciated by any practitioner, since, by
applying a single transformation to the distribution, both
moments and log-moments are obtained.

2.7 Comparison between Integral Transforms

The use in this context of an ignored transform: the
Mellin transform, may surprise, since there exist more
common invertible transforms, such as the Laplace trans-
form, that could potentially play an important role in
the study of distributions defined on R+. At this stage,
it is important to observe what the relations between the
Fourier transform (F), the Laplace transform (L), and the
Mellin transform (M) are. When it exists, the Laplace
transform of a pdf p(u) is written:

L[p(u)](σ) =
∫ ∞

0

e−σup(u) du

while the first characteristic function of this pdf is writ-
ten

F[p(u)](v) =
∫ +∞

−∞
ejvup(u) du .

The following relation is immediately deduced:

F[p(u)](v)|v=− b
2π

= L[p(u)](σ)|σ=jb

Because the Laplace transform variable is a complex en-
tity, one may consider that the Laplace transform could
allow for an analytical continuation of the characteristic
function [8]. However, the intrinsic properties of the
Laplace transform are the same as those of the Fourier
transform. A logarithmic transformation (in which case,
one will have to use the bilateral Laplace transform)
will in reality turn the Laplace transform into a Mellin
transform:

L[p̃(u)]|σ=a+jb = M[p(u)]|s=−a−jb = φx(s)|s=−a−jb

where p̃ is the pdf on logarithmic scale.
There are such strong relations between these trans-

forms that, most likely, nothing fundamentally new will
be found by the use of the Mellin transform. Therefore,
it seems that the choice should be dictated by practical
considerations. We have seen that the Mellin transform
makes it possible to obtain traditional moments and log-
moments at the same time, without having to derive the
pdf on logarithmic scale. Moreover, the Mellin transform
of the experimental distributions commonly used in
signal and image processing can be found in tables. This
justifies a further look into the use of this rather ignored
transform. This is the pragmatic view which motivates
the derivations of this article.

3 FUNDAMENTAL EXAMPLES

We will illustrate the new approach by applying it to
distributions used to model synthetic aperture radar
(SAR) images. These are the gamma and the generalised
gamma distribution (intensity images with fully devel-
oped speckle), the Rayleigh and the Nakagami distribu-
tion (amplitude images with fully developed speckle),
and finally the K distribution (an intensity distribution
modelling fully developed speckle modulated multi-
plicatively by gamma distributed texture). Even if some
of the results obtained are trivial, it seems important to
be able to carry out comparisons with these simple and
well-known cases, in particular in order to handle the
problem of estimating the distribution parameters, an
aspect which will be looked at in Section 5.

3.1 Gamma and Generalised Gamma Distribution

The two parameter gamma distribution, denoted G[µ,L],
is a type III solution of the Pearson system [9]. It is
defined on R+ as

G[µ,L](u) =
1

Γ(L)
L

µ

(
Lu

µ

)L−1

e−
Lu
µ with L > 0 (26)
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Fig. 1. Top: Gamma distribution G[µ,L] with µ = 1 and
L = 1, 2, 3, 5 and 10. Bottom: Inverse gamma distribution
IG[µ,L] with µ = 1 and L = 1, 2, 3, 5 and 10.

We see that µ is a scale parameter and that L is a shape
parameter (Figure 1).

The particular case of L = 1 corresponds to the true
gamma distribution2, which is well-known from the
radar literature as a model of fully developed speckle
in single-look images. The case of L = 1

2 gives the χ2

distribution.
The Fourier transform tables show that the character-

istic function is written as:

Φ(ν) =
(
L

µ

)L
ejL arctan( νµ

L )(
ν2 + L2

µ2

)L
2

(27)

whose complicated expression makes it difficult to use
in practice.

On the other hand, by use of known Mellin transforms
that can be found in tables [2], [10], the second kind
characteristic function can be expressed in terms of the
gamma function as:

φx(s) = µs−1 Γ(L+ s− 1)
Ls−1Γ(L)

(28)

2. Translator’s remark: Note that the author uses the terms ’gen-
eralised gamma distribution’ and ’(true) gamma distribution’ for the
distributions more commonly referred to as the ’gamma distribution’
and the ’exponential distribution’, respectively.

The classical moments mn,∀n ∈ N are much easier to
derive from this function than from (27):

mn = µn
Γ(L+ n)
LnΓ(L)

(29)

from which we have the well-known moments:

m1 = µ m2 =
L+ 1
L

µ2 .

This equation system is analytically invertible, and from
the first two moments we derive the following relations
for the parameters µ and L:

µ = m1 (30)

L =
m2

1

m2 −m2
1

=
1

m2
m2

1
− 1

(31)

Note that this distribution is asymmetric, and its mode
value is given by:

mmode =
L− 1
L

µ ≤ µ .

We also remark that the second kind characteristic func-
tion can be separated into a first term, µs−1, and a second
term that only depends on L, the shape parameter. As

L goes to infinity, Γ(L+s−1)
Ls−1Γ(L) goes towards 1, and G[µ,L]

converges in distribution to the homothetic distribution
H[µ]:

φx(s) → µs−1

⇔ G[µ,L](u) → H[µ](u) =
1
µ
δ(µu− 1)

We note that the homothetic distribution can be seen
as a degenerate Gaussian distribution (i.e. with zero
variance). It seems to confirm what many experts of
radar imaging has pointed out, that the gamma distri-
bution tends towards a Gaussian distribution as L goes
to infinity, but by the alternative denotation we avoid
abuse of language that can lead to confusion.

Another major point specific to the distributions de-
fined on R+ rests on the fact that the Mellin transform
of G[µ,L] is defined for s > 1 − L. It is seen that, for
L > 1, it is possible to have negative values of s− 1 and
thus lower order moments. Qualitatively, the lower order
moments – i.e. positive powers of 1

u – mainly reflect the
weight of the distribution between 0 and µ, while the
traditional moments - i.e. positive powers of u - rather
analyse the distribution between µ and∞. Thanks to the
lower order moments, it is possible to analyse selectively
the left or the right tail of a probability distribution.
The importance of this observation for asymmetrical
distributions such as the gamma distribution is evident.

The first two log-cumulants of G[µ,L] are expressed by
the following relations, where Φ(·) is the digamma func-
tion and Ψ(r, ·) is the r-th order polygamma function,
i.e. the r-th order derivative of the digamma function:

κ̃x(1) = log(µ) + Ψ(L)− log(L) (32)

κ̃x(2) = Ψ(1, L) ≥ 0 (33)

κ̃x(3) = Ψ(2, L) ≤ 0 (34)
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and it is trivial to show that

κ̃x(r) = Ψ(r − 1, L) ∀ r > 1 ,

which expresses the property that the log-cumulants
depend only on L from second order and upwards.

We note that the property

lim
L→∞

(Ψ(L)− log(L)) = 0

associated with the fact that the polygamma functions
go towards 0 at infinity, can be used to show that the
gamma distribution converges towards the homothetic
distribution as L goes to infinity.

Remark that the third order log-cumulant is negative.
This illustrates that, for the gamma distribution, the left
tail is heavier than the right tail of the distribution, which
decreases very quickly as the argument approaches in-
finity.

The log-mean is written:

˜̄m = µ
eΨ(L)

L
(35)

It is interesting to note the two following points:

• eΨ(L)

L ≤ 1 : The log-mean is less than the mean value.
Note that this property is valid for all L.

• eΨ(L)

L ≥ L−1
L : The log-mean is larger than the mode

value.

A more complete analysis would show that the log-mean
is also lower than the median value, defined by∫ mmed

0

G(u) du = 0.5 .

It can also be justified to use the log-mean instead of the
traditional mean. This gives interesting results in certain
applications of image processing [11].

Finally, by a logarithmic transformation, the gamma
distribution G[µ,L](u) becomes the Fisher-Tippett distri-
bution GFT [µ̃, L](w) with µ̃ = log µ and w = log u:

GFT [µ̄, L](w) =
LL

Γ(L)
eL(w−µ̄)e−Le(w−µ̄)

Its characteristic function is obtained by taking the
Fourier transform. Unfortunately, the required relation
is not found in tables. This is commonly circumvented
by showing that the evaluation amounts to calculating
a Mellin transform. In effect, one applies (25) unknow-
ingly.

To conclude, it is seen that in the case of the gen-
eralised gamma distribution, the second kind statistics
approach allows us:

• to obtain a simpler expression for the second kind
characteristic function than for the classical charac-
teristic function.

• to estimate the distribution parameters more effi-
ciently by inversion of Eqs. (32) and (33).

– The shape parameter L is easily derived from
the second order log-cumulant, even if no an-
alytical formulation can be found, since the

polygamma functions are monotonous and easy
to invert numerically (Tabulation can also be
used to save computation time). The variance
of this estimator is evaluated in Section 5, and
we will see that it is notably lower than the
variance obtained with the method of moments
estimator, as defined in (31).

– After L is known, µ can be derived from the
expression of the first order log-cumulant.

• to propose a “typical value” for use in image pro-
cessing, lying between the mode and the mean,
which realistically represents a sample if it can be
regarded as homogeneous.

3.2 Rayleigh and Nakagami Distribution

We will now handle a problem specific to SAR imagery,
namely the transformation of intensity data to ampli-
tude data. Even if models have simple expressions for
intensity data (the gamma distribution is known to all
scientific communities), the images are quite often avail-
able as amplitude data, which will reveal new problems
regarding parameter estimation. In this article, we will
thus address the transformation from intensity data that
follow the gamma distribution, to amplitude data with
their resulting distribution.

The Nakagami distribution3 is the name which in
the radar literature has been associated with amplitude
data that follow a gamma distribution when transformed
into the intensity domain. It is thus a two parameter
distribution: RN [µ,L], given by:

RN [µ,L](u) =
2
µ

√
L

Γ(L)

(√
Lu

µ

)2L−1

e
−

“√
Lu
µ

”2

. (36)

For L = 1, one retrieves the Rayleigh distribution:

RN [µ,L=1](u) =
2
µ

(
u

µ

)
e−(u

µ )2

.

The fundamental relation between the Nakagami distri-
bution (for amplitude) and the generalised gamma distri-
bution (for intensity, i.e. squared amplitude) is obtained
by a simple variable change, which can be written as:

RN [µ,L](u) = 2uG[µG , L](u2) . (37)

By means of the following two Mellin transform prop-
erties [2]:

M[uaf(u)](s) = M[f(u)](s+ a)

M[f(ua)](s) =
1
a
M[f(u)]

( s
a

)
3. It is important to return to Nakagami the paternity of this dis-

tribution described by two parameters: mean and shape parameter,
which has often been wrongly associated with the generalised gamma
distribution. The formalism was proposed in 1942 by Nakagami in
an exhaustive study of the “m-distribution”. It was not published
in English until 1960 [12]. Of course, this distribution is for instance
found in [13] as the result of transformations starting from the gamma
distributions. However, it seems that Nakagami performed the first
complete study.
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Fig. 2. Rayleigh-Nakagami distributionRN [µ,L] with µ =
1 and L = 0.5, 1, 2, 3, 5.

and knowing φG,x(s), the second kind characteristic
function of the gamma distribution, the second kind
characteristic function of the Nakagami distribution can
be derived directly as:

φRN ,x(s) = φG,x

(
s+ 1

2

)
which, by inserting µG = µ2, allows us to write:

φRN ,x(s) = µs−1 Γ( s−1
2 + L)

L
s−1
2 Γ(L)

.

This reasoning applies also elsewhere, regardless of the
power to which u is raised in the change of variable. It
is easily shown that for v = uα, we have

pu(u) = αuα−1pv(uα)

and the second kind characteristic function of the ran-
dom variable u is derived directly from the properties of
the Mellin transform as:

φu(s) = φv

(
s+ α− 1

α

)
. (38)

Note that this result would be useful for the analysis of
the Weibull distribution [14], another well-known radar
distribution, which we will not address in this article.

The classical moments of the Nakagami distribution
follow directly from φRN ,x(s):

m1 =
Γ
(
L+ 1

2

)
√
LΓ(L)

µ m2 = µ2 .

Take note of a peculiarity of this distribution: There is
a very simple relation between the parameter µ and the
second order moment, not the first order moment. On
the other hand, the implicit expression of L obtained
through the first order moment is very hard to handle.
We cannot obtain a simple inversion formula (as in the
gamma distribution case, where (31) gave L directly in
terms of m1 and m2) to solve for L.

The mode of this pdf is

mmode =

√
2L− 1

2L
µ

The log-cumulants are derived directly from those of the
gamma distribution as:

κ̃RN ,x(r) =
drψRN (s)

dsr

∣∣∣∣
s=1

=
dr log φRN (s)

dsr

∣∣∣∣
s=1

=
dr log φG

(
s+1
2

)
dsr

∣∣∣∣∣
s=1

=
(

1
2

)r
dr log φG(s′)

ds′r

∣∣∣∣
s′=1

=
(

1
2

)r

κ̃G,x(r)

From this we deduce:

κ̃x(1) = log(µ) +
1
2
Ψ(L)− 1

2
log(L)

κ̃x(2) =
1
4
Ψ(1, L)

and for all r > 1:

κ̃x(r) =
(

1
2

)r

Ψ(r − 1, L)

More generally, it is shown for v = uα that

κ̃pu,x(r) =
(

1
α

)r

κ̃pv,x(r)

In this case, L can be calculated directly if the second
order log-cumulant is known. The problem we meet is
of the same kind as for the gamma distribution, namely
inversion of polygamma functions.

The log-mean is written

˜̄m = µ
e

Ψ(L)
2√
L

(39)

To conclude, the motivation of our approach is seen
from the fact that the analytical expressions of the log-
moments and the log-cumulants have a complexity com-
parable with the case of the gamma distribution, which
is not the case in traditional statistics, where a simple
relation between the first two moments and the shape
parameter L cannot be obtained.

3.3 Inverse Gamma Distribution

The inverse gamma distribution is another two param-
eter distribution which is also a solution of the Pearson
system (the type V solution). Is is expressed as

IG[ν, L](u) =
1

Γ(L)
1
Lν

(
Lν

u

)L+1

e−
Lν
u
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Fig. 3. K distribution: Fully developed speckle (L = 3)
modulated multiplicatively by a Rayleigh distribution with
µ = 1 and 1, 3, 5 and 10.

where L ≥ 0 and ν > 0. Its second kind characteristic
function is written:

φx(s) = νs−1 Γ(L+ 1− s)
L1−sΓ(L)

.

It is seen that the n-th order moments of the inverse
gamma distribution are not defined for n ≥ L. The
inverse gamma distribution is thus an example of heavy
tailed distributions. Its log-cumulants, that exist for all
orders, are written:

κ̃x(1) = log(ν)− Φ(L) + log(L)
κ̃x(2) = Ψ(1, L)
κ̃x(r) = (−1)rΨ(r − 1, L) ∀ r > 1

For even r, these are the same as those of the gamma
distribution. For odd r, they are opposite (See the more
general relation in (20)). As for the gamma distribu-
tion, from second order and upwards, the log-cumulants
depend only on the shape parameter L. Note that the
third order log-cumulant is positive, which is a sufficient
condition for being heavy-tailed.

This distribution could also have been introduced
as the inverse of the gamma distribution (cf. Section
2.4), which would make it possible to deduce the log-
cumulants directly. However, it was important to recall
that the inverse gamma distribution is a particular solu-
tion of the Pearson system and associated with its own
share of work in the literature.

3.4 K Distribution

With the K distribution, we will show that second order
statistics provide an estimation method for the parame-
ters of a complex distribution by simple application of
the results already achieved for the gamma distribution.
The K distribution K[µ,L,M ] has three parameters and

is defined as

K[µ,L,M ](u) =
1

Γ(L)Γ(M)
2LM
µ

(
LMu

µ

)M+L
2 −1

×KM−L

[
2
(
LMu

µ

)1/2
] (40)

whereKn(·) is the modified Bessel function of the second
kind with order n. On this form, calculations of moments
and log-moments require good knowledge of Bessel
function properties as well as tables of transforms of
Bessel functions.

In fact, the K distribution is the distribution which is
followed by a random variable defined as the product
of two independent variables that are both gamma dis-
tributed. Note that this definition made it possible for
Lomnicki [15] to retrieve Eq. (40) using, already at this
time, the Mellin transform.

More precisely, it is possible to define the K[µ,L,M ]
distribution as a Mellin convolution of two gamma
distributions [6]:

K[µ,L,M ] = G[1, L] ⋆̂G[µ,M ]

This definition greatly simplifies the calculations of the
second kind characteristic function and thus the mo-
ments and log-cumulants. In effect, from the properties
of the Mellin convolution (Section 2.4) and knowing the
characteristics of the gamma distribution, one can write
the second kind characteristic function of the K distri-
bution like a product of the second kind characteristic
functions of the gamma distributions G[1, L] and G[µ,M ]:

φx(s) = µs−1 Γ(L+ s− 1)
Ls−1Γ(L)

Γ(M + s− 1)
Ms−1Γ(L)

(41)

which allows us to immediately deduce the classical
moments m1 and m2 without using the definition of the
K distribution, and thus without needing to know the
properties of the Bessel function:

m1 = µ m2 = µ2L+ 1
L

M + 1
M

.

In the same manner, we obtain directly the first two log-
cumulants as the sum of the log-cumulants of the gamma
distributions G[1, L] and G[µ,M ]:

κ̃x(1) = log µ+ (Ψ(L)− log(L)) + (Ψ(M)− logM) (42)

κ̃x(2) = Ψ(1, L) + Ψ(1,M) (43)

κ̃x(3) = Ψ(2, L) + Ψ(2,M) (44)

and we can show that for all r > 1:

κ̃x(r) = Ψ(r − 1, L) + Ψ(r − 1,M) .

Finally, the normalised second order moment is written:

M̃2 = Ψ(1, L) + Ψ(1,M) (45)

and the log-mean:

˜̄m = µ
eΨ(L)

L

eΨ(M)

M
. (46)
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Also here, it is easy to derive the shape parameters L and
M by virtue of the second and third order log-cumulants
(Eqs. (43) and (44)). A simple numerical method is pro-
posed and tested in [14]. The scale parameter is derived
from the first order log-cumulant (Eq. (42)).

This method is much easier than the traditional
method of moments, which results in a third degree
equation. Note also that maximum likelihood estimation
cannot be applied for this distribution [16].

4 APPLICATIONS

Second kind statistics prove easy to put into practice in
the framework of fundamental probability distribution
defined on R+. Except for the introduction of the gamma
function and its logarithmic derivatives (the polygamma
functions), the obtained expressions contain no difficult
terms. On the contrary, they are simple and easy to
comprehend.

We will now look at several innovative applications of
this model:

• A new approach to analysis of the three parameter
distributions used to model SAR imagery

• The case of additive mixtures of gamma distribu-
tions, for which the traditional approaches lead to
expressions that are very hard to handle

• The case of positive α-stable distributions, used for
instance by Pierce to characterise sea clutter [17],
for which it is difficult to estimate the parameters.
(The analytical expression of the pdf for such heavy-
tailed distributions is generally not known.)

• Finally, another example of the α-stable distribution
proposed by Kuruoğlu and Zerubia [18], which can
be seen as a generalisation of the Rayleigh distribu-
tion.

We will start by pointing out a method classically used
to characterise these distributions: the use of the param-
eters of asymmetry β1 (skewness) and peakedness β2

(kurtosis).

Fig. 4. The Pearson system displayed in a (β1, β2)
diagram.

4.1 (β1, β2) Diagram

Traditionally, the skewness and kurtosis are used to char-
acterise distributions belonging to the Pearson system.
These two coefficients are written in terms of the second,
third and fourth order moment:

β1 =
M2

3

M3
2

β2 =
M4

M2
2

The curves obtained for the Pearson system are shown in
Figure 4 in their classical representation. The characteris-
tic point of (β1 = 0, β2 = 3) corresponds to the Gaussian
case (It is invariant with respect to variance).

Because of the choice of squaring the third order
central moment in β1, this coefficient is not able to
distinguish between distributions that have skewness of
the same magnitude but with opposite sign. Thus, it is
not possible to separate between “standard” distribu-
tions and heavy-tailed distributions. Hence, this diagram
seems to be badly adapted to the distributions defined
on R+.

4.2 Characterisation of Texture Distributions in the
(κ̃3κ̃2) Diagram

The (β1, β2) diagram is founded on the calculation of
traditional centred moments and aims at comparing dis-
tributions against the reference Gaussian distribution, for
which the skewness is zero and the kurtosis is directly
related to the variance (σ). It is then natural to propose
a similar approach, founded on the functions of second
kind statistics. We propose in this section a new method:
the (κ3, κ2) diagram, that is, the representation of third
order log-cumulants versus second order log-cumulants
(that are always positive or zero for pdfs defined on R+).

In this diagram, the origin corresponds to the homo-
thetic distribution. Because of the asymptotic behaviour
of the gamma distribution and the inverse gamma dis-
tribution at L → ∞, these distributions are represented
by curves joining at the origin. As noted, the gamma

Fig. 5. The Pearson system and the K distribution dis-
played in a (κ3, κ2) diagram.
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Fig. 6. The Pearson type I distribution (top) and the
inverse Pearson type I distribution (bottom).

distribution has negative values for the third-order log-
cumulants, while the heavy-tailed inverse gamma dis-
tribution has positive values. Note that it is easy to
show that the log-normal distribution, for which all log-
cumulants of order n > 2 is zero, occupies the second
axis.

Figure 5 places the gamma distribution and the inverse
gamma distribution in the diagram, together with the K
distribution (which occupies a surface above the gamma
distribution, limited upwards by a curve defined by the
distribution K[L,L]) as well as the Pearson distributions
of type I (standard and inverse) and type VI. We will
see in the following section that the inverse Pearson
distributions of type I find their natural place in this
diagram, but offer some theoretical surprises.

4.3 An Original Approach to Characterisation of
Three-Parameter Distributions Used for SAR Imagery

Knowing the two elementary two parameter distribu-
tions (the gamma distribution and the inverse gamma
distribution), it falls natural to make use of these as basic

generating functions to obtain a kind of grammar by
using elementary operations like the Mellin convolution
and the inverse Mellin convolution (One could also
have used the Mellin correlation instead of the Mellin
convolution while inverting one of the distributions).
Assume that we have two distributions pA and pB with
respective second kind characteristic functions φA and
φB and log-cumulants κ̃A and κ̃B . Applying a Mellin
convolution or an inverse Mellin convolution will cor-
respond to forming the product or ratio of their second
kind characteristic functions, and the sum or difference
of the log-cumulants, respectively (See Table 1).

The characteristic functions of the distributions ob-
tained by direct or inverse convolution of the two nor-
malised distributions: the gamma distribution (G[1, L]) or
the inverse gamma distribution (G[1,M ]), are included
in Table 2. From these expressions, and by consult-
ing tables of the Mellin transform (and also using the
properties of the transform), it is possible to retrieve
the analytical expressions of these distributions without
further calculations [14]. Furthermore, while considering
only the second and third order second kind cumulants,
Table 3 summarises the result obtained by direct or
inverse convolution of the two normalised distributions:
the gamma distribution (G[1, L]) or the inverse gamma
distribution (G[1,M ]). Recall that the second and third
order second kind cumulants only depend on the shape
parameter.

The distributions traditionally used in processing of
SAR data are found in this table. These are

• The K distribution
• The solutions of the Pearson system [6] correspond-

ing to the distributions defined on R+, that is, in
addition to the gamma and inverse gamma distri-
bution, also the type I solutions (also known as the
beta distribution) and the type VI solutions (known
as the Fisher distribution).

Moreover, uncommon distributions are generated by this
algebraic method. It provides:

• A new distribution which is effectively the inverse
Pearson distribution of type I, denoted IPI[ξ, L,M ]:

IPI[ξ, L,M ] =

M

Lξ

Γ(M)
Γ(L)Γ(M − L)

(
Lξ

Mu

)L+1(
1− Lξ

Mu

)M−L−1

(47)

with u ≥ Lξ
M and M ≥ L+ 1.

This expression is derived simply by means of the
Mellin transform tables [2], since the distribution can be
expressed by the relation:

IPI[ξ, L,M ] = IG[ξ, L] ⋆̂−1 IG[1,M ]

whose characteristic function is

ξs−1 Γ(L+ 1− s)
L1−sΓ(L)

M1−sΓ(M)
Γ(M + 1− s)
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TABLE 2
Second kind characteristic functions of the different distributions obtained by Mellin convolution (direct and inverse) of

the gamma distribution
(
φ(s) = µs−1 Γ(L+s−1)

Ls−1Γ(L)

)
and inverse gamma distribution

(
φ(s) = µs−1 Γ(L+1−s)

L1−sΓ(L)

)
. The

distributions whose names are typeset with boldface correspond to new analytical expressions. The second and third
order log-cumulants are included in Table 3.

⋆̂ ր G[1, M ] IG[1, M ]

K distribution Pearson VI

G[µ, L]

µs−1 Γ(L+s−1)

Ls−1Γ(L)

Γ(M+s−1)

Ms−1Γ(M)
µs−1 Γ(L+s−1)

Ls−1Γ(L)

Γ(M+1−s)

M1−sΓ(M)

Pearson VI IK distribution

IG[µ, L]

µs−1 Γ(L+1−s)

L1−sΓ(L)

Γ(M+s−1)

Ms−1Γ(M)
µs−1 Γ(L+1−s)

L1−sΓ(L)

Γ(M+1−s)

M1−sΓ(M)

⋆̂−1 ր G[1, M ] IG[1, M ]

Pearson I Bessel

G[µ, L]

µs−1 Γ(L+s−1)

Ls−1Γ(L)

Ms−1Γ(M)
Γ(M+s−1)

µs−1 Γ(L+s−1)

Ls−1Γ(L)

M1−sΓ(M)
Γ(M+1−s)

Bessel Inverse Pearson I

IG[µ, L]

µs−1 Γ(L+1−s)

L1−sΓ(L)

Ms−1Γ(M)
Γ(M+s−1)

µs−1 Γ(L+1−s)

L1−sΓ(L)

M1−sΓ(M)
Γ(M+1−s)

TABLE 3
Second and third order log-cumulants of the different distributions obtained by Mellin convolution (direct and inverse)

of the gamma distribution and the inverse gamma distribution (cf. Table 2). To simplify the presentation, only the
second and third order log-cumulants are included in the table. The distributions whose names are typeset in

boldface correspond to new analytical expressions.

⋆̂ ր G[1, M ] IG[1, M ] ⋆̂−1 ր G[1, M ] IG[1, M ]

K distribution Pearson VI Pearson I Bessel

G[1, L] G[1, L]

Ψ(1, L) + Ψ(1, M) Ψ(1, L) + Ψ(1, M) Ψ(1, L)−Ψ(1, M) Ψ(1, L)−Ψ(1, M)

Ψ(2, L) + Ψ(2, M) Ψ(2, L)−Ψ(2, M) Ψ(2, L)−Ψ(2, M) Ψ(2, L) + Ψ(2, M)

Pearson VI IK distribution Bessel Inverse Pearson I

IG[µ, L] IG[µ, L]

Ψ(1, L) + Ψ(1, M) Ψ(1, L) + Ψ(1, M) Ψ(1, L)−Ψ(1, M) Ψ(1, L)−Ψ(1, M)

−Ψ(2, L) + Ψ(2, M) −Ψ(2, L)−Ψ(2, M) −Ψ(2, L)−Ψ(2, M) −Ψ(2, L) + Ψ(2, M)
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Fig. 7. The K distribution (top) and the inverse K distribu-
tion (bottom).

where the last expression is found in the Mellin trans-
form tables. Figure 6 allows a comparison between the
IP distribution and the IPI distribution for the same set
of parameters. Recall that the Pearson type I distribution
is expressed as:

IP[ξ, L,M ] =

L

Mξ

Γ(M)
Γ(L)Γ(M − L)

(
Lu

Mξ

)L−1(
1− Lu

Mξ

)M−L−1

with u ≤ M
Lξ and M ≥ L+ 1.

Curiously, this distribution is never mentioned in the
classical works [9], [19], whereas they characterise the
gamma distribution and the inverse gamma distribution
separately. Moreover, the inverse Pearson type I distri-
bution has the peculiar property of being localised, in
the (β1, β2) diagram, between the gamma distribution

and the inverse gamma distribution, that is, exactly
where the Pearson type VI solution is found. Indeed,
the case M → ∞ corresponds to to the inverse gamma
distribution and the zone corresponding to the inverse
Pearson type I distribution cannot have ambiguities,
whereas the (κ3, κ2) diagram separate well between the
solutions of the Pearson system.

• The inverse K distribution, which is also uncom-
mon, is expressed as:

IK[µ,L,M ](u) =
1

LΓ(L)MΓ(M)
2
µ

(
LMµ

u

)M+L
2 +1

×KM−L

[
2

(
LMµ

u

1
2

)] (48)

Figure 7 allows a comparison between the K dis-
tribution and the inverse K distribution for the same
set of parameters. As for the K distribution, the mod-
elling through the Mellin convolution makes it easy to
show that the inverse K distribution tends to an inverse
gamma distribution as one of the shape parameters (L
orM ) goes to to infinity. One thus has a three parameter
distribution which is heavy-tailed.

• The combinations G ⋆̂−1 IG and IG ⋆̂−1 G have
known analytical solutions that include Bessel func-
tions. However, they are not probability distribu-
tions, as the condition px(u) ≥ 0 is not satisfied.

We see that insightful interpretations can be made
based on the second and third order log-cumulants, κ̃2

and κ̃3. By the simple analysis of these entities, we
can effectively get an idea about the flexibility of a
certain distribution compared to the generalised gamma
distribution, its inverse, and the other distributions that
cover the log-cumulant space: the K distribution and its
inverse, and the solutions of the Pearson system. The
analysis of the second and third order log-cumulants
can also account for more complex models. We shall
see that the same diagram can be used to analyse an
additive mixture of gamma distributions, and propose
an original and simple practical method to determine
the model parameters.

4.4 Additive Mixture of Gamma Distributions

Additive mixtures of gamma distributions are important
practical modelling tools (in particular for SAR imagery).
Contrarily to the Gaussian case, a unimodal pdf is gener-
ally obtained, except when the (two) initial distributions
are very different (see Figure 8). However, we will show
that there exists a simple solution to determine the
parameters of the mixture by analysing this problem
aided by second and third order log-cumulants.

Consider the following mixture of gamma distribu-
tions:

λG[µ,L] + λ′G[µ′, L]

with λ ≥ 0, λ′ ≥ 0 and λ + λ′ = 1. In this model, L
has the same value for the two gamma distributions.
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Fig. 8. Examples of additive mixtures of gamma distributions. The left column shows distributions with L = 1, and the
right column with L = 3. In the first row, ρ = 2 (µ = 1 and µ′ = 2). In the second row, ρ = 5 (µ = 1 and µ′ = 5). λ takes
the values 0, 0.2, 0.4, 0.6, 0.8 and 1.

Fig. 9. (κ2, κ3) diagram for a mixture of gamma distributions described by the parameters λ (mixing proportion) and
ρ (ratio of component means). To the left, for λ varied between 0 and 1, three diagrams are traced out corresponding
to several values of ρ for three values of L (L = 1, 3 and 5). In the same plot, the gamma distribution is represented
by a line which spans L ∈ [1,∞]. To the right, for a fixed value of L = 1, one separately varies ρ between 0 and 5
(five curves, with λ taking the values 0.1, 0.3, 0.5, 0.7 and 0.9) and λ between 0 and 1 (four closed curves, with ρ taking
values 2, 3, 4 and 5), placing both diagrams in the same figure.
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The model can be rewritten by defining the variable ρ
such that µ′ = ρµ, which makes it possible to write the
mixture in the following form:

λG[µ,L] + (1− λ)G[ρµ, L] (49)

The mixture is then defined by a gamma distribution
G[µ,L] (corresponding to only one of the mixture com-
ponents) and two parameters describing the mixture: λ
and ρ. The second kind characteristic function is written:

φ(s) = (λ+ (1− λ)ρs−1)µs−1 Γ(L+ s− 1)
Ls−1Γ(L)

Based on this expression, calculation of the log-
cumulants can be carried out directly, giving the follow-
ing expressions:

κ̃x(1) = Ψ(L)− logL+ logµ+ (1− λ) log ρ

κ̃x(2) = Ψ(1, L) + log(ρ)2λ(1− λ)

κ̃x(3) = Ψ(2, L) + log(ρ)3λ(1− λ)(2λ− 1)

We remark that starting from the second order, the log-
cumulants do not depend on µ, and they have the
same values as the standard gamma distribution for the
limiting values λ = 0 and λ = 1.

We assume that the entity L is known (L can be
perceived as a function of the instrument, thus it will
be known by the processor). This leads to:

κ̃x(2) = κ̃x(2) −Ψ(1, L)

κ̃x(3) = κ̃x(3) −Ψ(2, L)

Parameters λ and ρ are then given by the solutions of
quadratic equation, which gives:

λ =
1
2

1± κ̃x(3)√
4κ̃x(2)

3
+ κ̃x(3)

2


ρ = e

√
4κ̃x(2)

3+κ̃x(3)
2

κ̃x(2)

The evolution of the different parameters in the (κ̃3, κ̃2)
diagram is shown in Figure 9. It is interesting to notice
that the shape of these curves does not depend on L.
If the obtained results are compared with those found

in the literature, it is noticed that this approach relies
on one assumption only: knowledge of the parameter L,
while analyses of mixtures by classical methods require
the additional knowledge of µ [20].

4.5 Positive α-Stable Distributions

We will now apply the methodology proposed in this ar-
ticle to the case of a ‘heavy-tailed distribution, for which
neither the analytical form of the pdf nor moments from
a certain order and upwards are known. This prohibits
the method of moments.

A positive α-stable distribution has a pdf characterised
by two parameters: α and γ. It cannot in general be

defined, other than by its characteristic function Φ(ν),
which is written (according to Pierce [17]) as:

Φ(ν) = e−γ|ν|α(1+j sgn(ν) tan(απ
2 ))

with

sgn(ν) =

 1, ν > 0
0, ν = 0,

−1, ν < 0
0 < α < 1, γ > 0 .

Except for certain particular values of α, the analytical
expression of the distribution is not known.

One can nevertheless express the moments of this
distribution (including fractional ones) as:

mν =
γ

ν
α sin(πν)Γ(ν + 1)

(
1 +

(
tan

(
πα
2

))2) ν
2α

α sin
(

πν
α

)
Γ
(
1 + ν

α

) (50)

These moments are only defined for ν < α < 1, which
means that even the first moment is not defined. This is
evidently a heavy-tailed distribution.

It is nevertheless possible, by an analytical continua-
tion, to derive the second order characteristic function,
which is written:

φ(s) =
γ

s−1
α sin(π(s− 1))Γ(s)

(
1 +

(
tan

(
πα
2

))2) s−1
2α

α sin
(

π(s−1)
α

)
Γ
(
1 + s−1

α

)
It is seen that this function is well defined in a com-
plex neighbourhood around the value s = 1. The exis-
tence theorem in Section 2.5 thus confirms that the log-
moments and log-cumulants of all orders exist, whereas
the moments of orders ν ≥ α are not defined.

Even though the analytical form is rather complicated,
it is still possible to obtain simple expressions of the
log-cumulants. Note that these expressions are only an-
alytical continuations because the gamma functions in
the derivatives of φ(s) have discontinuities at s = 1, a
value at which they must be evaluated when calculating
the log-cumulants. It is then necessary to study the limit
at s = 1 in order to obtain the analytical expressions.
The following results were established with assistance of
mathematical computation software Maple, as a result of
lengthy analytical developments:

κ̃1 =
(1− α)Ψ(1)

α
+
− log

(
cos
(

πα
2

))
α

+
log γ
α

κ̃2 =
(1− α2)
α2

Ψ(1, 1)

κ̃3 =
α3 − 1
α3

Ψ(2, 1)

(51)

These expressions, that eventually appear as rather sim-
ple, illustrate well the strength of our new approach.
The two parameters of the distribution are easily derived
since:

• The parameter α can be estimated from the second
order log-cumulant as:

α =

√
Ψ(1, 1)

Ψ(1, 1) + κ̃2
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• When α is known, γ can be obtained from the first
log-cumulant as:

γ = eακ̃1−(1−α)Ψ(1)+log(cos(πα
2 ))

• By combining the previous expressions, one can also
write γ in terms of κ̃1 and κ̃1:

γ = exp

(√
Ψ(1, 1)

Ψ(1, 1)− κ̃2
κ̃1−

[
1−
√

Ψ(1, 1)
Ψ(1, 1)− κ̃2

]
Ψ(1)

+ log

[
cos

(
π

2

√
Ψ(1, 1)

Ψ(1, 1)− κ̃2

)])
We note that the Mellin transform sheds, on the theo-
retical side, a new and recent light on the heavy-tailed
distributions [21].

4.6 A Generalisation of the Rayleigh Distribution

Another example drawn from the α-stable distributions
inspired Kuruoğlu and Zerubia to propose a general-
isation of the Rayleigh distribution [18]. The pdf has
two parameters (α and γ) and its analytical expression
is given by the following integral equation:

p(u) = u

∫ ∞

0

ve−γvα

J0(uv)dv (52)

where J0 is the Bessel function of the second kind. This
distribution falls into the heavy-tailed category, since
its moments are not defined from a certain order and
upwards, with this order given as: min(α, 2).

To calculate its second kind characteristic function,
two approaches are possible:

• The first search for the Mellin transform of this
expression [14] led to the following result:

φ(s) =
2sΓ

(
s+1
2

)
γ

s−1
α Γ

(
1−s
α

)
Γ
(

1−s
2

)
α

(53)

• A second approach consists of rewriting (52) on the
form of a Mellin correlation:

p(u) = u
(
J0(u) ⊗̂

(
e−γuα

))
By using the property in (22), (53) is immediately
retrieved.

It can be noted that at s = 1, the second kind
characteristic function of this distribution goes in the
limit to the value 1, since

lim
s→1

Γ
(

1−s
α

)
Γ
(

1−s
2

) =
α

2

It is thus a valid pdf.
In the vicinity of s = 1, this function is defined for

s < 1 + min(α, 2) and for s > −1. It is thus well defined
in a vicinity of s = 1, hence it is legitimate to calculate
its log-moments and log-cumulants. Note that the case

Fig. 10. Generalised Rayleigh distribution [18]: α = 1,
α = 1.5 and α = 2.
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α = 2 gives the Rayleigh distribution and the case α = 1
gives the distribution

p(u) =
γu

(u2 + γ2)
3
2
.

Figure 10 shows this distribution for α = 1, α = 1.5 and
α = 2 (the Rayleigh distribution).

Although the analytical form is rather complicated, it
is possible to formulate the first and second order log-
cumulants of the probability distribution. Again, the ex-
pressions obtained are analytical continuations because
of discontinuities in the gamma functions. Also in this
case, Maple was used to establish following expressions:

κ̃1 = −Ψ(1)
1− α

α
+ log

(
2γ

1
α

)
κ̃2 =

Ψ(1, 1)
α2

.

The equation system obtained is easy to handle. The
distribution parameters are easily retrieved from the first
two log-cumulants:

α =

√
Ψ(1, 1)
κ̃2

γ = eακ̃1−Ψ(1)(1−α) .

It is verified that for α = 2, the log-cumulants of the
Rayleigh distribution are retrieved (with µ = 2

√
γ):

κ̃1 =
1
2
Ψ(1) + log(2

√
γ)

κ̃2 =
1
4
Ψ(1, 1) .

5 PARAMETER ESTIMATION

The proposal of a new methodology to evaluate the
parameters of a probability distribution requires us to
compare the results with those obtained by traditional
methods in a realistic setting where N samples are avail-
able. In order to decide which method is the preferred
one, it is important to establish the variance of the
estimators. The goal of this section is to carry out an
exhaustive comparison for a schoolbook example: the
gamma distribution, for which the method of moments,
the method of log-moments, and the method of maxi-
mum likelihood are applicable.

5.1 Traditional Methods: Method of Moments Esti-
mation and Maximum Likelihood Estimation

5.1.1 Experimental Framework

Assume that a probability distribution is described by p
parameters: αj , j ∈ [1, p]. Estimation of the parameters
describing this distribution is commonly performed by
the two following approaches:

• The method of moments (MoM) consists of calculating
the sample moments of order 1 to p in order to
obtain a system of p equations in p unknown pdf

parameters. If N samples are available, xi, i ∈ [1, N ],
the rth order sample moment is expressed simply as

mr =
1
N

N∑
i=1

xr
i .

In order to determine p parameters, it is necessary
that all moments up to order p exist, which can pose
a problem for instance for distributions with heavy
tails. It is also possible to use fractional moments
(like FLOM [3]), or lower (and even negative) order
moments, whose possible existence is justified in
section 2.2 [4], to obtain an equation system which
can be solved. Note, however, that the expressions
sometimes prove impossible to invert analytically,
and the system may also be difficult to invert nu-
merically.

• The maximum likelihood approach consists of regard-
ing the N samples xi as N independent realisations
of the distribution which one seeks to estimate, so
that they maximise the expression

N∏
i=1

px(xi)

or, equivalently,

N∑
i=1

log(px(xi)) .

With these expressions representing a maximum,
calculation of partial derivatives for each parameter
then makes it possible to obtain another system of
p equations in p unknowns:

∂

(
N∑

i=1

log(px(xi))

)
∂αj

= 0 . (54)

The solution relies on the existence of the partial
derivatives, which can pose a problem, as for the K
distribution [16].

5.1.2 Estimator Variance

With several applicable methods available, we must
compare them to select the one which is likely to give
the user the most reliable results. A natural approach is
to seek the method which provides minimum variance
for the estimator of a given parameter, knowing that one
has a finite number of N samples.

It is known that for the distributions of the expo-
nential family, maximum likelihood estimators attain
the Cramer-Rao boundary. Provided that the p partial
derivatives in Eq. (54) can be calculated analytically, and
that the system of equations can be solved, one obtains p
estimators whose variances are minimal. However, many
existing distributions (such as the K distribution) do not
have analytical expressions for all partial derivatives,
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which then renders the method of maximum likelihood
inadequate.

In this case, the use of the method of moments is
justified, even if the estimator variance thus obtained
is higher. The variance of estimators obtained by the
method of moments can be derived through an ap-
proach suggested by Kendall [19]. Let m1 and m2 be
the estimates of the first two moments, and g(m1,m2) a
function depending only on these two entities. We seek
to calculate the variance of the function g(m1,m2) by
linearising it and writing it as a first-order expansion
around the values of the theoretical moments, m0,1 and
m0,2:

g(m1,m2) = g(m0,1,m0,2) + (m1 −m0,1)
∂g

∂m1
(m0,1,m0,2)

+ (m2 −m0,2)
∂g

∂m2
(m0,1,m0,2) .

After having verified that the ∂g/∂mi are not both
zero in the point (m0,1,m0,2), the variance of g is
established as the quadratic error between g(m1,m2)
and g(m0,1,m0,2) due to the following formula [19, Eq.
(10.12)]:

Var{g(m1,m2)}
= E

{
[g(m1,m2)− g(m0,1,m0,2)]2

}
= E

{[
(m1 −m0,1)

∂g

∂m1
(m0,1,m0,2)

+(m2 −m0,2)
∂g

∂m2
(m0,1,m0,2)

]2}
=
∂g

m1
(m0,1,m0,2)2 Var{m1}

+
∂g

m2
(m0,1,m0,2)2 Var{m2}

+ 2
∂g

∂m1
(m0,1,m0,2)

∂g

∂m2
(m0,1,m0,2)

× Cov{m1,m2} .

(55)

The method can obviously be generalised to functions
utilising moments mi of order i. The definition of the
covariance matrix allows us to write:

Var{mi} =
1
N

(m2i −m2
i )

Cov{mi,mj} =
1
N

(mi+j −mimj)

5.2 Method of Log-Moments

We propose in this article a new method for analysis
of pdfs defined on R+ based on log-moments and log-
cumulants. We will see in this section how to implement
it and how to calculate the variance of the estimators
obtained.

5.2.1 Description
The method of log-moments (MoLM) consists of calcu-
lating estimates of log-moments and log-cumulants in
order to obtain a system of p equations in p unknowns

(the parameters of the pdf). Assume that we have N
samples xi, i ∈ [1, N ] from the distribution to be es-
timated. The estimate of the pth order log-moment is
expressed simply as

m̃p =
1
N

N∑
i=1

log xp
i .

To determine p parameters, it is necessary to check in
advance that the log-moments up till order p exist. This
is in general true, as stated by the theorem of existence,
which has been verified for the distributions generally
used in signal and image processing.

5.2.2 Estimator Variance
Since we use a logarithmic scale, the criterion of the
quadratic error (applied in Eq. (55)), is replaced by an-
other criterion which we will call “normalised quadratic
error”, Enq , which is in fact the quadratic error calculated
on a logarithmic scale:

Enq = E

{(
log
(
x

y

))2
}
.

In the same spirit, we introduce the second kind variance
and covariance, Ṽar and ˜Cov, on the form

Ṽar{m̃i} = E
{[

(log x)i − m̃i

]2}
=

1
N

(
m̃2i − m̃2

i

)
˜Cov{m̃i, m̃j} = E

{[
(log x)i − m̃i

] [
(log x)j − m̃j

]}
=

1
N

(m̃i+j − m̃im̃j)

where m̃i is the ith order log-moment.
With this new approach, and taking the preceding step

as starting point, let the function g be expressed in terms
of the first two estimated log-moments as g(m̃i, m̃2).
Then g can be expanded around the first two theoretical
log-moments, m̃0,1 and m̃0,2, as

g(m̃1, m̃2) = g(m̃0,1, m̃0,2) + (m̃1 − m̃0,1)
∂g

∂m̃1
(m̃0,1, m̃0,2)

+ (m̃2 − m̃0,2)
∂g

∂m̃2
(m̃0,1, m̃0,2) .

After verifying that the ∂g/∂m̃i are not both zero in
(m̃0,1, m̃0,2), the variance of g is established by the same
formula applied in the previous section.

Var{g(m̃1, m̃2)} = E
{
[g(m̃1, m̃2)− g(m̃0,1, m̃0,2)]2

}
= E

{[
(m̃1 − m̃0,1)

∂g

∂m̃1
(m̃0,1, m̃0,2)

+(m̃2 − m̃0,2)
∂g

∂m̃2
(m̃0,1, m̃0,2)

]2}
=
∂g

m̃1
(m̃0,1, m̃0,2)2Ṽar{m̃1}+

∂g

m̃2
(m̃0,1, m̃0,2)2Ṽar{m̃2}

+ 2
∂g

∂m̃1
(m̃0,1, m̃0,2)

∂g

∂m̃2
(m̃0,1, m̃0,2)× ˜Cov{m̃1, m̃2} .

As in the previous, this method can obviously be gen-
eralised to functions of the moments m̃i of unspecified
order i.
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5.3 The Gamma Distribution Case

We will use the gamma distribution as an example
to compare the available methods. This distribution is
not heavy tailed, thus the method of moments can be
used, as well as the method of log-moments. The partial
derivatives with respect to the parameters are known,
which makes it possible to apply maximum likelihood
estimation.

5.3.1 Variance of the Gamma Distribution Parameter
Estimators with the Method of Moments

The method of moments (MoM) utilises the first two
moments to deduce estimates of L and µ (Eqs. (30) and
(31)). The method of Kendall, presented in Section 5.1.2,
gives the following variance for the estimators of µ and
L:

VarMoM{µ̂} =
µ2

NL
(56)

VarMoM{L̂} =
2L(L+ 1)

N
(57)

5.3.2 Variance of the Gamma Distribution Parameter
Estimators with the Method of Log-Moments

The parameter L is derived from (33) as

Ψ(1, L) = κ̃x(2)

which can be rewritten as a function of (m̃1, m̃2):

Ψ(1, L) = m̃2 − m̃2
1 .

One then carries out the limited expansion proposed in
the previous, which requires the use of implicit differen-
tiation. Although the expression brings into play the first
to fourth order log-moments, the result can be simplified
and we obtain:

VarMoLM{L̂} =
1
N

Ψ(3, L) + 2Ψ(1, L)2

Ψ(2, L)2
. (58)

Figure 11 (left panel) presents the ratio of the standard
deviation for the variance of MoLM estimate of L̂ to the
standard deviation for the variance of the MoM estimate
of L̂. The whole motivation for using the new method
is evident for low values of L, where the improvement
approaches 30%. When the variance of the different
estimators is fixed, this results in the same amount of
shrinking of the analysis window, and therefore a better
spatial localisation of the estimate.

For the parameter µ, the calculation is much more
elaborate, and we finally arrive at the following expres-
sion, whose interpretation is not simple, but which can
easily be implemented numerically:

VarMoLM{L̂} = − 1
N

µ2

L2Ψ(2, L)2

× [2Ψ(1, L)LΨ(3, L)−Ψ(1, L)2L2Ψ(3, L)

+ 4Ψ(1, L)3L− 2Ψ(1, L)4L2 − 2LΨ(2, L)2

+Ψ(1, L)L2Ψ(2, L)2 − 2Ψ(1, L)2 −Ψ(3, L)
]

Fig. 12. Gamma distribution: Comparison of the variance
of the estimator for µ by the method of log-moments with
the method of moments. The curve represents the ratio of
the standard deviations for values of L between 1 and 10.

Also Figure 12 presents the ratio of the standard de-
viation of µ̂ calculated by the MoLM to the standard
deviation of µ̂ calculated by the MoM.

It can be noted that the MoM provides better results
for low values of L. Recall moreover that this is also
the maximum likelihood estimator and thus attains min-
imum variance (i.e. the Cramer-Rao bound).

5.3.3 Variance of the Gamma Distribution Parameter
Estimators with the Method of Lower Order Moments
The existence of the second kind characteristic function
for values of s lower than 1 justifies the use of the
method of lower order moments (MoLOM), i.e. negative
ones. In the case of the gamma distribution, it is known
that the lower order moments exist for ν > −L. For a
given value of ν it is verified that ν > −L and using the
three moments µν , µν+1 and µν+2 it is easy to show that
µ̂ and L̂ can be derived from the relation:

µ̂ =
m̂ν+1

m̂ν
(1 + ν)− ν

m̂ν+2

m̂ν+1

L̂ =
1

m̂ν

(
m̂ν+2
m̂ν+1

)
− 1

− ν

For ν = 0, this reduces to the MoM (Eqs. (30) and (31)).
The variances of the estimators for µ and L can be

established by the method of Kendall, used in Section
5.3.1 (for the MoM). For L, the following expression is
obtained:

VarMoLOM{L̂} =
1
N

Γ(L)Γ(2ν + L)
Γ(ν + L)2

× (2L(L+ 1) + ν[4L(ν + 2) + (ν + 4)(ν + 1)2]
) (59)

The problem with this relation is that it has a minimum
for ν, which cannot be expressed explicitly as a function
of L. The optimal values of ν must be calculated nu-
merically. Table 4 gives some values of ν as a function
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Fig. 11. To the left, a comparison of the variance of the estimator for L by the method of log-moments and the method
of moments. To the right, a comparison of the variance of the estimators of L by the method of log-moments and the
method of lower order moments (only for the value of ν = −0.35). The curves represent the standard deviation for
values of L between 1 and 10.

TABLE 4
Gamma distribution estimated with the method of lower
order moments. Optimal values of the parameter ν that

minimises the variance of L̂ as a function of L

L νopt

1 -0.35

2 -0.44

3 -0.56

4 -0.59

of L. When information about L is absent, the choice of
ν = −0.35 seems to be a good compromise.

Figure 11 (right panel) presents the ratio of the stan-
dard deviation of L̂ calculated by the MoLM to the
standard deviation of L̂ calculated by the MoLOM with
ν = −0.35. It is interesting to note that the MoLOM
is slightly better than the MoLM. Nevertheless, if one
wants to fully utilise this method, then one must know
L to be able to choose the optimal value of ν. As the
difference is altogether rather small, we promote the
MoLM because it does not require us to determine a
parameter in order to make optimal use of the method.

However, it is easily shown that minimum variance
is obtained for ν = 0, which is less than astonishing
since this value corresponds to the maximum likelihood
estimator.

5.3.4 Summary
We propose to summarise these results by posting in
Table 5 the optimal window dimension for these three
methods when we seek to reach an error of 10% for
the estimate of the shape parameter L (i.e. the standard
deviation is 10% of the value to be estimated). For

TABLE 5
Number of samples (and examples of the analysis

window) needed to estimate the parameters L and µ of a
gamma distribution with 10% error. The methods used

are, for the shape parameter L, the method of moments
(MoM), the method of lower order moments (MoLOM)

with ν = −0.35, and the method of log-moments (MoLM).
The Cramer-Rao bound (CRB) is calculated by the

means of the Fisher information matrix. For µ, only the
MoM is used.

Gamma distribution

L L̂ µ̂

MoM MoLOM MoLM CRB MoM

1 400 179 206 155 100

20× 20 13× 13 14× 14 12× 12 10× 10

2 300 189 203 172 50

17× 17 14× 14 14× 14 13× 13 7× 7

3 267 194 202 180 33

16× 16 14× 14 14× 14 13× 13 6× 6

5 240 197 201 187 20

15× 15 14× 14 14× 14 14× 14 4× 4

10 220 199 200 194 10

14× 14 14× 14 14× 14 14× 14 3× 3

the parameter µ, only the method of moments (which
coincides with the maximum likelihood estimator) is
used.

We first remark that for an identical relative error
(10%), the estimate of L requires much more samples
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TABLE 6
Number of samples (and examples of the analysis

windows) needed to estimate the parameters σ and µ of
a Gaussian distribution with 10% error.

Gaussian distribution

σ σ̂ µ̂

1 200 100

14× 14 10× 10

0.707 200 50

14× 14 7× 7

0.577 200 33

14× 14 6× 6

0.447 200 20

14× 14 4× 4

0.316 200 10

14× 14 3× 3

than the estimate of µ. Secondly, the estimate of µ
requires much less samples when L is large, i.e. the
distribution is localised. Lastly, it is interesting to note a
characteristic feature of the MoLM: It requires about the
same number of samples for all values of L, whereas the
MoM requires a much higher number of samples when
L is small. From this, two remarks can be made:

• It can be shown that the variance of L̂ for the MoLM
(Eq. (58)) is almost quadratic in L:

Ψ(3, L) + 2Ψ(1, L)2

Ψ(2, L)2
≃ 2L2

Thus, if a constant relative error is sought, the
number of samples is independent of L.

• It is interesting to analyse the same problem for the
Gaussian distribution N [µ, σ2]. It is easy to show
that the variances of the estimators of µ and σ do
not depend on σ for the MoM. They are written:

VarN (µ) =
σ2

N

VarN (σ) =
σ2

2N

By choosing Gaussian distributions with µ = 1, the
values of σ become comparable and an identical
criterion, and the required window sizes can be
calculated. These are included in Table 6.

It is seen that the MoM needs a constant number of
samples to estimate the shape parameter σ, an analogy
to the property of the MoLM for the gamma distribution.

To achieve this analysis, we calculate Fisher’s infor-

mation matrix for the gamma distribution4:[
L
µ2 0
0 Ψ(1, L)− 1

L

]
,

which allows the calculation of the Cramer-Rao bound,
given in Table 5.

5.4 The Mixture of Gamma Distribution Case

The analytical calculation of the variance of the es-
timators in the mixture of gamma distributions case
described in Section 4.4 does not pose any problem,
except for the apparent complexity of the expressions
obtained, whose length prohibits us from including them
in a publication. Another possibility would be to assess
them by numerical evaluation.

Table 7 presents the standard deviations of λ and ρ
if the analysis is carried out in neighbourhood of 100
samples (a 10× 10 window), for various values of ρ and
λ.

Table 8 presents the optimal dimension of a square
window which guarantees a maximum of 10% estima-
tion error (where the error is defined as the ratio of the
standard deviation to the estimated value). Note that
for L = 1, a large window size is required, which is
not surprising when recalling Figure 8 showing that a
mixture of gamma distributions is generally unimodal.

6 CONCLUSIONS

Second kind statistics seem to be an innovative and
powerful tool for the study of distributions defined on
R+. The analytical formulation of the log-moments and
the log-cumulants is indeed particularly simple and easy
to exploit. At least, this is true for the examples presented
in this article, whereof some, such as the mixture distri-
butions, are not commonplace. Moreover, the variance of
the estimators thus defined approaches the minimal val-
ues reached by the maximum likelihood method, while
avoiding some of the analytical pitfalls. This approach
shows great potential in certain applications in SAR
image processing (such as the characterisation of an
optimal homomorphic filter [11]). One can reasonably
question why this approach, in all its simplicity, has
not been proposed before. Several reasons can be called
upon:

• The first is based on the observation that a Mellin
transform of a pdf is only a Fourier transform of the
same pdf taken on a logarithmic scale. Even if this
step is perfectly justified on the theoretical level, all
the possible advantages of moving into the Mellin
domain remain hidden, such as the use of existing
tables of known Mellin transforms, or the direct use
of the log-moments and log-cumulants that produce
better estimates of the distribution parameters.

4. The diagonal form of this matrix justifies a posteriori the analytical
expression of the gamma distribution that we chose, which differs
slightly from the one found in reference book like [9], [19].
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TABLE 7
Standard deviation (SD) for the estimates of λ and ρ in the case of a mixture of gamma distributions. The size of the
analysis window is 10× 10. Since the SD is inversely proportional to the square root of the number of samples in the

analysis window, the table can serve to determine the optimal window after a maximum error has been set.

ρ = 2 ρ = 5 ρ = 10

λ SDλ SDρ λ SDλ SDρ λ SDλ SDρ

.1 .553 3.874 .1 .071 2.638 .1 .043 3.867

.2 .617 1.967 .2 .083 1.606 .2 .052 2.481

.3 .676 1.235 .3 .092 1.183 .3 .059 1.918

.4 .730 .784 .4 .099 .925 .4 .063 1.591

.5 .780 .455 .5 .105 .749 .5 .065 1.380

TABLE 8
Optimal window size for a relative error of 10% in λ and ρ.

ρ = 2 ρ = 5 ρ = 10

λ SDλ SDρ λ SDλ SDρ λ SDλ SDρ

.1 553× 553 194× 194 .1 71× 71 53× 53 .1 43× 43 39× 39

.2 309× 309 98× 98 .2 41× 41 32× 32 .2 26× 26 25× 25

.3 225× 225 62× 62 .3 31× 31 24× 24 .3 20× 20 19× 19

.4 182× 182 39× 39 .4 25× 25 19× 19 .4 16× 16 16× 16

.5 156× 156 23× 23 .5 21× 21 15× 15 .5 13× 13 14× 14

• The analysis of the product model, which is reserved
for particular processes like coherent imaging, has
not received the same strong attention as the addi-
tive signal model. The philosophy adopted for the
study of the product model has too often consisted
of transformation into logarithmic scale, in order
to use the known tools for the additive model.
This reductional step quickly pose problems, as it
requires large control of the analytical expressions
thus obtained. It is probably the reason why non-
experts have written off other distributions than
the gamma distribution and the inverse gamma
distribution, such as the K distribution, for instance.

• Finally, the Mellin transform has been completely
ignored. Its applications has been confined to certain
specialised applications, which has unfortunately
prevented diffusion of the method beyond the field
of study (e.g., radar and sonar signals, number
theory, ultrasound propagation in heterogeneous
media, the Fourier-Mellin transform in image pro-
cessing). Even if certain pieces of work, old [15]
as well as recent [22], [21] ones, have shown its
applicability in the field of probability, its use has
been very restricted. Therefore, few people know the
fundamental properties, or even the exact definition.

The unfortunate consequence of the confidentiality
is that few research groups have worked on the
subject. Therefore, powerful and sufficiently gen-
eral numerical implementations of the analytical
transform are still missing. These would make it
possible to consider numerical deconvolutions of
the probability distributions described by a Mellin
convolution, and thus to recover significant param-
eters of a SAR scene [23].
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