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Abstract: In an earlier paper, an alternative method for how to solve the
frequency analysis problem was offered. The object of the present paper is to
bring about how to handle situations where the frequencies are close to each
other or there is an amplitude that is really small.

AMS Subject Classification: 30C45
Key Words: frequency analysis, univalent functions, close frequencies, small
amplitudes

1. Processes to Identify Frequencies

1.1. A Well-Known Way of Identifying Frequencies

The frequency analysis problem is the problem of determining the unknown
frequencies ωj and amplitudes αj in a trigonometric signal. A method for solv-
ing the problem may roughly be described as follows: Based on signal values, a
certain absolutely continuous measure on the unit circle is constructed. Next,
an inner product is defined and in turn moments and monic orthogonal polyno-
mials are obtained. Finally, asymptotic values of some zeros of the polynomials
lead to the frequencies. (See [2], [3], [4], [5], [6], [8] for details). More precisely,
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a given trigonometric signal may assumed to be on the form

G(t) =

I
∑

j=−I

Aje
2πifjt,

where t is the time, fj = −f−j, j = 1, 2, ..., I, f0 = 0, the frequencies and
Aj = A−j ∈ R, |Aj | the amplitudes. The frequency analysis problem is to
find the unknown frequencies from signal values observed at times m∆t. With
ωj = 2πfj∆t arranged so that 0 < ω1 < ω2 < · · · < ωI < π, the signal may
then be written on the form

x(m) = 2

I
∑

j=1

Aj cosmωj.

Since +ωj and −ωj represent the same frequency, we count them as one and
let I denote the number of frequencies. Let for any positive integer N , ψ(N)(θ)
be the positive measure on the unit circle ∂D= {z : |z| = 1} given by

dψ(N)(θ)

dθ
=

1

2π

∣

∣

∣

∣

∣

N−1
∑

m=0

x(m)e−miθ

∣

∣

∣

∣

∣

2

.

This measure defines
{

µ
(N)
n

}∞

−∞
; a sequence of moments

µ(N)
n =

π
∫

−π

e−niθdψ(N)(θ), n = 0,±1,±2, ..., (1)

and gives rise to an inner product and a sequence of monic orthogonal poly-

nomials ρ
(N)
n (z) called Szegö polynomials. The Szegö polynomials may be

determined in different ways: 1: By determinant formulas, 2: By the Levinson
algorithm, 3: By a method in which

L0(z) := µ
(N)
0 + 2

∞
∑

k=1

µ
(N)
k zk, µ

(N)
k as in (1),

represents a Carathéodory function, mapping the unit disk into the open right
halfplane ℜw > 0. L0 plays an essential role in the alternative method for
frequency identification introduced in Section 1.2. Together with the power
series

L∞(z) := −µ(N)
0 − 2

∞
∑

k=1

µ
(N)
−k z

−k
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which represents an analytic function in |z| > 1 mapping it into ℜw < 0, L0

correspond to a unique positive continued fraction expansion, called a Perron-
Carathéodory fraction:

δ0 −
2δ0
1 +

1

δ1z +

(1− |δ1|2)z
δ1 +

1

δ2z +

(1− |δ2|2)z
δ2 + · ·· (2)

The Szegö polynomials are denominators of the odd order approximants of this
particular continued fraction, when it is constructed in a certain way from the
signal. For more details, see [1], [7].

In the sequence
{

µ
(N)
n

}

we make two replacements: First, all formulas remain

valid if all µ
(N)
n are replaced with µ

(N)
n /N. By the convergence of ψ(N)(θ)/N it

then follows that

lim
N→∞

µ(N)
n /N =: µn =

I
∑

j=−I

A2
je

niωj = A2
0 + 2

I
∑

j=1

A2
j cosnωj.

We replace {µn} by
{

µnR
|n|
}

for any fixed R ∈ (0, 1). Using µnR
|n| instead of

µ
(N)
n /N in the determinant formula for Szegö polynomials, the limit as R → 1

exists for any n. For n > n0 = 2I + L where L = 1 for A0 6= 0 else L = 0, the
limit polynomial will contain

(z − 1)L
I
∏

j=−I

(z − eiωj )(z − e−iωj )

as factor. This R-process leads to the unknown frequencies without going
through subsequences.

1.2. An Alternative Way of Identifying Frequencies

In an earlier paper [9], an alternative method for how to solve the frequency
analysis problem is presented. We use the fact that for a normalized starlike
univalent function

f(z) = z + a2z
2 + · · ·+ anz

n + · · ·, z ∈ D,

the expression zf ′(z)
f(z) is a Carathéodory function. The idea is then to solve the

differential equation
zf (N)′(z)

f (N)(z)
= L0(z).
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In [9] it is proved that

lim
N→∞

f (N)(z) =: f(z) =
z

I
∏

j=1
(1− 2z cosωj + z2)2α

2

j

∈ S∗ (3)

where

αj =
Aj

K
, K =

√

√

√

√2
I

∑

j=1

A2
j to give 2

I
∑

j=1

α2
j = 1. (4)

The function f is called a slit mapping function. By analyzing the picture of
f(D) it is shown that:

1. The number of frequencies of the signal is the number of angular openings
in the upper half plane.

2. The absolute values of the amplitudes of the signal are the square root
of the angles between the rays divided by 2π.

3. The frequencies of the signal are determined by either:

—- using the exact number of frequencies from point 1. in the Szegö poly-
nomial method, or

— solving a set of signal equations using known values of the signal, or

— solving a set of selected signal equations from the previous point and in
addition some moment equations using known values of the moments, or

— measuring the distances to the slit endpoints and use the formulas for
the distances.

See [9] for details.

For practical purposes, we can only include a finite number of terms in the
Taylor expansion of (3). This, together with the need to approximate the unit
disk to a slightly smaller one, produce errors in our calculations. These errors
are analysed and estimated influence of in [10].

Example 1. (Slit Mapping Illustrations)

Let I = 3 with ω1 =
π
8 , ω2 =

π
3 , ω3 =

3π
4 and 2α2

1 = 1
6 , 2α

2
2 = 1

2 , 2α
2
3 =

1
3 .

Then (3) takes the form

f(z) =
z

(1− 2 cos(π8 )z + z2)
1

6 (1− z + z2)
1

2 (1 +
√
2z + z2)

1

3

.
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Figure 1a Figure 1b

This function maps D onto the complement of two times three slits, see Figure
1a. In a practical case we have to map |z| < R < 1 or by the maximum principle
|z| = R. This produces a domain like in Figure 1b, made by using Maple as
working tool. The slit endpoints look like cusps on the illustration, but angular
openings are still possible to determine and distances to the slit endpoints are
pretty much the same.

To determine the number of frequencies, we depend upon the possibility to
count the number of angular openings in the upper halfplane. In this process
two errors may occur: Frequencies are close or one amplitude is much larger
than another. We illustrate two situations like these in the following examples.

Example 2. (Close Frequencies)

To concentrate on close frequencies, we choose an example with 2α2
1 =

2α2
2 = 1

2 . This produces slits on the real an imaginary axis. To show the
difference between ”close” and ”very close” frequencies and only one frequency,
we pick a: ω1 = π

3 − 3π
180 , ω2 = π

3 + 3π
180 b: ω1 = π

3 − π
180 , ω2 = π

3 + π
180 and

c: ω1 = ω2 = π
3 . The result is shown in Figure 2abc. In all these figures we

have chosen R = 0.98. As seen, when frequencies are close, only the ”flatness”
of the ball above the real axis can indicate the possibility of having more than
one frequency.

If a situation like in Figure 2b occur and we suspect two close frequencies,
it is possible to take a smaller interval around the value where the curve crosses
the imaginary axis. Also, we may increase the radius of the circle ∂DR := {z :
|z| = R} to be mapped. In Figure 2d, we have chosen R = 0.995 and restricted
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Figure 2a Figure 2a

Figure 2c

the mapping interval. As seen, there is a slit on the imaginary axis. If we do
the same for a situation like in Figure 2c, it will not give any change.

But there may be situations where we need other ways to chech whether
or not we have adjacent frequencies. In the next section some observations are
made towards how to deal with the problem in another way.

Example 3. (One Really Small Amplitude) If we have 2α2
1 =

1
3 , 2α

2
2 = 2

3
and normalized frequencies ω1 = π

6 , ω2 = 3π
4 , it is not difficult to count the

number of bumps to state the number of frequencies, see Figure 3a. But if we
have 2α2

1 = 1
30 , 2α

2
2 = 29

30 and unchanged frequencies, Maple produce a figure
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Figure 2d

Figure 3a Figure 3b

like the one in Figure 3b. As seen, it is not possible to separate the bumps near
R
+ since one of the amplitudes is so small.
But also in situation where we suspect small amplitudes, it is possible to

incrase the mapping radius and restrict the mapping interval to investigate
parts of the curve more closely. The adventage about small amplitudes is that
they always occur close to an already existing slit endpoint, in our example near
the positive real axis. Thus, it may be wise to chech around all slit endpoints
anyway.
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2. About Frequencies being Close and Amplitudes being Small

Assume two different frequencies ω1 6= ω2. Without loss of generality we choose
corresponding amplitudes to be A1 = a/

√
2, A2 = 1/

√
2, a > 0. Then, use the

R - process to calculate the moments

µn = (a2 cosnω1 + cosnω2)R
n, n = 0, 1, ..., 5. (5)

To obtain nicer expressions, we use the Tchebyecheff formulas to rewrite all
expressions in term of cosω1 and cosω2, and substitute x = cosω1, y =
cosω2. Then, the formula (5) produces manageable expressions for the mo-
ments µ0, ..., µ5. These moments are substituted into the determinant formula
for the Szegö polynomial of degree 5. The limit as R→ 1 is ρ5 (z) , in which our
main interest is the constant term. Four of the zeros are the frequency points.
The fifth one, being minus the constant term, is the uninteresting zero. The
process leads to the following lemma:

Lemma 4. Given the signal

x(m) =
√
2(a cosmω1 + cosmω2).

Let ρ5 (z) be the limit as R → 1 of the Szegö polynomial of degree 5 in the
R-process. Then the constant term in ρ5 (z) is

Ka(x, y) =
4x2y + 4a2xy2 + 3a2x+ 8x+ 8a2y + 3y

4(2x2 + 2a2y2 + 2a2xy + 2xy + 1 + a2)
, (6)

where x = cosω1, y = cosω2.

Proof. Simple, but non-trivial use of Maple.

From this Lemma, observations can be made both about adjacent frequen-
cies and small amplitudes.

2.1. A way to handle two close frequencies or one frequency

Consider a situation where it is a possibility of having two adjacent frequencies.
We assume ω1 = u− t, ω2 = u+ t for a t > 0. In order to compare to the case
where we only have one frequency, we let t→ 0 in (6), which means that y → x.
On the other hand, if we assume only one frequency meaning that t = 0 from
start, we have three uninteresting zeros and the constant term is minus the
product of these. We obtain the following result:
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Proposition 5. The constant term of the Szegö polynomial ρ5 (z) when
t→ 0 is

Ka(x) =
4a2x3 + 4x3 + 11a2x+ 11x

4(4a2x2 + 4x2 + 1 + a2)
, (7)

while the constant term when there is only one frequency is

K(x) = − x3

4(x2 − 2)
. (8)

As seen, we have an obvious discontinuity for t = 0 since t→ 0 leads to (7)
and t = 0 leads to (8). This may be used to state if we have two close or only
one frequency:

If we suspect close frequencies because of ”flatness” in a slit mapping figure,
the natural thing is to map an arc of ∂DR to zoom in a smaller area on the figure.
By that we may be able to count the number of frequencies. Alternatively, if
the constant term of the Szegö polynomial ρ5 (z) is given - for instance by a
calculation of the PC-fraction in (2) - this value may be compared to (7) and
(8) to conclude whether or not there is one or two frequencies.

Comment: Although the argument above is given in case of one frequency
or two close ones, we believe that it can be generalized to a larger number of
frequencies.

2.2. A Way to Handle Small Amplitudes

To consider what happens when we have one really small amplitude, a situation
with only two frequencies will be the worst case. This is because the requirement
2
∑I

j=1 α
2
j = 1 in (4) will imply that the other amplitude is big. Let ω1, ω2 be

two different but fixed frequencies and let a→ 0.
We have the following result:

Proposition 6. The constant term of the Szegö polynomial ρ5 (z) when
a→ 0 is

K0(x, y) =
4x2y + 8x+ 3y

4(2x2 + 2xy + 1)
when s > 0, s→ 0. (9)

If, on the other hand, we assume a = 0 from start, the constant term is of
course the same as in (8).

Note. In the well-known method for frequency identification, a small am-
plitude is equally important to a large one: The method does not weight the
small one less than the other. In the alternative method, however, the size of
the amplitude decide its ”role” in the complete signal.
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